Sample records for acid sulfate waters

  1. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  2. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  3. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  4. Pore water sampling in acid sulfate soils: a new peeper method.

    PubMed

    Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd

    2009-01-01

    This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.

  5. Solid/liquid phase diagram of the ammonium sulfate/glutaric acid/water system.

    PubMed

    Beyer, Keith D; Pearson, Christian S; Henningfield, Drew S

    2013-05-02

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/glutaric acid/water system using differential scanning calorimetry, infrared spectroscopy of thin films, and a new technique: differential scanning calorimetry-video microscopy. Using these techniques, we have determined that there is a temperature-dependent kinetic effect to the dissolution of glutaric acid in aqueous solution. We have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/glutaric acid phase boundary as well as the ternary eutectic composition and temperature. We have also modified our glutaric acid/water binary phase diagram previously published based on these new results. We compare our results for the ternary system to the predictions of the Extended AIM Aerosol Thermodynamics Model (E-AIM), and find good agreement for the ice melting points in the ice primary phase field of this system; however, significant differences were found with respect to phase boundaries, concentration and temperature of the ternary eutectic, and glutaric acid dissolution.

  6. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Adsorption of water, sulfates and chloride on arsenopyrite surface

    NASA Astrophysics Data System (ADS)

    Silva, Juliana C. M.; dos Santos, Egon C.; de Oliveira, Aline; Heine, Thomas; De Abreu, Heitor A.; Duarte, Hélio A.

    2018-03-01

    Arsenopyrite is one of the sulfide minerals responsible for acid rock drainage (ARD) and is one of the most hazardous in regions affected by mining activities. This phenomenon involves complex reaction mechanism. Although it is intensely investigated, there is a lack of consensus concerning the reaction mechanisms and more information is still necessary. In this work, the adsorption of water, hydrochloric acid, and sulfuric acid on arsenopyrite (001) surface was investigated by means of Density Functional calculations and the results compared to other sulfides aiming to understand the mineral/water interface. The interaction of the chemical species with the (001) FeAsS surface is the first step to understand the intricate oxidation mechanism of arsenopyrite. Molecular water adsorption on (001) FeAsS is more favored than the adsorption of sulfate favoring the dissolution of sulfates and enhancing its oxidation. The estimated adsorption energies of water, sulfates and chloride on other sulfide minerals are compared with the estimated values for arsenopyrite and the chemical reactivity differences discussed in detail.

  8. A sulfate-reducing bacterium with unusual growing capacity in moderately acidic conditions.

    PubMed

    Rampinelli, L R; Azevedo, R D; Teixeira, M C; Guerra-Sá, R; Leão, V A

    2008-09-01

    The use of sulfate-reducing bacteria (SRB) is a cost-effective route to treat sulfate- contaminated waters and precipitate metals. The isolation and characterization of a SRB strain from an AMD in a Brazilian tropical region site was carried out. With a moderately acidic pH (5.5), the C.1 strain began its growth and with continued growth, modified the pH accordingly. The strain under these conditions reduced sulfate at the same rate as an experiment performed using an initial pH of 7.0. The dsrB gene-based molecular approach was used for the characterization of this strain and its phylogenetic affiliation was similar to genus Desulfovibrio sp. The results show an SRB isolate with unexpected sulfate reducing capacity in moderately acidic conditions, bringing new possibilities for the treatment of AMD, as acid water would be neutralized to a mildly acidic condition.

  9. Evaporation pathways and solubility of Fe-Ca-Mg-rich salts in acid sulfate waters. A model for Martian ancient surface waters

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Sansano, A.; Sanz, A.

    2011-12-01

    It has been suggested that Martian iron rich sulfate and oxyhydroxide deposits were precipitated from meltwaters[1], thought to have been acidic. Alternatively, iron(III)-rich hydrated sulfates from oxidized sulfides observed in the outcrops may occur as a result of long-term reactions[4]. Recent analysis of Martian materials support that they come from hydrothermal activity[5], which is highly consistent with the observation of enriched in iron, magnesium, silicon and calcium materials[2]. Independently of the nature of the sulfate formation paths on Mars, characterizing the interaction of saline mineral assemblages and the aqueous solutions necessary for their formation is significance in assessing Mars' hydrological and mineralogical evolution history. In this work we have characterized a layered deposit(Fig. 1) formed from the evaporation of stream water from Rio Tinto, Spain, a relevant Mars analog site[6]. The minerals detected in-situ, confirmed later via high resolution laser Raman spectroscopy in the laboratory, are, from bottom to top: (A) mixture of goethite and probably schwermannite; (B) goethite; (C) mixture of gypsum and highly hydrated ferric sulfates; (D) hexahydrite; and (E) mixture of hexahydrite and epsomite. What we observed in this deposit is the precipitation of relatively insoluble hydroxysulfates (schwermannite admixed with goethite), followed by the precipitation of other relatively insoluble ferric and gypsum, and finally the occurrence of the very soluble Mg-sulfates. We are currently investigating the correlation of this evaporite deposit with the hydrochemistry of the stream water from which it evaporated through dedicated laboratory analysis of natural mineral and aqueous samples. A solubility model including the minerals identified in this work will be reported at the conference. The study of this particular acid sulfate system (with analog mineralogy to that observed in Meridiani[3]) provides constraints on the evaporation pathways

  10. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  11. Sulfation in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Catherino, Henry A.; Feres, Fred F.; Trinidad, Francisco

    Virtually, all military land vehicle systems use a lead-acid battery to initiate an engine start. The maintainability of these batteries and as a consequence, system readiness, has suffered from a lack of understanding of the reasons for battery failure. Often, the term most commonly heard for explaining the performance degradation of lead-acid batteries is the word, sulfation. Sulfation is a residual term that came into existence during the early days of lead-acid battery development. The usage is part of the legend that persists as a means for interpreting and justifying the eventual performance deterioration and failure of lead-acid batteries. The usage of this term is confined to the greater user community and, over time, has encouraged a myriad of remedies for solving sulfation problems. One can avoid the connotations associated with the all-inclusive word, sulfation by visualizing the general "sulfation" effect in terms of specific mechanistic models. Also, the mechanistic models are essential for properly understanding the operation and making proper use this battery system. It is evident that the better the model, the better the level of understanding.

  12. Acid sulfate soils and human health--a Millennium Ecosystem Assessment.

    PubMed

    Ljung, Karin; Maley, Fiona; Cook, Angus; Weinstein, Philip

    2009-11-01

    Acid sulfate soils have been described as the "nastiest soils on earth" because of their strong acidity, increased mobility of potentially toxic elements and limited bioavailability of nutrients. They only cover a small area of the world's total problem soils, but often have significant adverse effects on agriculture, aquaculture and the environment on a local scale. Their location often coincides with high population density areas along the coasts of many developing countries. As a result, their negative impacts on ecosystems can have serious implications to those least equipped for coping with the low crop yields and reduced water quality that can result from acid sulfate soil disturbance. The Millennium Ecosystem Assessment called on by the United Nations in 2000 emphasised the importance of ecosystems for human health and well-being. These include the service they provide as sources of food and water, through the control of pollution and disease, as well as for the cultural services ecosystems provide. While the problems related to agriculture, aquaculture and the environment have been the focus of many acid sulfate soil management efforts, the connection to human health has largely been ignored. This paper presents the potential health issues of acid sulfate soils, in relation to the ecosystem services identified in the Millennium Ecosystem Assessment. It is recognised that significant implications on food security and livelihood can result, as well as on community cohesiveness and the spread of vector-borne disease. However, the connection between these outcomes and acid sulfate soils is often not obvious and it is therefore argued that the impact of such soils on human well-being needs to be recognised in order to raise awareness among the public and decision makers, to in turn facilitate proper management and avoid potential human ill-health.

  13. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  14. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  15. Cloud condensation nucleus activity of internally mixed ammonium sulfate/organic acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Abbatt, J. P. D.; Broekhuizen, K.; Pradeep Kumar, P.

    The ability of mixed ammonium sulfate/organic acid particles to act as cloud condensation nuclei (CCN) has been studied in the laboratory using a continuous flow, thermal-gradient diffusion chamber operated at supersaturations between 0.3% and 0.6%. The organic acids studied were malonic acid, azelaic acid, hexanoic acid, cis-pinonic acid, oleic acid and stearic acid, and the particles were largely prepared by condensation of the organic vapor onto a dry ammonium sulfate core. For malonic acid and hexanoic acid, the mixed particles activated as predicted by a simple Köhler theory model where both species are assumed to be fully soluble and the droplet has the surface tension of water. Three low-solubility species, cis-pinonic acid, azelaic acid and oleic acid, are well modeled where the acid was assumed to be either partially or fully insoluble. Interestingly, although thin coats of stearic acid behaved in a manner similar to that displayed by oleic and cis-pinonic acid, we observed that thick coats led to a complete deactivation of the ammonium sulfate, presumably because the water vapor could not diffuse through the solid stearic acid. We observed no CCN behavior that could be clearly attributed to a lowering of the surface tension of the growing droplet by the presence of the organic constituents, some of which are highly surface active.

  16. Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2006-01-01

    Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.

  17. Tracing ground water input to base flow using sulfate (S, O) isotopes

    USGS Publications Warehouse

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  18. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  19. Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canty, M.

    The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screenedmore » for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.« less

  20. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    PubMed

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

  1. Biological functions of iduronic acid in chondroitin/dermatan sulfate

    PubMed Central

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-01-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler–Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. PMID:23441919

  2. Acidity of fine sulfate particles at Great Smokey Mountains National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, D.; Malm, W.C.; Kreidenweis, S.

    1995-12-31

    The acidity of ambient particles is of interest from the perspectives of human health, visibility, and ecology. This paper reports on the acidity of fine (< 2.5{mu}m) particles measured during August 1994 at Look Rock observation tower in Great Smokey Mountains National Park. This site is located at latitude 35{degrees} 37 feet 56 inches, longitude 83{degrees} 56 feet 32 inches, and at an elevation of 808m above sea level. All samples were collected using the IMPROVE (Interagency Monitoring of Protected Visual Environments) sampler. The sampling periods included: (1) 4-hour samples collected three times daily with starting times of 8:00 AM,more » 12:00 noon, and 4:00 PM; (2) 12-hour samples collected twice daily with starting times of 8:00 AM and 8:00 PM (all times reported are eastern daylight savings time). The IMPROVE sampler, collecting 4-hour samples, employed a citric acid/glycerol coated annular denuder to remove ammonia gas while the 12-hour sampler did not use a citric acid denuder. The intensive monitoring effort, conducted during August 1994, showed that: (1) the fine aerosol mass is generally dominated by sulfate and its associated water; (2) there was no statistically significant difference in average sulfate concentration between the 12-hour samples nor was there a statistically significant difference in average sulfate concentration between the 4-hour samples; (3) the aerosol is highly acidic, ranging from almost pure sulfuric acid to pure ammonium bisulfate, with an average molar ammonium ion to sulfate ratio of about 0.75 which suggests the ambient sulfate aerosol was a mixture of ammonium bisulfate and sulfuric acid; and (4) there was no statistically significant diurnal variation in particle acidity nor was there a statistically significant difference in particle acidity between the 4 hour samples.« less

  3. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  4. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  5. Utilization of Drinking Water Treatment Slurry to Produce Aluminum Sulfate Coagulant.

    PubMed

    Fouad, Mahmoud M; Razek, Taha M A; Elgendy, Ahmed S

    2017-02-01

      In Egypt, water treatment consumes about 365 000 tons of aluminum sulfate and produces more than 100 million tons of sludge per year. The common disposal system of sludge in Egypt is to discharge it into natural waterways. Toxicity of aluminum, environmental regulations and costs of chemicals used in water treatment and sludge treatment processes led to an evaluation of coagulant recovery and subsequent reuse. The present work aimed at aluminum recovery from sludge of El-Shiekh Zayd water treatment plant (WTP) to produce aluminum sulfate coagulant. Sludge was characterized and the effect of five variables was tested and the process efficiency was evaluated at different operating conditions. Maximum recovery is 94.2% at acid concentration 1.5 N, sludge weight 5 g, mixing speed 60 rpm, temperature 60 °C and leaching time 40 min. Then optimum conditions were applied to get maximum recovery for aluminum sulfate and compared to commercial coagulant on raw water of El-Shiekh Zayd (WTP).

  6. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  7. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  8. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  9. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL... CATEGORY Chlorosulfonic Acid Sulfation Subcategory § 417.130 Applicability; description of the chlorosulfonic acid sulfation subcategory. The provisions of this subpart are applicable to discharges resulting...

  10. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL... CATEGORY Chlorosulfonic Acid Sulfation Subcategory § 417.130 Applicability; description of the chlorosulfonic acid sulfation subcategory. The provisions of this subpart are applicable to discharges resulting...

  11. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL... CATEGORY Sulfamic Acid Sulfation Subcategory § 417.120 Applicability; description of the sulfamic acid sulfation subcategory. The provisions of this subpart are applicable to discharges resulting from operations...

  12. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL... CATEGORY Sulfamic Acid Sulfation Subcategory § 417.120 Applicability; description of the sulfamic acid sulfation subcategory. The provisions of this subpart are applicable to discharges resulting from operations...

  13. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides

    PubMed Central

    Hsieh, Po-Hung; Xu, Yongmei; Keire, David A; Liu, Jian

    2014-01-01

    Heparan sulfate and heparin are highly sulfated polysaccharides that consist of a repeating disaccharide unit of glucosamine and glucuronic or iduronic acid. The 2-O-sulfated iduronic acid (IdoA2S) residue is commonly found in heparan sulfate and heparin; however, 2-O-sulfated glucuronic acid (GlcA2S) is a less abundant monosaccharide (∼<5% of total saccharides). Here, we report the synthesis of three GlcA2S-containing hexasaccharides using a chemoenzymatic approach. For comparison purposes, additional IdoA2S-containing hexasaccharides were synthesized. Nuclear magnetic resonance analyses were performed to obtain full chemical shift assignments for the GlcA2S- and IdoA2S-hexasaccharides. These data show that GlcA2S is a more structurally rigid saccharide residue than IdoA2S. The antithrombin (AT) binding affinities of a GlcA2S- and an IdoA2S-hexasaccharide were determined by affinity co-electrophoresis. In contrast to IdoA2S-hexasaccharides, the GlcA2S-hexasaccharide does not bind to AT, confirming that the presence of IdoA2S is critically important for the anticoagulant activity. The availability of pure synthetic GlcA2S-containing oligosaccharides will allow the investigation of the structure and activity relationships of individual sites in heparin or heparan sulfate. PMID:24770491

  14. Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods.

    PubMed

    Schenck, Frank J; Callery, Patrick; Gannett, Peter M; Daft, Jonathan R; Lehotay, Steven J

    2002-01-01

    Water-miscible solvents, such as acetone and acetonitrile, effectively extract both polar and nonpolar pesticide residues from nonfatty foods. The addition of sodium chloride to the resulting acetonitrile-water or acetone-water extract (salting out) results in the separation of the water from the organic solvent. However, the organic solvent layer (pesticide extract) still contains some residual water, which can adversely affect separation procedures that follow, such as solid-phase extraction and/or gas chromatography. Drying agents, such as sodium sulfate or magnesium sulfate, are used to remove the water from the organic extracts. In the present study, we used nuclear magnetic resonance spectroscopy to study the composition of the phases resulting from salting out and to compare the effectiveness of sodium sulfate and magnesium sulfate as drying agents. The study showed that considerable amounts of water remained in the organic phase after phase separation. Sodium sulfate was a relatively ineffective drying agent, removing little or no residual water from the organic solvent. Magnesium sulfate proved to be a much more effective drying agent.

  15. Highly Acidic Ambient Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol Toxicity.

    PubMed

    Fang, Ting; Guo, Hongyu; Zeng, Linghan; Verma, Vishal; Nenes, Athanasios; Weber, Rodney J

    2017-03-07

    Soluble transition metals in particulate matter (PM) can generate reactive oxygen species in vivo by redox cycling, leading to oxidative stress and adverse health effects. Most metals, such as those from roadway traffic, are emitted in an insoluble form, but must be soluble for redox cycling. Here we present the mechanism of metals dissolution by highly acidic sulfate aerosol and the effect on particle oxidative potential (OP) through analysis of size distributions. Size-segregated ambient PM were collected from a road-side and representative urban site in Atlanta, GA. Elemental and organic carbon, ions, total and water-soluble metals, and water-soluble OP were measured. Particle pH was determined with a thermodynamic model using measured ionic species. Sulfate was spatially uniform and found mainly in the fine mode, whereas total metals and mineral dust cations were highest at the road-side site and in the coarse mode, resulting in a fine mode pH < 2 and near neutral coarse mode. Soluble metals and OP peaked at the intersection of these modes demonstrating that sulfate plays a key role in producing highly acidic fine aerosols capable of dissolving primary transition metals that contribute to aerosol OP. Sulfate-driven metals dissolution may account for sulfate-health associations reported in past studies.

  16. Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2012-05-30

    Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe(2+) oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe(3+) was produced from Fe(2+) oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO(4)(2-) form. The scavenged arsenate species was relatively stable after 2464-h aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

    PubMed Central

    Balci, Nurgul; Brunner, Benjamin; Turchyn, Alexandra V.

    2017-01-01

    Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62−) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O) of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid

  18. Clues on Acid-Sulfate Alteration and Hematite Formation on Earth and Mars From Iron Isotopic Analyses of Terrestrial Analogues From Hawaii

    NASA Technical Reports Server (NTRS)

    Nie, N. X.; Dauphas, N.; Morris, R. V

    2017-01-01

    The Mars Exploration Rover mission revealed the presence of rocks and minerals indicative of water-rock interactions on Mars. A range of mineralogies have been identified, including hematite spherules (i.e., blueberries), jarosite, Mg-, Ca-sulfates, silica-rich materials and silicate relics from basaltic rocks. The mineral assemblages have been interpreted to be derived from acid-sulfate alteration of basaltic materials. Indeed, the chemical compositions of rocks and soils at Home Plate in Gusev Crater follow the trends expected for acid-sulfate alteration.

  19. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA

    PubMed Central

    Sigal, Nicole; Senez, Jacques C.; Le Gall, Jean; Sebald, Madeleine

    1963-01-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315–1318. 1963—The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c3 and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin (“nigrificans” and “orientis”) are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively. PMID:14047223

  20. BASE COMPOSITION OF THE DEOXYRIBONUCLEIC ACID OF SULFATE-REDUCING BACTERIA.

    PubMed

    SIGAL, N; SENEZ, J C; LEGALL, J; SEBALD, M

    1963-06-01

    Sigal, Nicole (Laboratoire de Chimie Bactérienne du CNRS, Marseille, France), Jacques C. Senez, Jean Le Gall, and Madeleine Sebald. Base composition of the deoxyribonucleic acid of sulfate-reducing bacteria. J. Bacteriol. 85:1315-1318. 1963-The deoxyribonucleic acid constitution of several strains of sulfate-reducing bacteria has been analytically determined. The results of these studies show that this group of microorganisms includes at least four subgroups characterized by significantly different values of the adenine plus thymine to guanine plus cytosine ratio. The nonsporulated forms with polar flagellation, containing both cytochrome c(3) and desulfoviridin, are divided into two subgroups. One includes the fresh-water, nonhalophilic strains with base ratio from 0.54 to 0.59, and the other includes the halophilic or halotolerant strains with base ratio from 0.74 to 0.77. The sporulated, peritrichous strains without cytochrome and desulfoviridin ("nigrificans" and "orientis") are distinct from the above two types and differ from each other, having base ratios of 1.20 and 1.43, respectively.

  1. Monoalkyl sulfates as alkylating agents in water, alkylsulfatase rate enhancements, and the “energy-rich” nature of sulfate half-esters

    PubMed Central

    Wolfenden, Richard; Yuan, Yang

    2007-01-01

    Alkyl sulfate monoesters are involved in cell signaling and structure. Alkyl sulfates are also present in many commercial detergents. Here, we show that monomethyl sulfate acts as an efficient alkylating agent in water, reacting spontaneously with oxygen nucleophiles >100-fold more rapidly than do alkylsulfonium ions, the usual methyl donors in living organisms. These reactions of methyl sulfate, which are much more rapid than its hydrolysis, are insensitive to the nature of the attacking nucleophile, with a Brønsted βnuc value of −0.01. Experiments at elevated temperatures indicate a rate constant of 2 × 10−11 s−1 for the uncatalyzed hydrolysis of methyl sulfate at 25°C (t1/2 = 1,100 y), corresponding to a rate enhancement of ≈1011-fold by a human alkylsulfatase. Equilibria of formation of methyl sulfate from methanol and sodium hydrogen sulfate indicate a group transfer potential (ΔG′pH7) of −8.9 kcal/mol for sulfate ester hydrolysis. The magnitude of that value, involving release of the strong acid HSO4−, helps to explain the need for harnessing the free energy of hydrolysis of two ATP molecules in activating sulfate for the biosynthesis of sulfate monoesters. The “energy-rich” nature of monoalkyl sulfate esters, coupled with their marked resistance to hydrolysis, renders them capable of acting as sulfating or alkylating agents under relatively mild conditions. These findings raise the possibility that, under appropriate circumstances, alkyl groups may undergo transfer from alkyl sulfate monoesters to biological target molecules. PMID:17182738

  2. Acidic sulfate aerosols: characterization and exposure.

    PubMed Central

    Lioy, P J; Waldman, J M

    1989-01-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes. PMID:2651103

  3. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-06-01

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles ({<=} 2.5-{mu}m diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in homes in which the heaters are used may be increased in excess of 20 {mu}g/m{sup 3} over background levels. Sulfate and acidic aerosol levels in such homes could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels of all air contaminantsmore » measured.« less

  4. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-01-01

    The article discusses chamber studies of four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles (= or < 2.5 micrometer diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in houses in which the heaters are used may be increased in excess of 20 micrograms/m3 over background levels. Sulfate and acidic aerosol levels in such houses could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels ofmore » all air contaminants measured.« less

  5. Acid sulfate soils are an environmental hazard in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  6. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation.

    PubMed

    Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W

    2015-01-01

    Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of "passive" CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling.

  7. Differential inhibition of hepatic and duodenal sulfation of (-)-salbutamol and minoxidil by mefenamic acid.

    PubMed

    Vietri, M; Pietrabissa, A; Spisni, R; Mosca, F; Pacifici, G M

    2000-09-01

    The aim of this investigation was to determine whether mefenamic acid and salicylic acid inhibit the sulfation of (-)-salbutamol and minoxidil in the human liver and duodenum, and if so, to ascertain whether the 50% inhibitory concentration (IC50) estimates are different in the two tissues. Sulfotransferase activities were measured for 10 mM (-)-salbutamol and 5 mM minoxidil, and the concentration of 3'-phosphoadenosine-5'-phosphosulphate-[35S] was 0.4 microM. The IC50 estimates for (-)-salbutamol and minoxidil sulfation of mefenamic acid were 72 +/- 5.4 nM and 1.5 +/- 0.6 microM (liver), respectively, and 161 + 23 microM and 420 +/- 18 microM (duodenum), respectively. The figures for the liver were significantly lower (P < 0.0001) than those for the duodenum. The IC50 estimates for (-)-salbutamol sulfation of salicylic acid were 93 +/- 11 microM (liver) and 705 +/- 19 microM (duodenum, P < 0.0001). Salicylic acid was a poor inhibitor of minoxidil sulfation. The IC50 estimates for (-)-salbutamol sulfation of mefenamic acid and salicylic acid are lower than their unbound plasma concentrations after standard dosing, suggesting that mefenamic acid and salicylic acid should inhibit the hepatic sulfation of (-)-salbutamol in vivo.

  8. Calcium sulfate crystallization along citrus root channels in a Florida soil exhibiting acid sulfate properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syslo, S.K.; Myhre, D.L.; Harris, W.G.

    1988-02-01

    The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation ismore » attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.« less

  9. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    NASA Technical Reports Server (NTRS)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  10. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China.

    PubMed

    Chen, Meiqin; Lu, Guining; Guo, Chuling; Yang, Chengfang; Wu, Jingxiong; Huang, Weilin; Yee, Nathan; Dang, Zhi

    2015-01-01

    Sulfate, a major component of acid mine drainage (AMD), its migration in an AMD-affected river which located at the Dabaoshan mine area of South China was investigated to pursue the remediation strategy. The existing factors of relatively low pH values of 2.8-3.9, high concentrations of SO4(2-) (∼1940 mg L(-1)) and Fe(3+) (∼112 mg L(-1)) facilitated the precipitation of schwertmannite (Fe8O8(OH)6SO4·nH2O) in the upstream river. Geochemical model calculations implied the river waters were supersaturated, creating the potential for precipitation of iron oxyhydroxides. These minerals evolved from schwertmannite to goethite with the increasing pH from 2.8 to 5.8 along the river. The concentration of heavy metals in river waters was great reduced as a result of precipitation effects. The large size of the exchangeable sulfate pool suggested that the sediments had a strong capacity to bind SO4(2-). The XRD results indicated that schwertmannite was the predominant form of sulfate-bearing mineral phases, which was likely to act as a major sulfate sink by incorporating water-borne sulfate into its internal structure and adsorbing it onto its surface. The small size of reduced sulfur pools and strong oxidative status in the surface sediments further showed that SO4(2-) shifting from water to sediment in form of sulfate reduction was not activated. In short, precipitation of sulfate-rich iron oxyhydroxides and subsequent SO4(2-) adsorption on these minerals as well as water dilution contributed to the attenuation of SO4(2-) along the river waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Acidic Fluids Across Mars: Detections of Magnesium-Nickel Sulfates

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Mittlefehldt, D. W.; Rampe, E. B.; Vaniman, D. T.; Thompson, L. M.; Morris, R. V.; Clark, B. C.; VanBommel, S. J.

    2017-01-01

    Calcium, magnesium and ferric iron sulfates have been detected by the instrument suites on the Mars rovers. A subset of the magnesium sulfates show clear associations with nickel. These associations indicate Ni(2+) co-precipitation with or substitution for Mg(2+) from sulfate-saturated solutions. Nickel is ex-tracted from primary rocks almost exclusively at pH values less than 6, constraining the formation of these Mg-Ni sulfates to mildly to strongly acidic conditions. There is clear evidence for aqueous alteration at the rim of Endeavour Crater (Meridiani Planum), in the Murray formation mudstone (Gale Crater), and near Home Plate (Gusev Crater). The discovery of Mg-Ni sulfates at these locations indicates a history of fluid-rock interactions at low pH.

  13. Cerro Negro, Nicaragua: A key Mars Analog Environment for Acid-Sulfate Weathering

    NASA Astrophysics Data System (ADS)

    Hynek, B. M.; Rogers, K. L.; McCollom, T. M.

    2008-12-01

    Sulfate-rich bedrock has been discovered in many locations on Mars and has been studied by both orbiting spacecraft and landers. It appears that in most cases these minerals are produced by acid-sulfate weathering of igneous rocks, which may have been a widespread process for the first billion years of Mars' history. The origin of life on Earth may have occurred in iron-sulfur hydrothermal settings and it is conceivable that early Mars had similar environmental conditions. An excellent terrestrial analog for acid- sulfate weathering of Mars-like basalts exists at Cerro Negro (CN), Nicaragua, where sulfur-bearing gases interact with recently erupted basaltic ash in numerous fumaroles. To date, we have made two expeditions to CN to assess the chemical, mineralogical, and biological conditions. At the fumaroles pH ranges from <1 to 5 and temperatures range from 40 to 400° C. Basalts with a chemical composition very similar to those on Mars are being chemically altered in the solfatara setting. In a few years, freshly erupted basalt can be converted into predominately Ca-, Mg-, and Fe-sulfates, Fe-hydroxides (including jarosite), clays, and free silica. Altered rocks have up to 30 wt% SO3 equivalent, which is similar to the Meridiani Planum bedrocks and inferred in other sulfate-bearing bedrock on Mars. Moreover, heavily weathered rocks have silica contents up to 80 wt%, similar to silica-rich soils at Gusev Crater that possibly formed in hydrothermal environments. Samples were collected for biological analysis including enrichment and isolation of novel thermophiles as well as molecular characterization of thermophile diversity. The low water and nutrient levels found in solfatara environments lead to less biomass when compared to hot springs with similar geochemical conditions. Nonetheless, microbes are thriving in these hot, acidic vent environments. At Cerro Negro solfatara, we are characterizing the metabolic and phylogenetic diversity of resident microbial

  14. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    PubMed

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.

  15. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  16. In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation

    PubMed Central

    Pecora, Fabio; Gualeni, Benedetta; Forlino, Antonella; Superti-Furga, Andrea; Tenni, Ruggero; Cetta, Giuseppe; Rossi, Antonio

    2006-01-01

    Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859–871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration. PMID:16719839

  17. Ambient aerosols remain highly acidic despite dramatic sulfate reductions

    NASA Astrophysics Data System (ADS)

    Nenes, Athanasios; Weber, Rodney; Guo, Hongyu; Russell, Armistead

    2016-04-01

    The pH of fine particles has many vital environmental impacts. By affecting aerosol concentrations, chemical composition and toxicity, particle pH is linked to regional air quality and climate, and adverse effects on human health. Sulfate is often the main acid component that drives pH of fine particles (i.e., PM2.5) and is neutralized to varying degrees by gas phase ammonia. Sulfate levels have decreased by approximately 70% over the Southeastern United States in the last fifteen years, but measured ammonia levels have been fairly steady implying the aerosol may becoming more neutral. Using a chemically comprehensive data set, combined with a thermodynamic analysis, we show that PM2.5 in the Southeastern U.S. is highly acidic (pH between 0 and 2), and that pH has remained relatively unchanged throughout the past decade and a half of decreasing sulfate. Even with further sulfate reductions, pH buffering by gas-particle partitioning of ammonia is expected to continue until sulfate drops to near background levels, indicating that fine particle pH will remain near current levels into the future. These results are non-intuitive and reshape expectations of how sulfur emission reductions impact air quality in the Southeastern U.S. and possibly other regions across the globe.

  18. The effects of sodium sulfate in the water of nursery pigs and the efficacy of nonnutritive feed additives to mitigate those effects.

    PubMed

    Flohr, J R; Tokach, M D; Dritz, S S; DeRouchey, J M; Goodband, R D; Nelssen, J L

    2014-08-01

    Two experiments were conducted to investigate the effects of sodium sulfate water and the efficacy of nonnutritive feed additives in nursery pig diets. In Exp. 1, 320 barrows (5.4 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 8 treatments for 24 d in a 2 × 4 factorial with 2 levels of sodium sulfate water (control or 3,000 mg sodium sulfate/L added), and 4 dietary zeolite (clinoptilolite) levels (0, 0.25, 0.50, or 1%). Fecal samples were collected on d 5, 9, 16, and 23; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. No interactions of sodium sulfate × zeolite were observed for any response criteria. Overall (d 0 to 24), pigs drinking sodium sulfate water had decreased (P < 0.01) ADG, ADFI, and G:F compared with pigs drinking control water. Pigs drinking sodium sulfate water also had increased (P < 0.01) fecal scores and lower (P < 0.04) fecal DM on d 5, 9, and 16 compared with pigs drinking control water. Increasing dietary zeolite increased (linear; P < 0.05) ADG and ADFI but had no effect on G:F. In Exp. 2, 350 barrows (5.7 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 10 treatments in a 2 × 5 factorial for 21 d with 2 levels of sodium sulfate water (control or 2,000 mg sodium sulfate/L added) and 5 dietary treatments (control, 1 or 2% zeolite, 1% humic acid substance [HA], and 1% humic and fulvic acid substance [HFB]). Fecal samples were collected on d 5, 8, 15, and 21; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. Overall (d 0 to 21), a water source × diet interaction was observed for ADG and G:F because pigs fed the 1% HA had decreased (P < 0.01) ADG and G:F when drinking sodium sulfate water compared with other treatments but increased ADG and G:F when drinking control water. Pigs drinking sodium sulfate water had decreased (P < 0.01) ADG and G:F and tended (P < 0.08) to have decreased ADFI compared with pigs drinking control water. Pigs drinking sodium sulfate water had

  19. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  20. The stable isotope geochemistry of acid sulfate alteration

    USGS Publications Warehouse

    Rye, R.O.; Bethke, P.M.; Wasserman, M.D.

    1992-01-01

    Acid sulfate wall-rock alteration, characterized by the assemblage alunite + kaolinite + quartz ?? pyrite, results from base leaching by fluids concentrated in H2SO4. Requisite amounts of H2SO4 can be generated by different mechanisms in three principal geologic environments: 1) by atmospheric oxidation of sulfides in the supergene environment, 2) by atmospheric oxidation at the water table in the steam-heated environment of H2S released by deeper, boiling fluids, and 3) by the disproportionation of magmatic SO2 to H2S and H2SO4 during condensation of a magmatic vapor plume at intermediate depths in magmatic hydrothermal environments in silicic and andesitic volcanic terranes. In addition, coarse vein alunite may form in a magmatic steam environment. -from Authors

  1. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  2. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  3. Germination and Seedling Growth of Perennial Ryegrass in Acid Sulfate Soil Treated by Pyrite Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Yi, J.; Kim, T.

    2007-05-01

    The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.

  4. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Howard, Nicole; Osborne, Todd Z.

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  5. Aqueous sulfate separation by crystallization of sulfate–water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.

    An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO 4(H 2O) 5 2-] n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.

  6. Aqueous sulfate separation by crystallization of sulfate–water clusters

    DOE PAGES

    Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.

    2015-08-07

    An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO 4(H 2O) 5 2-] n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.

  7. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  8. Polymeric Sulfated Amino Acid Surfactants: A New Class of Versatile Chiral Selectors for Micellar Electrokinetic Chromatography (MEKC) and MEKC-MS

    PubMed Central

    Ali Rizvi, Syed Asad; Zheng, Jie; Apkarian, Robert P.; Dublin, Steven N.; Shamsi, Shahab A.

    2008-01-01

    In this work, three amino acids derived (L-leucinol, L-isoleucinol and L-valinol) sulfated chiral surfactants are synthesized and polymerized. These chiral sulfated surfactants are thoroughly characterized to determine critical micelle concentration, aggregation number, polarity, optical rotation and partial specific volume. For the first time the morphological behavior of polymeric sulfated surfactants is revealed using cryogenic high-resolution electron microscopy (cryo-HRSEM). The polysodium N-undecenoyl-L-leucine sulfate (poly-L-SUCLS) shows distinct tubular structure, while polysodium N-undecenoyl-L-valine sulfate (poly-L-SUCVS) also shows tubular morphology but without any distinct order of the tubes. On the other hand, polysodium N-undecenoyl-L-isoleucine sulfate (poly-L-SUCILS) displays random distribution of coiled/curved filaments with heavy association of tightly and loosely bound water. All three polymeric sulfated surfactants are compared for enantio-separation of broad range of structurally diverse racemic compounds at very acidic, neutral and basic pH conditions in micellar electrokinetic chromatography (MEKC). A small combinatorial library of 10 structurally related phenylethylamines (PEAs) is investigated for chiral separation under acidic and moderately acidic to neutral pH conditions using an experimental design. In contrast to neutral pH conditions, at acidic pH, significantly enhanced chiral resolution is obtained for class I and class II PEAs due to the compact structure of polymeric sulfated surfactants. It is observed that the presence of hydroxy group on the benzene ring of PEAs resulted in deterioration of enantioseparation. A sensitive MEKC-mass spectrometry (MS) method is developed for one of the PEA (e.g., (±)-pseudoephedrine) in human urine. Very low limit of detection (LOD) is obtained at pH 2.0 (LOD 325 ng/mL), which is ca 16 times better compared to pH 8.0 (LOD 5.2 µg/mL). Other broad range of chiral analytes (

  9. Fish mercury and surface water sulfate relationships in the Everglades Protection Area.

    PubMed

    Gabriel, Mark C; Howard, Nicole; Osborne, Todd Z

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  10. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Acid Sulfate Alteration in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    dust. The Moessbauer parameters are not definitive for mineralogical speciation (other than octahedrally-coordinated Fe(3+) but are consistent with a schwertmannite-like phase (i.e., a nanophase ferric oxide). The high oxidation state and values of Moessbauer parameters (center shift and quadrupole splitting) for the high-SO3 samples imply ferric sulfate (i.e., oxidized sulfur), although the hydration state cannot be constrained. In no case is there an excess of SO3 over available cations (i.e., no evidence for elemental sulfur), and Fe sulfide (pyrite) has been detected in only one Gusev sample. The presence of both high-SiO2 (and low total iron and SO3) and high SO3 (and high total iron as ferric sulfate) can be accommodated by a two-step geochemical model developed with the Geochemist's Workbench. (1) Step 1 is anoxic acid sulfate leaching of Martian basalt at high water-to rock ratios (greater than 70). The result is a high-SiO2 residue0, and anoxic conditions are required to solubilize Fe as Fe(2+). (2) Step 2 is the oxic precipitation of sulfate salts from the leachate. Oxic conditions are required to produce the high concentrations of ferric sulfate with minor Mg-sulfates and no detectable Fe(2+)-sulfates.

  12. Lung-clearance mechanisms following inhalation of acid sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, R.K.; Muggenburg, B.A.; Silbaugh, S.A.

    1982-08-01

    These studies have indicated that acute exposures (1-6 hrs) to sulfuric acid at levels of 0.5 to 1.0 mg/m/sup 3/ can produce impairments in mucous clearance. The impairments can last for up to a week following a 1 hr exposure. These effects and studies by others suggest that high sulfate levels in polluted conditions may be one factor in observed increases of hospital visits for respiratory problems. Long term exposures to elevated levels of sulfates resulting in decreases of clearance could also be an initiating factor in producing chronic obstructive pulmonary disease (COPD). These studies have also shown that itmore » is the larger size fraction (0.6 to 1.0 ..mu..m) of sulfuric acid mist in the urban aerosol which is predominantly responsible for at least the acute effects.« less

  13. A Geochemical and Mineralogical Model for Formation of Layered Sulfate Deposits at Meridiani Planum by Hydrothermal Acid-sulfate Alteration of Pyroclastic Basalt

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.; Hynek, B. M.

    2012-12-01

    The Mars Exploration Rover (MER) Opportunity has extensively characterized sulfate-rich, hematite-bearing bedrock exposed at Meridiani Planum, Mars. Based on various measurements, the mineral composition of the bedrocks has been interpreted to include: amorphous silica/glass/phyllosilicates, Mg-, Ca-, and Fe-bearing sulfates including jarosite, minor amounts of igneous phases including plagioclase, pyroxene, olivine, and magnetite, and hematite [1,2]. Chemically, the bedrocks closely resemble the composition of pristine martian basalt with addition of S and O, and minor variations of Mg and Cl with depth [3,4]. Based on these and other observations, the MER team has proposed that the bedrocks represent chemically altered siliciclastic sediments combined with sulfate salts formed by evaporation of sulfate-bearing fluids, modified by transport and multiple stages of infiltrating groundwater [3,5]. Several alternative scenarios have been proposed for the origin of the rocks including large impacts [6], evaporating glacial deposits [7], acid-fog alteration [8], and hydrothermal acid-sulfate alteration of basalt [4]. In order to further evaluate the potential contribution of hydrothermal proceeses to the deposits, we performed numerical geochemical models of acid-sulfate alteration of martian basalt based on constraints provided by recent laboratory experiments. Experimental studies of alteration of basalt conducted in our lab [9] indicate that the initial stages of acid-sulfate alteration of pyroclastic basalt are characterized by rapid decomposition of igneous crystalline phases including plagioclase, pyroxene, and olivine, while the glass (and igneous phases protected within the glass) remain unreactive. Elements released by dissolving minerals are precipitated primarily as amorphous silica and Ca-, Al-, Fe- and Mg-bearing sulfates, while precipitation of phyllosilicates and Fe-oxides/oxyhydroxides (FeOx) is kinetically inhibited. Based on these constraints, models

  14. Effects of Precursor Concentration and Acidic Sulfate in Aqueous Glyoxal−OH Radical Oxidation and Implications for Secondary Organic Aerosol

    PubMed Central

    2009-01-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30−3000 μM) and the presence of acidic sulfate (0−840 μM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 μM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  15. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  16. MEASUREMENT AND QUANTIFICATION OF SULFATES IN MINING INFLUENCED WATER

    EPA Science Inventory

    Most hard rock (mineral) mine drainages contain metals and sulfates higher than current water quality standards permit for discharge. In treating these wastes with passive systems, scientists and engineers have concentrated on using sulfate-reducing bioreactors (SRBRs) and their ...

  17. Origin of oxygen in sulfate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study.

    PubMed

    Usher, Courtney R; Cleveland, Curtis A; Strongin, Daniel R; Schoonen, Martin A

    2004-11-01

    FeS2 (pyrite) is known to react with water and dissolved molecular oxygen to form sulfate and iron oxyhydroxides. This process plays a large role in the environmentally damaging phenomenon known as acid mine drainage. An outstanding scientific issue has been whether the oxygen in the sulfate and oxyhydroxide product was derived from water and/or dissolved oxygen. By monitoring the reaction in situ with horizontal attenuated total reflectance infrared spectroscopy, it was found that when using 18O isotopically substituted water, the majority of the infrared absorbance due to sulfate product red-shifted approximately 70 cm(-1) relative to the absorbance of sulfate using H(2)16O as a reactant. Bands corresponding to the iron oxyhydroxide product did not shift. These results indicate water as the primary source of oxygen in the sulfate product, while the oxygen atoms in the iron oxyhydroxide product are obtained from dissolved molecular oxygen.

  18. Quantitative Analysis of Sulfate in Water by Indirect EDTA Titration

    ERIC Educational Resources Information Center

    Belle-Oudry, Deirdre

    2008-01-01

    The determination of sulfate concentration in water by indirect EDTA titration is an instructive experiment that is easily implemented in an analytical chemistry laboratory course. A water sample is treated with excess barium chloride to precipitate sulfate ions as BaSO[subscript 4](s). The unprecipitated barium ions are then titrated with EDTA.…

  19. Acid Mine Drainage and Metal Sulfate Minerals in the Shasta Mining District, California

    NASA Astrophysics Data System (ADS)

    Livingston, J. D.; Murphy, W. M.; Miller, R. M.; Ayars, E. J.

    2005-12-01

    Metal sulfate minerals were collected at four surface water drainage sites during September and October of 2004 in the Shasta Mining District, southern Klamath Mountains, Shasta County, California and analyzed by X-ray fluorescence, atomic absorption spectroscopy, and X-ray diffraction to determine elements present, quantities of Fe, Cu, and Zn, and mineralogy. The Shasta Mining District produced major quantities of Cu, Zn, and pyrite (S) with minor amounts of Au, Ag, and Fe from massive sulfide bodies (Kinkel et al., 1956). Three study sites are located on Iron Mountain and one study site is at Bully Hill. Although mining occurred during a period of just over 100 years, it is estimated that acid mine drainage (AMD) will continue from Iron Mountain for over 3,200 years (Nordstrom and Alpers, 1998). AMD at the study sites produces blooms of metal sulfates during California's Mediterranean climate summer. The minerals readily dissolve in the "first flush" of seasonal rain creating runoff water of low pH with high amounts of dissolved metals (Bayless and Olyphant, 1993; Jambor et al., 2000). Data were examined for mineralogical changes in time and space and for zoning of minerals on a scale of centimeters. Sulfate mineral samples are complex with some samples composed of over a dozen different minerals. Site 1 is located on Spring Creek downstream from the Iron Mountain superfund remediation site, so levels of Fe, Cu, and Zn in the sulfates at this site are lower than at the other sites. Two site 1 samples from the same location taken a month apart show Ca, Fe, Cu, Sr, Y, and Sn, and the first sample also has detectable Br. The metal sulfates identified from the first visit are celestine, cesanite, chessexite, hectorfloresite, and ungemachite, and the mineralogy of the second visit is bilinite, epsomite, millosevichite, and anhydrite. The Fe bearing sulfate mineral during the first visit is ungemachite, but bilinite was the Fe bearing mineral at the time of the second

  20. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    USGS Publications Warehouse

    Cravotta, C.A.

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  1. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.

    PubMed

    Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M

    2012-12-19

    The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.

  2. Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice.

    PubMed

    Deplancke, Bart; Finster, Kai; Graham, W Vallen; Collier, Chad T; Thurmond, Joel E; Gaskins, H Rex

    2003-04-01

    There is increasing evidence that hydrogen sulfide (H2S), produced by intestinal sulfate-reducing bacteria (SRB), may be involved in the etiopathogenesis of chronic diseases such as ulcerative colitis and colorectal cancer. The activity of SRB, and thus H2S production, is likely determined by the availability of sulfur-containing compounds in the intestine. However, little is known about the impact of dietary or inorganic sulfate on intestinal sulfate and SRB-derived H2S concentrations. In this study, the effects of short-term (7 day) and long-term (1 year) inorganic sulfate supplementation of the drinking water on gastrointestinal (GI) sulfate and H2S concentrations (and thus activity of resident SRBs), and the density of large intestinal sulfomucin-containing goblet cells, were examined in C3H/HeJBir mice. Additionally, a PCR-denaturing gradient gel electrophoresis (DGGE)-based molecular ecology technique was used to examine the impact of sulfate-amended drinking water on microbial community structure throughout the GI tract. Average H2S concentrations ranged from 0.1 mM (stomach) to 1 mM (cecum). A sulfate reduction assay demonstrated in situ production of H2S throughout the GI tract, confirming the presence of SRB. However, H2S generation and concentrations were greatest in the cecum and colon. Sulfate supplementation of drinking water did not significantly increase intestinal sulfate or H2S concentrations, suggesting that inorganic sulfate is not an important modulator of intestinal H2S concentrations, although it altered the bacterial profiles of the stomach and distal colon of 1-year-old mice. This change in colonic bacterial profiles may reflect a corresponding increase in the density of sulfomucin-containing goblet cells in sulfate-supplemented compared with control mice.

  3. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Kornfeld, J.M.

    2005-01-01

    Weathering of metal-sulfide minerals produces suites of variably soluble efflorescent sulfate salts at a number of localities in the eastern United States. The salts, which are present on mine wastes, tailings piles, and outcrops, include minerals that incorporate heavy metals in solid solution, primarily the highly soluble members of the melanterite, rozenite, epsomite, halotrichite, and copiapite groups. The minerals were identified by a combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron-microprobe. Base-metal salts are rare at these localities, and Cu, Zn, and Co are commonly sequestered as solid solutions within Fe- and Fe-Al sulfate minerals. Salt dissolution affects the surface-water chemistry at abandoned mines that exploited the massive sulfide deposits in the Vermont copper belt, the Mineral district of central Virginia, the Copper Basin (Ducktown) mining district of Tennessee, and where sulfide-bearing metamorphic rocks undisturbed by mining are exposed in Great Smoky Mountains National Park in North Carolina and Tennessee. Dissolution experiments on composite salt samples from three minesites and two outcrops of metamorphic rock showed that, in all cases, the pH of the leachates rapidly declined from 6.9 to 30 mg L-1), Fe (>47 mg L-1), sulfate (>1000 mg L-1), and base metals (>1000 mg L-1 for minesites, and 2 mg L-1 for other sites). Geochemical modeling of surface waters, mine-waste leachates, and salt leachates using PHREEQC software predicted saturation in the observed ochre minerals, but significant concentration by evaporation would be needed to reach saturation in most of the sulfate salts. Periodic surface-water monitoring at Vermont minesites indicated peak annual metal loads during spring runoff. At the Virginia site, where no winter-long snowpack develops, metal loads were highest during summer months when salts were dissolved periodically by rainstorms following sustained evaporation during dry

  4. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  5. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.

    2006-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  6. Mineralogy and Organic Geochemistry of Acid Sulfate Environments from Valles Caldera, New Mexico: Habitability, Weathering and Biosignatures

    NASA Astrophysics Data System (ADS)

    Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Kubo, M.

    2009-12-01

    We report on the mineralogy, organic preservation potential and habitability of sulfate deposits in acid sulfate volcanic settings at Valles Caldera, New Mexico. Fumaroles and acidic springs are potential analogs for aqueous environments on Mars and may offer insights into habitability of sulfate deposits such as those at Meridiani Planum. Sulfates recently detected on Mars are posited to have formed from fluids derived from basaltic weathering and igneous volatile input, ultimately precipitating from acidic brines subjected to desiccation and freeze-thaw cycles (McClennan and Grotzinger, 2008). Key issues concerning martian sulfate deposits are their relationship to aqueous clay deposits, and whether or not specific sulfates deposits represent former habitable environments (see Soderblum and Bell, 2008; Tosca et al., 2008). Modern terrestrial volcanic fumaroles and hot springs precipitate various Ca-, Mg- and Fe- sulfates along with clays, and can help clarify whether certain acid sulfate mineral assemblages reflect habitable environments. Valles caldera is a resurgent caldera last active in the Pleistocene (1.4 - 1.0 Ma) that hosts several active fumaroles and over 40 geothermal exploration wells (see Goff, 2009). Fumaroles and associated mudpots and springs at Valles range from pH < 1 to 3, and affect argillic alteration upon rhylolitic tuffs and sedimentary deposits (Charles et al., 1986). We identified assemblages containing gypsum, quartz, Al-sulfates, elemental sulfur, clays and other minerals using XRD and SEM-EDS. Our previous research has shown that sulfates from different marine depositional environments display textural and morphological traits that are indicative of biological influence, or specific conditions in the depositional environments (Vogel et al., 2009). Gypsum crystals that develop in the presence of microbial biofilms in marine environments may have distorted crystal morphologies, biofilm - associated dissolution features, and accessory

  7. Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate.

    PubMed

    Razani, Seyed Hadi; Mousavi, Seyed Mohammad; Yeganeh, Hassan Mehrabani Mehrabanii; Marc, Ivan

    2007-10-01

    The production of carotenoids, lipid content, and fatty acid composition were all studied in a strain of Sporobolomyces ruberrimus when using different concentrations of technical glycerol as the carbon source and ammonium sulfate as the nitrogen source. The total lipids represented an average of 13% of the dry weight, and the maximum lipids were obtained when using 65.5 g/l technical glycerol (133.63 mg/ g). The optimal conditions for fatty acid production were at 27 degrees C using 20 g of ammonium sulfate and a pH range from 6 to 7, which produced a fatty acid yield of 32.5+/-1 mg/g, including 1.27+/- 0.15 mg of linolenic acid (LNA), 7.50+/-0.45 mg of linoleic acid (LLA), 5.50+/-0.35 mg of palmitic acid (PA), 0.60+/-0.03 mg of palmitoleic acid (PAL), 1.28+/-0.11 mg of stearic acid (SA), 9.09+/-0.22 mg of oleic acid, 2.50+/-0.10 mg of erucic acid (EA), and 4.25+/-0.20 mg of lignoceric acid (LCA), where the palmitic, oleic, and linoleic acids combined formed about 37% of the total fatty acids. The concentration of total carotenoids was 2.80 mg/g when using 20 g of ammonium sulfate, and consisted of torularhodin (2.70 mg/g) and beta-carotene (0.10 mg/ g), at 23 degrees C and pH 6. However, the highest amount with the maximum specific growth rate was obtained (micromax=0.096 h(-1)) with an ammonium sulfate concentration of 30 g/l.

  8. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    , and sulfate is correlated with equivalent concentrations of the salts added to sea water, or with the forces of primary valence. Although the threshold for stimulation by the salts is considerably higher than for the acids, the efficiency of stimulation by the salts is greater. PMID:19872815

  9. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source.

    PubMed

    Hong, Siqi; Cannon, Fred S; Hou, Pin; Byrne, Tim; Nieto-Delgado, Cesar

    2017-10-01

    Polypyrrole modified activated carbon was used to remove sulfate from acid mine drainage water. The polypyrrole modified activated carbon created positively charged functionality that offered elevated sorption capacity for sulfate. The effects of the activated carbon type, approach of polymerization, preparation temperature, solvent, and concentration of oxidant solution over the sulfate adsorption capacity were studied at an array of initial sulfate concentrations. A hardwood based activated carbon was the more favorable activated carbon template, and this offered better sulfate removal than when using bituminous based activated carbon or oak wood activated carbon as the template. The hardwood-based activated carbon modified with polypyrrole removed 44.7 mg/g sulfate, and this was five times higher than for the pristine hardwood-based activated carbon. Various protocols for depositing the polypyrrole onto the activated carbon were investigated. When ferric chloride was used as an oxidant, the deposition protocol that achieved the most N + atomic percent (3.35%) while also maintaining the least oxygen atomic percent (6.22%) offered the most favorable sulfate removal. For the rapid small scale column tests, when processing the AMD water, hardwood-based activated carbon modified with poly pyrrole exhibited 33 bed volume compared to the 5 bed volume of pristine activated carbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identification of allantoin, uric acid, and indoxyl sulfate as biochemical indicators of filth in food packaging by LC.

    PubMed

    Carlson, M; Thompson, R D

    2001-01-01

    A liquid chromatographic (LC) method was developed for the determination of allantoin, uric acid, and indoxyl sulfate in mammalian urine contaminated packaging material including paper bagging, corrugated cardboard, grayboard, and burlap bagging. The procedure involves solvent extraction and isolation of the 3 analytes by reversed-phase LC with ultraviolet detection at 225 nm for allantoin and 286 nm for uric acid and indoxyl sulfate. The composition of authentic mammalian urine such as mouse, rat, cat, dog, and human were also determined with regard to the 3 compounds of interest. A linear concentration range of 0.11-20.4, 0.02-10.0, and 0.04-30.0 microg/mL was obtained for allantoin, uric acid, and indoxyl sulfate, respectively. Limits of detection (LOD) and quantitation (LOQ) were 0.0104 and 0.0345 microg/mL for allantoin; 0.0018 and 0.0060 microg/mL for uric acid; and 0.0049 and 0.0165 microg/mL for indoxyl sulfate, respectively. Interday relative standard deviation values for a mixture of standard allantoin, uric acid, and indoxyl sulfate (n = 5) were 0.97, 0.80, and 0.94%, respectively. Analyte composition for 5 types of authentic mammalian urine varied from 0.19-6.88 mg/mL allantoin; 0.08-0.57 mg/mL uric acid; and 0.03-0.78 mg/mL indoxyl sulfate. Analyte content for 8 samples including 2 samples each for paper, cardboard, grayboard, and burlap bagging each contaminated with mouse or rat urine ranged from acid; and 17.5 to 616 microg/gm indoxyl sulfate. Recoveries of allantoin, uric acid, and indoxyl sulfate from 11 fortified samples (4 types) for both mouse and rat urine ranged from 28.2 to 114.1 % for allantoin; 32.6 to 123.4% for uric acid; and 52.6 to 118.2% for indoxyl sulfate.

  11. A stable solid acid material: Sulfated ZrO2 dispersed on alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Jiaqi, Chen; Xu, Wang; Rui-Feng, Li

    2017-02-01

    A tubular solid acid catalyst was designed by loading sulfated zirconia into γ-Al2O3 nanotubes using the method of stepwise deposition. The XRD, N2 adsorption-desorption characterization demonstrated that introducing alumina nanotube and SO4 2- anions have played an important role in stabilizing the metastable tetragonal ZrO2 phase, and the sulfated zirconia on the surface of the γ-Al2O3 nanotube has high dispersion and stability. The catalyst reused repeatedly possesses large amounts of acid sites and good acidity, exhibiting high catalytic activity and stability for isopropylbenzene cracking.

  12. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    USGS Publications Warehouse

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  13. Sorption of strontium-90 from fresh waters during sulfate modification of barium manganite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhen`kov, A.P.; Egorov, Yu.V.

    1995-11-01

    Recovery of strontium-90 with barium manganite from fresh waters (natural fresh waters of open basins) can be increased by adding agents that contain sulfate ions and thus modify the sorbent and chemically bind the sorbate. The treatment results in a heterogeneous anion-exchange transformation of barium manganite into barium sulfate-manganese dioxide and in simultaneous absorptive coprecipitation of strontium sulfate (microcomponent).

  14. Stable Isotope Characteristics of Jarosite: The Acidic Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Earl, Lyndsey D.

    2005-01-01

    The Mars Rover Opportunity found jarosite (Na(+) or K(+))Fe3SO4(OH)6 at the Meridiani Planum site. This mineral forms from the evaporation of an aqueous acidic sulfate brine. Oxygen isotope compositions may characterize formation conditions but subsequent isotope exchange may have occurred between the sulfate and hydroxide of jarosite and water. The rate of oxygen isotope exchange depends on the acidity and temperature of the brine, but it has not been investigated in detail. We performed laboratory experiments to determine the rate of oxygen isotope exchange under varying acidities and temperatures to learn more about this process. Barium sulfate samples were precipitated weekly from acidic sodium sulfate brines. The oxygen isotope composition of the precipitated sulfate was obtained using a Finnigan MAT253 Isotope Ratio Mass-Spectrometer. The results show that water was trapped in barium sulfate during precipitation. Trapped water may exchange with sulfate when exposed to high temperatures, thus changing the isotope composition of sulfate and the observed fractionation factor of oxygen isotope exchange between sulfate and water. The results of our research will contribute to the understanding of oxygen isotope exchange rates between water and sulfate under acidic conditions and provide experimental knowledge for the dehydration of barium sulfate samples.

  15. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Hardesty, Douglas K.; Brumbaugh, William G.; Hammer, Edward J.; Bauer, Candice R.; Mount, David R.

    2016-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1mg K/L to 3mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.

  16. Separation and Precipitation of Nickel from Acidic Sulfate Leaching Solution of Molybdenum-Nickel Black Shale by Potassium Nickel Sulfate Hexahydrate Crystallization

    NASA Astrophysics Data System (ADS)

    Deng, Zhigan; Wei, Chang; Fan, Gang; Li, Xingbin; Li, Minting; Li, Cunxiong

    2018-02-01

    Nickel was separated and precipitated with potassium nickel sulfate hexahydrate [K2Ni(SO4)2·6H2O] from acidic sulfate solution, a leach solution from molybdenum-nickel black shale. The effects of the potassium sulfate (K2SO4) concentration, crystallization temperature, solution pH, and crystallization time on nickel(II) recovery and iron(III) precipitation were investigated, revealing that nickel and iron were separated effectively. The optimum parameters were K2SO4 concentration of 200 g/L, crystallization temperature of 10°C, solution pH of 0.5, and crystallization time of 24 h. Under these conditions, 97.6% nickel(II) was recovered as K2Ni(SO4)2·6H2O crystals while only 2.0% of the total iron(III) was precipitated. After recrystallization, 98.4% pure K2Ni(SO4)2·6H2O crystals were obtained in the solids. The mother liquor was purified by hydrolysis-precipitation followed by cooling, and more than 99.0% K2SO4 could be crystallized. A process flowsheet was developed to separate iron(III) and nickel(II) from acidic-sulfate solution.

  17. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  18. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    PubMed Central

    Chen, Guo; Zhang, Bin; Zhao, Jun

    2015-01-01

    The cellulose sulfate (CS) is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  19. Surface characterization of acidic ceria-zirconia prepared by direct sulfation

    NASA Astrophysics Data System (ADS)

    Azambre, B.; Zenboury, L.; Weber, J. V.; Burg, P.

    2010-05-01

    Acidic ceria-zirconia (SCZ) solid acid catalysts with a nominal surface density of ca 2 SO 42-/nm 2 were prepared by a simple route consisting in soaking high specific surface area Ce xZr 1- xO 2 (with x = 0.21 and 0.69) mixed oxides solutions in 0.5 M sulphuric acid. Characterizations by TPD-MS, TP-DRIFTS and FT-Raman revealed that most of surface structures generated by sulfation are stable at least up to 700 °C under inert atmosphere and consist mainly as isolated sulfates located on defects or crystal planes and to a lesser extent as polysulfates. Investigations by pyridine adsorption/desorption have stated that: SCZ possess both strong Brønsted (B) and Lewis (L) acid sites, some of them being presumably superacidic; the B/L site ratio was found to be more dependent on the temperature and hydration degree than on the composition of the ceria-zirconia. By contrast, the reactivity of the parent Ce xZr 1- xO 2 materials towards pyridine is mostly driven by redox properties resulting in the formation of Py-oxide with the participation of Lewis acid sites of moderate strength ( cus Ce x+ and Zr x+ cations). Basicity studies by CO 2 adsorption/desorption reveal that SCZ surfaces are solely acidic whereas the number and strength of Lewis basic sites increases with the Ce content for the parent Ce xZr 1- xO 2 materials.

  20. Mass spectrometric and theoretical investigation of sulfate clusters in nanoscale water droplets

    NASA Astrophysics Data System (ADS)

    Lemke, K.

    2017-12-01

    The solvation of sulfate clusters of varying size and charge in water clusters and in nanoscale water droplets has been studied using electrospray ionization (ESI) FT-MS and density functional theory (DFT) molecular simulations. ESI mass spectra of solvated [Mg(MgSO4)m]2+(H2O)n with m≤10 and up to 15 water molecules have been recorded, and ion cluster experiments have been undertaken using a custom-modified FT-ICR mass spectrometer with the ability of IRMPD for ion dissociation. We present equilibrium geometries and energies for [Mg(MgSO4)m]2+(H2O)n, water-free and solvated with up to 100 water molecules, using swarm-based optimizers and DFT level calculations. Dominant cluster species identified following ESI of dilute (1-5 mM) MgSO4 solutions include hexa- and octa-nuclear magnesium sulfate ions, water-free and with a full first shell of water molecules. The largest clusters identified are magnesium sulfate decamers, i.e. [Mg(MgSO4)10]2+(H2O)n, with n≤15. As a very first step towards understanding the distribution and intensity of ESI ion mass spectra, we have identified the global minima of [Mg(MgSO4)m]2+(H2O)n with m≤10 and n≤100, and located likely global minima of magnesium sulfate clusters in the gas phase and in nano-scale water droplets. We will present a summary of the structural and energetic trends of solvated magnesium sulfate clusters, with a particular focus on structural transitions induced by cluster growth and solvation, the occurrence of "magic" number cluster species, their energetic properties and their potential role as atmospheric aqueous species.

  1. Efflorescent sulfates from Baia Sprie mining area (Romania)--Acid mine drainage and climatological approach.

    PubMed

    Buzatu, Andrei; Dill, Harald G; Buzgar, Nicolae; Damian, Gheorghe; Maftei, Andreea Elena; Apopei, Andrei Ionuț

    2016-01-15

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30-90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Smectite Formation in Acid Sulfate Environments on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Niles, P. B.; Sutter, B.; Clark, J. V.; Morris, R. V.; Ming, D. W.

    2017-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars were hypothesized to form under aqueous conditions that were globally neutral to alkaline. These pH conditions and the presence of a CO2-rich atmosphere should have been favorable for the formation of large carbonate deposits. However, large-scale carbonate deposits have not been detected on Mars. We hypothesized that smectite deposits are consistent with perhaps widespread acidic aqueous conditions that prevented carbonate precipitation. The objective of our work was to investigate smectite formation under acid sulfate conditions in order to provide insight into the possible geochemical conditions required for smectite formation on Mars. Hydrothermal batch incubation experiments were performed with Mars-analogue, glass-rich, basalt simulant in the presence of sulfuric acid of variable concentration.

  3. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  4. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    USGS Publications Warehouse

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  5. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.

    PubMed

    Sobron, Pablo; Alpers, Charles N

    2013-03-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  6. Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California

    USGS Publications Warehouse

    Sobron, Pablo; Alpers, Charles N.

    2013-01-01

    The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.

  7. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (<1 m) regolith appears to have water abundances of up to ˜13 wt%. Water ice is predicted to be unstable at the present time at all depths below the surface in these equatorial regions. If present in hydrous silicate minerals such as clays or zeolites, which may contain water in abundances of ˜10-20% at Martian surface conditions, the Odyssey data require a regolith very enriched in hydrous silicates - an unlikely proposition. Viking X-ray fluorescence data and alteration assemblages in martian meteorites suggest the presence of sulfate salts in martian regolith. Viking data from excavated duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e

  8. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  9. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil.

    PubMed

    Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos

    2016-09-01

    Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.

  10. Deliquescence and crystallization of ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles

    NASA Astrophysics Data System (ADS)

    Pant, Atul; Fok, Abel; Parsons, Matthew T.; Mak, Jackson; Bertram, Allan K.

    2004-06-01

    In the following, we report the deliquescence relative humidities (DRH) and crystallization relative humidities (CRH) of mixed inorganic-organic particles, specifically ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles. Knowledge of the DRH and CRH of mixed inorganic-organic particles is crucial for predicting the role of aerosol particles in the atmosphere. Our DRH results are in good agreement with previous measurements, but our CRH results are significantly lower than some of the previous measurements reported in the literature. Our studies show that the DRH and CRH of ammonium sulfate and sodium chloride only decreased slightly when the mole fraction of the acid was less than 0.4. If other organics in the atmosphere behave in a similar manner, then the DRH and CRH of mixed inorganic-organic atmospheric particles will only be slightly less than the DRH and CRH of pure inorganic particles when the organic mole fraction is less than 0.4. Our results also show that if the particles contain a significant amount of organics (mole fraction > 0.5) the crystallization relative humidity decreases significantly and the particles are more likely to remain in the liquid state. Further work is needed to determine if other organics species of atmospheric importance have a similar effect.

  11. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  12. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  13. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  14. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  15. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  16. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  17. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  18. Acid-Sulfate Alteration at Gusev Crater and Across Mars: High-SiO2 Residues and Ferric Sulfate Precipitates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Catalano, J. G.; Klingelhoefer, G.; Schroeder, C.; Gellert, R.; Clark, B. C.; Ming, D. W.; Yen, A. S.; Arvidson, R. E.; Cohen, B. A.; hide

    2017-01-01

    The Mars Exploration Rover Spirit ended its mission in Gusev crater on sol 2210 after it had become stuck in a deposit of fined-grained and sulfate rich soil with dust covered solar panels unfavorably pointed toward the sun. Final analysis of remaining data from Spirit's Moessbauer spectrometer (Fe redox and mineralogy) for sols 1529 through 2071 is now complete. We focus here on chemical (APXS) and MB data for targets having high-SiO2 or high-SO3 and process link the targets through mixing and geochemical modelling to an acid-sulfate system centered at Home Plate, which is considered to be a hydrovolcanic complex.

  19. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    EPA Science Inventory

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-conce...

  20. IMPORTANCE OF GROUNDWATER SULFATE TO ACIDIFICATION IN THE GOOSE RIVER WATERSHED, MAINE

    EPA Science Inventory

    The role of groundwater sulfate discharge to ponds and streams within the Goose River basin (33.3 km2) is examined. While airborne sulfate disposition has declined, acidity in surface waters locally remains elevated. Monthly SO2-4 analyses (1999-2...

  1. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  2. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1982-01-01

    While gibbsite and kaolinite solubilities usually regulate aluminum concentrations in natural waters, the presence of sulfate can dramatically alter these solubilities under acidic conditions, where other, less soluble minerals can control the aqueous geochemistry of aluminum. The likely candidates include alunogen, Al2(SO4)3 ?? 17H2O, alunite, KAl3(SO4)2(OH)6, jurbanite, Al(SO4)(OH) ?? 5H2O, and basaluminite, Al4(SO4)(OH)10 ?? 5H2O. An examination of literature values shows that the log Ksp = -85.4 for alunite and log Ksp = -117.7 for basaluminite. In this report the log Ksp = -7.0 is estimated for alunogen and log Ksp = -17.8 is estimated for jurbanite. The solubility and stability relations among these four minerals and gibbsite are plotted as a function of pH and sulfate activity at 298 K. Alunogen is stable only at pH values too low for any natural waters (<0) and probably only forms as efflorescences from capillary films. Jurbanite is stable from pH < 0 up to the range of 3-5 depending on sulfate activity. Alunite is stable at higher pH values than jurbanite, up to 4-7 depending on sulfate activity. Above these pH limits gibbsite is the most stable phase. Basaluminite, although kinetically favored to precipitate, is metastable for all values of pH and sulfate activity. These equilibrium calculations predict that both sulfate and aluminum can be immobilized in acid waters by the precipitation of aluminum hydroxysulfate minerals. Considerable evidence supports the conclusion that the formation of insoluble aluminum hydroxy-sulfate minerals may be the cause of sulfate retention in soils and sediments, as suggested by Adams and Rawajfih (1977), instead of adsorption. ?? 1982.

  3. TOTAL PARTICLE, SULFATE, AND ACIDIC AEROSOL EMISSIONS FROM KEROSENE SPACE HEATERS

    EPA Science Inventory

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine part...

  4. [Newly leaching method of copper from waste print circuit board using hydrochloric acid/n-butylamine/copper sulfate].

    PubMed

    Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei

    2010-12-01

    A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.

  5. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    NASA Technical Reports Server (NTRS)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO

  6. The influence of ferrous sulfate utilization on the sugar yields from dilute-acid pretreatment of softwood for bioethanol production.

    PubMed

    Monavari, Sanam; Galbe, Mats; Zacchi, Guido

    2011-01-01

    By employing metal salts in dilute-acid pretreatment the severity can be reduced due to reduced activation energy. This study reports on a dilute-acid steam pretreatment of spruce chips by addition of a small amount of ferrous sulfate to the acid catalyst, i.e., either SO2, H2SO3 or H2SO4. The utilization of ferrous sulfate resulted in a slightly increased overall glucose yield (from 74% to 78% of the theoretical value) in pretreatment with SO2 and H2SO3. Impregnation with ferrous sulfate and sulfuric acid did not give any improvement compared with pretreatment based solely on H2SO4. Copyright © 2010. Published by Elsevier Ltd.

  7. Water-dissolvable sodium sulfate nanowires as a versatile template for the fabrication of polyelectrolyte- and metal-based nanotubes.

    PubMed

    Pu, Ying-Chih; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng

    2006-09-06

    This study presents the synthesis of water-dissolvable sodium sulfate nanowires, where Na(2)SO(4) nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and formed from the coexistence of AgNO(3), SnCl(2), dodecylsodium sulfate (SDS), and cetyltrimethylammonium bromide (CTAB). Na(2)SO(4) nanowires were derived from SDS, and the morphology control of the Na(2)SO(4) nanowires was established by the cooperative effects of Sn and NO(3)(-), while CTAB served as the template and led to homogeneous nanowires with a smooth surface. Since the as-synthesized sodium sulfate nanowires are readily dissolved in water, these nanowires can be treated as soft templates for the fabrication of nanotubes by removing the Na(2)SO(4) core. This process is therefore significantly better than other reported methodologies to remove the templates under harsh condition. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes using a layer-by-layer (LbL) method on the Na(2)SO(4) nanowires and the formation of Au nanotubes by the self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (poly(acrylic acid)), and Au nanoparticles served as the building blocks on the Na(2)SO(4) templates, which were then rinsed with water to remove the core templates. This unique water-dissolvable template is anticipated to bring about versatile and flexible downstream applications.

  8. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  9. Alteration of chemical behavior of L-ascorbic acid in combination with nickel sulfate at different pH solutions in vitro

    PubMed Central

    Maniyar, Shaheen A; Jargar, Jameel G; Das, Swastika N; Dhundasi, Salim A; Das, Kusal K

    2012-01-01

    Objective To evaluate the alteration of chemical behavior of L-ascorbic acid (vitamin C) with metal ion (nickel) at different pH solutions in vitro. Methods Spectra of pure aqueous solution of L-ascorbic acid (E mark) compound and NiSO4 (H2O) (sigma USA) were evaluated by UV visible spectrophotometer. Spectral analysis of L-ascorbic acid and nickel at various pH (2.0, 7.0, 7.4 and 8.6) at room temperature of 29 °C was recorded. In this special analysis, combined solution of L-ascorbic acid and nickel sulfate at different pH was also recorded. Results The result revealed that λmax (peak wavelength of spectra) of L-ascorbic acid at pH 2.0 was 289.0 nm whereas at neutral pH 7.0, λmax was 295.4 nm. In alkaline pH 8.6, λmax was 295.4 nm and at pH 7.4 the λmax of L-ascorbic acid remained the same as 295.4 nm. Nickel solution at acidic pH 2.0 was 394.5 nm, whereas at neutral pH 7.0 and pH 7.4 were the same as 394.5 nm. But at alkaline pH 8.6, λmax value of nickel sulfate became 392.0 nm. The combined solution of L-ascorbic acid and nickel sulfate (6 mg/mL each) at pH 2.0 showed 292.5 nm and 392.5 nm, respectively whereas at pH 7.0, L-ascorbic acid showed 296.5 nm and nickel sulfate showed 391.5 nm. At pH 7.4, L-ascorbic acid showed 297.0 nm and nickel sulfate showed 394.0 nm in the combined solution whereas at pH 8.6 (alkaline) L-ascorbic acid and nickel sulfate were showing 297.0 and 393.5 nm, respectively. Conclusions Results clearly indicate an altered chemical behavior of L-ascorbic acid either alone or in combination with nickel sulfate in vitro at different pH. Perhaps oxidation of L-ascorbic acid to L-dehydro ascorbic acid via the free radical (HSc*) generation from the reaction of H2ASc + Ni (II) is the cause of such alteration of λmax value of L-ascorbic acid in the presence of metal nickel. PMID:23569901

  10. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  11. Mixtures of Sulfates in Melas Chasma

    NASA Image and Video Library

    2017-09-04

    In this image from NASA's Mars Reconnaissance Orbiter, layering within the light-toned sulfate deposit is the result of different states of hydration. Some of the layers have sulfates with little water (known as monohydrated sulfates) whereas other layers have higher amounts of water (called polyhydrated sulfates). The different amounts of water within the sulfates may reflect changes in the water chemistry during deposition of the sulfates, or may have occurred after the sulfates were laid down when heat or pressure forced the water out of some layers, causing a decrease in the hydration state. Many locations on Mars have sulfates, which are sedimentary rocks formed in water. Within Valles Marineris, the large canyon system that cuts across the planet, there are big and thick sequences of sulfates. The CRISM instrument on MRO is crucial for telling scientists which type of sulfate is associated with each layer, because each hydration state will produce a spectrum with absorptions at specific wavelengths depending upon the amount of water contained within the sulfate. https://photojournal.jpl.nasa.gov/catalog/PIA21935

  12. Synthesis of the 3-sulfates of S-acyl glutathione conjugated bile acids and their biotransformation by a rat liver cytosolic fraction.

    PubMed

    Mitamura, Kuniko; Hori, Naohiro; Mino, Shiori; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo

    2012-04-01

    The 3-sulfates of the S-acyl glutathione (GSH) conjugates of five natural bile acids (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic) were synthesized as reference standards in order to investigate their possible formation by a rat liver cytosolic fraction. Their structures were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion-trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. This method was used to determine whether the 3-sulfates of the bile acid-GSH conjugates (BA-GSH) were formed when BA-GSH were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate had been added. The S-acyl linkage was rapidly hydrolyzed to form the unconjugated bile acid. A little sulfation of the GSH conjugates occurred, but greater sulfation at C-3 of the liberated bile acid occurred. Sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus GSH conjugates of bile acids as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. The magnesium sulfate-water system at pressures to 4 kilobars

    NASA Technical Reports Server (NTRS)

    Hogenboom, D. L.; Kargel, Jeffrey S.; Ganasan, J. P.; Lewis, J. S.

    1991-01-01

    Hydrated magnesium sulfate constitutes up to 1/6 of the mass of carbonaceous chondrites, and probably is important in many icy asteroids and satellites. It occurs naturally in meteorites mostly as epsomite. MgSO4, considered anhydrously, comprises nearly 3/4 of the highly soluble fraction of C1 chondrites. Thus, MgSO4 is probably an important solute in cryovolcanic brines erupted on certain icy objects in the outer solar system. While the physiochemical properties of the water-magnesium sulfate system are well known at low pressures, planetological applications of these data are hindered by a dearth of useful published data at elevated pressures. Accordingly, solid-liquid phase equilibria was recently explored in this chemical system at pressures extending to about 4 kilobars. The water magnesium sulfate system in the region of the eutectic exhibits qualitatively constant behavior between pressures of 1 atm and 2 kbar. The eutectic melting curve closely follows that for water ice, with a freezing point depression of about 4 K at 1 atm decreasing to around 3.3 K at 2 kbars. The eutectic shifts from 17 pct. MgSO4 at 1 atm to about 15.3 pct at 2 kbars. Above 2 kbars, the eutectic melting curve again tends to follow ice.

  14. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri.

    PubMed

    Preeprame, S; Hayashi, K; Lee, J B; Sankawa, U; Hayashi, T

    2001-04-01

    A novel fucan sulfate (Hor-1) was isolated from the hot water extract of an edible brown alga, Sargassum horneri (Turner) C. Agardh. The fucan sulfate was revealed to have sugar linkage types, sulfate content and uronic acid content different from those of sodium hornan (Na-HOR), another fucan sulfate isolated from this alga. However, it exhibited inhibitory activity against replication of herpes simplex virus type 1 with similar potency to Na-HOR.

  15. The soil sulphate effect and maize plant (Zea mays L.) growth of sulphate reducing bacteria (SRB) inoculation in acid sulfate soils with the different soil water condition

    NASA Astrophysics Data System (ADS)

    Asmarlaili, S.; Rauf, A.; Hanafiah, D. S.; Sudarno, Y.; Abdi, P.

    2018-02-01

    The objective of the study was to determine the potential application of sulphate reducing bacteria on acid sulfate soil with different water content in the green house. The research was carried out in the Laboratory and Green House, Faculty of Agriculture, Universitas Sumatera Utara. This research used Randomized Block Design with two treatments factors, ie sulphate reducing bacteria (SRB) isolate (control, LK4, LK6, TSM4, TSM3, AP4, AP3, LK4 + TSM3, LK4 + AP4, LK4 + AP3, LK6 + TSM3, LK6 + AP4, LK6 + AP3, TSM4 + TSM3, TSM4 + AP4, TSM4 + AP3) and water condition (100% field capacity and 110% field capacity). The results showed that application of isolate LK4 + AP4 with water condition 110% field capacity decreased the soil sulphate content (27.38 ppm) significantly after 6 weeks. Application of isolate LK4 + AP3 with water condition 110% field capacity increased soil pH (5.58) after-week efficacy 6. Application of isolate LK4 with water condition 110% field capacity increased plant growth (140 cm; 25.74 g) significantly after week 6. The best treatment was application isolate LK4 with water condition 110% field Capacity (SRB population 2.5x108; soil sulphate content 29.10ppm; soil acidity 4.78; plant height 140cm; plant weight 25.74g).

  16. Longevity of acid discharges from underground mines located above the regional water table.

    PubMed

    Demchak, J; Skousen, J; McDonald, L M

    2004-01-01

    The duration of acid mine drainage flowing out of underground mines is important in the design of watershed restoration and abandoned mine land reclamation projects. Past studies have reported that acid water flows from underground mines for hundreds of years with little change, while others state that poor drainage quality may last only 20 to 40 years. More than 150 above-drainage (those not flooded after abandonment) underground mine discharges from Pittsburgh and Upper Freeport coal seams were located and sampled during 1968 in northern West Virginia, and we revisited 44 of those sites in 1999-2000 and measured water flow, pH, acidity, Fe, sulfate, and conductivity. We found no significant difference in flows between 1968 and 1999-2000. Therefore, we felt the water quality data could be compared and the data represented real changes in pollutant concentrations. There were significant water quality differences between year and coal seam, but no effect of disturbance. While pH was not significantly improved, average total acidity declined 79% between 1968 and 1999-2000 in Pittsburgh mines (from 66.8 to 14 mmol H+ L(-1)) and 56% in Upper Freeport mines (from 23.8 to 10.4 mmol H+ L(-1)). Iron decreased an average of about 80% across all sites (from an average of 400 to 72 mg L(-1)), while sulfate decreased between 50 and 75%. Pittsburgh seam discharge water was much worse in 1968 than Upper Freeport seam water. Twenty of our 44 sites had water quality information in 1980, which served as a midpoint to assess the slope of the decline in acidity and metal concentrations. Five of 20 sites (25%) showed an apparent exponential rate of decline in acidity and iron, while 10 of 20 sites (50%) showed a more linear decline. Drainage from five Upper Freeport sites increased in acidity and iron. While it is clear that surface mines and below-drainage underground mines improve in discharge quality relatively rapidly (20-40 years), above-drainage underground mines are not as

  17. Phyllosilicate and Hydrated Sulfate Deposits in Meridiani

    NASA Technical Reports Server (NTRS)

    Wiseman, S. M.; Avidson, R. E.; Murchie, S.; Poulet, F.; Andrews-Hanna, J. C.; Morris, R. V.; Seelos, F. P.

    2008-01-01

    Several phyllosilicate and hydrated sulfate deposits in Meridiani have been mapped in detail with high resolution MRO CRISM [1] data. Previous studies have documented extensive exposures of outcrop in Meridiani (fig 1), or etched terrain (ET), that has been interpreted to be sedimentary in origin [e.g., 2,3]. These deposits have been mapped at a regional scale with OMEGA data and show enhanced hydration (1.9 m absorption) in several areas [4]. However, hydrated sulfate detections were restricted to valley exposures in northern Meridiani ET [5]. New high resolution CRISM images show that hydrated sulfates are present in several spatially isolated exposures throughout the ET (fig 1). The hydrated sulfate deposits in the valley are vertically heterogeneous with layers of mono and polyhydrated sulfates and are morphologically distinct from other areas of the ET. We are currently mapping the detailed spatial distribution of sulfates and searching for distinct geochemical horizons that may be traced back to differential ground water recharge and/or evaporative loss rates. The high resolution CRISM data has allowed us to map out several phyllosilicate deposits within the fluvially dissected Noachian cratered terrain (DCT) to the south and west of the hematite-bearing plains (Ph) and ET (fig 1). In Miyamoto crater, phyllosilicates are located within 30km of the edge of Ph, which is presumably underlain by acid sulfate deposits similar to those explored by Opportunity. The deposits within this crater may record the transition from fluvial conditions which produced and/or preserved phyllosilicates deposits to a progressively acid sulfate dominated groundwater system in which large accumulations of sulfate-rich evaporites were deposited .

  18. Mars Sulfate Formation Sourced in Sulfide-Enriched Subsurface Fluids: The Rio Tinto Model

    NASA Technical Reports Server (NTRS)

    Fernandez-Remolar, D. C.; Prieto-Ballesteros, O.; Osburn, M. R.; Gomez-Ortiz, D.; Arvidson, R. E.; Morris, R. V.; Ming, D.; Amils, R.; Friendlander, L. R.

    2007-01-01

    The extensive evidence for sulfate deposits on Mars provided by analyses of MER and Mars Express data shows that the sulfur played an essential role in the geochemical cycles of the planet, including reservoirs in the atmosphere, hydro-sphere and geosphere. Overall the data are consistent with a fluvial/lacustrine-evaporative origin of at least some of the sulfate deposits, with mineral precipitation through oversaturation of salty acidic fluids enriched in sulfates. This scenario requires reservoirs of sulfur and associated cations, as well as an acidic and oxidizing hydrochemistry which could be provided by surface and subsurface catching of meteoric waters resulting in the presence of sulfur-bearing gases and steam photochemistry. In this work we suggest a new scenario for the extensive generation of sulfates in Mars based on the observation of seasonal changes in the redox and pH of subsurface waters enriched in sulfur that supply the acidic Mars process analog of Rio Tinto. This model considers the long-term subsurface storage of sulfur during most of Noachian and its release from the late Noachian to Hesperian time through weathering by meteoric fluids that would acidify and oxidize the sulfur bearing compounds stored in the subsurface.

  19. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Zheng, Guangjie; Wei, Chao; Mu, Qing; Zheng, Bo; Wang, Zhibin; Gao, Meng; Zhang, Qiang; Wang, Kebin; Carmichael, Gregory; Pöschl, Ulrich; Su, Hang

    2017-04-01

    Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to 300 μg m-3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution. Reference: Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.

  1. Reactive Nitrogen Chemistry in Aerosol Water as a Source of Sulfate during Haze Events in China

    NASA Astrophysics Data System (ADS)

    Su, H.; Zheng, G.; Wei, C.; Mu, Q.; Zheng, B.; Wang, Z.; Zhang, Q.; Gao, M.; He, K.; Carmichael, G. R.; Poeschl, U.; Cheng, Y.

    2017-12-01

    Fine particle pollution associated with winter haze threatens the health of over 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations up to 300 μg m-3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models relying on sulfate production mechanisms that require photochemical oxidants, cannot predict these high levels due to the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content leading to faster sulfate production and more severe haze pollution. Reference: Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China, Science Advances, 2, 10.1126/sciadv.1601530, 2016.

  2. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  3. Hexuronic Acid Stereochemistry Determination in Chondroitin Sulfate Glycosaminoglycan Oligosaccharides by Electron Detachment Dissociation

    NASA Astrophysics Data System (ADS)

    Leach, Franklin E.; Ly, Mellisa; Laremore, Tatiana N.; Wolff, Jeremy J.; Perlow, Jacob; Linhardt, Robert J.; Amster, I. Jonathan

    2012-09-01

    Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated 0,2X3 and Y3 ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.

  4. A SURVEY OF SULFATE, NITRATE, AND ACID AEROSOL EMISSIONS AND THEIR CONTROL

    EPA Science Inventory

    The report gives results of an evaluation of the effects of fuel and combustion modifications on the formation of primary acid aerosols (used broadly to include all sulfates, nitrates, chlorides, and fluorides in all their forms) and their significance as combustion-generated pol...

  5. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...

  6. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...

  7. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...

  8. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...

  9. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...

  10. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...

  11. A tropical sediment toxicity test using the dipteran Chironomus crassiforceps to test metal bioavailability with sediment pH change in tropical acid-sulfate sediments.

    PubMed

    Peck, Mika R; Klessa, David A; Baird, Donald J

    2002-04-01

    The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.

  12. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China

    PubMed Central

    Cheng, Yafang; Zheng, Guangjie; Wei, Chao; Mu, Qing; Zheng, Bo; Wang, Zhibin; Gao, Meng; Zhang, Qiang; He, Kebin; Carmichael, Gregory; Pöschl, Ulrich; Su, Hang

    2016-01-01

    Fine-particle pollution associated with winter haze threatens the health of more than 400 million people in the North China Plain. Sulfate is a major component of fine haze particles. Record sulfate concentrations of up to ~300 μg m−3 were observed during the January 2013 winter haze event in Beijing. State-of-the-art air quality models that rely on sulfate production mechanisms requiring photochemical oxidants cannot predict these high levels because of the weak photochemistry activity during haze events. We find that the missing source of sulfate and particulate matter can be explained by reactive nitrogen chemistry in aerosol water. The aerosol water serves as a reactor, where the alkaline aerosol components trap SO2, which is oxidized by NO2 to form sulfate, whereby high reaction rates are sustained by the high neutralizing capacity of the atmosphere in northern China. This mechanism is self-amplifying because higher aerosol mass concentration corresponds to higher aerosol water content, leading to faster sulfate production and more severe haze pollution. PMID:28028539

  13. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles.

    PubMed

    Dold, Bernhard; Spangenberg, Jorge E

    2005-08-01

    Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments--Piuquenes, Cauquenes, and Salvador No. 1--formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(III) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes, the delta34S(SO4)values ranged from +0.5 per thousand to +2.0 per thousand and from -0.4 per thousand to +1.4 per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta34S(pyrite) = -1.1 per thousand and -0.9 per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8 per thousand to +0.3 per thousand and from +2.2 per thousand to +3.9 per thousand, respectively. At Cauquenes the 34S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (approximately +10.9 per thousand). At El Salvador No. 1, the delta34S(SO4) average value is -0.9 per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum

  14. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.

    PubMed

    Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2009-06-01

    To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.

  15. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  16. Open Access Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    USGS Publications Warehouse

    Ehlmann, Bethany L.; Swayze, Gregg A.; Milliken, Ralph E.; Mustard, John F.; Clark, Roger N.; Murchie, Scott L.; Breit, George N.; Wray, James J.; Gondet, Brigitte; Poulet, Francois; Carter, John; Calvin, Wendy M.; Benzel, William M.; Seelos, Kimberly D.

    2016-01-01

    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling

  17. Determination of haloacetic acids in water by ion chromatography--method development.

    PubMed

    Lopez-Avila, V; Liu, Y; Charan, C

    1999-01-01

    The microextraction/ion chromatographic (IC) method developed in this study involves extraction of 9 haloacetic acids (HAAs) from aqueous samples (acidified with sulfuric acid to a pH of < 0.5 and amended with copper sulfate pentahydrate and sodium sulfate) with methyl tert-butyl ether (MTBE), back extraction into reagent water, and analysis by IC with conductivity detection. The separation column consists of an Ion Pac AG-11 (2 mm id x 50 mm length) guard column and an Ion Pac AS-11 (2 mm id x 250 mm length) analytical column, and the concentration column is a 4 mm id x 35 mm length Dionex TAC-LP column. Use of the 2 mm id Dionex AS-11 column improved detection limits especially for trichloracetic acid (TCAA), bromodichloroacetic acid (BDCAA), dibromochloroacetic acid (DBCAA), and tribromoacetic acid (TBAA). The peak interfering with BCAA elutes at the same retention time as nitrate; however, we have not confirmed the presence of nitrate. Stability studies indicate that HAAs are stable in water for at least 8 days when preserved with ammonium chloride at 100 mg/L and stored at 4 degrees C in the dark. At day 30, recoveries were still high (e.g., 92.1-106%) for dichloroacetic acid (DCAA), BCAA, dibromoacetic acid (DBAA), trichloroacetic acid (TCAA), BDCAA, and DBCAA. However, recoveries of monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), and TBAA were only 54.6, 56.8, and 66.8%, respectively. Stability studies of HAAs in H2SO4-saturated MTBE indicate that all compounds except TBAA are stable for 48 h when stored at 4 degrees C in the dark. TBAA recoveries dropped to 47.1% after 6 h of storage and no TBAA was detected after 48 h of storage. The method described here is only preliminary and was tested in only one laboratory. Additional research is needed to improve method performance.

  18. Magnesium and calcium sulfate stabilities and the water budget of Mars

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R.

    2007-01-01

    Magnesium sulfate probably plays a dominant role in the water cycle of Mars away from the polar ice caps through hydration and dehydration reactions. This prominence is due to its abundance, its occurrence in numerous hydration states, and its ability to hydrate and dehydrate rapidly. New experimental studies on the metastable reaction between hexahydrite (MgSO4??6H2O) and starkeyite (MgSO4-4H2O) as a function of temperature and relative humidity, supplemented by recent investigations of the stable reaction between epsomite (MgSO4??7H2O) and hexahydrite and by phase equilibrium calculations, suggest that the most important magnesium sulfate phases involved in the Martian water cycle are MgSO4??11 H2O, epsomite, starkeyite, and possibly kieserite (MgSO4??H2O). Hexahydrite is not predicted to be stable on the surface of Mars. During diurnal variations in temperature and relative humidity, 1 kg of MgSO4 can release or remove from the atmosphere 1.5 kg of H2O by cycling between kieserite and MgSO4??11 H2O. Despite subequal abundances of calcium sulfate, calcium sulfates are not likely to be important in the water cycle of the planet because of sluggish rates of hydration and dehydration and a more limited range of H2O concentrations per kilogram of CaSO4 (0.00 to 0.26 kg kg-1). Modern or recent erosion on Mars attributed to liquid water may be due to the dehydration Of MgSO4??11 H2O because of the inferred abundance and likelihood of occurrence of this phase and its limited stability relative to known variations in temperature and relative humidity.

  19. Phase equilibria in the lysozyme-ammonium sulfate-water system.

    PubMed

    Moretti, J J; Sandler, S I; Lenhoff, A M

    2000-12-05

    Ternary phase diagrams were measured for lysozyme in ammonium sulfate solutions at pH values of 4 and 8. Lysozyme, ammonium sulfate, and water mass fractions were assayed independently by UV spectroscopy, barium chloride titration, and lyophilization respectively, with mass balances satisfied to within 1%. Protein crystals, flocs, and gels were obtained in different regions of the phase diagrams, and in some cases growth of crystals from the gel phase or from the supernatant after floc removal was observed. These observations, as well as a discontinuity in protein solubility between amorphous floc precipitate and crystal phases, indicate that the crystal phase is the true equilibrium state. The ammonium sulfate was generally found to partition unequally between the supernatant and the dense phase, in disagreement with an assumption often made in protein phase equilibrium studies. The results demonstrate the potential richness of protein phase diagrams as well as the uncertainties resulting from slow equilibration. Copyright 2000 John Wiley & Sons, Inc.

  20. Hydrogen production by the decomposition of water

    DOEpatents

    Hollabaugh, Charles M.; Bowman, Melvin G.

    1981-01-01

    How to produce hydrogen from water was a problem addressed by this invention. The solution employs a combined electrolytical-thermochemical sulfuric acid process. Additionally, high purity sulfuric acid can be produced in the process. Water and SO.sub.2 react in electrolyzer (12) so that hydrogen is produced at the cathode and sulfuric acid is produced at the anode. Then the sulfuric acid is reacted with a particular compound M.sub.r X.sub.s so as to form at least one water insoluble sulfate and at least one water insoluble oxide of molybdenum, tungsten, or boron. Water is removed by filtration; and the sulfate is decomposed in the presence of the oxide in sulfate decomposition zone (21), thus forming SO.sub.3 and reforming M.sub.r X.sub.s. The M.sub.r X.sub.s is recycled to sulfate formation zone (16). If desired, the SO.sub.3 can be decomposed to SO.sub.2 and O.sub.2 ; and the SO.sub.2 can be recycled to electrolyzer (12) to provide a cycle for producing hydrogen.

  1. STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE

    EPA Science Inventory

    Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...

  2. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry.

    PubMed

    Kailemia, Muchena J; Patel, Anish B; Johnson, Dane T; Li, Lingyun; Linhardt, Robert J; Amster, I Jonathan

    2015-01-01

    The stereochemistry of the hexuronic acid residues of the structure of glycosaminoglycans (GAGs) is a key feature that affects their interactions with proteins and other biological functions. Electron based tandem mass spectrometry methods, in particular electron detachment dissociation (EDD), have been able to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) residues in some heparan sulfate tetrasaccharides by producing epimer-specific fragments. Similarly, the relative abundance of glycosidic fragment ions produced by collision-induced dissociation (CID) or EDD has been shown to correlate with the type of hexuronic acid present in chondroitin sulfate GAGs. The present work examines the effect of charge state and degree of sodium cationization on the CID fragmentation products that can be used to distinguish GlcA and IdoA containing chondroitin sulfate A and dermatan sulfate chains. The cross-ring fragments (2,4)A(n) and (0,2)X(n) formed within the hexuronic acid residues are highly preferential for chains containing GlcA, distinguishing it from IdoA. The diagnostic capability of the fragments requires the selection of a molecular ion and fragment ions with specific ionization characteristics, namely charge state and number of ionizable protons. The ions with the appropriate characteristics display diagnostic properties for all the chondroitin sulfate and dermatan sulfate chains (degree of polymerization of 4-10) studied.

  3. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water.

    PubMed

    Freitas, José Henrique Edmilson Souza; de Santana, Keissy Vanderley; do Nascimento, Ana Cláudia Claudina; de Paiva, Sérgio Carvalho; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; de Oliveira, Maria Betânia Melo; Paiva, Patrícia Maria Guedes; do Nascimento, Aline Elesbão; Napoleão, Thiago Henrique

    2016-11-01

    Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The application of laser-Raman light scattering to the determination of sulfate in sea and estuarine waters

    NASA Technical Reports Server (NTRS)

    Bandy, A. R.

    1973-01-01

    Laser-Raman light scattering is a technique for determining sulfate concentrations in sea and estuarine waters with apparently none of the interferences inherent in the gravimetric and titrametric methods. The Raman measurement involved the ratioing of the peak heights of an unknown sulfate concentration and a nitrate internal standard. This ratio was used to calculate the unknown sulfate concentration from a standard curve. The standard curve was derived from the Raman data on prepared nitrate-sulfate solutions. At the 99.7% confidence level, the accuracy of the Raman technique was 7 to 8.6 percent over the concentration range of the standard curve. The sulfate analyses of water samples collected at the mouth of the James River, Hampton, Virginia, demonstrated that in most cases sulfate had a constant concentration relative to salinity in this area.

  5. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  6. Synthesis of seaweed based carbon acid catalyst by thermal decomposition of ammonium sulfate for biodiesel production

    NASA Astrophysics Data System (ADS)

    Ee, Tang Zo; Lim, Steven; Ling, Pang Yean; Huei, Wong Kam; Chyuan, Ong Hwai

    2017-04-01

    Experiment was carried out to study the feasibility of biomass derived solid acid catalyst for the production of biodiesel using Palm Fatty Acid Distillate (PFAD). Malaysia indigenous seaweed was selected as the biomass to be carbonized as the catalyst support. Sulfonation of seaweed based carbon material was carried out by thermal decomposition of ammonium sulfate, (NH4)2SO4. The effects of carbonization temperature at 200 to 600°C on the catalyst physical and chemical properties were studied. The effect of reaction parameters on the fatty acid methyl ester (FAME) yield was studied by varying the concentration of ammonium sulfate (5.0 to 40.0 w/v%) and thermal decomposition time (15 to 90 min). Characterizations of catalyst were carried out to study the catalyst surface morphology with Scanning Electron Microscope (SEM), acid density with back titration and functional group attached with FT-IR. Results showed that when the catalyst sulfonated with 10.0 w/v% ammonium sulfate solution and heated to 235°C for 30 min, the highest FAME yield achieved was 23.7% at the reaction condition of 5.0 wt.% catalyst loading, esterification time of 4 h, methanol to PFAD molar ratio of 20:1 at 100°C reaction temperature.

  7. The effect of acid rain and altitude on concentration, δ34S, and δ18O of sulfate in the water from Sudety Mountains, Poland

    USGS Publications Warehouse

    Szynkiewicz, Anna; Modelska, Magdalena; Jedrysek, Mariusz Orion; Mastalerz, Maria

    2008-01-01

    Sulfate content, δ34S(SO42−), δ18O(SO42−), and δ18O(H2O) values revealed a remarkable dependence on the altitude. The calculated altitude effects for five season averages of these parameters were − 1.00 mg/l/100 m, − 0.18‰/100 m, − 0.27‰/100 m, and − 0.17‰/100 m, respectively. This dependence on the altitude resulted mainly from the mixing of sulfates of different origins such as anthropogenic sulfate, sulfate produced in the soil within the weathered zone of the massif, and that one from the tree canopy. The oxygen isotope mass balance indicates that, in the study area, about one third of the sulfate delivered to the surface and groundwater by modern precipitation comes from anthropogenic pollution. Further interaction of meteoric water within the weathered rocks causes a continuous decrease of δ18O(SO42−) values resulting from biological transformation of the sulfate due to plant vegetation and decomposition of organic matter.

  8. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  9. Spatial dependence of reduced sulfur in Everglades dissolved organic matter controlled by sulfate enrichment

    USGS Publications Warehouse

    Poulin, Brett A.; Ryan, Joseph N.; Nagy, Kathryn L.; Stubbins, Aron; Dittmar, Thorsten; Orem, William H.; Krabbenhoft, David P.; Aiken, George R.

    2017-01-01

    Sulfate inputs to the Florida Everglades stimulate sulfidic conditions in freshwater wetland sediments that affect ecological and biogeochemical processes. An unexplored implication of sulfate enrichment is alteration of the content and speciation of sulfur in dissolved organic matter (DOM), which influences the reactivity of DOM with trace metals. Here, we describe the vertical and lateral spatial dependence of sulfur chemistry in the hydrophobic organic acid fraction of DOM from unimpacted and sulfate-impacted Everglades wetlands using X-ray absorption spectroscopy and ultrahigh-resolution mass spectrometry. Spatial variation in DOM sulfur content and speciation reflects the degree of sulfate enrichment and resulting sulfide concentrations in sediment pore waters. Sulfur is incorporated into DOM predominantly as highly reduced species in sulfidic pore waters. Sulfur-enriched DOM in sediment pore waters exchanges with overlying surface waters and the sulfur likely undergoes oxidative transformations in the water column. Across all wetland sites and depths, the total sulfur content of DOM correlated with the relative abundance of highly reduced sulfur functionality. The results identify sulfate input as a primary determinant on DOM sulfur chemistry to be considered in the context of wetland restoration and sulfur and trace metal cycling.

  10. Lake Recovery Through Reduced Sulfate Deposition: A New Paradigm for Drinking Water Treatment.

    PubMed

    Anderson, Lindsay E; Krkošek, Wendy H; Stoddart, Amina K; Trueman, Benjamin F; Gagnon, Graham A

    2017-02-07

    This study examined sulfate deposition in Nova Scotia from 1999 to 2015, and its association with increased pH and organic matter in two protected surface water supplies (Pockwock Lake and Lake Major) located in Halifax, Nova Scotia. The study also examined the effect of lake water chemistry on drinking water treatment processes. Sulfate deposition in the region decreased by 68%, whereas pH increased by 0.1-0.4 units over the 16-year period. Average monthly color concentrations in Pockwock Lake and Lake Major increased by 1.7 and 3.8×, respectively. Accordingly, the coagulant demand increased by 1.5 and 3.8× for the water treatment plants supplied by Pockwock Lake and Lake Major. Not only was this coagulant increase costly for the utility, it also resulted in compromised filter performance, particularly for the direct-biofiltration plant supplied by Pockwock Lake that was found to already be operating at the upper limit of the recommended direct filtration thresholds for color, total organic carbon and coagulant dose. Additionally, in 2012-2013 geosmin occurred in Pockwock Lake, which could have been attributed to reduced sulfate deposition as increases in pH favor more diverse cyanobacteria populations. Overall, this study demonstrated the impact that ambient air quality can have on drinking water supplies.

  11. Aluminum Potassium Sulfate and Tannic Acid Injection for Hemorrhoids

    PubMed Central

    2012-01-01

    A quick hemostatic effect, as well as sclerosing and shrinkage of hemorrhoids, can be attained when internal hemorrhoids are treated by using injection therapy with aluminum potassium sulfate and tannic acid (ALTA), the outcomes of treatment may be similar to those of a hemorrhoidectomy. However, if the type of hemorrhoid or the method of injection is not appropriate for ALTA treatment, complications peculiar to ALTA or recurrence may develop. Accordingly, sufficient understanding of the treatment mechanism of ALTA injection and repeated training for injection are required for effective use of the ALTA treatment. PMID:22606645

  12. Clinical study of the effectiveness of the "water of the 3 sulfates" on balanitis and balanoposthitis.

    PubMed

    Gonzalvo, V; Polo, A; Serrallach, F; Gutiérrez, A; Peyri, E

    2015-03-01

    Despite scientific literature mentions the application of "water of the 3 sulfates" (copper sulphate, zinc sulphate and alum) as a treatment for acute balanitis and balanoposthitis, no clinical trials evaluating its efficacy have been found. In our study we evaluate the efficacy of this solution in acute balanitis and balanoposthitis. A double-blind randomized study was designed to compare the efficacy of "water of the 3 sulfates" (intervention) with saline solution (control) in 50 patients (30 patients and 20 patients, respectively) who suffer from acute balanitis or balanoposthitis. Exudate, erythema, oedema, burning, and itching were the clinical parameters assessed. for all clinical parameters assessed, the outcomes obtained with "water of the 3 sulfates" are higher than control, although significant differences only have been found for exudate. in our study, the "water of the 3 sulfates" is significantly more effective than saline solution for removing exudates in acute balanitis and balanoposthitis. Tolerability was excellent in both treatments. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  14. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  15. Acid deposition and water use efficiency in Appalachian forests

    NASA Astrophysics Data System (ADS)

    Malcomb, J.

    2017-12-01

    Multiple studies have reported increases in forest water use efficiency in recent decades, but the drivers of these trends remain uncertain. While acid deposition has profoundly altered the biogeochemistry of Appalachian forests in the past century, its impacts on forest water use efficiency have been largely overlooked. Plant ecophysiology literature suggests that plants up-regulate transpiration in response to soil nutrient limitation in order to maintain sufficient mass flow of nutrients. To test the impacts of acid deposition on forest eco-hydrology in central Appalachia, we integrated dendrochronological techniques, including tree ring δ13C analysis, with catchment water balance data from the Fernow Experimental Forest in West Virginia. Tree cores from four species were collected in Fernow Watershed 3, which has received experimental ammonium sulfate additions since 1989, and Watershed 7, an adjacent control catchment. Initial results suggest that acidification treatments have not significantly influenced tree productivity compared to a control watershed, but the effect varies by species, with tulip poplar showing greatest sensitivity to acidification. Climatic water balance, defined as the difference between growing season precipitation and evapotranspiration, is significantly related to annual tree ring growth, suggesting that climate may be driving tree growth trends in chronically acidified Appalachian forests. Tree ring 13C analysis from Fernow cores is underway and these data will be integrated with catchment hydrology data from five other sites in central Appalachia and the U.S. Northeast, representing a range of forest types, soil base saturations, and acid deposition histories. This work will advance understanding of how climate and acid deposition interact to influence forest productivity and water use efficiency, and improve our ability to model carbon and water cycling in forested ecosystems impacted by acid deposition.

  16. Origin and Evolution of the Layered Sulfate-Rich Rocks in Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.

    2007-12-01

    Opportunity rover observations show that Meridiani Planum has extensive exposures of sulfate-rich dirty sandstones partially covered by a mix of wind-blown basaltic sand, dust, and a lag deposit of 1 to 5 mm diameter hematitic concretions. The dirty sandstones are interpreted to have formed in an acid-sulfate evaporative lacustrine system that left behind sulfate-rich muds with a siliciclastic component. Erosion by wind and water produced sandstones that were then cemented and diagenetically altered by rising groundwater. Subsequent wind erosion of these deposits and associated advection of basaltic sand onto the outcrops produced the surfaces encountered during the rover's traverses. On a regional scale these sulfate-rich deposits are up to several kilometers in thickness, extend over several hundred thousand square kilometers, and unconformably overlie the fluvially dissected Noachian cratered terrain. Both OMEGA and CRISM hyperspectral data show clear evidence for the presence of phyllosilicate minerals in the cratered terrains adjacent to the sulfate deposits, but not within the sulfate section proper. The ensemble of evidence indicates a change in Meridiani Planum from fluvial erosion and formation of phyllosilicate minerals to deposition of evaporite deposits associated with an acid-sulfate aqueous system. This change is interpreted to be due to a major climatic shift in which a relatively vigorous hydrologic system with extensive neutral rain and snowfall changed to more arid conditions in which a regional-scale acid sulfate groundwater system emerged in Meridiani Planum with enough of a hydrostatic head to produce and retain 1 to 3 km of sulfate-rich deposits.

  17. Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B; Liao, Ching-Hsing; Cooke, Peter; Zhang, Howard Q

    2009-01-01

    There are few available compounds that can both control browning and enhance microbial safety of fresh-cut fruits. In the present study, the antibrowning ability of sodium acid sulfate (SAS) on "Granny Smith" apple slices was first investigated in terms of optimum concentration and treatment time. In a separate experiment, the apple slices were treated with water or 3% of SAS, calcium ascorbate, citric acid, or acidified calcium sulfate for 5 min. Total plate count, color, firmness, and tissue damage were assessed during a 21-d storage at 4 degrees C. Results showed that the efficacy of SAS in inhibiting browning of apple slices increased with increasing concentration. A minimum 3% of SAS was needed to achieve 14 d of shelf life. Firmness was not significantly affected by SAS at 3% or lower concentrations. Antibrowning potential of SAS was similar for all treatment times ranging from 2 to 10 min. However, SAS caused some skin discoloration of apple slices. When cut surface of apple slices were stained with a fluorescein diacetate solution, tissue damage could be observed under a microscope even though visual damage was not evident. Among the antibrowning agents tested, SAS was the most effective in inhibiting browning and microbial growth for the first 14 d. Total plate count of samples treated with 3% SAS was significantly lower than those treated with calcium ascorbate, a commonly used antibrowning agent. Our results suggested that it is possible to use SAS to control browning while inhibiting the growth of microorganisms on the apple slices if the skin damage can be minimized. Practical Application: Fresh-cut apples have emerged as one of the popular products in restaurants, schools, and food service establishments as more consumers demand fresh, convenient, and nutritious foods. Processing of fresh-cut apples induces mechanical damage to the fruit and exposes apple tissue to air, resulting in the development of undesirable tissue browning. The fresh

  18. Effects of sulfate-reducing bacteria on methylmercury at the sediment-water interface.

    PubMed

    Zeng, Lingxia; Luo, Guangjun; He, Tianrong; Guo, Yanna; Qian, Xiaoli

    2016-08-01

    Sediment cores (containing sediment and overlying water) from Baihua Reservoir (SW China) were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria (SRB) on mercury (Hg) methylation at sediment-water interfaces. Concentrations of dissolved methyl mercury (DMeHg) in the overlying water of the control cores with bioactivity maintained (BAC) and cores with only sulfate-reducing bacteria inhibited (SRBI) and bacteria fully inhibited (BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMeHg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations (r=-0.5311 and r=-0.4977 for BAC and SRBI, respectively). The water DMeHg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment-water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster (hgcAB), besides SRB, causing Hg methylation in the sediment-water system. Copyright © 2016. Published by Elsevier B.V.

  19. Effect of sulfate on the transformation of corrosion scale composition and bacterial community in cast iron water distribution pipes.

    PubMed

    Yang, Fan; Shi, Baoyou; Bai, Yaohui; Sun, Huifang; Lytle, Darren A; Wang, Dongsheng

    2014-08-01

    The chemical stability of iron corrosion scales and the microbial community of biofilm in drinking water distribution system (DWDS) can have great impact on the iron corrosion and corrosion product release, which may result in "red water" issues, particularly under the situation of source water switch. In this work, experimental pipe loops were set up to investigate the effect of sulfate on the dynamical transformation characteristics of iron corrosion products and bacterial community in old cast iron distribution pipes. All the test pipes were excavated from existing DWDS with different source water supply histories, and the test water sulfate concentration was in the range of 50-350 mg/L. Pyrosequencing of 16S rRNA was used for bacterial community analysis. The results showed that iron release increased markedly and even "red water" occurred for pipes with groundwater supply history when feed water sulfate elevated abruptly. However, the iron release of pipes with only surface water supply history changed slightly without noticeable color even the feed water sulfate increased multiply. The thick-layered corrosion scales (or densely distributed tubercles) on pipes with surface water supply history possessed much higher stability due to the larger proportion of stable constituents (mainly Fe3O4) in their top shell layer; instead, the rather thin and uniform non-layered corrosion scales on pipes with groundwater supply history contained relatively higher proportion of less stable iron oxides (e.g. β-FeOOH, FeCO3 and green rust). The less stable corrosion scales tended to be more stable with sulfate increase, which was evidenced by the gradually decreased iron release and the increased stable iron oxides. Bacterial community analysis indicated that when switching to high sulfate water, iron reducing bacteria (IRB) maintained dominant for pipes with stable corrosion scales, while significant increase of sulfur oxidizing bacteria (SOB), sulfate reducing bacteria (SRB

  20. Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate

    PubMed Central

    Callbeck, Cameron M.; Agrawal, Akhil

    2013-01-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914

  1. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate.

    PubMed

    Callbeck, Cameron M; Agrawal, Akhil; Voordouw, Gerrit

    2013-08-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266-269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.

  2. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system.

    PubMed

    Sun, Huifang; Shi, Baoyou; Yang, Fan; Wang, Dongsheng

    2017-05-01

    Trace heavy metals accumulated in iron corrosion scales within a drinking water distribution system (DWDS) could potentially be released to bulk water and consequently deteriorate the tap water quality. The objective of this study was to identify and evaluate the release of trace heavy metals in DWDS under changing source water conditions. Experimental pipe loops with different iron corrosion scales were set up to simulate the actual DWDS. The effects of sulfate levels on heavy metal release were systemically investigated. Heavy metal releases of Mn, Ni, Cu, Pb, Cr and As could be rapidly triggered by sulfate addition but the releases slowly decreased over time. Heavy metal release was more severe in pipes transporting groundwater (GW) than in pipes transporting surface water (SW). There were strong positive correlations (R 2  > 0.8) between the releases of Fe and Mn, Fe and Ni, Fe and Cu, and Fe and Pb. When switching to higher sulfate water, iron corrosion scales in all pipe loops tended to be more stable (especially in pipes transporting GW), with a larger proportion of stable constituents (mainly Fe 3 O 4 ) and fewer unstable compounds (β-FeOOH, γ-FeOOH, FeCO 3 and amorphous iron oxides). The main functional iron reducing bacteria (IRB) communities were favorable for the formation of Fe 3 O 4 . The transformation of corrosion scales and the growth of sulfate reducing bacteria (SRB) accounted for the gradually reduced heavy metal release with time. The higher metal release in pipes transporting GW could be due to increased Fe 6 (OH) 12 CO 3 content under higher sulfate concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5.

    PubMed

    Ganguly, Arpeeta; Joerger, Rolf D

    2017-08-01

    The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis Nal R and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.

  4. Treatment of acidic sulfate-containing wastewater using revolving algae biofilm reactors: Sulfur removal performance and microbial community characterization.

    PubMed

    Zhou, Haoyuan; Sheng, Yanqing; Zhao, Xuefei; Gross, Martin; Wen, Zhiyou

    2018-05-18

    Industries such as mining operations are facing challenges of treating sulfur-containing wastewater such as acid mine drainage (AMD) generated in their plant. The aim of this work is to evaluate the use of a revolving algal biofilm (RAB) reactor to treat AMD with low pH (3.5-4) and high sulfate content (1-4 g/L). The RAB reactors resulted in sulfate removal efficiency up to 46% and removal rate up to 0.56 g/L-day, much higher than those obtained in suspension algal culture. The high-throughput sequencing revealed that the RAB reactor contained diverse cyanobacteria, green algae, diatoms, and acid reducing bacteria that contribute the sulfate removal through various mechanisms. The RAB reactors also showed a superior performance of COD, ammonia and phosphorus removal. Collectively, the study demonstrated that RAB-based process is an effective method to remove sulfate in wastewater with small footprint and can be potentially installed in municipal or industrial wastewater treatment facilities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  6. Fragmentations of [M-H]- anions of peptides containing tyrosine sulfate. Does the sulfate group rearrange? A joint experimental and theoretical study.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2013-05-30

    To investigate the fragmentations in the negative-ion electrospray mass spectra of peptides containing tyrosine sulfate. Possible fragmentation mechanisms were explored using a Waters QTOF2 tandem mass spectrometer in concert with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. The major negative ion formed in the ESI-MS of peptides containing tyrosine sulfate is [(M-H)-SO3](-) and this process normally yields the base peak of the spectrum. The basic backbone cleavages of [(M-H)-SO3](-) allowed the sequence of the peptide to be determined. Rearrangement reactions involving the formation of HOSO3(-) and [(M-H)-H2SO4](-) yielded minor peaks with relative abundances ≤ 10% and ≤ 2%, respectively. The mass spectra of the [M-H](-) and [(M-H)-SO3](-) anions of peptides containing tyrosine sulfate allowed the position of the tyrosine sulfate group to be determined, together with the amino acid sequence of the peptide. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Similarities Across Mars: Acidic Fluids at Both Meridiani Planum and Gale Crater in the Formation of Magnesium-Nickel Sulfates

    NASA Technical Reports Server (NTRS)

    Yen, Albert S.; Ming, Douglas W.; Gellert, Ralf; Mittlefehldt, David W.; Vaniman, David T.; Thompson, Lucy M.; Morris, Richard V.; Clark, Benton C.; Arvidson, Raymond

    2016-01-01

    In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni (is) approximately 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving (is) approximately 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni (is) approximately 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.

  8. Similarities Across Mars: Acidic Fluids at Both Meridiani Planum and Gale Crater in the Formation of Magnesium-Nickel Sulfates

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Ming, D. W.; Gellert, R.; Mittlefehldt, D. W.; Vaniman, D. T.; Thompson, L. M.; Morris, R. V.; Clark, B. C.; Arvidson, R. E.

    2016-12-01

    In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.

  9. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    PubMed Central

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  10. Identification of Hydrated Sulfates Collected in the Northern Rio Tinto Valley by Reflectance and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chemtob, S. M.; Arvidson, R. E.; Fernandez-Remolar, D. C.; Amils, R.; Morris, R. V.; Ming, D. W.; Prieto-Ballesteros, O.; Mustard, J. F.; Hutchinson, L.; Stein, T. C.; hide

    2006-01-01

    OMEGA recently identified spectral signatures of kieserite, gypsum, and other polyhydrated sulfates at multiple locations on the surface of Mars [1,2]. The presence of sulfates was confirmed through in situ spectroscopy by MER Opportunity [3]. An approach to validate these interpretations is to collect corresponding spectral data from sulfate-rich terrestrial analog sites. The northern Rio Tinto Valley near Nerva, Spain, is a good Martian analog locale because it features extensive seasonal sulfate mineralization driven by highly acidic waters [4]. We report on mineralogical compositions identified by field VNIR spectroscopy and laboratory Raman spectroscopy.

  11. Antimicrobial and water-triggered release characteristics of a copper sulfate-polyvinyl acetate adhesive composite

    NASA Astrophysics Data System (ADS)

    De Jesus, A. P. O.; Roxas-Villanueva, R. M. L.; Herrera, M. U.

    2017-05-01

    Water-triggered release of antimicrobial solutions is advantageous in inhibiting the growth of bacteria and fungi in moist and wet environments. In this study, we fabricated a composite, by mixing polyvinyl acetate adhesive with copper sulfate solution, which exhibits antimicrobial activities against bacteria. Polyvinyl acetate adhesive serves as the binder and water soluble substance while copper sulfate serves as the antimicrobial agent. The composite was coated in an acetate film and air-dried. To monitor the rate of release of copper ions, the composite was submerged in water and the conductivity was measured. The conductivity saturation time was determined. The composite showed antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive).

  12. REE speciation in low-temperature acidic waters and the competitive effects of aluminum

    USGS Publications Warehouse

    Gimeno, Serrano M.J.; Auque, Sanz L.F.; Nordstrom, D. Kirk

    2000-01-01

    The effect of simultaneous competitive speciation of dissolved rare earth elements (REEs) in acidic waters (pH 3.3 to 5.2) has been evaluated by applying the PHREEQE code to the speciation of water analyses from Spain, Brazil, USA, and Canada. The main ions that might affect REE are Al3+, F-, SO42-, and PO43-. Fluoride, normally a significant complexer of REEs, is strongly associated with Al3+ in acid waters and consequently has little influence on REEs. The inclusion of aluminum concentrations in speciation calculations for acidic waters is essential for reliable speciation of REEs. Phosphate concentrations are too low (10-4 to 10-7 m) to affect REE speciation. Consequently, SO42- is the only important complexing ligand for REEs under these conditions. According to Millero [Millero, F.J., 1992. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta, 56, 3123-3132], the lanthanide sulfate stability constants are nearly constant with increasing atomic number so that no REE fractionation would be anticipated from aqueous complexation in acidic waters. Hence, REE enrichments or depletions must arise from mass transfer reactions. (C) 2000 Elsevier Science B.V. All rights reserved.

  13. Determination of acidic herbicides in surface water by solid-phase extraction followed by capillary zone electrophoresis.

    PubMed

    Qin, Weidong; Wei, Hongping; Li, Sam Fong Yau

    2002-08-01

    A rapid solid-phase extraction-capillary zone electrophoresis (CZE) method for determining 2,4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy) butyric acid, and 2,4,5-trichlorophenoxyacetic acid in real water samples is described. Factors affecting the recoveries and detection of the targets are investigated. With samples being acidified to pH 2 and salted by sodium sulfate to 2% (w/w), an average recovery of greater than 85% is obtained using ethyl acetate as the eluent on an octadecylsilane-bonded silica cartridge. A running buffer of 5 mM sodium tetraborate in a water-acetonitrile mixture (70:30, v/v) adjusted to pH 9 is employed in the CZE analysis, and the targets can be analyzed within 7 min with good reproducibility and acceptable sensitivity. The method is suitable for detecting herbicide residues of sub-parts-per-billion levels in surface water. A local pond water is analyzed, and the concentrations of 2,4-dichlorophenoxyacetic acid and 4-(2,4-dichlorophenoxy) butyric acid are detected to be 0.27 +/- 0.03 ppb and 0.61 +/- 0.08 ppb, respectively.

  14. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  15. Theoretical study on the reactivity of sulfate species with hydrocarbons

    USGS Publications Warehouse

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  16. Theoretical study on the reactivity of sulfate species with hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ma, Qisheng; Ellis, Geoffrey S.; Amrani, Alon; Zhang, Tongwei; Tang, Yongchun

    2008-09-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42- are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42- is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions ( HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42-. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  17. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Dongyan, E-mail: xdy0156@sina.com; Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidicmore » property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.« less

  18. Application of acidic calcium sulfate and e-polylysine to pre-rigor beef rounds for reduction of pathogens

    USDA-ARS?s Scientific Manuscript database

    Foodborne illness continues to be a serious public health problem and is a major concern for the United States food industry. This study evaluated the effectiveness of warm solutions of acidic calcium sulfate (ACS), lactic acid (LA), episolon-polylysine (EPL), ACS plus EPL, and sterile distilled wa...

  19. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jie-Cen; Wan, Fang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybridmore » lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)« less

  20. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  1. Refractory status epilepticus after inadvertent intrathecal injection of tranexamic acid treated by magnesium sulfate.

    PubMed

    Hatch, D M; Atito-Narh, E; Herschmiller, E J; Olufolabi, A J; Owen, M D

    2016-05-01

    We present a case of accidental injection of tranexamic acid during spinal anesthesia for an elective cesarean delivery. Immediately following intrathecal injection of 2mL of solution, the patient complained of severe back pain, followed by muscle spasm and tetany. As there was no evidence of spinal block, the medications given were checked and a 'used' ampoule of tranexamic acid was found on the spinal tray. General anesthesia was induced but muscle spasm and tetany persisted despite administration of a non-depolarizing muscle relaxant. Hemodynamic instability, ventricular tachycardia, and status epilepticus developed, which were refractory to phenytoin, diazepam, and infusions of thiopental, midazolam and amiodarone. Magnesium sulfate was administered postoperatively in the intensive care unit, following which the frequency of seizures decreased, eventually stopping. Unfortunately, on postoperative day three the patient died from cardiopulmonary arrest after an oxygen supply failure that was not associated with the initial event. This report underlines the importance of double-checking medications before injection in order to avoid a drug error. As well, it suggests that magnesium sulfate may be useful in stopping seizures caused by the intrathecal injection of tranexamic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Origin of secondary sulfate minerals on active andesitic stratovolcanoes

    USGS Publications Warehouse

    Zimbelman, D.R.; Rye, R.O.; Breit, G.N.

    2005-01-01

    Sulfate minerals in altered rocks on the upper flanks and summits of active andesitic stratovolcanoes result from multiple processes. The origin of these sulfates at five active volcanoes, Citlalte??petl (Mexico), and Mount Adams, Hood, Rainier, and Shasta (Cascade Range, USA), was investigated using field observations, petrography, mineralogy, chemical modeling, and stable-isotope data. The four general groups of sulfate minerals identified are: (1) alunite group, (2) jarosite group, (3) readily soluble Fe- and Al-hydroxysulfates, and (4) simple alkaline-earth sulfates such as anhydrite, gypsum, and barite. Generalized assemblages of spatially associated secondary minerals were recognized: (1) alunite+silica??pyrite??kaolinite?? gypsum??sulfur, (2) jarosite+alunite+silica; (3) jarosite+smectite+silica??pyrite, (4) Fe- and Al-hydroxysulfates+silica, and (5) simple sulfates+silica??Al-hydroxysulfates??alunite. Isotopic data verify that all sulfate and sulfide minerals and their associated alteration assemblages result largely from the introduction of sulfur-bearing magmatic gases into meteoric water in the upper levels of the volcanoes. The sulfur and oxygen isotopic data for all minerals indicate the general mixing of aqueous sulfate derived from deep (largely disproportionation of SO2 in magmatic vapor) and shallow (oxidation of pyrite or H2S) sources. The hydrogen and oxygen isotopic data of alunite indicate the mixing of magmatic and meteoric fluids. Some alunite-group minerals, along with kaolinite, formed from sulfuric acid created by the disproportionation of SO2 in a condensing magmatic vapor. Such alunite, observed only in those volcanoes whose interiors are exposed by erosion or edifice collapse, may have ??34S values that reflect equilibrium (350??50 ??C) between aqueous sulfate and H2S. Alunite with ??34S values indicating disequilibrium between parent aqueous sulfate and H2S may form from aqueous sulfate created in higher level low

  3. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-05

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Assessment of sand quality on concrete performance : examination of acidic and sulfate/sulfide-bearing sands.

    DOT National Transportation Integrated Search

    2014-12-01

    The purpose of this research is to examine how the presence of sulfide- and sulfate-containing : minerals in acidic aggregates may affect the properties of mortar and concrete. Analyses were : performed to compare two sands from a deposit in the Geor...

  5. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-05

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  7. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferrous sulfate. 184.1315 Section 184.1315 Food... Specific Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate heptahydrate, FeSO4·7H2O, CAS Reg. No. 7782-63-0) is prepared by the action of sulfuric acid on...

  8. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  9. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  10. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  11. Synthesizing slow-release fertilizers via mechanochemical processing for potentially recycling the waste ferrous sulfate from titanium dioxide production.

    PubMed

    Li, Xuewei; Lei, Zhiwu; Qu, Jun; Li, Zhao; Zhou, Xiaowen; Zhang, Qiwu

    2017-01-15

    The goal of this study is aimed to develop a novel process to recycle the ferrous sulfate, the by-product of titanium dioxide industry. Zinc sulfate was added in the process of milling ferrous sulfate with calcium carbonate (CaCO 3 ). The sulfates were transformed into carbonates to serve as slow-release fertilizers by co-grinding the starting materials of FeSO 4 ·7H 2 O, ZnSO 4 ·7H 2 O, and CaCO 3 with small amounts of water in a planetary ball mill. The prepared samples were characterized by X-ray diffraction (XRD) analysis and quantitative measurements of the soluble ratios in water and 2% citric acid solution. It was found that Fe and Zn ions as sulfates were successfully combined with CaCO 3 to form the corresponding Fe and Zn carbonates respectively. After milling, the release ratios of Fe and Zn nutrients in distilled water could be controlled at 0.1% and 0.7% respectively. Meanwhile, the release ratios of them in 2% citric acid solution were almost 98% and 100%. Milling speed was the critical parameter to facilitate the transformation reaction. The proposed process, as an easy and economical route, exhibits evident advantages, namely allowing the use of widely available and low-cost CaCO 3 as well as industrial wastes of heavy metal sulfates as starting samples to prepare applicable products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Utilization of the dilute acidic sulfate effluent as resources by coupling solvent extraction-oxidation-hydrolysis.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Chen, Yongxing; Guo, Jingjing; Wei, Sijie; Wang, Xiaofei

    2015-12-15

    The pollution risk of dilute acidic sulfate effluent (DASE),which is discharged from titanium dioxide factories heavily every year, has sparked the recycling of sulfuric acid, iron and water. In this study, a new green recovery process for the DASE is proposed based on coupling solventextraction-oxidation-hydrolysis. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and the precipitation of FexOy·nH2O in onestep without adding inorganic neutralizer or precipitant. Trioctylamine (TOA) in kerosene (20-50%) was used as an organic phase for solvent extraction. The hydrolytic productions and the raffinate purified by a cation exchange were evaluated using XRD and ICP-OES, respectively. The initial pH of 0.63 and Fe(II) concentration of 0.1 mol/L in the DASE, the volume ratio of organic toaqueous phase (O/A) of 3/1, and reaction temperature of 25 °C were determined as the optimal conditions. Under this conditions, Fe(II) was transformed as yellow precipitation which was characterized as α-FeOOH, and pH of raffinate was in the range of 3.6-3.8. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fatty acid methyl ester analysis to identify sources of soil in surface water.

    PubMed

    Banowetz, Gary M; Whittaker, Gerald W; Dierksen, Karen P; Azevedo, Mark D; Kennedy, Ann C; Griffith, Stephen M; Steiner, Jeffrey J

    2006-01-01

    Efforts to improve land-use practices to prevent contamination of surface waters with soil are limited by an inability to identify the primary sources of soil present in these waters. We evaluated the utility of fatty acid methyl ester (FAME) profiles of dry reference soils for multivariate statistical classification of soils collected from surface waters adjacent to agricultural production fields and a wooded riparian zone. Trials that compared approaches to concentrate soil from surface water showed that aluminum sulfate precipitation provided comparable yields to that obtained by vacuum filtration and was more suitable for handling large numbers of samples. Fatty acid methyl ester profiles were developed from reference soils collected from contrasting land uses in different seasons to determine whether specific fatty acids would consistently serve as variables in multivariate statistical analyses to permit reliable classification of soils. We used a Bayesian method and an independent iterative process to select appropriate fatty acids and found that variable selection was strongly impacted by the season during which soil was collected. The apparent seasonal variation in the occurrence of marker fatty acids in FAME profiles from reference soils prevented preparation of a standardized set of variables. Nevertheless, accurate classification of soil in surface water was achieved utilizing fatty acid variables identified in seasonally matched reference soils. Correlation analysis of entire chromatograms and subsequent discriminant analyses utilizing a restricted number of fatty acid variables showed that FAME profiles of soils exposed to the aquatic environment still had utility for classification at least 1 wk after submersion.

  14. Inactivation of enterohemorrhagic Escherichia coli in rumen content- or feces-contaminated drinking water for cattle.

    PubMed

    Zhao, Tong; Zhao, Ping; West, Joe W; Bernard, John K; Cross, Heath G; Doyle, Michael P

    2006-05-01

    Cattle drinking water is a source of on-farm Escherichia coli O157:H7 transmission. The antimicrobial activities of disinfectants to control E. coli O157:H7 in on-farm drinking water are frequently neutralized by the presence of rumen content and manure that generally contaminate the drinking water. Different chemical treatments, including lactic acid, acidic calcium sulfate, chlorine, chlorine dioxide, hydrogen peroxide, caprylic acid, ozone, butyric acid, sodium benzoate, and competing E. coli, were tested individually or in combination for inactivation of E. coli O157:H7 in the presence of rumen content. Chlorine (5 ppm), ozone (22 to 24 ppm at 5 degrees C), and competing E. coli treatment of water had minimal effects (<1 log CFU/ml reduction) on killing E. coli O157:H7 in the presence of rumen content at water-to-rumen content ratios of 50:1 (vol/wt) and lower. Four chemical-treatment combinations, including (i) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.05% caprylic acid (treatment A); (ii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.1% sodium benzoate (treatment B); (iii) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 0.5% butyric acid (treatment C); and (iv) 0.1% lactic acid, 0.9% acidic calcium sulfate, and 100 ppm chlorine dioxide (treatment D); were highly effective (>3 log CFU/ml reduction) at 21 degrees C in killing E. coli O157:H7, O26:H11, and O111:NM in water heavily contaminated with rumen content (10:1 water/rumen content ratio [vol/wt]) or feces (20:1 water/feces ratio [vol/wt]). Among them, treatments A, B, and C killed >5 log CFU E. coli O157:H7, O26:H11, and O111:NM/ml within 30 min in water containing rumen content or feces, whereas treatment D inactivated approximately 3 to 4 log CFU/ml under the same conditions. Cattle given water containing treatment A or C or untreated water (control) ad libitum for two 7-day periods drank 15.2, 13.8, and 30.3 liters/day, respectively, and cattle given water containing 0.1% lactic

  15. Occurence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazina, T.N.; Ivanova, A.E.; Goulbeva, O.V.

    1995-03-01

    The occurrence of microorganisms and the rates of terminal biogenic processes-sulfate reduction and methane synthesis-were studied in stratial waters in bed 302 of the Bashkir Carboniferous deposit at the Romashkinskoe oil field. It was shown that bed 302 was a dynamic, highly reduced ecosystem containing sulfates and hydrogen sulfide in considerable concentrations, in which active biogenic processes occurred. Sulfate reduction was a dominating anaerobic process by which the transformation of organic matter occurred. The sulfate-reducing microflora was diverse and characterized by a wide range of metabolic potentials. Enrichment cultures capable of oxidizing many organic substances, such as benzoate, acetate, ethanol,more » or lactate, at the expense of reduction of sulfates and ferric ion were isolated from 302. It was suggested that the sulfate-reducing microflora might be responsible not only for sulfate reduction in the stratum but also for mobilization of some insoluble iron oxides in the oil-bearing rock. These findings indicate that bacteria carrying out dissimilatory reduction of sulfate and iron can contribute to the geochemistry of organic and mineral compounds in subsurface ecosystems. 24 refs., 2 figs., 6 tabs.« less

  16. Effects of mining activities on evolution of water chemistry in coal-bearing aquifers in karst region of Midwestern Guizhou, China: evidences from δ13C of dissolved inorganic carbon and δ34S of sulfate.

    PubMed

    Li, Qingguang; Wu, Pan; Zha, Xuefang; Li, Xuexian; Wu, Linna; Gu, Shangyi

    2018-04-24

    The generation of acid mine drainage (AMD) may accelerate watershed erosion and promote the migration of heavy metals, then threaten local ecosystems such as aquatic life and even human health. Previous studies have focused primarily on influence of AMD in surface environment. In order to reveal the acidizing processes in karst high-sulfur coalfield in Southwest China, this study, by contrast, focused on the hydrogeochemical evolution process and acidification mechanism of mine water in Zhijin coalfield, western Guizhou Province. The oxidation of pyrite and other sulfides induced strong acidification of mine water according to the water chemical analysis. As a result, a series of geochemical processes such as dissolution of carbonates and silicates, hydrolysis of metal ions, and degassing of CO 2 complicated water chemical evolution. The dissolution of silicates controlled the chemical composition of mine water, but more carbonates might be dissolved during the acidification of mine water. The sources of sulfate are quite different in water samples collected from the two selected mine. According to sulfur isotope analysis, the dissolution of gypsum is the primary source of sulfate in samples from Hongfa mine, whereas sulfide oxidation contributed a large amount of sulfate to the mine water in Fenghuangshan mine. The dissolution of carbonates should be an important source of DIC in mine water and CO 2 originating from organic mineralization might also have a certain contribution. This study elucidated the groundwater chemical evolution processes in high-sulfur coal-bearing strata and provided a foundation for further study of carbonates erosion and carbon emission during acidification of mine water.

  17. Acid-Sulfate-Weathering Activity in Shergottite Sites on Mars Recorded in Grim Glasses

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Ross, K.; Sutton, S. R.; Schwandt, C. S.

    2011-01-01

    Based on mass spectrometric studies of sulfur species in Shergotty and EET79001, [1] and [2] showed that sulfates and sulfides occur in different proportions in shergottites. Sulfur speciation studies in gas-rich impact-melt (GRIM) glasses in EET79001 by the XANES method [3] showed that S K-XANES spectra in GRIM glasses from Lith A indicate that S is associated with Ca and Al presumably as sulfides/sulfates whereas the XANES spectra of amorphous sulfide globules in GRIM glasses from Lith B indicate that S is associated with Fe as FeS. In these amorphous iron sulfide globules, [4] found no Ni using FE-SEM and suggested that the globules resulting from immiscible sulfide melt may not be related to the igneous iron sulfides having approximately 1-3% Ni. Furthermore, in the amorphous iron sulfides from 507 GRIM glass, [5] determined delta(sup 34)S values ranging from +3.5%o to -3.1%o using Nano-SIMS. These values plot between the delta(sup 34)S value of +5.25%o determined in the sulfate fraction in Shergotty [6] at one extreme and the value of -1.7%o obtained for igneous sulfides in EET79001 and Shergotty [7] at the other. These results suggest that the amorphous Fe-S globules likely originated by shock reduction of secondary iron sulfate phases occurring in the regolith precursor materials during impact [7]. Sulfates in the regolith materials near the basaltic shergottite sites on Mars owe their origin to surficial acid-sulfate interactions. We examine the nature of these reactions by studying the composition of the end products in altered regolith materials. For the parent material composition, we use that of the host shergottite material in which the impact glasses are situated.

  18. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Sulfated steroid-amino acid conjugates from the Irish marine sponge Polymastia boletiformis.

    PubMed

    Smyrniotopoulos, Vangelis; Rae, Margaret; Soldatou, Sylvia; Ding, Yuanqing; Wolff, Carsten W; McCormack, Grace; Coleman, Christina M; Ferreira, Daneel; Tasdemir, Deniz

    2015-03-24

    Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature.

  20. Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia boletiformis

    PubMed Central

    Smyrniotopoulos, Vangelis; Rae, Margaret; Soldatou, Sylvia; Ding, Yuanqing; Wolff, Carsten W.; McCormack, Grace; Coleman, Christina M.; Ferreira, Daneel; Tasdemir, Deniz

    2015-01-01

    Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature. PMID:25812034

  1. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    PubMed

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  2. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    NASA Astrophysics Data System (ADS)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (<500 μM) the in-sediment production of sulfate can support a substantial portion (>50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  3. Intensified Vegetation Water Use due to Soil Calcium Leaching under Acid Deposition

    NASA Astrophysics Data System (ADS)

    Lanning, M.; Wang, L.; Scanlon, T. M.; Vadeboncoeur, M. A.; Adams, M. B.; Epstein, H. E.; Druckenbrod, D.

    2017-12-01

    Despite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. Nitrate and sulfate deposition from fossil fuel burning has caused significant soil acidification, leading to the leaching of soil base cations. From a physiological perspective, plants require various soil cations as signaling and regulatory ions as well as integral parts of structural molecules; a depletion of soil cations can cause reduced productivity and abnormal responses to environmental change. A deficiency in calcium could also potentially prolong stomatal opening, leading to increased transpiration until enough calcium had been acquired to stimulate stomatal closure. Based on the plant physiology and the nature of acidic deposition, we hypothesize that depletion of the soil calcium supply, induced by acid deposition, would intensify vegetation water use at the watershed scale. We tested this hypothesis by analyzing a long-term and unique data set (1989-2012) of soil lysimeter data along with stream flow and evapotranspiration data at the Fernow Experimental Forest. We show that depletion of soil calcium by acid deposition can intensify vegetation water use ( 10% increase in evapotranspiration and depletion in soil water) for the first time. These results are critical to understanding future water availability, biogeochemical cycles, and surficial energy flux and may help reduce uncertainties in terrestrial biosphere models.

  4. The Polar Mesopause Sulfate Aerosol Layer

    NASA Astrophysics Data System (ADS)

    Mills, M. J.; Toon, O. B.; Thomas, G.; Solomon, S.

    2001-05-01

    Noctilucent ("night-luminous") clouds (NLC), or as seen from space, Polar Mesospheric Clouds (PMC), are typically 1 to 2 km thick and located at altitudes of 80 to 85 km, where the temperature is near 150K. NLC generally occur between 50 degrees latitude to the pole from May to August in the Northern Hemisphere, with occasional sightings at lower latitudes. An extraordinary low-latitude sighting occurred on June 21, 1999 at 41oN. Direct evidence that PMC are composed of water ice was recently reported from satellite observations made in the near infrared. The formation of ice clouds in the upper atmosphere has been studied extensively as a result of the role of Polar Stratospheric Clouds (PSC) in polar ozone depletion. There exists ample evidence that preexisting stratospheric liquid sulfate aerosol plays an important role in the formation of solid PSC particles. Until recent laboratory measurements showed otherwise, however, it was believed that photolysis of sulfuric acid in the upper stratosphere would prevent the formation of such aerosol in the mesosphere. We present here calculations from a microphysical atmospheric model which point to sulfate from volcanic and non-volcanic sources alike as the origin of nuclei on which PMC and NLC form. Current theories have relied on meteor 'smoke' particles arising from meteor ablation and recondensation to explain the nucleation of NLC/PMC ice particles. Our calculated sizes and concentrations of high latitude summer mesosphere sulfate aerosol particles are comparable to or exceed those expected of the meteor source. The model shows that large volcanic eruptions will add significantly to this particle population, several years following the injection. The record of the number of NLC sightings in response to large volcanic eruptions is contradictory. However, microphysical models show that injections of particles may result in positive, negative or neutral response in the visual brightness of NLC, depending on sulfur

  5. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial

  6. Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by LC-MS

    PubMed Central

    Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E.; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang

    2011-01-01

    Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum and mass fragmentation pattern. Furthermore, detailed LC-MS analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive NMR analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. PMID:21915955

  7. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  8. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  9. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer in parts of Marion, Sumter, and Citrus counties, Florida

    USGS Publications Warehouse

    Sacks, Laura A.

    1996-01-01

    In inland areas of northwest central Florida, sulfate concentrations in the Upper Floridan aquifer are extremely variable and sometimes exceed drinking water standards (250 milligrams per liter). This is unusual because the aquifer is unconfined and near the surface, allowing for active recharge. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated in this area. Water was sampled from thirty-three wells in parts of Marion, Sumter, and Citrus Counties, within the Southwest Florida Water Management District; these included at least a shallow and a deep well at fifteen separate locations. Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (sulfur-34 of sulfate and sulfide, carbon-13 of inorganic carbon, deuterium, and oxygen-18). Sulfate concentrations ranged from less than 0.2 to 1,400 milligrams per liter, with higher sulfate concentrations usually in water from deeper wells. The samples can be categorized into a low sulfate group (less than 30 milligrams per liter) and a high sulfate group (greater than 30 milligrams per liter). For the high sulfate water, concentrations of calcium and magnesium increased concurrently with sulfate. Chemical and isotopic data and mass-balance modeling indicate that the composition of high sulfate waters is controlled by dedolomitization reactions (dolomite dissolution and calcite precipitation, driven by dissolution of gypsum). Gypsum occurs deeper in the aquifer than open intervals of sampled wells. Upward flow has been documented in deeper parts of the aquifer in the study area, which may be driven by localized discharge areas or rapid flow in shallow parts of the aquifer. Mixing between shallow ground water and sulfate-rich water that dissolved gypsum at the base of the aquifer is probably responsible for the range of concentrations observed in the study area. Other solutes that increased with sulfate apparently

  10. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  11. Constraining Δ33S signatures of Archean seawater sulfate with carbonate-associated sulfate

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Bao, H.; Bekker, A.; Hofmann, A.

    2017-12-01

    Non-mass dependent sulfur isotope deviation of S-bearing phases in Archean sedimentary strata, and expressed as Δ33S, has a consistent pattern, i.e., sulfide (pyrite) predominantly bear positive Δ33S values, while Paleoarchean sulfate (barite) has negative Δ33S values. This pattern was later corroborated by observations of negative Δ33S values in Archean volcanogenic massive sulfide deposits and negative Δ33S values in early diagenetic nodular pyrite with a wide range of δ34S values, which is thought to be due to microbial sulfate reduction. These signatures have provided a set of initial conditions for a mechanistic interpretation at physical chemistry level. Unlike the younger geological times when large bodies of seawater evaporite deposits are common, to expand seawater sulfate records, carbonate-associated sulfate (CAS) was utilized as a proxy for ancient seawater sulfate. CAS extracted from the Archean carbonates carries positive Δ33S values. However, CAS could be derived from pyrite oxidation following exposure to modern oxidizing conditions and/or during laboratory extraction procedures. It is, therefore, important for us understanding context of the overall early earth atmospheric condition to empirically confirm whether Archean seawater sulfate was generally characterized by negative Δ33S signatures. Combined δ18O, Δ17O, δ34S, and Δ33S analyses of sequentially extracted water-leachable sulfate (WLS) and acid-leachable sulfate (ALS = CAS) and δ34S and Δ33S analyses of pyrite can help to identify the source of extracted sulfate. We studied drill-core samples of Archean carbonates from the 2.55 Ga Malmani and Campell Rand supgroups, South Africa. Our preliminary results show that 1) neither WLS nor ALS were extracted from samples with extremely low pyrite contents (less than 0.05 wt.%); 2) extractable WLS and ALS is present in samples with relatively high pyrite contents (more than 1 wt.%), and that δ34S and Δ33S values of WLS, ALS, and

  12. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    USGS Publications Warehouse

    Hemingway, Bruch S.; Seal, Robert R.; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  14. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin.

  15. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  16. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  17. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  18. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium carbonate...

  19. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  20. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  1. Abundance and Speciation of Water and Sulfate at Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Clark, B. C.; Klingelhoefer, G.; Gellert, R.; Rodionov, D.; Schroeder, C.; deSouza, P.; Yen, A.

    2005-01-01

    A major science goal of the Mars Exploration Rover (MER) mission is to search for evidence of water activity, and direct mineralogical evidence for aqueous activity has been reported for Meridiani Planum in the form of the iron sulfate hydroxide mineral jarosite and at Gusev crater in the form of goethite. The Spirit and Opportunity rovers have each collected 110+ Moessbauer (MB) and 75+ Alpha Particle X-Ray Spectrometer (APXS) spectra from Gusev crater and Meridiani Planum [1 - 4]. In this abstract, we use mineralogical and elemental data, primarily from the Moessbauer and APXS instruments, to infer the speciation and estimate the abundance of sulfate and water (as either the H2O molecule or the hydroxyl anion) at Gusev crater and Meridiani Planum. Throughout the abstract, we adopt a format for mineral formulas that shows water explicitly rather than the usual practice of structure-based formulas (e.g., for goethite we write Fe2O3xH2O instead of FeOOH).

  2. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes.

    PubMed

    Calder, Beth L; Kash, Emily A; Davis-Dentici, Katherine; Bushway, Alfred A

    2011-04-01

    Sodium acid sulfate (SAS) dip treatments were evaluated against a distilled water control and citric acid (CA) to compare its effectiveness in reducing enzymatic browning of raw, French-fry cut potatoes. Two separate studies were conducted with dip concentrations ranging from 0%, 1%, and 3% in experiment 1 to 0%, 2%, and 2.5% in experiment 2 to determine optimal dip concentrations. Russet Burbank potatoes were peeled, sliced, and dipped for 1 min and stored at 3 °C. Color, texture, fry surface pH, and microbiological analyses were conducted on days 0, 7, and 14. The 3% SAS- and CA-treated samples had significantly (p<0.0001) lower pH levels on fry surfaces than all other treatments. Both acidulants had significantly (p≤0.05) lower aerobic plate counts compared to controls in both studies by day 7. However, SAS appeared to be the most effective at the 3% level in maintaining a light fry color up to day 14 and had the highest L-values than all other treatments. The 3% SAS-treated fry slices appeared to have the least change in textural properties over storage time, having a significantly (p=0.0002) higher force value (kg force [kgf]) than the other treatments during experiment 1, without any signs of case-hardening that appeared in the control and CA-treated samples. SAS was just as comparable to CA in reducing surface fry pH and also lowering microbial counts over storage time. According to the results, SAS may be another viable acidulant to be utilized in the fresh-cut fruit and vegetable industry.

  3. Chemical characteristics and anticoagulant activities of two sulfated polysaccharides from Enteromorpha linza (Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Qi, Xiaohui; Mao, Wenjun; Chen, Yin; Chen, Yanli; Zhao, Chunqi; Li, Na; Wang, Chunyan

    2013-03-01

    Two sulfated polysaccharides, designated MP and SP, were extracted from the marine green alga Enteromorpha linza using hot water and then purified using ion-exchange and size-exclusion chromatography. The anticoagulant activities of MP and SP were examined by determination of their activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) using human plasma. Results showed that MP and SP were composed of abundant rhamnose with small amounts of xylose and glucuronic acid, whereas SP also contained a small amount of galactose. Approximate molecular weights of MP and SP were 535 and 502 kDa, respectively. As compared with SP, MP had higher contents of sulfate ester (19.0%) and uronic acid (14.9%). The MP mainly consisted of (1→4)-linked rhamnose residues with partially sulfated groups at the C-3 position, and small amounts of (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid and (1→4)-linked xylose residues. The SP contained abundant (1→4)-linked rhamnose with minor amounts of (1→3)-linked rhamnose, (1→3, 4)-linked rhamnose, (1→2, 4)-linked rhamnose, (1→4)-linked glucuronic acid, (1→4)-linked xylose, and (1→3)-linked galactose residues. The sulfate groups were mainly located at C-3 of (1→4)-linked rhamnose residues. Both MP and SP, in particular the former, effectively prolonged APTT and TT. This work demonstrates that MP and SP have unique structural characteristics distinct from those of other sulfated polysaccharides from Enteromorpha. The MP is a potential source of anticoagulant, and the difference in anticoagulant activities of the two sulfated polysaccharides is directly linked to the discrepancy of their chemical features.

  4. Sulfate radicals enable a non-enzymatic Krebs cycle precursor

    PubMed Central

    Keller, Markus A.; Kampjut, Domen; Harrison, Stuart A.; Ralser, Markus

    2017-01-01

    The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed ‘as an appeal to magic’, citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals. PMID:28584880

  5. The 2-D Ion Chromatography Development and Application: Determination of Sulfate in Formation Water at Pre-Salt Region

    NASA Astrophysics Data System (ADS)

    Tonietto, G. B.; Godoy, J. M.; Almeida, A. C.; Mendes, D.; Soluri, D.; Leite, R. S.; Chalom, M. Y.

    2015-12-01

    Formation water is the naturally-occurring water which is contained within the geological formation itself. The quantity and quality of the formation water can both be problematic. Over time, the water volume should decrease as the gas volumes increase. Formation water has been found to contain high levels of Cl, As, Fe, Ba, Mn, PAHs and may even contain naturally occurring radioactive materials. Chlorides in some cases have been found to be in excess of four-five times the level of concentrations found in the ocean. Within the management of well operation, there is sulfate between the analytes of greatest importance due to the potential for hydrogen sulphide formation and consequent corrosion of pipelines. As the concentration of sulfate in these waters can be less than n times that of chloride, a quantitative determination, using the technique of ion chromatography, constitutes an analytical challenge. This work aimed to develop and validate a method for the determination of sulphate ions in hyper-saline waters coming from the oil wells of the pre-salt, using 2D IC. In 2D IC the first column can be understood as a separating column, in which the species with retention times outside a preset range are discarded, while those belonging to this range are retained in a pre-concentrator column to further injecting a second column, the second dimension in which occurs the separation and quantification of the analytes of interest. As the chloride ions have a retention time lower than that of sulfate, a method was developed a for determining sulfate in very low range (mg L-1) by 2D IC, applicable to hypersaline waters, wherein the first dimension is used to the elimination of the matrix, ie, chloride ions, and the second dimension utilized in determining sulfate. For sulphate in a concentration range from 1.00 mg L-1 was obtained an accuracy of 1.0%. The accuracy of the method was tested by the standard addition method different samples of formation water in the pre

  6. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  7. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS...

  8. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and....1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6), also known as Glauber's salt... by the neutralization of sulfuric acid with sodium hydroxide. (b) The ingredient is used as a...

  9. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  10. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  11. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  12. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  13. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal).

    PubMed

    Durães, Nuno; Bobos, Iuliu; da Silva, Eduardo Ferreira

    2017-02-01

    Acid mine waters (AMW) collected during high- and low-flow water conditions from the Lousal, Aljustrel, and São Domingos mining areas (Iberian Pyrite Belt) were physicochemically analyzed. Speciation calculation using PHREEQC code confirms the predominance of Me n+ and Me-SO 4 species in AMW samples. Higher concentration of sulfate species (Me-SO 4 ) than free ion species (Me n+ , i.e., Al, Fe, and Pb) were found, whereas opposite behavior is verified for Mg, Cu, and Zn. A high mobility of Zn than Cu and Pb was identified. The sulfate species distribution shows that Fe 3+ -SO 4 2- , SO 4 2- , HSO 4 - , Al-SO 4 , MgSO 4 0 , and CaSO 4 0 are the dominant species, in agreement with the simple and mixed metal sulfates and oxy-hydroxysulphates precipitated from AMW. The saturation indices (SI) of melanterite and epsomite show a positive correlation with Cu and Zn concentrations in AMW, which are frequently retained in simple metal sulfates. Lead is well correlated with jarosite and alunite (at least in very acid conditions) than with simple metal sulfates. The Pb for K substitution in jarosite occurs as increasing Pb concentration in solution. Lead mobility is also controlled by anglesite precipitation (a fairly insoluble sulfate), where a positive correlation was ascertained when the SI approaches equilibrium. The zeta potential of AMW decreased as pH increased due to colloidal particles aggregation, where water species change from SO 4 2- to OH - species during acid to alkaline conditions, respectively. The AMW samples were supersaturated in schwertmannite and goethite, confirmed by the Me n+ -SO 4 , Me n+ -Fe-O-OH, or Me n+ -S-O-Fe-O complexes identified by attenuated total reflectance infrared spectroscopy (ATR-IR). The ATR-IR spectrum of an AMW sample with pH 3.5 (sample L1) shows well-defined vibration plans attributed to SO 4 tetrahedron bonded with Fe-(oxy)hydroxides and the Me n+ sorbed by either SO 4 or Fe-(oxy)hydroxides. For samples with lower pH values (p

  14. Partitioning of metals in a degraded acid sulfate soil landscape: influence of tidal re-inundation.

    PubMed

    Claff, Salirian R; Sullivan, Leigh A; Burton, Edward D; Bush, Richard T; Johnston, Scott G

    2011-11-01

    The oxidation and acidification of sulfidic soil materials results in the re-partitioning of metals, generally to more mobile forms. In this study, we examine the partitioning of Fe, Cr, Cu, Mn, Ni and Zn in the acidified surface soil (0-0.1 m) and the unoxidised sub-soil materials (1.3-1.5 m) of an acid sulfate soil landscape. Metal partitioning at this acidic site was then compared to an adjacent site that was previously acidified, but has since been remediated by tidal re-inundation. Differences in metal partitioning were determined using an optimised six-step sequential extraction procedure which targets the "labile", "acid-soluble", "organic", "crystalline oxide", "pyritic" and "residual" fractions. The surficial soil materials of the acidic site had experienced considerable losses of Cr, Cu, Mn and Ni compared to the underlying parent material due to oxidation and acidification, yet only minor losses of Fe and Zn. In general, the metals most depleted from the acidified surface soil materials exhibited the greatest sequestration in the surface soil materials of the tidally remediated site. An exception to this was iron, which accumulated to highly elevated concentrations in the surficial soil materials of the tidally remediated site. The "acid-soluble", "organic" and "pyritic" fractions displayed the greatest increase in metals following tidal remediation. This study demonstrates that prolonged tidal re-inundation of severely acidified acid sulfate soil landscapes leads to the immobilisation of trace metals through the surficial accumulation of iron oxides, organic material and pyrite. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Use of Copper Sulfate and a New Disinfectant called Peracetic Acid in Aquaculture

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate treatments are currently used for water treatments to control algae and snails, but also to control parasites (mainly Ich) on fish and fungus (Saprolegnia) on fish eggs. This compound has also been used in the past to control columnaris on fish, although antibiotics are the common tr...

  16. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  17. The Hydrothermal System at Home Plate in Gusev Crater, Mars: Formation of High Silica Material by Acid-Sulfate Alteration of Basalt

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.

    2008-01-01

    The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.

  18. Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption

    NASA Astrophysics Data System (ADS)

    Van Stempvoort, D. R.; Reardon, E. J.; Fritz, P.

    1990-10-01

    Both field and laboratory data indicate that there is no significant isotope fractionation of sulfate during sorption in upland forest Podzols. The dominant sulfate sorption process in these soils is adsorption onto mineral surfaces. In the Plastic Lake watershed, Dorset, Ontario, Canada, fractions of sulfate from Podzol B-horizons have the following mean isotope (%.) compositions: water soluble sulfate, δ34S = +6.4; δ18O = -5.3; bicarbonate-exchanged sulfate by two methods, δ34S = + 4.5 and + 3.4; δ18O =-6.2 and -5.6; dissolved sulfate in B-horizon soilwater seepage, δ34S = + 4.8; δ18O = -5.4. These data indicate that soil sorption enriches dissolved sulfate in 34S by approximately 1 ± 1%. and in 18O by 0 +- 1 %. relative to sorbed sulfate. Similar results were obtained by laboratory sorption of sulfate by prepared goethite, which is a mineral representative of soil sorption sites in acidic Podzols like the one at Plastic Lake. The mean fractionation between sorbed and dissolved sulfate was found to be - 0.3%. for 34S and 0.1 %. for 18O. Earlier literature has confused the term adsorption; in many cases the more general term sorption, or retention, should be used. Pronounced fractionation of S and O isotopes in sulfate by lake and ocean sediments has been attributed to "adsorption" or "retention" but is more likely the result of sulfate reduction. Apparently, at Earth-surface conditions the only substantial isotope shifts in sulfate occur during microbial processes.

  19. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly

  20. Use of copper sulfate and peracetic acid as therapeutants on fish: can these replace formalin?

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) and peracetic acid (PAA) are compounds that have been found to be useful in several areas of aquaculture around the world. In the United States, CuSO4 is used for treatment of an ectoparasite (Ichthyophthirius multifiliis) on fish (Straus 1993; Tieman and Goodwin 2001), and s...

  1. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids.

    PubMed

    Omil, F; Lens, P; Visser, A; Hulshoff Pol, L W; Lettinga, G

    1998-03-20

    The competition between acetate utilizing methane-producing bacteria (MB) and sulfate-reducing bacteria (SRB) was studied in mesophilic (30 degrees C) upflow anaerobic sludge bed (UASB) reactors (upward velocity 1 m h-1; pH 8) treating volatile fatty acids and sulfate. The UASB reactors treated a VFA mixture (with an acetate:propionate:butyrate ratio of 5:3:2 on COD basis) or acetate as the sole substrate at different COD:sulfate ratios. The outcome of the competition was evaluated in terms of conversion rates and specific methanogenic and sulfidogenic activities. The COD:sulfate ratio was a key factor in the partitioning of acetate utilization between MB and SRB. In excess of sulfate (COD:sulfate ratio lower than 0.67), SRB became predominant over MB after prolonged reactor operation: 250 and 400 days were required to increase the amount of acetate used by SRB from 50 to 90% in the reactor treating, respectively, the VFA mixture or acetate as the sole substrate. The competition for acetate was further studied by dynamic simulations using a mathematical model based on the Monod kinetic parameters of acetate utilizing SRB and MB. The simulations confirmed the long term nature of the competition between these acetotrophs. A high reactor pH (+/-8), a short solid retention time (<150 days), and the presence of a substantial SRB population in the inoculum may considerably reduce the time required for acetate-utilising SRB to outcompete MB. Copyright 1998 John Wiley & Sons, Inc.

  2. Sulfur and Oxygen Isotopic Composition of Sulfate in the Fresh Water, King Sejong Station, King George Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, I.; Lee, J.; Park, B.; Mayer, B.; Kaufman, A. J.; Park, S.; Kim, G.; Lee, K.

    2008-12-01

    Isotopic compositions of sulfur (δ34S) and oxygen (δ18O) were measured for the sulfate of the fresh water near the King Sejong Station, King George Island, Antarctica. Sejong station is located in the Barton peninsular of the King George Island. The geology around King Sejong station mainly composed of basalt-andesite, quart monzodiorite, and granodiorite. Lapilli tuff, conglomerate, sandstone, and siltstone occur along the southern and eastern shore of the Barton peninsula. Lapilli tuff also occurs on the highland located on southeastern part of the Barton peninsula. The δ34S values of sulfate extracted from fresh water samples at King Sejong Station range from 13.7 to 16.3 per mil excluding 1 sample. These sulfur values are very narrow in their range compared with those from anthropogenic sources. These sulfur values are 5 to 7 per mil lower than those of typical present seawater. Considering the rocks occurring near the King Sejong station, these sulfur isotopic values do not seem to be related to any evaporites of certain age. In Antarctic region the natural source of sulfate dissolved in water could be originated from marine biogenic source (DMS), sea-salt, volcanic source, or other continental sources. Most of the δ34S values of sulfate at King Sejong station seems to indicate the dominance of marine biogenic origin for the source of sulfur. The δ18O values of sulfate extracted from fresh water samples at King Sejong Station range from 1.9 to 6.4 per mil excluding 1 sample. These oxygen isotope values are lower than those of the sulfate in the present seawater by 6 per mil. However, both sulfur and oxygen isotope values strongly represent the influence of the seawater sulfate. One sample have 2.6 and -1.1 per mil in its δ34S and δ18O values, respectively, that are quite different from the isotopic values of other samples. This sample was collected in the highland far from the King Sejong station. Therefore this sample might reflect the composition of

  3. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does...

  4. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    NASA Astrophysics Data System (ADS)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  5. The Importance of Sulfate Adenylyl Transferase in S and O Fractionation by Sulfate Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Johnston, D. T.; Bradley, A. S.

    2016-12-01

    Microbial sulfate reduction (MSR) is critical to the oxidation of organic matter in modern and ancient oceans, and plays an important role in regulating the redox state of the Earth's surface. The sulfur and oxygen isotopic composition of seawater sulfate and of sulfate minerals reflect the biogeochemical processes that cycle sulfur, of which MSR is among the most important. MSR is a multi-enzymatic reaction network that partitions the isotopes of sulfur and oxygen as a consequence of both the flux of sulfate through this biochemical network and the fractionation imposed by each individual enzyme. MSR affects the δ18O of residual, extracellular sulfate mainly by the equilibration of the MSR intermediate sulfite with extracellular water (Antler et al., 2013 GCA, Wankel et al., 2013 Geobiol). A series of oxidative and exchange reactions catalyzed by APS reductase (APSr), sulfate adenylyl transferase (Sat), and sulfate transporters promote the conversion of water-equilibrated intracellular sulfite to extracellular sulfate. The flux of sulfoxy anions via these proteins will be, at least in part, dependent on the activity of these enzymes. To test this, we examined sulfur and oxygen isotope fractionation in genetically engineered mutants of the sulfate reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH). In these mutants, the activity of Sat has been artificially increased by perturbing the (i) transcriptional repressor Rex and (ii) its binding site upstream of the gene encoding Sat (Christensen et al., 2015 J. Bacteriol). It was predicted that this would minimize the back reaction of Sat, enhance the intracellular pool of APS, and minimize the equilibration between sulfite and adenosine monophosphate (AMP). Both mutants, along with the wild type DvH were grown in batch culture made with water enriched in 18O. Samples were collected throughout batch growth, and we report the evolution of the S and O isotopic composition of sulfate, and of the S isotopic

  6. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  7. REMOVAL BY COAGULATION OF TRACE ORGANICS FROM MISSISSIPPI RIVER WATER

    EPA Science Inventory

    In the study alum and ferric sulfate were evaluated for their effectiveness in removing four low-molecular-weight organic compounds - C14-labeled octanoic acid, salicylic acid, phenol, and benzoic acid - from Mississippi River water and from water samples free of natural organic ...

  8. Correlation of plume opacity with particles and sulfates from boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, J.C.; Lee, M.; Chen, K.S.

    1997-07-01

    The effects of emission concentrations of particulate matters and sulfates on plume opacity are investigated by in situ measurements. The studies are conducted for three processes of two coal-fired plants and one oil-fired that are all equipped with electrostatic precipitators. Flue-gas sampling and analysis include the concentrations of particles and total water soluble sulfates, particle size distribution, and flue-gas composition; while in-stack and out-of-stack opacities are determined by a transmissometer and certified smoke inspectors, respectively. Experimental results show that plume opacity outside the stack linearly correlates well with the in-stack opacity. The mixing of hot flue gas with cold ambientmore » air would result in the condensation of hygroscopic sulfuric acid aerosols and an increase about 1.6% out of typical 15--25% measured opacity. An empirical equation similar to the Beer-Lambert-Bouger form is derived for predicting the plume opacity in terms of the stack diameter and the concentrations of particles and total water soluble sulfates. Good comparisons are achieved between predictions by the empirical equation and other available field data.« less

  9. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceburg lettuce during storage in modified atmosphere package

    USDA-ARS?s Scientific Manuscript database

    Recent studies showed that levulinic acid (LA) and sodium acid sulfate (SAS) were effective in inactivating human pathogens on fresh produce. The present study investigated the effects of LA and SAS in comparison with citric acid and chlorine on the inactivation of E. coli O157:H7 and the sensory qu...

  10. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    PubMed

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other

  11. Detection of pentachlorophenol and its glucuronide and sulfate conjugates in fish bile and exposure water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stehly, G.R.; Hayton, W.L.

    1988-08-01

    The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposedmore » to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.« less

  12. Sulfate deposition in subsurface regolith in Gusev crater, Mars

    USGS Publications Warehouse

    Wang, A.; Haskin, L.A.; Squyres, S. W.; Jolliff, B.L.; Crumpler, L.; Gellert, Ralf; Schroder, C.; Herkenhoff, K.; Hurowitz, J.; Tosca, N.J.; Farrand, W. H.; Anderson, R.; Knudson, A.T.

    2006-01-01

    Excavating into the shallow Martian subsurface has the potential to expose stratigraphic layers and mature regolith, which may hold a record of more ancient aqueous interactions than those expected under current Martian surface conditions. During the Spirit rover's exploration of Gusev crater, rover wheels were used to dig three trenches into the subsurface regolith down to 6-11 cm depth: Road Cut, the Big Hole, and The Boroughs. A high oxidation state of Fe and high concentrations of Mg, S, Cl, and Br were found in the subsurface regolith within the two trenches on the plains, between the Bonneville crater and the foot of Columbia Hills. Data analyses on the basis of geochemistry and mineralogy observations suggest the deposition of sulfate minerals within the subsurface regolith, mainly Mg-sulfates accompanied by minor Ca-sulfates and perhaps Fe-sulfates. An increase of Fe2O3, an excess of SiO2, and a minor decrease in the olivine proportion relative to surface materials are also inferred. Three hypotheses are proposed to explain the geochemical trends observed in trenches: (1) multiple episodes of acidic fluid infiltration, accompanied by in situ interaction with igneous minerals and salt deposition; (2) an open hydrologic system characterized by ion transportation in the fluid, subsequent evaporation of the fluid, and salt deposition; and (3) emplacement and mixing of impact ejecta of variable composition. While all three may have plausibly contributed to the current state of the subsurface regolith, the geochemical data are most consistent with ion transportation by fluids and salt deposition as a result of open-system hydrologic behavior. Although sulfates make up >20 wt.% of the regolith in the wall of The Boroughs trench, a higher hydrated sulfate than kieserite within The Boroughs or a greater abundance of sulfates elsewhere than is seen in The Boroughs wall regolith would be needed to hold the structural water indicated by the water-equivalent hydrogen

  13. Processes controlling the seasonal and spatial variations in sulfate profiles in the pore water of the sediments surrounding Qi'ao Island, Pearl River Estuary, Southern China

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Zhou, Huaiyang; Ren, Dezhang; Gao, Hang; Li, Jiangtao

    2015-04-01

    Marine sediments are the main sink for seawater sulfate and bacterial sulfate reduction is a major component of the global sulfur cycle. Nevertheless, the factors controlling sulfate reduction in the coastal estuary sediments that undergo spatial and temporal variations are still not fully understood. In this study, we measured the concentrations of SO42-, Cl-, CH4, and DIC, and the δ13C of DIC in the pore water of five sampling stations surrounding the Qi'ao Island, Pearl River Estuary, Southern China during the dry season in November 2011 and during the wet season in May 2012. The results showed that the dilution-mixing of the Pearl River with low-concentration sulfate significantly affects the downcore profiles of the sulfate concentrations in the pore water of these estuary sediments. During the wet season, the dilution-mixing of the layers from the top of the sediments to a depth of 14-18 cm occurred at the different sampling stations. In this layer, the sulfate reduction is not appreciable based on the plot of the pore water Cl- and SO42-. Below the dilution-mixing layers, however, sulfate reduction that is driven by the anaerobic oxidation of methane (AOM) occurs. In our comparison, it appeared that the AOM played more important role in the consumption of the pore water sulfate in May 2012 than in November 2011. Meanwhile, we observed a relatively good correlation (r2=0.64) between the depth of the sulfate-methane interface (SMI) and the sulfate concentration in the pore water of the top sediments in dry season, indicating that the pore water sulfate concentration appears to be a primary controlling factor for the depth of the SMI in this estuary. These results highlight the need for an integrated analysis of the hydrologically driven the variations in the sulfate profiles to improve our understanding of the biogeochemical cycling of C, Fe and S and their budgets in estuarine environments.

  14. Rapid regional recovery from sulfate and nitrate pollution in streams of the western Czech Republic - Comparison to other recovering areas

    USGS Publications Warehouse

    Majer, V.; Kram, P.; Shanley, J.B.

    2005-01-01

    Hydrochemical changes between 1991 and 2001 were assessed based on two synoptic stream surveys from the 820-km2 region of the Slavkov Forest and surrounding area, western Czech Republic. Marked declines of sulfate, nitrate, chloride, calcium and magnesium in surface waters were compared with other areas of Europe and North America recovering from acidification. Declines of sulfate concentration in the Slavkov Forest (-30 ??eq L-1 yr-1) were more dramatic than declines reported from other sites. However, these dramatic declines of strong acid anions did not generate a widespread increase of stream water pH in the Slavkov Forest. Only the most acidic streams experienced a slight increase of pH by 0.5 unit. An unexpected decline of stream water pH occurred in slightly alkaline streams. ?? 2004 Elsevier Ltd. All rights reserved.

  15. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters

    USGS Publications Warehouse

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.

    1998-01-01

    Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.

  16. Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in Southern Sinus Meridiani, Mars

    USGS Publications Warehouse

    Wiseman, S.M.; Arvidson, R. E.; Andrews-Hanna, J. C.; Clark, R.N.; Lanza, N.L.; des Marais, D.; Marzo, G.A.; Morris, R.V.; Murchie, S.L.; Newsom, Horton E.; Noe Dobrea, E.Z.; Ollila, A.M.; Poulet, F.; Roush, T.L.; Seelos, F.P.; Swayze, G.A.

    2008-01-01

    Orbital topographic, image, and spectral data show that sulfate- and hematite-bearing plains deposits similar to those explored by the MER rover Opportunity unconformably overlie the northeastern portion of the 160 km in diameter Miyamoto crater. Crater floor materials exhumed to the west of the contact exhibit CRISM and OMEGA NIR spectral signatures consistent with the presence of Fe/Mg-rich smectite phyllosilicates. Based on superposition relationships, the phyllosilicate-bearing deposits formed either in-situ or were deposited on the floor of Miyamoto crater prior to the formation of the sulfate-rich plains unit. These findings support the hypothesis that neutral pH aqueous conditions transitioned to a ground-water driven acid sulfate system in the Sinus Meridiani region. The presence of both phyllosilicate and sulfate- and hematite-bearing deposits within Miyamoto crater make it an attractive site for exploration by future rover missions. Copyright 2008 by the American Geophysical Union.

  17. Single Stage Tandem Mass Spectrometry Assignment of the C-5 Uronic Acid Stereochemistry in Heparan Sulfate Tetrasaccharides using Electron Detachment Dissociation

    NASA Astrophysics Data System (ADS)

    Agyekum, Isaac; Zong, Chengli; Boons, Geert-Jan; Amster, I. Jonathan

    2017-09-01

    The analysis of heparan sulfate (HS) glycosaminoglycans presents many challenges, due to the high degree of structural heterogeneity arising from their non-template biosynthesis. Complete structural elucidation of glycosaminoglycans necessitates the unambiguous assignments of sulfo modifications and the C-5 uronic acid stereochemistry. Efforts to develop tandem mass spectrometric-based methods for the structural analysis of glycosaminoglycans have focused on the assignment of sulfo positions. The present work focuses on the assignment of the C-5 stereochemistry of the uronic acid that lies closest to the reducing end. Prior work with electron-based tandem mass spectrometry methods, specifically electron detachment dissociation (EDD), have shown great promise in providing stereo-specific product ions, such as the B3 ´ -CO2, which has been found to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) in some HS tetrasaccharides. The previously observed diagnostic ions are generally not observed with 2- O-sulfo uronic acids or for more highly sulfated heparan sulfate tetrasaccharides. A recent study using electron detachment dissociation and principal component analysis revealed a series of ions that correlate with GlcA versus IdoA for a set of 2- O-sulfo HS tetrasaccharide standards. The present work comprehensively investigates the efficacy of these ions for assigning the C-5 stereochemistry of the reducing end uronic acid in 33 HS tetrasaccharides. A diagnostic ratio can be computed from the sum of the ions that correlate to GlcA to those that correlate to IdoA. [Figure not available: see fulltext.

  18. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  19. Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by liquid chromatography-mass spectrometry.

    PubMed

    Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang

    2011-09-01

    Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum, and mass fragmentation pattern. Furthermore, a detailed liquid chromatography-mass spectrometry analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive nuclear magnetic resonance (NMR) analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. Copyright © 2011 John Wiley & Sons, Ltd.

  20. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  1. Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulfates.

    PubMed

    Wang, Lin; Lal, Vinita; Khalizov, Alexei F; Zhang, Renyi

    2010-04-01

    The heterogeneous interaction of alkylamines with sulfuric acid has been investigated to assess the role of amines in aerosol growth through the formation of alkylaminium sulfates. The kinetic experiments were conducted in a low-pressure fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS). The measurements of heterogeneous uptake of methylamine, dimethylamine, and trimethylamine were performed in the acidity range of 59-82 wt % H(2)SO(4) and between 243 and 283 K. Irreversible reactive uptakes were observed for all three alkylamines, with comparable uptake coefficients (gamma) in the range of 2.0 x 10(-2) to 4.4 x 10(-2). The measured gamma value was slightly higher in more concentrated sulfuric acid and at lower temperatures. The results imply that the heterogeneous reactions of alkylamines contribute effectively to the growth of atmospheric acidic particles and, hence, secondary organic aerosol formation.

  2. DYNAMICS OF AUTOMOTIVE SULFATE EMISSIONS

    EPA Science Inventory

    A preliminary assessment of the potential environmental impact of automotive sulfuric acid (or sulfate) aerosol has been made by analyzing the aerosol dynamics. This analysis leads to the prediction of ambient automotive sulfuric acid aerosol concentrations over and around a larg...

  3. Hydrogen isotopic messages in sulfate reducer lipids: a recorder of metabolic state?

    NASA Astrophysics Data System (ADS)

    Bradley, A. S.; Leavitt, W.; Zhou, A.; Cobban, A.; Suess, M.

    2017-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism. These observations raise the possibility for culture independent identification of the dominant metabolic pathways operating in a given environment [Zhang et al. 2009]. One such metabolism we aim to track is microbial sulfate reduction. To-date, sulfate reducing bacteria have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O -50 to -175 ‰) [Campbell et al. 2009; Dawson et al. 2015; Osburn et al.], with recent work demonstrating a systematic relationship between lipid/water fractionation and growth rate when the electron-bifurcating NAD(P)(H) transhydrogenase (ebTH) activity was disrupted and the available electron requires the ebTH [Leavitt et al. 2016. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates non-bifurcating NAD(P)(H) transhydrogenase activity is a critical control on 2ɛlipid-H2O. This suggests a specific mechanism to control the range in fractionation is the ratio of intracellular NADPH/NADH/NADP/NAD in aerobes and perhaps the same in anaerobes with some consideration for FADH/FAD. Fundamentally this implies 2ɛlipid-H2O records intracellular redox state. In our sulfate reducer model system Desulfovibrio alaskensis strain G20 a key component of energy metabolism is the activity of ebTH. Nonetheless, this strain contains two independent copies of the genes, only one of which generates a distinctive isotopic phenotype [Leavitt et al. 2016. Front Microbio]. In this study we extend the recent work in G20 to continuous culture experiments comparing WT to nfnAB-2 transposon interruptions, where both organisms are cultivated continuously, at the rate of the slower growing mutant

  4. Resilience of sulfate-reducing granular sludge against temperature, pH, oxygen, nitrite, and free nitrous acid.

    PubMed

    Hao, Tianwei; Mackey, Hamish R; Guo, Gang; Liu, Rulong; Chen, Guanghao

    2016-10-01

    Sulfate-reducing granular sludge has recently been developed and characterized in detail as part of the development of the sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process. However, information regarding temperature of granules to environmental fluctuation is lacking, an aspect that is important in dealing with real wastewater. A comprehensive assessment of sulfate-reducing granular sludge performance under various environmental conditions was thus conducted in this study, including temperature, pH, oxygen, nitrite, and free nitrous acid (FNA) as possible encountering conditions in the removal of organics and/or nitrate. Specific chemical oxygen demand removal rate of the granules was determined to be reduced by 65 % when the temperature varied between 10-15 °C, reduced by 70 % when dissolved oxygen (DO) was 0.5 mg/L or greater, and at least, reduced by 75 % when nitrite was 30 mg N/L or above. Nevertheless, the sludge activity recovered by 82, 100, and 86 % from exposure to high oxygen and nitrite and low temperature levels, respectively. Combined inhibition of nitrite and FNA on the sludge is strong and complex, while FNA alone reduced cell viability from 60 to 40 % when its concentration increased to 2.3 mg N/L. The present study demonstrates that sulfate-reducing bacteria (SRB) granules possess high resilience against varying environmental conditions, showing the high application potential of sulfate-reducing granular sludge in dealing with brackish and saline industrial or domestic wastewaters.

  5. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy.

    PubMed

    Feng, Qian; Lin, Sien; Zhang, Kunyu; Dong, Chaoqun; Wu, Tianyi; Huang, Heqin; Yan, Xiaohui; Zhang, Li; Li, Gang; Bian, Liming

    2017-04-15

    Recently, hyaluronic acid (HA) hydrogels have been extensively researched for delivering cells and drugs to repair damaged tissues, particularly articular cartilage. However, the in vivo degradation of HA is fast, thus limiting the clinical translation of HA hydrogels. Furthermore, HA cannot bind proteins with high affinity because of the lack of negatively charged sulfate groups. In this study, we conjugated tunable amount of sulfate groups to HA. The sulfated HA exhibits significantly slower degradation by hyaluronidase compared to the wild type HA. We hypothesize that the sulfation reduces the available HA octasaccharide substrate needed for the effective catalytic action of hyaluronidase. Moreover, the sulfated HA hydrogels significantly improve the protein sequestration, thereby effectively extending the availability of the proteinaceous drugs in the hydrogels. In the following in vitro study, we demonstrate that the HA hydrogel sulfation exerts no negative effect on the viability of encapsulated human mesenchymal stem cells (hMSCs). Furthermore, the sulfated HA hydrogels promote the chondrogenesis and suppresses the hypertrophy of encapsulated hMSCs both in vitro and in vivo. Moreover, intra-articular injections of the sulfated HA hydrogels avert the cartilage abrasion and hypertrophy in the animal osteoarthritic joints. Collectively, our findings demonstrate that the sulfated HA is a promising biomaterial for the delivery of therapeutic agents to aid the regeneration of injured or diseased tissues and organs. In this paper, we conjugated sulfate groups to hyaluronic acid (HA) and demonstrated the slow degradation and growth factor delivery of sulfated HA. Furthermore, the in vitro and in vivo culture of hMSCs laden HA hydrogels proved that the sulfation of HA hydrogels not only promotes the chondrogenesis of hMSCs but also suppresses hypertrophic differentiation of the chondrogenically induced hMSCs. The animal OA model study showed that the injected

  6. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    PubMed

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  7. Isotopic constraints on heterogeneous sulfate production in Beijing haze

    NASA Astrophysics Data System (ADS)

    He, Pengzhen; Alexander, Becky; Geng, Lei; Chi, Xiyuan; Fan, Shidong; Zhan, Haicong; Kang, Hui; Zheng, Guangjie; Cheng, Yafang; Su, Hang; Liu, Cheng; Xie, Zhouqing

    2018-04-01

    Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42-)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323 µg m-3 with a mean of (141 ± 88 (1σ)) µg m-3, with SO42- representing 8-25 % of PM2.5 mass. The observed Δ17O(SO42-) varied from 0.1 to 1.6 ‰ with a mean of (0.9 ± 0.3) ‰. Δ17O(SO42-) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5 ≥ 75 µg m-3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68 %. During PDs of Cases I and III-V, heterogeneous sulfate production (Phet) was estimated to contribute 41-54 % to total sulfate formation with a mean of (48 ± 5) %. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫ H2O + HSO3- + SO32-) oxidation by H2O2 in aerosol water accounted for 5-13 % of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42-). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21-22 % of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42-), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66-73 % of Phet. The assumption about the thermodynamic state of aerosols

  8. METHANOGENESIS AND SULFATE REDUCTION IN CHEMOSTATS: I. KINETIC STUDIES AND EXPERIMENTS

    EPA Science Inventory

    Six anaerobic chemostats containing mixed microbial cultures were used to investigate the interactions between sulfate reduction and methanogenesis for three substrates: acetic acid, methanol and formic acid. Sulfate reducers outcompeted methanogens in acetate-fed chemostats whil...

  9. Synthesis and olfactory activity of unnatural, sulfated 5β-bile acid derivatives in the sea lamprey (Petromyzon marinus)

    PubMed Central

    Burns, Aaron C.; Sorensen, Peter W.

    2011-01-01

    A variety of unnatural bile acid derivatives (9a–9f) were synthesized and used to examine the specificity with which the sea lamprey (Petromyzon marinus) olfactory system detects these compounds. These compounds are analogs of petromyzonol sulfate (PS, 1), a component of the sea lamprey migratory pheromone. Both the stereochemical configuration at C5 (i.e., 5α vs. 5β) and the extent and sites of oxygenation (hydroxylation or ketonization) of the bile acid derived steroid skeleton were evaluated by screening the compounds for olfactory activity using electro-olfactogram recording. 5β-Petromyzonol sulfate (9a) elicited a considerable olfactory response at sub-nanomolar concentration. In addition, less oxygenated systems (i.e., 9b–9e) elicited olfactory responses, albeit with less potency. The sea lamprey sex pheromone mimic 9f (5β-3-ketopetromyzonol sulfate) was also examined and found to produce a much lower olfactory response. Mixture studies conducted with 9a and PS (1) suggest that stimulation is occurring via similar modes of activation, demonstrating a relative lack of specificity for recognition of the allo-configuration (i.e., 5α) in sea lamprey olfaction. This attribute could facilitate design of pheromone analogs to control this invasive species. PMID:21145335

  10. Decreased atmospheric sulfur deposition across the southeastern U.S.: When will watersheds release stored sulfate?

    Treesearch

    Karen C. Rice; Todd M. Scanlon; Jason A. Lynch; Bernard J. Cosby

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States. Since passage of the Clean Air Act and its Amendments, atmospheric deposition...

  11. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  12. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth

    PubMed Central

    Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  13. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

    PubMed Central

    López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Ángeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world’s largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  15. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as lowmore » as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.« less

  16. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area.

  17. Sulfated and pyruvylated disaccharide alditols obtained from a red seaweed galactan: ESIMS and NMR approaches.

    PubMed

    Gonçalves, Alan G; Ducatti, Diogo R B; Duarte, M Eugênia R; Noseda, Miguel D

    2002-11-29

    The water-soluble acid agaran isolated from Acanthophora spicifera (Rhodophyta) was submitted to alkaline treatment for the complete cyclization of alpha-L-Galp 6-sulfate to 3,6-An-alpha-L-Galp units. The modified agaran was then partially depolymerized using partial reductive hydrolysis. The resulting oligosaccharide mixture was fractionated by adsorption and ion-exchange chromatography. Fractions were purified by gel-filtration chromatography and studied by ESIMS and NMR spectroscopy, including 1D 1H, 13C, DEPT and 2D 1H, 1H COSY, TOCSY and 1H, 13C HMQC procedures. The following neutral, pyruvylated, sulfated and sulfated/pyruvylated disaccharide alditols were obtained: beta-D-Galp-(1-->4)-3,6-An-L-GalOH; 4,6-O-(1-carboxyethylidene)-beta-D-Galp-(1-->4)-3,6-An-L-GalOH; beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH and 4,6-O-(1-carboxyethylidene)-beta-D-Galp 2-sulfate-(1-->4)-3,6-An-L-GalOH.

  18. Sulfate mobility in an outwash soil in western Washington

    Treesearch

    D. W. Johnson; D. W. Cole

    1976-01-01

    The effect of acidic precipitation on cation leaching in a second-growth Douglas-fir ecosystem at the Thompson Research Center is reviewed. Sulfate mobility and soil pH buffering power were tested by applications of heavy doses of sulfuric acid to the study plot. Sulfate at high concentrations proved to be immobilized, presumably by adsorption to soil sesquioxide...

  19. Volatile fatty acids as substrates for iron and sulfate reduction in Arctic marine sediments, Svalbard

    NASA Astrophysics Data System (ADS)

    Finke, N.; Vandieken, V.; Jorgensen, B. B.

    2006-12-01

    Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of

  20. Dynamics of a camphoric acid boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, V. S.; Singh, Dhiraj K.; Mandre, Shreyas; Bandi, M. M.

    2018-05-01

    We report experiments on an agarose gel tablet loaded with camphoric acid (c-boat) spontaneously set into motion by surface tension gradients on the water surface. We observe three distinct modes of c-boat motion: harmonic mode where the c-boat speed oscillates sinusoidally in time, a steady mode where the c-boat maintains constant speed, and an intermittent mode where the c-boat maintains near-zero speed between sudden jumps in speed. Whereas all three modes have been separately reported before in different systems, controlled release of Camphoric Acid (CA) from the agarose gel matrix allowed the observation of all the three modes in the same system. These three modes are a result of a competition between the driving (surface tension gradients) and drag forces acting on the c-boat. Moreover we suggest that there exist two time scales corresponding to spreading of CA and boat motion and the mismatch of these two time scales give rise to the three modes in boat motion. We reproduced all the modes of motion by varying the air-water interfacial tension using Sodium Dodecyl Sulfate (SDS).

  1. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings.

    PubMed

    Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Brad; Belk, Keith E

    2015-11-01

    Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings.

  2. Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage.

    PubMed

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2017-09-15

    The present study discusses the potentiality of using anaerobic Packed Bed Bioreactor (PBR) for the treatment of acid mine drainage (AMD). The multiple process parameters such as pH, hydraulic retention time (HRT), concentration of marine waste extract (MWE), total organic carbon (TOC) and sulfate were optimized together using Taguchi design. The order of influence of the parameters towards biological sulfate reduction was found to be pH > MWE > sulfate > HRT > TOC. At optimized conditions (pH - 7, 20% (v/v) MWE, 1500 mg/L sulfate, 48 h HRT and 2300 mg/L TOC), 98.3% and 95% sulfate at a rate of 769.7 mg/L/d. and 732.1 mg/L/d. was removed from the AMD collected from coal and metal mine, respectively. Efficiency of metal removal (Fe, Cu, Zn, Mg and Ni) was in the range of 94-98%. The levels of contaminants in the treated effluent were below the minimum permissible limits of industrial discharge as proposed by Bureau of Indian Standards (IS 2490:1981). The present study establishes the optimized conditions for PBR operation to completely remove sulfate and metal removal from AMD at high rate. The study also creates the future scope to develop an efficient treatment process for sulfate and metal-rich mine wastewater in a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  4. 21 CFR 520.1044c - Gentamicin sulfate powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentamicin sulfate powder. 520.1044c Section 520... sulfate powder. (a) Specifications. Each gram of powder contains gentamicin sulfate equivalent to: (1) 16... colibacillosis: Gentamicin sulfate equivalent to 25 mg of gentamicin per gallon of drinking water to provide 0.5...

  5. Crystallization of aqueous inorganic-malonic acid particles: nucleation rates, dependence on size, and dependence on the ammonium-to-sulfate ratio.

    PubMed

    Parsons, Matthew T; Riffell, Jenna L; Bertram, Allan K

    2006-07-06

    Using an electrodynamic balance, we determined the relative humidity (RH) at which aqueous inorganic-malonic acid particles crystallized, with ammonium sulfate ((NH(4))(2)SO(4)), letovicite ((NH(4))(3)H(SO(4))(2)), or ammonium bisulfate (NH(4)HSO(4)) as the inorganic component. The results for (NH(4))(2)SO(4)-malonic acid particles and (NH(4))(3)H(SO(4))(2)-malonic acid particles show that malonic acid decreases the crystallization RH of the inorganic particles by less than 7% RH when the dry malonic acid mole fraction is less than 0.25. At a dry malonic acid mole fraction of about 0.5, the presence of malonic acid can decrease the crystallization RH of the inorganic particles by up to 35% RH. For the NH(4)HSO(4)-malonic acid particles, the presence of malonic acid does not significantly modify the crystallization RH of the inorganic particles for the entire range of dry malonic acid mole fractions studied; in all cases, either the particles did not crystallize or the crystallization RH was close to 0% RH. Size dependent measurements show that the crystallization RH of aqueous (NH(4))(2)SO(4) particles is not a strong function of particle volume. However, for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry malonic acid mole fraction = 0.36), the crystallization RH is a stronger function of particle volume, with the crystallization RH decreasing by 6 +/- 3% RH when the particle volume decreases by an order of magnitude. To our knowledge, these are the first size dependent measurements of the crystallization RH of atmospherically relevant inorganic-organic particles. These results suggest that for certain organic mole fractions the particle size and observation time need to be considered when extrapolating laboratory crystallization results to atmospheric scenarios. For aqueous (NH(4))(2)SO(4) particles, the homogeneous nucleation rate data are a strong function of RH, but for aqueous (NH(4))(2)SO(4)-malonic acid particles (with dry organic mole fraction = 0

  6. Formation of aqueous-phase sulfate during the haze period in China: Kinetics and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Zhang, Haijie; Chen, Shilu; Zhong, Jie; Zhang, Shaowen; Zhang, Yunhong; Zhang, Xiuhui; Li, Zesheng; Zeng, Xiao Cheng

    2018-03-01

    Sulfate is one of the most important components in the aerosol due to its key role in air pollution and global climate change. Recent work has suggested that reactive nitrogen chemistry in aqueous water can explain the missing source of sulfate in the aqueous water. Herein, we have mapped out the energy profile of the oxidization process of SO2 leading from NO2 and two feasible three-step mechanisms have been proposed. For the oxidation of HOSO2- and HSO3- by the dissolved NO2 in weakly acidic and neutral aerosol (pH ≤ 7), the main contribution to the missing sulfate production comes from the oxidation of HOSO2-. The whole process is a self-sustaining process. For the oxidation of SO32- in alkaline aerosol (pH > 7), the third step - decomposition step of H2O or hydrolysis of SO3 step which are two parallel processes are the rate-limiting steps. The present results are of avail to better understand the missing source of sulfate in the aerosol and hence may lead to better science-based solutions for resolving the severe haze problems in China.

  7. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  8. Method for distinctive estimation of stored acidity forms in acid mine wastes.

    PubMed

    Li, Jun; Kawashima, Nobuyuki; Fan, Rong; Schumann, Russell C; Gerson, Andrea R; Smart, Roger St C

    2014-10-07

    Jarosites and schwertmannite can be formed in the unsaturated oxidation zone of sulfide-containing mine waste rock and tailings together with ferrihydrite and goethite. They are also widely found in process wastes from electrometallurgical smelting and metal bioleaching and within drained coastal lowland soils (acid-sulfate soils). These secondary minerals can temporarily store acidity and metals or remove and immobilize contaminants through adsorption, coprecipitation, or structural incorporation, but release both acidity and toxic metals at pH above about 4. Therefore, they have significant relevance to environmental mineralogy through their role in controlling pollutant concentrations and dynamics in contaminated aqueous environments. Most importantly, they have widely different acid release rates at different pHs and strongly affect drainage water acidity dynamics. A procedure for estimation of the amounts of these different forms of nonsulfide stored acidity in mining wastes is required in order to predict acid release rates at any pH. A four-step extraction procedure to quantify jarosite and schwertmannite separately with various soluble sulfate salts has been developed and validated. Corrections to acid potentials and estimation of acid release rates can be reliably based on this method.

  9. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Ann

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liabilitymore » into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use

  10. Long term (1987-2012) trends in water chemistry of acid sensitive Swedish lakes

    NASA Astrophysics Data System (ADS)

    Futter, Martyn; Valinia, Salar; Fölster, Jens

    2014-05-01

    Acidification of surface waters is a serious concern in Sweden. During the 1970s and 1980s, many surface waters in Sweden were acidified by long-range pollution. Legislated emissions reductions have led to the recovery of many water bodies but today, there are concerns about the possibility of re-acidification. Sweden is committed to a goal of natural acidification only (i.e. no anthropogenic acidification). Here, we present long term (1987-2012) trends in strong acid anion, base cation, organic carbon and alkalinity measurements. Lakes are defined as acidified in Sweden if pH is more than 0.4 units less than a reference (1860) pH estimated using MAGIC, a widely used process-based model of acidification. Using this criteria, many acid sensitive Swedish lakes are still acidified. A changing climate and more intensive forest harvesting may further delay the recovery from acidification. Average measured alkalinity in the 38 lakes presented here was <= 0.02 mekv/l between 2000-2012. Strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many of these lakes. Base cations concentrations have declined less rapidly, leading to an increase in charge balance ANC. This increase in charge balance ANC has not been matched by an increase in measured alkalinity. Total organic carbon concentrations have increased significantly in many of these lakes, to the point where modeled organic acidity is now approximately equal to inorganic acidity. While the results presented here conform to acidification theory, they illustrate the value of long-term monitoring for assessing the effects of pollutant reduction measures, identifying new threats to water quality and corroborating model results. Most importantly, the long-term monitoring results presented here can be an important tool for informing environmental policy.

  11. Localized sulfate-reducing zones in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  12. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A.

    NASA Astrophysics Data System (ADS)

    Ku, T. C. W.; Walter, L. M.; Coleman, M. L.; Blake, R. E.; Martini, A. M.

    1999-10-01

    Sulfur cycling in Fe-poor, organic-rich shelf carbonates, known to have rapid rates of SO4-2 reduction, remains poorly studied despite the volumetric significance of shelf deposits in modern and ancient carbon budgets. We investigated sulfur cycling in modern carbonates of the Florida Platform from end-member depositional environments (muddy sands from the Atlantic reef tract and finer-grained mudbank and island flank deposits from Florida Bay). Relations between pore water chemistry (SO4-2, ΣCO2, Ca-2/Cl-) and oxygen and sulfur stable isotope compositions of SO4-2 require direct coupling between sulfur redox cycling and syndepositional carbonate dissolution. Oxygen isotope compositions of pore water sulfate were remarkably shifted away from the established value for marine SO4-2 (+9.5‰), despite near normal SO4-2/Cl- ratios. Chemical evolution was least in reef tract pore waters and greatest in Florida Bay. Relative to overlying seawater, mudbank sediments exhibited sulfate depletion, with δ18OSO4 and δ34SSO4 values both increasing by about 7‰. More bioturbated island flank sediments, colonized by Thalassia grass, had a 5‰ increase in δ18OSO4, variable δ34SSO4 values (+17.7 to +23.3‰) and exceptionally high Ca+2/Cl- ratios. The large excess of Ca+2 (up to 1.7 mM) requires a much larger acid source than the amounts derived from utilization of dissolved O2 (∼0.3 mM) and small degrees of net SO4-2 reduction (<0.5 mM reduced). A conceptual model was constructed using chemical and isotopic data on natural pore waters and on sulfate isotope fractionation factors obtained from sediment incubation experiments. The model outputs show that pore water compositions can be explained by a redox cycle where microbial SO4-2 reduction is followed by very efficient H2S oxidation, thus maintaining virtually invariant SO4-2/Cl- ratios. The enhanced O2 transport may be driven by associated marine grass rhizome systems and microbial communities established in bioturbated

  13. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    PubMed

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  15. 21 CFR 172.270 - Sulfated butyl oleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... edible vegetable oil using 1-butanol. Following sulfation, the reaction mixture is washed with water and neutralized with aqueous sodium or potassium hydroxide. Prior to sulfation, the butyl oleate reaction mixture...

  16. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    PubMed

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    PubMed

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  18. Effect of sodium lauryl sulfate-fumaric Acid coupled addition on the in vitro rumen fermentation with special regard to methanogenesis.

    PubMed

    Abdl-Rahman, M A; Sawiress, F A R; Abd El-Aty, A M

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH(3)-N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (Y(ATP)). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH(3)-N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency.

  19. Effect of Sodium Lauryl Sulfate-Fumaric Acid Coupled Addition on the In Vitro Rumen Fermentation with Special Regard to Methanogenesis

    PubMed Central

    Abdl-Rahman, M. A.; Sawiress, F. A. R.; Abd El-Aty, A. M.

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH3–N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (YATP). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH3–N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency. PMID:20445794

  20. Lipidomics of human umbilical cord serum: identification of unique sterol sulfates.

    PubMed

    Wood, Paul L; Siljander, Heli; Knip, Mikael

    2017-08-01

    There are currently limited lipidomics data for human umbilical cord blood. Therefore, the lipidomes of cord sera from six newborns and sera from six nonpregnant females were compared. Sera lipidomics analyses were conducted using a high-resolution mass spectrometry analytical platform. Cord serum contained a diverse array of glycerophospholipids, albeit generally at lower concentrations than monitored in adult serum. The unexpected observations were that cord serum contained several neurosteroid sulfates and bile acid sulfates that were not detectable in adult serum. Our data are the first to demonstrate that cord serum contains bile acid sulfates that are synthesized early in the hydroxylase, neutral and acidic pathways of primary bile acid biosynthesis and support previous publications of cord blood perfluoralkyl toxins in newborns.

  1. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  2. Multivariate Analysis of Electron Detachment Dissociation and Infrared Multiphoton Dissociation Mass Spectra of Heparan Sulfate Tetrasaccharides Differing Only in Hexuronic acid Stereochemistry

    NASA Astrophysics Data System (ADS)

    Oh, Han Bin; Leach, Franklin E.; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I. Jonathan

    2011-03-01

    The structural characterization of glycosaminoglycan (GAG) carbohydrates by mass spectrometry has been a long-standing analytical challenge due to the inherent heterogeneity of these biomolecules, specifically polydispersity, variability in sulfation, and hexuronic acid stereochemistry. Recent advances in tandem mass spectrometry methods employing threshold and electron-based ion activation have resulted in the ability to determine the location of the labile sulfate modification as well as assign the stereochemistry of hexuronic acid residues. To facilitate the analysis of complex electron detachment dissociation (EDD) spectra, principal component analysis (PCA) is employed to differentiate the hexuronic acid stereochemistry of four synthetic GAG epimers whose EDD spectra are nearly identical upon visual inspection. For comparison, PCA is also applied to infrared multiphoton dissociation spectra (IRMPD) of the examined epimers. To assess the applicability of multivariate methods in GAG mixture analysis, PCA is utilized to identify the relative content of two epimers in a binary mixture.

  3. Polyguluronate sulfate, polymannuronate sulfate, and their oligosaccharides have antithrombin III- and heparin cofactor II-independent anticoagulant activity

    NASA Astrophysics Data System (ADS)

    Zeng, Xuan; Lan, Ying; Zeng, Pengjiao; Guo, Zhihua; Hao, Cui; Zhang, Lijuan

    2017-04-01

    Cardiovascular disease is the leading causes of death. However, the complications can be treated with heparin and heparinoids, such as heparin pentasaccharide Fondaparinux, dermatan sulfate, and PSS made from alginate extracted from brown seaweeds by chemical sulfation. Alginate is composed of a linear backbone of polymannuronate (PM), polyguluronate (PG), and alternate residues of mannuronic acid and guluronic acid. It is unknown if heparin and sulfated PG (PGS)/PM (PMS) have the same or different anticoagulant molecular targets. In the current study, the anticoagulant activities of PGS, PMS, and their oligosaccharides were directly compared to that of heparin, Fondaparinux, and dermatan sulfate by the activated partial thrombinplastin time (aPTT) assay using normal, antithrombin III (ATIII)-deficient, heparin co-factor II (HCII)-deficient, and ATIII- and HCII-double deficient human plasmas. Our results showed that PGS, PMS, and their oligosaccharides had better anticoagulant activity than that of Fondaparinux in all four human plasmas tested. As expected, heparin was the best anticoagulant in normal plasma. Moreover, PGS, PGS6, PGS12, PGS25, PMS6, PMS12, and PMS25 were better anticoagulants than dermatan sulfate in HCII-deficient plasma. Most strikingly, PGS, PGS12, PGS25, PMS6, PMS12, and PMS25 were better anticoagulants than that of heparin in ATIII- and HCII-double deficient human plasma. The results revealed for the first time that sulfated alginate had ATIII- and HCII-independent anticoagulant activities. Therefore, developing PGS and PMS-based anticoagulants might require to discover their major molecular targets and to develop target-specific anticoagulant assays.

  4. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Anthropogenic Sulfate, Clouds, and Climate Forcing

    NASA Technical Reports Server (NTRS)

    Ghan, Steven J.

    1997-01-01

    This research work is a joint effort between research groups at the Battelle Pacific Northwest Laboratory, Virginia Tech University, Georgia Institute of Technology, Brookhaven National Laboratory, and Texas A&M University. It has been jointly sponsored by the National Aeronautics and Space Administration, the U.S. Department of Energy, and the U.S. Environmental Protection Agency. In this research, a detailed tropospheric aerosol-chemistry model that predicts oxidant concentrations as well as concentrations of sulfur dioxide and sulfate aerosols has been coupled to a general circulation model that distinguishes between cloud water mass and cloud droplet number. The coupled model system has been first validated and then used to estimate the radiative impact of anthropogenic sulfur emissions. Both the direct radiative impact of the aerosols and their indirect impact through their influence on cloud droplet number are represented by distinguishing between sulfuric acid vapor and fresh and aged sulfate aerosols, and by parameterizing cloud droplet nucleation in terms of vertical velocity and the number concentration of aged sulfur aerosols. Natural sulfate aerosols, dust, and carbonaceous and nitrate aerosols and their influence on the radiative impact of anthropogenic sulfate aerosols, through competition as cloud condensation nuclei, will also be simulated. Parallel simulations with and without anthropogenic sulfur emissions are performed for a global domain. The objectives of the research are: To couple a state-of-the-art tropospheric aerosol-chemistry model with a global climate model. To use field and satellite measurements to evaluate the treatment of tropospheric chemistry and aerosol physics in the coupled model. To use the coupled model to simulate the radiative (and ultimately climatic) impacts of anthropogenic sulfur emissions.

  6. Net acidity indicates the whole effluent toxicity of pH and dissolved metals in metalliferous saline waters.

    PubMed

    Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina

    2018-05-01

    Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  7. Enantiomeric separation by capillary electrochromatography on a sulfated poly β-cyclodextrin modified silica-based monolith.

    PubMed

    Yuan, Ruijuan; Wang, Yan; Ding, Guosheng

    2010-01-01

    A sulfated poly β-cyclodextrin (SPCD) modified silica-based monolithic column was prepared for enantiomeric separation. First, 2-hydroxy-3-allyloxy-propyl-β-cyclodextrin (allyl-β-CD) was bonded onto a bifunctional reagent 3-(methacryloxy)propyltriethoxysilane (γ-MAPS) modified silica-based monolith through radical polymerization; the column was then sulfated with chlorosulfonic acid. The SPCD chiral stationary phase resolved the boring problem associated with desalting when sulfated CDs were synthesized to act as chiral additives. The inorganic salt in the column introduced during the sulfating process could be easily removed by washing the column with water for some time. Chiral compounds investigated were successfully resolved into their enantiomers on the SPCD modified monolith in the capillary electrochromatography (CEC) mode. Due to the existence of the -SO(3)H group, electrosmotic flow (EOF) was obviously increased, and all of the separations could be carried out in 20 min with only a minor loss in the column efficiency and resolution.

  8. Models of Metabolic Community Structure in Martian Habitable Environments: Constraints from a Terrestrial Analog Acid-Sulfate Fumarole Environment, Cerro Negro Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rogers, K. L.; McCollom, T. M.; Hynek, B. M.

    2014-12-01

    Microbial habitability in extreme environments on Earth is described by microscale geochemical conditions that constrain metabolic niches in concert with long-term habitat stability that is governed by dynamic geologic processes. Using terrestrial analogs to identify habitable martian environments requires correlating microscale geochemical constraints with reconstructions of past martian environments that are based on global-scale observations. While past martian environments can be characterized by primary parameters (e.g. pH, redox, mineralogy, thermal history), microbial habitability on Earth is a complex function of both primary and derived parameters (e.g. metabolic reaction energetics, chemical & thermal gradients, flow dynamics). In recent years we have been investigating acid-sulfate fumaroles at the Mars analog site, Cerro Negro Volcano, Nicaragua, where habitability is constrained by steep thermal gradients, spatially- and temporally-variable vent dynamics, and limited water and nutrient availability. The most common niche identified thus far is found in fumaroles that host mixed photosynthetic and chemosynthetic endolithic microbial communities. One such endolith is dominated by acidic red algae (Cyanidiales), aerobic bacterial heterotrophs (Ktedonobacteria), and archaeal thermoacidophiles (Hyperthermus, Caldisphaera, and Thermofilum). An analysis of the metabolic structure suggests that primary production by the red algae supports the growth of heterotrophic thermoacidophiles. Diversification among the chemoheterotrophs with respect to temperature and oxygen tolerance suggests community adaptation to environmental gradients or variable venting dynamics. Furthermore, individual cells within the endolith are silica-encrusted, providing the possibility for biosignature formation and preservation. Putative hydrothermal environments on early Mars with similar conditions could have supported endolithic communities with comparable metabolic strategies. Even

  9. Comment on and reinterpretation of Gabriel et Al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'.

    PubMed

    Julian, Paul; Gu, Binhe; Redfield, Garth

    2015-01-01

    Mercury (Hg) methylation and bioaccumulation is a major environmental issue in the Everglades Protection Area (EvPA). Therefore, it is critical to improve our predictive understanding of Hg dynamics. This commentary critically reviews a recently published manuscript concerning the possible relationship between Hg in fish tissue and surface water sulfate within EvPA marshes. The commentary addresses fundamental issues with the authors' data analysis, results and interpretation as well as highlights inconsistencies with published literature and the lack of support for their suggested ecosystem management actions. A number of chemical, biological, and physical factors influence Hg methylation and bioaccumulation, and water sulfate is sometimes viewed as a keystone factor, Gabriel et al. (2014) conclude that Hg bioaccumulation is favored at elevated sulfate concentrations, and suggest mitigation strategies to reduce sulfate inputs to the EvPA. A careful review of their data and conclusions reveals major flaws and in fact, a more straightforward and defensible interpretation of their data would be that no predictable relationship exists between fish tissue Hg and surface water sulfate concentrations in south Florida. Given the complexity of Hg cycling and the influence of trophic and habitat characteristics on aquatic consumer Hg accumulation, expecting one parameter to predict Hg accumulation dynamics within fish species within a dynamic marsh environment is unrealistic. Furthermore, proposing any management guidance from this relationship with little to no quantitative statistical analysis is inappropriate and misleading.

  10. The ammonium sulfate inhibition of human angiogenin.

    PubMed

    Chatzileontiadou, Demetra S M; Tsirkone, Vicky G; Dossi, Kyriaki; Kassouni, Aikaterini G; Liggri, Panagiota G V; Kantsadi, Anastassia L; Stravodimos, George A; Balatsos, Nikolaos A A; Skamnaki, Vassiliki T; Leonidas, Demetres D

    2016-09-01

    In this study, we investigate the inhibition of human angiogenin by ammonium sulfate. The inhibitory potency of ammonium sulfate for human angiogenin (IC50 = 123.5 ± 14.9 mm) is comparable to that previously reported for RNase A (119.0 ± 6.5 mm) and RNase 2 (95.7 ± 9.3 mm). However, analysis of two X-ray crystal structures of human angiogenin in complex with sulfate anions (in acidic and basic pH environments, respectively) indicates an entirely distinct mechanism of inhibition. While ammonium sulfate inhibits the ribonucleolytic activity of RNase A and RNase 2 by binding to the active site of these enzymes, sulfate anions bind only to peripheral substrate anion-binding subsites of human angiogenin, and not to the active site. © 2016 Federation of European Biochemical Societies.

  11. Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization.

    PubMed

    Das, Bidus Kanti; Roy, Arup; Koschorreck, Matthias; Mandal, Santi M; Wendt-Potthoff, Katrin; Bhattacharya, Jayanta

    2009-03-01

    Passive remediation of Acid Mine Drainage (AMD) is a popular technology under development in current research. Roles of algae and fungi, the natural residents of AMD and its attenuator are not emphasized adequately in the mine water research. Living symbiotically various species of algae and fungi effectively enrich the carbon sources that help to maintain the sulfate reducing bacterial (SRB) population in predominantly anaerobic environment. Algae produce anoxic zone for SRB action and help in biogenic alkalinity generation. While studies on algal population and actions are relatively available those on fungal population are limited. Fungi show capacity to absorb significant amount of metals in their cell wall, or by extracellular polysaccharide slime. This review tries to throw light on the roles of these two types of microorganisms and to document their activities in holistic form in the mine water environment. This work, inter alia, points out the potential and gap areas of likely future research before potential applications based on fungi and algae initiated AMD remediation can be made on sound understanding.

  12. Differentiating atmospheric and mineral sources of sulfur during snowmelt using δ 34S, 35S activity, and δ 18O of sulfate and water as tracers

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Mayer, B.; Mitchell, M. J.; Michel, R. L.; Bailey, S.; Kendall, C.

    2003-12-01

    The biogeochemical cycling of sulfur was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a combination of isotopic, chemical, and hydrometric measurements. The snowpack and 10 streams of varying size and land use were sampled for sulfate concentrations and isotopic analyses of 35S, δ 34S, and δ 18O of sulfate. Values of δ 18O of water were measured at one of the streams. Apportionment of atmospheric and mineral S sources based on δ 34S was possible at 7 of the 10 streams. Weathering of S-containing minerals was a major contributor to sulfate flux in streamwater, but atmospheric contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. In contrast, δ 18Osulfate values of streamwater remained significantly lower than those of atmospheric sulfate throughout the melt period, indicating that atmospheric sulfate undergoes microbial redox reactions in the soil that replace the oxygen of atmospheric sulfate with isotopically lighter oxygen from soil water. Streamwater 35S activities were low relative to those of the snowpack; the youngest 35S-ages of the atmospheric S component in each of the 7 streams ranged from 184 to 320 days. Atmospheric S contributions to streamwater, as determined by δ 34S values, co-varied both with 35S activity and new water contributions as determined by δ 18Owater. However, the δ 18Osulfate and 35S ages clearly show that this new water carries very little of the atmospheric sulfate entering with the current snowmelt to the stream. Most incoming atmospheric sulfate first cycles through the organic soil S pool and ultimately reaches the stream as pedogenic sulfate.

  13. A novel chondroitin sulfate hydrogel for nerve repair

    NASA Astrophysics Data System (ADS)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  14. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor); Huang, Cunping (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  15. Mechanisms and Effectivity of Sulfate Reducing Bioreactors Using a Chitinous Substrate in Treating Mining Influenced Water

    EPA Science Inventory

    Mining-influenced water (MIW) is the main environmental challenge associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of wh...

  16. An evaluation of possible mechanisms for conversion of sulfur dioxide to sulfuric acid and sulfate aerosols in the troposphere

    Treesearch

    Jack G. Calvert

    1976-01-01

    The mechanisms and rates of conversion of sulfur dioxide to sulfur trioxide, sulfuric acid, and other "sulfate" aerosol precursors are considered in view of current knowledge related to atmospheric reactions and chemical kinetics. Several heterogeneous pathways exist for SO2 oxidation promoted on solid catalyst particles and in aqueous...

  17. Redetermination of dicerium(III) tris-(sulfate) tetra-hydrate.

    PubMed

    Xu, Xin

    2007-12-06

    Ce(2)(SO(4))(3)(H(2)O)(4) was obtained hydro-thermally from an aqueous solution of cerium(III) oxide, trimethyl-amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr.95, 269-280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S-O-Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

  18. One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution

    NASA Astrophysics Data System (ADS)

    Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.

    2018-04-01

    Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.

  19. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006

  20. Cellular mechanisms of renal adaptation of sodium dependent sulfate cotransport to altered dietary sulfate in rats.

    PubMed

    Sagawa, K; DuBois, D C; Almon, R R; Murer, H; Morris, M E

    1998-12-01

    The renal transport and fractional reabsorption of inorganic sulfate is altered under conditions of sulfate deficiency or excess. The objective of this study was to examine the cellular mechanisms of adaptation of renal sodium/sulfate cotransport after varying dietary intakes of a sulfur containing amino acid, methionine. Female Lewis rats were divided into four groups and fed diets containing various concentrations of methionine (0, 0.3, 0.82 and 2.46%) for 8 days. Urinary excretion rates and renal clearance of sulfate were significantly decreased in the animals fed a 0% methionine diet or a 0.3% methionine diet, and significantly increased in the animals fed a 2.46% methionine diet when evaluated on days 4 and 7. Serum sulfate concentrations were unchanged by diet treatment in all animals. The fractional reabsorption of sulfate was significantly increased in the animals fed the 0% methionine diet and the 0.3% methionine diets, and decreased in the animals fed the 2.46% methionine diet. Increased mRNA and protein levels for the sodium/sulfate transporter (NaSi-1) were found in the kidney cortex following treatment with the 0 and 0.3% methionine diet groups. Sulfate homeostasis by renal reabsorption is maintained by an up-regulation of steady state levels of NaSi-1 mRNA and protein when the diet is low in methionine.

  1. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Hedrich, Sabrina; Ňancucheo, Ivan; Johnson, D Barrie

    2015-01-01

    Three strains of sulfate-reducing bacteria (M1(T), D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8-7.0, with an optimum at pH 5.5. The temperature range for growth was 15-40 °C, with an optimum at 30 °C. Strains M1(T), D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1(T)) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1(T) tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1(T), D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1(T) (=DSM 27692(T) = JCM 19471(T)). Strain M1(T) was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense.

  2. Pretreatment Solution for Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  3. High-Quality Draft Genome Sequence of Desulfovibrio carbinoliphilus FW-101-2B, an Organic Acid-Oxidizing Sulfate-Reducing Bacterium Isolated from Uranium(VI)-Contaminated Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.

    2015-03-12

    Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.

  4. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower.

    PubMed

    Jia, Ru; Li, Yingchao; Al-Mahamedh, Hussain H; Gu, Tingyue

    2017-01-01

    Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC) and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS) and NALCO 7330 (isothiazoline derivatives)] and one oxidizing biocide [bleach (NaClO)] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w) of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8) enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan) in the enhancement of the three individual biocides against the biofilm consortium.

  5. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower

    PubMed Central

    Jia, Ru; Li, Yingchao; Al-Mahamedh, Hussain H.; Gu, Tingyue

    2017-01-01

    Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC) and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS) and NALCO 7330 (isothiazoline derivatives)] and one oxidizing biocide [bleach (NaClO)] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w) of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8) enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan) in the enhancement of the three individual biocides against the biofilm consortium. PMID:28861053

  6. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis.

    PubMed

    Trivedi, P P; Jena, G B

    2013-09-01

    Ulcerative colitis affects many people worldwide. Inflammation and oxidative stress play a vital role in its pathogenesis. Previously, we reported that ulcerative colitis leads to systemic genotoxicity in mice. The present study was aimed at elucidating the role of α-lipoic acid in ulcerative colitis-associated local and systemic damage in mice. Experimental colitis was induced using 3%w/v dextran sulfate sodium in drinking water for 2 cycles. α-Lipoic acid was administered in a co-treatment (20, 40, 80 mg/kg bw) and post-treatment (80 mg/kg bw) schedule. Various biochemical parameters, histological evaluation, comet and micronucleus assays, immunohistochemistry and western blot analysis were employed to evaluate the effect of α-lipoic acid in mice with ulcerative colitis. The protective effect of α-lipoic acid was mediated through the modulation of nuclear factor kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, NADPH: quinone oxidoreductase-1, matrix metalloproteinase-9 and connective tissue growth factor. Further, ulcerative colitis led to an increased gut permeability, plasma lipopolysaccharide level, systemic inflammation and genotoxicity in mice, which was reduced with α-lipoic acid treatment. The present study identifies the underlying mechanisms involved in α-lipoic acid-mediated protection against ulcerative colitis and the associated systemic damage in mice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Biogeochemical controls on interactions of microbial iron and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Kirk, M. F.; Paper, J. M.; Haller, B. R.; Shodunke, G. O.; Marquart, K. A.; Jin, Q.

    2016-12-01

    Although iron and sulfate reduction are two of the most common microbial electron accepting processes in anoxic settings, the relative influences of environmental factors that guide interactions between each are poorly known. Identifying these factors is a key to predicting how those interactions will respond to future environmental changes. In this study, we used semi-continuous bioreactors to examine the influence of pH, electron donor flux, and sulfate availability. The reactors contained 100 mL of aqueous media and 1 g of marsh sediment amended with goethite (1 mmol). One set of reactors received acidic media (pH 6) while the other set received alkaline media (pH 7.5). Media for both sets of reactors included acetate (0.25 and 1 mM), which served as an electron donor, and sulfate (2.5 mM). We also included sets of sulfate-deficient and acetate-deficient control reactors. We maintained a fluid residence time of 35 days in the reactors by sampling and feeding them every seven days during the 91-day incubation. Our results show that, under the conditions tested, pH had a larger influence on the balance between each reaction than acetate concentration. In acidic reactors, the molar amount of iron reduced exceeded the amount of sulfate reduced by a factor of 3 in reactors receiving media with 0 and 0.25 mM acetate and a factor of 2 in reactors receiving 1 mM acetate. Under alkaline conditions, iron and sulfate were reduced in nearly equal proportions, regardless of influent acetate concentration. Results from sulfate-deficient control reactors show that the presence of sulfate reduction increased the extent of iron reduction in all reactors, but particularly those with alkaline pH. Under acidic conditions, the amount of iron reduced was greater by a factor of 1.2 if sulfate reduction occurred simultaneously than if it did not. Under alkaline conditions, that factor increased to 8.2. Hence, pH influenced the extent to which sulfate reduction promoted iron reduction.

  8. Determination of fluoride in water - A modified zirconium-alizarin method

    USGS Publications Warehouse

    Lamar, W.L.

    1945-01-01

    A convenient, rapid colorimetric procedure using the zirconium-alizarin indicator acidified with sulfuric acid for the determination of fluoride in water is described. Since this acid indicator is stable indefinitely, it is more useful than other zirconium-alizarin reagents previously reported. The use of sulfuric acid alone in acidifying the zirconium-alizarin reagent makes possible the maximum suppression of the interference of sulfate. Control of the pH of the samples eliminates errors due to the alkalinity of the samples. The fluoride content of waters containing less than 500 parts per million of sulfate and less than 1000 p.p.m. of chloride may be determined within a limit of 0.1 p.p.m. when a 100-ml. sample is used.

  9. Polymethacrylic acid grafted psyllium (Psy- g-PMA): a novel material for waste water treatment

    NASA Astrophysics Data System (ADS)

    Kumar, Ranvijay; Sharma, Kaushlendra; Tiwary, K. P.; Sen, Gautam

    2013-03-01

    Polymethacrylic acid grafted psyllium (Psy- g-PMA) was synthesized by microwave assisted method, which involves a microwave irradiation in synergism with silver sulfate as a free radical initiator to initiate grafting reaction. Psy- g-PMA grades have been synthesized and characterized on structural basis (elemental analysis, FTIR spectroscopy, intrinsic viscosity study) as well as morphological and thermal studies, taking psyllium as reference. The effects of reaction time, amount of monomer and silver sulfate (free radical initiator) on grafting of PMA on psyllium backbone have been studied. It is observed that all the grades of Psy- g-PMA have higher intrinsic viscosities than that of psyllium. The best synthesized grade was Psy- g-PMA having intrinsic viscosity of 6.93 and 58 % grafting of PMA on the main polymer backbone. Further Psy- g-PMA applications as flocculants for waste water treatment have been investigated. Psy- g-PMA resulted in higher decrease in the flocculation parameters such as total dissolved solid or total solids compared to psyllium. Hence the result shows the possible application of grafted psyllium in wastewater treatment.

  10. Sources of sulfate supporting anaerobic metabolism in a contaminated aquifer

    USGS Publications Warehouse

    Ulrich, G.A.; Breit, G.N.; Cozzarelli, I.M.; Suflita, J.M.

    2003-01-01

    Field and laboratory techniques were used to identify the biogeochemical factors affecting sulfate reduction in a shallow, unconsolidated alluvial aquifer contaminated with landfill leachate. Depth profiles of 35S-sulfate reduction rates in aquifer sediments were positively correlated with the concentration of dissolved sulfate. Manipulation of the sulfate concentration in samples revealed a Michaelis-Menten-like relationship with an apparent Km and Vmax of approximately 80 and 0.83 ??M SO4-2??day-1, respectively. The concentration of sulfate in the core of the leachate plume was well below 20 ??M and coincided with very low reduction rates. Thus, the concentration and availability of this anion could limit in situ sulfate-reducing activity. Three sulfate sources were identified, including iron sulfide oxidation, barite dissolution, and advective flux of sulfate. The relative importance of these sources varied with depth in the alluvium. The relatively high concentration of dissolved sulfate at the water table is attributed to the microbial oxidation of iron sulfides in response to fluctuations of the water table. At intermediate depths, barite dissolves in undersaturated pore water containing relatively high concentrations of dissolved barium (???100 ??M) and low concentrations of sulfate. Dissolution is consistent with the surface texture of detrital barite grains in contact with leachate. Laboratory incubations of unamended and barite-amended aquifer slurries supported the field observation of increasing concentrations of barium in solution when sulfate reached low levels. At a deeper highly permeable interval just above the confining bottom layer of the aquifer, sulfate reduction rates were markedly higher than rates at intermediate depths. Sulfate is supplied to this deeper zone by advection of uncontaminated groundwater beneath the landfill. The measured rates of sulfate reduction in the aquifer also correlated with the abundance of accumulated iron sulfide

  11. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Jing, Bo; Tan, Fang; Ma, Jiabi; Zhang, Yunhong; Ge, Maofa

    2017-10-01

    Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA / AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA / AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA / AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA / AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA / AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth

  12. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    NASA Astrophysics Data System (ADS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  13. Installation Assessment of Frankford Arsenal.

    DTIC Science & Technology

    1977-10-01

    sulfate , sulfuric acid , ac ’solution 40 Hot water bath 41 Nickel plate Nickel sulfate and chloride sulfuric acid , acid ...solution 42 Chromium Copper plate Copper sulfate and sulfuric acid , acid solution 11-14 TABLE 11-2 (continued) Tank No. Plating Process Use Contents...46 Water rinse Water 47 Water rinse Water 48 Water rinse Water 49 Acid Chromic acid , acetic acid , nickel sulfate and sulfuric

  14. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2017-03-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  15. Enhancing sludge biodegradability and volatile fatty acid production by tetrakis hydroxymethyl phosphonium sulfate pretreatment.

    PubMed

    Wu, Qing-Lian; Guo, Wan-Qian; Bao, Xian; Yin, Ren-Li; Feng, Xiao-Chi; Zheng, He-Shan; Luo, Hai-Chao; Ren, Nan-Qi

    2017-09-01

    A new pretreatment method based on tetrakis hydroxymethyl phosphonium sulfate (THPS) biocide was tried to enhance sludge disintegration, and improved sludge biodegradability and subsequent volatile fatty acid (VFA) production. Sludge activity decreased to less than 10% after 2 days pretreatment using 20mg/g-TSS THPS, which also obviously destroyed EPS and cell membrane, and dissolved more biodegradable substances (48.8%) than raw sludge (19.7%). Moreover, 20mg/g-TSS THPS pretreatment shortened fermentation time to 4days and improved VFA production to 2778mg COD/L (4.35 times than that in control). Therein, the sum of n-butyric, n-valeric and iso-valeric acids unexpectedly accounted for 60.5% of total VFA (only 20.1% of that in control). The more high molecular weight VFAs (C4-C5) than low molecular VFAs (C2-C3) resulted from THPS pretreatment benefited to subsequent medium-chain volatile acids (C6-C12) generation to realize the separation and recovery of organic carbon more efficiently. Copyright © 2017. Published by Elsevier Ltd.

  16. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    PubMed Central

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  17. Distinguishing iron-reducing from sulfate-reducing conditions

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  18. Studies of thermochemical water-splitting cycles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Foh, S. E.

    1980-01-01

    Higher temperatures and more isothermal heat profiles of solar heat sources are developed. The metal oxide metal sulfate class of cycles were suited for solar heat sources. Electrochemical oxidation of SO2 and thermochemical reactions are presented. Electrolytic oxidation of sulfur dioxide in dilute sulfuric acid solutions were appropriate for metal oxide metal sulfate cycles. The cell voltage at workable current densities required for the oxidation of SO2 was critical to the efficient operation of any metal oxide metal sulfate cycle. A sulfur dioxide depolarized electrolysis cell for the splitting of water via optimization of the anode reaction is discussed. Sulfuric acid concentrations of 30 to 35 weight percent are preferred. Platinized platinum or smooth platinum gave the best anode kinetics at a given potential of the five materials examined.

  19. Comparison of normal and asthmatic subjects' responses to sulfate pollutant aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utell, M.J.; Morrow, P.E.; Hyde, R.W.

    Epidemiological studies support an association between elevated levels of sulfates and acute respiratory disease. To determine if these pollutants produce airway hyperreactivity, 16 normal and 17 asthmatic subjects inhaled a control NaCl aerosol and the following sulfates: ammonium sulfate, sodium bisulfate, ammonium bisulfate, and sulfuric acid. A Lovelace generator produced particles with an average MMAD of approx. 1.0 ..mu..m (sigma/sub g/ approx. = 2.0) and concentrations of 0.1 and 1.0 mg/m/sup 3/. By double-blind randomization, all subjects breathed these aerosols for a 16-minute period. To determine if sulfate inhalation caused increased reactivity to a known bronchoconstrictor, all subjects inhaled carbacholmore » following each 16-minute exposure. Before, during, and after exposure, pulmonary function studies were performed. When compared to NaCl, sulfate (1 mg/m/sup 3/) produced significant reductions in airway conductance and flow rates in asthmatics. The two most sensitive asthmatics demonstrated changes even at 0.1 mg/m/sup 3/ sulfate. To a far more significant degree, the bronchoconstrictor action of carbachol was potentiated by sulfates more or less in relation to their acidity in normals and asthmatics.« less

  20. Temperature dependence of the formation of sulfate aerosols in the stratosphere

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1982-01-01

    Classical nucleation theory is used in calculations of the temperature dependence of the characteristics and nucleation rates of sulfate aerosols in the binary H2SO4-H2O vapor mixture, in order to assess the influence of temperature on the formation of sulfate aerosols in the stratosphere, and to explore the possibility of new particle formation through homogeneous nucleation processes at regions where temperature is as low as -75 C, rather than the often-assumed -50 or -55 C. Calculation results indicate that the number of particles formed at a lower temperature is larger by several orders of magnitude than at higher temperatures, when water and sulfuric acid vapor concentrations are kept constant, and that large quantities of ultrafine particles which cannot be detected by conventional methods may exist at low-temperature stratospheric regions.

  1. Synthesis of N-oleyl O-sulfate chitosan from methyl oleate with O-sulfate chitosan as edible film material

    NASA Astrophysics Data System (ADS)

    Daniel; Sihaloho, O.; Saleh, C.; Magdaleni, A. R.

    2018-04-01

    The research on the synthesis of N-oleyl O-sulfate chitosan through sulfonation reaction on chitosan with ammonium sulfate and followed by amidation reaction using methyl oleate has been done. In this study, chitosan was chemically modified into N-oleyl O-sulfatechitosan as an edible film making material. N-oleyl O-sulfate chitosan was synthesized by reaction between methyl oleate and O-sulfate chitosan. Wherein the depleted chitosan of O-sulfate chitosan into O-sulfate chitosan was obtained by reaction of sulfonation between ammonium sulfate and chitosan aldimine. While chitosan aldimine was obtained through reaction between chitosan with acetaldehyde. The structure of N-oleyl O-sulfate chitosan was characterized by FT-IR analysis which showed vibration uptake of C-H sp3 group, S=O group, and carbonyl group C=O of the ester. The resulting of N-oleyl O-sulfate chitosan yielded a percentage of 93.52%. Hydrophilic-Lipophilic Balance (HLB) test results gave a value of 6.68. In the toxicity test results of N-oleyl O-sulfate chitosan obtained LC50 value of 3738.4732 ppm. In WVTR (Water Vapor Transmission Rate) test results for chitosan film was 407.625 gram/m2/24 hours and N-oleylO-sulfate chitosan film was 201.125 gram/m2/24 hours.

  2. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir.

    PubMed

    Chen, Chuan; Shen, Yin; An, Dongshan; Voordouw, Gerrit

    2017-04-01

    Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera ( Paracoccus - Thauera ), Desulfobulbus , and Syntrophomonas - Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 10 7 /ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO 2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO 2 was needed to prevent souring in both

  3. Use of Acetate, Propionate, and Butyrate for Reduction of Nitrate and Sulfate and Methanogenesis in Microcosms and Bioreactors Simulating an Oil Reservoir

    PubMed Central

    Shen, Yin; An, Dongshan; Voordouw, Gerrit

    2017-01-01

    ABSTRACT Acetate, propionate, and butyrate (volatile fatty acids [VFA]) occur in oil field waters and are frequently used for microbial growth of oil field consortia. We determined the kinetics of use of these VFA components (3 mM each) by an anaerobic oil field consortium in microcosms containing 2 mM sulfate and 0, 4, 6, 8, or 13 mM nitrate. Nitrate was reduced first, with a preference for acetate and propionate. Sulfate reduction then proceeded with propionate (but not butyrate) as the electron donor, whereas the fermentation of butyrate (but not propionate) was associated with methanogenesis. Microbial community analyses indicated that Paracoccus and Thauera (Paracoccus-Thauera), Desulfobulbus, and Syntrophomonas-Methanobacterium were the dominant taxa whose members catalyzed these three processes. Most-probable-number assays showed the presence of up to 107/ml of propionate-oxidizing sulfate-reducing bacteria (SRB) in waters from the Medicine Hat Glauconitic C field. Bioreactors with the same concentrations of sulfate and VFA responded similarly to increasing concentrations of injected nitrate as observed in the microcosms: sulfide formation was prevented by adding approximately 80% of the nitrate dose needed to completely oxidize VFA to CO2 in both. Thus, this work has demonstrated that simple time-dependent observations of the use of acetate, propionate, and butyrate for nitrate reduction, sulfate reduction, and methanogenesis in microcosms are a good proxy for these processes in bioreactors, monitoring of which is more complex. IMPORTANCE Oil field volatile fatty acids acetate, propionate, and butyrate were specifically used for nitrate reduction, sulfate reduction, and methanogenic fermentation. Time-dependent analyses of microcosms served as a good proxy for these processes in a bioreactor, mimicking a sulfide-producing (souring) oil reservoir: 80% of the nitrate dose required to oxidize volatile fatty acids to CO2 was needed to prevent souring in both

  4. The mineralogical consequences and behavior of descending acid-sulfate waters: An example from the Karaha - Telaga Bodas geothermal system, Indonesia

    USGS Publications Warehouse

    Moore, J.N.; Christenson, B.W.; Allis, R.G.; Browne, P.R.L.; Lutz, S.J.

    2004-01-01

    Acidic steam condensates in volcanic systems or shallow, oxygenated geothermal environments are typically enriched in SO4 and poor in Cl. These fluids produce distinctive alteration-induced assemblages as they descend. At Karaha - Telaga Bodas, located on the flank of Galunggung Volcano, Indonesia, neutralization of descending acid waters has resulted in the successive appearance of 1) advanced argillic alteration characterized by alunite, clay minerals and pyrite, 2) anhydrite, pyrite and interlayered sheet silicates, and 3) carbonates. Minor tourmaline, fluorite and native sulfur also are present locally, reflecting interactions with discharging magmatic gases. Water rock interactions were modeled at temperatures up to 250??C using the composition of acidic lake water from Telaga Bodas and that of a typical andesite as reactants. The simulations predict mineral distributions consistent with the observed assemblages and a decrease in the freezing-point depression of the fluid with increasing temperature. Fluids trapped in anhydrite, calcite and fluorite display a similar decrease in their freezing-point depressions, from 2.8?? to 1.5??C, as homogenization temperatures increase from 160?? to 205??C. The simulations indicate that the progressive change in fluid composition is due mainly to the incorporation of SO4 into the newly formed hydrothermal minerals. The salinities of fluid inclusions containing Cl-deficient steam condensates are better expressed in terms of H2SO4 equivalents than the commonly used NaCl equivalents. At solute concentrations >1.5 molal, freezing-point depressions represented as NaCl equivalents overestimate the salinity of Cl-poor waters. At lower concentrations, differences between apparent salinities calculated as NaCl and H2SO 4 equivalents are negligible.

  5. Effects of acidic precipitation on the water quality of streams in the Laurel Hill area, Somerset County, Pennsylvania, 1983-86

    USGS Publications Warehouse

    Barker, J.L.; Witt, E. C.

    1990-01-01

    Five headwater streams in the Laurel Hill area in southwestern Pennsylvania were investigated from September 1983 through February 1986 to determine possible effects of acidic precipitation on water quality. Precipitation in the Laurel Hill area is among the most acidic in the Nation, with a mean volume-weighted pH of 4.06. Sulfate is the dominant acid-forming anion, averaging 3.6 milligrams per liter or about 50 kilograms per hectare in wet deposition alone. Nitrate averages about 2 milligrams per liter or 7 kilograms per hectare in the study area. Stream chemistry in the five streams is quite variable and apparently is influenced to a large degree by the bedrock geology and by small amounts of alkaline material in watershed soils. Three of the five streams with no or little acid-neutralizing capacity presently are devoid of fish because of low pH and elevated aluminum concentrations. Aluminum concentrations increase in the other two streams during rainfall and snowmelt despite comparatively higher base flow and acid-neutralizing capacities. Comparison of the chemistry of streamflow during 14 storm events at South Fork Bens Creek and North Fork Bens Creek reveals similar chemical responses when discharge suddenly increases. Concentrations of dissolved metals and sulfate increased during stormflow and snowmelt runoff, whereas concentrations of base cations, silica, and chloride decreased. Nitrate concentrations were not affected by rainfall runoff by tended to increase with snowmelt runoff.

  6. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    liter; nitrite plus nitrate as nitrogen concentrations ranged from 2.4 to 3.2 milligrams per liter. Water samples from wells MW1 and MW2 were analyzed for volatile organic compounds for the first quarter; no confirmed volatile organic compounds were detected above laboratory reporting limits. Detected chemical concentrations in water from the chromic acid pit monitoring wells during the four sampling periods were below U.S. Environmental Protection Agency-established maximum contaminant levels for public drinking-water supplies. Overall, water-quality characteristics of water from the chromic acid pit ground-water monitoring wells are similar to those of other wells in the surrounding area. Statistical analyses were performed on 56 of the chemical constituents analyzed for in ground water from the chromic acid pit monitoring wells. Concentrations of chloride, fluoride, sulfate, and potassium were significantly less in water from one or both downgradient wells than in water from the upgradient well. Concentrations of nitrate as nitrogen, nitrite plus nitrate as nitrogen, and dissolved solids were significantly greater in water from the downgradient wells than in water from the upgradient well. Concentrations of nitrate as nitrogen, chloride, and potassium were significantly different in water from the two downgradient wells. Statistical analysis of chemical constituents in water from the chromic acid pit monitoring wells did not appear to indicate a release of hazardous chemicals from the chromic acid pit. There was no indication of ground-water contamination in either downgradient well.

  7. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    PubMed

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. Copyright © 2016. Published by Elsevier Ltd.

  8. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  9. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    USGS Publications Warehouse

    Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2

  10. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  11. Sulfation of LH Does Not Affect Intracellular Trafficking

    PubMed Central

    Pearl, Christopher A.; Boime, Irving

    2009-01-01

    LH and FSH are produced by the same gonadotrope cells of the anterior pituitary but differ in their mode of secretion. LH secretion is primarily episodic, or regulated, while FSH secretion is primarily basal, or constitutive. The asparagine (N)-linked oligosaccharides of LH and FSH terminate with sulfate and sialic acid, respectively. TSH also contains sulfated N-linked oligosaccharides and is secreted through the regulated pathway. It has been hypothesized that sulfate plays a role in segregating LH to the regulated pathway. Using a mouse pituitary model, we tested this hypothesis by examining the secretory fate of LH from pituitaries treated with sodium chlorate, a known inhibitor of sulfation. Here we show that mouse LH is sulfated and secreted through the regulated pathway, while FSH is secreted constitutively. LH secretion from chlorate treated pituitaries, which showed complete inhibition of sulfation, was similar to untreated pituitaries. These data suggest that the metabolic role for sulfated N-linked oligosaccharides is not for intracellular trafficking but for the extracellular bioactivity of LH. PMID:19647136

  12. Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage.

    PubMed

    Muhammad, Siti Nurjaliah; Kusin, Faradiella Mohd; Md Zahar, Mohd Syakirin; Mohamat Yusuff, Ferdaus; Halimoon, Normala

    2017-08-01

    Passive bioremediation of metal- and sulfate-containing acid mine drainage (AMD) has been investigated in a batch study. Multiple substrates were used in the AMD remediation using spent mushroom compost (SMC), limestone, activated sludge (AS), and woodchips (WC) under anoxic conditions suitable for bacterial sulfate reduction (BSR). Limestones used were of crushed limestone (CLS) and uncrushed limestone, provided at two different ratios in mixed substrates treatment and varied by the proportion of SMC and limestone. The SMC greatly assisted the removals of sulfate and metals and also acted as an essential carbon source for BSR. The mixed substrate composed of 40% CLS, 30% SMC, 20% AS, and 10% WC was found to be effective for metal removal. Mn, Cu, Pb, and Zn were greatly removed (89-100%) in the mixed substrates treatment, while Fe was only removed at 65%. Mn was found to be removed at a greatly higher rate than Fe, suggesting important Mn adsorption onto organic materials, that is, greater sorption affinity to the SMC. Complementary with multiple treatment media was the main mechanism assisting the AMD treatment through microbial metal reduction reactions.

  13. Extraction and determination of chondroitin sulfate from fish processing byproducts

    USDA-ARS?s Scientific Manuscript database

    Chondroitin sulfate (CS) refers to a group of sulfated glycosaminoglycan containing a chain of alternating N-acetylgalactosamine and glucuronic acid sugars. It is a major component of the extracellular matrix of cartilage and attached to proteins. CS is usually an over the counter dietary supplement...

  14. Using Terrestrial Sulfate Efflorescences as an Analogue of Hydrated Sulfate Formation in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Smith, P. C.; Szynkiewicz, A.

    2015-12-01

    Hydrated sulfate minerals provide conclusive evidence that a hydrologic cycle was once active on the surface of Mars. Two classes of hydrated sulfate minerals have been detected by robotic instruments on Mars: monohydrated sulfate minerals comprised of kieserite and gypsum, and various polyhydrated sulfates with Fe-Ca-Na-Mg-rich compositions. These minerals are found in various locations on Mars, including large surface exposures in valley settings of Valles Marineris. However, the sulfate sources and formation mechanisms of these minerals are not yet well understood.Recently, it has been suggested that the sulfate minerals in Valles Marineris might have formed in a manner similar to sulfate efflorescences found in dry environments on Earth. In this study, we use sulfate effloresences from the Rio Puerco Watershed, New Mexico as a terrestrial analogue to assess major factors that might have led to deposition of sulfate minerals in Valles Marineris. In different seasons indicative of dry and wet conditions, we collected field photographs and sediment samples for chemical and stable isotopic analyses (sulfur content, δ34S) to determine major sources of sulfate ions for efflorescences and to assess how the seasonal changes in surface/groundwater activity affect their formation. Preliminary sulfur isotope results suggest that oxidation of bedrock sulfides (0.01-0.05 wt. S %) is a major source of sulfate ion for efflorescences formation because their δ34S varied in negative range (-28 to -20‰) similar to sulfides (average -32‰). Using field photographs collected in Oct 2006, Feb and Nov 2012, May 2013, Mar and Oct 2014, we infer that the highest surface accumulation of sulfate efflorescences in the studied analog site was observed after summer monsoon seasons when more water was available for surface and subsurface transport of solutes from chemical weathering. Conversely, spring snow melt led to enhanced dissolution of sulfate efflorescences.

  15. Detecting the effects of coal mining, acid rain, and natural gas extraction in Appalachian basin streams in Pennsylvania (USA) through analysis of barium and sulfate concentrations.

    PubMed

    Niu, Xianzeng; Wendt, Anna; Li, Zhenhui; Agarwal, Amal; Xue, Lingzhou; Gonzales, Matthew; Brantley, Susan L

    2018-04-01

    To understand how extraction of different energy sources impacts water resources requires assessment of how water chemistry has changed in comparison with the background values of pristine streams. With such understanding, we can develop better water quality standards and ecological interpretations. However, determination of pristine background chemistry is difficult in areas with heavy human impact. To learn to do this, we compiled a master dataset of sulfate and barium concentrations ([SO 4 ], [Ba]) in Pennsylvania (PA, USA) streams from publically available sources. These elements were chosen because they can represent contamination related to oil/gas and coal, respectively. We applied changepoint analysis (i.e., likelihood ratio test) to identify pristine streams, which we defined as streams with a low variability in concentrations as measured over years. From these pristine streams, we estimated the baseline concentrations for major bedrock types in PA. Overall, we found that 48,471 data values are available for [SO 4 ] from 1904 to 2014 and 3243 data for [Ba] from 1963 to 2014. Statewide [SO 4 ] baseline was estimated to be 15.8 ± 9.6 mg/L, but values range from 12.4 to 26.7 mg/L for different bedrock types. The statewide [Ba] baseline is 27.7 ± 10.6 µg/L and values range from 25.8 to 38.7 µg/L. Results show that most increases in [SO 4 ] from the baseline occurred in areas with intensive coal mining activities, confirming previous studies. Sulfate inputs from acid rain were also documented. Slight increases in [Ba] since 2007 and higher [Ba] in areas with higher densities of gas wells when compared to other areas could document impacts from shale gas development, the prevalence of basin brines, or decreases in acid rain and its coupled effects on [Ba] related to barite solubility. The largest impacts on PA stream [Ba] and [SO 4 ] are related to releases from coal mining or burning rather than oil and gas development.

  16. Method for magnesium sulfate recovery

    DOEpatents

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  17. Mine waters: Acidic to circumneutral

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2011-01-01

    Acid mine waters, often containing toxic concentrations of Fe, Al, Cu, Zn, Cd, Pb, Ni, Co, and Cr, can be produced from the mining of coal and metallic deposits. Values of pH for acid mine waters can range from –3.5 to 5, but even circumneutral (pH ≈ 7) mine waters can have high concentrations of As, Sb, Mo, U, and F. When mine waters are discharged into streams, lakes, and the oceans, serious degradation of water quality and injury to aquatic life can ensue, especially when tailings impoundments break suddenly. The main acid-producing process is the exposure of pyrite to air and water, which promotes oxidative dissolution, a reaction catalyzed by microbes. Current and future mining should plan for the prevention and remediation of these contaminant discharges by the application of hydrogeochemical principles and available technologies, which might include remining and recycling of waste materials.

  18. Ammonium sulfate and MALDI in-source decay: a winning combination for sequencing peptides

    PubMed Central

    Delvolve, Alice; Woods, Amina S.

    2009-01-01

    In previous papers we highlighted the role of ammonium sulfate in increasing peptide fragmentation by in source decay (ISD). The current work systematically investigated effects of MALDI extraction delay, peptide amino acid composition, matrix and ammonium sulfate concentration on peptides ISD fragmentation. The data confirmed that ammonium sulfate increased peptides signal to noise ratio as well as their in source fragmentation resulting in complete sequence coverage regardless of the amino acid composition. This method is easy, inexpensive and generates the peptides sequence instantly. PMID:19877641

  19. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    NASA Astrophysics Data System (ADS)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  20. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  1. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Treesearch

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  2. Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A.

    PubMed

    Tucci, Nicholas J; Gammons, Christopher H

    2015-04-07

    The Berkeley Pit lake in Butte, Montana, formed by flooding of an open-pit copper mine, is one of the world's largest accumulations of acidic, metal-rich water. Between 2003 and 2012, approximately 2 × 10(11) L of pit water, representing 1.3 lake volumes, were pumped from the bottom of the lake to a copper recovery plant, where dissolved Cu(2+) was precipitated on scrap iron, releasing Fe(2+) back to solution and thence back to the pit. Artificial mixing caused by this continuous pumping changed the lake from a meromictic to holomictic state, induced oxidation of dissolved Fe(2+), and caused subsequent precipitation of more than 2 × 10(8) kg of secondary ferric compounds, mainly schwertmannite and jarosite, which settled to the bottom of the lake. A large mass of As, P, and sulfate was also lost from solution. These unforeseen changes in chemistry resulted in a roughly 25-30% reduction in the lake's calculated and measured total acidity, which represents a significant potential savings in the cost of lime treatment, which is not expected to commence until 2023. Future monitoring is needed to verify that schwertmannite and jarosite in the pit sediment do not convert to goethite, a process which would release stored acidity back to the water column.

  3. An Efficient Approach to Sulfate Metabolites of Polychlorinated Biphenyls

    PubMed Central

    Li, Xueshu; Parkin, Sean; Duffel, Michael W.; Robertson, Larry W.; Lehmler, Hans-Joachim

    2009-01-01

    Polychlorinated biphenyls (PCBs), a major class of persistent organic pollutants, are metabolized to hydroxylated PCBs. Several hydroxylated PCBs are substrates of cytosolic phase II enzymes, such as phenol and hydroxysteroid (alcohol) sulfotransferases; however, the corresponding sulfation products have not been isolated and characterized. Here we describe a straightforward synthesis of a series of ten PCB sulfate monoesters from the corresponding hydroxylated PCBs. The hydroxylated PCBs were synthesized by coupling chlorinated benzene boronic acids with appropriate brominated (chloro-)anisoles, followed by demethylation with boron tribromide. The hydroxylated PCBs were sulfated with 2,2,2-trichloroethyl chlorosulfate using DMAP as base. Deprotection with zinc powder/ammonium formate yielded the ammonium salts of the desired PCB sulfate monoesters in good yields when the sulfated phenyl ring contained no or one chlorine substituent. However, no PCB sulfate monoesters were isolated when two chlorines were present ortho to the sulfated hydroxyl group. To aid with future quantitative structure activity relationship studies, the structures of two 2,2,2-trichloroethyl-protected PCB sulfates were verified by X-ray diffraction. PMID:19345419

  4. Ferulic acid-4-O-sulfate rather than ferulic acid relaxes arteries and lowers blood pressure in mice.

    PubMed

    Van Rymenant, Evelien; Van Camp, John; Pauwels, Bart; Boydens, Charlotte; Vanden Daele, Laura; Beerens, Katrijn; Brouckaert, Peter; Smagghe, Guy; Kerimi, Asimina; Williamson, Gary; Grootaert, Charlotte; Van de Voorde, Johan

    2017-06-01

    Consumption of foods rich in ferulic acid (FA) such as wholegrain cereals, or FA precursors such as chlorogenic acids in coffee, is inversely correlated with risk of cardiovascular disease and type 2 diabetes. As a result of digestion and phase II metabolism in the gut and liver, FA is converted predominantly into ferulic acid-4-O-sulfate (FA-sul), an abundant plasma metabolite. Although FA-sul is the main metabolite, very little has been reported regarding its bioactivities. We have compared the ex vivo vasorelaxing effect of FA and FA-sul (10 -7 -3.10 -5 M) on isolated mouse arteries mounted in tissue myographs. FA-sul, but not FA, elicited a concentration-dependent vasorelaxation of saphenous and femoral arteries and aortae. The FA-sul-mediated vasorelaxation was blunted by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a soluble guanylate cyclase (sGC) inhibitor. The role of sGC was confirmed in femoral arteries isolated from sGCα 1 (-/-) knockout mice. Furthermore, 4-aminopyridine, a specific inhibitor of voltage-dependent potassium channels, significantly decreased FA-sul-mediated effects. In anesthetized mice, intravenous injection of FA-sul decreased mean arterial pressure, whereas FA had no effect, confirming the results obtained ex vivo. FA-sul is probably one of the major metabolites accounting for the blood pressure-lowering effects associated with FA consumption. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  6. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars.

    PubMed

    Niles, Paul B; Michalski, Joseph; Ming, Douglas W; Golden, D C

    2017-10-17

    Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as -60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

  7. Permittivity of naphthenic acid-water mixture.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay

    2007-01-01

    Naphthenic acid (NA) is predominantly a mono-carboxylic acid obtained as a by-product of petroleum refining with variable composition and ingredients. It is reported that water affected by processes in the petroleum industries generally contains 40-120 mg IL of naphthenic acid which is considered to be in the range of toxicity to human consumption [Clemente et. al, 2005; McMartin, 2003]. This contaminated water needs treatment before its use as drinking water by remote communities. Recent literature suggests that NAs could be separated from diesel fuel using microwave radiation [Lingzhao et. al, 2004]. Removal of naphthenic acid from vacuum cut #1 distillate oil of Daqing using microwaves has also been reported by Huang et. al [2006]. The microwave treatment can be applied to drinking water containing small concentrations of naphthenic acid. In this case permittivity information is useful in designing a microwave applicator and modeling studies. Permittivity measurements were done using a HP 8510 Vector Network Analyzer and coaxial probe reflection method to study the dielectric properties of naphthenic acid in water. The effects of process variables such as frequency, concentration and temperature on dielectric properties were determined.

  8. 21 CFR 524.1580e - Nitrofurazone ointment with butacaine sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Nitrofurazone ointment with butacaine sulfate. 524... ANIMAL DRUGS § 524.1580e Nitrofurazone ointment with butacaine sulfate. (a) Specifications. The drug contains 0.2 percent nitrofurazone and 0.5 percent butacaine sulfate in a water-soluble base. (b) Sponsor...

  9. 21 CFR 524.1580e - Nitrofurazone ointment with butacaine sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Nitrofurazone ointment with butacaine sulfate. 524... ANIMAL DRUGS § 524.1580e Nitrofurazone ointment with butacaine sulfate. (a) Specifications. The drug contains 0.2 percent nitrofurazone and 0.5 percent butacaine sulfate in a water-soluble base. (b) Sponsor...

  10. Sulfate was a trace constituent of Archean seawater.

    PubMed

    Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E

    2014-11-07

    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. Copyright © 2014, American Association for the Advancement of Science.

  11. Method for magnesium sulfate recovery

    DOEpatents

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  12. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  13. Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on alfalfa seeds by levulinic acid and sodium dodecyl sulfate.

    PubMed

    Zhao, Tong; Zhao, Ping; Doyle, Michael P

    2010-11-01

    Studies were conducted to determine the best concentration and exposure time for treatment of alfalfa seeds with levulinic acid plus sodium dodecyl sulfate (SDS) to inactivate Escherichia coli O157:H7 and Salmonella without adversely affecting seed germination. Alfalfa seeds inoculated with a five-strain mixture of E. coli O157:H7 or Salmonella Typhimurium were dried in a laminar flow hood at 21°C for up to 72 h. Inoculated alfalfa seeds dried for 4 h then treated for 5 min at 21°C with 0.5% levulinic acid and 0.05% SDS reduced the population of E. coli O157:H7 and Salmonella Typhimurium by 5.6 and 6.4 log CFU/g, respectively. On seeds dried for 72 h, treatment with 0.5% levulinic acid and 0.05% SDS for 20 min at 21°C reduced E. coli O157:H7 and Salmonella Typhimurium populations by 4 log CFU/g. Germination rates of alfalfa seeds treated with 0.5% levulinic acid plus 0.05% SDS for up to 1 h at 21°C were compared with a treatment of 20,000 ppm of calcium hypochlorite or tap water only. Treatment of alfalfa seeds with 0.5% levulinic acid plus 0.05% SDS for 5 min at 21°C resulted in a >3.0-log inactivation of E. coli O157:H7 and Salmonella.

  14. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  15. Volumetric determination of uranium using titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, James S.; Skinner, Dwight L.; Rader, Lewis F.

    1956-01-01

    A new method for determining uranium in samples containing 0.05 percent or more U3O8, using titanous sulfate as reducing agent, is much shorter, faster, and has fewer interferences than conventional methods using reductor columns. The sample is dissolved with sulfuric, nitric, perchloric, and hydrofluoric acids. Elements that would otherwise form insoluble fluorides are kept in solution by complexing the fluoride ion with boric acid. A precipitation is made with cupferron to remove interfering elements. The solution is filtered to remove the precipitated cupferrates instead of extracting them with chloroform as is usually done. Filtration is preferred to extraction because any niobium that may be in solution forms an insoluble cupferrate that may be removed by filtering but is very difficult to extract with chloroform. Excess cupferron is destroyed by oxidizing with nitric and perchloric acids, and evaporating to dense fumes of sulfuric acid. The uranium is reduced to U(IV) by the addition of titanous sulfate, with cupric sulfate used as an indicator of the completeness of the reduction. Metallic copper is formed when all the uranium is reduced. The reduced copper is then reoxidized by the addition of mercuric perchlorate, an excess of ferric sulfate added, and the solution titrated immediately with standard ceric sulfate with ferroin as an indicator. Precision of the method compared favorable with methods in common use, both for uranium ores and for most types of uranium-rich materials.

  16. Relationships between stream acid anion-base cation chemistry and watershed soil types on the Allegheny high plateau

    Treesearch

    Gregory P. Lewis

    1999-01-01

    The leaching of calcium and magnesium from forests by atmospherically-deposited strong acid anions (sulfate and nitrate) is evidenced in some watersheds by the positive correlation in stream water between concentrations of these base cations and acid anions.

  17. Biomass burning and its effects on fine aerosol acidity, water content and nitrogen partitioning

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Nenes, Athanasios; Paraskevopoulou, Despina; Fourtziou, Luciana; Stavroulas, Iasonas; Liakakou, Eleni; Myriokefalitakis, Stelios; Daskalakis, Nikos; Weber, Rodney; Kanakidou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2017-04-01

    Aerosol acidity is an important property that drives the partitioning of semi-volatile species, the formation of secondary particulate matter and metal and nutrient solubility. Aerosol acidity varies considerably between aerosol types, RH, temperature, the degree of atmospheric chemical aging and may also change during transport. Among aerosol different sources, sea salt and dust have been well studied and their impact on aerosol acidity and water uptake is more or less understood. Biomass burning (BB) on the other hand, despite its significance as a source in a regional and global scale, is much less understood. Currently, there is no practical and accurate enough method, to directly measure the pH of in-situ aerosol. The combination of thermodynamic models, with targeted experimental observations can provide reliable predictions of aerosol particle water and pH, using as input the concentration of gas/aerosol species, temperature (T), and relative humidity (RH). As such an example, ISORROPIA-II (Fountoukis and Nenes, 2007) has been used for the thermodynamic analysis of measurements conducted in downtown Athens during winter 2013, in order to evaluate the effect of BB on aerosol water and acidity. Biomass burning, especially during night time, was found to contribute significantly to the increased organics concentrations, but as well to the BC component associated with wood burning, particulate nitrates, chloride, and potassium. These increased concentrations were found to impact on fine aerosol water, with Winorg having an average concentration of 11±14 μg m-3 and Worg 12±19 μg m-3 with the organic component constituting almost 38% of the total calculated submicron water. When investigating the fine aerosol acidity it was derived that aerosol was generally acidic, with average pH during strong BB influence of 2.8±0.5, value similar to the pH observed for regional aerosol influenced by important biomass burning episodes at the remote background site of

  18. SULFATE REDUCTION IN GROUNDWATER: CHARACTERIZATION AND APPLICATIONS FOR REMEDIATION

    PubMed Central

    Miao, Z.; Brusseau, M. L.; Carroll, K. C.; Carreón-Diazconti, C.; Johnson, B.

    2013-01-01

    Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, along with a brief discussion of characterization methods and applications for addressing acid mine drainage. We then focus on two innovative, in-situ methods for remediating sulfate-contaminated groundwater, the use of zero-valent iron (ZVI) and the addition of electron-donor substrates. The advantages and limitations associated with the methods are discussed, with examples of prior applications. PMID:21947714

  19. Complex Sulfate Deposits in Coprates Chasma

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of layered sulfate-containing deposits in the Coprates Chasma region of Mars was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1827UTC (1:27 p.m. EST) on December 12, 2006 near 10.2 degrees south latitude, 68.8 degrees west longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The image is about 11 kilometers (6.8 miles) wide at its narrowest point.

    Coprates Chasma forms part of the backbone of the Valles Marineris canyon system. It extends approximately east-west for roughly 966 kilometers (600 miles), and is one of the larger chasmata in the Valles Marineris system.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area centered on a knob near the chasma's northern wall.

    The center left image, an infrared false color image, shows the knob's layered morphology. The center right image unveils the mineralogical signatures of some of those layers, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral) and purple representing polyhydrated sulfates (sulfates with multiple waters per mineral molecule).

    The lower two images are renderings of data draped over topography with 3 times vertical exaggeration. These images provide a view of the topography and reveal how the sulfate deposits relate to that topography. Darker polyhydrated sulfates (purple) lie along the knob's western flank. Brighter, monohydrated sulfates (yellow) appear to be superimposed on polyhydrated sulfate deposits in the southwest corner of the image. These coarsely banded deposits continue along the southeast side of the knob.

    There are two possible explanations for the compositional banding of these sulfates. The first is deposition of

  20. The preparation and antioxidant activity of glucosamine sulfate

    NASA Astrophysics Data System (ADS)

    Xing, Ronge; Liu, Song; Wang, Lin; Cai, Shengbao; Yu, Huahua; Feng, Jinhua; Li, Pengcheng

    2009-05-01

    Glucosamine sulfate was prepared from glucosamine hydrochloride that was produced by acidic hydrolysis of chitin by ion-exchange method. Optical rotation and elemental analysis characterized the degree of its purity. In addition, the antioxidant potency of chitosan derivative-glucosamine sulfate was investigated in various established in vitro systems, such as superoxide (O{2/-})/hydroxyl (·OH) radicals scavenging, reducing power, iron ion chelating. The following results are obtained: first, glucosamine sulfate had pronounced scavenging effect on superoxide radical. For example the O{2/-} scavenging activity of glucosamine sulfate was 92.11% at 0.8 mg/mL. Second, the ·OH scavenging activity of glucosamine sulfate was also strong, and was about 50% at 3.2 mg/mL. Third, the reducing power of glucosamine sulfate was more pronounced. The reducing power of glucosamine sulfate was 0.643 at 0.75 mg/mL. However, its potency for ferrous ion chelating was weak. Furthermore, except for ferrous ion chelating potency, the scavenging rate of radical and reducing power of glucosamine sulfate were concentration-dependent and increased with their increasing concentrations, but its ferrous ion chelating potency decreased with the increasing concentration. The multiple antioxidant activities of glucosamine sulfate were evidents of reducing power and superoxide/hydroxyl radicals scavenging ability. These in vitro results suggest the possibility that glucosamine sulfate could be used effectively as an ingredient in health or functional food, to alleviate oxidative stress.

  1. Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.

    PubMed

    Gosavi, K; Sammut, J; Gifford, S; Jankowski, J

    2004-05-25

    Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.

  2. Spatial variation of stratospheric aerosol acidity and model refractive index - Implications of recent results

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hamill, P.

    1984-01-01

    Recent experimental results indicate that little or no solid ammonium sulfate is present in background stratospheric aerosols. Other results allow straightforward calculation of sulfuric acid/water droplet properties (acidity, specific gravity, refractive index) as functions of stratospheric temperature and humidity. These results are combined with a variety of latitudinal and seasonal temperature and humidity profiles to obtain corresponding profiles of droplet properties. These profiles are used to update a previous model of stratospheric aerosol refractive index. The new model retains the simplifying approximation of vertically constant refractive index in the inner stratosphere, but has sulfuric acid/water refractive index values that significantly exceed the previously used room temperature values. Mean conversion ratios (e.g., extinction-to-number, backscatter-to-volume) obtained using Mie scattering calculations with the new refractive indices are very similar to those obtained for the old indices, because the effects of deleting ammonium sulfate and increasing acid indices tend to cancel each other.

  3. Vitamin C-sulfate inhibits mineralization in chondrocyte cultures: a caveat

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Blank, R. D.; Doty, S. B.

    2001-01-01

    Differentiating chick limb-bud mesenchymal cell micro-mass cultures routinely mineralize in the presence of 10% fetal calf serum, antibiotics, 4 mM inorganic phosphate (or 2.5 mM beta-glycerophosphate), 0.3 mg/ml glutamine and either 25 microg/ml vitamin C or 5-12 microg/ml vitamin C-sulfate. The failure of these cultures to produce a mineralized matrix (assessed by electron microscopy, 45Ca uptake and Fourier transform infrared microscopy) led to the evaluation of each of these additives. We report here that the "stable" vitamin C-sulfate (ascorbic acid-2-sulfate) causes increased sulfate incorporation into the cartilage matrix. Furthermore, the release of sulfate from the vitamin C derivative appears to be responsible for the inhibition of mineral deposition, as demonstrated in cultures with equimolar amounts of vitamin C and sodium sulfate.

  4. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceberg lettuce during storage in modified atmosphere package.

    PubMed

    Guan, Wenqiang; Huang, Lihan; Fan, Xuetong

    2010-10-01

    Recent studies showed that sodium acid sulfate (SAS) and levulinic acid (LA) in combination with sodium dodecyl sulfate (SDS) was effective in inactivating human pathogens on Romaine lettuce. The present study investigated the effects of LA and SAS in combination with SDS (as compared with citric acid and chlorine) on the inactivation of E. coli O157:H7 and sensory quality of fresh-cut Iceberg lettuce in modified atmosphere packages during storage at 4 °C. Results showed that LA (0.5% to 3%) and SAS (0.25% to 0.75%) with 0.05% SDS caused detrimental effects on visual quality and texture of lettuce. LA- and SAS-treated samples were sensorially unacceptable due to development of sogginess and softening after 7 and 14 d storage. It appears that the combined treatments caused an increase in the respiration rate of fresh-cut lettuce as indicated by higher CO(2) and lower O(2) in modified atmosphere packages. On the positive side, the acid treatments inhibited cut edge browning of lettuce pieces developed during storage. LA (0.5%), SAS (0.25%), and citric acid (approximately 0.25%) in combination with SDS reduced population of E. coli OH157:H7 by 0.41, 0.87, and 0.58 log CFU/g, respectively, while chlorine achieved a reduction of 0.94 log CFU/g without damage to the lettuce. Therefore, compared to chlorine, LA and SAS in combination with SDS have limited commercial value for fresh-cut Iceberg lettuce due to quality deterioration during storage.

  5. Analysis of Biogeochemistry of Acid-Mine Drainage at Rowe, Massachusetts

    NASA Astrophysics Data System (ADS)

    Ahlfeld, D. P.; Yuretich, R.; Ergas, S.; Nusslein, K.; Feldman, A.

    2003-12-01

    Acid waters rich in iron and sulfate can support a wide variety of microorganisms that catalyze the oxidation-reduction reactions of these bioactive elements, exemplified by acid-mine drainage (AMD). In order to study the biogeochemistry of natural attenuation a field site has been established at Davis Mine, an abandoned pyrite mine in rural Rowe Massachusetts. This site is of particular interest because of the apparent dynamic equilibrium that has restricted the extent of the AMD in this area since the mine was closed nearly 100 years ago. Initial evidence suggests that sulfate reduction is occurring at the fringes of the site. Multi-level monitoring wells and surface water sampling points have been installed. Soil samples collected from the drilled wells are being used to provide inoculums for cultivating bacteria and identifying DNA. Preliminary data indicate a restricted lens of impacted groundwater that moves rapidly through the mine tailings and shallow bedrock fractures, but is contained by ambient groundwater from uncontaminated recharge areas. Sulfate reduction has been documented at the margins of the acid-generating area, and this has been reproduced in laboratory experiments. Current research is now examining the processes of Fe(III) and SO4 reduction and the roles of acidophilic and acid-tolerant anaerobic microorganisms. K12 teachers are part of the research teams and the effects of research experiences on their higher-level understanding of science are being evaluated.

  6. XANES mapping of organic sulfate in three scleractinian coral skeletons

    NASA Astrophysics Data System (ADS)

    Cuif, Jean-Pierre; Dauphin, Yannicke; Doucet, Jean; Salome, Murielle; Susini, Jean

    2003-01-01

    The presence and localization of organic sulfate within coral skeletons are studied by using X-ray absorption near edge structure spectroscopy (XANES) fluorescence. XANES spectra are recorded from four reference sulfur-bearing organic molecules: three amino acids (H-S-C bonds in cysteine; C-S-C bonds in methionine; one disulfide bond C-S-S-C bonds in cystine) and a sulfated sugar (C-SO 4 bonds in chondroitin sulfate). Spectral responses of three coral skeletons show that the sulfated form is extremely dominant in coral aragonite, and practically exclusive within both centres of calcification and the surrounding fibrous tissues of coral septa. Mapping of S-sulfate concentrations in centres and fibres gives us direct evidence of high concentration of organic sulfate in centres of calcification. Additionally, a banding pattern of S-sulfate is visible in fibrous part of the coral septa, evidencing a biochemical zonation that corresponds to the step-by-step growth of fibres.

  7. Glucosamine Sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  8. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil.

    PubMed

    Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson

    2014-05-14

    Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  9. The effect of mixed liming and NPK fertilizer to yield of some rice varieties on new openings of acid sulfate tidal swamp land

    NASA Astrophysics Data System (ADS)

    Akhmad, A.; Dewi, W. S.; Sagiman, S.; Suntoro

    2018-03-01

    The strategies to meet the staple food needs in Indonesia is to open new paddy fields in the sub-optimal land. The research aims to get adaptive rice varieties with the highest yield on new openings of the acid sulfate tidal swamp applying mixed liming and NPK fertilizer. The experiment was conducted in a greenhouse at the Faculty of Agriculture, Tanjungpura University, Pontianak. The trials used a factorial completely randomized block design consisting of two factors. The first factor is a mixture of dolomite with NPK fertilizer, consisting of 3 levels (1 ton/ha dolomite and 60 kg/ha NPK; 2 ton/ha dolomite and 90 kg/ha of NPK, and 3 ton/ha dolomite and 120 kg/ha NPK). The second factor is rice varieties, consisting of 6 levels (Ciherang, Situ Bagendit, Inpara, Mira, Si Randah and Ringkak Janggut). Each treatment replicated four times. The results showed that the application of a mixture of 3 ton/ha dolomite and 120 kg/ha of NPK fertilizer showed the best results to improve rice yield on new opening of the acid sulfate tidal swap. Local rice varieties, Ringkak Janggut, applied 3 ton/ha dolomite and 120 kg/ha NPK fertilizer showed the best result of 1000 seed weight, i.e., 28.19 g, and total grain amount per panicle is 110.75 grains, with the lowest number of empty grains. Local rice varieties Ringkak Janggut potential to be developed as superior varieties on new opening acid sulfate tidal swamps by applying liming and fertilizer.

  10. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    PubMed

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling.

    PubMed

    Pichert, Annelie; Samsonov, Sergey A; Theisgen, Stephan; Thomas, Lars; Baumann, Lars; Schiller, Jürgen; Beck-Sickinger, Annette G; Huster, Daniel; Pisabarro, M Teresa

    2012-01-01

    The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG-protein systems.

  12. Ultrasound augmented leaching of nickel sulfate in sulfuric acid and hydrogen peroxide media.

    PubMed

    Li, Haoyu; Li, Shiwei; Peng, Jinhui; Srinivasakannan, Chandrasekar; Zhang, Libo; Yin, Shaohua

    2018-01-01

    A new method of preparation high purity nickel sulfate assisted by ultrasonic was studied. The process mechanism was analyzed by Inductively Coupled Plasma (ICP), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectrometry (EDS).The reaction mechanisms of oxidizing leaching and ultrasonic leaching were explored, respectively. Results showed that ultrasonic treatment peel off the oxide film on the surface of nickel. The leachate under strongly agitated, the yield rate of nickel sulfate was accelerate. And the reaction area was increased by the cavitation effect, the liquid-solid reaction was promoted, and the activation energy was reduced. The leaching rate of nickel reached 46.29% by conventional leaching, which takes about 5h. Under the same conditions, the ultrasonic leaching rate reached 40%, only half of the conventional leaching time. Concentration of leaching agent, reaction temperature, ultrasonic power, leaching time had significant effect on the enhancement of the leaching reaction with ultrasonic radiation. The leaching rate of 60.41% under the optimum experiment conditions as follows: sulfuric acid concentration 30%, hydrogen peroxide 10%, leaching temperature 333K, ultrasonic power 200W and leaching time 4h. The kinetic study of the system was investigated, and the reaction rates of conventional leaching and ultrasonic leaching were controlled by diffusion, and the apparent activation energies were 16.2kJ/mol and 11.83kJ/mol. Copyright © 2017. Published by Elsevier B.V.

  13. Liver injury after aluminum potassium sulfate and tannic acid treatment of hemorrhoids.

    PubMed

    Yoshikawa, Kenichi; Kawashima, Reimi; Hirose, Yuki; Shibata, Keiko; Akasu, Takafumi; Hagiwara, Noriko; Yokota, Takeharu; Imai, Nami; Iwaku, Akira; Kobayashi, Go; Kobayashi, Hirohiko; Kinoshita, Akiyoshi; Fushiya, Nao; Kijima, Hiroyuki; Koike, Kazuhiko; Saruta, Masayuki

    2017-07-21

    We are reporting a rare case of acute liver injury that developed after an internal hemorrhoid treatment with the aluminum potassium sulfate and tannic acid (ALTA) regimen. A 41-year-old man developed a fever and liver injury after undergoing internal hemorrhoid treatment with a submucosal injection of ALTA with lidocaine. The acute liver injury was classified clinically as hepatocellular and pathologically as cholestastic. We could not classify the mechanism of injury. High eosinophil and immunoglobulin E levels characterized the injury, and a drug lymphocyte stimulation test was negative on postoperative day 25. Fluid replacement for two weeks after hospitalization improved the liver injury. ALTA therapy involves injecting chemicals into the submucosa, from the rectum to the anus, and this is the first description of a case that developed a severe liver disorder after this treatment; hence, an analysis of future cases as they accumulate is desirable.

  14. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  15. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-07-01

    In this paper, a novel mesoporous sulfated zirconium (M-ZrO2/SO42-) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N2-physisorption and TEM characterization techniques indicated that M-ZrO2/SO42- possessed distinct mesostructure with big specific surface area (133.5 m2 g-1), large pore volume (0.18 cm3 g-1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO42-, improved the textural properties of prepared materials. In addition, the NH3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO2/SO42- even evacuated at 400 °C. Furthermore, the M-ZrO2/SO42- was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  16. Investigations of the hygroscopic properties of ammonium sulfate and mixed ammonium sulfate and glutaric acid micro droplets by means of optical levitation and Raman spectroscopy.

    PubMed

    Jordanov, N; Zellner, R

    2006-06-21

    In the presented work an optical levitation technique performed by means of a focused laser beam, Mie and Raman spectroscopy have been utilized for measuring hygroscopic growth curves and composition of laboratory generated single ammonium sulfate (AS) and internally mixed ammonium sulfate-glutaric acid (GA) droplets in the micrometer range. The generated particles have been found to immediately supersaturate (above 45wt% for AS) at 297 K after capturing in the laser beam. Further increase of the relative humidity (RH) up to 85% does not dilute the droplets under the saturation point. A spontaneous hygroscopic growth takes place at 73.5-78% RH for pure AS. The particle grows with an average factor of 1.62 at the deliquescence relative humidity (DRH). Efflorescence of AS occurs at 43% RH with a corresponding concentration of more than 85wt%. Independent of the mixing ratios in ranges 25/75, 50/50, 75/25% AS/GA mixed particles don't exist as a metastable supersaturated solution droplets in the 35-85% RH range. Instead of growing with increasing relative humidity internally mixed particles build up a solid crystalline layer on the surface. This crystalline phase is not further influenced by ambient relative humidities.

  17. Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems

    NASA Astrophysics Data System (ADS)

    Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng

    2014-11-01

    Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17β-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R2adj = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.

  18. Amino acid sequence surrounding the chondroitin sulfate attachment site of thrombomodulin regulates chondroitin polymerization.

    PubMed

    Izumikawa, Tomomi; Kitagawa, Hiroshi

    2015-05-01

    Thrombomodulin (TM) is a cell-surface glycoprotein and a critical mediator of endothelial anticoagulant function. TM exists as both a chondroitin sulfate (CS) proteoglycan (PG) form and a non-PG form lacking a CS chain (α-TM); therefore, TM can be described as a part-time PG. Previously, we reported that α-TM bears an immature, truncated linkage tetrasaccharide structure (GlcAβ1-3Galβ1-3Galβ1-4Xyl). However, the biosynthetic mechanism to generate part-time PGs remains unclear. In this study, we used several mutants to demonstrate that the amino acid sequence surrounding the CS attachment site influences the efficiency of chondroitin polymerization. In particular, the presence of acidic residues surrounding the CS attachment site was indispensable for the elongation of CS. In addition, mutants defective in CS elongation did not exhibit anti-coagulant activity, as in the case with α-TM. Together, these data support a model for CS chain assembly in which specific core protein determinants are recognized by a key biosynthetic enzyme involved in chondroitin polymerization. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Influence of acid rain upon water plumbosolvency.

    PubMed Central

    Moore, M R

    1985-01-01

    The West of Scotland has had particular problems in the past associated with soft acidic water supplies and uptake of lead from domestic plumbing systems by such water. As a consequence of this, health problems related to overexposure to lead have been identified. The current debate on acidification of ground waters by acid rain is therefore particularly pertinent to this area. Studies have shown that even a modest decrease in pH will result in very substantial increase in plumbosolvency. This was found to be of particular importance in the city of Glasgow and town of Ayr, where prior to water treatment, pH values were 6.3 and 5.4, respectively, and where, consequentially, large numbers of homes did not comply with lead in water standards. Closed-loop lime-dosing systems were introduced in both Glasgow and Ayr to increase the pH with immediate decrease in the lead content of the water and, subsequently, blood lead concentrations of the subjects living in these areas. Such closed-loop systems will compensate for any acidity in water supplies, whether of natural origin or originating from acid rain precipitation. However, when such treatment has not been applied, any increase in water acidity due to acid rain which is, in many cases, already unacceptable. which is, in many cases, already unacceptable. PMID:4076078

  20. Mineralogical transformations controlling acid mine drainage chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peretyazhko, Tetyana; Zachara, John M.; Boily, Jean F.

    2009-05-30

    The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed that schwertmannite and goethite were the principal Fe(III) phases in the sediments. Schwertmannite transformation occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The goethite in GBmore » sediments had spherical morphology due to preservation of schwertmannite structure by adsorbed sulfate. Results of chemical extractions showed that poorly-crystallized goethite was subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FR sediments during laboratory incubation. The incubation experiment demonstrated that schwertmannite transformation controlled AMD water chemistry during “closed system” laboratory contact.« less

  1. Recycling ferrous sulfate via super-oxidant synthesis

    NASA Astrophysics Data System (ADS)

    Kanari, N.; Evrard, O.; Neveux, N.; Ninane, L.

    2001-11-01

    Hydrated ferrous sulfate, a by-product of the titanium-dioxide and steel-surface-treatment industries, is usually disposed of as waste at a significant extra cost for these industries. Due to tight environmental regulations in the European countries, waste disposal of ferrous sulfate will not be an acceptable solution in the near future. Consequently, the waste will have to be treated. Recently, ferrous sulfate was successfully used to synthesize a novel superoxidant material (potassium ferrate) containing iron in hexavalent state (FeVI). With ferrates synthesis, innovative applications are possible in different industrial sectors, such as treatment of water and wastewater and effluent decontamination.

  2. Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: Integration of geological, stable-isotope, and fluid-inclusion evidence

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Stoffregen, R.E.; Vikre, P.G.

    2005-01-01

    quartz associated with mineralization, as well as in the deep stockwork veins, suggests that brines originating deep in the system transported the metals. The ??34S values of sulfides in magnetite (-2.3???) and of sulfate in apatite (5.4???) in unaltered quartz latite indicate that ??34S???S was near 0???. The ??34S values of coexisting alteration alunite and pyrite are 18.2??? to 24.5??? and -8.1??? to -2.2???, respectively. Deep in the system, most of the change in ??34S values occurs in the sulfates, indicating that the fluids were initially H2S-dominant, their redox state buffered at depth by equilibration with igneous rocks. However, in the main alteration zone, most of the change in ??34S values occurs in pyrite, indicating that the fluids moved off the rock buffer and became SO42- -dominant as pyrite precipitated and SO2 disproportionation produced the sulfuric acid requisite for acid leaching. The ??34S values of the late-stage barite and sulfides indicate that the system returned to high H2S/SO42- ratios typical of the original rock-buffered fluid. The ??DH2O of alunite parent fluids was near -45??? and their ??18O ranged from 7??? to -1???, depending on the degree of exchange in the alteration zone at low water-rock ratio, or mixing with unexchanged meteoric water. The low ??D values of some alunite samples are interpreted to result from postdepositional exchange with later ore fluids. Fluid exsolved fr om the magma at depth had ??DH2O and ??18OH2O values near -70??? and 10???, respectively. During and following migration to the top of the magma chamber, the fluid underwent isotopic exchange with the partially crystallized magma and its solid and cooler, but still plastic, carapace just below the transition from a lithostatic to hydrostatic pressure regime. These evolved magmatic fluids had ??DH2O and ??18OH2O values close to -40??? and 5???, respectively, prior to release into the superjacent hydrostatically pressured fracture zone, wherein the fluids separat

  3. Tracing sources of streamwater sulfate during snowmelt using S and O isotope ratios of sulfate and 35S activity

    USGS Publications Warehouse

    Shanley, J.B.; Mayer, B.; Mitchell, M.J.; Michel, R.L.; Bailey, S.W.; Kendall, C.

    2005-01-01

    The biogeochemical cycling of sulfur (S) was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a hydrochemical and multi-isotope approach. The snowpack and 10 streams of varying size and land use were sampled for analysis of anions, dissolved organic carbon (DOC), 35S activity, and ?? 34S and ?? 18O values of sulfate. At one of the streams, ?? 18O values of water also were measured. Apportionment of sulfur derived from atmospheric and mineral sources based on their distinct ?? 34S values was possible for 7 of the 10 streams. Although mineral S generally dominated, atmospheric-derived S contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. However, most of this atmospheric sulfur was not from the melting snowpack; the direct contribution of atmospheric sulfate to streamwater sulfate was constrained by 35S mass balance to a maximum of 7%. Rather, the main source of atmospheric sulfur in streamwater was atmospheric sulfate deposited months to years earlier that had microbially cycled through the soil organic sulfur pool. This atmospheric/pedospheric sulfate (pedogenic sulfate formed from atmospheric sulfate) source is revealed by ?? 18O values of streamwater sulfate that remained constant and significantly lower than those of atmospheric sulfate throughout the melt period, as well as streamwater 35S ages of hundreds of days. Our results indicate that the response of streamwater sulfate to changes in atmospheric deposition will be mediated by sulfate retention in the soil. ?? Springer 2005.

  4. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  5. Redetermination of dicerium(III) tris­(sulfate) tetra­hydrate

    PubMed Central

    Xu, Xin

    2008-01-01

    Ce2(SO4)3(H2O)4 was obtained hydro­thermally from an aqueous solution of cerium(III) oxide, trimethyl­amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands. PMID:21200451

  6. Secondary effects of anion exchange on chloride, sulfate, and lead release: systems approach to corrosion control.

    PubMed

    Willison, Hillary; Boyer, Treavor H

    2012-05-01

    Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl(-) and 10 mg/L SO(4)(2-)) and high (approx. 50 mg/L Cl(-) and 100 mg/L SO(4)(2-)) concentrations of chloride and sulfate at a constant CSMR of ≈ 0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The effect of snowmelt on the water quality of Filson Creek and Omaday Lake, northeastern Minnesota

    USGS Publications Warehouse

    Siegel, D.I.

    1981-01-01

    Sulfate concentration and pH were determined in surface water, groundwater, and precipitation samples collected in the Filson Creek watershed to evaluate the sources of sulfate in Filson Creek. During and immediately after snowmelt, sulfate concentrations in Filson Creek increased from about 2 to 14 mg/l. Concurrently, H+ ion activity increased from an average of 10−6.6 to 10−5.5. These changes suggest that sulfate acidity is concentrated in the snowpack at snowmelt, which is similar to changes reported in Scandinavia in areas subject to acid precipitation. Mass balance calculations indicate that the sulfate contribution from groundwater during snowmelt was minimal in comparison to that from snow. During base flow, sulfate did not appreciably increase from the headwaters of Filson Creek to the mouth, even though sulfate was as high as 58 mg/l in groundwater discharging to the creek from surficial materials overlying a sulfide-bearing mineralized zone in the lower third of the watershed. Approximately 10.6 kg of sulfate per hectare per year was retained in 1977.

  8. Multiple stable oxygen isotopic studies of atmospheric sulfate: A new quantitative way to understand sulfate formation processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Charles Chi-Woo

    2000-11-01

    Sulfate is an important trace species in the Earth's atmosphere because of its roles in numerous atmospheric processes. In addition to its inherent light-scattering properties, sulfate can serve as cloud condensation nucleus (CCN), affecting cloud formation as well as microphysical properties of clouds. Consequently, atmospheric sulfate species influence the global radiative energy balance. Sulfate is known to increase acidity of rainwater with negative consequences in both natural and urban environments. In addition, aerosol sulfate (<=2.5 μm) is respirable and poses a threat to human health as a potential carrier of toxic pollutants through the respiratory tract. Despite intense investigative effort, uncertainty regarding the relative significance of gas and aqueous phase oxidation pathways still remains. Acquisition of such information is important because the lifetime and transport of S(IV) species and sulfate aerosols are influenced by the oxidative pathways. In addition, sulfate formation processes affect the aerosol size distribution, which ultimately influences radiative properties of atmospheric aerosols. Therefore, the budgetary information of the sulfur cycle, as well as the radiative effects of sulfate on global climate variation, can be attained from better quantitative understanding of in situ sulfate formation processes in the atmosphere. Multiple stable oxygen isotopic studies of atmospheric sulfate are presented as a new tool to better comprehend the atmospheric sulfate formation processes. Coupled with isotopic studies, 35S radioactivity measurements have been utilized to assess contribution of sulfate from high altitude air masses. Atmospheric sulfate (aerosols and rainwater) samples have been collected from diverse environments. Laboratory experiments of gas and aqueous phase S(IV) oxidation by various oxidants, as well as biomass burning experiments, have also been conducted. The main isotopic results from these studies are as follows: (1

  9. Effect of Tryptophan and Asparagine Structure on the Enthalpic Characteristics of Their Dissolution in Aqueous Solutions of Sodium Dodecyl Sulfate

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.; Tyunina, E. Yu.; Kamkina, S. V.

    2018-03-01

    The integral enthalpies of dissolution of L-tryptophan and L-asparagine in aqueous solutions of sodium dodecyl sulfate (surfactant) at surfactant concentrations of up to 0.05 mol/kg of the solvent are determined and estimated calorimetrically. Standard values of the enthalpies of dissolution and transfer of amino acids from water to a mixed solvent are calculated. The calculated enthalpy coefficients of pair interactions between amino acids and surfactant molecules have positive values. Hydrophobic interactions between amino acids and surfactants have the dominant effect on the enthalpy characteristics of the interaction in a three-component solution.

  10. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    PubMed

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers.

  11. Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis.

    PubMed

    Yang, Haiming; An, Baigang; Wang, Shaoyan; Li, Lixiang; Jin, Wenjie; Li, Lihua

    2013-06-01

    Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis. Accompanying the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondingly decreased, while the sulfonate group of 4-PSA was released as sulfate ion. Oxalate and formate were obtained as minor by-products. Additionally, phenol, 1,4-hydroquinone, hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA. A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics. It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law. The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated. It was found that the presence of Fe ions could increase the degradation rate of 4-PSA, while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour. The disappearance rate of 4-PSA was significantly affected by pH.

  12. Temporal trends in the acidity of precipitation and surface waters of New York

    USGS Publications Warehouse

    Peters, Norman E.; Schroeder, Roy A.; Troutman, David E.

    1982-01-01

    Statistical analyses of precipitation data from a nine-station monitoring network indicate little change in pH from 1965-78 within New York State as a whole but suggest that pH of bulk precipitation has decreased in the western part of the State by approximately 0.2 pH units since 1965 and increased in the eastern part by a similar amount. This trend is equivalent to an annual change in hydrogen-ion concentration of 0.2 microequivalents per liter. An average annual increase in precipitation quantity of 2 to 3 percent since 1965 has resulted in an increased acid load in the western and central parts of the State. During 1965-78, sulfate concentration in precipitation decreased an average of 1-4 percent annually. In general, no trend in nitrate was detected. Calculated trends in hydrogen-ion concentration do not correlate with measured trends of sulfate and nitrate, which suggests variable neutralization of hydrogen ion, possibly by particles from dry deposition. Neutralization has produced an increase of about 0.3 pH units in nonurban areas and 0.7 pH units in urban areas. Statistical analyses of chemical data from several streams throughout New York suggest that sulfate concentrations decreased an average of 1 to 4 percent per year. This decrease is comparable to the sulfate decrease in precipitation during the same period. In most areas of the State, chemical contributions from urbanization and farming, as well as the neutralizing effect of carbonate soils, conceal whatever effects acid precipitation may have on pH of streams.

  13. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Phase equilibria of the magnesium sulfate-water system to 4 kbars

    NASA Technical Reports Server (NTRS)

    Hogenboom, D. L.; Kargel, J. S.; Ganasan, J. P.; Lee, L.

    1993-01-01

    Magnesium sulfate is the most abundant salt in carbonaceous chondrites, and it may be important in the low-temperature igneous evolution and aqueous differentiation of icy satellites and large chondritic asteroids. Accordingly, we are investigating high-pressure phase equilibria in MgSO4-H2O solutions under pressures up to four kbars. An initial report was presented two years ago. This abstract summarizes our results to date including studies of solutions containing 15.3 percent, 17 percent, and 22 percent MgSO4. Briefly, these results demonstrate that increasing pressure causes the eutectic and peritectic compositions to shift to much lower concentrations of magnesium sulfate, and the existence of a new low-density phase of magnesium sulfate hydrate.

  15. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  16. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Kalensky, Michael; Chemerisov, Sergey

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  17. Response to Julian et al. (2015) "comment on and reinterpretation of Gabriel et al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'".

    PubMed

    Gabriel, Mark C; Axelrad, Don; Orem, William; Osborne, Todd Z

    2015-06-01

    The purpose of this forum is to respond to a rebuttal submitted by Julian et al., Environ Manag 55:1-5, 2015 where they outlined their overall disagreement with the data preparation, methods, and interpretation of results presented in Gabriel et al. (Environ Manag 53:583-593, 2014). Here, we provide background information on the research premise presented in Gabriel et al. (Environ Manag 53:583-593, 2014) and provide a defense for this work using five themes. In spite of what Julian et al. perceive as limitations in the sampling methods and analytical tools used for this work, the relationships found between fish total mercury and surface water sulfate concentrations in Gabriel et al. (Environ Manag 53:583-593, 2014) are comparable to relationships between pore water methylmercury (MeHg) and pore water sulfate found in past studies indicating that sulfate is important to MeHg production and bioaccumulation in the Everglades. Julian et al. state "…there is no way to justify any ecosystem-wide sulfur strategy as a management approach to reduce mercury risk in the (Everglades) as suggested by Gabriel et al. (Environ Manag 53:583-593, 2014), Corrales et al. (Sci Tot Environ 409:2156-2162, 2011) and Orem et al. (Rev Environ Sci Technol 41 (S1):249-288, 2011)." We disagree, and having stated why sulfate input reduction to the Everglades may be the most effective means of reducing mercury in Everglades fish, it is important that research on sulfur and mercury biogeochemistry continues. If further studies support the relationship between sulfate loading reduction and MeHg reduction, sulfur mass balance studies should commence to (1) better quantify agricultural and connate seawater sulfate inputs and (2) define opportunities to reduce sulfate inputs to the Everglades ecosystem.

  18. Effectiveness of copper sulfate, potassium permanganate, and peracetic acid to reduce mortality and infestation of Ichthyobodo nector in channel catfish Ictalurus punctatus (Rafinesque 1818)

    USDA-ARS?s Scientific Manuscript database

    Ichthyobodo necator is a single celled bi-flagellate parasite, and in high density can causes significant mortality in young fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated con...

  19. Impacts of Four SO2 Oxidation Pathways on Wintertime Sulfate Concentrations

    NASA Astrophysics Data System (ADS)

    Sarwar, G.; Fahey, K.; Zhang, Y.; Kang, D.; Mathur, R.; Xing, J.; Wei, C.; Cheng, Y.

    2017-12-01

    Air quality models tend to under-estimate winter-time sulfate concentrations compared to observed data. Such under-estimations are particularly acute in China where very high concentrations of sulfate have been measured. Sulfate is produced by oxidation of sulfur dioxide (SO2) in gas-phase by hydroxyl radical and in aqueous-phase by hydrogen peroxide, ozone, etc. and most air quality models employ such typical reactions. Several additional SO2 oxidation pathways have recently been proposed. Heterogeneous reaction on dust has been suggested to be an important sink for SO2. Oxidation of SO2 on fine particles in presence of nitrogen dioxide (NO2) and ammonia (NH3) at high relative humidity has been implicated for sulfate formation in Chinese haze and London fog. Reactive nitrogen chemistry in aerosol water has also been suggested to produce winter-time sulfate in China. Specifically, high aerosol water can trap SO2 which can be subsequently oxidized by NO2 to form sulfate. Aqueous-phase (in-cloud) oxidation of SO2 by NO2 can also produce sulfate. Here, we use the hemispheric Community Multiscale Air Quality (CMAQ) modeling system to examine the potential impacts of these SO2 oxidation pathways on sulfate formation. We use anthropogenic emissions from the Emissions Database for Global Atmospheric Research and biogenic emissions from Global Emissions InitiAtive. We performed simulations without and with these SO2 oxidation pathways for October-December of 2014 using meteorological fields obtained from the Weather Research and Forecasting model. The standard CMAQ model contains one gas-phase chemical reaction and five aqueous-phase chemical reactions for SO2 oxidation. We implement four additional SO2 oxidation pathways into the CMAQ model. Our preliminary results suggest that the dust chemistry enhances mean sulfate over parts of China and Middle-East, the in-cloud SO2 oxidation by NO2 enhances sulfate over parts of western Europe, oxidation of SO2 by NO2 and NH3 on

  20. pH control of the structure, composition, and catalytic activity of sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.

    2013-02-01

    We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to ˜2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to ˜80 m2/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions.

  1. Formation and deposition of volcanic sulfate aerosols on Mars

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper considers the formation and deposition of volcanic sulfate aerosols on Mars. The rate limiting step in sulfate aerosol formation on Mars is the gas phase oxidation of SO2 by chemical reactions with O, OH, and HO2; submicron aerosol particles would circuit Mars and then be removed from the atmosphere by gravitational forces, globally dispersed, and deposited over a range of equatorial and mid-latitudes. Volcanic sulfate aerosols on Mars consist of liquid droplets and slurries containing sulfuric acid; aerosol deposition on a global or hemispheric scale could account for the similar concentrations of sulfur within surficial soils at the two Viking lander sites.

  2. Kriging Direct and Indirect Estimates of Sulfate Deposition: A Comparison

    Treesearch

    Gregory A. Reams; Manuela M.P. Huso; Richard J. Vong; Joseph M. McCollum

    1997-01-01

    Due to logistical and cost constraints, acidic deposition is rarely measured at forest research or sampling locations. A crucial first step to assessing the effects of acid rain on forests is an accurate estimate of acidic deposition at forest sample sites. We examine two methods (direct and indirect) for estimating sulfate deposition at atmospherically unmonitored...

  3. Influence of hydronium, sulfate, chloride and other non-carbonate ions on hydrogen generation by anaerobic corrosion of granular cast iron.

    PubMed

    Ruhl, Aki S; Jekel, Martin

    2013-10-15

    Permeable reactive barriers are successfully applied for the removal of various contaminants. The concomitant reduction of hydrogen ions and the subsequent formation of hydrogen gas by anaerobic corrosion lead to decreased pore volume filled with water and thus residence times, so called gas clogging. Long term column experiments were conducted to elucidate the impact of ubiquitous water constituents on the formation of hydrogen gas and potential passivation due to corrosion products. The collected gas volumes revealed a relation to the hydronium concentration (pH) but were only slightly increased in the presence of chloride and sulfate and not significantly influenced in the presence of phosphate, silicate, humic acid and ammonium compared to deionized water. Significant gas volumes within the reactive filling were verified by gravimetry. The presence of nitrate completely eliminated hydrogen formation by competition for electrons. Solid phase analyses revealed that neither chloride nor sulfate was incorporated in corrosion products in concentrations above 0.1 weight percent, and they did not alter the formation of mainly magnetite in comparison to deionized water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment.

    PubMed

    Baldwin, Darren S; Mitchell, Alison

    2012-03-15

    The impact of sulfate pollution is increasingly being seen as an issue in the management of inland aquatic ecosystems. In this study we use sediment slurry experiments to explore the addition of sulfate, with or without added carbon, on the anaerobic biogeochemical cycles in a wetland sediment that previously had not been exposed to high levels of sulfate. Specifically we looked at the cycling of S (sulfate, dissolved and particulate sulfide--the latter measured as acid volatile sulfide; AVS), C (carbon dioxide, bicarbonate, methane and the short chain volatile fatty acids formate, acetate, butyrate and propionate), N (dinitrogen, ammonium, nitrate and nitrite) and redox active metals (Fe(II) and Mn(II)). Sulfate had the largest effects on the cycling of S and C. All the added S at lower loadings were converted to AVS over the course of the experiment (30 days). At the highest loading (8 mmol) less than 50% of consumed S was converted to AVS, however this is believed to be a kinetic effect. Although sulfate reduction was occurring in sediments with added sulfate, dissolved sulfide concentrations remained low throughout the study. Sulfate addition affected methanogenesis. In the absence of added carbon, addition of sulfate, even at a loading of 1 mmol, resulted in a halving of methane formation. The initial rate of formation of methane was not affected by sulfate if additional carbon was added to the sediment. However, there was evidence for anaerobic methane oxidation in those sediments with added sulfate and carbon, but not in those sediments treated only with carbon. Surprisingly, sulfate addition had little apparent impact on N dynamics; previous studies have shown that sulfide can inhibit denitrification and stimulate dissimilatory nitrate reduction to ammonia. We propose that because most of the reduced sulfur was in particulate form, levels of dissolved sulfide were too low to interfere with the N cycle. Crown Copyright © 2011. Published by Elsevier Ltd. All

  5. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  6. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... sulfate-quaternized (PMN P-10-458; CAS No. 1211825-32-9) is subject to reporting under this section for...

  7. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... sulfate-quaternized (PMN P-10-458; CAS No. 1211825-32-9) is subject to reporting under this section for...

  8. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... sulfate-quaternized (PMN P-10-458; CAS No. 1211825-32-9) is subject to reporting under this section for...

  9. Biogenic barite preciptiation at micromolar ambient sulfate

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Pryer, H. V.; Nielsen, S.; Ricketts, R. D.

    2016-12-01

    Earth's early oceans were essentially devoid of sulfate, yet barium sulfate (barite) deposits are common to ancient sediments. Most explanations for this `barite paradox' overlook biogenic barite precipitation—the dominant vector of particulate barium cycling in modern seawater—as the ancient oceans were presumably strongly undersaturated with respect to barite. We tested whether biogenic barite could indeed precipitate at trace sulfate by examining the particulate multi-element and Ba-isotopic geochemistry of one of the largest trace-sulfate ecosystems on Earth: Lake Superior. Despite exceptional levels of barite undersaturation in Lake Superior, we find unambiguous evidence of biogenic barite precipitation that is correlated with the depths of greatest organic matter remineralization in the water column. The overall pattern of particulate barium cycling in Lake Superior is strikingly similar to that seen in the open ocean, supporting the critical role of particle-associated `microenvironments' that become rich in respired sulfate as protected sites of biogenic barite formation. Our observations offer a microbially-mediated mechanism for barite formation at micromolar ambient sulfate and thus also a potential resolution to the barite paradox in the ancient oceans.

  10. Temperature Dependence of Mineral Solubility in Water. Part 3. Alkaline and Alkaline Earth Sulfates

    NASA Astrophysics Data System (ADS)

    Krumgalz, B. S.

    2018-06-01

    The databases of alkaline and alkaline earth sulfate solubilities in water at various temperatures were created using experimental data from the publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperatures and represented by polynomial expressions.

  11. Recovery and purification of limonin from pummelo [Citrus grandis] peel using water extraction, ammonium sulfate precipitation and resin adsorption.

    PubMed

    Yang, Yuan Fan; Zhang, Liang Zheng; Du, Xi Ping; Zhang, Su Fang; Li, Li Jun; Jiang, Ze Dong; Wu, Li Ming; Ni, Hui; Chen, Feng

    2017-08-15

    Limonin is a bioactive compound that is traditionally extracted from citrus seeds using organic solvents or alkaline/metal ion solutions. In the present study, pummelo [Citrus grandis] peel was investigated for limonin preparation using a novel process consisting of water extraction, ammonium sulfate precipitation and resin adsorption. The pummelo peel was determined to have 4.7mg/g limonin, which could be extracted by water and further recovered by ammonium sulfate precipitation with a yield of 2.4mg/g, which was similar to that of traditional process using ethanol extraction and vacuumed evaporation. The precipitated limonin was purified by resin adsorption and crystallization with a purity of 96.4%. In addition, the limonin was identified via the analyses of retention time, infrared spectrum and nuclear magnetic resonance. This study indicates a novel and eco-friendly process for recovering limonin, providing a new candidate for limonin preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.

    PubMed

    Einsiedl, Florian

    2009-01-01

    The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water

  13. Water-quality data of soil water from three watersheds, Shenandoah National Park, Virginia, 1999-2000

    USGS Publications Warehouse

    Rice, Karen C.; Maben, Suzanne W.; Webb, James R.

    2001-01-01

    Data on the chemical composition of soil-water samples were collected quarterly from three watersheds in Shenandoah National Park, Virginia, from September 1999 through July 2000. The soil-water samples were analyzed for specific conductance and concentrations of sodium, potassium, calcium, magnesium, ammonium, chloride, nitrate, sulfate, acid-neutralizing capacity, silica, and total monomeric aluminum. The soil-water data presented in this report can be used to support water-quality modeling of the response of streams to episodic acidification. Laboratory analytical data as well as laboratory quality-assurance information also are presented.

  14. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    PubMed

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  15. Aggrecan-Like Biomimetic Proteoglycans (BPGs) Composed of Natural Chondroitin Sulfate Bristles Grafted onto Poly(acrylic acid) Core for Molecular Engineering of the Extracellular Matrix.

    PubMed

    Prudnikova, K; Lightfoot Vidal, S E; Sarkar, S; Yu, T; Yucha, R W; Ganesh, N; Penn, L S; Han, L; Schauer, C L; Vresilovic, E J; Marcolongo, M S

    2018-05-10

    Biomimetic proteoglycans (BPGs) were designed to mimic the three-dimensional (3D) bottlebrush architecture of natural extracellular matrix (ECM) proteoglycans, such as aggrecan. BPGs were synthesized by grafting native chondroitin sulfate bristles onto a synthetic poly(acrylic acid) core to form BPGs at a molecular weight of approximately ∼1.6 MDa. The aggrecan mimics were characterized chemically, physically, and structurally, confirming the 3D bottlebrush architecture as well as a level of water uptake, which is greater than that of the natural proteoglycan, aggrecan. Aggrecan mimics were cytocompatible at physiological concentrations. Fluorescently labeled BPGs were injected into the nucleus pulposus of the intervertebral disc ex vivo and were retained in tissue before and after static loading and equilibrium conditioning. BPGs infiltrated the tissue, distributed and integrated with the ECM on a molecular scale, in the absence of a bolus, thus demonstrating a new molecular approach to tissue repair: molecular matrix engineering. Molecular matrix engineering may compliment or offer an acellular alternative to current regenerative medicine strategies. Aggrecan is a natural biomolecule that is essential for connective tissue hydration and mechanics. Aggrecan is composed of negatively charged chondroitin sulfate bristles attached to a protein core in a bottlebrush configuration. With age and degeneration, enzymatic degradation of aggrecan outpaces cellular synthesis resulting in a loss of this important molecule. We demonstrate a novel biomimetic molecule composed of natural chondroitin sulfate bristles grafted onto an enzymatically-resistant synthetic core. Our molecule mimics a 3D architecture and charge density of the natural aggrecan, can be delivered via a simple injection and is retained in tissue after equilibrium conditioning and loading. This novel material can serve as a platform for molecular repair, drug delivery and tissue engineering in regenerative

  16. Localization and characterization of acharan sulfate in the body of the giant African snail Achatina fulica.

    PubMed

    Jeong, J; Toida, T; Muneta, Y; Kosiishi, I; Imanari, T; Linhardt, R J; Choi, H S; Wu, S J; Kim, Y S

    2001-12-01

    Acharan sulfate is a glycosaminoglycan (GAG), having the structure -->4)-2-acetamido-2-deoxy-alpha-D-glucopyranose(1-->4)-2-sulfo-alpha-L-idopyranosyluronic acid (1-->, isolated from the body of the giant African snail Achatina fulica. This GAG represents 3-5% of the dry weight of this snail's soft body tissues. Frozen sections and polyester wax sections of the snail's body were stained by Alcian blue-periodic acid-Schiff's reagent (PAS) to localize acharan sulfate. Alcian blue staining indicated that GAG was mainly secreted into the outer surface of the body from internal granules. A highly mucous material was collected and treated and the acharan sulfate was recovered by ethanol and cetyl pyridinium chloride precipitation. Crude acharan sulfate was purified by DEAE-Sephacel ion-exchange chromatography. Depolymerization of intact mucus and purified acharan sulfate fractions by heparin lyase II (heparitinase I) from Flavobacterium heparinum produced an unsaturated disaccharide as a major product, establishing the repeating unit of acharan sulfate. These results demonstrate that mucus in the granule and secreted to the outside of the body is composed entirely of acharan sulfate.

  17. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  18. Highly efficient sulfated Zr-doped titanoniobate nanoplates for the alcoholysis of styrene epoxide at room temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Lihong; Hu, Chenhui; Mei, Weigang; Zhang, Junfeng; Cheng, Liyuan; Xue, Nianhua; Ding, Weiping; Chen, Jing; Hou, Wenhua

    2015-12-01

    Sulfated Zr-doped titanoniobate nanoplates were prepared and evaluated as a solid acid catalyst in the alcoholysis of styrene epoxide at room temperature. Compared with undoped and Zr-doped nanosheets, the resulting sulfated catalyst exhibited an excellent catalytic performance to afford corresponding β-alkoxyalcohols (99% yield with methanol as nucleophile in only 10 min) due to the high dispersion of zirconia species on nanosheets, appropriate Lewis acid strength and amount from the strong interaction between zirconia and sulfate species, and greatly increased surface area arisen from the exfoliation and house-of-cards restacking of nanosheets. The corresponding catalytic mechanism was proposed and discussed. The obtained material may act as a promising catalyst in many acid catalyzed reactions.

  19. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.

    PubMed

    Guimarães, Damaris; Leão, Versiane A

    2014-12-01

    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate.

    PubMed

    Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E

    2018-02-01

    Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Use of cosmogenic 35S for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range

    USGS Publications Warehouse

    Sueker, J.K.; Turk, J.T.; Michel, R.L.

    1999-01-01

    High-elevation basins in Colorado are a major source of water for the central and western United States; however, acidic deposition may affect the quality of this water. Water that is retained in a basin for a longer period of time may be less impacted by acidic deposition. Sulfur-35 (35S), a short-lived isotope of sulfur (t( 1/2 ) = 87 days), is useful for studying short-time scale hydrologic processes in basins where biological influences and water/rock interactions are minimal. When sulfate response in a basin is conservative, the age of water may be assumed to be that of the dissolved sulfate in it. Three alpine-subalpine basins on granitic terrain in Colorado were investigated to determine the influence of basin morphology on the residence time of water in the basins. Fern and Spruce Creek basins are glaciated and accumulate deep snowpacks during the winter. These basins have hydrologic and chemical characteristics typical of systems with rapid hydrologic response times. The age of sulfate leaving these basins, determined from the activity of 35S, averages around 200 days. In contrast, Boulder Brook basin has broad, gentle slopes and an extensive cover of surficial debris. Its area above treeline, about one-half of the basin, is blown free of snow during the winter. Variations in flow and solute concentrations in Boulder Brook are quite small compared to Fern and Spruce Creeks. After peak snowmelt, sulfate in Boulder Brook is about 200 days older than sulfate in Fern and Spruce Creeks. This indicates a substantial source of older sulfate (lacking 35S) that is probably provided from water stored in pore spaces of surficial debris in Boulder Brook basin.

  2. Preparation and structural determination of large oligosaccharides derived from acharan sulfate

    PubMed Central

    Chi, Lianli; Munoz, Eva M.; Choi, Hyung Seok; Ha, Young Wan; Kim, Yeong Shik; Toida, Toshihiko; Linhardt, Robert J.

    2014-01-01

    The structures of a series of large oligosaccharides derived from acharan sulfate were characterized. Acharan sulfate is an unusual glycosaminoglycan isolated from the giant African snail, Achatina fulica. Oligosaccharides from decasaccharide to hexadecasaccharide were enzymatically prepared using heparin lyase II and purified. Capillary electrophoresis and gel electrophoresis confirmed the purity of these oligosaccharides. Their structures, determined by ESI-MS and NMR, were consistent with the major repeating sequence in acharan sulfate, →4)-α-d-GlcNpAc-(1→4)-α-l-IdoAp2S-(1→, terminated by 4-linked α-d-GlcNpAc residue at the reducing end and by 4,5-unsaturated pyranosyluronic acid 2-sulfate at the non-reducing end. PMID:16530176

  3. Reduced Sulfation of Chondroitin Sulfate but Not Heparan Sulfate in Kidneys of Diabetic db/db Mice

    PubMed Central

    Reine, Trine M.; Grøndahl, Frøy; Jenssen, Trond G.; Hadler-Olsen, Elin; Prydz, Kristian

    2013-01-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes. PMID:23757342

  4. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    PubMed

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  5. Heparan sulfate C5-epimerase is essential for heparin biosynthesis in mast cells.

    PubMed

    Feyerabend, Thorsten B; Li, Jin-Ping; Lindahl, Ulf; Rodewald, Hans-Reimer

    2006-04-01

    Biosynthesis of heparin, a mast cell-derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) residues. We have generated Hsepi-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted O-sulfation pattern.

  6. Evidence of sulfate-dependent anaerobic methane oxidation ...

    EPA Pesticide Factsheets

    The rapid development of unconventional gas resources has been accompanied by an increase in public awareness regarding the potential effects of drilling operations on drinking water sources. Incidents have been reported involving blowouts (e.g., Converse County, WY; Lawrence Township, PA; Aliso Canyon, CA) and home/property explosions (e.g., Bainbridge Township, OH; Dimock, PA; Huerfano County, CO) caused by methane migration in the subsurface within areas of natural gas development. We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Results show persistent secondary water quality impacts related to the biodegradation of methane. We identify four distinct characteristics of groundwater methane attenuation in the Poison Canyon aquifer: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher-molecular-weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. We also show that the biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic,

  7. A novel hypothesis for atherosclerosis as a cholesterol sulfate deficiency syndrome.

    PubMed

    Seneff, Stephanie; Davidson, Robert M; Lauritzen, Ann; Samsel, Anthony; Wainwright, Glyn

    2015-05-27

    Despite a vast literature, atherosclerosis and the associated ischemia/reperfusion injuries remain today in many ways a mystery. Why do atheromatous plaques make and store a supply of cholesterol and sulfate within the major arteries supplying the heart? Why are treatment programs aimed to suppress certain myocardial infarction risk factors, such as elevated serum homocysteine and inflammation, generally counterproductive? Our methods are based on an extensive search of the literature in atherosclerotic cardiovascular disease as well as in the area of the unique properties of water, the role of biosulfates in the vascular wall, and the role of electromagnetic fields in vascular flow. Our investigation reveals a novel pathology linked to atherosclerosis that better explains the observed facts than the currently held popular view. We propose a novel theory that atherosclerosis can best be explained as being due to cholesterol sulfate deficiency. Furthermore, atheromatous plaques replenish the supply of cholesterol and sulfate to the microvasculature, by exploiting the inflammatory agent superoxide to derive sulfate from homocysteine and other sulfur sources. We argue that the sulfate anions attached to the glycosaminoglycans in the glycocalyx are essential in maintaining the structured water that is crucial for vascular endothelial health and erythrocyte mobility through capillaries. Sulfate depletion leads to cholesterol accumulation in atheromas, because its transport through water-based media depends on sulfurylation. We show that streaming potential induces nitric oxide (NO) release, and NO derivatives break down the extracellular matrix, redistributing sulfate to the microvasculature. We argue that low (less negative) zeta potential due to insufficient sulfate anions leads to hypertension and thrombosis, because these responses can increase streaming potential and induce nitric-oxide mediated vascular relaxation, promoting oxygen delivery. Our hypothesis is a

  8. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  9. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  10. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    NASA Astrophysics Data System (ADS)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  11. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP wasmore » studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.« less

  12. Sulfated modification and anti-tumor activity of laminarin.

    PubMed

    Ji, Chen-Feng; Ji, Yu-Bin; Meng, DE-You

    2013-11-01

    The aim of this study was to investigate the sulfated modification of laminarin and the changes in structure and antitumor activity. The chlorosulfonic acid-pyridine method was applied for sulfated modification. The molecular weights of laminarin and laminarin sulfate (LAMS) were measured by high-performance liquid chromatography (HPLC), and IR and NMR spectra were also recorded. The surface conformations of laminarin and LAMS were observed with a scanning electron microscope. The antitumor activities of the two polysaccharides were also evaluated using an MTT assay. LAMS with a sulfate content of 45.92% and a molecular weight of 16,000 was synthesized. The IR spectra of laminarin and LAMS showed the characteristic absorption peaks of a polysaccharide, and LAMS also had the characteristic absorption peaks of sulfate moieties. The NMR spectra showed that laminarin and LAMS had β-(1→3) glycosidic bonds forming the main chain, and sulfate substitution was at the hydroxyl groups of C 2 and C 6 . Under the scanning electron microscope, there were clear differences in surface conformation between laminarin and LAMS; laminarin was cloud-like and spongy, while LAMS was block-like and flaky. The MTT results showed that laminarin and LAMS had inhibitory effects on LoVo cell growth, and the antitumor activity of LAMS was higher than that of laminarin at the same concentration. This suggests that sulfated modification was able to change the laminarin structure and markedly enhance the antitumor activity.

  13. National Acid Precipitation Assessment Program Report to Congress: An integrated assessment

    USGS Publications Warehouse

    Burns, Douglas A.; Fenn, Mark E.; Baron, Jill S.; Lynch, Jason A.; Cosby, Bernard J.

    2011-01-01

    Acid deposition, more commonly known as acid rain, occurs when emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) react in the atmosphere with water, oxygen, and oxidants to form various acidic compounds. Prevailing winds transport the acidic compounds hundreds of miles, often across state and national borders. These acidic compounds then fall to earth in either a wet form (rain, snow, and fog) or a dry form (gases, aerosols, and particles). At certain levels, the acidic compounds, including small particles such as sulfates and nitrates, can cause many negative human health and environmental effects.

  14. Experimental Evidence for Weathering and Martian Sulfate Formation Under Extremely Cold Weather-Limited Environments

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars [1, 2]. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions [3]. However, there are several problems with the presence of prolonged surface temperatures on Mars above 273 K during the Noachian including the faint young Sun [4] and the presence of suitable greenhouse gases [5]. The geomorphic evidence for early warm conditions may instead be explained by periodic episodes of warming rather than long term prolonged warm temperatures [6]. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history [6]. This view is more consistent with the climate models, but has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars [7, 8]. This study seeks to test whether sulfate formation may be possible at temperatures well below 0 C in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars.

  15. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Min; Wang, Xiao-Wei; Jing, Bo; Zhang, Yun-Hong; Ge, Mao-Fa

    2018-04-01

    The confocal Raman microscopy is utilized to investigate the liquid-liquid phase separation (LLPS) of mixed magnesium sulfate/glutaric acid (MgSO4/GA) droplets deposited on a hydrophobic polytetrafluoroethylene (PTFE) substrate and a hydrophilic quartz substrate. Raman spectra collected from different regions of the mixed droplets provide detailed information of component distributions for MgSO4 and GA. During the dehydration process, the MgSO4/GA mixed particles show the initial liquid-liquid phase separation between 85% and 80% relative humidity (RH) on both the hydrophobic and hydrophilic substrates. For the droplets deposited on the two substrates, the inner phase of droplets is dominated by aqueous MgSO4, which is surrounded by a rich GA organic layer due to the surface tension effects. In addition, the crystallization of GA could be observed in the organic aqueous phase while it is inhibited in the inner MgSO4 phase due to the effects of gel formation of MgSO4 at low RH. The Raman spectra reveal that with decreasing RH the morphology of the mixed droplet evolves from a uniform droplet to the structure of LLPS with the GA crystallizing in the outer layer and MgSO4 gel formed in the inner phase. These findings contribute to the further understanding of the role of interactions between inorganic salts and organic acids on the morphological evolution and environmental effects of atmospheric aerosols under ambient RH conditions.

  16. Mineralogical controls on mobility of rare earth elements in acid mine drainage environments.

    PubMed

    Soyol-Erdene, T O; Valente, T; Grande, J A; de la Torre, M L

    2018-08-01

    Rare earth elements (REE) were analyzed in river waters, acid mine waters, and extracts of secondary precipitates collected in the Iberian Pyrite Belt. The obtained concentrations of the REE in river water and mine waters (acid mine drainage - AMD) were in the range of 0.57 μg/L (Lu) and 2579 μg/L (Ce), which is higher than previously reported in surface waters from the Iberian Pyrite Belt, but are comparable with previous findings from AMD worldwide. Total REE concentrations in river waters were ranged between 297 μg/L (Cobica River) and 7032 μg/L (Trimpancho River) with an average of 2468 μg/L. NASC (North American Shale Composite) normalized REE patterns for river and acid mine waters show clear convex curvatures in middle-REE (MREE) with respect to light- and heavy-REE. During the dissolution experiments of AMD-precipitates, heavy-REE and middle-REE generate the most enriched patterns in the solution. A small number of precipitates did not display MREE enrichment (an index Gd n /Lu n  < 1.0) in NASC normalized pattern and produced relatively lower REE concentrations in extracts. Additionally, very few samples, which mainly contained aluminum sulfates, e.g., pickeringite and alunogen, displayed light-REE enrichment relative to heavy-REE (HREE). In general, the highest retention of REE occurs in samples enriched in magnesium (epsomite or hexahydrite) and aluminum sulfates, mainly pickeringite. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Mechanisms and Effectivity of Sulfate Reducing Bioreactors ...

    EPA Pesticide Factsheets

    Mining-influenced water (MIW) is the main environmental challenges associated with the mining industry. Passive MIW remediation can be achieved through microbial activity in sulfate-reducing bioreactors (SRBRs), but their actual removal rates depend on different factors, one of which is the substrate composition. Chitinous materials have demonstrated high metal removal rates, particularly for the two recalcitrant MIW contaminants Zn and Mn, but their removal mechanisms need further study. We studied Cd, Fe, Zn, and Mn removal in bioactive and abiotic SRBRs to elucidate the metal removal mechanisms and the differences in metal and sulfate removal rates using a chitinous material as substrate. We found that sulfate-reducing bacteria are effective in increasing metal and sulfate removal rates and duration of operation in SRBRs, and that the main mechanism involved was metal precipitation as sulfides. The solid residues provided evidence of the presence of sulfides in the bioactive column, more specifically ZnS, according to XPS analysis. The feasibility of passive treatments with a chitinous substrate could be an important option for MIW remediation. Mining influenced water (MIW) remediation is still one of the top priorities for the agency because it addresses the most important environmental problem associated with the mining industry and that affects thousands of communities in the U.S. and worldwide. In this paper, the MIW bioremediation mechanisms are studied

  18. Characterization of sulfate reducing bacteria isolated from urban soil

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Wang, Haixia

    2017-05-01

    Sulfate reducing bacteria (SRB) was isolated from urban soil and applied for the remediation of heavy metals pollution from acid mine drainage. The morphology and physiological characteristics (e.g. pH and heavy metals tolerance) of SRB was investigated. The SRB was gram-negative bacteria, long rod with slight curve, cell size 0.5× (1.5-2.0) μm. The pH of medium had significant effect on SRB growth and the efficiency of sulfate reduction, and it showed that the suitable pH range was 5-9 and SRB could not survive at pH less than 4. The maximum tolerance of Fe (II), Zn (II), Cd (II), and Cu (II) under acidic condition (pH 5.0) was about 600 mg/L, 150 mg/L, 25 mg/L and 25 mg/L, respectively. The result indicated that SRB isolated in this study could be used for the bioremediation of acid mine drainage (pH>4) within the heavy metals concentrations tolerance.

  19. Sulfate threshold target to control methylmercury levels in wetland ecosystems

    USGS Publications Warehouse

    Corrales, J.; Naja, G.M.; Dziuba, C.; Rivero, R.G.; Orem, W.

    2011-01-01

    Sulfate contamination has a significant environmental implication through the stimulation of toxic hydrogen sulfide and methylmercury (MeHg) production. High levels of MeHg are a serious problem in many wetland ecosystems worldwide. In the Florida Everglades, it has been demonstrated that increasing MeHg occurrence is due to a sulfate contamination problem. A promising strategy of lowering the MeHg occurrence is to reduce the amount of sulfate entering the ecosystem. High surface water sulfate concentrations in the Everglades are mainly due to discharges from the Everglades Agricultural Area (EAA) canals. Water and total sulfur mass balances indicated that total sulfur released by soil oxidation, Lake Okeechobee and agricultural application were the major sources contributing 49,169, 35,217 and 11,775mtonsyear-1, respectively. Total sulfur loads from groundwater, levees, and atmospheric deposition contributed to a lesser extent: 4055; 5858 and 4229mtonsyear-1, respectively. Total sulfur leaving the EAA into Water Conservation Areas (WCAs) through canal discharge was estimated at 116,360mtonsyear-1, and total sulfur removed by sugarcane harvest accounted for 23,182mtonsyear-1. Furthermore, a rise in the mineral content and pH of the EAA soil over time, suggested that the current rates of sulfur application would increase as the buffer capacity of the soil increases. Therefore, a site specific numeric criterion for sulfate of 1mgL-1 was recommended for the protection of the Everglades; above this level, mercury methylation is enhanced. In parallel, sulfide concentrations in the EAA exceeded the 2??gL-1 criterion for surface water already established by the U.S. Environmental Protection Agency (EPA). ?? 2011 Elsevier B.V.

  20. Synthesis of the 3-sulfates of N-acetylcysteine conjugated bile acids (BA-NACs) and their transient formation from BA-NACs and subsequent hydrolysis by a rat liver cytosolic fraction as shown by liquid chromatography/electrospray ionization-mass spectrometry.

    PubMed

    Mitamura, Kuniko; Sakai, Toshihiro; Nakai, Risa; Wakamiya, Tateaki; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo

    2011-06-01

    Previous work from this laboratory has reported the chemical synthesis of N-acetylcysteine (NAC) conjugates of natural bile acids (BAs) and shown that such novel conjugates can be formed in vivo in rats to which NAC has been administered. The subsequent fate of such novel conjugates is not known. One possible biotransformation is sulfation, a major pathway for BAs N-acylamidates in patients with cholestatic liver disease. Here, we report the chemical synthesis of the 3-sulfates of the S-acyl NAC conjugates of five natural BAs (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic). We also measured the sulfation of N-acetylcysteine-natural bile acid (BA-NAC) conjugates when they were incubated with a rat liver cytosolic fraction. The chemical structures of the BA-NAC 3-sulfates were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation of singly and doubly charged deprotonated molecules, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. When BA-NACs were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate was added, sulfation occurred, but the dominant reaction was hydrolysis of the S-acyl linkage to form the unconjugated BAs. Subsequent sulfation occurred at C-3 on the unconjugated BAs that had been formed from the BA-NACs. Such sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus, NAC conjugates of BAs as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.

  1. Recalibrating the concentration of Precambrian seawater sulfate

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Bradley, A. S.; Hoarfrost, A.; Girguis, P. R.

    2010-12-01

    The isotopic offset between sulfate sulfur and sulfide sulfur (δ34Ssulfate-sulfide) is widely used in the Precambrian as a paleo-indicator of seawater sulfate concentrations. Popularized by experimental work proposing an increase in seawater sulfate at the Archean - Proterozoic boundary, the concept of using a calibrated physiological process (dissimilatory sulfate reduction) to extract environmental information holds the potential to unlock numerous geological questions. To that end, the interpretability of sulfur isotope records relies on the degree to which strict quantitative constraints have been placed on the relationship between sulfate concentrations and sulfate reducing bacteria. Our work serves to extend those constraints. Here we present data from a series of replicate quasi-chemostat microbial reactors, inoculated with marine sediment from Monterey Bay and incubated with artificial seawater ([SO42-]< 5 mM). Our experimental design continuously removes sulfide and allows for systematic tracking of the dependence of δ34Ssulfate-sulfide on seawater sulfate concentration. In addition to expanding the existing δ34S context, we target high-precision multiple sulfur isotope data, which allows for a greater interpretability of both the overall result and its mapping onto environmental records. Further, we use natural abundance and δ18O spiked water within our experiments to assay rates of cellular re-oxidation (within the sulfate reduction pathway) and to constrain natural δ18O effects within these systems. Finally, we use modern molecular biological techniques to track community structure as a function of time and environmental conditions. Together, these data provide an integrated metric with which to interpret complex natural sulfur isotope records.

  2. Mono- & Polyhydrated Sulfates in Aureum Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of layered deposits in Aureum Chaos was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on June 6, 2007 at 0347 UTC (11:47 p.m. EDT on June 5, 2007), near 3.5 degrees south latitude, 333.25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is just over 10 kilometers (6 miles) wide at its narrowest point.

    Aureum Chaos lies in the eastern part of the Valles Marineris canyon system, southwest of a 280 kilometer (174 mile) diameter, highly modified impact crater called Aram Chaos. Both regions hold examples of chaotic terrain that is characterized by randomly oriented, large-scale mesas and knobs. In this region of Mars, these features range in size from a few kilometers to tens of kilometers wide and tend to be heavily eroded. As its name implies, chaotic terrain is extremely irregular. It is most likely the result of collapsed surface material that settled when subsurface ice, water, or magma was released.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data cover an area riddled with knobs. The lower two images were constructed by draping CRISM images over topography and exaggerating the vertical scale to better illustrate the region's topography. The upper right is an infrared, false color image that reveals layered deposits of a light-colored material along the flanks of several knobs. The lower-left image reveals the mineralogical composition of these layers, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral) and blue polyhydrated sulfates (sulfates with multiple waters per mineral molecule). There are two possible explanations for the compositional banding. The first is deposition of

  3. Mechanism of Na2SO4 Promoting Nickel Extraction from Sulfide Concentrates by Sulfation Roasting-Water Leaching

    NASA Astrophysics Data System (ADS)

    Li, Guangshi; Cheng, Hongwei; Chen, Sha; Lu, Xionggang; Xu, Qian; Lu, Changyuan

    2018-04-01

    As a more environmentally friendly and energy-efficient route, the sulfation roasting-water leaching technique has been developed for highly effective extraction of non-ferrous metals from nickel sulfide concentrate in the presence of a Na2SO4 additive. The effects of several important roasting parameters—the roasting temperature, the addition of Na2SO4, the holding time, and the heating rate in particular—have been investigated. The results suggest that about 90 pct Ni, 92 pct Co, 95 pct Cu, and < 1 pct Fe can be leached from the calcine roasted under the optimum conditions. Furthermore, the behavior and mechanism of the Na2SO4 additive in the roasting process have been well addressed by detailed characterization of the roasted product and leaching residue using quantitative phase analysis (QPA) and energy dispersive spectroscopy (EDS) mapping. The Na2SO4 additive was observed to play a noticeable role in promoting the sulfation degree of valuable metals by forming liquid phases [Na2Me(SO4)2] at the outermost layer, which can create a suitable dynamic environment for sulfation. Thus, addition of Na2SO4 might be conducive to an alternative metallurgical process involving complex sulfide ores.

  4. Mechanism of Na2SO4 Promoting Nickel Extraction from Sulfide Concentrates by Sulfation Roasting-Water Leaching

    NASA Astrophysics Data System (ADS)

    Li, Guangshi; Cheng, Hongwei; Chen, Sha; Lu, Xionggang; Xu, Qian; Lu, Changyuan

    2018-06-01

    As a more environmentally friendly and energy-efficient route, the sulfation roasting-water leaching technique has been developed for highly effective extraction of non-ferrous metals from nickel sulfide concentrate in the presence of a Na2SO4 additive. The effects of several important roasting parameters—the roasting temperature, the addition of Na2SO4, the holding time, and the heating rate in particular—have been investigated. The results suggest that about 90 pct Ni, 92 pct Co, 95 pct Cu, and < 1 pct Fe can be leached from the calcine roasted under the optimum conditions. Furthermore, the behavior and mechanism of the Na2SO4 additive in the roasting process have been well addressed by detailed characterization of the roasted product and leaching residue using quantitative phase analysis (QPA) and energy dispersive spectroscopy (EDS) mapping. The Na2SO4 additive was observed to play a noticeable role in promoting the sulfation degree of valuable metals by forming liquid phases [Na2Me(SO4)2] at the outermost layer, which can create a suitable dynamic environment for sulfation. Thus, addition of Na2SO4 might be conducive to an alternative metallurgical process involving complex sulfide ores.

  5. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  6. Developmental toxicity evaluations of whole mixtures of disinfection by-products using concentrated drinking water in rats: gestational and lactational effects of sulfate and sodium.

    PubMed

    Narotsky, Michael G; Pressman, Jonathan G; Miltner, Richard J; Speth, Thomas F; Teuschler, Linda K; Rice, Glenn E; Richardson, Susan D; Best, Deborah S; McDonald, Anthony; Hunter, E Sidney; Simmons, Jane Ellen

    2012-06-01

    A developmental toxicity bioassay was used in three experiments to evaluate water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135-fold by reverse osmosis; select lost disinfection by-products were spiked back. Concentrate was provided as drinking water to Sprague-Dawley and F344 rats from gestation day 6 to postnatal day 6. Maternal serum levels of luteinizing hormone on gestation day 10 were unaffected by treatment for both strains. Treated dams had increased water consumption, and increased incidences of polyuria, diarrhea, and (in Sprague-Dawley rats) red perinasal staining. Pup weights were reduced. An increased incidence of eye defects was seen in F344 litters. Chemical analysis of the concentrate revealed high sodium (6.6 g/l) and sulfate (10.4 g/l) levels. To confirm that these chemicals caused polyuria and osmotic diarrhea, respectively, Na₂SO₄ (5-20 g/l) or NaCl (16.5 g/l) was provided to rats in drinking water. Water consumption was increased at 5- and 10-g Na₂SO₄/l and with NaCl. Pup weights were reduced at 20-g Na₂SO₄/l. Dose-related incidences and severity of polyuria and diarrhea occurred in Na₂SO₄-treated rats; perinasal staining was seen at 20 g/l. NaCl caused polyuria and perinasal staining, but not diarrhea. Subsequently, water was concentrated ∼120-fold and sulfate levels were reduced by barium hydroxide before chlorination, yielding lower sodium (≤1.5 g/l) and sulfate (≤2.1 g/l) levels. Treatment resulted in increased water consumption, but pup weight and survival were unaffected. There were no treatment-related clinical findings, indicating that mixtures produced by the second method are suitable for multigenerational testing. Published 2012 by Wiley Periodicals, Inc.

  7. Fragmentations of [M-H]- anions of peptides containing Ser sulfate. A joint experimental and theoretical study.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2013-11-15

    To determine the negative-ion cleavages from [M-H](-) ions of Ser sulfate-containing peptides using experiment and theory in concert. Fragmentations were explored using a Waters QTOF2 mass spectrometer in negative-ion electrospray mode, together with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. Peptides used in this study were: GS(SO3H)(OH) 1 GS(SO3H)(OCH3) 1a GAVS(SO3H)(OH) 2 GAVS(SO3H)(OCH3) 2a GLS(SO3H)(GVA(OH) 3 GLS(SO3H)GDA(OH) 4 GLS(SO3H)GS(SO3H)A(OH) 5. Previously, it has been shown that a peptide containing a Tyr sulfate group shows [(M-H)(-) -SO3] as the base peak. Only a small peak was observed corresponding to HOSO3(-) (formed following rearrangement of the sulfate). A Ser sulfate-containing peptide, in contrast, shows pronounced peaks due to cleavage product anions [(M-H)(-)-SO3] and HOSO3(-). Theoretical calculations at the CAM-B3LYP/6-311++g(d,p) level of theory suggest that rearrangement of a Ser sulfate to give C-terminal CO2SO3H is energetically unfavourable in comparison with fragmentation of the intact Ser sulfate to yield [(M-H)(-)-SO3] and HOSO3(-). [(M-H)(-)-H2SO4] anions are not observed in the spectra of peptides containing Ser sulfate, presumably because HOSO3(-) is a relatively weak gas-phase base (ΔGacid = 1265 kJ mol(-1)). Experimental and theoretical data suggest that [(M-H)(-)-SO3] and HOSO3(-) product anions (from a peptide with a C-terminal Ser sulfate) are formed from the serine sulfate anion accompanied by specific proton transfer. CID MS/MS/MS data for an [(M-H)(-)-SO3] ion of an underivatised sulfate-containing peptide will normally allow the determination of the amino acid sequence of that peptide. The one case we have studied where that is not the case is GLS(SO3H)GDA(OH), where the peptide contains Ser sulfate and Asp, where the diagnostic Asp cleavages are competitive with the Ser sulfate cleavages. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xin; Song, Yu; Zhao, Chun

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³more » and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.« less

  9. The selective determination of sulfates, sulfonates and phosphates in urine by CE-MS.

    PubMed

    Bunz, Svenja-Catharina; Weinmann, Wolfgang; Neusüss, Christian

    2010-04-01

    Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, highly polar and ionic substances are rarely included as analytical tools are missing. In this study, we present a new method for the determination of urinary sulfates, sulfonates, phosphates and other anions of strong acids. The method comprises a CE separation using an acidic BGE (pHsulfates and sulfonates are detected in the first part of the electropherogram, followed by phosphates and potentially highly acidic carboxylates. The selectivity for sulfur-containing species is proved using extracted ion electropherograms based on certain isotopic ratios. Ethyl sulfate can be determined by this method and, thus, CE-MS can be used for determination of this alcohol consumption marker. An SPE method was developed for the extraction of ethyl sulfate and other organic anions. Several additional compounds can be identified based on the accurate mass determined by the TOF MS in conjunction with databases. However, numerous detected compounds have not been reported in urinary metabolite databases so far. Thus, it is demonstrated that the presented method is complementary to the existing methods for metabolite characterization in urine.

  10. Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly(lactic-co-glycolic acid).

    PubMed

    Choi, Sung Yoon; Hur, Woojune; Kim, Byeung Kyu; Shasteen, Catherine; Kim, Myung Hun; Choi, La Mee; Lee, Seung Ho; Park, Chun Gwon; Park, Min; Min, Hye Sook; Kim, Sukwha; Choi, Tae Hyun; Choy, Young Bin

    2015-04-01

    Bone fixation systems made of biodegradable polymers are radiolucent, making post-operative diagnosis with X-ray imaging a challenge. In this study, to allow X-ray visibility, we separately prepared a radiopaque layer and attached it to a bioabsorbable bone plate approved for clinical use (Inion, Finland). We employed barium sulfate as a radiopaque material due to the high X-ray attenuation coefficient of barium (2.196 cm(2) /g). The radiopaque layer was composed of a fine powder of barium sulfate bound to a biodegradable material, poly(lactic-co-glycolic acid) (PLGA), to allow layer degradation similar to the original Inion bone plate. In this study, we varied the mass ratio of barium sulfate and PLGA in the layer between 3:1 w/w and 10:1 w/w to modulate the degree and longevity of X-ray visibility. All radiopaque plates herein were visible via X-ray, both in vitro and in vivo, for up to 40 days. For all layer types, the radio-opacity decreased with time due to the swelling and degradation of PLGA, and the change in the layer shape was more apparent for layers with a higher PLGA content. The radiopaque plates released, at most, 0.5 mg of barium sulfate every 2 days in a simulated in vitro environment, which did not appear to affect the cytotoxicity. The radiopaque plates also exhibited good biocompatibility, similar to that of the Inion plate. Therefore, we concluded that the barium sulfate-based, biodegradable plate prepared in this work has the potential to be used as a fixation device with both X-ray visibility and biocompatibility. © 2014 Wiley Periodicals, Inc.

  11. The structural features of the sulfated heteropolysaccharide (ST-1) from Sargassum thunbergii and its neuroprotective activities.

    PubMed

    Jin, Weihua; Liu, Bing; Li, Shuai; Chen, Jing; Tang, Hong; Jiang, Di; Zhang, Quanbin; Zhong, Weihong

    2018-03-01

    Polysaccharide (ST) was prepared from Sargassum thunbergii using hot water. Two fractions (ST-1 and ST-2) were prepared using anion exchange chromatography. One desulfated polysaccharide (ST-1-DS) was also prepared. Electrospray ionization mass spectrometry (ESI-MS) performed on ST-1-DS showed that the desulfated polysaccharides contained methyl glycosides of mono-sulfated and di-sulfated galacto-fucooligosaccharides. This result suggested that ST-1 might contain sulfated galactofucan, which consists of a backbone of alternating (Gal) n and (Fuc) n and sulfated randomly on Gal and mainly on C-2 in Fuc. In addition, ST-1 was degraded in 1M sulfuric acid. The solution was centrifuged, and the supernatant was concentrated and precipitated in ethanol to obtain the precipitate (ST-1-P). ST-1-P was then separated using gel chromatography and anion exchange chromatography to obtain the oligomers. ESI-MS spectra of oligomers indicated that ST-1 mostly contained sulfated glucuronomannan and fucoglucuronan. ESI-MS with collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) suggested that glucuronomannan contained alternating 2-linked Man and 4-linked GlcA, while fucoglucuronan contained 4-linked glucuronan with branched Fuc at C-3. Finally, the neuroprotective activities of ST, ST-1, ST-2 and MIX (a mixture of ST-1 and ST-2) were determined. ST showed the most neuroprotective activity, which indicated that ST might be a good candidate for curing neurodegenerative diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antifouling potential of Nature-inspired sulfated compounds

    NASA Astrophysics Data System (ADS)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  13. Antifouling potential of Nature-inspired sulfated compounds

    PubMed Central

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-01-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL−1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL−1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL−1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents. PMID:28205590

  14. Veratric acid removal from water by electrochemical oxidation on BDD anode

    NASA Astrophysics Data System (ADS)

    Jum'h, Inshad; Abdelhay, Arwa; Telfah, Ahmad; Al-Akhras, M.-Ali; Al-Kazwini, Akeel; Rosiwal, Stefan

    2018-02-01

    The efficiency of boron doped diamond (BDD) in the electrochemical treatment of synthetically contaminated water with veratric acid (VA), one kind of polyphenolic type compounds, is investigated in this work. A BDD electrode was practically fabricated using hot filament chemical vapor deposition (HFCVD). Later on, the BDD electrode was implemented as an anode in a batch electrolytic reactor. The effect of operating factors such as the initial concentration of VA, NaCl addition, and supporting electrolyte type (H2SO4, H3PO4 and Na2SO4) was studied. The chemical oxygen demand (COD) measurements were conducted to study the VA electrolysis kinetics. The experimental data suggested that sodium sulfate was the best supporting electrolyte as the COD removal reached a percentage of 100% using 1 mmol/dm3 as VA concentration. The kinetics of the COD decay of the VA electrolysis were found to obey the pseudo-first order model. Remarkably, the electrolysis process is significantly speeded up once chloride is added to the reaction. The complete COD removal was achieved in 60 minutes of treatment.

  15. Heterogeneous Chemistry of HONO on Liquid Sulfuric Acid: A New Mechanism of Chlorine Activation on Stratospheric Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1996-01-01

    Heterogeneous chemistry of nitrous acid (HONO) on liquid sulfuric acid (H2SO4) Was investigated at conditions that prevail in the stratosphere. The measured uptake coefficient (gamma) of HONO on H2SO4 increased with increasing acid content, ranging from 0.03 for 65 wt % to about 0.1 for 74 wt %. In the aqueous phase, HONO underwent irreversible reaction with H2SO4 to form nitrosylsulfuric acid (NO(+)HSO4(-). At temperatures below 230 K, NO(+)HSO4(-) was observed to be stable and accumulated in concentrated solutions (less than 70 wt % H2SO4) but was unstable and quickly regenerated HONO in dilute solutions (less than 70 wt %). HCl reacted with HONO dissolved in sulfuric acid, releasing gaseous nitrosyl chloride (ClNO). The reaction probability between HCl and HONO varied from 0.01 to 0.02 for 60-72 wt % H2SO4. In the stratosphere, ClNO photodissociates rapidly to yield atomic chlorine, which catalytically destroys ozone. Analysis of the laboratory data reveals that the reaction of HCl with HONO on sulfate aerosols can affect stratospheric ozone balance during elevated sulfuric acid loadings after volcanic eruptions or due to emissions from the projected high-speed civil transport (HSCT). The present results may have important implications on the assessment of environmental acceptability of HSCT.

  16. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    PubMed

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effectiveness of 5-Pyrrolidone-2-carboxylic Acid and Copper Sulfate Pentahydrate Association against Drug Resistant Staphylococcus Strains.

    PubMed

    Governa, Paolo; Miraldi, Elisabetta; De Fina, Gianna; Biagi, Marco

    2016-04-01

    Bacterial resistance is an ongoing challenge for pharmacotherapy and pharmaceutical chemistry. Staphylococcus aureus is the bacterial species which makes it most difficult to treat skin and soft tissue infections and it is seen in thousands of hospitalization cases each year. Severe but often underrated infectious diseases, such as complicated nasal infections, are primarily caused by MRSA and S. epidermidis too. With the aim of studying new drugs with antimicrobial activity and effectiveness on drug resistant Staphylococcus strains, our attention in this study was drawn on the activity of a new association between two natural products: 5-pyrrolidone-2-carboxylic acid (PCA), naturally produced by certain Lactobacillus species, and copper sulfate pentahydrate (CS). The antimicrobial susceptibility test was conducted taking into account 12 different Staphylococcus strains, comprising 6 clinical isolates and 6 resistant strains. PCA 4%, w/w, and CS 0.002%, w/w, association in distilled water solution was found to have bactericidal activity against all tested strains. Antimicrobial kinetics highlighted that PCA 4%, w/w, and CS 0.002% association could reduce by 5 log10 viable bacterial counts of MRSA and oxacillin resistant S. epidennidis in less than 5 and 3 minutes respectively. Microscopic investigations suggest a cell wall targeting mechanism of action. Being very safe and highly tolerated, the natural product PCA and CS association proved to be a promising antimicrobial agent to treat Staphylococcus related infections.

  18. Evidence for acid-precipitation-induced trends in stream chemistry at hydrologic bench-mark stations

    USGS Publications Warehouse

    Smith, Richard A.; Alexander, Richard B.

    1983-01-01

    Ten- to 15-year water-quality records from a network of headwater sampling stations show small declines in stream sulfate concentrations at stations in the northeastern quarter of the Nation and small increases in sulfate at most southeastern and western sites. The regional pattern of stream sulfate trends is similar to that reported for trends in S02 emissions to the atmosphere during the same period. Trends in the ratio of alkalinity to total major cation concentrations at the stations follow an inverse pattern of small increases in the Northeast and small, but widespread decreases elsewhere. The undeveloped nature of the sampled basins and the magnitude and direction of observed changes in relation to SO2 emissions support the hypothesis that the observed patterns in water quality trends reflect regional changes in the rates of acid deposition.

  19. Amphorous hydrated Fe(III) sulfate: metastable product and bio-geochemical marker of iron oxidizing thiobacilli

    NASA Astrophysics Data System (ADS)

    Lazaroff, Norman; Jollie, John; Dugan, Patrick R.

    1998-07-01

    Chemolithotrophic iron oxidation by Thiobacillus ferrooxidans and other iron oxidizing thiobacilli produce an Fe(III) sulfato complex that polymerizes as x-ray amorphous filaments approximately 40 nm in diameter. The precursor complex in solutionis seen by ATR-FTIR spectroscopy to have a sulfate spectrum resembling the v(subscript 3) and v(subscript 1) vibrational modes of the precipitated polymer. Chemically similar precipitates prepared by oxidation of acid ferrous sulfate with hydrogen peroxide have a different micromorphology, higher iron/sulfur ratio and acid solubility than the bacterial product. They possess coalescing globular microstructures composed of compacted micro-fibrils. Scanning electron microscopy and diffuse reflectance FTIR show the formation of iron polymer on the surface of immobilized cells of T. ferrooxidans, oxidizing iron during the corrosion of steel. Although spatially separated form the steel coupons by a membrane filter, the cell walls become covered with tufts of amorphous hydrated Fe(III) sulfate. The metastable polymer is converted to crystalline goethite, lepidocrocite, and magnetite in that order, as the pH rises due to proton reduction at cathodic sites on the steel. The instability of the iron polymer to changes in pH is also evidenced by the loss of sulfate when washed with lithium hydroxide solution at pH 8. Under those conditions there is little change in micromorphology, but restoration of sulfate with sulfuric acid at pH 2.5, fails to re-establish the original chemical structure. Adding sulfate salts of appropriate cations to solutions of the Fe(III) sulfato complex or suspensions of its precipitated polymer in dilute sulfuric acid, result in dissociation of the metastable complex followed by crystallization of ferric ions and sulfate in jarosites. Jarosites and other derivatives of iron precipitation by iron oxidizing thiobacilli, form conspicuous deposits in areas of natural pyrite leaching. The role of iron oxidizing

  20. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    PubMed

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be