Science.gov

Sample records for acid sulfate waters

  1. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined. PMID:27482644

  2. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Kirk, Nordstrom D.; Blaine, McCleskey R.; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  3. Solid/liquid phase diagram of the ammonium sulfate/succinic acid/water system.

    PubMed

    Pearson, Christian S; Beyer, Keith D

    2015-05-14

    We have studied the low-temperature phase diagram and water activities of the ammonium sulfate/succinic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/succinic acid phase boundary as well as the ternary eutectic composition and temperature. We also compared our results to the predictions of the extended AIM aerosol thermodynamics model (E-AIM) and found good agreement for the ice melting points in the ice primary phase field of this system; however, differences were found with respect to succinic acid solubility temperatures. We also compared the results of this study with those of previous studies that we have published on ammonium sulfate/dicarboxylic acid/water systems. PMID:25431860

  4. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  5. Microbial Sulfate Reduction and Its Potential Utility as an Acid Mine Water Pollution Abatement Procedure

    PubMed Central

    Tuttle, Jon H.; Dugan, Patrick R.; Randles, Chester I.

    1969-01-01

    The presence of high concentrations of sulfate, iron, and hydrogen (acid) ions in drainage from coal mines and other areas containing waste pyritic materials is a serious water pollution problem. Sulfate can be removed from solution by microbial reduction to sulfide and subsequent precipitation as FeS. A mixed culture of microorganisms degraded wood dust cellulose, and the degradation products served as carbon and energy sources for sulfate-reducing bacteria. Metabolism of carbon compounds resulted in a net pH increase in the system. Oxidation-reduction potential (Eh) and temperature and carbon supplements were studied in an effort to accelerate the sulfate reduction process, with the ultimate objective of utilizing the process as a pollution abatement procedure. PMID:5775914

  6. Water uptake of internally mixed ammonium sulfate and dicarboxylic acid particles probed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2013-05-01

    Tropospheric aerosols are usually mixtures of inorganic and organic compounds in variable proportions, and the relative amount of organic fraction can influence the hygroscopic properties of the particles. Infrared spectra of submicrometer internally mixed dry particles of ammonium sulfate (AS) with various dicarboxylic acids (oxalic, malonic, maleic, glutaric and pimelic) have been measured in an aerosol flow tube at several solute mass ratios. The spectra show a notable broadening in the bandwidth of sulfate ion ν3 vibrational band near 1115 cm-1 with respect to pure AS. We attribute these perturbations, that are biggest at AS/organic acid mass ratio near unity, to intermolecular interactions between inorganic ions and organic acid molecules in the internally mixed solids. The water uptake behavior of internally mixed particles has been measured by recording the infrared integrated absorbance of liquid water as a function of relative humidity (RH). The amount of water present in the particles prior to deliquescence correlates partially with the water solubilities of the dicarboxylic acids, and also with the relative magnitudes of intermolecular interactions in the internally mixed dry solids. Phase change of ammonium sulfate in the internally mixed particles with RH has been spectrally monitored, and it is shown that water uptaken before full deliquescence produces structural changes in the particles that are revealed by their vibrational spectra.

  7. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  8. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  9. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water.

    PubMed

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 per thousand heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  10. Changes in water quality following tidal inundation of coastal lowland acid sulfate soil landscapes

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Bush, Richard T.; Sullivan, Leigh A.; Burton, Edward D.; Smith, Douglas; Martens, Michelle A.; McElnea, Angus E.; Ahern, R., , Col; Powell, Bernard; Stephens, Luisa P.; Wilbraham, Steve T.; van Heel, Simon

    2009-01-01

    This study examines the remediation of surface water quality in a severely degraded coastal acid sulfate soil landscape. The remediation strategy consisted of partial restoration of marine tidal exchange within estuarine creeks and incremental tidal inundation of acidified soils, plus strategic liming of drainage waters. Time-series water quality and climatic data collected over 5 years were analysed to assess changes in water quality due to this remediation strategy. A time-weighted rainfall function (TWR) was generated from daily rainfall data to integrate the effects of antecedent rainfall on shallow groundwater levels in a way that was relevant to acid export dynamics. Significant increases in mean pH were evident over time at multiple monitoring sites. Regression analysis at multiple sites revealed a temporal progression of change in significant relationships between mean daily electrical conductivity (EC) vs. mean daily pH, and TWR vs. mean daily pH. These data demonstrate a substantial decrease over time in the magnitude of creek acidification per given quantity of antecedent rainfall. Data also show considerable increase in soil pH (2-3 units) in formerly acidified areas subject to tidal inundation. This coincides with a decrease in soil pe, indicating stronger reducing conditions. These observations suggest a fundamental shift has occurred in sediment geochemistry in favour of proton-consuming reductive processes. Combined, these data highlight the potential effectiveness of marine tidal inundation as a landscape-scale acid sulfate soil remediation strategy.

  11. Use of O and S Isotopes to Define Sources of Water and Sulfate in Acid Mine Drainage Waters

    NASA Astrophysics Data System (ADS)

    Earnest, D.

    2001-12-01

    Coal mining in Maryland, West Virginia, Pennsylvania, and other states has resulted in acid mine drainage problems in rivers throughout the region. The underground workings at the Kempton Mine have been abandoned since the 1950's, and the water filling these mines is discharged at a rate of 6,000,000 gallons per day into the headwaters of the Potomac River. This water has an average pH of 3.0 and an average dissolved load of 1 g/L. Evaluation of the mitigation options requires identification of water and acidity sources. We are using isotopic compositions of mine drainage waters to define hydrologic sources, flow paths, and acid sources. Water samples were taken monthly of mine water and other local sources. Oxygen isotope analyses are conducted on these samples. Seasonal variations in δ ^{18}O composition of mine drainage would suggest significant rapid meteoric input. Little or no variation in \\delta18O composition would suggest that mine drainage is derived primarily from groundwater sources or that the residence time in the mine is long. Sulfate precipitated as barite from these samples is analyzed for δ ^{34}S and \\delta18O. There is significantly more sulfate in the mine drainage waters than there is iron. The isotopic signature is used to determine whether the sulfur source is pyritic or organic. Sulfate δ 18O data are used to distinguish between sub-aerial and sub-aqueous oxidation of sulfur.

  12. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    SciTech Connect

    Dallam, R.D.

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H/sub 2//sup 35/SO/sub 4/) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables.

  13. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. PMID:24805963

  14. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  15. Electrical conductivity of acidic sulfate solution

    NASA Astrophysics Data System (ADS)

    Majima, Hiroshi; Peters, Ernest; Awakura, Yasuhiro; Park, Sung Kook

    1987-03-01

    The electrical conductivities of the aqueous solution system of H2SO4-MSO4 (involving ZnSO4, MgSO4, Na2SO4, and (NH4)2SO4), reported by Tozawa et al., were examined in terms of a (H2O) and H+ ion concentration. The equations to compute the concentrations of various species in aqueous sulfuric acid solutions containing metal sulfates were derived for a typical example of the H2SO4-ZnSO4-MgSO4-(Na2SO4)-H2O system. It was found that the H+ ion concentrations in concentrated sulfuric acid solutions corresponding to practical zinc electrowinning solutions are very high and remain almost constant with or without the addition of metal sulfates. The addition of metal sulfates to aqueous sulfuric acid solution causes a decrease in electrical conductivity, and this phenomenon is attributed to a decrease in water activity, which reflects a decrease in the amount of free water. The relationship between conductivity and water activity at a constant H+ ion concentration is independent of the kind of sulfates added. On the other hand, any increase in H+ ion concentration results in an increase in electrical conductivity. A novel method for the prediction of electrical conductivity of acidic sulfate solution is proposed that uses the calculated data of water activity and the calculated H+ ion concentration. Also, the authors examined an extension of the Robinson-Bower equation to calculate water activity in quarternary solutions based on molarity instead of molality, and found that such calculated values are in satisfactory agreement with those determined experimentally by a transpiration method.

  16. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  17. Water absorbance and thermal properties of sulfated wheat gluten films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten films of varying thicknesses formed at 30C to 70C were treated with cold sulfuric acid to produce sulfated gluten films. Chemical, thermal, thermal stability, and water uptake properties were characterized for neat and sulfated films. The sulfated gluten films were able ...

  18. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    PubMed

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values<3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with (55)Fe and (26)Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (>70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. PMID:26780135

  19. EVIDENCE FOR METAL ATTENUATION IN ACID MINE WATER BY SULFATE REDUCTION, PENN MINE, CALAVERAS COUNTY, CALIFORNIA

    EPA Science Inventory

    The Penn Mine in Calaveras County, California, produced Cu from massive sulfide ores from 1861 to 1953. Mine wastes were removed to a landfill during the late 1990s, improving surface-water quality, but deep mine workings were not remediated and contain metalliferous water with p...

  20. Hydrological processes behind annual and decadal-scale variations in the water quality of runoff in Finnish catchments with acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Toivonen, Janne; Österholm, Peter; Fröjdö, Sören

    2013-04-01

    SummaryIn this study we assess long- and short term temporal variations in the impact of acid sulfate (a.s.) soils on river water quality. We demonstrate how such variations depend on changes in hydrological conditions driven by land use, meteorological variations and potential changes in climate with important implications on mitigation strategies, water ecology and utilization of water resources. Quality of river water discharging into the Larsmo-Öja Lake in Midwestern Finland was studied by using long term water data collected during 1963-2009. Acid sulfate soils are extremely acidic soils (pH < 4) that are known to discharge very large amounts of acidity and metals into recipient water courses, and this was also evident in the study area where extreme acidic events have occurred frequently. Looking at the whole study period, there was an abrupt and consistent decline in pH in the late 1960s and early 1970s in the main river (Esse River) that coincided with extensive drainage works that dropped the ground water level, enabling oxidation of sulfidic soils and transport of acidity to the rivers. Since then, there is a trend of decreasing acidic events and rising pH values, probably due to a continuous depletion of the acidic pool in the existing a.s. soils. In the short run, water quality varied greatly due to varying hydrological conditions between seasons and years. Generally, the impact from a.s. soils was highest during high runoff in autumn and spring, and therefore, neutralization of acidity in discharge water by liming would at such occasions be very demanding. The relationship between the runoff and water quality was, however, somewhat different during different seasons. As expected, dry summers (low ground water levels) were found to increase the impact from a.s. soils in the subsequent autumn, but only if runoff was high. Towards the end of the study period winters tended to become warmer with higher runoff and spring floods tended to occur earlier

  1. EFFECTS OF SULFURIC ACID RAIN ON MAJOR CATION AND SULFATE CONCENTRATIONS OF WATER PERCOLATING THROUGH TWO MODEL HARDWOOD FORESTS

    EPA Science Inventory

    Acid precipitation falls on vast areas of forested land, including most of the eastern deciduous forest of the United States. Forest productivity, ground-water quality, and surface waters might all be affected. To document and quantify ecosystem response to the onset of acid prec...

  2. Acid Sulfate Alteration in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    dust. The Moessbauer parameters are not definitive for mineralogical speciation (other than octahedrally-coordinated Fe(3+) but are consistent with a schwertmannite-like phase (i.e., a nanophase ferric oxide). The high oxidation state and values of Moessbauer parameters (center shift and quadrupole splitting) for the high-SO3 samples imply ferric sulfate (i.e., oxidized sulfur), although the hydration state cannot be constrained. In no case is there an excess of SO3 over available cations (i.e., no evidence for elemental sulfur), and Fe sulfide (pyrite) has been detected in only one Gusev sample. The presence of both high-SiO2 (and low total iron and SO3) and high SO3 (and high total iron as ferric sulfate) can be accommodated by a two-step geochemical model developed with the Geochemist's Workbench. (1) Step 1 is anoxic acid sulfate leaching of Martian basalt at high water-to rock ratios (greater than 70). The result is a high-SiO2 residue0, and anoxic conditions are required to solubilize Fe as Fe(2+). (2) Step 2 is the oxic precipitation of sulfate salts from the leachate. Oxic conditions are required to produce the high concentrations of ferric sulfate with minor Mg-sulfates and no detectable Fe(2+)-sulfates.

  3. FTIR studies on the acidity of sulfated zirconia prepared by thermolysis of zirconium sulfate

    SciTech Connect

    Platero, E.E.; Mentruit, M.P.; Arean, C.O.; Zecchina, A.

    1996-09-01

    Sulfated zirconia having a BET surface area of 90 m{sup 2}g{sup -1} and a temperature-resistant mesoporous texture was prepared by thermolysis (at 1000 K) of zirconium sulfate. Infrared studies of surface sulfates, CO adsorption at 77 K, and room temperature adsorption of pyridine showed close similarity to sulfated zirconias prepared by impregnation of doping from the gas phase. Four main families of Lewis acid centers were found, which gave CO adducts characterized by stretching frequencies of 2212, 2202, 2196, and 2188 cm{sup -1}. Interaction of CO (at liquid nitrogen temperature) with surface hydroxyls (in partially hydroxylated samples) was found to shift the O-H stretching frequency from 3650 to 3510 cm{sup -1}, due to formation of hydrogen-bonded OH{center_dot}{center_dot}CO complexes. This downward shift, {Delta}{nu}{sub OH} = 140 cm{sup -1}, is significantly larger than the corresponding value for pure zirconia ({Delta}{nu}{sub OH} = 90 cm{sup -1}), which strongly suggests enhancement of the Bronsted acidity. Samples showing the acidic OH group at 3650 cm{sup -1} were found to contain also disulfate groups and traces of molecular water. Surface hydroxyls is sulfated zirconia still appear, however, to be weaker Bronsted acid sites than are bridging OH groups in zeolites. 49 refs., 7 figs., 2 tabs.

  4. Acidic properties of sulfated zirconia: An infrared spectroscopic study

    SciTech Connect

    Babou, F.; Coudurier, G.; Vedrine, J.C.

    1995-04-01

    Sulfated zirconia with S content of 2 wt.% equivalent to complete coverage of its surface was studied by infrared spectroscopy. At least four sulfated species were identified and exhibited an important and reversible sensitivity to water. These equilibria were demonstrated to exist by the study of adsorption of incremental amounts of water. D{sub 2}O and H{sub 2}{sup 18}O isotopically enriched water molecules were used to assist interpretation of IR spectra. To characterize acidity features, the probe molecules butane, CO, and H{sub 2}O (as weak bases) or pyridine (as a strong base) were adsorbed. Two Lewis acid sites (L{sub 1} and L{sub 2}) were observed and one Bronsted site (B) related to the zirconia support (L{sub 1}) and the sulfated species (L{sub 2}, B). They were evidenced by pyridine adsorption which was shown to partly displace adsorbed sulfate species. With the help of previous theoretical calculations using an ab initio method and representing the zirconia surface by a mononuclear zirconium complex, it is emphasized that the sulfated zirconia can be visualized as a H{sub 2}SO{sub 4} compound grafted onto the surface of zirconia in a way which makes it very sensitive to water but in a reversible way. Its acidity is similar to that of sulfuric acid but it is not really superacidic. Comparison with other oxides leads us to suggest that the cationic charge borne by the metallic cation is of prime importance for the acidity strength. The role of water on the acidic and catalytic properties for n-butane isomerization reaction is emphasized. 33 refs., 11 figs., 2 tabs.

  5. Simulation of Natural Acid Sulfate Weathering in an Alpine Watershed

    NASA Astrophysics Data System (ADS)

    Bassett, R. L.; Miller, William R.; McHugh, John; Catts, John G.

    1992-09-01

    Streams with acidic sulfate compositions (pH less than 3.5) are naturally generated in the alpine Geneva Creek Basin of the southern Rocky Mountains, an area underlain by Proterozoic metamorphic and igneous rocks that are intruded by Tertiary felsic stocks with associated pyritic alteration. These naturally acidic waters are similar in composition to more familiar man-made acid mine waters or to surface waters acidified by sulfate precipitation. Detailed study of the stream compositions has revealed the principal reactions driving the weathering process and was used to estimate the relative effects of snowpack ionic input versus the solute contribution from acid attack in soil zones and groundwater. In the Geneva Creek Basin, atmospheric sources of solute represent a minor component to the stream water composition, except for chloride, which can be used to determine the fraction of contribution. The weathering process is a balance between oxidation of sulfides, dissolution of silicates, formation of the clay minerals vermiculite, kaolinite, and smectite, carbonate neutralization, and precipitation of ferric and aluminum oxyhydroxides and aluminum sulfate. The chemical analyses of snow samples, multiple samples of water from Geneva Creek and its tributaries, and the composition of primary and secondary minerals identified in the basin serve as input to a mass balance geochemical model, which facilitates the interpretation of the principal geochemical processes.

  6. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  7. Sulfate and acid resistant concrete and mortar

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-06-30

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.

  8. The Importance of Sediment Sulfate Reduction to the Sulfate Budget of an Impoundment Receiving Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Herlihy, Alan T.; Mills, Aaron L.; Hornberger, George M.; Bruckner, Amy E.

    1987-02-01

    Alkalinity generation by bacterial sulfate reduction (SR) has been shown to be an important neutralizing agent for acid mine drainage and acid precipitation in lakes and reservoirs. In order to quantify the importance of SR in an acidified system, a sulfate influx-efflux budget was constructed for Lake Anna, an impoundment in central Virginia that receives acid mine drainage. For the 1983 and 1984 water years, 48% (namely, 8.0 × 105 kg) of the sulfate entering the impoundment was removed from the water column within the first 2 km of the arm of the lake receiving the pollution. SR rates measured using 35S-labeled sulfate were extrapolated across the surface area of this arm of the lake; this calculated amount of sulfate removed was equal to 200% of the sulfate removed from the lake as calculated in the budget. The calculated alkalinity generated by this sulfate removal was more than twice that necessary to account for the observed pH increase in the impoundment. The magnitude of the sulfate removal and alkalinity generation demonstrates the quantitative importance of SR as an ecosystem level buffering mechanism.

  9. Acidic sulfate aerosols: characterization and exposure.

    PubMed Central

    Lioy, P J; Waldman, J M

    1989-01-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidic aerosol in excess of 20 to 40 micrograms/m3 (as H2SO4) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO4(2)- levels. Exposures of 100 to 900 micrograms/m3/hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m3 (as H2SO4) was present in the atmosphere, and exposures less than 2000 micrograms/m3/hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H2SO4 and on what factors can be used to predict acidic sulfate episodes. PMID:2651103

  10. The effect of acid rain and altitude on concentration, δ34S, and δ18O of sulfate in the water from Sudety Mountains, Poland

    USGS Publications Warehouse

    Szynkiewicz, Anna; Modelska, Magdalena; Jedrysek, Mariusz Orion; Mastalerz, Maria

    2008-01-01

    Sulfate content, δ34S(SO42−), δ18O(SO42−), and δ18O(H2O) values revealed a remarkable dependence on the altitude. The calculated altitude effects for five season averages of these parameters were − 1.00 mg/l/100 m, − 0.18‰/100 m, − 0.27‰/100 m, and − 0.17‰/100 m, respectively. This dependence on the altitude resulted mainly from the mixing of sulfates of different origins such as anthropogenic sulfate, sulfate produced in the soil within the weathered zone of the massif, and that one from the tree canopy. The oxygen isotope mass balance indicates that, in the study area, about one third of the sulfate delivered to the surface and groundwater by modern precipitation comes from anthropogenic pollution. Further interaction of meteoric water within the weathered rocks causes a continuous decrease of δ18O(SO42−) values resulting from biological transformation of the sulfate due to plant vegetation and decomposition of organic matter.

  11. Acidic sulfate aerosols: characterization and exposure

    SciTech Connect

    Lioy, P.J.; Waldman, J.M.

    1989-02-01

    Exposures to acidic aerosol in the atmosphere are calculated from data reported in the scientific literature. The majority of date was not derived from studies necessarily designed to examine human exposures. Most of the studies were designed to investigate the characteristics of the atmosphere. However, the measurements were useful in defining two potential exposure situations: regional stagnation and transport conditions and local plume impacts. Levels of acidicaerosol in excess of 20 to 40 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) have been observed for time durations ranging from 1 to 12 hr. These were associated with high, but not necessarily the highest, atmospheric SO/sub 4/(2)- levels. Exposures of 100 to 900 micrograms/m/sup 3//hr were calculated for the acid events that were monitored. In contrast, earlier London studies indicated that apparent acidity in excess of 100 micrograms/m/sup 3/ (as H/sub 2/SO/sub 4/) was present in the atmosphere, and exposures less than 2000 micrograms/m/sup 3//hr were possible. Our present knowledge about the frequency, magnitude, and duration of acidic sulfate aerosol events and episodes is insufficient. Efforts must be made to gather more data, but these should be done in such a way that evaluation of human exposure is the focus of the research. In addition, further data are required on the mechanisms of formation of H/sub 2/SO/sub 4/ and on what factors can be used to predict acidic sulfate episodes. 96 references.

  12. Processes and fluxes during the initial stage of acid sulfate soil formation

    NASA Astrophysics Data System (ADS)

    Gröger, J.; Hamer, K.; Schulz, H. D.

    2009-04-01

    Acid sulfate soils occur over a wide range of climatic zones, mainly in coastal landscapes. In these soils, the release of sulfuric acid by the oxidation of pyrite generates a very acidic environment (e.g., DENT and PONS, 1995, PONS, 1973). Two major types of acid sulfate soils can be distinguished: In actual acid sulfate soils, the initially contained pyrite was at least partly oxidized. This resulted in a severe acidification of the soil. Potential acid sulfate soils are generally unoxidized and contain large amounts of pyrite. Upon oxidation, these soils will turn into actual acid sulfate soils. By excavation or lowering of the groundwater table, potential acid sulfate soils can be exposed to atmospheric oxygen. During oxidation the pH drops sharply to values below pH 4. This acidification promotes the release of various metals, e.g., alumina, iron and heavy metals. Additionally, large quantities of sulfate are released. In order to assess the effects of disturbances of potential acid sulfate soils, for example by excavations during construction works, several large scale column experiments were conducted with various types of potential acid sulfate soils from Northern Germany. In these experiments, the oxidation and initial profile development of pyritic fen peats and thionic fluvisols were studied over a period of 14 months. The study focused on leaching and the translocation of various metals in the soil profile. To study mobilization processes, element fluxes and the progress of acidification, soil water and leachate were analyzed for total element concentrations. Furthermore, several redox-sensitive parameters, e.g., Fe2+ and sulfide, were measured and changes to the initial solid phase composition were analyzed. Chemical equilibria calculations of the soil water were used to gain insights into precipitation processes of secondary products of pyrite oxidation and leaching products. The results of this study will support the assessment of risks deriving from

  13. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage.

    PubMed

    Bunce, N J; Chartrand, M; Keech, P

    2001-12-01

    Acid mine drainage (AMD) is a serious environmental problem in the mining industry. The present work describes electrolytic reduction of solutions of synthetic AMD, comprising FeSO4/H2SO4 and CuSO4/H2SO4, in flow-through cells whose anode and cathode compartments were separated using ion exchange membranes. In the case of FeSO4/H2SO4 at constant flow rate, the pH of the effluent from the catholyte increased progressively with current at a variety of cathodes, due to electrolytic reduction of H+ ions to elemental hydrogen. Near-quantitative removal of iron was achieved by sparging air into the catholyte effluent, thereby precipitating iron outside the electrochemical cell, and avoiding fouling of the electrodes. The anode reaction was the oxidation of water to O2, a proton-releasing process. Using cation exchange membranes and sodium sulfate as the supporting electrolyte in the anode compartment, the efficiency of the process was compromised at high currents by transport of H+ competitively with Na+ from the anode to the cathode compartments. Higher efficiencies were obtained when anion exchange membranes were used, and in this case no additional supporting electrolyte other than dilute H2SO4 was needed, the net reaction being the electrochemically driven transfer of the elements of H2SO4 from the cathode to the anode compartments. Current efficiencies approximately 50% were achieved, the loss of efficiency being accounted for by ohmic heating of the solutions. In the case of CuSO4/H2SO4 and anion exchange membranes at high currents, reduction of Cu2+ and H+ ions and transport of SO4(2-) ions out of the catholyte caused unacceptably high potentials to be generated. PMID:11763043

  14. Sulfate Mineral Formation from Acid-weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Astrophysics Data System (ADS)

    Craig, Patricia; Ming, Douglas; Rampe, Elizabeth

    2014-11-01

    Phyllosilicates on Mars are common in Noachian terrains whereas sulfates are found in the younger Hesperian terrains and suggest alteration under more acidic conditions. Phyllosilicates that formed during the Noachian era would have been exposed to the prevailing acidic conditions during the Hesperian. The purpose of this project is to characterize the effects of acid-weathering on phyllosilicates to better understand the aqueous history of Mars. Nontronite, montmorillonite, and saponite were exposed to H2SO4 solutions at water-rock (WR) ratios of 50 and 25.X-ray diffraction (XRD) patterns of all three acid-treated minerals showed progressive collapse of the phyllosilicate basal spacing with increasing acid concentration. Bassanite formed as an intermediate phase in weathered nontronite and montmorillonite from extracted interlayer Ca. The octahedral cation determined which sulfate formed at high acid concentration: rhomboclase from nontronite, alunogen from montmorillonite, hexahydrite and kieserite from saponite. Gypsum and anhydrite also formed as intermediate phases in nontronite treated at WR=25, showing a change in sulfate hydration state with changing acid concentration (i.e. water activity). Scanning electron microscopy analyses detected phases not identified by XRD. Al-sulfate was found in nontronite weathered at WR=25 and Ca-sulfate in weathered saponite. Near-infrared reflectance spectra of the weathered samples showed decreasing intensity of the hydration/hydroxylation bands and a change or disappearance of metal-OH bands indicating dehydration and dissociation of the interlayers and octahedral layers, respectively, with increased acid weathering.Sulfate mineral formation from acid-weathered phyllosilicates may explain the presence of phyllosilicates and sulfates in close proximity to each other on Mars, such as in Gale Crater. The CheMin XRD instrument on Curiosity may find evidence for acid-weathered phyllosilicates in Mt. Sharp by comparing the 001

  15. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity.

    PubMed

    Powell, B; Martens, M

    2005-01-01

    An estimated 666,000 ha of acid sulfate soils (ASS) occur within the Great Barrier Reef (GBR) catchments of Queensland, Australia. Extensive areas have been drained causing acidification, metal contamination, deoxygenation and iron precipitation in reef receiving waters. The close proximity of ASS to reef waters makes them a substantial threat to water quality. Another important issue linked with ASS is their release of soluble iron, which is known to stimulate nuisance marine algal blooms, in particular Lyngbya majuscula. Known blooms of the cyanobacteria in reef waters have been confirmed at Shoalwater Bay, Corio Bay, the Whitsunday area and Hinchinbrook Channel. Acid sulfate soils are intimately related to coastal wetland landscapes. Where landscapes containing ASS have been disturbed (such as for agriculture, aquaculture, marinas, etc.) the biodiversity of adjacent wetlands can be adversely affected. However, there is no clear knowledge of the real extent of the so-called "hotspot" ASS areas that occur within the GBR catchments. Management of ASS in reef catchments has benefited from the implementation of the Queensland Acid Sulfate Soils Management Strategy through policy development, mapping, training programs, an advisory service, research and community participation. However, major gaps remain in mapping the extent and nature of ASS. Areas of significant acidification (i.e. hotspots) need to be identified and policies developed for their remediation. Research has a critical role to play in understanding ASS risk and finding solutions, to prevent the adverse impacts that may be caused by ASS disturbance. A case study is presented of the East Trinity site near Cairns, a failed sugar cane development that episodically discharges large amounts of acid into Trinity Inlet, resulting in periodic fish kills. Details are presented of scientific investigations, and a lime-assisted tidal exchange strategy that are being undertaken to remediate a serious ASS problem

  16. MEASUREMENT AND QUANTIFICATION OF SULFATES IN MINING INFLUENCED WATER

    EPA Science Inventory

    Most hard rock (mineral) mine drainages contain metals and sulfates higher than current water quality standards permit for discharge. In treating these wastes with passive systems, scientists and engineers have concentrated on using sulfate-reducing bioreactors (SRBRs) and their ...

  17. Acidity characterization of a titanium and sulfate modified vermiculite

    SciTech Connect

    Hernandez, W.Y.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R.

    2008-07-01

    A natural vermiculite has been modified with titanium and sulfated by the intercalation and impregnation method in order to optimize the acidity of the clay mineral, and characterization of samples were analyzed by X-ray fluorescence (XRF), X-ray diffraction (XRD), nitrogen adsorption isotherms, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption with ammonia (TPD-NH{sub 3}). All the modified solids have a significantly higher number of acidic sites with respect to the parent material and in all of these, Broensted as well as Lewis acidity are identified. The presence of sulfate appears not to increase the number of acidic centers in the modified clay. For the materials sulfated with the intercalation method, it is observed that the strength of the acidic sites found in the material increases with the nominal sulfate/metal ratio. Nevertheless, when elevated quantities of sulfur are deposited, diffusion problems in the heptane reaction appear.

  18. Acid sulfate soils are an environmental hazard in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  19. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  20. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  1. Reclamation of acid sulfate soils using lime-stabilized biosolids.

    PubMed

    Orndorff, Zenah W; Daniels, W Lee; Fanning, Delvin S

    2008-01-01

    Excavation of sulfidic materials during construction has resulted in acid rock drainage (ARD) problems throughout Virginia. The most extensive documented uncontrolled disturbance at a single location is Stafford Regional Airport (SRAP) in Stafford, Virginia. Beginning in 1998, over 150 ha of sulfidic Coastal Plain sediments were disturbed, including steeply sloping cut surfaces and spoils placed into fills. Acid sulfate soils developed, and ARD generated on-site degraded metal and concrete structures and heavily damaged water quality with effects noted over 1 km downstream. The site was not recognized as sulfidic until 2001 when surface soil sampling revealed pH values ranging from 1.9 to 5.3 and peroxide potential acidity (PPA) values ranging from 1 to 42 Mg CaCO(3) per 1000 Mg material. In February 2002 a water quality program was established in and around the site to monitor baseline pH, EC, NO(3)-N, NH(4)-N, PO(4)-P, Fe, Al, Mn, and SO(4)-S, and initial pH values as low as 2.9 were noted in on-site receiving streams. In the spring and fall of 2002, the site was treated with variable rates of lime-stabilized biosolids, straw-mulch, and acid- and salt-tolerant legumes and grasses. By October 2002, the site was fully revegetated (> or = 90% living cover) with the exception of a few highly acidic outcrops and seepage areas. Surface soil sampling in 2003, 2004, and 2006 revealed pH values typically > 6.0. Water quality responded quickly to treatment, although short-term NH(4)(+) release occurred. Despite heavy loadings, no significant surface water P losses were observed. PMID:18574176

  2. Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies

    NASA Astrophysics Data System (ADS)

    Neitola, K.; Brus, D.; Makkonen, U.; Sipilä, M.; Mauldin, R. L., III; Sarnela, N.; Jokinen, T.; Lihavainen, H.; Kulmala, M.

    2015-03-01

    Sulfuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulfuric-acid concentration is a crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulfuric-acid monomer concentrations and total-sulfate concentrations measured from the same source of sulfuric-acid vapor. The discrepancy of about 1-2 orders of magnitude was found with similar particle-formation rates. To investigate this discrepancy, and its effect on nucleation, a method of thermally controlled saturator filled with pure sulfuric acid (97% wt.) for production of sulfuric-acid vapor is applied and rigorously tested. The saturator provided an independent vapor-production method, compared to our previous method of the furnace (Brus et al., 2010, 2011), to find out if the discrepancy is caused by the production method itself. The saturator was used in a H2SO4-H2O nucleation experiment, using a laminar flow tube to check reproducibility of the nucleation results with the saturator method, compared to the furnace. Two independent methods of mass spectrometry and online ion chromatography were used for detecting sulfuric-acid or sulfate concentrations. Measured sulfuric-acid or total-sulfate concentrations are compared to theoretical predictions calculated using vapor pressure and a mixing law. The calculated prediction of sulfuric-acid concentrations agrees very well with the measured values when total sulfate is considered. Sulfuric-acid monomer concentration was found to be about 2 orders of magnitude lower than theoretical predictions, but with a temperature dependency similar to the predictions and the results obtained with the ion-chromatograph method. Formation rates are reproducible when compared to our previous results with both sulfuric-acid or total-sulfate detection and sulfuric-acid production methods separately, removing any doubts that the vapor-production method would

  3. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  4. Cloud water chemistry and the production of sulfates in clouds

    NASA Technical Reports Server (NTRS)

    Hegg, D. A.; Hobbs, P. V.

    1981-01-01

    Measurements are presented of the pH and ionic content of water collected in clouds over western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However, the measurements indicate that the production of sulfate in clouds is of considerable significance in the atmosphere. Comparison of field measurements with model results show reasonable agreement and suggest that the production of sulfate in cloud water is a consequence of more than one conversion mechanism.

  5. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    ERIC Educational Resources Information Center

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  6. Sulfated phenolic acids from Dasycladales siphonous green algae.

    PubMed

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense. PMID:26188914

  7. Surface water sulfate dynamics in the northern Florida Everglades.

    PubMed

    Wang, Hongqing; Waldon, Michael G; Meselhe, Ehab A; Arceneaux, Jeanne C; Chen, Chunfang; Harwell, Matthew C

    2009-01-01

    Sulfate contamination has been identified as a serious environmental issue in the Everglades ecosystem. However, it has received less attention compared to P enrichment. Sulfate enters the Arthur R. Marshall Loxahatchee National Wildlife Refuge (Refuge), a remnant of the historic Everglades, in pumped stormwater discharges with a mean concentration of approximately 50 mg L(-1), and marsh interior concentrations at times fall below a detection limit of 0.1 mg L(-1). In this research, we developed a sulfate mass balance model to examine the response of surface water sulfate in the Refuge to changes in sulfate loading and hydrological processes. Meanwhile, sulfate removal resulting from microbial sulfate reduction in the underlying sediments of the marsh was estimated from the apparent settling coefficients incorporated in the model. The model has been calibrated and validated using long-term monitoring data (1995-2006). Statistical analysis indicated that our model is capable of capturing the spatial and temporal variations in surface water sulfate concentrations across the Refuge. This modeling work emphasizes the fact that sulfate from canal discharge is impacting even the interior portions of the Refuge, supporting work by other researchers. In addition, model simulations suggest a condition of sulfate in excess of requirement for microbial sulfate reduction in the Refuge. PMID:19244495

  8. Quantitative Analysis of Sulfate in Water by Indirect EDTA Titration

    ERIC Educational Resources Information Center

    Belle-Oudry, Deirdre

    2008-01-01

    The determination of sulfate concentration in water by indirect EDTA titration is an instructive experiment that is easily implemented in an analytical chemistry laboratory course. A water sample is treated with excess barium chloride to precipitate sulfate ions as BaSO[subscript 4](s). The unprecipitated barium ions are then titrated with EDTA.…

  9. CLOUD WATER CHEMISTRY AND THE PRODUCTION OF SULFATES IN CLOUDS

    EPA Science Inventory

    Measurements are presented of the pH and ionic content of water collected in clouds over Western Washington and the Los Angeles Basin. Evidence for sulfate production in some of the clouds is presented. Not all of the sulfur in the cloud water was in the form of sulfate. However,...

  10. Remediation of acid mine drainage with sulfate reducing bacteria

    SciTech Connect

    Hauri, J.F.; Schaider, L.A.

    2009-02-15

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed changes in dissolved metal concentrations and pH. Using synthetic acid mine drainage and combinations of inputs, students monitor their bioreactors for decreases in dissolved copper and iron concentrations.

  11. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  12. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community.

    PubMed

    Wu, Xiaofen; Sten, Pekka; Engblom, Sten; Nowak, Pawel; Österholm, Peter; Dopson, Mark

    2015-09-01

    Potential acid sulfate soils contain reduced iron sulfides that if oxidized, can cause significant environmental damage by releasing large amounts of acid and metals. This study examines metal and acid release as well as the microbial community capable of catalyzing metal sulfide oxidation after treating acid sulfate soil with calcium carbonate (CaCO3) or calcium hydroxide (Ca(OH)2). Leaching tests of acid sulfate soil samples were carried out in the laboratory. The pH of the leachate during the initial flushing with water lay between 3.8 and 4.4 suggesting that the jarosite/schwertmannite equilibrium controls the solution chemistry. However, the pH increased to circa 6 after treatment with CaCO3 suspension and circa 12 after introducing Ca(OH)2 solution. 16S rRNA gene sequences amplified from community DNA extracted from the untreated and both CaCO3 and Ca(OH)2 treated acid sulfate soils were most similar to bacteria (69.1% to 85.7%) and archaea (95.4% to 100%) previously identified from acid and metal contaminated environments. These species included a Thiomonas cuprina-like and an Acidocella-like bacteria as well as a Ferroplasma acidiphilum-like archeon. Although the CaCO3 and Ca(OH)2 treatments did not decrease the proportion of microorganisms capable of accelerating acid and metal release, the chemical effects of the treatments suggested their reduced activity. PMID:25933291

  13. The mineralogical consequences and behavior of descending acid-sulfate waters: An example from the Karaha - Telaga Bodas geothermal system, Indonesia

    USGS Publications Warehouse

    Moore, J.N.; Christenson, B.W.; Allis, R.G.; Browne, P.R.L.; Lutz, S.J.

    2004-01-01

    Acidic steam condensates in volcanic systems or shallow, oxygenated geothermal environments are typically enriched in SO4 and poor in Cl. These fluids produce distinctive alteration-induced assemblages as they descend. At Karaha - Telaga Bodas, located on the flank of Galunggung Volcano, Indonesia, neutralization of descending acid waters has resulted in the successive appearance of 1) advanced argillic alteration characterized by alunite, clay minerals and pyrite, 2) anhydrite, pyrite and interlayered sheet silicates, and 3) carbonates. Minor tourmaline, fluorite and native sulfur also are present locally, reflecting interactions with discharging magmatic gases. Water rock interactions were modeled at temperatures up to 250??C using the composition of acidic lake water from Telaga Bodas and that of a typical andesite as reactants. The simulations predict mineral distributions consistent with the observed assemblages and a decrease in the freezing-point depression of the fluid with increasing temperature. Fluids trapped in anhydrite, calcite and fluorite display a similar decrease in their freezing-point depressions, from 2.8?? to 1.5??C, as homogenization temperatures increase from 160?? to 205??C. The simulations indicate that the progressive change in fluid composition is due mainly to the incorporation of SO4 into the newly formed hydrothermal minerals. The salinities of fluid inclusions containing Cl-deficient steam condensates are better expressed in terms of H2SO4 equivalents than the commonly used NaCl equivalents. At solute concentrations >1.5 molal, freezing-point depressions represented as NaCl equivalents overestimate the salinity of Cl-poor waters. At lower concentrations, differences between apparent salinities calculated as NaCl and H2SO 4 equivalents are negligible.

  14. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  15. Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2006-01-01

    Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.

  16. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  17. Aqueous sulfate separation by crystallization of sulfate–water clusters

    DOE PAGESBeta

    Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.

    2015-08-07

    An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO4(H2O) 52-]n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.

  18. Ambient aerosols remain highly acidic despite dramatic sulfate reductions

    NASA Astrophysics Data System (ADS)

    Nenes, Athanasios; Weber, Rodney; Guo, Hongyu; Russell, Armistead

    2016-04-01

    The pH of fine particles has many vital environmental impacts. By affecting aerosol concentrations, chemical composition and toxicity, particle pH is linked to regional air quality and climate, and adverse effects on human health. Sulfate is often the main acid component that drives pH of fine particles (i.e., PM2.5) and is neutralized to varying degrees by gas phase ammonia. Sulfate levels have decreased by approximately 70% over the Southeastern United States in the last fifteen years, but measured ammonia levels have been fairly steady implying the aerosol may becoming more neutral. Using a chemically comprehensive data set, combined with a thermodynamic analysis, we show that PM2.5 in the Southeastern U.S. is highly acidic (pH between 0 and 2), and that pH has remained relatively unchanged throughout the past decade and a half of decreasing sulfate. Even with further sulfate reductions, pH buffering by gas-particle partitioning of ammonia is expected to continue until sulfate drops to near background levels, indicating that fine particle pH will remain near current levels into the future. These results are non-intuitive and reshape expectations of how sulfur emission reductions impact air quality in the Southeastern U.S. and possibly other regions across the globe.

  19. Calcium sulfate crystallization along citrus root channels in a Florida soil exhibiting acid sulfate properties

    SciTech Connect

    Syslo, S.K.; Myhre, D.L.; Harris, W.G.

    1988-02-01

    The authors observed euhedral crystals in Manatee soil in a citrus grove in St. Lucie County, Florida. The material was identified as gypsum (CaSO/sub 4/ /times/ 2H/sub 2/O) using x-ray diffraction and infrared spectra. Photomicrography and scanning electron microscopy revealed that gypsum accumulated both in old root channels and within citrus root tissue of the Btg horizon. The subsurface horizons had elevated sulfate levels, a low initial pH, a drop (0.5 unit) in pH upon air-drying. Electrical conductivity paralleled the concentration of water-soluble sulfate. High levels of calcium and sulfate occurred for horizons above the water table. This accumulation is attributed to groundwater bearing these ions and subsequently discharging them to the overlying soil. Dead citrus roots appear to act as wicks to aid water transfer from lower to higher horizons. The roots and their empty channels provide spaces in which the gypsum can precipitate if the concentrations of calcium and sulfate in the evaporating groundwater exceed the solubility product of gypsum.

  20. The removal of hexavalent chromium from water by ferrous sulfate

    SciTech Connect

    Lin, C.J.J.; Vesilind, P.A.

    1995-12-31

    The redox reaction of hexavalent chromium and ferrous sulfate is investigated in his study. Hexavalent chromium, a highly toxic and mobile anion, could exist in raw water used as a public water supply due to the industrial chromium contamination of natural water or due to natural oxidation of trivalent chromium. Ferrous sulfate is one of the widely used coagulants in water treatment plants and has good reducing ability. Because of its reducing capacity, ferrous sulfate can be applied to remove hexavalent chromium from water. The required contact time to reach equilibrium, the effectiveness of Cr(VI) reduction at different initial pH, and the required ferrous sulfate dosage for complete reduction are investigated. The redox reaction can be completed within 10 minutes, allowing 30 mg/L of hexavalent chromium to react with stoichiometric dosage of ferrous sulfate in deionized water, regardless of the initial pH. The pH of the solution is depressed during the progress of the reaction due to the hydrolysis of the produced Fe(III) and Cr(III) ions from the reaction. Dissolved oxygen in water is found to interfere with the redox reaction by consuming ferrous ions when the initial pH of solutions is high. In deionized water, complete Cr(VI) reduction can be achieved by applying excess ferrous sulfate under the condition of this study. It is also achievable when the raw water from Durham Water Treatment Plant is used as the reaction medium, without additional dosage of ferrous sulfate. Based on the results, simultaneous removal of hexavalent chromium in water treatment by applying ferrous sulfate as the coagulant is theoretically feasible.

  1. Development of a rapid method for simultaneous separation of hyaluronic acid, chondroitin sulfate, dermatan sulfate and heparin by capillary electrophoresis.

    PubMed

    Zhao, Ting; Song, Xinlei; Tan, Xiaoqing; Xu, Linghua; Yu, Mingxiu; Wang, Siyi; Liu, Xiumei; Wang, Fengshan

    2016-05-01

    This study reports the use of diethylenetriamine as background electrolyte for the simultaneous separation of hyaluronan acid, chondroitin sulfate, dermatan sulfate and heparin. The analytes were baseline separated by using an uncoated fused silica capillary at 37°C with a run time of 23min. The migration order, with hyaluronan acid at first and heparin at last, was related to the sulfation degree. The effect of salt concentration on resolution and migration order was also investigated. The developed method was applied to the simultaneous determination of hyaluronan acid and chondroitin sulfate in mouse plasma. Interferences in plasma were removed by protein precipitation and glycosaminoglycans were further purified by ethanol precipitation. The method was validated over the concentration range from 50 to 600μg/mL for hyaluronan acid and 500 to 6000μg/mL for chondroitin sulfate in mouse plasma. Results from assay validations showed that the method was selective and robust. PMID:26877013

  2. Tracing ground water input to base flow using sulfate (S, O) isotopes

    USGS Publications Warehouse

    Gu, A.; Gray, F.; Eastoe, C.J.; Norman, L.M.; Duarte, O.; Long, A.

    2008-01-01

    Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.

  3. Lung-clearance mechanisms following inhalation of acid sulfates

    SciTech Connect

    Wolff, R.K.; Muggenburg, B.A.; Silbaugh, S.A.; Carpenter, R.L.; Rowatt, J.D.; Hill, J.O.

    1982-08-01

    These studies have indicated that acute exposures (1-6 hrs) to sulfuric acid at levels of 0.5 to 1.0 mg/m/sup 3/ can produce impairments in mucous clearance. The impairments can last for up to a week following a 1 hr exposure. These effects and studies by others suggest that high sulfate levels in polluted conditions may be one factor in observed increases of hospital visits for respiratory problems. Long term exposures to elevated levels of sulfates resulting in decreases of clearance could also be an initiating factor in producing chronic obstructive pulmonary disease (COPD). These studies have also shown that it is the larger size fraction (0.6 to 1.0 ..mu..m) of sulfuric acid mist in the urban aerosol which is predominantly responsible for at least the acute effects.

  4. Recovery of discarded sulfated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Karami, Hassan; Asadi, Raziyeh

    The aim of this research is to recover discarded sulfated lead-acid batteries. In this work, the effect of two methods (inverse charge and chemical charge) on the reactivation of sulfated active materials was investigated. At the inverse charge, the battery is deeply discharged and the electrolyte of battery is replaced with a new sulfuric acid solution of 1.28 g cm -3. Then, the battery is inversely charged with constant current method (2 A for the battery with the nominal capacity of 40 Ah) for 24 h. At the final stage, the inversely charged battery is directly charged for 48 h. Through these processes, a discarded battery can recover its capacity to more than 80% of a similar fresh and non-sulfated battery. At the chemical charge method, there are some effective parameters that including ammonium persulfate [(NH 4) 2S 2O 8] concentration, recovery temperature and recovery time. The effect of all parameters was optimized by one at a time method. The sulfated battery is deeply discharged and then, its electrolyte was replaced by a 40% ammonium persulfate solution (as oxidant) at temperature of 50 °C. By adding of oxidant solution, the chemical charging of positive and negative plates was performed for optimum time of 1 h. The chemically charged batteries were charged with constant voltage method (2.66 V for the battery with nominal voltage and nominal capacity of 2 V and 10 Ah, respectively) for 24 h. By performing of these processes, a discarded battery can recovers its capacity to more than 84% of the similar fresh and non-sulfated battery. Discharge and cyclelife behaviors of the recovered batteries were investigated and compared with similar healthy battery. The morphology and structure of plates was studied by scanning electron microscopy (SEM) before and after recovery.

  5. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology

  6. Aqueous sulfate separation by crystallization of sulfate–water clusters

    SciTech Connect

    Custelcean, Radu; Williams, Neil J.; Seipp, Charles A.

    2015-08-07

    An effective approach to separating sulfates from aqueous solutions is based on the crystallization of extended [SO4(H2O) 52-]n sulfate–water clusters with a bis(guanidinium) ligand. The ligand was generated in situ by hydrazone condensation in water, thus avoiding elaborate syntheses, tedious purifications, and organic solvents. Crystallization of sulfate–water clusters represents an alternative to the now established sulfate separation strategies that involve encapsulating the “naked” anion.

  7. Sulfation mediates activity of zosteric acid against biofilm formation.

    PubMed

    Kurth, Caroline; Cavas, Levent; Pohnert, Georg

    2015-01-01

    Zosteric acid (ZA), a metabolite from the marine sea grass Zostera marina, has attracted much attention due to its attributed antifouling (AF) activity. However, recent results on dynamic transformations of aromatic sulfates in marine phototrophic organisms suggest potential enzymatic desulfation of metabolites like ZA. The activity of ZA was thus re-investigated using biofilm assays and simultaneous analytical monitoring by liquid chromatography/mass spectrometry (LC/MS). Comparison of ZA and its non-sulfated form para-coumaric acid (CA) revealed that the active substance was in all cases the non-sulfated CA while ZA was virtually inactive. CA exhibited a strong biofilm inhibiting activity against Escherichia coli and Vibrio natriegens. The LC/MS data revealed that the apparent biofilm inhibiting effects of ZA on V. natriegens can be entirely attributed to CA released from ZA by sulfatase activity. In the light of various potential applications, the (a)biotic transformation of ZA to CA has thus to be considered in future AF formulations. PMID:25915112

  8. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    SciTech Connect

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  9. Electrochemical removal of sulfate from petroleum produced water.

    PubMed

    Jain, Pratiksha; Sharma, Mohita; Kumar, Manoj; Dureja, Prem; Singh, M P; Lal, Banwari; Sarma, Priyangshu M

    2015-01-01

    Petroleum produced water (PPW) is a waste-stream that entails huge cost on the petroleum industry. Along with other suspended and dissolved solids, it contains sulfate, which is a major hurdle for its alternative use intended toward enhanced oil recovery. This study proposes a two-step process for sulfate removal from PPW. A synthetic PPW was designed for the study using response surface methodology. During the first step, sulfate present in PPW was reduced to sulfide by anaerobic fermentation with 80% efficiency. In the second step, more than 70% of the accumulated sulfide was electrochemically oxidized. This integrated approach successfully removed sulfate from the synthetic wastewater indicating its applicability in the treatment of PPW and its subsequent applications in other oil field operations. PMID:26177412

  10. Detection of copiapite in the northern Mawrth Vallis region of Mars: Evidence of acid sulfate alteration

    NASA Astrophysics Data System (ADS)

    Farrand, William H.; Glotch, Timothy D.; Horgan, Briony

    2014-10-01

    The Mawrth Vallis region on Mars is associated with extensive layered deposits containing a stratigraphic sequence of Fe/Mg smectites overlain by Al phyllosilicates. Earlier studies have reported restricted exposures of the ferric sulfate mineral jarosite on top of the sequence. In this paper we have used CRISM data covering the northern portion of the Mawrth Vallis region to find a new jarosite exposure and multiple occurrences of the mixed valence Fe-sulfate mineral copiapite (Fe2+Fe3+4(SO4)6(OH)2·20(H2O)). HiRISE imagery indicate that the copiapite exposures lie on top of the Al phyllosilicates and thus post-date that unit either as a coating or as extensive veins. The presumed copiapite exposures are associated with high values of a “SINDX” parameter derived from CRISM data. Application of several spectral matching metrics over a spectral subsection indicated several candidates for the high SINDX phase including copiapite, ferricopiapite and metavoltine (another mixed valence Fe-sulfate mineral). Visible and near infrared CRISM spectra of the high SINDX areas are most consistent with the phase being copiapite. On Earth copiapite generally occurs as efflorescent coatings in acid mine drainage environments or in association with acid sulfate soils. The presence of jarosite and copiapite indicates the presence of acidic waters. Such acid waters could have contributed to the formation of the underlying Al phyllosilicate minerals. A possible mode of origin for these minerals in this region would involve a fluctuating ground water table and the weathering of Fe sulfide minerals.

  11. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-12-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles.

  12. Proteomic Analysis of Potential Keratan Sulfate, Chondroitin Sulfate A, and Hyaluronic Acid Molecular Interactions

    PubMed Central

    Zhang, Yuntao; Tasheva, Elena S.; Conrad, Gary W.

    2010-01-01

    Purpose. Corneal stroma extracellular matrix (ECM) glycosaminoglycans (GAGs) include keratan sulfate (KS), chondroitin sulfate A (CSA), and hyaluronic acid (HA). Embryonic corneal keratocytes and sensory nerve fibers grow and differentiate according to chemical cues they receive from the ECM. This study asked which of the proteins that may regulate keratocytes or corneal nerve growth cone immigration interact with corneal GAGs. Methods. Biotinylated KS (bKS), CSA (bCSA), and HA (bHA) were prepared and used in microarray protocols to assess their interactions with 8268 proteins and a custom microarray of 85 extracellular epitopes of nerve growth-related proteins. Surface plasmon resonance (SPR) was performed with bKS and SLIT2, and their ka, kd, and KD were determined. Results. Highly sulfated KS interacted with 217 microarray proteins, including 75 kinases, several membrane or secreted proteins, many cytoskeletal proteins, and many nerve function proteins. CSA interacted with 24 proteins, including 10 kinases and 2 cell surface proteins. HA interacted with 6 proteins, including several ECM-related structural proteins. Of 85 ECM nerve-related epitopes, KS bound 40 proteins, including SLIT, 2 ROBOs, 9 EPHs, 8 Ephrins (EFNs), 8 semaphorins (SEMAs), and 2 nerve growth factor receptors. CSA bound nine proteins, including ROBO2, 2 EPHs, 1 EFN, two SEMAs, and netrin 4. HA bound no ECM nerve-related epitopes. SPR confirmed that KS binds SLIT2 strongly. The KS core protein mimecan/osteoglycin bound 15 proteins. Conclusions. Corneal stromal GAGs bind, and thus could alter the availability or conformation of, many proteins that may influence keratocyte and nerve growth cone behavior in the cornea. PMID:20375348

  13. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides

    PubMed Central

    Hsieh, Po-Hung; Xu, Yongmei; Keire, David A; Liu, Jian

    2014-01-01

    Heparan sulfate and heparin are highly sulfated polysaccharides that consist of a repeating disaccharide unit of glucosamine and glucuronic or iduronic acid. The 2-O-sulfated iduronic acid (IdoA2S) residue is commonly found in heparan sulfate and heparin; however, 2-O-sulfated glucuronic acid (GlcA2S) is a less abundant monosaccharide (∼<5% of total saccharides). Here, we report the synthesis of three GlcA2S-containing hexasaccharides using a chemoenzymatic approach. For comparison purposes, additional IdoA2S-containing hexasaccharides were synthesized. Nuclear magnetic resonance analyses were performed to obtain full chemical shift assignments for the GlcA2S- and IdoA2S-hexasaccharides. These data show that GlcA2S is a more structurally rigid saccharide residue than IdoA2S. The antithrombin (AT) binding affinities of a GlcA2S- and an IdoA2S-hexasaccharide were determined by affinity co-electrophoresis. In contrast to IdoA2S-hexasaccharides, the GlcA2S-hexasaccharide does not bind to AT, confirming that the presence of IdoA2S is critically important for the anticoagulant activity. The availability of pure synthetic GlcA2S-containing oligosaccharides will allow the investigation of the structure and activity relationships of individual sites in heparin or heparan sulfate. PMID:24770491

  14. Remediation of acid mine drainage within strip mine spoil by sulfate reduction using waste organic matter

    SciTech Connect

    Stalker, J.; Rose, A.W.; Michaud, L.H.

    1996-12-31

    Many treatment options for AMD, like wetlands and anoxic limestone drains, are limited by acidity, metal loadings, flow rate or areal requirements so as to be inapplicable at many sites. In-situ bacterial sulfate reduction is proposed as a solution for certain settings. Requirements for successful in-situ bacterial sulfate reduction include dissolved sulfate, an organic substrate, permanent anaerobic conditions, a mixed culture of bacteria, appropriate nutrients, and a sufficient AMD contact time. These requirements can be provided within mine spoil by injection of waste organic matter into an extensive zone of saturated spoil. Laboratory experiments on cheese whey, lactate, non-degraded sawdust, partially degraded sawdust, pulped newspaper and mushroom compost have all yielded sulfate reduction, increased alkalinity and iron sulfide precipitate in AMD with pH < 4.0. The addition of a small amount of dolomite to the organic matter creates alkaline microenvironments that facilitate the initiation of sulfate reduction. The rates of sulfate reduction using cellulose materials are slow but the rate for milk products is much more rapid. A field test utilizing partially degraded sawdust is underway. A total of 11.3 tons of sawdust mixed with 5% dolomite, 5% sewage sludge and a mixed bacterial culture was successfully injected into 4 drill holes in mine spoil as 13% w/v suspension, The spoil had enough coarse porosity for injection into the saturated subsurface at about 300 L/min, Data on in-situ SO{sub 4} reduction rates and water quality are being collected in preparation for a full remediation program at the site, which has an extensive zone of saturated spoil 10-20 m thick.

  15. Acid Deposition From Stratospheric Geoengineering With Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Robock, A.; Oman, L.; Stenchikov, G.

    2008-12-01

    We used a general circulation model of the Earth's climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide [Robock et al., 2008] and analyzed the resulting deposition of sulfate. When sulfur is injected into the tropical or Arctic stratosphere, the main additional surface deposition occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions, and there are some larger local increases, specifically in Northern Canada and the Western Pacific Ocean. We used critical load studies to determine the effects of this increase in acid deposition on terrestrial ecosystems. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, the additional surface sulfate deposition is not enough to negatively impact most ecosystems. Robock, Alan, Luke Oman, and Georgiy Stenchikov (2008), Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res., 113, D16101, doi:10.1029/2008JD010050.

  16. Combined sulfating and non-sulfating support to prevent water and sulfur poisoning of Pd catalysts for methane combustion.

    PubMed

    Di Carlo, Gabriella; Melaet, Gérôme; Kruse, Norbert; Liotta, Leonarda F; Pantaleo, Giuseppe; Venezia, Anna M

    2010-09-14

    The appropriate combination of titania and silica, sulfating and non-sulfating support, respectively, results in Pd catalysts with improved water and sulfur tolerance in methane combustion. For the first time the catalyst recovers the initial activity after one cycle under lean-burn conditions without additional regenerating treatments. PMID:20676428

  17. Sulfate reduction at low pH to remediate acid mine drainage.

    PubMed

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Bijmans, Martijn F M; Stams, Alfons J M

    2014-03-30

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed. PMID:24444599

  18. Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic wastes

    SciTech Connect

    Castro, J.M.; Wielinga, B.W.; Gannon, J.E.; Moore, J.N.

    1999-03-01

    A method to improve water quality in a lake occupying a former open-pit mine was evaluated in a laboratory-scale study. Untreated pit lake water contained high levels of sulfate, iron, and arsenic and was mildly acidic ({approximately} pH 6). Varying amounts of two locally available organic waste products were added to pit water and maintained in microcosms under anoxic conditions. In selected microcosms, populations of sulfate-reducing bacteria increased with time; sulfide was generated by sulfate reduction; sulfate, iron, and arsenic concentrations approached zero; and pH approached neutrality. Best results were obtained with intermediate amounts of waste potato skin.

  19. Acid Mine Drainage and Metal Sulfate Minerals in the Shasta Mining District, California

    NASA Astrophysics Data System (ADS)

    Livingston, J. D.; Murphy, W. M.; Miller, R. M.; Ayars, E. J.

    2005-12-01

    Metal sulfate minerals were collected at four surface water drainage sites during September and October of 2004 in the Shasta Mining District, southern Klamath Mountains, Shasta County, California and analyzed by X-ray fluorescence, atomic absorption spectroscopy, and X-ray diffraction to determine elements present, quantities of Fe, Cu, and Zn, and mineralogy. The Shasta Mining District produced major quantities of Cu, Zn, and pyrite (S) with minor amounts of Au, Ag, and Fe from massive sulfide bodies (Kinkel et al., 1956). Three study sites are located on Iron Mountain and one study site is at Bully Hill. Although mining occurred during a period of just over 100 years, it is estimated that acid mine drainage (AMD) will continue from Iron Mountain for over 3,200 years (Nordstrom and Alpers, 1998). AMD at the study sites produces blooms of metal sulfates during California's Mediterranean climate summer. The minerals readily dissolve in the "first flush" of seasonal rain creating runoff water of low pH with high amounts of dissolved metals (Bayless and Olyphant, 1993; Jambor et al., 2000). Data were examined for mineralogical changes in time and space and for zoning of minerals on a scale of centimeters. Sulfate mineral samples are complex with some samples composed of over a dozen different minerals. Site 1 is located on Spring Creek downstream from the Iron Mountain superfund remediation site, so levels of Fe, Cu, and Zn in the sulfates at this site are lower than at the other sites. Two site 1 samples from the same location taken a month apart show Ca, Fe, Cu, Sr, Y, and Sn, and the first sample also has detectable Br. The metal sulfates identified from the first visit are celestine, cesanite, chessexite, hectorfloresite, and ungemachite, and the mineralogy of the second visit is bilinite, epsomite, millosevichite, and anhydrite. The Fe bearing sulfate mineral during the first visit is ungemachite, but bilinite was the Fe bearing mineral at the time of the second

  20. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.

    PubMed

    Burns, Andrew S; Pugh, Charles W; Segid, Yosief T; Behum, Paul T; Lefticariu, Liliana; Bender, Kelly S

    2012-06-01

    The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ(34)S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria. PMID:22083105

  1. Acid-Tolerant Sulfate-Reducing Bacteria Play a Major Role in Iron Cycling in Acidic Iron Rich Sediments

    NASA Astrophysics Data System (ADS)

    Enright, K. A.; Moreau, J. W.

    2008-12-01

    acidic conditions. The dsrAB genes are related to other novel SRB lineages derived from acidic environments in previous reports, suggesting that these species have adapted to the acidity rather than colonized more circumneutral microenvironments. In an acidic hypersaline lake system in NW Victoria (Australia), previous studies suggested that pore water bisulfide derived from anoxic groundwater transported from distal locations. However, isolated potholes of oxic Fe(III)-rich springwater exhibited nearly a two-fold increase in conductivity and pH increase from 4.5 to 8.0 over time periods on the order of days; and biogeochemical and mineralogical observations were consistent with the presence of active acid- and halo-tolerant SRB. Furthermore, stratified active microbial mat communities, with zones of black FeS formation localized several millimeters below the sediment-air interface, were identified in cross-section from lakeshore sediments near groundwater discharge springs. Culture-independent and culture-based work to characterize the SRB population is ongoing at this site. We infer, from previous sulfur isotope tracer experiments at the lake, that overall sulfate reduction rates may be slow, but are nonetheless proceeding and contributing to the recycling of oxidized iron to a significant degree given the abundance of sulfate evidenced by widespread gypsum precipitation. We conclude from the two study-sites described above that acid-tolerant SRB species play an important role in the linked S, Fe and C cycles in acidifying, iron-rich environments, and their phylogenetic and physiological diversity should be further investigated.

  2. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.

    PubMed

    Tabak, Henry H; Govind, Rakesh

    2003-12-01

    Several biotreatmemt techniques for sulfate conversion by the sulfate reducing bacteria (SRB) have been proposed in the past, however few of them have been practically applied to treat sulfate containing acid mine drainage (AMD). This research deals with development of an innovative polypropylene hollow fiber membrane bioreactor system for the treatment of acid mine water from the Berkeley Pit, Butte, MT, using hydrogen consuming SRB biofilms. The advantages of using the membrane bioreactor over the conventional tall liquid phase sparged gas bioreactor systems are: large microporous membrane surface to the liquid phase; formation of hydrogen sulfide outside the membrane, preventing the mixing with the pressurized hydrogen gas inside the membrane; no requirement of gas recycle compressor; membrane surface is suitable for immobilization of active SRB, resulting in the formation of biofilms, thus preventing washout problems associated with suspended culture reactors; and lower operating costs in membrane bioreactors, eliminating gas recompression and gas recycle costs. Information is provided on sulfate reduction rate studies and on biokinetic tests with suspended SRB in anaerobic digester sludge and sediment master culture reactors and with SRB biofilms in bench-scale SRB membrane bioreactors. Biokinetic parameters have been determined using biokinetic models for the master culture and membrane bioreactor systems. Data are presented on the effect of acid mine water sulfate loading at 25, 50, 75 and 100 ml/min in scale-up SRB membrane units, under varied temperatures (25, 35 and 40 degrees C) to determine and optimize sulfate conversions for an effective AMD biotreatment. Pilot-scale studies have generated data on the effect of flow rates of acid mine water (MGD) and varied inlet sulfate concentrations in the influents on the resultant outlet sulfate concentration in the effluents and on the number of SRB membrane modules needed for the desired sulfate conversion in

  3. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    NASA Technical Reports Server (NTRS)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  4. Suspended culture of sulfate reducing bacteria for the remediation of acid mine drainage

    SciTech Connect

    Misken, K.A.; Figueroa, L.A.

    1993-12-31

    Acid mind drainages are characterized by low pH, and high sulfate and heavy metals concentrations. Conventional treatment technologies address these concerns with high chemical additions producing large volumes of sludge requiring disposal. An anaerobic suspended culture of sulfate reducing bacteria can reduce the metals and sulfate levels by reducing sulfate to sulfide levels by reducing sulfate to sulfate, which can then form precipates with the metal in solution, while increase pH and producing biocarbonate. Readily available and inexpensive organic carbon sources such as wastewater and waste beer were evaluated in serum bottles, and a bench scale sequencing batch reactor was operated using molasses as the organic source. Up to 90% sulfate removal was achieved while reducing iron concentrations to below detection limits. Increases in pH require production of stoichiometrically excess sulfide.

  5. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil

    PubMed Central

    Wu, Xiaofen; Lim Wong, Zhen; Sten, Pekka; Engblom, Sten; Österholm, Peter; Dopson, Mark; Nakatsu, Cindy

    2013-01-01

    Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed ‘potential acid sulfate soil materials’. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH. PMID:23369102

  6. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    USGS Publications Warehouse

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  7. In vivo contribution of amino acid sulfur to cartilage proteoglycan sulfation

    PubMed Central

    Pecora, Fabio; Gualeni, Benedetta; Forlino, Antonella; Superti-Furga, Andrea; Tenni, Ruggero; Cetta, Giuseppe; Rossi, Antonio

    2006-01-01

    Cytoplasmic sulfate for sulfation reactions may be derived either from extracellular fluids or from catabolism of sulfur-containing amino acids and other thiols. In vitro studies have pointed out the potential relevance of sulfur-containing amino acids as sources for sulfation when extracellular sulfate concentration is low or when its transport is impaired such as in DTDST [DTD (diastrophic dysplasia) sulfate transporter] chondrodysplasias. In the present study, we have considered the contribution of cysteine and cysteine derivatives to in vivo macromolecular sulfation of cartilage by using the mouse model of DTD we have recently generated [Forlino, Piazza, Tiveron, Della Torre, Tatangelo, Bonafe, Gualeni, Romano, Pecora, Superti-Furga et al. (2005) Hum. Mol. Genet. 14, 859–871]. By intraperitoneal injection of [35S]cysteine in wild-type and mutant mice and determination of the specific activity of the chondroitin 4-sulfated disaccharide in cartilage, we demonstrated that the pathway by which sulfate is recruited from the intracellular oxidation of thiols is active in vivo. To check whether cysteine derivatives play a role, sulfation of cartilage proteoglycans was measured after treatment for 1 week of newborn mutant and wild-type mice with hypodermic NAC (N-acetyl-L-cysteine). The relative amount of sulfated disaccharides increased in mutant mice treated with NAC compared with the placebo group, indicating an increase in proteoglycan sulfation due to NAC catabolism, although pharmacokinetic studies demonstrated that the drug was rapidly removed from the bloodstream. In conclusion, cysteine contribution to cartilage proteoglycan sulfation in vivo is minimal under physiological conditions even if extracellular sulfate availability is low; however, the contribution of thiols to sulfation becomes significant by increasing their plasma concentration. PMID:16719839

  8. Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters

    PubMed Central

    Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1991-01-01

    Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

  9. Magnesium sulfate-induced water secretion in hamster small intestine

    SciTech Connect

    Reichelderfer, M.; Pero, B.; Lorenzsonn, V.; Olsen, W.A.

    1984-05-01

    Possible mechanisms of magnesium sulfate (MgSO/sup 4/)-induced diarrhea were studied. In vivo perfusion of hamster small intestine with an isotonic electrolyte solution containing 50 mM MgSO/sub 4/ produced nearly three times as much fluid secretion as did a solution containing an equiosmotic amount of mannitol. It was found that magnesium was absorbed at a faster rate than mannitol under these conditions, suggesting that differences in solute permeability do not explain the differences in secretory rates. Magnesium ion rather than sulfate appeared largely responsible for the effect as replacement of sulfate with chloride did not diminish the response. MgSO/sub 4/ perfusion of a proximal intestinal segment did not affect water transport in an isolated distal segment suggesting that release of cholecystokinin or alterations in serum levels of other hormones were not responsible. Intestinal permeability, morphology, and cyclic nucleotide levels were normal after MgSO/sub 4/ perfusion. Thus, MgSO/sub 4/-induced diarrhea cannot be explained by the usual mechanisms, and additional processes responsible for intestinal secretion must exist.

  10. Cerro Negro, Nicaragua: A key Mars Analog Environment for Acid-Sulfate Weathering

    NASA Astrophysics Data System (ADS)

    Hynek, B. M.; Rogers, K. L.; McCollom, T. M.

    2008-12-01

    Sulfate-rich bedrock has been discovered in many locations on Mars and has been studied by both orbiting spacecraft and landers. It appears that in most cases these minerals are produced by acid-sulfate weathering of igneous rocks, which may have been a widespread process for the first billion years of Mars' history. The origin of life on Earth may have occurred in iron-sulfur hydrothermal settings and it is conceivable that early Mars had similar environmental conditions. An excellent terrestrial analog for acid- sulfate weathering of Mars-like basalts exists at Cerro Negro (CN), Nicaragua, where sulfur-bearing gases interact with recently erupted basaltic ash in numerous fumaroles. To date, we have made two expeditions to CN to assess the chemical, mineralogical, and biological conditions. At the fumaroles pH ranges from <1 to 5 and temperatures range from 40 to 400° C. Basalts with a chemical composition very similar to those on Mars are being chemically altered in the solfatara setting. In a few years, freshly erupted basalt can be converted into predominately Ca-, Mg-, and Fe-sulfates, Fe-hydroxides (including jarosite), clays, and free silica. Altered rocks have up to 30 wt% SO3 equivalent, which is similar to the Meridiani Planum bedrocks and inferred in other sulfate-bearing bedrock on Mars. Moreover, heavily weathered rocks have silica contents up to 80 wt%, similar to silica-rich soils at Gusev Crater that possibly formed in hydrothermal environments. Samples were collected for biological analysis including enrichment and isolation of novel thermophiles as well as molecular characterization of thermophile diversity. The low water and nutrient levels found in solfatara environments lead to less biomass when compared to hot springs with similar geochemical conditions. Nonetheless, microbes are thriving in these hot, acidic vent environments. At Cerro Negro solfatara, we are characterizing the metabolic and phylogenetic diversity of resident microbial

  11. Practical applications of sulfate-reducing bacteria to control acid mine drainage at the Lilly/Orphan Boy Mine near Elliston, Montana

    SciTech Connect

    Canty, M.

    1994-12-31

    The overall purpose of this document is to provide a detailed technical description of a technology, biological sulfate reduction, which is being demonstrated under the Mine Waste Technology Pilot Program, and provide the technology evaluation process undertaken to select this technology for demonstration. In addition, this document will link the use of the selected technology to an application at a specific site. The purpose of this project is to develop technical information on the ability of biological sulfate reduction to slow the process of acid generation and, thus, improve water quality at a remote mine site. Several technologies are screened for their potential to treat acid mine water and to function as a source control for a specific acid-generating situation: a mine shaft and associated underground workings flooded with acid mine water and discharging a small flow from a mine opening. The preferred technology is the use of biological sulfate reduction. Sulfate-reducing bacteria are capable of reducing sulfate to sulfide, as well as increasing the pH and alkalinity of water affected by acid generation. Soluble sulfide reacts with the soluble metals in solution to form insoluble metal sulfides. The environment needed for efficient sulfate-reducing bacteria growth decreases acid production by reducing the dissolved oxygen in water and increasing pH. A detailed technical description of the sulfate-reducing bacteria technology, based on an extensive review of the technical literature, is presented. The field demonstration of this technology to be performed at the Lilly/Orphan Boy Mine is also described. Finally, additional in situ applications of biological sulfate reduction are presented.

  12. Water soluble sulfated-fucans with immune-enhancing properties from Ecklonia cava.

    PubMed

    Cao, Rong-An; Lee, YongJin; You, SangGuan

    2014-06-01

    Water-soluble sulfated fucans isolated from Ecklonia cava were fractionated using an anion-exchange chromatography to investigate their molecular characteristics and immunomodulating activities. The crude fucoidan extract and purified fractions (EF1, EF2, and EF3) consisted mostly of different ratios of neutral sugars, proteins, sulfates, uronic acids, and their monosaccharide compositions were also significantly different. The backbone of the most immunoenhancing fraction, EF2, was mainly linked by (1→3)-linked fucopyranosyl and (1→4)-linked mannopyranosyl residues with sulfates at C-4 of fucopyranosyl units. The molecular weights of the crude fucoidan extract and purified fractions ranged from 8.3×10(3) to 442.6×10(3)g/mol. The crude extract, EF1 and EF2 stimulated RAW264.7 cells to produce considerable amounts of nitric oxide and cytokines. The treatment of cells with the sulfated fucans induced the degradation of Iκ-B and the phosphorylation of MAPK in RAW264.7 cells, implying that they might stimulate RAW264.7 cells through the activation of NF-κB and MAPK pathways. PMID:24661888

  13. Toxic effects of two acid sulfate soils from the Dabaoshan Mine on Corymbia citriodora var.variegata and Daphnia carinata.

    PubMed

    Liu, Y; Lin, C; Ma, Y; Lu, W; Wu, Y; Huang, S; Zhu, L; Li, J; Chen, A

    2009-07-30

    Acidic, metal-stressed conditions encountered in the acid sulfate soils significantly inhibited the growth of Corymbia citriodora var.variegata, possibly due to the reduced rate of photosynthesis and plant root activity. However, the plant's self-protection mechanism to counteract stress-induced cellular damage by reactive oxygen species still functioned well even at a soil pH as low as 2.81. This may explain the high tolerance of this plant species to the extremely acidic environments. The observed phytotoxicity symptoms were not accompanied by elevated concentrations of heavy metals in the plant tissues, suggesting that heavy metal levels in plant tissue alone are not valid indications of phytotoxicity to the tested plant species. Leachates from the acid sulfate soils had strong toxicity to Daphnia carinata. Median lethal dilution factor (LDF50) was much higher for the leachate from the highly acidic acid sulfate soils (ASS) than that from the mildly acidic ASS. Although the concentration of various metals markedly decreased with increasing number of leaching cycle, leachate toxicity to Daphnia carinata did not decrease accordingly. This suggests that levels of heavy metals and Al in the leachate are not good indicators of the mine water biotoxicity. PMID:19157696

  14. Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Darby Dyar, M.; Lane, Melissa D.; Banfield, Jillian F.

    2004-10-01

    We interpret recent spectral data of Mars collected by the Mars Exploration Rovers to contain substantial evidence of sulfate minerals and aqueous processes. We present visible/near-infrared (VNIR), mid-IR and Mössbauer spectra of several iron sulfate minerals and two acid mine drainage (AMD) samples collected from the Iron Mountain site and compare these combined data with the recent spectra of Mars. We suggest that the sulfates on Mars are produced via aqueous oxidation of sulfides known to be present on Mars from Martian meteorites. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to AMD environments on Earth. Because microorganisms are typically involved in the oxidation of sulfides to sulfates in terrestrial AMD sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals is likely to lead to aqueous processes and chemical weathering. Our results imply that sulfate minerals formed in Martian soils via chemical weathering, perhaps over very long time periods, and that sulfate minerals precipitated following aqueous oxidation of sulfides to form the outcrop rocks at Meridiani Planum.

  15. Reactive uptake of N2O5 by aerosol particles containing mixtures of humic acid and ammonium sulfate.

    PubMed

    Badger, Claire L; Griffiths, Paul T; George, Ingrid; Abbatt, Jonathan P D; Cox, R Anthony

    2006-06-01

    The kinetics of reactive uptake of N2O5 on submicron aerosol particles containing humic acid and ammonium sulfate has been investigated as a function of relative humidity (RH) and aerosol composition using a laminar flow reactor coupled with a differential mobility analyzer (DMA) to characterize the aerosol. For single-component humic acid aerosol the uptake coefficient, gamma, was found to increase from 2 to 9 x 10(-4) over the range 25-75% RH. These values are 1-2 orders of magnitude below those typically observed for single-component sulfate aerosols (Phys. Chem. Chem. Phys. 2003, 5, 3453-3463;(1) Atmos. Environ. 2000, 34, 2131-2159(2)). For the mixed aerosols, gamma was found to decrease with increasing humic acid mass fraction and increase with increasing RH. For aerosols containing only 6% humic acid by dry mass, a decrease in reactivity of more than a factor of 2 was observed compared with the case for single-component ammonium sulfate. The concentration of liquid water in the aerosol droplets was calculated using the aerosol inorganic model (for the ammonium sulfate component) and a new combined FTIR-DMA system (for the humic acid component). Analysis of the uptake coefficients using the water concentration data shows that the change in reactivity cannot be explained by the change in water content alone. We suggest that, due to its surfactant properties, the main effect of the humic acid is to reduce the mass accommodation coefficient for N2O5 at the aerosol particle surface. This has implications for the use of particle hygroscopicity data for predictions of the rate of N2O5 hydrolysis. PMID:16722713

  16. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation

    PubMed Central

    Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W.

    2015-01-01

    Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of “passive” CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling. PMID:26191042

  17. Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation.

    PubMed

    Ling, Yu-Chen; Bush, Richard; Grice, Kliti; Tulipani, Svenja; Berwick, Lyndon; Moreau, John W

    2015-01-01

    Coastal acid sulfate soils (CASS) constitute a serious and global environmental problem. Oxidation of iron sulfide minerals exposed to air generates sulfuric acid with consequently negative impacts on coastal and estuarine ecosystems. Tidal inundation represents one current treatment strategy for CASS, with the aim of neutralizing acidity by triggering microbial iron- and sulfate-reduction and inducing the precipitation of iron-sulfides. Although well-known functional guilds of bacteria drive these processes, their distributions within CASS environments, as well as their relationships to tidal cycling and the availability of nutrients and electron acceptors, are poorly understood. These factors will determine the long-term efficacy of "passive" CASS remediation strategies. Here we studied microbial community structure and functional guild distribution in sediment cores obtained from 10 depths ranging from 0 to 20 cm in three sites located in the supra-, inter- and sub-tidal segments, respectively, of a CASS-affected salt marsh (East Trinity, Cairns, Australia). Whole community 16S rRNA gene diversity within each site was assessed by 454 pyrotag sequencing and bioinformatic analyses in the context of local hydrological, geochemical, and lithological factors. The results illustrate spatial overlap, or close association, of iron-, and sulfate-reducing bacteria (SRB) in an environment rich in organic matter and controlled by parameters such as acidity, redox potential, degree of water saturation, and mineralization. The observed spatial distribution implies the need for empirical understanding of the timing, relative to tidal cycling, of various terminal electron-accepting processes that control acid generation and biogeochemical iron and sulfur cycling. PMID:26191042

  18. STATISTICAL VALIDATION OF SULFATE QUANTIFICATION METHODS USED FOR ANALYSIS OF ACID MINE DRAINAGE

    EPA Science Inventory

    Turbidimetric method (TM), ion chromatography (IC) and inductively coupled plasma atomic emission spectrometry (ICP-AES) with and without acid digestion have been compared and validated for the determination of sulfate in mining wastewater. Analytical methods were chosen to compa...

  19. The use of ion exchange membranes for isotope analyses on soil water sulfate: laboratory experiments.

    PubMed

    Kwon, Jang-Soon; Mayer, Bernhard; Yun, Seong-Taek; Nightingale, Michael

    2008-01-01

    To investigate the potential use of anion exchange membranes (plant root simulator [PRS] probes) for isotope investigations of the soil sulfur cycle, laboratory experiments were performed to examine the sulfate exchange characteristics and to determine the extent of sulfur and oxygen isotope fractionation during sulfate sorption and desorption on the probes in aqueous solutions and simulated soil solutions. The sulfate-exchange tests in aqueous solutions under varying experimental conditions indicated that the amount of sulfate exchanged onto PRS probes increased with increasing reaction time, initial sulfate concentration, and the number of probes used (= surface area), whereas the percentage of removal of available sulfate was constant irrespective of the initial sulfate concentration. The competition of nitrate and chloride in the solution lowered the amount of exchanged sulfate. The exchange experiments in a simulated soil under water-saturated and water-unsaturated conditions showed that a considerable proportion of the soil sulfate was exchanged by the PRS probes after about 10 d. There was no evidence for significant sulfur and oxygen isotope fractionation between soil sulfate and sulfate recovered from the PRS probes. Therefore, we recommend the use of PRS probes as an efficient and easy way to collect soil water sulfate for determination of its isotope composition. PMID:18268314

  20. Secondary sulfate minerals associated with acid drainage in the eastern US: Recycling of metals and acidity in surficial environments

    USGS Publications Warehouse

    Hammarstrom, J.M.; Seal, R.R., II; Meier, A.L.; Kornfeld, J.M.

    2005-01-01

    Weathering of metal-sulfide minerals produces suites of variably soluble efflorescent sulfate salts at a number of localities in the eastern United States. The salts, which are present on mine wastes, tailings piles, and outcrops, include minerals that incorporate heavy metals in solid solution, primarily the highly soluble members of the melanterite, rozenite, epsomite, halotrichite, and copiapite groups. The minerals were identified by a combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron-microprobe. Base-metal salts are rare at these localities, and Cu, Zn, and Co are commonly sequestered as solid solutions within Fe- and Fe-Al sulfate minerals. Salt dissolution affects the surface-water chemistry at abandoned mines that exploited the massive sulfide deposits in the Vermont copper belt, the Mineral district of central Virginia, the Copper Basin (Ducktown) mining district of Tennessee, and where sulfide-bearing metamorphic rocks undisturbed by mining are exposed in Great Smoky Mountains National Park in North Carolina and Tennessee. Dissolution experiments on composite salt samples from three minesites and two outcrops of metamorphic rock showed that, in all cases, the pH of the leachates rapidly declined from 6.9 to 30 mg L-1), Fe (>47 mg L-1), sulfate (>1000 mg L-1), and base metals (>1000 mg L-1 for minesites, and 2 mg L-1 for other sites). Geochemical modeling of surface waters, mine-waste leachates, and salt leachates using PHREEQC software predicted saturation in the observed ochre minerals, but significant concentration by evaporation would be needed to reach saturation in most of the sulfate salts. Periodic surface-water monitoring at Vermont minesites indicated peak annual metal loads during spring runoff. At the Virginia site, where no winter-long snowpack develops, metal loads were highest during summer months when salts were dissolved periodically by rainstorms following sustained evaporation during dry

  1. A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion.

    PubMed

    Gara, Pedro M David; Bosio, Gabriela N; Gonzalez, Mónica C; Russo, Nino; Del Carmen Michelini, Maria; Diez, Reinaldo Pis; Mártire, Daniel O

    2009-07-01

    The kinetics of the reaction of sulfate radicals with the IHSS Waskish peat fulvic acid in water was investigated in the temperature range from 289.2 to 305.2 K. The proposed mechanism considers the reversible binding of the sulfate radicals by the fulvic acid. The kinetic analysis of the data allows the determination of the thermodynamic parameters DeltaG degrees = -10.2 kcal mol(-1), DeltaH degrees = -16 kcal mol(-1) and DeltaS degrees = -20.3 cal K(-1) mol(-1) for the reversible association at 298.2 K. Theoretical (DFT) calculations performed with the Buffle model of the fulvic acids support the formation of H-bonded adducts between the inorganic radicals and the humic substances. The experimental enthalpy change compares well with the theoretical values found for some of the investigated adducts. PMID:19582275

  2. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  3. Efflorescent sulfates from Baia Sprie mining area (Romania)--Acid mine drainage and climatological approach.

    PubMed

    Buzatu, Andrei; Dill, Harald G; Buzgar, Nicolae; Damian, Gheorghe; Maftei, Andreea Elena; Apopei, Andrei Ionuț

    2016-01-15

    The Baia Sprie epithermal system, a well-known deposit for its impressive mineralogical associations, shows the proper conditions for acid mine drainage and can be considered a general example for affected mining areas around the globe. Efflorescent samples from the abandoned open pit Minei Hill have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and near-infrared (NIR) spectrometry. The identified phases represent mostly iron sulfates with different hydration degrees (szomolnokite, rozenite, melanterite, coquimbite, ferricopiapite), Zn and Al sulfates (gunningite, alunogen, halotrichite). The samples were heated at different temperatures in order to establish the phase transformations among the studied sulfates. The dehydration temperatures and intermediate phases upon decomposition were successfully identified for each of mineral phases. Gunningite was the single sulfate that showed no transformations during the heating experiment. All the other sulfates started to dehydrate within the 30-90 °C temperature range. The acid mine drainage is the main cause for sulfates formation, triggered by pyrite oxidation as the major source for the abundant iron sulfates. Based on the dehydration temperatures, the climatological interpretation indicated that melanterite formation and long-term presence is related to continental and temperate climates. Coquimbite and rozenite are attributed also to the dry arid/semi-arid areas, in addition to the above mentioned ones. The more stable sulfates, alunogen, halotrichite, szomolnokite, ferricopiapite and gunningite, can form and persists in all climate regimes, from dry continental to even tropical humid. PMID:26544892

  4. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.

    PubMed

    Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2013-11-15

    Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil. PMID:24007995

  5. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-03-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate was investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for sodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, sodium malonate, sodium succinate, sodium tartrate, ammonium tartrate, sodium pyruvate, sodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The mixtures of organic salts with ammonium sulfate, which are prepared simulating the atmospheric aerosols, are determined. A clear shift in DRH of mixture to lower RH is observed with increasing organic mass fraction. Above RH = 80%, the humidograms of the different mixtures are quite close to that of pure ammonium sulfate. Köhler theory is used to predict the effective hygroscopicity parameter, κ, for mixtures at 90% RH. The results show that Köhler theory underestimated kappa for mixtures without considering the water solubility of ammonium oxalate. However, if the water solubility of ammonium oxalate is taken into account, the results show a much better agreement with those derived from H-TDMA measurements.

  6. Equilibrium phase diagrams of aqueous mixtures of malonic acid and sulfate/ammonium salts.

    PubMed

    Salcedo, Dara

    2006-11-01

    Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. In this study, solubility in water, water activity (a(w)) of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid (MA) with ammonium sulfate (AS) and ammonium bisulfate (ABS) at 25 degrees C over the full range of composition (from 0 wt % to the solubility limit of the mixture components). The data were used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity (RH). This work complements previous reports on the thermodynamic properties of AS/MA mixtures because the range of concentrations investigated is larger than in any other published single study. On the other hand, this is the first report on the a(w), deliquescence, and water absorption of ABS/MA mixtures. The eutonic composition for AS/MA mixtures was found to be 66.8 MA dry wt % (MA dry wt % = MA mass x 100/(AS mass + MA mass) with a DRH of 0.437. The eutonic composition for the ABS/MA mixtures was lower than for the AS/MA mixtures: 20.9 MA dry wt % with a DRH of 0.327. Measured a(w) of liquid AS/MA and ABS/MA solutions is compared with an extended Zdanovskii-Stokes-Robinson expression, obtaining a good agreement (error < 5-6%). The expression was used to predict water uptake of mixtures and might be useful to interpret particle hygroscopic growth experiments. Comparison of the AS/MA and ABS/MA systems indicates that ABS reduces the DRH and enhances water uptake, relative to mixtures with AS. The results confirm that ambient particles containing sulfate and water-soluble organic compounds can remain liquid or partially liquid at very low ambient RH

  7. Sulfate reduction in freshwater sediments receiving Acid mine drainage.

    PubMed

    Herlihy, A T; Mills, A L

    1985-01-01

    One arm of Lake Anna, Va., receives acid mine drainage (AMD) from Contrary Creek (SO(4) concentration = 2 to 20 mM, pH = 2.5 to 3.5). Acid-volatile sulfide concentrations, SO(4) reduction rates, and interstitial SO(4) concentrations were measured at various depths in the sediment at four stations in four seasons to assess the effects of the AMD-added SO(4) on bacterial SO(4) reduction. Acid-volatile sulfide concentrations were always an order of magnitude higher at the stations receiving AMD than at a control station in another arm of the lake that received no AMD. Summer SO(4) reduction rates were also an order of magnitude higher at stations that received AMD than at the control station (226 versus 13.5 mmol m day), but winter values were inconclusive, probably due to low sediment temperature (6 degrees C). Profiles of interstitial SO(4) concentrations at the AMD stations showed a rapid decrease with depth (from 1,270 to 6 muM in the top 6 cm) due to rapid SO(4) reduction. Bottom-water SO(4) concentrations in the AMD-receiving arm were highest in winter and lowest in summer. These data support the conclusion that there is a significant enhancement of SO(4) reduction in sediments receiving high SO(4) inputs from AMD. PMID:16346696

  8. Sulfate Reduction in Freshwater Sediments Receiving Acid Mine Drainage

    PubMed Central

    Herlihy, Alan T.; Mills, Aaron L.

    1985-01-01

    One arm of Lake Anna, Va., receives acid mine drainage (AMD) from Contrary Creek (SO42− concentration = 2 to 20 mM, pH = 2.5 to 3.5). Acid-volatile sulfide concentrations, SO42− reduction rates, and interstitial SO42− concentrations were measured at various depths in the sediment at four stations in four seasons to assess the effects of the AMD-added SO42− on bacterial SO42− reduction. Acid-volatile sulfide concentrations were always an order of magnitude higher at the stations receiving AMD than at a control station in another arm of the lake that received no AMD. Summer SO42− reduction rates were also an order of magnitude higher at stations that received AMD than at the control station (226 versus 13.5 mmol m−2 day−1), but winter values were inconclusive, probably due to low sediment temperature (6°C). Profiles of interstitial SO42− concentrations at the AMD stations showed a rapid decrease with depth (from 1,270 to 6 μM in the top 6 cm) due to rapid SO42− reduction. Bottom-water SO42− concentrations in the AMD-receiving arm were highest in winter and lowest in summer. These data support the conclusion that there is a significant enhancement of SO42− reduction in sediments receiving high SO42− inputs from AMD. PMID:16346696

  9. Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs

    PubMed Central

    Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

    1996-01-01

    The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere. PMID:16535321

  10. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode.

    PubMed

    Teng, Wenkai; Liu, Guangli; Luo, Haiping; Zhang, Renduo; Xiang, Yinbo

    2016-03-01

    The aim of this study was to develop microbial electrolysis cell (MEC) with a novel acidophilic and autotrophic biocathode for treatment of acid wastewater. A biocathode was developed using acidophilic sulfate-reducing bacteria as the catalyst. Artificial wastewater with 200mgL(-1) sulfate and different Zn concentrations (0, 15, 25, and 40 mg L(-1)) was used as the MEC catholyte. The acidophilic biocathode dominated by Desulfovibrio sp. with an abundance of 66% (with 82% of Desulfovibrio sequences similar to Desulfovibrio simplex) and achieved a considerable sulfate reductive rate of 32 gm(-3)d(-1). With 15 mg L(-1) Zn added, the sulfate reductive rate of MEC improved by 16%. The formation of ZnS alleviated the inhibition from sulfide and sped the sulfate reduction. With 15 and 25 mgL(-1) Zn added, more than 99% of Zn was removed from the wastewater. Dissolved Zn ions in the catholyte were converted into insoluble Zn compounds, such as zinc sulfide and zinc hydroxide, due to the sulfide and elevated pH produced by sulfate reduction. The MEC with acidophilic and autotrophic biocathode can be used as an alternative to simultaneously remove sulfate and metals from acid wastewaters, such as acid mine drainage. PMID:26561748

  11. Activated sludge as substrate for sulfate-reducing bacteria in acid mine drainage treatment

    SciTech Connect

    Al-Ani, W.A.G.; Henry, J.G.; Prasad, D.

    1996-11-01

    Acid mine drainage (AMD), characterized by high concentrations of sulfates and heavy metals and low pH, presents a potential hazard to the environment.Several treatment processes (chemical precipitation, ion exchange, reverse osmosis, electrodialysis and electrolytic recovery) are available, but these are often too expensive. Biological treatment of AMD, mediated by sulfate-reducing bacteria (SRB), seems promising. The objective of this study was to use activated sludge as a carbon source for the SRB and determine the most effective COD/sulfate ratio and hydraulic retention time (HRT) for reducing sulfate. Such information would be useful for the application of the proposed two-stage system to AMD treatment. Since the aim of this study was to obtain sulfate reduction and to avoid methane production, it was decided to operate the digesters initially at low COD/SO{sub 4}{sup 2{minus}} ratios of 1.0, 1.5, and 2.0.

  12. Acid Drainage Generation and Associated Ca-Fe-SO4 Minerals Near Eagle Plains, Northern Yukon: an Analogue for Low Temperature Sulfate Formation on Mars

    NASA Astrophysics Data System (ADS)

    Lacelle, D.; Leveille, R.; Mader, M.

    2008-12-01

    Near Eagle Plains, northern Yukon, acidic Ca-Fe-Mg-SO4 waters are discharging year-long from disturbed permafrosted sandstone bedrock overlying pyritiferous shales. The acidic waters are also precipitating gypsum with minor amounts of jarosite-K (Na), schwertmannite and hematite, similar to the mineral sequence observed at Meridiani Planum, making this site a valuable analogue for low temperature sulfate geochemistry and mineral formations on Mars. Stable O-S isotope analysis of the acidic waters near Eagle Plains revealed that the oxygen in the dissolved sulfate was mostly derived from water, suggesting that the sulfide oxidation process could be in part biomediated (i.e., accelerated by Fe-oxidizing microorganisms). However, unlike the dissolved sulfate in the waters, the formation of the Ca-Fe sulfate minerals is abiotic. The stable O-S isotope composition of the sulfate minerals is well within the predicted equilibrium range, suggesting that they formed through physico-chemical processes (i.e., evaporation or freezing). Low temperature geochemical modeling with FREZCHEM and PHREEQC suggests that the mineral sequence at Eagle Plains formed through the freezing of Ca-Fe-Mg-SO4 waters, rather than through evaporation during the dry summer season. Although the later is still a valid process of sulfate mineral formation at Eagle Plains as the acidic stream nearly dries-up during the summer. Overall, the fact that acid drainage is presently active allows to directly observe the low temperature (bio)geochemical processes responsible for generating acid drainage and precipitation of gypsum, schwertmannite, jarosite-K, jarosite-Na, goethite and hematite.

  13. Intestinal absorption of lithocholic acid sulfates in the rat: inhibitory effects of calcium

    SciTech Connect

    Kuipers, F.; Heslinga, H.; Havinga, R.; Vonk, R.J.

    1986-08-01

    Sulfation of lithocholic acid has been proposed as a mechanism for elimination of this hepatotoxic bile acid from the body by accelerating its fecal excretion. However, quantitative data on the absorption characteristics of sulfated lithocholic acid conjugates in vivo are scarce. We studied the intestinal absorption of /sup 14/C-labeled glycolithocholic acid (GLC), taurolithocholic acid (TLC), and their 3 alpha-sulfate esters, SGLC and STLC, respectively. Studies were performed in unanesthetized rats with a permanent biliary drainage. At an intestinal infusion rate of 125 nmol/min, which is comparable to 7% of the normal biliary bile acid output in the rat, the absorption of sulfated lithocholic acid conjugates was delayed when compared with their unsulfated precursors but quantitatively only slightly reduced over a 24-h period: SGLC 90.9 +/- 3.6%, GLC 94.4 +/- 1.1%, STLC 84.4 +/- 3.0%, and TLC 94.2 +/- 2.1%. Urinary excretion of sulfated and unsulfated bile acids was similar and never exceeded 2% of the dose. SGLC absorption was dose dependent, was not altered by coinfusion of rat bile, and was only slightly reduced by a sixfold overdose of taurocholic acid. SGLC and STLC were excreted into bile largely unchanged in form. In contrast, GLC and TLC were extensively metabolized to more polar bile acids, predominantly to beta-muricholic acid conjugates. Replacement of NaCl in the infusion fluid by CaCl2 reduced the absorption of SGLC and STLC by 63 and 52%, respectively. This calcium effect was less pronounced for the unsulfated bile acids: GLC -22%, and TL-19%. Absorption of taurocholic acid was unaffected by CaCL2.

  14. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    PubMed Central

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  15. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    NASA Astrophysics Data System (ADS)

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  16. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    PubMed

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented. PMID:20220244

  17. Sulfate reduction in freshwater sediments receiving acid mine drainage

    SciTech Connect

    Herlihy, A.T.; Mills, A.L.

    1985-01-01

    One arm of Lake Anna, Va., receives acid mine drainage (AMD) from Contrary Creek (SO/sub 4//sup 2 -/ concentration = 2 to 20 mM, pH = 2.5 to 3.5). Acid-volatile sulfide concentrations, SO/sub 4//sup 2 -/ reduction rates, and interstitial SO/sub 4//sup 2 -/ concentrations were measured at various depths in the sediment at four stations in four seasons to assess the effects of the AMD-added SO/sub 4//sup 2 -/ on bacterial SO/sub 4//sup 2 -/ reduction. Acid-volatile sulfide concentrations were always an order of magnitude higher at the stations receiving AMD than at a control station in another arm of the lake that received no AMD. Summer SO/sub 4//sup 2 -/ reduction rates were also an order of magnitude higher at stations that received AMD than at the control station (226 versus 13.5 mmol m/sup -2/ day/sup -1/), but winter values were inconclusive, probably due to low sediment temperature (6/sup 0/C). Profiles of interstitial SO/sub 4//sup 2 -/ concentrations at the AMD stations showed a rapid decrease with depth (from 1270 to 6 ..mu..M in the top 6 cm) due to rapid SO/sub 4//sup 2 -/ reduction. Bottom-water SO/sub 4//sup 2 -/ concentrations in the AMD-receiving arm were highest in winter and lowest in summer. These data support the conclusion that there is a significant enhancement of SO/sub 4//sup 2 -/ reduction in sediments receiving high SO/sub 4//sup 2 -/ inputs from AMD.

  18. Evidence for Acid-Sulfate Alteration in the Pahrump Hills Region, Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Ming, D. W.; Vaniman, D. T.; Blake, D. F.; Chipera, S.; Morris, R. V.; Bish, D. L.; Cavanagh, P.; Achilles, C.; Bristow, T.; Fairen, A.; Morrison, S. M.; Treiman, A. H.; Crisp, J. A.; Downs, R. T.; Farmer, J. D.; Fendrich, K.; Morookian, J.

    2015-12-01

    The Pahrump Hills region of Gale crater is a ~12 m thick section of sedimentary rock in the Murray formation, interpreted as the basal geological unit of Mount Sharp. The Mars Science Laboratory, Curiosity, arrived at the Pahrump Hills in September 2014 and performed a detailed six-month investigation of the sedimentary structures, geochemistry, and mineralogy of the area. During the campaign, Curiosity drilled and delivered three mudstone samples (targets Confidence Hills, Mojave 2, and Telegraph Peak) to its internal instruments, including the CheMin XRD/XRF. Results from CheMin show that these samples have variable amounts of plagioclase, pyroxene, iron oxides, jarosite, phyllosilicates, cristobalite, and X-ray amorphous material. The presence of jarosite in all samples indicates these rocks were affected by acid-sulfate alteration, and the mineralogical and geochemical trends observed through the section may give more insight into this process. Geochemical data measured by APXS show enrichment in Si and depletion in Mg moving up section. CheMin data show that cristobalite is more abundant up section, whereas pyroxene and phyllosilicates are more abundant at the bottom of the section. Based on mineralogical and geochemical trends and diagenetic features observed in the Pahrump Hills, we hypothesize that the sediments were altered in-situ by acid-sulfate fluids moving down from the top of the section to leach mobile elements, dissolve the minerals most susceptible to acidic alteration, and precipitate secondary silica at the top of the section. Alternative interpretations of the observed mineralogical and geochemical data are possible, including the hypothesis that the redox conditions of the body of water in which the sediments were deposited changed over time.

  19. Effect of hydrochloric acid on sound absorption and relaxation frequency in magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Fisher, F. H.

    2002-05-01

    The epic work of Kurtze and Tamm on sound absorption spectroscopy in divalent sulfate electrolyte solutions (1953) from the low-kHz region up to over 200 MHz revealed astonishing variability at frequencies below 10 MHz and a common relaxation frequency at about 200 MHz. For magnesium sulfate [Epsom salts] solutions, the salt producing 30× the absorption of fresh water below the 100-kHz region in the oceans at low concentrations [~0.02 moles/liter], Kurtze and Tamm investigated the effects of adding HC1 or H2SO4. They found that as formal pH increased, the results were different for these acids in reducing the sound absorption. Fisher (1983) found that if the absorption was plotted against free hydrogen, ion concentration was the same. We used the 100-liter titanium sphere, a spare ballast tank from the WHOI submarine ALVIN. With precise temperature control, we found an increase in the relaxation frequency as HC1 was added in conjunction with the reduction in sound absorption. The results will be presented and an explanation will be proposed in the context of the Eigen and Tamm multistate dissociation model for MgSO4 (1962) which explains the effects of pressure on both absorption and conductance. [Work supported by ONR.] The author acknowledges C. C. Hsu for his work on this project.

  20. Isotopic geochemistry of acid thermal waters and volcanic gases from Zaō volcano in Japan

    NASA Astrophysics Data System (ADS)

    Kiyosu, Yasuhiro; Kurahashi, Makoto

    1984-08-01

    The chemical composition and D/H, {18O }/{16O } and {34S }/{32S } ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO 2, SO 2 and N 2, exclusive of H 2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H 2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate ( δ 34S = ˜ + 4‰ ) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.

  1. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    PubMed Central

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Deng, Yang

    2015-01-01

    Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM) as a pretreatment prior to polyvinylidene fluoride (PVDF) microfiltration (MF) membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW) distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM) image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling. PMID:26075726

  2. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  3. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  4. Acidic and total primary sulfates: development of emission factors for major stationary combustion sources

    SciTech Connect

    Goklany, I.M.; Hoffnagle, G.F.; Brackbill, E.A.

    1984-01-01

    ''Best estimates'' of emission factors for major sources of acidic and total primary sulfates are developed for use in the compilation of emission inventories for the eastern U.S. These may, in turn, be used for modeling of acidic or sulfate deposition. The factors are based upon a critical evaluation of the generic measurement methods used to quantify total and acidic primary sulfate emissions, and an exhaustive review and critique of individual papers and studies available in the open literature which present measurement data on primary sulfate emissions. It develops a qualitative rating scheme which specifies the level of confidence that should be attached to the emission factor determinations. The paper concludes that much of the existing data on primary sulfates from stationary combustion sources are, probably, significantly biased upward and, therefore, inappropriate for the derivation of emission factors. Therefore, existing estimates of primary sulfate emissions for these source categories are, probably, substanitally inflated. It also concludes that, for most source categories, very little confidence can be attached to the best estimates because of the paucity of data obtained from measurement techniques which are likely to be free of systematic bias. 68 references.

  5. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  6. Microbial Dissimilatory Sulfur Cycle in Acid Mine Water

    PubMed Central

    Tuttle, Jon H.; Dugan, Patrick R.; Macmillan, Carol B.; Randles, Chester I.

    1969-01-01

    Ferric, sulfate, and hydrogen ions are produced from pyritic minerals associated with coal as a result of autotrophic bacterial metabolism. Water carrying these ions accumulated behind a porous dam composed of wood dust originating at a log-cutting mill. As water seeped through the porous dam, it was enriched in organic nutrients which then supported growth and metabolism of heterotrophic bacteria in the water downstream from the dam. The heterotrophic microflora within and below the sawdust dam included dissimilatory sulfate-reducing anaerobic bacteria which reduce sulfate to sulfide. The sulfide produced caused the chemical reduction of ferric to ferrous ion, and black FeS precipitate was deposited on the pond bottom. A net increase in the pH of the lower pond water was observed when compared to the upper pond water. Microbial activity in the wood dust was demonstrated, and a sequence of cellulose degradation processes was inferred on the basis of sugar accumulation in mixed cultures in the laboratory, ultimately yielding fermentation products which serve as nutrients for sulfate-reducing bacteria. Some of the microorganisms were isolated and characterized. The biochemical and growth characteristics of pure culture isolates were generally consistent with observed reactions in the acidic environment, with the exception of sulfate-reducing bacteria. Mixed cultures which contained sulfate-reducing bacteria reduced sulfate at pH 3.0 in the laboratory with sawdust as the only nutrient. Pure cultures of sulfate-reducing bacteria isolated from the mixed cultures did not reduce sulfate below pH 5.5. PMID:5773013

  7. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.

    PubMed

    Başpinar, M Serhat; Kahraman, Erhan; Görhan, Gökhan; Demir, Ismail

    2010-01-01

    The increase of power plant capacity has led to the production of an increasing amount of fly ash that causes high environmental impact in Turkey. Some of the fly ash is utilized within the fired brick industry but high sulfate-containing fly ash creates severe problems during sintering of the fired brick. This study attempted to investigate the potential for converting high sulfate-containing fly ash into useful material for the construction industry by the addition of boric acid. The chemical and mineralogical composition of fly ash and clay were investigated. Boric acid (H(3)BO(3)) was added to fly ash-clay mixtures with up to 5 wt.%. Six different series of test samples were produced by uniaxial pressing. The samples were fired at the industrial clay-brick firing temperatures of 800, 900 and 1000 degrees C. The microstructures of the fired samples were investigated by scanning electron microscopy and some physical and mechanical properties were measured. It was concluded that the firing at conventional brick firing temperature of high sulfate fly ash without any addition of boric acid resulted in very weak strength bricks. The addition of boric acid and clay simultaneously to the high sulfate- containing fly ash brick dramatically increased the compressive strength of the samples at a firing temperature of 1000 degrees C by modifying the sintering behaviour of high sulfate fly ash. PMID:19423597

  8. Optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate.

    PubMed

    Freedman, Miriam A; Hasenkopf, Christa A; Beaver, Melinda R; Tolbert, Margaret A

    2009-12-01

    We have investigated the optical properties of internally mixed aerosol particles composed of dicarboxylic acids and ammonium sulfate using cavity ring-down aerosol extinction spectroscopy at a wavelength of 532 nm. The real refractive indices of these nonabsorbing species were retrieved from the extinction and concentration of the particles using Mie scattering theory. We obtain refractive indices for pure ammonium sulfate and pure dicarboxylic acids that are consistent with literature values, where they exist, to within experimental error. For mixed particles, however, our data deviates significantly from a volume-weighted average of the pure components. Surprisingly, the real refractive indices of internal mixtures of succinic acid and ammonium sulfate are higher than either of the pure components at the highest organic weight fractions. For binary internal mixtures of oxalic or adipic acid with ammonium sulfate, the real refractive indices of the mixtures are approximately the same as ammonium sulfate for all organic weight fractions. Various optical mixing rules for homogeneous and slightly heterogeneous systems fail to explain the experimental real refractive indices. It is likely that complex particle morphologies are responsible for the observed behavior of the mixed particles. Implications of our results for atmospheric modeling and aerosol structure are discussed. PMID:19877658

  9. Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions.

    PubMed

    Delmelle, Pierre; Delfosse, Thomas; Delvaux, Bruno

    2003-01-01

    The continuous emissions of SO(2), HCl and HF by Masaya volcano, Nicaragua, represent a substantial source of atmospheric S-, Cl- and F-containing acid inputs for local ecosystems. We report on the effects of such acid depositions on the sulfate, chloride and fluoride contents in soils (0-40 cm) from two distinct transects located downwind from the volcano. The first transect corresponds to relatively undifferentiated Vitric Andosols, and the second transect to more weathered Eutric Andosols. These soils are exposed to various rates of volcanogenic acid addition, with the Vitric sites being generally more affected. Prolonged acid inputs have led to a general pH decrease and reduced exchangeable base cation concentrations in the Andosols. The concentrations of 0.5 M NH(4)F- and 0.016 M KH(2)PO(4)-extractable sulfate (NH(4)F-S and KH(2)PO(4)-S, respectively) indicate that volcanic S addition has increased the inorganic sulfate content of the Vitric and Eutric soils at all depths. In this process, the rate of sulfate accumulation is also dependent on soil allophane contents. For all soils, NH(4)F extracted systematically more (up to 40 times) sulfate than KH(2)PO(4). This difference suggests sulfate incorporation into an aluminum hydroxy sulfate phase, whose contribution to total inorganic sulfate in the Vitric and Eutric Andosols is estimated from approximately 34 to 95% and approximately 65 to 98%, respectively. The distribution of KH(2)PO(4)-extractable chloride in the Vitric and Eutric Andosols exposed to volcanic Cl inputs reveals that added chloride readily migrates through the soil profiles. In contrast, reaction of fluoride with Al and Fe oxyhydroxides and allophanes is an important sink mechanism in the Masaya Andosols exposed to airborne volcanic F. Fluoride dominates the anion distribution in all soil horizons, although F is the least concentrated element in the volcanic emissions and depositions. The soil anion distribution reflects preferential retention

  10. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Howard, Nicole; Osborne, Todd Z.

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA.

  11. Fish mercury and surface water sulfate relationships in the Everglades Protection Area.

    PubMed

    Gabriel, Mark C; Howard, Nicole; Osborne, Todd Z

    2014-03-01

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-concerning total mercury (THg) levels and to evaluate the role of sulfate in methyl-mercury (MeHg) production. In this study, we derived relationships between THg in three fish trophic levels (mosquitofish, sunfish, and age-1 largemouth bass) and surface water sulfate from 1998 to 2009 for multiple stations across the Everglades Protection Area (EPA). Results show the relationship between sulfate and fish THg in each fish type is nonlinear and largely skewed, similar to the relationship between MeHg production and sulfate concentration in peatland sediment pore water identified by other researchers. Peak fish THg levels occurred in ~1 to 12 mg/L sulfate conditions. There was significant variability in the fish THg data, and there were several instances of high-fish THg levels in high-sulfate conditions (>30 mg/L). Health-concerning fish THg levels were present in all surface water sulfate conditions; however, most of these levels occurred in 1-20 mg/L sulfate. The data in this study, including recent studies, show consistent and identifiable areas of high- and low-fish THg across the spectrum of surface water sulfate concentration, therefore, applying an ecosystem-wide sulfur strategy may be an effective management approach as it would significantly reduce MeHg risk in the EPA. PMID:24385066

  12. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic

  13. Oxygen Isotopic Composition of Nitrate and Sulfate in Fog and River water in Podocarpus National Forest, Ecuador

    NASA Astrophysics Data System (ADS)

    Brothers, L. A.; Fabian, P.; Thiemens, M. H.

    2006-12-01

    The eastern slopes of the Andean rainforests of Ecuador possess some of the highest plant biodiversity found on the planet; however, these ecosystems are in jeopardy because region is experiences one of the highest deforestation rates in South America. This rainforest characterized by high acidity and low nutrient soils and experiences natural process which are both destabilizing and stabilizing to biodiversity rendering this a unique, though sensitive environment. There is increased concern that anthropogenic activities are affecting rainforests and could lead to higher extinction rates, changes in the biodiversity and far reaching effects on the global troposphere. Measurements of nitrate and sulfate in rain and fog water have shown periods of elevated concentrations in the Podocarpus National Park near Loja, Ecuador. These high episodes contribute to annual deposition rates that are comparable to polluted central Europe. Significant anthropogenic sources near this region are lacking and it is believed that the majority of the nitrate and sulfate pollution can be attributed to biomass burning in the Amazon basin. Concentration measurements do not elucidate the source of high nitrate and sulfate pollution; however, by measuring all three stable isotopes of oxygen in nitrate and sulfate from fog and river water provides a new way to examine the impacts of biomass burning on the region. By using stable isotope techniques atmospheric nitrate and sulfate can be resolved from terrestrial sources. This provides an unique way to trace the contributions from the biomass burning and farming sources. Current research at the field station monitors sulfate and nitrate concentrations in rain and fog water by standard methods to investigate water and nutrient pathways along with data from satellite and ground based remote sensing, in-situ observations and numerical models.

  14. Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area

    EPA Science Inventory

    Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-conce...

  15. Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures

    USGS Publications Warehouse

    Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Hardesty, Douglas K.; Brumbaugh, William G.; Hammer, Edward J.; Bauer, Candice R.; Mount, David R.

    2015-01-01

    The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1mg K/L to 3mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.

  16. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation.

    PubMed

    Lee, Wontae; Westerhoff, Paul

    2006-12-01

    Coagulation of three surface waters was conducted with aluminum salt and/or cationic polymer to assess dissolved organic nitrogen (DON) removal. Coagulation with aluminum sulfate removed equal or slightly lower amounts of DON as compared to dissolved organic carbon (DOC). At aluminum sulfate dosages up to 5mg per mg DOC, the cationic polymer improved DON removal by an additional 15% to 20% over aluminum sulfate alone. At very high aluminum sulfate dosages (>8 mg aluminum sulfate per mg DOC), however, the cationic polymer addition negligibly increased DON removal. Molecular weight fractionation before and after coagulation experiments indicated that cationic polymer addition can increase the removal of all molecular weight fractions of DON with the highest molecular weight fraction (>10,000 Da) being preferentially removed. Results indicated that the DON added as part of the cationic polymer was almost completely removed at optimum aluminum sulfate and polymer doses. PMID:17023020

  17. Germination and Seedling Growth of Perennial Ryegrass in Acid Sulfate Soil Treated by Pyrite Nano-Encapsulation

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Yi, J.; Kim, T.

    2007-05-01

    The trial pot experiment was conducted to validate the effect of encapsulation in reduction of acid rock drainage. Six different treatments were performed: A = control, four times spraying of distilled water; B = four times of 0.01 M H2O2; C = once-encapsulated and three times spraying of distilled water; D = twice-encapsulated and twice spraying of distilled water; E = three times-encapsulated and once spraying of distilled water and F = four times-encapsulated for the acid sulfate soil with pyrite bearing andesite powder and sand. After the encapsulation treatment, the perennial ryegrass (Loium perenne) was sowed to evaluate germination rate and growth for three months. The leachate was examined for the chemical properties. The leachate from the A pot (control) is characterized as acidic (pH below 3) and high concentrations of SO4-2: 12,022 mg/L, Al: 85.8 mg/L and Mn: 34.1 mg/L which can be toxic effect to the plant growth. However, the leachate from encapsulated pots showed near neutral (pH 6 to 7) and low concentrations of SO4-2 (below 3,000 mg/L), Al (below 45mg/L) and Mn (24 gm/L). The frequency of encapsulation treatment is related to reduction of acidic drainage. It was hard to identify the significant difference of the seed germination rate of ryegrass between the treatments, although root and shoot growth showed three times difference between the control (1.90g/pot) and four times encapsulated treatment (6.33g/pot) after 2 month growth. It is suggested that encapsulation of pyrite in acid sulfate soil causes the reduction of acidic drainage resulting in the higher growth of herbaceous plants.

  18. Sulfate inhibits ( sup 14 C)phosphonoformic acid binding to renal brush-border membranes

    SciTech Connect

    Tenenhouse, H.S.; Lee, J. )

    1990-08-01

    To examine the specificity of the phosphonoformic acid (PFA) interaction with the Na(+)-dependent phosphate transporter of mouse renal brush-border membrane vesicles, we compared the effects of anions on Na(+)-dependent (14C)PFA binding and Na(+)-dependent phosphate transport. Inhibition of PFA binding was achieved by PFA (% control = 0 +/- 1), sulfate (15 +/- 2), arsenate (35 +/- 1), phosphate (59 +/- 2), and nitrate (68 +/- 4), whereas inhibition of phosphate transport was only apparent with phosphate (0 +/- 1), PFA (22 +/- 4), and arsenate (37 +/- 5). Succinate and gluconate had no effect on either Na(+)-dependent process. Under conditions where Na(+)-dependent PFA binding was maximally inhibited by phosphate (% control = 65 +/- 4), further inhibition could be achieved by sulfate (26 +/- 5%). Na(+)-dependent PFA binding was competitively inhibited by phosphate (apparent Ki = 8.9 +/- 1.2 mM) and noncompetitively inhibited by sulfate (apparent Ki = 2.6 +/- 0.5 mM). We found that PFA inhibited Na(+)-dependent sulfate transport (50% inhibition at 9 mM PFA) as well as Na(+)-dependent phosphate transport (50% inhibition at 0.5 mM PFA). We also examined the pH dependence of Na(+)-dependent PFA binding and Na(+)-dependent phosphate and sulfate transport. PFA binding was optimal at pH = 7.4, whereas phosphate transport increased with increasing pH, and sulfate transport increased with decreasing pH.

  19. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  20. Mine Waste Technology Program. In Situ Source Control Of Acid Generation Using Sulfate-Reducing Bacteria

    EPA Science Inventory

    This report summarizes the results of the Mine Waste Technology Program (MWTP) Activity III, Project 3, In Situ Source Control of Acid Generation Using Sulfate-Reducing Bacteria, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S....

  1. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  2. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  3. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  4. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  5. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  6. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  7. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  8. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  9. 40 CFR 417.120 - Applicability; description of the sulfamic acid sulfation subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the sulfamic acid sulfation subcategory. 417.120 Section 417.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  10. 40 CFR 417.130 - Applicability; description of the chlorosulfonic acid sulfation subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the chlorosulfonic acid sulfation subcategory. 417.130 Section 417.130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT...

  11. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  12. Kinetics of Reductive Acid Leaching of Cadmium-Bearing Zinc Ferrite Mixture Using Hydrazine Sulfate

    NASA Astrophysics Data System (ADS)

    Zhang, Chun; Zhang, Jianqiang; Min, Xiaobo; Wang, Mi; Zhou, Bosheng; Shen, Chen

    2015-09-01

    The reductive acid leaching kinetics of synthetic cadmium-bearing zinc ferrite was investigated, and the influence of reaction temperature, sulfuric acid and hydrazine sulfate were studied. The results illustrated that an increase in the reaction temperature, initial sulfuric acid and hydrazine sulfate significantly enhanced the extraction efficiencies of cadmium, zinc and iron. The leaching kinetics were controlled by a surface chemical reaction based on a shrinking core model. The empirical equation applied was found to fit well with the kinetics analysis; the leaching processes of cadmium, zinc and iron were similar and the activation energies were 79.9 kJ/mol, 77.9 kJ/mol and 79.7 kJ/mol, respectively. The apparent orders of cadmium-bearing zinc ferrite dissolution with respect to sulfuric acid concentration were 0.83, 0.83 and 0.84 for Cd, Zn and Fe, respectively.

  13. Cooling crystallization of aluminum sulfate in pure water

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxue; Sun, Yuzhu; Yu, Jianguo

    2015-06-01

    This study investigated the cooling crystallization of aluminum sulfate to explore the basic data for the recovery of aluminum resources from coal spoil. First, the metastable zone width (MSZW) of aluminum sulfate was reported. A parallel synthesis platform (CrystalSCAN) was used to determine the solubility from 10 °C to 70 °C, and an automatic lab reactor (LabMax) equipped with focused beam reflectance measurement (FBRM) was adopted to determine the supersolubility. The effects of operating variables on MSZW were experimentally explored. Results show that the MSZW of aluminum sulfate decreases with increasing stirring speed, while it increases with increasing cooling rate. Second, the continuous crystallization kinetics of aluminum sulfate was investigated in a laboratory-scale mixed-suspension mixed-product removal (MSMPR) crystallizer at a steady state. Growth kinetics presented size-dependent growth rate, which was well fitted with the MJ3 model. Both the growth rate (G) and the total nucleation rate (BTOT) were correlated in the power law kinetic expressions with good correlation coefficients. Third, aluminum sulfate products were modified by sodium dodecylbenzenesulfonate (SDBS). Crystals with large sizes and regular hexagonal plate morphologies were obtained. These crystals reveal that SDBS can inhibit crystal nucleation and promote crystal growth.

  14. Characterization and quantitation of mixtures of alkyl ether sulfates and carboxylic acids by capillary electrophoresis with indirect photometric detection.

    PubMed

    Bernabé-Zafón, Virginia; Ortega-Gadea, Silvia; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo

    2003-08-01

    The separation, characterization, and determination of mixtures of alkyl ether sulfates (AES) and fatty acids (C10-C16) in background electrolytes (BGEs) containing acetonitrile (ACN)-water mixtures is addressed. Due to inhibition of the ionization of the carboxylate groups, the migration time and the resolution between the fatty acids decreased when the water content of the BGE was reduced, but efficiency and resolution between the AES oligomers improved. The migration times increased and resolution improved by substituting 5% ACN by an equivalent amount of dioxane. A complete separation of the two surfactant classes, up to the AES oligomers with 8 ethylene oxide units (EOs) with respect to C10, with excellent resolution between the AES oligomers, while preserving a satisfactory resolution between the fatty acids, was achieved with a BGE containing 5 mM trimethoxybenzoic acid, 7 mM dipentylamine, 85% ACN, 5% dioxane, and 10% water. The two surfactant classes were increasingly resolved by further reducing the water content of the BGE. Thus, C2 (acetate) was resolved from the AES oligomers up to 7 EOs using 90% ACN and 5% dioxane, but the resolution between the heavier fatty acids was poor with this BGE. Identification of the AES oligomers was eased by the excellent regularity of the successive migration times; thus, within each AES subclass or series of oligomers with the same number of carbon atoms in the alkyl chain, the migration times decreased following a mild curve as the number of EOs increased. The way how the data obtained by indirect photometry (corrected peak areas that are proportional to the molar concentrations) should be managed to avoid systematic error when the calibration curve is constructed using an AES standard with an oligomer distribution different from that of the samples is discussed and equations are given. Decyl sulfate was successfully used as internal standard. The detection limits (S/N = 3) were of ca. 2 microM for individual AES

  15. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer.

    PubMed

    Cánovas, C R; Macías, F; Pérez-López, R

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  16. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer

    NASA Astrophysics Data System (ADS)

    Cánovas, C. R.; Macías, F.; Pérez-López, R.

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40 days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  17. Bile salts of the West Indian manatee, Trichechus manatus latirostris: novel bile alcohol sulfates and absence of bile acids.

    PubMed

    Kuroki, S; Schteingart, C D; Hagey, L R; Cohen, B I; Mosbach, E H; Rossi, S S; Hofmann, A F; Matoba, N; Une, M; Hoshita, T

    1988-04-01

    The bile salts present in gallbladder bile of the West Indian manatee, Trichechus manatus latirostris, an herbivorous marine mammal of the tropical and subtropical margins of the Atlantic Ocean, were found to consist of a mixture of bile alcohol sulfates. Bile acids, previously believed to be present in all mammals, were not detected. Using chromatography, mass spectrometry, and 1H- and 13C-nuclear magnetic resonance spectroscopy, the major bile alcohol was identified as 5 beta-cholestane-3 alpha,6 beta,7 alpha-25,26-pentol; that is, it had the nuclear structure of alpha-muricholic acid and the side chain structure of bufol. This compound has not been described previously and the trivial name "alpha-trichechol" is proposed. The second most abundant compound was 5 beta-cholestane-3 alpha,7 alpha,25,26-tetrol. Other bile alcohols were tentatively identified as 5 beta-cholestane-3 alpha,6 beta,7 beta,25,26-pentol (named beta-trichechol), 3 alpha,6 alpha,7 beta, 25-26-pentol (named omega-trichechol) and 5 beta-cholestane-3 alpha,6 beta,7 alpha,26-tetrol. The 1H and 13C NMR spectra of the four 6,7 epimers of 3,6,7 trihydroxy bile acids are described and discussed. All bile alcohols were present as ester sulfates, the sulfate group being tentatively assigned to the 26-hydroxy group. 12-Hydroxy compounds were not detected. The manatee is the first mammal found to lack bile acids, presumably because it lacks the enzymes required for oxidation of the 26-hydroxy group to a carboxylic acid. Trichechols, like other bile salts, are water-soluble end products of cholesterol metabolism; whether they also function as biological surfactants in promoting biliary cholesterol secretion or lipid digestion is unknown. PMID:3392467

  18. Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng

    2006-07-01

    Organosulfates are observed in studies of pinonaldehyde reactions with acidic sulfate aerosols using aerosol mass spectrometry, during which a significant fraction of the pinonaldehyde reaction products were found to consist of organosulfate compounds that account for 6-51% of the initial SO4= mass. Resultant aerosol mass spectra were consistent with proposed sulfate ester mechanisms, which likely form stable products. The existence of organosulfates was also confirmed in studies of the reaction system in bulk solution. The formation of organosulfates suggests that conventional inorganic SO4= chemical analysis may underestimate total SO4= mass in ambient aerosols.

  19. NEUTRALIZATION OF ACIDIC GROUND WATER NEAR GLOBE, ARIZONA.

    USGS Publications Warehouse

    Eychaner, James H.; Stollenwerk, Kenneth G.

    1985-01-01

    Highly acidic contaminated water is moving through a shallow aquifer and interacting with streams near Globe, Arizona. Dissolved concentrations reach 3,000 mg/L iron, 150 mg/L copper, and 16,400 mg/L total dissloved solids; pH is as low as 3. 6. Samples from 16 PVC-cased observation wells include uncontaminated, contaminated, transition, and neutralized waters. Chemical reaction with sediments and mixing with uncontaminated water neutralizes the acidic water. The reactions form a transition zone where gypsum replaces calcite and most metals precipitate. Ferric hydroxide also precipitates if sufficient oxygen is available. Abundant gypsum crystals and ferric hydroxide coatings have been recovered from well cuttings. Large sulfate concentrations produce sulfate complexes with many metals that inhibit removal of metals from solution.

  20. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2. PMID:24727041

  1. Sulfated modification, characterization and property of a water-insoluble polysaccharide from Ganoderma atrum.

    PubMed

    Zhang, Hui; Wang, Jun-Qiao; Nie, Shao-Ping; Wang, Yuan-Xing; Cui, Steve W; Xie, Ming-Yong

    2015-08-01

    Sulfated modification was carried out to modify a water-insoluble polysaccharide from Ganoderma atrum (AGAP). The effects of sulfation on structure, physicochemical and functional properties of AGAP were investigated. Three sulfated derivatives were prepared, designated as S-1, S-2 and S-3 with degree of substitution (DS) of 0.35, 0.74 and 1.14, respectively. AGAP was elucidated as an α-(1→3)-glucan with few branches terminated by single mannose or xylose residues. The molecular weight (Mw) and radius of gyration (Rg) were estimated to be 1665 kDa and 65.49 nm, respectively. After sulfated modification, non-selective sulfation occurred preferably at O-6, partially at O-2 and O-4 positions of the glucosyl residues. The water-solubility of the derivatives was significantly improved in a DS-dependent manner. Mw of the derivatives showed a sharp decrease, and the chain conformation was estimated to be expanded stiff in phosphate buffer. In vitro tests showed that sulfated modification improved its antioxidant activities and anti-proliferative ability against S-180 tumor cells. This study suggested that sulfated modification was an effective approach to improve the water-solubility and functional properties of insoluble polysaccharides. PMID:25957721

  2. Pulmonary effects of acid sulfate inhalation in the guinea pig

    SciTech Connect

    Silbaugh, S.A.; Mauderly, J.L.; Wolff, R.K.; Carpenter, R.L.; Brownstein, D.G.; Harkema, J.R.; Rothenberg, S.J.

    1982-07-01

    Guinea pigs were exposed by inhalation for 1 to 8 hours to sulfuric acid aerosols of various sizes and concentrations in order to provide quantitative information for standards setting. The effects of sulfuric acid aerosols were examined to determine acute mortality, changes in respiratory function and morphology, response mechanisms, differences in individual sensitivity and changes in airway response to bronchoconstrictors. An aerosol generator for another sulfur-containing pollutant, ammonium bisulfite, was developed for use in animal exposures. Also, lung lesions which simulate human emphysema were produced by intratracheal elastase instillation to investigate a potential impaired animal model for sulfur pollutant exposures. Pulmonary mechanics, lung morphology, and histamine sensitivity data all suggest that the guinea pig reacts to sulfuric acid aerosols with a nearly all-or-none airway constrictive response. Results also indicate that the concentration at which this response occurs is affected by aerosol size, exposure profile and individual animal sensitivity. No acute pulmonary function changes were noted at concentrations below 15 mg/m/sup 3/. The reason for these differences is unknown.

  3. Near-real time infrared observations of acidic sulfates in /open quotes/clean/close quotes/ air at Mauna Loa, Hawaii

    SciTech Connect

    Johnson, S.A.; Kumar, R.

    1988-01-01

    Sulfuric acid and its partially or completely neutralized salts with ammonia are believed to result from the oxidation of sulfur dioxide in cloud water and in other heterogeneous media present in the atmosphere. Due to the natural abundance of ammonia and the ubiquitous presence of sulfur in the atmosphere, (NH/sub 4/)/sub 2/SO/sub 4/ is commonly the dominant chemical species in the ambient aerosol. The amounts of ammonium sulfates are expected to be very low in areas far removed from anthropogenic emissions of sulfur dioxide. The chemical composition of submicrometer aerosol particles was determined at the Mauna Loa Observatory (MLO) on Mauna Loa in Hawaii during an eight-day period in August 1986. The MLO site was selected for this measurement because it is the only ground-based aerosol observatory in the remote Pacific Ocean that allows extended sampling of aerosols in the free troposphere. Measurements were made using an attenuated total internal reflection (ATR) impactor system. The impactor collects size-fractionated submicrometer particles for analysis by ATR infrared spectroscopy. The collected samples were analyzed using an on-site Perkin Elmer dispersive infrared spectrophotometer. Infrared absorption spectra (4000 to 250 cm/sup /minus/1/) of the samples were obtained within minutes after the ATR substrates were removed from the impactor. Absorbances were measured for sulfate, nitrate, and ammonium. Acidic sulfate showed infrared absorbances at 600 cm/sup /minus/1/ and 1210 cm/sup /minus/1/ in addition. Results showed that ammonium sulfate was the dominant chemical species in the submicrometer particles. Over half of the nearly 40 samples collected showed an acidic sulfate component. Consecutive samples were found to change from completely neutralized ammonium sulfate to acidic ammonium sulfates in a two-hour time interval. 5 refs., 1 tab.

  4. Visible-near-infrared reflectance spectroscopy of volcanic acid-sulfate alteration in Nicaragua: Analogs for early Mars

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma C.; Hynek, Brian M.; Kierein-Young, Kathryn S.; Rogers, K. L.

    2013-10-01

    Acid-sulfate weathering at Nicaraguan hydrothermal sites Cerro Negro, Momotombo, and Telica volcanoes and Hervidores de San Jacinto mudpots was characterized as an analog for similar processes that likely operated on early Mars. In situ mineralogical analyses were conducted with a field portable visible near-infrared spectrometer for comparison to similar Martian data sets. Three classes of alteration minerals were identified: sulfates (gypsum and natroalunite), oxides/hydroxides (hematite and goethite), and phyllosilicates (kaolinite/halloysite, montmorillonite, and saponite), as well as elemental sulfur and hydrated silica phases. Our sites had similar suites of minerals, but frequencies varied with location. The results of this field campaign allow inferences regarding the paleo-environmental conditions that were likely present at similar relic hydrothermal sites identified on Mars. In particular, sulfates and phyllosilicates could have coevolved under hydrothermal conditions at Noctis Labyrinthus as is seen in Nicaragua. Fe/Mg smectites were detected in areas with pH of 3-4. Alunite spectra at Terra Sirenum demonstrated mineral mixing effects on spectroscopy. Mineral mixing can cause uncertainties in spectral identification due to a dominant spectrum, such as iron minerals, masking another or the suppression of weaker bands. When viewed from orbit, our field sites would likely be dominated by hydrated silica and Mars sites, such as one in Syrtis Major, could have a more diverse mineralogy than the data reveal. Concentrated amorphous silica, such as at Gusev crater, can result from acidic fumarolic activity, while Mg sulfates may indicate a lack of reworking by water. This field spectroscopy study helps confirm and provide insight into hydrothermal processes on ancient Mars.

  5. Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina▿ †

    PubMed Central

    Grigoryan, Aleksandr A.; Cornish, Sabrina L.; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J.; Voordouw, Gerrit

    2008-01-01

    Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were

  6. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  7. Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B; Liao, Ching-Hsing; Cooke, Peter; Zhang, Howard Q

    2009-01-01

    There are few available compounds that can both control browning and enhance microbial safety of fresh-cut fruits. In the present study, the antibrowning ability of sodium acid sulfate (SAS) on "Granny Smith" apple slices was first investigated in terms of optimum concentration and treatment time. In a separate experiment, the apple slices were treated with water or 3% of SAS, calcium ascorbate, citric acid, or acidified calcium sulfate for 5 min. Total plate count, color, firmness, and tissue damage were assessed during a 21-d storage at 4 degrees C. Results showed that the efficacy of SAS in inhibiting browning of apple slices increased with increasing concentration. A minimum 3% of SAS was needed to achieve 14 d of shelf life. Firmness was not significantly affected by SAS at 3% or lower concentrations. Antibrowning potential of SAS was similar for all treatment times ranging from 2 to 10 min. However, SAS caused some skin discoloration of apple slices. When cut surface of apple slices were stained with a fluorescein diacetate solution, tissue damage could be observed under a microscope even though visual damage was not evident. Among the antibrowning agents tested, SAS was the most effective in inhibiting browning and microbial growth for the first 14 d. Total plate count of samples treated with 3% SAS was significantly lower than those treated with calcium ascorbate, a commonly used antibrowning agent. Our results suggested that it is possible to use SAS to control browning while inhibiting the growth of microorganisms on the apple slices if the skin damage can be minimized. Practical Application: Fresh-cut apples have emerged as one of the popular products in restaurants, schools, and food service establishments as more consumers demand fresh, convenient, and nutritious foods. Processing of fresh-cut apples induces mechanical damage to the fruit and exposes apple tissue to air, resulting in the development of undesirable tissue browning. The fresh

  8. Kinetic analysis of bile acid sulfation by stably expressed human sulfotransferase 2A1 (SULT2A1).

    PubMed

    Huang, J; Bathena, S P; Tong, J; Roth, M; Hagenbuch, B; Alnouti, Y

    2010-03-01

    Human sulfotransferase 2A1 (SULT2A1) is a member of the hydroxysteroid sulfotransferase (SULT2) family that mediates sulfo-conjugation of a variety of endogenous molecules including dehydroepiandrosterone (DHEA) and bile acids. In this study, we have constructed a stable cell line expressing SULT2A1 by transfection into HEK293 cells. The expression system was used to characterize and compare the sulfation kinetics of DHEA and 15 human bile acids by SULT2A1. Formation of DHEA sulfate demonstrated Michaelis-Menten kinetics with apparent K(m) and V(max) values of 3.8 muM and 130.8 pmol min(-1) mg(-1) protein, respectively. Sulfation kinetics of bile acids also demonstrated Michaelis-Menten kinetics with a marked variation in apparent K(m) and V(max) values between individual bile acids. Sulfation affinity was inversely proportional to the number of hydroxyl groups of bile acids. The monohydroxy- and most toxic bile acid (lithocholic acid) had the highest affinity, whereas the trihydroxy- and least toxic bile acid (cholic acid) had the lowest affinity to sulfation by SULT2A1. Intrinsic clearance (CL(int)) of ursodeoxycholic acid (UDCA) was approximately 1.5- and 9.0-fold higher than that of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA), respectively, despite the fact that all three are dihydroxy bile acids. PMID:20102295

  9. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  10. Fluctuations of sulfate, S-bearing amino acids and magnesium in a giant clam shell

    NASA Astrophysics Data System (ADS)

    Yoshimura, T.; Tamenori, Y.; Kawahata, H.; Suzuki, A.

    2014-01-01

    We used micro-X-ray fluorescence combined with X-ray photoabsorption spectroscopy to investigate speciation-specific sulfur profiles in the inner shell layer of a giant clam (Hippopus hippopus). The sulfate, S-bearing amino acids, and total sulfur profiles indicated that inorganic sulfate was the dominant component in the shell of this bivalve. Sulfur profiles in the inner shell layer showed clear annual fluctuations that varied by more than one order of magnitude, from < 50 to 1420 ppm, and sulfate and total sulfur maxima became higher with age, whereas no ontogenetic trend was noticeable in the profile of S-bearing amino acids. A changes in the carbonate ion concentration in the calcifying fluid would suggest that an ontogenetic increase in the relative activity of sulfate ions to carbonate ions in the calcifying fluid affects sulfate concentrations in the shells. These results suggest that trace sulfur profiles in the shell of the giant clam may reflect both cyclic shell growth related to environmental factors such as insolation and temperature and ontogenetic changes of the calcifying fluid chemistry mediated by physiological processes. The observed S profile implies a clear change in calcifying fluid chemistry towards less alkaline condition with age. Magnesium fluctuations suggested that Mg was incorporated into the shells at high growth rates during warm seasons. The spectrum of Mg K-edge XANES and comparison of Mg and S-bearing amino acids profiles indicated that a pronounced effect of the organic fraction or disordered phases were observed in aragonitic shell of H. hippopus rather than regulated substitution into the aragonite crystal lattice.

  11. Fluctuations of sulfate, S-bearing amino acids and magnesium in a giant clam shell

    NASA Astrophysics Data System (ADS)

    Yoshimura, T.; Tamenori, Y.; Kawahata, H.; Suzuki, A.

    2014-07-01

    We used micro-X-ray fluorescence combined with X-ray photoabsorption spectroscopy to investigate speciation-specific sulfur profiles in the inner shell layer of a giant clam (Hippopus hippopus). The sulfate, S-bearing amino acids, and total sulfur profiles indicated that inorganic sulfate was the dominant component in the shell of this bivalve. Sulfur profiles in the inner shell layer showed clear annual fluctuations that varied by more than one order of magnitude, from < 50 to 1420 ppm, and sulfate and total sulfur maxima became higher with age, whereas no ontogenetic trend was noticeable in the profile of S-bearing amino acids. A change in the carbonate ion concentration in the calcifying fluid would suggest that an ontogenetic increase in the relative activity of sulfate ions to carbonate ions in the calcifying fluid affects sulfate concentrations in the shells. These results suggest that trace sulfur profiles in the shell of the giant clam may reflect both cyclic shell growth related to environmental factors such as insolation and temperature and ontogenetic changes of the calcifying fluid chemistry mediated by physiological processes. The observed S profile implies a clear change in calcifying fluid chemistry towards less alkaline condition with age. Magnesium fluctuations suggested that Mg was incorporated into the shells at high growth rates during warm seasons. The spectrum of Mg K-edge X-ray absorption near edge structure (XANES) and comparison of Mg and S-bearing amino acids profiles indicated that a pronounced effect of the organic fraction or disordered phases were observed in aragonitic shell of H. hippopus rather than regulated substitution into the aragonite crystal lattice.

  12. Isotopic tracing of clear water sources in an urban sewer: A combined water and dissolved sulfate stable isotope approach.

    PubMed

    Houhou, J; Lartiges, B S; France-Lanord, C; Guilmette, C; Poix, S; Mustin, C

    2010-01-01

    This paper investigates the potential of stable isotopes of both water (deltaD and deltaOH(2)O18) and dissolved sulfate (delta(34)S and deltaOSO(4)18) for determining the origin and the amount of clear waters entering an urban sewer. The dynamics of various hydrological processes that commonly occur within the sewer system such as groundwater infiltration, rainwater percolation, or stormwater release from retention basins, can be readily described using water isotope ratios. In particular, stable water isotopes indicate that the relative volumes of infiltrated groundwater and sewage remain approximately constant and independent of wastewater flow rate during the day, thus demonstrating that the usual quantification of parasitic discharge from minimal nocturnal flow measurements can lead to completely erroneous results. The isotopic signature of dissolved sulfate can also provide valuable information about the nature of water inputs to the sewage flow, but could not be used in our case to quantify the infiltrating water. Indeed, even though the microbial activity had a limited effect on the isotopic composition of dissolved sulfate at the sampling sites investigated, the dissolved sulfate concentration in sewage was regulated by the formation of barite and calcium-phosphate mineral species. Sulfate originating from urine was also detected as a source using the oxygen isotopic composition of sulfate, which suggests that deltaOSO(4)18 might find use as a urine tracer. PMID:19822346

  13. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K

    USGS Publications Warehouse

    Nordstrom, D.K.

    1982-01-01

    While gibbsite and kaolinite solubilities usually regulate aluminum concentrations in natural waters, the presence of sulfate can dramatically alter these solubilities under acidic conditions, where other, less soluble minerals can control the aqueous geochemistry of aluminum. The likely candidates include alunogen, Al2(SO4)3 ?? 17H2O, alunite, KAl3(SO4)2(OH)6, jurbanite, Al(SO4)(OH) ?? 5H2O, and basaluminite, Al4(SO4)(OH)10 ?? 5H2O. An examination of literature values shows that the log Ksp = -85.4 for alunite and log Ksp = -117.7 for basaluminite. In this report the log Ksp = -7.0 is estimated for alunogen and log Ksp = -17.8 is estimated for jurbanite. The solubility and stability relations among these four minerals and gibbsite are plotted as a function of pH and sulfate activity at 298 K. Alunogen is stable only at pH values too low for any natural waters (<0) and probably only forms as efflorescences from capillary films. Jurbanite is stable from pH < 0 up to the range of 3-5 depending on sulfate activity. Alunite is stable at higher pH values than jurbanite, up to 4-7 depending on sulfate activity. Above these pH limits gibbsite is the most stable phase. Basaluminite, although kinetically favored to precipitate, is metastable for all values of pH and sulfate activity. These equilibrium calculations predict that both sulfate and aluminum can be immobilized in acid waters by the precipitation of aluminum hydroxysulfate minerals. Considerable evidence supports the conclusion that the formation of insoluble aluminum hydroxy-sulfate minerals may be the cause of sulfate retention in soils and sediments, as suggested by Adams and Rawajfih (1977), instead of adsorption. ?? 1982.

  14. Acid-Sulfate-Weathering Activity in Shergottite Sites on Mars Recorded in Grim Glasses

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Ross, K.; Sutton, S. R.; Schwandt, C. S.

    2011-01-01

    Based on mass spectrometric studies of sulfur species in Shergotty and EET79001, [1] and [2] showed that sulfates and sulfides occur in different proportions in shergottites. Sulfur speciation studies in gas-rich impact-melt (GRIM) glasses in EET79001 by the XANES method [3] showed that S K-XANES spectra in GRIM glasses from Lith A indicate that S is associated with Ca and Al presumably as sulfides/sulfates whereas the XANES spectra of amorphous sulfide globules in GRIM glasses from Lith B indicate that S is associated with Fe as FeS. In these amorphous iron sulfide globules, [4] found no Ni using FE-SEM and suggested that the globules resulting from immiscible sulfide melt may not be related to the igneous iron sulfides having approximately 1-3% Ni. Furthermore, in the amorphous iron sulfides from 507 GRIM glass, [5] determined delta(sup 34)S values ranging from +3.5%o to -3.1%o using Nano-SIMS. These values plot between the delta(sup 34)S value of +5.25%o determined in the sulfate fraction in Shergotty [6] at one extreme and the value of -1.7%o obtained for igneous sulfides in EET79001 and Shergotty [7] at the other. These results suggest that the amorphous Fe-S globules likely originated by shock reduction of secondary iron sulfate phases occurring in the regolith precursor materials during impact [7]. Sulfates in the regolith materials near the basaltic shergottite sites on Mars owe their origin to surficial acid-sulfate interactions. We examine the nature of these reactions by studying the composition of the end products in altered regolith materials. For the parent material composition, we use that of the host shergottite material in which the impact glasses are situated.

  15. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    USGS Publications Warehouse

    Wynn, Jeffrey C.

    2000-01-01

    gold and silver. The environmental impact of massive sulfide deposits can be substantial. These deposits are characterized by high concentrations of heavy-metal sulfide minerals, hosted by silicate rocks. Thus, weathering of these deposits and their mine wastes has the potential to generate heavy-metal laden sulfuric acid that can have negative impacts on aquatic ecosystems. In addition, lead associated with solid mine wastes has the potential for human health impacts through ingestion. The heavy metals that are encountered in these deposits and are most likely to cause environmental impacts include copper, zinc, lead, cadmium, and arsenic. In addition, the weathering of pyrite releases large amounts of iron, and the acid generated attacks the country rocks and causes the release of large amounts of aluminum, which also can severely impact aquatic ecosystems. A reclamation attempt was made at the site in 1995, including construction of storm-water diversion trenches around the abandoned mine area, grading tailings away from the stream bank, addition of pulverized limestone and topsoil, and revegetation. The post-reclamation chemistry of shallow groundwaters (<3 meters deep) shows a neutral pH on the southwestern bank of the stream but pH of 4.1 to 4.5 on the northeastern bank. The dominant ions are Fe2+ and SO42- (Seal, Haffner, Meier, and Pollio, 1999) A ground electromagnetic survey was conducted over the site in 1999 as part of a wider study ( Seal, Haffner, and Meier, 1998a,b, 1999). It was hoped that a 3-D map of the soil conductivity derived from the survey could provide insight into the distribution of the mobilized sulfides present under the ground. This study was conducted in cooperation with the National Park Service

  16. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  17. Global impacts of sulfate deposition from acid rain on methane emissions from natural wetlands.

    NASA Astrophysics Data System (ADS)

    Gauci, V.

    2003-04-01

    Natural wetlands form the largest methane (CH_4) source to the atmosphere. A collection of recent field and laboratory studies point to an anthropogenic control on CH_4 emissions from these systems: acid rain sulfate (SO_42-) deposition. These studies ranging from the UK, USA, Canada, Sweden and Czech Republic demonstrate that low rates of SO_42- deposition, within the range commonly experienced in acid rain impacted regions, can suppress CH_4 emissions by as much as 40% and that the response of CH_4 emissions to increasing rates of SO_42- deposition closely mirrors changes in sulfate reduction rates with SO_42- deposition. This indicates that the suppression in CH_4 flux is the result of acid rain stimulating a competitive exclusion of methanogenesis by sulfate reducing bacteria, resulting in reduced methane production. These findings were extrapolated to the global scale by combining modelled, spatially explicit data sets of CH_4 emission from wetlands across the globe with modelled S deposition. Results indicate that this interaction may be important at the global scale, suppressing CH_4 emissions from wetlands in 2030 by as much as 20--28Tg, and, in the process, offsetting predicted climate induced growth in the wetland CH_4 source.

  18. Selective binding of C-6 OH sulfated hyaluronic acid to the angiogenic isoform of VEGF(165).

    PubMed

    Lim, Dong-Kwon; Wylie, Ryan G; Langer, Robert; Kohane, Daniel S

    2016-01-01

    Vascular endothelial growth factor 165 (VEGF165) is an important extracellular protein involved in pathological angiogenesis in diseases such as cancer, wet age-related macular degeneration (wet-AMD) and retinitis pigmentosa. VEGF165 exists in two different isoforms: the angiogenic VEGF165a, and the anti-angiogenic VEGF165b. In some angiogenic diseases the proportion of VEGF165b may be equal to or higher than that of VEGF165a. Therefore, developing therapeutics that inhibit VEGF165a and not VEGF165b may result in greater anti-angiogenic activity and therapeutic benefit. To this end, we report the selective binding properties of sulfated hyaluronic acid (s-HA). Selective biopolymers offer several advantages over antibodies or aptamers including cost effective and simple synthesis, and the ability to make nanoparticles or hydrogels for drug delivery applications or VEGF165a sequestration. Limiting sulfation to the C-6 hydroxyl (C-6 OH) in the N-acetyl-glucosamine repeat unit of hyaluronic acid (HA) resulted in a polymer with strong affinity for VEGF165a but not VEGF165b. Increased sulfation beyond the C-6 OH (i.e. greater than 1 sulfate group per HA repeat unit) resulted in s-HA polymers that bound both VEGF165a and VEGF165b. The C-6 OH sulfated HA (Mw 150 kDa) showed strong binding properties to VEGF165a with a fast association rate constant (Ka; 2.8 × 10(6) M(-1) s(-1)), slow dissociation rate constant (Kd; 2.8 × 10(-3) s(-1)) and strong equilibrium binding constant (KD; ∼1.0 nM)), which is comparable to the non-selective VEGF165 binding properties of the commercialized therapeutic anti-VEGF antibody (Avastin(®)). The C-6 OH sulfated HA also inhibited human umbilical vein endothelial cell (HUVEC) survival and proliferation and human dermal microvascular endothelial cell (HMVEC) tube formation. These results demonstrate that the semi-synthetic natural polymer, C-6 OH sulfated HA, may be a promising biomaterial for the treatment of angiogenesis

  19. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  20. The effects of sodium sulfate in the water of nursery pigs and the efficacy of nonnutritive feed additives to mitigate those effects.

    PubMed

    Flohr, J R; Tokach, M D; Dritz, S S; DeRouchey, J M; Goodband, R D; Nelssen, J L

    2014-08-01

    Two experiments were conducted to investigate the effects of sodium sulfate water and the efficacy of nonnutritive feed additives in nursery pig diets. In Exp. 1, 320 barrows (5.4 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 8 treatments for 24 d in a 2 × 4 factorial with 2 levels of sodium sulfate water (control or 3,000 mg sodium sulfate/L added), and 4 dietary zeolite (clinoptilolite) levels (0, 0.25, 0.50, or 1%). Fecal samples were collected on d 5, 9, 16, and 23; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. No interactions of sodium sulfate × zeolite were observed for any response criteria. Overall (d 0 to 24), pigs drinking sodium sulfate water had decreased (P < 0.01) ADG, ADFI, and G:F compared with pigs drinking control water. Pigs drinking sodium sulfate water also had increased (P < 0.01) fecal scores and lower (P < 0.04) fecal DM on d 5, 9, and 16 compared with pigs drinking control water. Increasing dietary zeolite increased (linear; P < 0.05) ADG and ADFI but had no effect on G:F. In Exp. 2, 350 barrows (5.7 ± 0.1 kg BW and 21 d of age) were allotted to 1 of 10 treatments in a 2 × 5 factorial for 21 d with 2 levels of sodium sulfate water (control or 2,000 mg sodium sulfate/L added) and 5 dietary treatments (control, 1 or 2% zeolite, 1% humic acid substance [HA], and 1% humic and fulvic acid substance [HFB]). Fecal samples were collected on d 5, 8, 15, and 21; visually scored for consistency (1 = firm and 5 = watery); and analyzed for DM. Overall (d 0 to 21), a water source × diet interaction was observed for ADG and G:F because pigs fed the 1% HA had decreased (P < 0.01) ADG and G:F when drinking sodium sulfate water compared with other treatments but increased ADG and G:F when drinking control water. Pigs drinking sodium sulfate water had decreased (P < 0.01) ADG and G:F and tended (P < 0.08) to have decreased ADFI compared with pigs drinking control water. Pigs drinking sodium sulfate water had

  1. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  2. A Coarse-Grained Molecular Model for Glycosaminoglycans: Application to Chondroitin, Chondroitin Sulfate, and Hyaluronic Acid

    PubMed Central

    Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; Tidor, Bruce

    2005-01-01

    A coarse-grained molecular model is presented for the study of the equilibrium conformation and titration behavior of chondroitin (CH), chondroitin sulfate (CS), and hyaluronic acid (HA)—glycosaminoglycans (GAGs) that play a central role in determining the structure and biomechanical properties of the extracellular matrix of articular cartilage. Systematic coarse-graining from an all-atom description of the disaccharide building blocks retains the polyelectrolytes' specific chemical properties while enabling the simulation of high molecular weight chains that are inaccessible to all-atom representations. Results are presented for the characteristic ratio, the ionic strength-dependent persistence length, the pH-dependent expansion factor for the end-to-end distance, and the titration behavior of the GAGs. Although 4-sulfation of the N-acetyl-D-galactosamine residue is found to increase significantly the intrinsic stiffness of CH with respect to 6-sulfation, only small differences in the titration behavior of the two sulfated forms of CH are found. Persistence length expressions are presented for each type of GAG using a macroscopic (wormlike chain-based) and a microscopic (bond vector correlation-based) definition. Model predictions agree quantitatively with experimental conformation and titration measurements, which support use of the model in the investigation of equilibrium solution properties of GAGs. PMID:15805173

  3. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles.

    PubMed

    Dold, Bernhard; Spangenberg, Jorge E

    2005-08-01

    Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments--Piuquenes, Cauquenes, and Salvador No. 1--formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(III) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes, the delta34S(SO4)values ranged from +0.5 per thousand to +2.0 per thousand and from -0.4 per thousand to +1.4 per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta34S(pyrite) = -1.1 per thousand and -0.9 per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8 per thousand to +0.3 per thousand and from +2.2 per thousand to +3.9 per thousand, respectively. At Cauquenes the 34S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (approximately +10.9 per thousand). At El Salvador No. 1, the delta34S(SO4) average value is -0.9 per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum

  4. Biogeochemistry of a Field-Scale Sulfate Reducing Bioreactor Treating Mining Influenced Water

    NASA Astrophysics Data System (ADS)

    Drennan, D.; Lee, I.; Landkamer, L.; Figueroa, L. A.; Webb, S.; Sharp, J. O.

    2012-12-01

    Acidity, metal release, and toxicity may be environmental health concerns in areas influenced by mining. Mining influenced waters (MIW) can be remediated through the establishment of Sulfate Reducing Bioreactors (SRBRs) as part of engineered passive treatment systems. The objective of our research is an enhanced understanding of the biogeochemistry in SRBRs by combining molecular biological and geochemical techniques. Bioreactor reactive substrate, settling pond water, and effluent (from the SRBR) were collected from a field scale SRBR in Arizona, which has been in operation for approximately 3 years. Schematically, the water passes through the SRBR; combines with flow that bypasses the SRBR into the and goes into the mixing pond, and finally is released as effluent to aerobic polishing cells. High throughput sequencing of extracted DNA revealed that Proteobacteria dominated the reactive substrate (61%), settling pond (93%), and effluent (50%), with the next most abundant phylum in all samples (excluding uncultured organisms) being Bacteriodes (1-17%). However, at the superclass level, the three samples were more variable. Gammaproteobacteria dominated the reactive substrate (35%), Betaproteobacteria in the settling pond (63%) and finally the effluent was dominated by Epsilonproteobacteria (Helicobacteraceae) (43%). Diversity was most pronounced in association with the reactor matrix, and least diverse in the settling pond. Putative functional analysis revealed a modest presence of sulfate/sulfur reducing bacteria (SRB) (>5%) in both the matrix and settling pond but a much higher abundance (43%) of sulfur reducing bacteria in the effluent. Interestingly this effluent population was composed entirely of the family Helicobacteraceae (sulfur reduction II via polysulfide pathway). Other putative functions of interest include metal reduction in the matrix (3%) and effluent (3%), as well as polysaccharide degradation, which was largely abundant in all samples (21

  5. Sulfated steroid-amino acid conjugates from the Irish marine sponge Polymastia boletiformis.

    PubMed

    Smyrniotopoulos, Vangelis; Rae, Margaret; Soldatou, Sylvia; Ding, Yuanqing; Wolff, Carsten W; McCormack, Grace; Coleman, Christina M; Ferreira, Daneel; Tasdemir, Deniz

    2015-04-01

    Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature. PMID:25812034

  6. Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia boletiformis

    PubMed Central

    Smyrniotopoulos, Vangelis; Rae, Margaret; Soldatou, Sylvia; Ding, Yuanqing; Wolff, Carsten W.; McCormack, Grace; Coleman, Christina M.; Ferreira, Daneel; Tasdemir, Deniz

    2015-01-01

    Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature. PMID:25812034

  7. High-Zinc Recovery from Residues by Sulfate Roasting and Water Leaching

    NASA Astrophysics Data System (ADS)

    Hu, Ming; Peng, Bing; Chai, Li-yuan; Li, Yan-chun; Peng, Ning; Yuan, Ying-zhen; Chen, Dong

    2015-09-01

    An integrated process for the recovery of zinc that is generated from zinc hydrometallurgy in residues was developed. A mixture of residue and ferric sulfate was first roasted to transform the various forms of zinc in the residue, such as ferrite, oxide, sulfide, and silicate, into zinc sulfate. Next, water leaching was conducted to extract the zinc while the iron remained in the residue as ferric oxide. The effects of the roasting and leaching parameters on zinc recovery were investigated. A maximum zinc recovery rate of 90.9% was achieved for a mixture with a ferric sulfate/residue weight ratio of 0.05 when roasting at 640°C for 30 min before leaching with water at room temperature for 20 min using a liquid/solid ratio of 10. Only 0.13% of the iron was dissolved in the water. Thus, the leaching liquor could be directly returned for zinc smelting.

  8. Isomers and Energy Landscapes of Perchlorate-Water Clusters and a Comparison to Pure Water and Sulfate-Water Clusters.

    PubMed

    Hey, John C; Smeeton, Lewis C; Oakley, Mark T; Johnston, Roy L

    2016-06-16

    Hydrated ions are crucially important in a wide array of environments, from biology to the atmosphere, and the presence and concentration of ions in a system can drastically alter its behavior. One way in which ions can affect systems is in their interactions with proteins. The Hofmeister series ranks ions by their ability to salt-out proteins, with kosmotropes, such as sulfate, increasing their stability and chaotropes, such as perchlorate, decreasing their stability. We study hydrated perchlorate clusters as they are strongly chaotropic and thus exhibit different properties than sulfate. In this study we simulate small hydrated perchlorate clusters using a basin-hopping geometry optimization search with empirical potentials. We compare topological features of these clusters to data from both computational and experimental studies of hydrated sulfate ions and draw some conclusions about ion effects in the Hofmeister series. We observe a patterning conferred to the water molecules within the cluster by the presence of the perchlorate ion and compare the magnitude of this effect to that observed in previous studies involving sulfate. We also investigate the influence of the overall ionic charge on the low-energy structures adopted by these clusters. PMID:27223243

  9. Suppression of rice methane emission by sulfate deposition in simulated acid rain

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy B.; Howell, Graham; Jenkins, Meaghan E.

    2008-09-01

    Sulfate in acid rain is known to suppress methane (CH4) emissions from natural freshwater wetlands. Here we examine the possibility that CH4 emissions from rice agriculture may be similarly affected by acid rain, a major and increasing pollution problem in Asia. Our findings suggest that acid rain rates of SO42- deposition may help to reduce CH4 emissions from rice agriculture. Emissions from rice plants treated with simulated acid rain at levels of SO42- consistent with the range of deposition in Asia were reduced by 24% during the grain filling and ripening stage of the rice season which accounts for 50% of the overall CH4 that is normally emitted in a rice season. A single application of SO42- at a comparable level reduced CH4 emission by 43%. We hypothesize that the reduction in CH4 emission may be due to a combination of effects. The first mechanism is that the low rates of SO42- may be sufficient to boost yields of rice and, in so doing, may cause a reduction in root exudates to the rhizosphere, a key substrate source for methanogenesis. Decreasing a major substrate source for methanogens is also likely to intensify competition with sulfate-reducing microorganisms for whom prior SO42- limitation had been lifted by the simulated acid rain S deposition.

  10. The influence of oxygen exchange between sulfite and water on the oxygen isotope composition of sulfate

    NASA Astrophysics Data System (ADS)

    Müller, I. A.; Brunner, B.

    2012-12-01

    Sulfate does not exchange oxygen with the water under most environmental conditions. Therefore, its oxygen isotope composition serves as an archive of past oxidative sulfur cycling. Studies on the oxygen isotope signature of sulfate produced from reduced sulfur compounds show varying relative contributions of two possible oxygen sources; molecular oxygen and water, and variable isotope fractionations relative to these two compounds. These discrepancies could be due to differences in the production and consumption of sulfuroxy intermediates which exchange oxygen with water. Thereby, the rate of oxygen exchange as well as the rate of oxidation depends on the pH. Studies on the oxygen isotope exchange effects between sulfuroxy intermediates and water and on the oxygen isotope effects during the oxidation of sulfuroxy intermediates are scarce, severely limiting the interpretability of oxygen isotope signatures in sulfate. Sulfite is often considered to be the last/final sulfuroxy intermediate in the oxidation of reduced sulfur compounds to sulfate and may, therefore, be pivotal in shaping the oxygen isotope signature of sulfate. We determined the oxygen isotope equilibrium fractionation between sulfite and water and used the obtained equilibrium value to determine the oxygen isotope effects in abiotic sulfite oxidation experiments. Our results demonstrate that natural variations in the oxygen isotope composition of sulfate produced by oxidative processes can be explained by differences in the interplay of the sulfite oxidation rate and oxygen isotope exchange rate between sulfite and water which both depend on pH conditions and availability of oxidizing agents (e.g. molecular oxygen or ferric iron). Our findings contribute to a more detailed mechanistic understanding of the oxidation of reduced sulfur compounds and underline the importance of sulfite as the final sulfuroxy intermediate in oxidative sulfur cycling.

  11. A Geochemical and Mineralogical Model for Formation of Layered Sulfate Deposits at Meridiani Planum by Hydrothermal Acid-sulfate Alteration of Pyroclastic Basalt

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.; Hynek, B. M.

    2012-12-01

    The Mars Exploration Rover (MER) Opportunity has extensively characterized sulfate-rich, hematite-bearing bedrock exposed at Meridiani Planum, Mars. Based on various measurements, the mineral composition of the bedrocks has been interpreted to include: amorphous silica/glass/phyllosilicates, Mg-, Ca-, and Fe-bearing sulfates including jarosite, minor amounts of igneous phases including plagioclase, pyroxene, olivine, and magnetite, and hematite [1,2]. Chemically, the bedrocks closely resemble the composition of pristine martian basalt with addition of S and O, and minor variations of Mg and Cl with depth [3,4]. Based on these and other observations, the MER team has proposed that the bedrocks represent chemically altered siliciclastic sediments combined with sulfate salts formed by evaporation of sulfate-bearing fluids, modified by transport and multiple stages of infiltrating groundwater [3,5]. Several alternative scenarios have been proposed for the origin of the rocks including large impacts [6], evaporating glacial deposits [7], acid-fog alteration [8], and hydrothermal acid-sulfate alteration of basalt [4]. In order to further evaluate the potential contribution of hydrothermal proceeses to the deposits, we performed numerical geochemical models of acid-sulfate alteration of martian basalt based on constraints provided by recent laboratory experiments. Experimental studies of alteration of basalt conducted in our lab [9] indicate that the initial stages of acid-sulfate alteration of pyroclastic basalt are characterized by rapid decomposition of igneous crystalline phases including plagioclase, pyroxene, and olivine, while the glass (and igneous phases protected within the glass) remain unreactive. Elements released by dissolving minerals are precipitated primarily as amorphous silica and Ca-, Al-, Fe- and Mg-bearing sulfates, while precipitation of phyllosilicates and Fe-oxides/oxyhydroxides (FeOx) is kinetically inhibited. Based on these constraints, models

  12. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  13. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A

    2016-05-01

    This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor. PMID:26808248

  14. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    PubMed

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. PMID:27071053

  15. Method for the determination of dissolved chloride, nitrate, and sulfate in natural water using ion chromatography

    USGS Publications Warehouse

    Brinton, Terry I.; Antweiler, Ronald C.; Taylor, Howard E.

    1996-01-01

    Ion chromatography was used for the determination of dissolved chloride, nitrate and sulfate in natural water where concentrations ranged from a detection limit of 0.02 milligrams per liter to 80 milligrams per liter for chloride, to 18 milligrams per liter for nitrate, and to 280 milligrams per liter for sulfate. Specific conductance was the mode of detection used. Three analytical sample size loops of 11, 61, and 250 microliters, were used to include the analytical ranges described. U.S. Geological Survey Standard Reference Water Samples were analyzed to test the precision and accuracy of the analyses.

  16. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  17. Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique.

    PubMed

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2014-02-15

    Gamma-ray irradiation of novel hydrogels was used to develop a biocompatible hydrogel system for skin tissue engineering. These novel hydrogels are composed of natural polymers including hyaluronic acid (HA) and chondroitin sulfate (CS), and the synthetic polymer, poly(vinyl alcohol) (PVA). The γ-ray irradiation method has advantages, such as relatively simple manipulation without need of any extra reagents for polymerization and cross-linking. We synthesized HA and CS derivatives with polymerizable residues. The HA/CS/PVA hydrogels with various compositions were prepared by using γ-ray irradiation technique and their physicochemical properties were investigated to evaluate the feasibility of their use as artificial skin substitutes. HA/CS/PVA hydrogels showed an 85-88% degree of gelation under 15 kGy radiation. All HA/CS/PVA hydrogels exhibited more than 90% water content and reached an equilibrium swelling state within 24h. Hydrogels with higher concentrations of hyaluronidase solution and HA/CS content had proportionally higher enzymatic degradation rates. The drug release behaviors from HA/CS/PVA hydrogels were influenced by the composition of the hydrogel and drug properties. Exposure of human keratinocyte (HaCaT) culture to the extracts of HA/CS/PVA hydrogels did not significantly affect the cell viability. All HaCaT cell cultures exposed to the extracts of HA/CS/PVA hydrogels exhibited greater than 92% cell viability. The HaCaT growth in HA/CS/PVA hydrogels gradually increased as a function of culture time. After 7 days, the HaCaT cells in all HA/CA/PVA hydrogels exhibited more than 80% viability compared to the control group HaCaT culture on a culture plate. PMID:24507324

  18. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    NASA Astrophysics Data System (ADS)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  19. Reactions in microemulsion formed by sodium dodecyl sulfate, water, and hexanol

    SciTech Connect

    Valaulikar, B.S. . Chemistry Div.)

    1993-11-01

    The reactions, oxidation of iodide by persulfate and basic hydrolysis of crystal violet, were investigated in the w/o microemulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of emulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of water to surfactant molar ratio and hexanol content. The increased rates were attributed to the smaller droplet size of the water pools. The rates are shown to be controlled by the water content as well as the hexanol content. It is shown that the manner in which the rate is affected applies to the catalyzed as well as the retarded reactions. This system is shown to be more effective than the AOT/water/decane system.

  20. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  1. Acid drainage generation and associated Ca-Fe-SO 4 minerals in a periglacial environment, Eagle Plains, Northern Yukon, Canada: A potential analogue for low-temperature sulfate formation on Mars

    NASA Astrophysics Data System (ADS)

    Lacelle, Denis; Léveillé, Richard

    2010-03-01

    Near Eagle Plains, northern Yukon, Canada, acidic Ca-Fe-Mg sulfate waters are discharging year-long from disturbed permafrosted sandstone bedrock overlying pyritiferous black shales. These acidic waters are precipitating gypsum with minor amounts of jarosite-K (Na), schwertmannite and hematite. This mineral assemblage is similar to that observed at Meridiani Planum (and other location on Mars), making this site a valuable analogue for low-temperature sulfate geochemistry and mineral formation on Mars. Stable O-S isotope analysis of the acidic waters near Eagle Plains revealed that the oxygen in the dissolved sulfate is mostly derived from water (ca. 70%), suggesting that the sulfide oxidation process could be in part biomediated (i.e., accelerated by acidophilic Fe-oxidizing bacteria). However, unlike the dissolved sulfate in the waters, the formation of the Ca-Fe-SO 4 minerals appears to be purely abiotic. The stable O-S isotope composition of the sulfate minerals is well within the predicted equilibrium range at low temperature, suggesting that they formed through physico-chemical processes (i.e., evaporation or freezing). Low-temperature geochemical modeling with FREZCHEM and PHREEQC suggests that the mineral assemblage at Eagle Plains precipitated mainly through the freezing of Ca-Fe-Mg-SO 4 acidic waters, rather than through evaporation during the dry summer season, although the latter is still possible. This suggests that the sulfate mineral assemblage observed on Mars could have also formed under a periglacial-type climate. Considering that the active layer in the zone affected by acid drainage does not freeze-over during winter, the residual talik offers a localized niche environment to support acidophilic microorganisms. Overall, the fact that acid drainage is presently active near Eagle Plains allows the direct observation of the low-temperature geochemical processes responsible for generating acid drainage conditions and precipitation of gypsum

  2. Mechanism for forming hydrogen chloride and sodium sulfate from sulfur trioxide, water, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.

    1984-01-01

    A molecular orbital study of sodium sulfate and hydrogen chloride formation from sulfur trioxide, water, and sodium chloride shows no activation barrier, in agreement with recent experimental work of Kohl, Fielder, and Stearns. Two overall steps are found for the process. First, gas-phase water reacts with sulfur trioxide along a pathway involving a linear O-H-O transition state yielding closely associated hydroxyl and bisulfite which rearrange to become a hydrogen sulfate molecule. Then the hydrogen sulfate molecule transfers a hydrogen atom to a surface chloride in solid sodium chloride while an electron and a sodium cation simultaneously transfer to yield sodium bisulfate and gas-phase hydrogen chloride. This process repeats. Both of these steps represent well-known reactions for which mechanisms have not been previously determined.

  3. IR-spectroscopic investigation of the acid properties of the surface of zirconium oxide modified by sulfate ions

    SciTech Connect

    Komarov, V.S.; Sinilo, M.F.

    1988-12-01

    The methods of IR spectroscopic and gravimetric measurements of the adsorption of pyridine and ammonia were used to study the acid properties of zirconium oxide, modified by sulfate ions. It was shown that the total acidity and the ratio of the numbers of Lewis and Broensted acid centers depend on the content of sulfate ions and the temperature of vacuum conditioning of the samples. It was established that the function of Broensted centers is performed by hydroxyl groups. It was shown that pyridine and ammonia molecules, chemisorbed on acid centers, are additionally coordinated by SO/sub 4//sup 2/minus// anions.

  4. Liberation of sulfate from sulfate esters by soils.

    PubMed Central

    Houghton, C; Rose, R A

    1976-01-01

    When incubated with acid, alkaline, and neutral soils, a variety of synthetic sulfate esters representing the various classes of these compounds was hydrolyzed by enzymes, probably of microbial origin. The appearance of sulfate in the soil water occurred immediately after introduction into the soils with some esters, whereas with others it occurred only after lag periods. Heat treatment destroyed the hydrolytic acitivity in the soils. The ester sulfate groups present in humic acid extracted from the soil appeared to be resistant to hydrolysis by a variety of sulfohydrolases extracted from bacteria and other organisms. Images PMID:938044

  5. Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway.

    PubMed

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  6. Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway

    PubMed Central

    Jaulneau, Valérie; Lafitte, Claude; Jacquet, Christophe; Fournier, Sylvie; Salamagne, Sylvie; Briand, Xavier; Esquerré-Tugayé, Marie-Thérèse; Dumas, Bernard

    2010-01-01

    The industrial use of elicitors as alternative tools for disease control needs the identification of abundant sources of them. We report on an elicitor obtained from the green algae Ulva spp. A fraction containing most exclusively the sulfated polysaccharide known as ulvan-induced expression of a GUS gene placed under the control of a lipoxygenase gene promoter. Gene expression profiling was performed upon ulvan treatments on Medicago truncatula and compared to phytohormone effects. Ulvan induced a gene expression signature similar to that observed upon methyl jasmonate treatment (MeJA). Involvement of jasmonic acid (JA) in ulvan response was confirmed by detecting induction of protease inhibitory activity and by hormonal profiling of JA, salicylic acid (SA) and abscisic acid (ABA). Ulvan activity on the hormonal pathway was further consolidated by using Arabidopsis hormonal mutants. Altogether, our results demonstrate that green algae are a potential reservoir of ulvan elicitor which acts through the JA pathway. PMID:20445752

  7. Isotopic composition of water of crystallisation of sulfates of Permian-Triassic age, Eastern Alps, Austria

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw; Trembaczowski, Andrzej; Bojar, Hans-Peter

    2016-04-01

    The investigated sulfates as gypsum and polyhalite were selected from various gypsum and halite rich deposits of the Northern Calcareous Alps and the Central Alpine Mesozoic. The two units of the Eastern Alps are characterised by the presence of Permian-Triassic evaporitic deposits. Crystallisation water of mineral phases was extracted by heating the samples under vacuum. The cryogenically trapped water was subsequently analysed for delta 18O and delta D on a Picarro L2120-i Analyzer. The isotopic compositions were synchronously measured, with a standard deviation better than 0.1 permil. The fractionation factors for both oxygen and hydrogen between brine where the sulfates formed and crystallisation water of sulfates are not temperature dependent. Using the appropriate relationships, we conclude from the calculations that, for gypsum, oxygen and hydrogen isotopic composition of fluid in equilibrium with crystallisation water varied between -16 to -6 permil and between -90 to -25 permil, respectively. The crystallization water of gypsum associated with halite type deposits has heavier isotopic compositions. The isotopic composition of crystallisation water of gypsum points towards reequilibration with a younger meteoric fluid. In contrast, polyhalite crystallisation water show much heavier values between +10 to +11 permil for oxygen and +16 to +19 permil for hydrogen. These values suggest the fact that this water of crystallisation indicates the isotopic composition of brines. The origin of these brines, diagenetic versus later thermal overprint is subject of further investigations. All the measured values plot along a regression line.

  8. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    USGS Publications Warehouse

    Hemingway, Bruch S.; Seal, Robert R., II; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  9. OXYGEN ISOTOPES IN ATMOSPHERIC SULFATES, SULFUR DIOXIDE, AND WATER VAPORS FIELD MEASUREMENTS, JULY 1975

    EPA Science Inventory

    Oxygen isotope ratios were determined for atmospheric samples of sulfate aerosols, sulfur dioxide, and water vapor collected simultaneously during a six-day period in July, 1975, at St. Louis, MO; Auburn, IL; and Glasgow, IL. The collection sites were located about 100km apart. C...

  10. Refractory status epilepticus after inadvertent intrathecal injection of tranexamic acid treated by magnesium sulfate.

    PubMed

    Hatch, D M; Atito-Narh, E; Herschmiller, E J; Olufolabi, A J; Owen, M D

    2016-05-01

    We present a case of accidental injection of tranexamic acid during spinal anesthesia for an elective cesarean delivery. Immediately following intrathecal injection of 2mL of solution, the patient complained of severe back pain, followed by muscle spasm and tetany. As there was no evidence of spinal block, the medications given were checked and a 'used' ampoule of tranexamic acid was found on the spinal tray. General anesthesia was induced but muscle spasm and tetany persisted despite administration of a non-depolarizing muscle relaxant. Hemodynamic instability, ventricular tachycardia, and status epilepticus developed, which were refractory to phenytoin, diazepam, and infusions of thiopental, midazolam and amiodarone. Magnesium sulfate was administered postoperatively in the intensive care unit, following which the frequency of seizures decreased, eventually stopping. Unfortunately, on postoperative day three the patient died from cardiopulmonary arrest after an oxygen supply failure that was not associated with the initial event. This report underlines the importance of double-checking medications before injection in order to avoid a drug error. As well, it suggests that magnesium sulfate may be useful in stopping seizures caused by the intrathecal injection of tranexamic acid. PMID:26775897

  11. Selective two-step titration of thorium by sulfate displacement of the diethylenetriaminepentaacetic acid complex

    SciTech Connect

    Kiefer, P.

    1980-07-01

    Thorium and other metals are complexed with excess diethylenetriaminepentaacetic acid (DTPA) at pH 1.4, the excess DTPA is titrated with Bi(III) to a xylenol orange end point, sulfate is added to complex Th(IV), and the displaced DTPA again is titrated with Bi(III). Of 61 metal ions and nonmetal anions tested, only Ga(III), Sc(III), tungstate, citrate, oxalate, and thiosulfate interfere seriously. Lesser interferences are In(III), Zr(IV), V(IV), and permanganate. The standard deviation is 2 ..mu..g for 56 to 840 ..mu..g Th.

  12. Similarities Across Mars: Acidic Fluids at Both Meridiani Planum and Gale Crater in the Formation of Magnesium-Nickel Sulfates

    NASA Technical Reports Server (NTRS)

    Yen, Albert S.; Ming, Douglas W.; Gellert, Ralf; Mittlefehldt, David W.; Vaniman, David T.; Thompson, Lucy M.; Morris, Richard V.; Clark, Benton C.; Arvidson, Raymond

    2016-01-01

    In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni (is) approximately 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving (is) approximately 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni (is) approximately 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.

  13. Effect of natural dissolved organic carbon on phosphate removal by ferric chloride and aluminum sulfate treatment of wetland waters

    NASA Astrophysics Data System (ADS)

    Qualls, Robert G.; Sherwood, Lindsay J.; Richardson, Curtis J.

    2009-09-01

    The use of wetlands for the removal of excess N and P has become widespread. Some sensitive P-limited ecosystems, however, may require additional reductions in the concentration of P entering the system. It has been proposed that the treatment of wetlands through addition of ferric chloride or aluminum sulfate can augment the natural P removal mechanisms. However, high concentrations of natural dissolved organic matter may interfere with the removal of P by metal addition. We evaluated the doses of ferric chloride and aluminum sulfate necessary to reduce total P concentrations below 0.32 μM (10 μg/L) in water from the Northern Everglades, and we determined the effect of various concentrations (21, 38, and 60 mg/L) of natural dissolved organic carbon (DOC) on the removal of PO4 and total P. High concentrations of natural DOC inhibited both the short-term removal of PO4 and the longer-term removal of total P from the water column. Similar results were observed using 15 μM citric acid in an experiment to determine whether citric acid could effectively mimic the inhibition of phosphorus removal associated with natural DOC. Stoichiometry of these experiments indicates that the mechanism of natural DOC interference was not complexation of the metal ions by the DOC; we hypothesize that it could be adsorption to the terminal hydroxyl groups on a polynuclear Fe or Al colloid, effectively blocking the adsorption sites from a phosphate molecule. Also, the ability of citric acid to mimic the inhibitory effects also suggests that the results of the study are broadly applicable to wetland and other waters with high natural organic acid concentrations.

  14. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298. 15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S. ); Rard, J.A. )

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  15. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298.15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S.; Rard, J.A.

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l_brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r_brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center_dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  16. Oxygen and Sulfur Isotope Composition of Dissolved Sulfate in Interstitial Waters of the Great Australian Bight, ODP Leg 182.

    NASA Astrophysics Data System (ADS)

    Bernasconi, S. M.; Böttcher, M. E.; Wormann, U. G.

    2005-12-01

    We measured the sulfur and oxygen isotope composition of dissolved sulfides and sulfate at ODP Sites 1129, 1130, 1131 and 1132 in the Great Australian Bight (GAB). At all Sites, a saline brine is present in the subsurface as indicated by increasing chloride concentrations with depth to reach contents up to 3 times seawater. Sulfate also increases with depth but the concentrations are reduced by intense microbial sulfate reduction. The sulfur isotope fractionation between coexisting dissolved sulfate and sulfide is very large and reaches up to 70 ‰ at all studied Sites. Due to the high sulfide concentrations and the lack of a significant source of oxidants we consider that the large sulfur isotope fractionations are induced by sulfate reducing bacteria alone without a significant contribution of elemental sulfur disproportionation and sulfide oxidation processes. The oxygen isotope composition of dissolved sulfate reaches maximum values of approximately +27 ‰ vs. VSMOW at all sites, close to the equilibrium isotope fractionation between sulfate and water. The oxygen isotope composition of dissolved sulfate positively correlates with the sulfur isotope fractionation between sulfate and sulfide. These oxygen isotope data thus support the hypothesis that that the high sulfur isotope fractionation are related to a single step fractionation by sulfate reducing bacteria and do not involve significant sulfide oxidation reactions and/or elemental sulfur disproportionation. Sulfide oxidation processes would lead to a lowering of the oxygen isotope composition of residual sulfate. Elemental sulfur disproportionation has been shown to increase the oxygen isotope composition of sulfate but to a smaller extent than that that observed in the GAB. The patterns of the oxygen isotope increase with progressive sulfate reduction indicate a predominant influence of isotope exchange rather than a kinetic isotope fractionation controlling the oxygen isotope composition of sulfate

  17. The effects of lead sulfate on new sealed lead acid batteries.

    PubMed

    Cleland, M J; Maloney, J P; Rowe, B H

    2000-04-01

    Emergency Medical Services (EMS) rely on batteries to power external cardiac defibrillators. While maintenance protocols should be followed to ensure that batteries possess adequate capacity to power their defibrillator, they are not often applied to new batteries. This study examines the effects of prolonged storage on sealed lead acid (SLA) batteries, the number of batteries that are affected by lead sulfate, and the ability of a protocol to restore the capacity in SLA batteries. A prospective cohort of new batteries was subjected to testing and discharge protocols. Initial battery capacities were measured using a battery analyzer. An "over-discharge" protocol fully discharged the battery over a 24-h period, and batteries were recharged and reanalyzed. Capacity measurements were repeated twice. Sulfate buildup was defined a priori as final capacity measurements greater than predischarge measurements. There were 126 batteries studied, a mean of 14 months after manufacture. Overall, 47 batteries (36.5%) had measured capacity that was insufficient (< 65% capacity). Batteries possessing very low initial capacities (< 55%) responded with a significant improvement on average of 54.7% compared with batteries within a normal capacity range (> 65%) whose average improvement was 9.3%. After discharge, there was an average of 17% improvement in the measured capacity, with no differences in the final capacity readings in each battery type. In conclusion, sealed lead acid batteries are affected by prolonged storage. The loss of capacity created by accumulation of lead sulfate can be reversed if battery maintenance protocols are used as part of EMS quality assurance programs. PMID:10729667

  18. Application of acidic calcium sulfate and e-polylysine to pre-rigor beef rounds for reduction of pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne illness continues to be a serious public health problem and is a major concern for the United States food industry. This study evaluated the effectiveness of warm solutions of acidic calcium sulfate (ACS), lactic acid (LA), episolon-polylysine (EPL), ACS plus EPL, and sterile distilled wa...

  19. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  20. The application of laser-Raman light scattering to the determination of sulfate in sea and estuarine waters

    NASA Technical Reports Server (NTRS)

    Bandy, A. R.

    1973-01-01

    Laser-Raman light scattering is a technique for determining sulfate concentrations in sea and estuarine waters with apparently none of the interferences inherent in the gravimetric and titrametric methods. The Raman measurement involved the ratioing of the peak heights of an unknown sulfate concentration and a nitrate internal standard. This ratio was used to calculate the unknown sulfate concentration from a standard curve. The standard curve was derived from the Raman data on prepared nitrate-sulfate solutions. At the 99.7% confidence level, the accuracy of the Raman technique was 7 to 8.6 percent over the concentration range of the standard curve. The sulfate analyses of water samples collected at the mouth of the James River, Hampton, Virginia, demonstrated that in most cases sulfate had a constant concentration relative to salinity in this area.

  1. Iron Absorption from Two Milk Formulas Fortified with Iron Sulfate Stabilized with Maltodextrin and Citric Acid

    PubMed Central

    Pizarro, Fernando; Olivares, Manuel; Maciero, Eugenia; Krasnoff, Gustavo; Cócaro, Nicolas; Gaitan, Diego

    2015-01-01

    Background: Fortification of milk formulas with iron is a strategy widely used, but the absorption of non-heme iron is low. The purpose of this study was to measure the bioavailability of two iron fortified milk formulas designed to cover toddlers’ nutritional needs. These milks were fortified with iron sulfate stabilized with maltodextrin and citric acid. Methods: 15 women (33–47 years old) participated in study. They received on different days, after an overnight fast, 200 mL of Formula A; 200 mL of Formula B; 30 mL of a solution of iron and ascorbic acid as reference dose and 200 mL of full fat cow’s milk fortified with iron as ferrous sulfate. Milk formulas and reference dose were labeled with radioisotopes 59Fe or 55Fe, and the absorption of iron measured by erythrocyte incorporation of radioactive Fe. Results: The geometric mean iron absorption corrected to 40% of the reference dose was 20.6% for Formula A and 20.7% for Formula B, versus 7.5% of iron fortified cow’s milk (p < 0.001). The post hoc Sheffé indeed differences between the milk formulas and the cow’s milk (p < 0.001). Conclusion: Formulas A and B contain highly bioavailable iron, which contributes to covering toddlers’ requirements of this micronutrient. PMID:26529007

  2. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated barium sulfate

    NASA Astrophysics Data System (ADS)

    Yang, Jinian; Wang, Chuang; Shao, Kaiyun; Ding, Guoxin; Tao, Yulun; Zhu, Jinbo

    2015-11-01

    Poly(lactic acid) (PLA)-based composites were prepared by blending PLA with precipitated barium sulfate (BaSO4) modified with stearic acid. The morphologies, mechanical properties and thermal stability of samples with increased mass fraction of BaSO4 were investigated. Results showed that PLA was toughened and reinforced simultaneously by incorporation of precipitated BaSO4 particles. The highest impact toughness and elongation at break were both achieved at 15% BaSO4, while the elastic modulus increased monotonically with increasing BaSO4 loading. Little effect of BaSO4 on the thermal behavior of PLA was observed in the present case. However, the thermal stability of PLA/BaSO4 composites at high temperature was enhanced.

  3. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  4. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.

    PubMed

    Qifeng, Wei; Xiulian, Ren; Jingjing, Guo; Yongxing, Chen

    2016-03-01

    The recovery and simultaneous separation of sulfuric acid and iron from dilute acidic sulfate effluent (DASE) and waste sulfuric acid (WSA) have been an earnest wish for researchers and the entire sulfate process-based titanium pigment industry. To reduce the pollution of the waste acid and make a comprehensive use of the iron and sulfuric acid in it, a new environmentally friendly recovery and separation process for the DASE and the WSA is proposed. This process is based on the reactive extraction of sulfuric acid and Fe(III) from the DASE. Simultaneously, stripping of Fe(III) is carried out in the loaded organic phase with the WSA. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and iron from the DASE, and the stripping of Fe(III) from the loaded organic phase with the WSA. Trioctylamine (TOA) and tributyl phosphate (TBP) in kerosene (10-50%) were used as organic phases for solvent extraction. Under the optimal conditions, about 98% of Fe(III) and sulfuric acid were removed from the DASE, and about 99.9% of Fe(III) in the organic phase was stripped with the WSA. PMID:26546698

  5. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    NASA Astrophysics Data System (ADS)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Zhu, Ren-feng; Liu, You-cai; Fu, Jian-gang

    2016-05-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leaching efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sulfuric acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respectively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent activation energy of 12.28 kJ·mol-1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  6. Inactivation of salmonella in biofilms and on chicken cages and preharvest poultry by levulinic Acid and sodium dodecyl sulfate.

    PubMed

    Zhao, Tong; Zhao, Ping; Cannon, Jennifer L; Doyle, Michael P

    2011-12-01

    Surface contamination (skin and feathers) of broilers with Salmonella occurs primarily during growth and transportation. Immediately after transporting chickens, chicken cage doors were sprayed with a foam containing 3% levulinic acid plus 2% sodium dodecyl sulfate (SDS). Samples were collected for Salmonella assay after 45 min. Salmonella on cage doors was reduced from 19% (19 of 100 doors) before treatment to 1% (1 of 100 doors) after treatment, coliform counts were reduced from 6 to 8 to 2 to 4 log CFU/9 cm(2), and aerobic plate counts were reduced from 7 to 9 to 4 to 6 log CFU/9 cm(2). Whole chicken carcasses with feathers were inoculated with 10(8) CFU of Salmonella Enteritidis, soaked for 5 min at 21°C in 72 liters of a treatment or control solution, and assayed for Salmonella. Salmonella counts on chickens treated with water were 6.8 to 8.5 log CFU/9 cm(2), those treated with 50 ppm of calcium hypochlorite were 7.6 to 8.9 log CFU/9 cm(2), and those treated with 3% levulinic acid plus 2% SDS were <1.7 to 2.8 CFU/9 cm(2) (>4-log reduction). Results of biofilm studies on surfaces of various materials revealed that a 3% levulinic acid plus 2% SDS treatment used as either a foam or liquid for 10 min effectively reduced Salmonella populations by 5 and >6 log CFU/cm(2), respectively. PMID:22186041

  7. Monosaccharide compositions of sulfated chitosans obtained by analysis of nitrous acid degraded and pyrazolone-labeled products.

    PubMed

    Han, Zhangrun; Zeng, Yangyang; Zhang, Meng; Zhang, Yiran; Zhang, Lijuan

    2016-01-20

    Chemically sulfated chitosans are important biomaterials. However, a reliable analytical method for quality control over such compounds is still lacking. In this study, we prepared four different kinds of selectively sulfated chitosans and developed a novel method to analyze their monosaccharide compositions by HPLC. In this method, nitrous acid was used to generate 2, 5-hydro mannose (M), 3-O-sulfated M (M3), 6-O-sulfated M (M6), and 3, 6-O-disulfated M (M9) from the sulfated chitosans. PMP, that is 1-phenyl-3-methyl-5-pyrazolone with a UV absorbance at 245 nm, was used to label all the Ms quantitatively. The monosaccharide compositions for each sulfated chitosan were obtained by C18 HPLC separation and online UV detection of all PMP-labeled Ms. The identities of all Ms were confirmed by MS analysis with the help of standard Ms generated from a heparin pentasaccharide and chitosan. The overall results indicated that the newly developed method had advantages over (13)C NMR in defining the monosaccharide compositions of sulfated chitosans and was useful for quality control purpose. PMID:26572367

  8. Origin of dimethylsulfide, non-sea-salt sulfate, and methanesulfonic acid in eastern Antarctica

    NASA Astrophysics Data System (ADS)

    Cosme, E.; Hourdin, F.; Genthon, C.; Martinerie, P.

    2005-02-01

    Ignoring the origin of atmospheric chemicals is often a strong limitation to the full interpretation of their measurement. In this article, this question is addressed in the case of the sulfur species in Antarctica, with an original method of retrotransport of tracers. The retrotransport model is derived from the Laboratoire de Météorologie Dynamique Zoom-Tracers (LMD-ZT) atmospheric general circulation model, optimized for polar climate and expanded to simulate atmospheric sulfur chemistry. For two East Antarctic scientific stations (Dumont d'Urville and Vostok) the effects of transport and chemistry and the influence of oceanic, volcanic, and anthropogenic sources on dimethylsulfide (DMS), non-sea-salt (nss) sulfate, and methanesulfonic acid (MSA) concentrations are evaluated in summer and winter. The oceanic source largely dominates, but other sources can episodically be significant. The meridional origin and the age of DMS, MSA, and biogenic nss sulfate are also estimated. The latitudes of origin of MSA and nss sulfate are similar in summer, but they differ markedly in winter. This is a signature of their different chemical production scheme. Also, the interannual variability of the origin of the sulfur species at Vostok is weak compared to that at Dumont d'Urville. Acknowledging that the DMS concentrations in the ocean have no interannual variability in the model, this result suggests unsurprisingly that inland Antarctic stations may be better observation sites to monitor large-scale DMS bioproductivity variability than coastal sites are. The combination of slower chemistry and more intense atmospheric circulation in winter leads to unexpected results, such as a younger DMS in winter than in summer at Vostok.

  9. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid.

    PubMed

    Schofield, M; Jenski, L J; Dumaual, A C; Stillwell, W

    1998-09-01

    The important omega-3 fatty acid docosahexaenoic acid (DHA) is present at high concentration in some membranes that also contain the unusual sterol cholesterol sulfate (CS). The association between these lipids and their effect on membrane structure is presented here. Differential scanning calorimetry (DSC), MC540 fluorescence, erythritol permeability, pressure/area isotherms on lipid monolayers and molecular modeling are used to compare the effect of CS and cholesterol on model phospholipid membranes. By DSC, CS decreases the main phase transition temperature and broadens the transitions of dipalmitolyphosphatidylcholine (DPPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1 PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6 PC) to a much larger extent than does cholesterol. In addition CS produces a three-component transition in 18:0,18:1 PC bilayers that is not seen with cholesterol. In a mixed phospholipid bilayer composed of 18:0,18:1 PC/18:0,22:6 PC (1:1, mol/mol), CS at 2.5 membrane mol% or more induces lateral phase separation while cholesterol does not. CS decreases lipid packing density and increases permeability of 18:0,18:1 PC and 18:0,22:6 PC bilayers to a much larger extent than cholesterol. CS disrupts oleic acid-containing bilayers more than those containing DHA. Molecular modeling confirms that the anionic sulfate moiety on CS renders this sterol more polar than cholesterol with the consequence that CS likely resides higher (extends further into the aqueous environment) in the bilayer. CS can therefore be preferentially accommodated into DHA-enriched bilayers where its tetracyclic ring system may fit into the delta 4 pocket of DHA, a location excluded to cholesterol. It is proposed that CS may in part replace the membrane function of cholesterol in DHA-rich membranes. PMID:9807808

  10. Short-term endproducts of sulfate reduction in a salt marsh: Formation of acid volatile sulfides, elemental sulfur, and pyrite

    NASA Astrophysics Data System (ADS)

    King, Gary M.; Howes, B. L.; Dacey, J. W. H.

    1985-07-01

    Rates of sulfate reduction, oxygen uptake and carbon dioxide production in sediments from a short Spartina alterniflora zone of Great Sippewissett Marsh were measured simultaneously during late summer. Surface sediments (0-2 cm) were dominated by aerobic metabolism which accounted for about 45% of the total carbon dioxide production over 0-15 cm. Rates of sulfate reduction agreed well with rates of total carbon dioxide production below 2 cm depth indicating that sulfate reduction was the primary pathway for sub-surface carbon metabolism. Sulfate reduction rates were determined using a radiotracer technique coupled with a chromous chloride digestion and carbon disulfide extraction of the sediment to determine the extent of formation of radiolabelled elemental sulfur and pyrite during shortterm (48 hr) incubations. In the surface 10 cm of the marsh sediments investigated, about 50% of the reduced radiosulfur was recovered as dissolved or acid volatile sulfides, 37% as carbon disulfide extractable sulfur, and only about 13% was recovered in a fraction operationally defined as pyrite. Correlations between the extent of sulfate depletion in the marsh sediments and the concentrations of dissolved and acid volatile sulfides supported the results of the radiotracer work. Our data suggest that sulfides and elemental sulfur may be major short-term end-products of sulfate reduction in salt marshes.

  11. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition

    NASA Astrophysics Data System (ADS)

    Gauci, Vincent; Dise, Nancy; Fowler, David

    2002-01-01

    The effect of acid rain SO42- deposition on peatland CH4 emissions was examined by manipulating SO42- inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha-1 yr-1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m-2 from the controls and (in order of increasing SO42- dose size) 10.7, 13.2, and 9.8 g m-2 from the three SO42- treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42- at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42- from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.

  12. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    PubMed

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin. PMID:27209695

  13. Modeling the crystal distribution of lead-sulfate in lead-acid batteries with 3D spatial resolution

    NASA Astrophysics Data System (ADS)

    Huck, Moritz; Badeda, Julia; Sauer, Dirk Uwe

    2015-04-01

    For the reliability of lead-acid batteries it is important to have an accurate prediction of its response to load profiles. A model for the lead-sulfate growth is presented, which is embedded in a physical-chemical model with 3D spatial resolution is presented which is used for analyzing the different mechanism influencing the cell response. One import factor is the chemical dissolution and precipitation of lead-sulfate, since its dissolution speed limits the charging reaction and the accumulation of indissolvable of lead-sulfate leads to capacity degradation. The cell performance/behavior is not only determined by the amount of the sulfate but also by the radii and distribution of the crystals. The presented model can be used to for an improved understanding of the interaction of the different mechanisms.

  14. Evaluation of intravenous magnesium sulfate for the treatment of hydrofluoric acid burns.

    PubMed

    Cox, R D; Osgood, K A

    1994-01-01

    Hydrofluoric acid exposures to the skin can produce severe, progressive burns. Medical treatment of these burns is aimed at neutralizing the free fluoride ion, which is felt to be responsible for burn progression. Both calcium and magnesium will form complexes with free fluoride and have been used as topical or intradermal treatments in the past. This study evaluated the efficacy of intravenous magnesium sulfate for the treatment of hydrofluoric acid burns and compared this treatment to controls and burns treated with intradermal calcium gluconate in a rabbit model. Both treatments demonstrated a reduction in burn area over time, wound depth, healing time and final scar area compared to controls. The intravenous magnesium treatment showed trends toward improved outcome compared to the intradermal calcium treatment in all parameters evaluated, but these differences did not reach statistical significance. This investigation found intravenous magnesium to be an effective method for treating hydrofluoric acid burns. Intravenous magnesium may have significant utility for treating hydrofluoric acid burns that are not amenable to current therapies. PMID:8145352

  15. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors.

    PubMed

    Dvorak, D H; Hedin, R S; Edenborn, H M; McIntire, P E

    1992-08-01

    Simple anaerobic reactors were installed to treat metal-contaminated water in an underground coal mine and at a smelting residues dump in Pennsylvania. The reactors consisted of barrels and tanks filled with spent mushroom compost, within which bacterial sulfate reduction became established. Concentrations of Al, Cd, Fe, Mn, Ni, and Zn were typically lowered by over 95% as contaminated water flowed through the reactors. Cadmium, Fe, Ni, and some Zn were retained as insoluble metal sulfides following their reaction with bacterially generated H(2)S. Aluminum, Mn, and some Zn hydrolyzed and were retained as insoluble hydroxides or carbonates. Reactor effluents were typically circumneutral in pH and contained net alkalinity. The principal sources of alkalinity in the reactors were bacterial sulfate reduction and limestone dissolution. This article examines the chemistry of the reactor systems and the opportunities for enhancing their metal-retaining and alkalinity-generating potential. PMID:18601157

  16. Detection of pentachlorophenol and its glucuronide and sulfate conjugates in fish bile and exposure water

    SciTech Connect

    Stehly, G.R.; Hayton, W.L.

    1988-08-01

    The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposed to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.

  17. Water soluble sodium sulfate nanorods as a versatile template for the designing of copper sulfide nanotubes.

    PubMed

    Das, Gautam; Kakati, Nitul; Lee, Seok Hee; Karak, Niranjan; Yoon, Young Soo

    2014-06-01

    The present study reports the use of water soluble sodium sulfate (Na2SO4) nanorods as a versatile template for generation of tubular copper sulfide (CuS) nanostructures. The Na2SO4 nanorods were synthesized from ammonium sulfate (NH4)2SO4 and sodium hydroxide (NaOH), under refluxing condition. The shape and morphology control of the Na2SO4 nanorods were studied with respect to nature of surfactant used and reactant mole ratio. While, PVP mole ratio was important to obtain homogeneous nanorods. Uniform and stable nanotubes of CuS were than obtained by the dissolution of the nanorods in water. The use of simple chemicals for synthesis of such nanotube templates opens the prospect for wide scale downstream applications. PMID:24738412

  18. Magnesium and calcium sulfate stabilities and the water budget of Mars

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R., II

    2007-01-01

    Magnesium sulfate probably plays a dominant role in the water cycle of Mars away from the polar ice caps through hydration and dehydration reactions. This prominence is due to its abundance, its occurrence in numerous hydration states, and its ability to hydrate and dehydrate rapidly. New experimental studies on the metastable reaction between hexahydrite (MgSO4??6H2O) and starkeyite (MgSO4-4H2O) as a function of temperature and relative humidity, supplemented by recent investigations of the stable reaction between epsomite (MgSO4??7H2O) and hexahydrite and by phase equilibrium calculations, suggest that the most important magnesium sulfate phases involved in the Martian water cycle are MgSO4??11 H2O, epsomite, starkeyite, and possibly kieserite (MgSO4??H2O). Hexahydrite is not predicted to be stable on the surface of Mars. During diurnal variations in temperature and relative humidity, 1 kg of MgSO4 can release or remove from the atmosphere 1.5 kg of H2O by cycling between kieserite and MgSO4??11 H2O. Despite subequal abundances of calcium sulfate, calcium sulfates are not likely to be important in the water cycle of the planet because of sluggish rates of hydration and dehydration and a more limited range of H2O concentrations per kilogram of CaSO4 (0.00 to 0.26 kg kg-1). Modern or recent erosion on Mars attributed to liquid water may be due to the dehydration Of MgSO4??11 H2O because of the inferred abundance and likelihood of occurrence of this phase and its limited stability relative to known variations in temperature and relative humidity.

  19. IUPAC-NIST Solubility Data Series. 93. Potassium Sulfate in Water

    NASA Astrophysics Data System (ADS)

    Eysseltová, Jitka; Bouaziz, Roger

    2012-03-01

    The solubility data for potassium sulfate in water are reviewed. All data were critically examined for their reliability. The best values were selected on the basis of critical evaluations and presented in tabular form. Fitting equations and plots are also provided. The quantities, units, and symbols used are in accord with IUPAC recommendations. The original data have been reported and, if necessary, transferred into the units and symbols recommended by IUPAC. The literature on solubility data was researched through 2010.

  20. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  1. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].

    PubMed

    Su, Yu; Wang, Jin; Peng, Shu-chuan; Yue, Zheng-bo; Chen, Tian-hu; Jin, Jie

    2010-08-01

    The performance of three organic carbon sources was assessed in terms of sulfate reduction and main metal removal, by using sewage sludge as the source of sulfate-reducing bacteria (SRB) and adding rice straw and ethanol with equal quantity. Results indicated that sewage sludge which contained certain amount of alkaline material could neutralize acidity of acid mine drainage(AMD) on the first day of experiment, elevating pH value from the initial 2.5 to around 5.4-6.3 and achieving suitable pH condition for SRB growth. Sewage sludge contained fewer biodegradable organic substance, reactive mixture with single sewage sludge showed the lowest sulfate reduction (65.9%). When the single sewage sludge was supplemented with rice straw, SRB reducing sulfate was enhanced (79.2%), because the degradation rate of rice straw was accelerated by the specific bacteria in sewage sludge, providing relatively abundant carbon source for SRB. Control experiment with ethanol was most effective in promoting sulfate reduction (97.9%). Metal removal efficiency in all three reactors was as high as 99% for copper, early copper removal was mainly attributed to the adsorption capacity of sewage sludge prior to SRB acclimation. It is feasible for using rice straw and sewage sludge as carbon sources for SRB treating acid mine drainage at a low cost, this may have significant implication for in situ bioremediation of mine environment. PMID:21090305

  2. Characterization of a water-in-oil microemulsion containing a concentrated ammonium ferric sulfate aqueous phase

    SciTech Connect

    Darab, J.G.; Pfund, D.M.; Fulton, J.L.; Linehan, J.C. ); Capel, M. ); Ma, Y. )

    1994-01-01

    A water-in-oil (w/o) microemulsion containing high concentrations of ammonium ferric sulfate in solution was characterized by SAXS, EXAFS, electrical conductivity, and viscosity measurements and by its phase behavior. The nanometer-sized aqueous droplets are microemulsified by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in an isooctane continuous phase. Addition of small amounts of sodium dodecyl sulfate (SDS) as a cosurfactant greatly aids in the solubilization of the inorganic electrolyte-laden aqueous phase. For this five-component system there is a large region of the composition phase space that exists as a clear, stable w/o microemulsion. A portion of this w/o microemulsion phase space can be characterized as spherically shaped aqueous nanometer-sized droplets. A simple relationship between the total surfactant concentration and the amount of water on the droplet size was established. This relationship has the same form as the well-known relationship for the ternary system, AOT/water/isooctane. True thermodynamic equilibrium was not established in this microemulsion study because the reaction times for the various ferric oxyhydroxide species are prohibitively long. As a result, pseudoequilibria for this ammonium ferric sulfate microemulsion are reported. 31 refs., 7 figs., 1 tab.

  3. The magnesium sulfate-water system at pressures to 4 kilobars

    NASA Technical Reports Server (NTRS)

    Hogenboom, D. L.; Kargel, Jeffrey S.; Ganasan, J. P.; Lewis, J. S.

    1991-01-01

    Hydrated magnesium sulfate constitutes up to 1/6 of the mass of carbonaceous chondrites, and probably is important in many icy asteroids and satellites. It occurs naturally in meteorites mostly as epsomite. MgSO4, considered anhydrously, comprises nearly 3/4 of the highly soluble fraction of C1 chondrites. Thus, MgSO4 is probably an important solute in cryovolcanic brines erupted on certain icy objects in the outer solar system. While the physiochemical properties of the water-magnesium sulfate system are well known at low pressures, planetological applications of these data are hindered by a dearth of useful published data at elevated pressures. Accordingly, solid-liquid phase equilibria was recently explored in this chemical system at pressures extending to about 4 kilobars. The water magnesium sulfate system in the region of the eutectic exhibits qualitatively constant behavior between pressures of 1 atm and 2 kbar. The eutectic melting curve closely follows that for water ice, with a freezing point depression of about 4 K at 1 atm decreasing to around 3.3 K at 2 kbars. The eutectic shifts from 17 pct. MgSO4 at 1 atm to about 15.3 pct at 2 kbars. Above 2 kbars, the eutectic melting curve again tends to follow ice.

  4. Effects of sulfate-reducing bacteria on methylmercury at the sediment-water interface.

    PubMed

    Zeng, Lingxia; Luo, Guangjun; He, Tianrong; Guo, Yanna; Qian, Xiaoli

    2016-08-01

    Sediment cores (containing sediment and overlying water) from Baihua Reservoir (SW China) were cultured under different redox conditions with different microbial activities, to understand the effects of sulfate-reducing bacteria (SRB) on mercury (Hg) methylation at sediment-water interfaces. Concentrations of dissolved methyl mercury (DMeHg) in the overlying water of the control cores with bioactivity maintained (BAC) and cores with only sulfate-reducing bacteria inhibited (SRBI) and bacteria fully inhibited (BACI) were measured at the anaerobic stage followed by the aerobic stage. For the BAC and SRBI cores, DMeHg concentrations in waters were much higher at the anaerobic stage than those at the aerobic stage, and they were negatively correlated to the dissolved oxygen concentrations (r=-0.5311 and r=-0.4977 for BAC and SRBI, respectively). The water DMeHg concentrations of the SRBI cores were 50% lower than those of the BAC cores, indicating that the SRB is of great importance in Hg methylation in sediment-water systems, but there should be other microbes such as iron-reducing bacteria and those containing specific gene cluster (hgcAB), besides SRB, causing Hg methylation in the sediment-water system. PMID:27521953

  5. Gas chromatographic determination of sulfuric acid and application to urinary sulfate.

    PubMed

    Masuoka, N; Ubuka, T; Kinuta, M; Yoshida, S; Taguchi, T

    1988-10-01

    A new gas chromatographic method for the determination of sulfate was developed. In this method, sulfate was quantitatively converted to a volatile derivative, dimethyl sulfate, by a two-step procedure. First, sulfate was converted to silver sulfate by reaction with silver oxide, and then to dimethyl sulfate by reaction with methyl iodide. The derivative was analyzed by gas chromatography. Methyl methanesulfonate was used as an internal standard. The method was applied to the determination of total urinary sulfate. Phosphate and chloride ions, which interfered with the present method, were eliminated with the use of basic magnesium carbonate and an excess of silver oxide, respectively. Recovery was over 96% when 5 to 40 mumol/ml of sulfate was added to human urine samples. PMID:3223336

  6. Concentration of polyaromatic hydrocarbons in water to sodium dodecyl sulfate-gamma-alumina admicelle.

    PubMed

    Saitoh, Tohru; Matsushima, Seiichi; Hiraide, Masataka

    2005-04-01

    Polyaromatic hydrocarbons (PAHs) in water were concentrated into sodium dodecyl sulfate (SDS)-gamma-alumina and di-2-ethylhexyl sodium sulfosuccinate (Aerosol-OT, AOT)-gamma-alumina admicelles. The comparison of the binding constants (Kad[={adsorbed concentration of the solute (mol/g surfactant)}/{the concentration in the bulk aqueous phase (mol/ml)}] indicated almost the same extraction abilities of the both admicelles. However, better and more reproducible recovery was obtained in the concentration of PAHs into the SDS-gamma-alumina admicelle. PAHs in tobacco smoke that were trapped in water were successfully concentrated into SDS-gamma-alumina admicelle for the HPLC analysis. PMID:15830954

  7. Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm.

    PubMed

    Liu, Hong; Yu, Tong; Liu, Yang

    2015-12-01

    Biofilm reactors were constructed to grow stratified multispecies biofilm in oil sands process-affected water (OSPW) supplemented with growth medium. The development of sulfate reducing bacteria (SRB) within the biofilm and the biofilm treatment of OSPW were evaluated. The community structure and potential activity of SRB in the biofilm were investigated with H2S microsensor measurements, dsrB gene-based denaturing gradient gel electrophoresis (DGGE), and the real time quantitative polymerase chain reaction (qPCR). Multispecies biofilm with a thickness of 1000 μm was successfully developed on engineered biocarriers. H2S production was observed in the deeper anoxic zone of the biofilm from around 750 μm to 1000 μm below the bulk water-biofilm interface, revealing sulfate reduction in the deeper zone of the stratified biofilm. The biofilm removed chemical oxygen demand (COD), sulfate, and nitrogen. The study expands current knowledge of biofilm treatment of OSPW and the function of anaerobic SRB in OSPW biofilm, and thus provides information for future bioreactor development in the reclamation of OSPW. PMID:26204047

  8. Polioencephalomalacia in cattle consuming water with elevated sodium sulfate levels: A herd investigation

    PubMed Central

    Hamlen, Heidi; Clark, Edward; Janzen, Eugene

    1993-01-01

    Polioencephalomalacia (PEM), hereafter used to refer to the specific lesion of cerebrocortical necrosis, developed in 11 of 110 mature cattle on pasture in central Saskatchewan. The primary water source contained a markedly elevated level of sodium sulfate (7200 ppm). The significant clinical findings of the herd investigation included depression, ataxia, cortical blindness, dysphagia, and death. Diagnosis of PEM was confirmed by histopathological evidence of cerebrocortical and subcortical necrosis with microvascular fibrinoid necrosis predominantly in the thalamic region of three affected cattle. The histopathology of sulfate-associated PEM observed in this herd appears to be unique and its features are presented and discussed. Mean levels for serum transketolase, copper, red blood cell transketolase activity, and thiamine (vitamin B1) in all exposed young (n = 100) and mature (n = 99) animals did not reveal evidence of deficiencies. Although the blood thiamine status of the seven surviving, affected animals was not evaluated before treatment with exogenous thiamine, 199 members of the herd had blood thiamine levels within the reference range at the time of the outbreak. The outbreak resolved after cattle were moved to a water source containing acceptable levels of sodium sulfate. ImagesFigure 1. PMID:17424182

  9. Bioanalysis of propylparaben and p-hydroxybenzoic acid, and their sulfate conjugates in rat plasma by liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Yue; Liu, Guowen; Shen, Hongwu; Shen, Jim X; Aubry, Anne-Françoise; Sivaraman, Lakshmi; Arnold, Mark E

    2014-02-01

    Two rugged liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for the determination of propylparaben, its major metabolite, p-hydroxybenzoic acid (pHBA), and their sulfate conjugates have been developed and validated in citric acid-treated rat plasma. To prevent propylparaben being hydrolyzed to pHBA ex vivo, rat plasma was first treated with citric acid; then collected and processed at a reduced temperature (ice bath). Stable isotope labeled internal standards, d4-propylparaben, (13)C6-pHBA, and the d4-labeled internal standards of their sulfate conjugates were used in the methods. The analytes were extracted from the matrix using protein precipitation, followed by chromatographic separation on a Waters ACQUITY UPLC HSS T3 column. Quantification using negative ion electrospray was performed on a Sciex API 4000 mass spectrometer. The analytical ranges were established from 2.00 to 200 ng/mL for propylparaben, 50.0-5000 ng/mL for pHBA, 50.0-10,000 ng/mL for the sulfate conjugate of propylparaben (SPP) and 200-40,000 ng/mL for the sulfate conjugate of pHBA (SHBA). Inter- and intra-run precision for the quality control samples were less than 5.3% and 4.4% for all analytes; and the overall accuracy was within ±5.7% of the nominal values. The validated bioanalytical methods demonstrated excellent sensitivity, specificity, accuracy and precision and were successfully applied to a rat toxicology study under the regulations of Good Laboratory Practices (GLP). Strategies have been developed and applied toward overcoming the challenges related to analyte stability, and environmental and endogenous background. PMID:24412689

  10. Analytical electron microscopy of a crack tip extracted from a stressed Alloy 800 sample exposed to an acid sulfate environment.

    PubMed

    Persaud, S Y; Carcea, A G; Huang, J; Korinek, A; Botton, G A; Newman, R C

    2014-06-01

    Alloy 800 (Fe-21Cr-33Ni) has been found susceptible to cracking in acid sulfate environments, but the mechanism is not well understood. Alloy 800 C-ring samples were exposed to an acid sulfate environment at 315°C and cracks were found with depths in excess of 300μm after 60h. Preparation of a TEM sample containing crack tips is challenging, but the ability to perform high-resolution microscopy at the crack tip would lend insight to the mechanism of acid sulfate stress corrosion cracking (AcSCC). The lift-out technique combined with a focused ion beam sample preparation was used to extract a crack tip along the cross-section of an acid sulfate crack in an Alloy 800 C-ring. TEM elemental analysis was done using EDS and EELS which identified a duplex oxide within the crack; an inner oxide consisting of a thin 3-4nm Cr-rich oxide and an outer oxide enriched in Fe and Cr. Preliminary conclusions and hypotheses resulted with respect to the mechanism of AcSCC in Alloy 800. PMID:24792448

  11. Orbital Evidence for Clay and Acidic Sulfate Assemblages on Mars and Mineralogical Analogs from Rio Tinto, Spain

    NASA Astrophysics Data System (ADS)

    Kaplan, H. H.; Milliken, R.; Fernandez-Remolar, D. C.; Amils, R.; Robertson, K.; Knoll, A. H.

    2015-12-01

    A suite of enigmatic near-infrared reflectance spectra with a 'doublet' absorption between 2.2 and 2.3 µm is observed in CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral images over Ius and Melas Chasma on Mars. The doublet-bearing deposits are found alongside other hydrated minerals including clays, sulfates, and silica, but the mineral(s) responsible for the spectral signature has yet to be identified. Reflectance spectra of rocks and sediments at Rio Tinto, Spain exhibit similar absorptions at airborne, field, and lab spatial scales. Coupled X-ray diffraction and reflectance spectra of these terrestrial examples indicate the absorption arises from a mixture of jarosite, a ferric sulfate, and Al-phyllosilicates (illite/muscovite). Detailed analysis of CRISM data over Ius and Melas Chasma suggests that these deposits also contain mixtures of jarosite and Al-phyllosilicate, where the latter may include halloysite, kaolinite and/or montmorillonite in addition to illite/muscovite. This interpretation is supported because (1) the two absorptions in the doublet feature vary independently, implying the presence of two or more phases, (2) the position of the absorptions is consistent with Al-OH and Fe-OH vibrations in both the Rio Tinto and CRISM spectra and (3) Al-phyllosilicates and jarosite are identified separately in nearby regions. Multiple formation mechanisms are proposed based on stratigraphy in Ius Chasma, where the strength of absorptions varies within a single stratigraphic unit as well as between different units. Mechanisms include authigenic formation of jarosite, which would indicate locally acidic and oxidizing conditions, mixed with detrial Al-phyllosilicates, or authigenic formation of Al-phyllosilicates and jarosite. Each implies different conditions in terms of aqueous geochemistry, redox, and sediment transport. Results from the field, lab, and CRISM analysis will be presented to discuss how placing these spectral

  12. A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs).

    PubMed

    Kurogi, Katsuhisa; Krasowski, Matthew D; Injeti, Elisha; Liu, Ming-Yih; Williams, Frederick E; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2011-11-01

    The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species. PMID:21839837

  13. A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs)

    PubMed Central

    Kurogi, Katsuhisa; Krasowski, Matthew D.; Injeti, Elisha; Liu, Ming-Yih; Williams, Frederick E.; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-01-01

    The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species. PMID:21839837

  14. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates.

    PubMed

    Soucek, David J; Linton, Tyler K; Tarr, Christopher D; Dickinson, Amy; Wickramanayake, Nilesh; Delos, Charles G; Cruz, Luis A

    2011-04-01

    Total dissolved solids (TDS) represent the sum of all common ions (e.g., Na, K, Ca, Mg, chloride, sulfate, and bicarbonate) in freshwater. Currently, no federal water quality criteria exist for the protection of aquatic life for TDS, but because the constituents that constitute TDS are variable, the development of aquatic life criteria for specific ions is more practical than development of aquatic life criteria for TDS. Chloride is one such ion for which aquatic life criteria exist; however, the current aquatic life criteria dataset for chloride is more than 20 years old. Therefore, additional toxicity tests were conducted in the current study to confirm the acute toxicity of chloride to several potentially sensitive invertebrates: water flea (Ceriodaphnia dubia), fingernail clams (Sphaerium simile and Musculium transversum), snail (Gyraulus parvus), and worm (Tubifex tubifex), and determine the extent to which hardness and sulfate modify chloride toxicity. The results indicated a significant ameliorating effect of water hardness (calcium and magnesium) on chloride toxicity for all species tested except the snail; for example, the 48-h chloride median lethal concentration (LC50) for C. dubia at 50 mg/L hardness (977 mg Cl(-) /L) was half that at 800 mg/L hardness (1,836 mg Cl(-) /L). Conversely, sulfate over the range of 25 to 600 mg/L exerted a negligible effect on chloride toxicity to C. dubia. Rank order of LC50 values for chloride at a given water hardness was in the order (lowest to highest): S. simile < C. dubia < M. transversum < G. parvus < T. tubifex. Results of the current study support the contention that the specific conductivity or TDS concentration of a water body alone is not a sufficient predictor of acute toxicity and that knowledge of the specific ion composition is critical. PMID:21191883

  15. Tyrosine sulfation of human trypsin steers S2' subsite selectivity towards basic amino acids.

    PubMed

    Szabó, András; Salameh, Moh'd A; Ludwig, Maren; Radisky, Evette S; Sahin-Tóth, Miklós

    2014-01-01

    Human cationic and anionic trypsins are sulfated on Tyr154, a residue which helps to shape the prime side substrate-binding subsites. Here, we used phage display technology to assess the significance of tyrosine sulfation for the specificity of human trypsins. The prime side residues P1'-P4' in the binding loop of bovine pancreatic trypsin inhibitor (BPTI) were fully randomized and tight binding inhibitor phages were selected against non-sulfated and sulfated human cationic trypsin. The selection pattern for the two targets differed mostly at the P2' position, where variants selected against non-sulfated trypsin contained primarily aliphatic residues (Leu, Ile, Met), while variants selected against sulfated trypsin were enriched also for Arg. BPTI variants carrying Arg, Lys, Ile, Leu or Ala at the P2' position of the binding loop were purified and equilibrium dissociation constants were determined against non-sulfated and sulfated cationic and anionic human trypsins. BPTI variants harboring apolar residues at P2' exhibited 3-12-fold lower affinity to sulfated trypsin relative to the non-sulfated enzyme, whereas BPTI variants containing basic residues at P2' had comparable affinity to both trypsin forms. Taken together, the observations demonstrate that the tyrosyl sulfate in human trypsins interacts with the P2' position of the substrate-like inhibitor and this modification increases P2' selectivity towards basic side chains. PMID:25010489

  16. Fast and sensitive quantification of human liver cytosolic lithocholic acid sulfation using ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Bansal, Sumit; Lau, Aik Jiang

    2016-02-01

    Detoxification of lithocholic acid (LCA) to lithocholic acid sulfate (LCA-S) is catalyzed by sulfotransferases, mainly SULT2A1. We developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify human liver cytosolic-dependent LCA sulfation. Chromatographic separation was achieved on an UPLC C18 column (2.1×50mm, 1.7μm) and a gradient elution of 0.1% formic acid in water and acetonitrile. Negative electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify LCA-S (455.3→97.0) and cholic acid (407.2→343.3; internal standard). The retention time was 3.51min for LCA-S and 3.08min for cholic acid. The lower limit of quantification of LCA-S was 0.5nM (or 0.23ng/ml in 400μl total volume) and the assay was linear from 0.2 to 200pmol. Intra-day and inter-day accuracy and precision were <14%. The quality control samples were stable at room temperature for 4h, 4°C for 24h, -20°C for 14 days, and after three freeze-thaw cycles. The matrix (20-100μg cytosolic protein) did not affect LCA-S quantification. This is the first UPLC-MS/MS method applied to optimization of the human liver cytosolic LCA sulfation assay. The optimal levels of MgCl2 and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) cofactor were 2.5mM and 20μM, respectively. Addition of reducing agents (2-mercaptoethanol and DL-dithiothreitol) did not affect LCA-S formation. Human liver cytosolic LCA sulfation was linear with 20-100μg of cytosolic protein and 5-30min incubation time. This UPLC-MS/MS approach offers a specific, sensitive, fast, and direct approach for quantifying human liver cytosolic LCA sulfation. PMID:26773894

  17. Preparation and Acid Catalytic Activity of TiO2 Grafted Silica MCM-41 with Sulfate Treatment

    NASA Astrophysics Data System (ADS)

    Guo, Dai-shi; Ma, Zi-feng; Yin, Chun-sheng; Jiang, Qi-zhong

    2008-02-01

    TiO2 grafted silica MCM-41 catalyst with and without sulfate treatment were prepared. The structural and acid properties of these materials were investigated by XRD, N2 adsorption-desorption, element analysis, thermal analysis, Raman and FTIR measurements. Their acid-catalytic activities were evaluated using the cyclization reaction of pseudoionone. It was found that the obtained materials possess well-ordered mesostructure, and the grafted TiO2 components were in highly dispersed amorphous form. T/MCM41 without sulfation contained only Lewis acid sites, while Brønsted and Lewis acidities were remarkably improved for the sulfated materials ST/MCM41 and d-ST/MCM41. T/MCM-41 was not active for the cyclization reaction of pseudoionone, but ST/MCM-41 and d-ST/MCM-41 possessed favorable catalytic activities. The catalytic performance of ST/MCM-41 was comparable with that of the commercial solid acid catalyst of Amberlyst-15, and better than that of d-ST/MCM-41, although the latter underwent a second TiO2 grafting process and accordingly had higher Ti and S content. The specific surface structure of Si-O-Ti-O-S=O in ST/MCM-41 and the bilateral induction effect of Si and S=O on Si-O-Ti bonds were speculated to account for its higher acid catalytic activity.

  18. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    SciTech Connect

    Xu, Dongyan Ma, Hong; Cheng, Fei

    2014-05-01

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity.

  19. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-01-01

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase. PMID:25710843

  20. The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system.

    PubMed

    Tighe, Matthew; Lockwood, Peter V; Ashley, Paul M; Murison, Robert D; Wilson, Susan C

    2013-10-01

    The Macleay floodplain on the north coast of New South Wales, Australia, has surface soil concentrations of up to 40 mg kg(-1) arsenic (As) and antimony (Sb), due to historical mining practices in the upper catchment. The floodplain also contains areas of active and potential acid sulfate soils (ASS). Some of these areas are purposely re-flooded to halt oxidation processes, but the effect of this management on the metalloid mobility and phytoavailability of the metalloids present is unknown. This study investigated the changes to soil solution As and Sb, associations of metalloids with soil solid phases, and uptake into two common pasture species following 20 weeks of flooding in a controlled environment. The effect of an ASS subsoil was also investigated. The soil solution concentration and availability of the metalloids was in some instances higher in the floodplain soils than would generally be expected in soils with comparable contamination. There appeared to be few changes to soil solution concentrations or phase associations with flooding in this short term study, due to the high acid buffering and poise of the investigated soils. A strong relationship was found between the relative uptake of Sb into pastures and the oxalate extractable Fe in the soil, which was taken as a proxy for non-crystalline iron (Fe) hydroxides. This relationship was dependent on flooding and was absent for As. Further targeted investigations into metalloid speciation kinetics and the stability of soil solid phases with flooding management are recommended. PMID:23792257

  1. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  2. Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry.

    PubMed

    Hu, Xiaohong; Li, Dan; Zhou, Feng; Gao, Changyou

    2011-04-01

    In order to mimic the natural cartilage extracellular matrix, which is composed of core proteins and glycosaminoglycans, a biological hydrogel was synthesized from the biopolymers hyaluronic acid (HA), chondroitin sulfate (CS) and gelatin via click chemistry. HA and CS were modified with 11-azido-3,6,9-trioxaundecan-1-amine (AA) and gelatin was modified with propiolic acid (PA). The molecular structures were verified by (1)H nuclear magnetic resonance, infrared spectroscopy and elemental analysis, giving substitution degrees of 29%, 89% and 44% for HA-AA, CS-AA and gelatin-PA (G-PA), respectively. The -N(3) groups of HA-AA and CS-AA were reacted with the acetylene groups of G-PA, catalyzed by Cu(I), to form triazole rings, thereby forming a cross-linked hydrogel. The gelation time was decreased monotonically with increasing Cu(I) concentration up to 0.95 mg ml(-1). The hydrogel obtained was in a highly swollen state and showed the characteristics of an elastomer. Incubation in phosphate-buffered saline for 4 weeks resulted in a weight loss of up to 45%. Moreover, about 20% gelatin and 10% CS were released from the hydrogel in 2 weeks. In vitro cell culture showed that the hydrogel could support the adhesion and proliferation of chondrocytes. PMID:21145437

  3. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars

    PubMed Central

    Marcucci, Emma C; Hynek, Brian M

    2014-01-01

    We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1–60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals. PMID:26213665

  4. Evaluation of lead anode reactions in acid sulfate electrolytes. 1: Lead alloys with cobalt additives

    SciTech Connect

    Yu, P.; O`Keefe, T.J.

    1999-04-01

    Lead alloys, such as lead-calcium-tin and lead-silver, are the primary insoluble anodes used in the electrowinning of metals. While some difficulties are encountered in their use, there is no obvious replacement that is economically and technically competitive. Two of the specific problems with lead include decreased cathode purity due to incorporation from corrosion products and the relatively high overpotential which increases cell voltage. To gain an improved understanding of the fundamental behavior of lead anodes, the polarization behavior of six different alloys in sulfuric acid was evaluated. Some tests were also made with Co(II) in the acid sulfate electrolyte. Notable differences were found in the multiple activation-passivation cycles, stability, and relative activity for oxygen evolution for the alloys, and the relative trends in behavior were established. Electrochemical impedance spectroscopy studies were also conducted at selected potentials. Overall, the data show that the electrochemical response, particularly the degree of polarization for the oxygen evolution reaction, of the lead alloy anodes are dependent on the surface phases and structures present. The ability to depolarize the anode reaction using Co(II) was particularly sensitive to the lead composition.

  5. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma C.; Hynek, Brian M.

    2014-03-01

    We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1-60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals.

  6. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  7. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    PubMed

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other

  8. Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by LC-MS

    PubMed Central

    Zhang, Jian-Long; Kubanek, Julia; Hay, Mark E.; Aalbersberg, William; Ye, Wen-Cai; Jiang, Ren-Wang

    2011-01-01

    Tydemania expeditionis Weber-van Bosse (Udoteaceae) is a weakly calcified green alga. In the present paper, liquid chromatography coupled with photodiode array detection and electrospray mass spectrometry was developed to identify the fingerprint components. A total of four triterpenoid sulfates and three hydroxy fatty acids in the ethyl acetate fraction of the crude extract were structurally characterized on the basis of retention time, online UV spectrum and mass fragmentation pattern. Furthermore, detailed LC-MS analysis revealed two new hydroxy fatty acids, which were then prepared and characterized by extensive NMR analyses. The proposed method provides a scientific and technical platform for the rapid identification of triterpenoid sulfates and hydroxy fatty acids in similar marine algae and terrestrial plants. PMID:21915955

  9. Methylsulfonylmethane and boswellic acids versus glucosamine sulfate in the treatment of knee arthritis: Randomized trial.

    PubMed

    Notarnicola, Angela; Maccagnano, Giuseppe; Moretti, Lorenzo; Pesce, Vito; Tafuri, Silvio; Fiore, Alessandra; Moretti, Biagio

    2016-03-01

    Until now glucosamine sulfate (GS) has been the most widely used supplement and has been shown to be efficacious in the treatment of osteoarthritis (OA). Methylsulfonylmethane (MSM) and boswellic acids (BA) are new effective supplements for the management of inflammation and joint degeneration, according to previous experimental studies. The aim of our study is to test the effectiveness of association of MSM and BA in comparison with GS in knee arthritis.In this prospective randomized clinical trial, MEBAGA (Methylsulfonylmethane and Boswellic Acids versus Glucosamine sulfate in the treatment of knee Arthritis), 120 participants affected by arthritis of the knee were randomly assigned to an experimental group (MB group) or a control group (GS group) treated for 60 days with 5 g of MSM and 7.2 mg of BA or with 1500 mg of GS daily, respectively. At the 2-month (T1) and 6-months (T2) follow-up , the efficacy of these two nutraceuticals was assessed using the visual analog pain scale (VAS) and the Lequesne Index (LI) for joint function, along with the use of anti-inflammatory drugs (non-steroidal anti-inflammatory drugs and anti-cyclooxygenase-2).The repeated measures ANOVA analysis shows that for VAS, LI, and the use of anti-inflammatory drugs scores there are improvements due to the time in the two groups (respectively, F=26.0; P<0.0001; F=4.15; P=0.02; F=3.38; P=0.04), with a tendency to better values for the MB group at T2.On the basis of these preliminary data, we could support the efficacy of the MSM in association with BA in the treatment of OA. These results are consistent with the anti-inflammatory and chondroprotective effects previously occurred in experimental studies. This new combination of integration (MSM and BS) has presented good results and satisfactory in comparison with GS, until now the cornerstone of the treatment of arthritis in according to guidelines. PMID:26684635

  10. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Stream water pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southwast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site. 10 references, 2 tables.

  11. Comparative study between M. oleifera and aluminum sulfate for water treatment: case study Colombia.

    PubMed

    Salazar Gámez, Lorena L; Luna-delRisco, Mario; Cano, Roberto Efrain Salazar

    2015-10-01

    The world has a water deficit, mostly located in developing countries. For example, in Colombia, water deficit is a major concern and it increases in rural areas, where the rate of accessibility to drinking water is of 33.26% in 2005. Since the 1970s, the most used technology for water purification is the conventional physicochemical process. The most common coagulant used in this process is aluminum sulfate (alum). This study focuses on a comparison between Moringa oleifera seeds and alum for water treatment in different natural waters. Results showed that M. oleifera removed 90% turbidity and alum 96% from water samples from the tested natural brook. However, color removal for M. oleifera was 95 and 80.3% for alum. For water-polluted samples, both coagulants have shown high efficiency (100%) in color and turbidity removal. Usage of natural coagulants (i.e., M. oleifera) instead of chemical ones (i.e., alum) are more convenient in rural areas where the economic situation and accessibility of those products are key elements to maintain fresh water treatment standards. Additionally, results demonstrated that high dosages M. oleifera did not affect the optimal value in terms of color and turbidity removal. In rural and developing countries, this is important because it does not require a sophisticated dosing equipment. PMID:26437662

  12. Abundance and Speciation of Water and Sulfate at Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Clark, B. C.; Klingelhoefer, G.; Gellert, R.; Rodionov, D.; Schroeder, C.; deSouza, P.; Yen, A.

    2005-01-01

    A major science goal of the Mars Exploration Rover (MER) mission is to search for evidence of water activity, and direct mineralogical evidence for aqueous activity has been reported for Meridiani Planum in the form of the iron sulfate hydroxide mineral jarosite and at Gusev crater in the form of goethite. The Spirit and Opportunity rovers have each collected 110+ Moessbauer (MB) and 75+ Alpha Particle X-Ray Spectrometer (APXS) spectra from Gusev crater and Meridiani Planum [1 - 4]. In this abstract, we use mineralogical and elemental data, primarily from the Moessbauer and APXS instruments, to infer the speciation and estimate the abundance of sulfate and water (as either the H2O molecule or the hydroxyl anion) at Gusev crater and Meridiani Planum. Throughout the abstract, we adopt a format for mineral formulas that shows water explicitly rather than the usual practice of structure-based formulas (e.g., for goethite we write Fe2O3xH2O instead of FeOOH).

  13. Quaternary liquid/liquid equilibria of sodium sulfate, sodium sulfite and water with two solvents: Acetone and 2-propanol

    SciTech Connect

    Schiozer, A.L.

    1994-03-01

    Aqueous solutions of sodium sulfate and sodium sulfite are produced from sodium carbonate in flue-gas scrubbers; recovery of these salts often requires multi-effect evaporators; however, a new energy-efficient unit operation called extractive crystallization has been shown to have reduced energy costs. In this process, an organic solvent is added to the aqueous salt solution to precipitate salt. Acetone is a suitable solvent for this process, better than 2-propanol. Liquid/liquid/solid equilibria for ternary systems containing a salt, water, and an organic solvent were measured. Systems investigated were sodium sulfite/water/acetone and sodium sulfite/water/2-propanol. Experiments were conducted at salt saturation covering a temperature range between the lower consolute temperature and 48.6{degrees}C. In the attempt to improve the extractive crystallization process for recovery of sodium sulfate from flue-gas scrubbers, attention was given to a feed containing a mixture of sodium sulfite and sodium sulfate. Liquid-liquid equilibria for quaternary systems containing two salts, water, and an organic solvent were experimentally determined at 35{degrees}C. The systems investigated were sodium sulfate/sodium sulfite/water/acetone and sodium sulfate/sodium sulfite/water/2propanol. The systems were studied at three salt ratios. For each salt ratio, experiments were conducted starting at saturation, water was then added until the one-phase region was reached. Mixtures of the two salts proved to have a small disadvantage relative to the 100 % sulfate feed process. Therefore, a sulfate-based extractive crystallization process is recommended.

  14. Mapping of Acid Sulfate Soils in Finland: determining of areas of risks and compiling guidelines for environmental protection and safe land use

    NASA Astrophysics Data System (ADS)

    Kupila, Juho

    2013-04-01

    Acid sulfate soils (ASS), also referred to as the "nastiest soils in the world", are soils that contain or have contained metal sulfides that oxidize under aerobic conditions and, subsequently, typically produce very severe acidity and metal pollution. In Finland, for example, the discharge of several metals to water courses from ASS is greater than that from the entire Finnish industry, and due to the acidity these metals largely occur in a soluble toxic form. In Europe, the largest occurrences of acid sulfate soils are located in Finland. It has been estimated that coverage of these harmful soils is approximately 1000 - 1500 km2 along the coastal areas of Finland. Sulfide-bearing fine-grained sediments were deposited in the sea between Finland and Sweden after the melting of the latest continental ice sheet, about 10,000 years ago. In places, the formation of such sediments is still going on today. The rapid isostatic land uplift (more than 200 m after the latest glacial period, currently up to 8 mm/year) after the retreat of the continental ice sheet has lifted these sediments above sea level. In Finland, systematic mapping and classification of acid sulfate soils started in 2009 with Geological Survey of Finland (GTK) as the leading partner, together with Åbo Akademi University and University of Helsinki. The definition of a risk classification of Finnish acid sulfate soils has been developed during the project. The observations, measurements and analyses have been used to produce e.g. probability maps of integrated catchment areas (at the scale 1:250 000), reports of the areas and guides for the identification of ASS and their environments. The main users of the results have been authorities at governmental, regional and local levels, organizations and actors in agriculture and forestry, peat production and earthwork companies and consultants concerned with soil and construction. The mapping project carried out by GTK is still in process and should be

  15. Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids.

    PubMed

    Zhu, Jing-Fang; He, Ling; Zhang, Lei; Huang, Ming; Tao, Guo-Hong

    2012-01-12

    The experimental and theoretical enthalpies of formation of several structural-similar glycine-based sulfate/bisulfate amino acid ionic liquids including glycine sulfate (Gly(2)SO(4), 1), glycine bisulfate (GlyHSO(4), 2), N,N-dimethylglycine sulfate ([DMGly](2)SO(4), 3), N,N-dimethylglycine bisulfate ([DMGly]HSO(4), 4), N,N-dimethylglycine methyl ester sulfate ([DMGlyC(1)](2)SO(4), 5), N,N-dimethylglycine methyl ester bisulfate ([DMGlyC(1)]HSO(4), 6), N,N,N-trimethylglycine methyl ester sulfate ([TMGlyC(1)](2)SO(4), 7), and N,N,N-trimethylglycine methyl ester bisulfate ([TMGlyC(1)]HSO(4), 8) were studied. Their experimental enthalpies of formation were obtained from the corresponding energies of combustion determined by the bomb calorimetry method. The enthalpies of formation of these amino acid ionic liquids are in the range from -1406 kJ mol(-1) to -1128 kJ mol(-1). Systematic theoretical study on these amino acid ionic liquids were performed by quantum chemistry calculation using the Gaussian03 suite of programs. The geometric optimization and the frequency analyses are carried out using the B3LYP method with the 6-31+G** basis set. Their calculated enthalpies of formation were derived from the single point energies carried out with the HF/6-31+G**, B3LYP/6-31+G**, B3LYP/6-311++G**, and MP2/6-311++G** level of theory, respectively. The relevance of experimental and calculated enthalpies of formation was studied. The calculated enthalpies of formation are in good agreement with their experimental data in less than 3% error. PMID:22148242

  16. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    PubMed

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material. PMID:26549527

  17. A sulfated polysaccharide, fucoidan, enhances the immunomodulatory effects of lactic acid bacteria.

    PubMed

    Kawashima, Tadaomi; Murakami, Katsura; Nishimura, Ikuko; Nakano, Takahisa; Obata, Akio

    2012-03-01

    Fucoidan, a sulfated polysaccharide contained in brown algae, has a variety of immunomodulatory effects, including antitumor and antiviral effects. On the other hand, lactic acid bacteria (LAB) also have immunomodulatory effects such as anti-allergic effects. In this study, we demonstrated that fucoidan enhances the probiotic effects of LAB on immune functions. By using Peyer's patch cells and spleen cells in vitro, fucoidan amplified interferon (IFN)-γ production in response to a strain of LAB, Tetragenococcus halophilus KK221, and this activity was abolished by desulfation of fucoidan. Moreover, this IFN-γ response was abolished by interleukin (IL)-12 neutralization. These results indicate that fucoidan enhanced IL-12 production in response to KK221, resulting in promoting IFN-γ production. In an in vivo study, Th1/Th2 immunobalance was most improved by oral administration of both fucoidan and KK221 to ovalbumin-immunized mice. These findings suggest that fucoidan can enhance a variety of beneficial effects of LAB on immune functions. PMID:22160132

  18. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.

    PubMed

    Ni, Yilu; Tang, Zhurong; Cao, Wanxu; Lin, Hai; Fan, Yujiang; Guo, Likun; Zhang, Xingdong

    2015-03-01

    Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering. PMID:25445680

  19. Comparison of chondroitin sulfate and hyaluronic Acid doped conductive polypyrrole films for adipose stem cells.

    PubMed

    Björninen, Miina; Siljander, Aliisa; Pelto, Jani; Hyttinen, Jari; Kellomäki, Minna; Miettinen, Susanna; Seppänen, Riitta; Haimi, Suvi

    2014-09-01

    Polypyrrole (PPy) is a conductive polymer that has aroused interest due to its biocompatibility with several cell types and high tailorability as an electroconductive scaffold coating. This study compares the effect of hyaluronic acid (HA) and chondroitin sulfate (CS) doped PPy films on human adipose stem cells (hASCs) under electrical stimulation. The PPy films were synthetized electrochemically. The surface morphology of PPy-HA and PPy-CS was characterized by an atomic force microscope. A pulsed biphasic electric current (BEC) was applied via PPy films non-stimulated samples acting as controls. Viability, attachment, proliferation and osteogenic differentiation of hASCs were evaluated by live/dead staining, DNA content, Alkaline phosphatase activity and mineralization assays. Human ASCs grew as a homogenous cell sheet on PPy-CS surfaces, whereas on PPy-HA cells clustered into small spherical structures. PPy-CS supported hASC proliferation significantly better than PPy-HA at the 7 day time point. Both substrates equally triggered early osteogenic differentiation of hASCs, although mineralization was significantly induced on PPy-CS compared to PPy-HA under BEC. These differences may be due to different surface morphologies originating from the CS and HA dopants. Our results suggest that PPy-CS in particular is a potential osteogenic scaffold coating for bone tissue engineering. PMID:24823653

  20. Hydrated sulfates on Mars's surface: water cycle and S isotope tracking

    NASA Astrophysics Data System (ADS)

    Caracas, R.; Bobocioiu, E.

    2014-12-01

    We study a range of hydrated sulfate minerals from first-principles calculations based on density-functional and density-functional perturbation theory. We report the results extensively on the WURM website (http://wurm.info, Caracas and Bobcioiu, 2011). We find that hydration has a more pronounced effect on the spectroscopic properties than cation replacement. The Raman spectra of all phases present clear SO4 features that are easily identifiable. We use this to show one can use the vibrational spectroscopic information as an identification tool in a remote environment, like the Martian surface. Based on the computed vibrational results we analyze the S isotope partitioning. We observe that in general hydration favors enrichment in the lighter S isotope 32S with respect to the heavier 34S, which is accumulated in the less hydrous structures. Thus we show for the first time that the signature of 34S/32S partitioning could be observed by in situ spectroscopy on the surface of Mars. Finally we compute hydration energies. For example, in the hydrated magnesium sulfate series we find that epsomite and meridianiite with, respectively 7 and 11 water molecules per MgSO4 unit are particularly stable with respect to other individual or combinations of hydration states (Bobocioiu and Caracas, 2014). This can be related to the diurnal cycle of hydration and dehydration and hence it can improve the modeling of the water circulation on Mars. References: E. Bobocioiu, R. Caracas (2014) Stability and spectroscopy of Mg sulfate minerals. Role of hydration on sulfur isotope partitioning. Amer. Mineral., 99, 1216-1220. R. Caracas, E. Bobocioiu (2011) The WURM project - a freely available web-based repository of computed physical data for minerals. Amer. Mineral. 96, 437-444.

  1. Recovery of acids and sodium hydroxide from solutions of sodium sulfate and sodium chloride with the use of bipolar membranes

    SciTech Connect

    Bobrinskaya, G.A.; Pavlova, T.V.; Shatalov, A.Ya.

    1985-09-01

    The authors examined the kinetic laws governing the electrodialysis recovery of hydrochloric acid and sulfuric acid, as well as sodium hydroxide, from 1M sodium chloride and 0.5 M sodium sulfate solutions and from a mixture of these salts with the use of the MB-1, MB-2, and MB-3 bipolar membranes. Kinetic plots of the current density and the concentration of the acid and the base in the chambers next to the bipolar membranes during the electrodialysis treatment of 1M sodium chloride, 0.5 M sodium sulfate, and solutions are presented. It was established that it is better to use the MB-3 membrane for the electrodialysis conversion of sodium chloride and sodium sulfate into acids and sodium hydroxide owing to the high rate and current efficiency and low expenditure of electrical energy and degree of contamination of the products obtained by the salts. It was also established that the resistance of the MB-1 and MB-2 bipolar membranes is almost an order of magnitude higher than that of the MB-3 membrane.

  2. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine

    USGS Publications Warehouse

    Cravotta, C.A., III

    1998-01-01

    Data on rock, ground water, vadose water, and vadose gas chemistry were collected for two years after sewage sludge was applied at a reclaimed surface coal mine in Pennsylvania to determine if surface-applied sludge is an effective barrier to oxygen influx, contributes metals and nutrients to ground water, and promotes the acidification of ground water. Acidity, sulfate, and metals concentrations were elevated in the ground water (6- to 21-m depth) from spoil relative to unmined rock because of active oxidation of pyrite and dissolution of aluminosilicate, carbonate, and Mn-Fe-oxide minerals in the spoil. Concentrations of acidity, sulfate, metals (Fe, Mn, Al, Cd, Cu, Cr, Ni, Zn), and nitrate, and abundances of iron-oxidizing bacteria were elevated in the ground water from sludge-treated spoil relative to untreated spoil having a similar mineral composition; however, gaseous and dissolved oxygen concentrations did not differ between the treatments. Abundances of iron-oxidizing bacteria in the ground water samples were positively correlated with concentrations of ammonia, nitrate, acidity, metals, and sulfate. Concentrations of metals in vadose water samples (<5-m depth) from sludge-treated spoil (pH 5.9) were not elevated relative to untreated spoil (pH 4.4). In contrast, concentrations of nitrate were elevated in vadose water samples from sludge-treated spoil, frequently exceeding 10 mg/L. Downgradient decreases in nitrate to less than 3 mg/L and increases in sulfate concentrations in underlying ground water could result from oxidation of pyrite by nitrate. Thus, sewage sludge added to pyritic spoil can increase the growth of iron-oxidizing bacteria, the oxidation of pyrite, and the acidification of ground water. Nevertheless, the overall effects on ground water chemistry from the sludge were small and probably short-lived relative to the effects from mining only.

  3. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  4. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream-flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid-forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Streamwater pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by calcium, magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southeast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site.

  5. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators. PMID:27423469

  6. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Valdemarsen, Thomas; Kristensen, Erik

    2010-03-01

    The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA's), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO 42-. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA's, amino acids) and inorganic (CO 2, NH 4+, SO 42-) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO 2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ˜1/3 of the aromatic amino acid (tyrosine) was recovered as CO 2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO 2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA's (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO 42- markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO 2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO 2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H 2 production, and >50% of sulfate reduction appeared to be fuelled by H 2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.

  7. Trapping of Sodium Dodecyl Sulfate at the Air-Water Interface of Oscillating Bubbles.

    PubMed

    Corti, Mario; Pannuzzo, Martina; Raudino, Antonio

    2015-06-16

    We report that at very low initial bulk concentrations, a couple of hundred times below the critical micellar concentration (CMC), anionic surfactant sodium dodecyl sulfate (SDS) adsorbed at the air-water interface of a gas bubble cannot be removed, on the time scale of the experiment (hours), when the surrounding solution is gently replaced by pure water. Extremely sensitive interferometric measurements of the resonance frequency of the bubble-forced oscillations give precise access to the concentration of the surfactant monolayer. The bulk-interface dynamic exchange of SDS molecules is shown to be inhibited below a concentration which we believe refers to a kind of gas-liquid phase transition of the surface monolayer. Above this threshold we recover the expected concentration-dependent desorption. The experimental observations are interpreted within simple energetic considerations supported by molecular dynamics (MD) calculations. PMID:26039913

  8. Undersulfation of cartilage proteoglycans ex vivo and increased contribution of amino acid sulfur to sulfation in vitro in McAlister dysplasia/atelosteogenesis type 2.

    PubMed

    Rossi, A; Bonaventure, J; Delezoide, A L; Superti-Furga, A; Cetta, G

    1997-09-15

    Mutations in the diastrophic dysplasia sulfate transporter gene cause a family of chondrodysplasias including, in order of increasing severity, diastrophic dysplasia, atelosteogenesis type 2 and achondrogenesis type 1B. McAlister dysplasia is a lethal chondrodysplasia considered on the basis of minor radiographic features to be a disorder different from atelosteogenesis type 2. Here, we demonstrate that McAlister dysplasia arises from mutations in the diastrophic dysplasia sulfate transporter gene and that this disorder essentially coincides on molecular and biochemical grounds with atelosteogenesis type 2. The fetus affected by McAlister dysplasia we have studied is a compound heterozygote for mutations leading to R279W and N425D substitutions in the diastrophic dysplasia sulfate transporter. Proteoglycan sulfation was studied in epiphyseal cartilage and in chondrocyte cultures of the patient by high performance liquid chromatography of chondrotinase digested proteoglycans; a high amount of non-sulfated disaccharide was observed as a consequence of the alteration of the transporter function caused by the mutations. However, sulfated disaccharides were detectable even if in low amounts, both in cultured cells and tissue. Functional impairment of the sulfate transporter was demonstrated in vitro by reduced incorporation of [35S]sulfate relative to [3H]glucosamine in proteoglycans synthesized by chondrocytes and by sulfate-uptake assays in fibroblasts. Parallel in vitro studies in a patient with achondrogenesis 1B indicated that the severity of the clinical phenotype seems to be correlated to the residual activity of the sulfate transporter. The capacity of fibroblasts to use cysteine as an alternative source of sulfate was evaluated by double-labeling experiments. Relative incorporation of [35S]cysteine-derived sulfate in the glycosaminoglycan chains was increased in the patient's cells, indicating that, in vitro, the catabolism of sulfur-containing amino acids can

  9. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    NASA Astrophysics Data System (ADS)

    Bao, Huiming; Reheis, Marith C.

    2003-07-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (δ34S and δ18O) are 5.8 ± 1.4 (CDT) and 11.2 ± 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (Δ17O), with an average value of 1.0 ± 0.6‰. Except for a weak positive correlation between δ18O and Δ17O values (r2 ≈ 0.4), no correlation exists for δ18O versus δ34S, Δ17O versus δ34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive Δ17O values (up to 4.23‰) are found in samples from sites in the vicinity of large cities or major highways, and near-zero Δ17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ˜4.8‰ lower for δ18O, ˜2.1‰ higher for δ34S, and ˜0.3‰ lower for Δ17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  10. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    USGS Publications Warehouse

    Bao, H.; Reheis, M.C.

    2003-01-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (??34S and ??18O) are 5.8 ?? 1.4 (CDT) and 11.2 ?? 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (?? 17O), with an average value of 1.0 ?? 0.6???. Except for a weak positive correlation between ??18O and ??17O values (r2 ??? 0.4), no correlation exists for ??18O versus ??34S, ?? 17O versus ??34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive ?? 17O values (up to 4.23???) are found in samples from sites in the vicinity of large cities or major highways, and near-zero ?? 17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ???4.8??? lower for ??18O, ???2.1??? higher for ??34S , and ???0.3??? lower for ?? 17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  11. ACIDIC DEPOSITION AND CISTERN DRINKING WATER SUPPLIES

    EPA Science Inventory

    The Water quality charecteristics, including the trace element Cd, cu, Pb, and Zn, in rainwater cistern supplies representing an area receiving acidic deposition were compared to cistern water chemistry in a control area that does not receive a significant input of acidic deposit...

  12. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  13. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes

    USGS Publications Warehouse

    McKenzie, W.F.; Truesdell, A.H.

    1977-01-01

    The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above ca. 140??C and that little re-equilibration occurs during ascent to the surface. The geothermometer is, however, affected by changes in ??18O of water due to subsurface boiling and dilution and by addition of sulfate of nearsurface origin. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures of 360, 240, and 142??C, respectively. ?? 1976.

  14. Immobilizing Water into Crystal Lattice of Calcium Sulfate for its Separation from Water-in-Oil Emulsion.

    PubMed

    Jiang, Guangming; Li, Junxi; Nie, Yunliang; Zhang, Sen; Dong, Fan; Guan, Baohong; Lv, Xiaoshu

    2016-07-19

    This work report a facile approach to efficiently separate surfactant-stabilized water (droplet diameter of around 2.0 μm) from water-in-oil emulsion via converting liquid water into solid crystal water followed by removal with centrifugation. The liquid-solid conversion is achieved through the solid-to-solid phase transition of calcium sulfate hemihydrate (CaSO4. 0.5H2O, HH) to dihydrate (CaSO4·2H2O, DH), which could immobilize the water into crystal lattice of DH. For emulsion of 10 mg mL(-1) water, the immobilization-separation process using polycrystalline HH nanoellipsoids could remove 95.87 wt % water at room temperature. The separation efficiency can be further improved to 99.85 wt % by optimizing the HH dosage, temperature, HH size and crystalline structure. Property examination of the recycled oil confirms that our method has neglectable side-effect on oil quality. The byproduct DH was recycled to alpha-HH (a valuable cemetitious material widely used in construction and binding field), which minimizes the risk of secondary pollution and promotes the practicality of our method. With the high separation efficiency, the "green" feature and the recyclability of DH byproduct, the HH-based immobilization-separation approach is highly promising in purifying oil with undesired water contamination. PMID:27322639

  15. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  16. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  17. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis.

    PubMed

    Trivedi, P P; Jena, G B

    2013-09-01

    Ulcerative colitis affects many people worldwide. Inflammation and oxidative stress play a vital role in its pathogenesis. Previously, we reported that ulcerative colitis leads to systemic genotoxicity in mice. The present study was aimed at elucidating the role of α-lipoic acid in ulcerative colitis-associated local and systemic damage in mice. Experimental colitis was induced using 3%w/v dextran sulfate sodium in drinking water for 2 cycles. α-Lipoic acid was administered in a co-treatment (20, 40, 80 mg/kg bw) and post-treatment (80 mg/kg bw) schedule. Various biochemical parameters, histological evaluation, comet and micronucleus assays, immunohistochemistry and western blot analysis were employed to evaluate the effect of α-lipoic acid in mice with ulcerative colitis. The protective effect of α-lipoic acid was mediated through the modulation of nuclear factor kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, NADPH: quinone oxidoreductase-1, matrix metalloproteinase-9 and connective tissue growth factor. Further, ulcerative colitis led to an increased gut permeability, plasma lipopolysaccharide level, systemic inflammation and genotoxicity in mice, which was reduced with α-lipoic acid treatment. The present study identifies the underlying mechanisms involved in α-lipoic acid-mediated protection against ulcerative colitis and the associated systemic damage in mice. PMID:23793040

  18. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  19. Sulfate Reducing Bacteria and Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water Distribution System.

    PubMed

    Gomez-Smith, C Kimloi; LaPara, Timothy M; Hozalski, Raymond M

    2015-07-21

    The quantity and composition of bacterial biofilms growing on 10 water mains from a full-scale chloraminated water distribution system were analyzed using real-time PCR targeting the 16S rRNA gene and next-generation, high-throughput Illumina sequencing. Water mains with corrosion tubercles supported the greatest amount of bacterial biomass (n = 25; geometric mean = 2.5 × 10(7) copies cm(-2)), which was significantly higher (P = 0.04) than cement-lined cast-iron mains (n = 6; geometric mean = 2.0 × 10(6) copies cm(-2)). Despite spatial variation of community composition and bacterial abundance in water main biofilms, the communities on the interior main surfaces were surprisingly similar, containing a core group of operational taxonomic units (OTUs) assigned to only 17 different genera. Bacteria from the genus Mycobacterium dominated all communities at the main wall-bulk water interface (25-78% of the community), regardless of main age, estimated water age, main material, and the presence of corrosion products. Further sequencing of the mycobacterial heat shock protein gene (hsp65) provided species-level taxonomic resolution of mycobacteria. The two dominant Mycobacteria present, M. frederiksbergense (arithmetic mean = 85.7% of hsp65 sequences) and M. aurum (arithmetic mean = 6.5% of hsp65 sequences), are generally considered to be nonpathogenic. Two opportunistic pathogens, however, were detected at low numbers: M. hemophilum (arithmetic mean = 1.5% of hsp65 sequences) and M. abscessus (arithmetic mean = 0.006% of hsp65 sequences). Sulfate-reducing bacteria from the genus Desulfovibrio, which have been implicated in microbially influenced corrosion, dominated all communities located underneath corrosion tubercules (arithmetic mean = 67.5% of the community). This research provides novel insights into the quantity and composition of biofilms in full-scale drinking water distribution systems, which is critical for assessing the risks to public health and to the

  20. The Hydrothermal System at Home Plate in Gusev Crater, Mars: Formation of High Silica Material by Acid-Sulfate Alteration of Basalt

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.

    2008-01-01

    The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.

  1. Effect of pH, DIC, orthophosphate and sulfate on drinking water cuprosolvency

    SciTech Connect

    Schock, M.R.; Lytle, D.A.; Clement, J.A.

    1995-06-01

    Field data from various copper monitoring studies and Lead and Copper Rule compliance data are often inappropriate and misleading for reliably determining fundamental chemical relationships behind copper corrosion control. A comprehensive solubility model for copper in drinking water has been developed, that is consistent with available data for copper dissolution and precipitation. The concentration of Cu(I) is dominated by Cu2O(s) or CuOH(s) solid phases, plus soluble aqueous ammonia and chloride complexes. Utilities may choose to add DIC for buffering of pH, raising copper to some degree. Sufficient orthophosphate may reduce cuprosolvency below pH 8. Sulfate may either lower cuprosolvency under some conditions, or interfere with oxide/hydroxide passivation above about pH 8. Dissolved oxygen and chlorine residual influence copper stagnation profiles.

  2. Determination of the δ34S of sulfate in water; RSIL lab code 1951

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1951 is to determine the δ(34S/32S), abbreviated as δ34S, of dissolved sulfate. Dissolved sulfate is collected in the field and precipitated with BaCl2 at pH 3 to 4 as BaSO4 in the laboratory. However, the dissolved organic sulfur (DOS) is oxidized to SO2, and the carbonate is acidified to CO2. Both are degassed from the water sample before the sulfate is precipitated. The precipitated BaSO4 is filtered and dried before introduction into an elemental analyzer (EA) Carlo Erba NC 2500. The EA is used to convert sulfur in a BaSO4 solid sample into SO2 gas, and the EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines the differences in the isotope-amount ratios of stable sulfur isotopes (34S/32S) of the product SO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated tube reaction tube that combines the oxidation and reduction reactions. The combustion takes place in a helium atmosphere containing an excess of oxygen gas at the oxidation zone at the top of the reaction tube. Combustion products are transported by a helium carrier through the reduction zone at the bottom of the reaction tube to remove excess oxygen and through a separate drying tube to remove any water. The gas-phase products, mainly CO2, N2, and SO2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject SO2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector with two wide cups and a narrow cup in the middle. It is capable of measuring mass/charge (m/z) 64 and 66 simultaneously

  3. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceburg lettuce during storage in modified atmosphere package

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies showed that levulinic acid (LA) and sodium acid sulfate (SAS) were effective in inactivating human pathogens on fresh produce. The present study investigated the effects of LA and SAS in comparison with citric acid and chlorine on the inactivation of E. coli O157:H7 and the sensory qu...

  4. Self-assembled nanoparticles based on chondroitin sulfate-deoxycholic acid conjugates for docetaxel delivery: Effect of degree of substitution of deoxycholic acid.

    PubMed

    Liu, Mengrui; Du, Hongliang; Zhai, Guangxi

    2016-10-01

    Hydrophobically-modified polymers based on chondroitin sulfate with different degree of substitution (DS) of deoxycholic acid (DOCA) were developed for docetaxel delivery. Chondroitin sulfate-deoxycholic acid (CSAD) bioconjugates were synthesized via the linker of adipic dihydrazide by amide bond. They were characterized with spherical shape, mean diameter of around 165.2nm and negative zeta potential (-14.87 to -20.53mV). An increase of DOCA DS reduced size of nanoparticles, while increasing drug loading efficiency. Drug release in vitro showed a triphasic sustained pattern and higher accumulative drug release percentage was observed with increased DS of DOCA on polymer. Self-assemblies with higher DS also had enhanced internalization of nanoparticles and stronger cytotoxicity at the cellular level. The self-assemble nanoparticles demonstrate to be excellent targeting drug delivery systems and the desired therapeutics can be achieved via the alteration of DS. PMID:27343846

  5. Incorporation of stratospheric acids into water ice

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1990-01-01

    Hydrochloric and hydrofluoric acids are absorbed within the water ice lattice at mole fractions maximizing below 0.00001 and 0.0001 in a variety of solid impurity studies. The absorption mechanism may be substitutional or interstitial, leading in either case to a weak permeation of stratospheric ices by the acids at equilibrium. Impurities could also inhabit grain boundaries, and the acid content of atmospheric ice crystals will then depend on details of their surface and internal microstructures. Limited evidence indicates similar properties for the absorption of HNO3. Water ice lattices saturated with acid cannot be a significant local reservoir for HCl in the polar stratosphere.

  6. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer in parts of Marion, Sumter, and Citrus counties, Florida

    USGS Publications Warehouse

    Sacks, Laura A.

    1996-01-01

    In inland areas of northwest central Florida, sulfate concentrations in the Upper Floridan aquifer are extremely variable and sometimes exceed drinking water standards (250 milligrams per liter). This is unusual because the aquifer is unconfined and near the surface, allowing for active recharge. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated in this area. Water was sampled from thirty-three wells in parts of Marion, Sumter, and Citrus Counties, within the Southwest Florida Water Management District; these included at least a shallow and a deep well at fifteen separate locations. Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (sulfur-34 of sulfate and sulfide, carbon-13 of inorganic carbon, deuterium, and oxygen-18). Sulfate concentrations ranged from less than 0.2 to 1,400 milligrams per liter, with higher sulfate concentrations usually in water from deeper wells. The samples can be categorized into a low sulfate group (less than 30 milligrams per liter) and a high sulfate group (greater than 30 milligrams per liter). For the high sulfate water, concentrations of calcium and magnesium increased concurrently with sulfate. Chemical and isotopic data and mass-balance modeling indicate that the composition of high sulfate waters is controlled by dedolomitization reactions (dolomite dissolution and calcite precipitation, driven by dissolution of gypsum). Gypsum occurs deeper in the aquifer than open intervals of sampled wells. Upward flow has been documented in deeper parts of the aquifer in the study area, which may be driven by localized discharge areas or rapid flow in shallow parts of the aquifer. Mixing between shallow ground water and sulfate-rich water that dissolved gypsum at the base of the aquifer is probably responsible for the range of concentrations observed in the study area. Other solutes that increased with sulfate apparently

  7. Abundance and diversity of sulfate-reducing bacteria in the sediment of the Zhou Cun drinking water reservoir in Eastern China.

    PubMed

    Yang, X; Huang, T L; Guo, L; Xia, C; Zhang, H H; Zhou, S L

    2015-01-01

    Sulfate-reducing bacteria (SRB) play an important role in the sediments of bay areas, estuaries, and lakes. However, information regarding the genetic diversity of SRB in the sediments of drinking water reservoirs is scarce. In this study, we collected sediment samples from different sites in the Zhou Cun drinking water reservoir between April and June 2012. To explore the genetic diversity of SRB, we used the most-probable-number (MPN) method, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), and a cloning approach. The average content of acid-volatile sulfide at the deepest sampling site was 205.87 μg/g sediment. This result is often associated with a large abundance of SRB in the associated sediment. The highest MPN estimate (1.15 x 10(5) cells/g sediment) was detected in May at the deepest sampling site. The PCR-DGGE fingerprints of SRB based on the dissimilatory sulfite reductase beta subunit (dsrB) gene varied according to the different sampling sites and dates. The highest abundance of SRB in the sediments was predominantly found at the deepest sampling sites, as expected from the acid-volatile sulfide content. The dominant species were Desulfobulbus sp, Desulfobacterium sp, and uncultured sulfate-reducing bacteria. Redundancy analysis revealed that organic matter and the concentrations of nitrogen and phosphorus in the sediments were significantly correlated with the diversity of SRB communities present. The results of this study provide a better understanding of the sulfate-reducing microbial species in the sediments of the Zhou Cun drinking water reservoir. PMID:26125782

  8. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings.

    PubMed

    Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Brad; Belk, Keith E

    2015-11-01

    Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings. PMID:26555519

  9. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    PubMed

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area. PMID:22358115

  10. Effect of hydrolysis conditions on hydrous TiO2 polymorphs precipitated from a titanyl sulfate and sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Song, Hao; Liang, Bin; Lü, Li; Wu, Pan; Li, Chun

    2012-07-01

    The relationship between hydrolysis conditions and hydrous titania polymorphs obtained in a titanyl sulfate and sulfuric acid solution was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The results revealed that the feeding rate of the titanyl sulfate stock solution, the concentration of sulfuric acid, and the seed dosage of rutile crystal could significantly affect the hydrolysis rate, thus influencing the titania crystal phase. Hydrous TiO2 in the form of rutile, anatase, or the mixture of both could be obtained in solutions of low titanium concentrations and 2.5wt% to 15wt% sulfuric acid at 100°C. When the hydrolysis rate of titanium expressed by TiO2 was more than or equal to 0.04 g/(L·min), the hydrolysate was almost phase-pure anatase, while the main phase state was rutile when the hydrolysis rate was less than or equal to 0.01 g/(L·min). With the hydrolysis rate between 0.02 and 0.03 g/(L·min), the hydrolysate contained almost equal magnitude of rutile and anatase. It seems that although rutile phase is thermodynamically stable in very acidic solutions, anatase is a kinetically stable phase.

  11. STABILITY OF CEFPIROME SULFATE IN AQUEOUS SOLUTIONS.

    PubMed

    Zalewski, Przemysław; Jelińska, Anna; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Stfpniak, Piotr; Cielecka-Piontek, Judyta

    2016-01-01

    The influence of pH on the stability of cefpirome sulfate was investigated in the pH range of 0.44 - 13.00. The degradation of cefpirome sulfate as a result of hydrolysis was a pseudo-first-order reaction. General acid-base hydrolysis of cefpirome sulfate was not observed. In the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffer, k(obs) = k(pH) because specific acid-base catalysis was observed. Specific acid-base catalysis of cefpirome sulfate consisted of the following reactions: hydrolysis of cefpirome sulfate catalyzed by hydrogen ions (kH+), hydrolysis of dications (k₁H₂O) monocations (k₂ H₂O), zwitter ions (k₃H₂O) and monoanions (k₄ H₂O) of cefpirome sulfate under the influence of water. The total rate of the reaction was equal to the sum of partial reactions k(pH) = kH+ x aH+ + kH₂O x f₁ + k₂H₂O x f₂ + k₃H₂O x f₃ + k₄ H₂O x f₄. Based on the dependence k(pH) = f(pH) it was found that cefpirome sulfate was the most stable in aqueous solutions in the pH range of 4-6. PMID:27008797

  12. Prediction of diffuse sulfate emissions from a former mining district and associated groundwater discharges to surface waters

    NASA Astrophysics Data System (ADS)

    Graupner, Bastian J.; Koch, Christian; Prommer, Henning

    2014-05-01

    Rivers draining mining districts are often affected by the diffuse input of polluted groundwaters. The severity and longevity of the impact depends on a wide range of factors such as the source terms, the hydraulic regime, the distance between pollutant sources and discharge points and the dilution by discharge from upstream river reaches. In this study a deterministic multi-mine life-cycle model was developed. It is used to characterize pollutant sources and to quantify the resulting current and future effects on both groundwater and river water quality. Thereby sulfate acts as proxy for mining-related impacts. The model application to the Lausitz mining district (Germany) shows that the most important factors controlling concentrations and discharge of sulfate are mixing/dilution with ambient groundwater and the rates of biological sulfate reduction during subsurface transport. In contrast, future impacts originating from the unsaturated zones of the mining dumps showed to be of little importance due to the high age of the mining dumps and the associated depletion in reactive iron-sulfides. The simulations indicate that currently the groundwater borne diffuse input of sulfate into the rivers Kleine Spree and Spree is ∼2200 t/years. Our predictions suggest a future increase to ∼11,000 t/years within the next 40 years. Depending on river discharge rates this represents an increase in sulfate concentration of 40-300 mg/L. A trend reversal for the surface water discharge is not expected before 2050.

  13. "Sour gas" hydrothermal jarosite: Ancient to modern acid-sulfate mineralization in the southern Rio Grande Rift

    USGS Publications Warehouse

    Lueth, V.W.; Rye, R.O.; Peters, L.

    2005-01-01

    deeply circulating meteoric water. Jarosite ??34S values range from -24??? to 5???, overlapping the values for barite and gypsum at the high end of the range and for sulfides at the low end. Most ??34S values for barite are 10.6??? to 13.1???, and many ??34S values for gypsum range from 13.1??? to 13.9??? indicating that a component of aqueous sulfate was derived from Permian evaporites (??34 S=12??2???). The requisite H2SO4 for jarosite formation was derived from oxidation of H2S which was likely largely sour gas derived from the thermochemical reduction of Permian sulfate. The low ??34S values for the precursor H2S probably resulted from exchange deeper in the basin with the more abundant Permian SO42- at ???150 to 200 ??C. Jarosite formed at shallow levels after the pH buffering capacity of the host rock (typically limestone) was neutralized by precipitation of earlier minerals. Some limestone-hosted deposits contain caves that may have been caused by the low pH of the deep basin fluids due to the addition of deep-seated HF and other magmatic gases during periods of renewed rifting. Caves in other deposits may be due to sulfuric acid speleogenesis as a result of H2S incursion into oxygenated groundwaters. The isotopic data in these "sour gas" jarosite occurrences encode a record of episodic tectonic or hydrologic processes that have operated in the rift over the last 10 my. ?? 2004 Elsevier B.V. All rights reserved.

  14. Acidity of Strong Acids in Water and Dimethyl Sulfoxide.

    PubMed

    Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A; Leito, Ivo

    2016-05-26

    Careful analysis and comparison of the available acidity data of HCl, HBr, HI, HClO4, and CF3SO3H in water, dimethyl sulfoxide (DMSO), and gas-phase has been carried out. The data include experimental and computational pKa and gas-phase acidity data from the literature, as well as high-level computations using different approaches (including the W1 theory) carried out in this work. As a result of the analysis, for every acid in every medium, a recommended acidity value is presented. In some cases, the currently accepted pKa values were revised by more than 10 orders of magnitude. PMID:27115918

  15. Acid-rain related reconnaissance of water, rock, soil, and sediment chemistry in the Adirondacks during Fall, 1981

    SciTech Connect

    Not Available

    1981-01-01

    This study suggests strongly that inorganic chemical processes, with sulfate and nitrate input from atmospheric deposition and the absence of buffering from carbonate rock, cannot simply account for either the pH or the aluminum concentrations observed in Adirondack surface waters. Instead, organic acids originating from water flow through organic soil layers and wetlands are indicated as possible causes of increased acidity and aluminum concentrations. There are also indications that sulfides in bedrock and the sulfur utilized by vegetation may be important surface-water sulfate sources. Further, in part of the Adirondacks, weathering of calcium-containing non-carbonate aluminosilicate bedrock apparently keeps surface water from reaching ''critical'' acidity levels. Also, appreciable concentrations of heavy metals and persistent insecticides associated with the organic material in some soils and sediments. If mobilized into the food chain, these materials could be causing adverse ecological effects usually attributed to acid precipitation. Recommendations are included for further studies. 13 figs., 29 tabs. (PSB)

  16. Effects of Long-Term Acid-Mine Drainage Contamination on Diversity and Activity of Sulfate-Reducing Bacteria in a Natural Salt Marsh.

    NASA Astrophysics Data System (ADS)

    Moreau, J. W.; Banfield, J. F.

    2003-12-01

    Constructed wetlands have been studied as sites or analogs for in situ bioremediation of metal contaminants from acid mine drainage (AMD) or industrial sources (e.g. Webb et al. 1998). Wetlands bioremediation necessarily invokes the ubiquity and robustness of sulfate-reducing bacteria (SRB) to sequester dissolved metals into various poorly soluble metal-sulfides (e.g. PbS, CdS). However, few studies of natural wetlands under long-term ecological forcing by AMD or other contaminant sources are available for context. We are investigating the microbial diversity, mineralogy and geochemistry of a highly contaminated salt marsh along the East Central San Francisco Bay. For nearly a half-century, areas within this marsh have received acidic and/or metal-rich groundwaters from near-surface pyrite tailings (transported there from Iron Mountain Mine, near Redding, CA) and local industrial sources (e.g. paint and explosives manufacturers). Sediment cores (30-40 cm long) were taken from six contaminated sites in the marsh with pH range of ˜2 to ˜8. Previous analyses (URS Corp. 2001) reported As, Cd, Cu, Se, Zn, and Pb present in sediments at extremely high concentrations (100s of ppm), yet our ICP-AES analyses of pore waters showed only As present at concentrations of 10-50 ppb. We infer, from high-resolution transmission electron microscope (HRTEM) studies of biogenic (SRB biofilm) ZnS (Moreau et al. 2003, in review) and marsh sediments, that contaminant metals have been sequestered into aggregates of nanocrystalline metal-sulfides. Continuous-flow isotope ratio mass spectrometer (CF-IRMS) analyses of pore-water sulfate and sedimentary sulfides allow resolution of contributions to dissolved sulfate and sulfide from tailings oxidation and dissimilatory sulfate reduction. Sulfate analyses from subsections of three cores (pH 2-3, 6-7, 7-8, respectively) all yield δ 34S values consistent with bacterial sulfate reduction. We note that all three cores also contain very fine

  17. Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters

    PubMed Central

    Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

    1992-01-01

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

  18. Optimizing copper sulfate treatments for fungus control on channel catfish eggs in high alkalinity/moderate hardness water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of copper sulfate (CuSO4) for fungus (Saprolegnia sp.) control in catfish hatcheries has developed over the past few years. A range-finding study was designed to determine the optimum concentration needed for fungus control on channel catfish eggs in 23.5°C well water at the Stu...

  19. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  20. Processes controlling the seasonal and spatial variations in sulfate profiles in the pore water of the sediments surrounding Qi'ao Island, Pearl River Estuary, Southern China

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Zhou, Huaiyang; Ren, Dezhang; Gao, Hang; Li, Jiangtao

    2015-04-01

    Marine sediments are the main sink for seawater sulfate and bacterial sulfate reduction is a major component of the global sulfur cycle. Nevertheless, the factors controlling sulfate reduction in the coastal estuary sediments that undergo spatial and temporal variations are still not fully understood. In this study, we measured the concentrations of SO42-, Cl-, CH4, and DIC, and the δ13C of DIC in the pore water of five sampling stations surrounding the Qi'ao Island, Pearl River Estuary, Southern China during the dry season in November 2011 and during the wet season in May 2012. The results showed that the dilution-mixing of the Pearl River with low-concentration sulfate significantly affects the downcore profiles of the sulfate concentrations in the pore water of these estuary sediments. During the wet season, the dilution-mixing of the layers from the top of the sediments to a depth of 14-18 cm occurred at the different sampling stations. In this layer, the sulfate reduction is not appreciable based on the plot of the pore water Cl- and SO42-. Below the dilution-mixing layers, however, sulfate reduction that is driven by the anaerobic oxidation of methane (AOM) occurs. In our comparison, it appeared that the AOM played more important role in the consumption of the pore water sulfate in May 2012 than in November 2011. Meanwhile, we observed a relatively good correlation (r2=0.64) between the depth of the sulfate-methane interface (SMI) and the sulfate concentration in the pore water of the top sediments in dry season, indicating that the pore water sulfate concentration appears to be a primary controlling factor for the depth of the SMI in this estuary. These results highlight the need for an integrated analysis of the hydrologically driven the variations in the sulfate profiles to improve our understanding of the biogeochemical cycling of C, Fe and S and their budgets in estuarine environments.

  1. Negative pH and extremely acidic mine waters from Iron Mountain, California

    USGS Publications Warehouse

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-01

    Extremely acidic mine waters with pH values as low as -3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as -4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  2. The 2-D Ion Chromatography Development and Application: Determination of Sulfate in Formation Water at Pre-Salt Region

    NASA Astrophysics Data System (ADS)

    Tonietto, G. B.; Godoy, J. M.; Almeida, A. C.; Mendes, D.; Soluri, D.; Leite, R. S.; Chalom, M. Y.

    2015-12-01

    Formation water is the naturally-occurring water which is contained within the geological formation itself. The quantity and quality of the formation water can both be problematic. Over time, the water volume should decrease as the gas volumes increase. Formation water has been found to contain high levels of Cl, As, Fe, Ba, Mn, PAHs and may even contain naturally occurring radioactive materials. Chlorides in some cases have been found to be in excess of four-five times the level of concentrations found in the ocean. Within the management of well operation, there is sulfate between the analytes of greatest importance due to the potential for hydrogen sulphide formation and consequent corrosion of pipelines. As the concentration of sulfate in these waters can be less than n times that of chloride, a quantitative determination, using the technique of ion chromatography, constitutes an analytical challenge. This work aimed to develop and validate a method for the determination of sulphate ions in hyper-saline waters coming from the oil wells of the pre-salt, using 2D IC. In 2D IC the first column can be understood as a separating column, in which the species with retention times outside a preset range are discarded, while those belonging to this range are retained in a pre-concentrator column to further injecting a second column, the second dimension in which occurs the separation and quantification of the analytes of interest. As the chloride ions have a retention time lower than that of sulfate, a method was developed a for determining sulfate in very low range (mg L-1) by 2D IC, applicable to hypersaline waters, wherein the first dimension is used to the elimination of the matrix, ie, chloride ions, and the second dimension utilized in determining sulfate. For sulphate in a concentration range from 1.00 mg L-1 was obtained an accuracy of 1.0%. The accuracy of the method was tested by the standard addition method different samples of formation water in the pre

  3. Simulation of acid water movement in canals

    NASA Astrophysics Data System (ADS)

    Van Truong, To; Tat Dac, Nguyen; Ngoc Phienc, Huynh

    1996-05-01

    An attempt to tackle the problem of the propagation of acid water in canals is described, and a mathematical model to simulate the acid water movement is developed, in which the jurbanite equilibrium is found to prevail. The processes of settling owing to sedimentation, precipitation and redissolution have been considered in the modelling. Data available from Tan Thanh, in the Plain of Reeds of the Mekong Delta in Viet Nam, are used as a case study.

  4. Prevention of acid drainage from stored coal. [Inhibition of bacterial action by treatment with a solution of sodium lauryl sulfate

    SciTech Connect

    Olem, H.; Bell, T.L.; Longaker, J.J.

    1983-06-01

    A method has been identified for controlling acid production and subsequent dissolution of toxic pollutants in drainage from coal storage piles. Results of laboratory and field experiments indicate that it may be possible to prevent, rather than treat, acid drainage by periodically applying an environmentally safe detergent formulation to the coal. These experiments showed that a mild solution of sodium lauryl sulfate (SLS) effectively blocks the activity of the bacteria that promote acid formation and chemical leaching. Drainage from coal treated once with 50 mg/L of SLS remained neutral for 60 days, about three times longer than the untreated control sample. An extrapolation of results to an industrial-scale application revealed that the cost of the SLS needed for a single application would likely be no more than $200 per acre of coal storage area ($500 per hectare ) or, expressed per unit weight of coal, $4,000 per million metric tons.

  5. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  6. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    EPA Science Inventory

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  7. Mapping Acid Sulfate Alteration of Basaltic Andesite with Thermal Infrared Data

    NASA Technical Reports Server (NTRS)

    Vaughan, R. G.; Calvin, W. M.; Hook, S. J.; Taranik, J. V.

    2002-01-01

    Airborne thermal infrared multi- and hyperspectral data sets are used to map sulfate alteration of basaltic andesites near Reno, NV. Alteration includes quartz-alunite, jarosite and a number of clay minerals such as kaolinite and montmorillonite. Additional information is contained in the original extended abstract.

  8. Sodium sulfate from mine-effluent water as a raw material for the glass industry

    SciTech Connect

    Maksin, V.I.; Klyuchnik, I.A.; Krauchenko, L.D.; Standritchuk, O.Z.; Zolotareva, R.S.

    1985-09-01

    The aim of the present study was to investigate the possibilty of using sodium sulfate in glass production. About 20 kg of an experimental batch of sodium sulfate was obtained from the pilot-plant equipment of the Petrovskaya mine under the aegis of the Donets Coal Planning Organization. The particle size distribution of the experimental Na/sub 2/SO/sub 4/ is presented. The analysis of the samples of glass showed that the melting of the glass was identical and that the fining process of the glass occurs more rapidly with the experimental sulfate (1500 degrees C, dwell of 0.5 h) than with the Karabogazsk sulfate.

  9. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides.

    PubMed

    Zhang, Ruiyan; Loers, Gabriele; Schachner, Melitta; Boelens, Rolf; Wienk, Hans; Siebert, Simone; Eckert, Thomas; Kraan, Stefan; Rojas-Macias, Miguel A; Lütteke, Thomas; Galuska, Sebastian P; Scheidig, Axel; Petridis, Athanasios K; Liang, Songping; Billeter, Martin; Schauer, Roland; Steinmeyer, Jürgen; Schröder, Jens-Michael; Siebert, Hans-Christian

    2016-05-01

    Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions. PMID:27136597

  10. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process.

    PubMed

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-08-30

    We synthesized a novel magnetic composite, Fe3O4/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25°C with Acid Orange 7 (AO7) initial concentration of 25mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe3O4/Cu1.5Ni0.5Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe3O4/Cu(Ni)Cr-LDH to generate sulfate radicals (SO4(-)). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO4(-)), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe3O4/Cu(Ni)Cr-LDH composite could be applied widely for the treatment of organic dyes in wastewater. PMID:25103453

  11. Synthesis of potassium hexatitanate whiskers starting from metatitanic acid and potassium carbonate and sulfate by calcination method

    SciTech Connect

    Liu Chunyan; Yin Hengbo Liu Yumin; Ren Min; Wang Aili; Ge Chen; Yao Hengping; Feng Hui; Chen Jun; Jiang Tingshun

    2009-05-06

    Potassium hexatitanate whiskers were synthesized starting from metatitanic acid (H{sub 2}TiO{sub 3}), potassium carbonate and sulfate by calcination method. The effects of mole ratios of K{sub 2}CO{sub 3} to metatitanic acid (H{sub 2}TiO{sub 3}), content of potassium sulfate, and calcination temperature on the crystallinity and morphology of the resultant potassium titanate whiskers were investigated by X-ray diffraction and scanning electron microscopy. Well crystallized potassium hexatitanate whiskers with an average length of 7.3 {mu}m and an average diameter of 0.62 {mu}m were synthesized when the molar ratio of K{sub 2}CO{sub 3} to metatitanic acid was kept at 1:3.5 and the calcination temperature was up to 1150 deg. C. The presence of K{sub 2}SO{sub 4} favored the formation of thin potassium hexatitanate whiskers as compared to the absence of K{sub 2}SO{sub 4}. The whiteness and brightness of the synthesized potassium hexatitanate whiskers were comparable to that of rutile TiO{sub 2} pigment.

  12. Acidity variations across the cloud drop size spectrum and their influence on rates of atmospheric sulfate production

    SciTech Connect

    Collett, J.L. Jr.; Bator, A.; Rao, Xin; Demoz, B.

    1994-11-01

    Measurements of pH variations within natural cloud drop populations reveal that small drops are often more acidic than large drops. Cloud samples collected from coastal stratus clouds, frontal clouds, and radiation fogs, from heavily polluted and pristine locations, had pH values ranging from below three to more than seven. Differences between small and large cloud drop acidities as large as two pH units were observed, although differences were generally below one pH unit. This chemical heterogenity can significantly enhance oxidation of sulfur dioxide to sulfate within clouds, relative to oxidation rates predicted from the average cloudwater composition. One-third of the sampled clouds were estimated to experience an increase of at least 20% in the rate of sulfur oxidation by ozone (8% of the clouds had increases exceeding 100%) as a result of acidity differences between large and small cloud drops. These findings suggest that sulfate production within clouds, a critical component of the global sulfur cycle, may be more rapid than previously though. 20 refs., 3 figs.

  13. Quantifying Heavy Metals Sequestration by Sulfate-Reducing Bacteria in an Acid Mine Drainage-Contaminated Natural Wetland

    PubMed Central

    Moreau, John W.; Fournelle, John H.; Banfield, Jillian F.

    2013-01-01

    Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century. PMID:23487496

  14. Corrosion of NiCoCrAlY Coatings and TBC Systems Subjected to Water Vapor and Sodium Sulfate

    NASA Astrophysics Data System (ADS)

    Eriksson, Robert; Yuan, Kang; Li, Xin-Hai; Lin Peng, Ru

    2015-08-01

    Thermal barrier coating (TBC) systems are commonly used in gas turbines for protection against high-temperature degradation. Penetration of the ceramic top coat by corrosive species may cause corrosion damage on the underlying NiCoCrAlY bond coat and cause failure of the TBC system. In the current study, four oxidation/corrosion conditions were tried: (i) lab air, (ii) water vapor, (iii) sodium sulfate deposited on the specimens, and (iv) water vapor + sodium sulfate. The test was done at 750 °C in a cyclic test rig with 48 h cycles. The corrosion damage was studied on NiCoCrAlY-coated specimens, thin APS TBC specimens, and thick APS TBC specimens. Water vapor was found to have very minor influence on the oxidation, while sodium sulfate increased the TGO thickness both for NiCoCrAlY specimens and TBC-coated specimens; the influence of the TBC thickness was found to be very small. Sodium sulfate promoted thicker TGO; more Cr-rich TGO; the formation of Y oxides, and internally, Y sulfides; pore formation in the coating as well as in the substrate; and the formation of a Cr-depleted zone in the substrate.

  15. Mass independent fractionation of sulfur isotopes during thermochemical reduction of native sulfur, sulfite and sulfate by amino acids

    NASA Astrophysics Data System (ADS)

    Watanabe, Y.; Naraoka, H.; Ohmoto, H.

    2006-05-01

    Mass independent fractionation of sulfur isotopes (MIF-S) is recognized when the Δ33S value (= δ33S-0.515xδ34S) of a sample falls outside the range of 0±0.2 permil and the 33-34θ value (= ln33α/ ln34α) lies outside the range of 0.515±.005 (Farquhar and Wing, 2003). Previous investigators have concluded that the only mechanisms to create MIF-S are photochemical reactions between sulfur-bearing gases (SO2, H2S) and UV. Based on comparisons of the geochemical characteristics of Archean sedimentary rocks between those with large MIF-S values (e.g., the 2.5 Ga McRae and 2.7 Ga Jeerinah shales) and those with no (or very small) MIF- S values (e.g., 2.76 Ga Hardey shales and 2.92 Ga Mosquito Creek shales), we have developed a hypothesis that MIF-S in sedimentary rocks may have been created by reactions among organic-rich sediments, sulfur- bearing solid compounds, and sulfur-bearing hydrothermal fluids at T = 100-200°C during the early diagenetic stage of sediments. Most abundant organic compounds in immature sediments are amino acids. For these reasons, we have conducted series of laboratory experiments to investigate sulfur isotope fractionations during reactions between a variety of amino acids (alanine, glycine, hystidine, etc.) and native sulfur, sodium sulfite or sodium sulfate at 150-200°C. Previous researchers used a variety of organic compounds (sugars, methane, xylene, etc) and/or ferrous- bearing minerals to investigate non-bacterial sulfate reduction, but they failed to demonstrate thermochemical sulfate reduction at temperatures below 230°C. However, we were able to reduce sulfate (S6+), as well as sulfite (S4+) and native sulfur (S0), to hydrogen sulfide (S2-) even at 150°C using simple and common amino acids (e.g., alanine and glycine). The reduction rates generally decreased: (a) from native sulfur, to sulfite, and to sulfate; (b) from simple amino acids to more complex amino acids (e.g., histidine); and (c) with decreasing temperatures. The

  16. Simultaneous characterization of bile acids and their sulfate metabolites in mouse liver, plasma, bile, and urine using LC-MS/MS.

    PubMed

    Huang, Jiangeng; Bathena, Sai Praneeth R; Csanaky, Iván L; Alnouti, Yazen

    2011-07-15

    Sulfation is a major metabolic pathway involved in the elimination and detoxification of bile acids (BAs). Several lines of evidence are available to support the role of sulfation as a defensive mechanism to attenuate the toxicity of accumulated BAs during hepatobiliary diseases. Individual BAs and their sulfate metabolites vary markedly in their physiological roles as well as their toxicities. Therefore, analytical techniques are required for the quantification of individual BAs and BA-sulfates in biological fluids and tissues. Here we report a simple, sensitive, and validated LC-MS/MS method for the simultaneous quantification of major BAs and BA-sulfates in mouse liver, plasma, bile, and urine. One-step sample preparation using solid-phase extraction (for bile and urine) or protein precipitation (for liver and plasma) was used to extract BAs and BA-sulfates. Base-line separation of all analytes (unsulfated- and sulfated BAs) was achieved in 25min with a limit of quantification of 1ng/ml. This LC-MS/MS method was applied to simultaneously quantify BAs and BA-sulfates in both male and female mouse tissues and fluids. Less than 3% of total BAs are present in the sulfate form in the mouse liver, plasma, and bile, which provides strong evidence that sulfation is a minor metabolic pathway of BA elimination and detoxification in mice. Furthermore, we report that the marked female-predominant expression of Sult2a1 is not reflected into a female-predominant pattern of BA-sulfation. PMID:21530128

  17. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  18. Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage

    PubMed Central

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo

    2012-01-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (<2%) at both sites, important differences were detected at the class and genus levels, reflecting differences in pH, redox potential, and heavy metal concentrations. At SN, where the pH and redox potential are similar to that of the water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (−210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

  19. Models of Metabolic Community Structure in Martian Habitable Environments: Constraints from a Terrestrial Analog Acid-Sulfate Fumarole Environment, Cerro Negro Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rogers, K. L.; McCollom, T. M.; Hynek, B. M.

    2014-12-01

    Microbial habitability in extreme environments on Earth is described by microscale geochemical conditions that constrain metabolic niches in concert with long-term habitat stability that is governed by dynamic geologic processes. Using terrestrial analogs to identify habitable martian environments requires correlating microscale geochemical constraints with reconstructions of past martian environments that are based on global-scale observations. While past martian environments can be characterized by primary parameters (e.g. pH, redox, mineralogy, thermal history), microbial habitability on Earth is a complex function of both primary and derived parameters (e.g. metabolic reaction energetics, chemical & thermal gradients, flow dynamics). In recent years we have been investigating acid-sulfate fumaroles at the Mars analog site, Cerro Negro Volcano, Nicaragua, where habitability is constrained by steep thermal gradients, spatially- and temporally-variable vent dynamics, and limited water and nutrient availability. The most common niche identified thus far is found in fumaroles that host mixed photosynthetic and chemosynthetic endolithic microbial communities. One such endolith is dominated by acidic red algae (Cyanidiales), aerobic bacterial heterotrophs (Ktedonobacteria), and archaeal thermoacidophiles (Hyperthermus, Caldisphaera, and Thermofilum). An analysis of the metabolic structure suggests that primary production by the red algae supports the growth of heterotrophic thermoacidophiles. Diversification among the chemoheterotrophs with respect to temperature and oxygen tolerance suggests community adaptation to environmental gradients or variable venting dynamics. Furthermore, individual cells within the endolith are silica-encrusted, providing the possibility for biosignature formation and preservation. Putative hydrothermal environments on early Mars with similar conditions could have supported endolithic communities with comparable metabolic strategies. Even

  20. Dissipation and transformation of 17B-estradiol-17-sulfate in soil-water systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen conjugates are known to be precursors of endocrine-disrupting free estrogens, e.g. 17B-estradiol (E2) and estrone (E1), in the environment. This study investigated the fate of a sulfate conjugated estrogen, 17B-estradiol-17-sulfate (E2-17S), in agricultural soils using laboratory batch stu...

  1. Sorption and degradation of 17ß-estradiol-17-sulfate in sterilized soil-water systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify abiotic processes that govern the fate of a sulfate conjugated estrogen, 17ß-estradiol-17-sulfate (E2-17S), soil batch experiments were conducted to investigate the dissipation, sorption, and degradation of radiolabeled E2-17S under sterilized conditions. The aqueous dissipation half-liv...

  2. DESTRUCTION OF PAHS AND PCBS IN WATER USING SULFATE RADICAL-BASED CATALYTIC ADVANCED OXIDATION PROCESSES

    EPA Science Inventory

    A new class of advanced oxidation processes (AOPs) based on sulfate radicals is being tested for the degradation of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in aqueous solution. These AOPs are based on the generation of sulfate radicals through...

  3. Heterogeneous Chemistry of HONO on Liquid Sulfuric Acid: A New Mechanism of Chlorine Activation on Stratospheric Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1996-01-01

    Heterogeneous chemistry of nitrous acid (HONO) on liquid sulfuric acid (H2SO4) Was investigated at conditions that prevail in the stratosphere. The measured uptake coefficient (gamma) of HONO on H2SO4 increased with increasing acid content, ranging from 0.03 for 65 wt % to about 0.1 for 74 wt %. In the aqueous phase, HONO underwent irreversible reaction with H2SO4 to form nitrosylsulfuric acid (NO(+)HSO4(-). At temperatures below 230 K, NO(+)HSO4(-) was observed to be stable and accumulated in concentrated solutions (less than 70 wt % H2SO4) but was unstable and quickly regenerated HONO in dilute solutions (less than 70 wt %). HCl reacted with HONO dissolved in sulfuric acid, releasing gaseous nitrosyl chloride (ClNO). The reaction probability between HCl and HONO varied from 0.01 to 0.02 for 60-72 wt % H2SO4. In the stratosphere, ClNO photodissociates rapidly to yield atomic chlorine, which catalytically destroys ozone. Analysis of the laboratory data reveals that the reaction of HCl with HONO on sulfate aerosols can affect stratospheric ozone balance during elevated sulfuric acid loadings after volcanic eruptions or due to emissions from the projected high-speed civil transport (HSCT). The present results may have important implications on the assessment of environmental acceptability of HSCT.

  4. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    PubMed

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors. PMID:27036143

  5. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  6. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  7. EFFECT OF SIMULATED SULFURIC ACID RAIN ON THE CHEMISTRY OF A SULFATE-ADSORBING FOREST SOIL

    EPA Science Inventory

    Simulated H2SO4 rain (pH 3.0, 3.5, 4.0) or control rain (pH 5.6) was applied for 3.5 yr to large lysimeter boxes containing a sulfate-adsorbing forest soil and either red alder (Alnus rubra) or sugar maple (Acer saccharum) seedlings. After removal of the plants and the litter lay...

  8. Sulfated nanozirconia: an investigation on acid-base properties and n-butane isomerization activity.

    PubMed

    Mishra, H K; Dalai, A K; Das, D D; Parida, K M; Pradhan, N C

    2004-04-15

    Hydrated zirconia was synthesized by an organo-inorganic route employing surfactant and was sulfated using aqueous ammonium persulfate, followed by drying at 110 degrees C. The sample thus obtained was calcined at 600 degrees C to obtain sulfated zirconia and was characterized by several physicochemical methods. Crystallite sizes of sulfated zirconia were calculated from X-ray line broadening using the Debye-Scherer equation and were found to be in the range of 25 nm. When pretreated in air, the catalyst was found to exhibit butane isomerization activity at a temperature as low as 35 degrees C under atmospheric pressure. It showed conversion as high as 37% at 100 degrees C under normal pressure when pretreated in air, whereas nitrogen-pretreated catalyst showed zero activity under similar conditions. NH(3) and CO(2) temperature-programmed desorption studies on air- and helium-pretreated samples indicated that the catalyst surface changes appreciably during air pretreatment. Results on butane isomerization in conjunction with TPD studies suggest that zirconium-oxy sites play an important role in butane activation during the reaction. PMID:15028501

  9. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    NASA Technical Reports Server (NTRS)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO

  10. Reaction pathway of the degradation of the p-hydroxybenzoic acid by sulfate radical generated by ionizing radiations

    NASA Astrophysics Data System (ADS)

    Criquet, Justine; Leitner, Nathalie Karpel Vel

    2015-01-01

    The degradation of p-hydroxybenzoic acid (HBA) in aqueous solutions by ionizing radiation was studied. The phenolic pollutant was easily removed by the electron beam irradiation, as more than 80% of the initial 100 μM introduced was degraded for a dose of 600 Gy. It was shown that the addition of persulfate, producing the sulfate radical as additional reactive species, induced a change in the reaction pathway. LC-MS analyses were performed in order to identify the different by-products formed. In the absence of persulfate, the main by-product formed was 3,4-dihydroxybenzoic acid, while in presence of persulfate, 1,4-benzoquinone was detected and the hydroxylated by-products were not present. A reaction pathway of HBA degradation by hydroxyl and sulfate radicals was proposed from the identification of the chemical structure of the different by-products detected. The influences of pH and dissolved oxygen were also studied. A high decline of HBA degradation was observed at pH 11 compared to pH 4.5, this decrease was minimized in the presence of persulfate. The dissolved oxygen concentration was found to be a limiting parameter of HBA degradation, however an excess of dissolved oxygen in solution did not improve the degradation to a large extent.

  11. Efficacy of levulinic acid-sodium dodecyl sulfate against Encephalitozoon intestinalis, Escherichia coli O157:H7, and Cryptosporidium parvum.

    PubMed

    Ortega, Ynes R; Torres, Maria P; Tatum, Jessica M

    2011-01-01

    Foodborne parasites are characterized as being highly resistant to sanitizers used by the food industry. In 2009, a study reported the effectiveness of levulinic acid in combination with sodium dodecyl sulfate (SDS) in killing foodborne bacteria. Because of their innocuous properties, we studied the effects of levulinic acid and SDS at various concentrations appropriate for use in foods, on the viability of Cryptosporidium parvum and Encephalitozoon intestinalis. The viability of Cryptosporidium and E. intestinalis was determined by in vitro cultivation using the HCT-8 and RK-13 cell lines, respectively. Two Escherichia coli O157:H7 isolates were also used in the present study: strain 932 (a human isolate from a 1992 Oregon meat outbreak) and strain E 0018 (isolated from calf feces). Different concentrations and combinations of levulinic acid and SDS were tested for their ability to reduce infectivity of C. parvum oocysts (10(5)), E. intestinalis spores (10(6)), and E. coli O157:H7 (10(7)/ml) when in suspension. Microsporidian spores were treated for 30 and 60 min at 20 ± 2°C. None of the combinations of levulinic acid and SDS were effective at inactivating the spores or oocysts. When Cryptosporidium oocysts were treated with higher concentrations (3% levulinic acid-2% SDS and 2% levulinic acid-1% SDS) for 30, 60, and 120 min, viability was unaffected. E. coli O157:H7, used as a control, was highly sensitive to the various concentrations and exposure times tested. SDS and levulinic acid alone had very limited effect on E. coli O157:H7 viability, but in combination they were highly effective at 30 and 60 min of incubation. In conclusion, Cryptosporidium and microsporidia are not inactivated when treated for various periods of time with 2% levulinic acid-1% SDS or 3% levulinic acid-2% SDS at 20°C, suggesting that this novel sanitizer cannot be used to eliminate parasitic contaminants in foods. PMID:21219777

  12. Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate.

    PubMed

    Lutze, Holger V; Kerlin, Nils; Schmidt, Torsten C

    2015-04-01

    Sulfate radical (SO4(-)) based oxidation is discussed as a potential water treatment option and is already used in ground water remediation. However, the complex SO4(-) chemistry in various matrices is poorly understood. In that regard, the fast reaction of SO4(-) with Cl(-) is of high importance since Cl(-) belongs to the main constituents in aqueous environments. This reaction yields chlorine atoms (Cl) as primary products. Cl initiate a cascade of subsequent reactions with a pH dependent product pattern. At low pH (<5) formation of chlorine derived oxidation products such as chlorate (ClO3(-)) is favoured. This is undesired because ClO3(-) may reveal adverse effects on the environment and human health. At pH > 5 Cl mainly react with water yielding hydroxyl radicals. Thus, at moderate Cl(-) concentrations (mM range) the SO4(-)-based process may be converted into a conventional (hydroxyl radical -based) advanced oxidation process. The conversion of SO4(-) into OH, however, is interrupted in presence of bicarbonate by scavenging of Cl. PMID:25455043

  13. Formation of a Phyllosilicate-, K-feldspar-, and Sulfate-Bearing Hematite Ridge on Mauna Kea Volcano, Hawaii, Under Hydrothermal, Acid-Sulfate Conditions: Process and Mineralogical Analog for the Hematite Ridge on Mt. Sharp, Gale Crater, Mars.

    NASA Astrophysics Data System (ADS)

    Ming, D. W.; Morris, R. V.; Adams, M. E.; Catalano, J. G.; Graff, T. G.; Arvidson, R. E.; Guinness, E. A.; Hamilton, J. C.; Mertzman, S. A.; Fraeman, A.

    2015-12-01

    The Mars Science Laboratory rover Curiosity is currently moving upslope on Mt. Sharp in Gale Crater toward a hematite-bearing ridge. This hematite exposure was originally detected in CRISM spectra and subsequently mapped as part of a ~200 m wide, 6.5 km long ridge extending roughly parallel to the base of Mt. Sharp. CRISM spectra in the region suggest that hematite, smectite, and hydrated sulfates occur as secondary phases in lower layers of Mt. Sharp, separated by an unconformity from overlying anhydrous strata. A potential process and mineralogical analog is a hematite-bearing and weathering-resistant stratum (ridge) is exposed on the Puu Poliahu cinder cone on Mauna Kea (MK) volcano, Hawaii. The MK ridge is the product of hydrothermal alteration of basaltic precursors under acid-sulfate conditions. We are acquiring chemical and mineralogical (VNIR, Mid-IR, and backscatter Moessbauer spectroscopy, and transmission XRD) data on the MK ridge area that correspond to rover and orbiting spacecraft measurements at Gale Crater and elsewhere. The hematite-bearing stratum does not have detectable sulfate minerals by XRD, and hematite is variably present as up to mm-sized black crystals which, together with associated trioctahedral smectite and K-feldspar (from XRD), imply hydrothermal conditions. Adjacent to the MK hematite-bearing stratum are sulfates (jarosite and alunite) that are evidence for aqueous alteration under acid-sulfate conditions, and more soluble sulfates are absent but such phases would not persist if formed because of annual precipitation. Dioctahedral smectite is associated with red hematite and alunite-rich samples. The black and red hematite zones have the highest and lowest MgO/Al2O3 and K2O/Na2O ratios, respectively. Hematite, smectite, jarosite, and K-feldspar have been detected by Curiosity XRD downslope from the Mt. Sharp hematite ridge. MK field work and samples were obtained with PISCES partnership and OMKM, MKMB, BLNR, and KKMC permissions.

  14. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice.

    PubMed

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  15. Effect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (Carassius auratus).

    PubMed

    Kolmakov, Nikolay N; Hubbard, Peter C; Lopes, Orlando; Canario, Adelino V M

    2009-11-01

    Exposure of olfactory epithelium to environmentally relevant concentrations of copper disrupts olfaction in fish. To examine the dynamics of recovery at both functional and morphological levels after acute copper exposure, unilateral exposure of goldfish olfactory epithelia to 100 microM CuSO(4) (10 min) was followed by electro-olfactogram (EOG) recording and scanning electron microscopy. Sensitivity to amino acids (l-arginine and l-serine), generally considered food-related odorants, recovered most rapidly (three days), followed by that to catecholamines (3-O-methoxytyramine), bile acids (taurolithocholic acid) and the steroid pheromone, 17,20beta-dihydroxy-4-pregnen-3-one 20-sulfate, which took 28 days to reach full recovery. Sensitivity to the postovulatory pheromone prostaglandin F(2alpha) had not fully recovered even at 28 days. These changes in sensitivity were correlated with changes in the recovery of ciliated and microvillous receptor cell types. Microvillous cells appeared largely unaffected by CuSO(4) treatment. Cilia in ciliated receptor neurones, however, appeared damaged one day post-treatment and were virtually absent after three days but had begun to recover after 14 days. Together, these results support the hypothesis that microvillous receptor neurones detect amino acids whereas ciliated receptor neurones were not functional and are responsible for detection of social stimuli (bile acids and pheromones). Furthermore, differences in sensitivity to copper may be due to different transduction pathways in the different cell types. PMID:19924975

  16. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice

    PubMed Central

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  17. Fabrication of calcium phosphate–calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid

    PubMed Central

    Thai, Van Viet

    2010-01-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4·2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37°C. PMID:20333539

  18. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid.

    PubMed

    Thai, Van Viet; Lee, Byong-Taek

    2010-06-01

    In this study, an injectable bone substitute (IBS) consisting of citric acid, chitosan, and hydroxyl propyl methyl cellulose (HPMC) as the liquid phase and tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dehydrate (CSD, CaSO4 x 2H2O) powders as the solid phase, were fabricated. Two groups were classified based on the percent of citric acid in the liquid phase (20, 40 wt%). In each groups, the HPMC percentage was 0, 2, and 4 wt%. An increase in compressive strength due to changes in morphology was confirmed by scanning electron microscopy images. A good conversion rate of HAp at 20% citric acid was observed in the XRD profiles. In addition, HPMC was not obviously affected by apatite formation. However, both HPMC and citric acid increased the compressive strength of IBS. The maximum compressive strength for IBS was with 40% citric acid and 4% HPMC after 14 days of incubation in 100% humidity at 37 degrees C. PMID:20333539

  19. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  20. Metabolism of triiodothyroacetic acid (TA3) in rat liver. I. Deiodination of TA3 and TA3 sulfate by microsomes.

    PubMed

    Rutgers, M; Heusdens, F A; Visser, T J

    1989-07-01

    The deiodination of the acetic acid side-chain analogs of T3 as well as 3,3'-diiodothyronine (3,3'-T2) was investigated by incubating 125I-labeled 3,3',5-triiodothyroacetic acid (TA3) and 3,3'-diiodothyroacetic acid (3,3'-TA2) with rat liver microsomes at 37 C and pH 7.2 in the presence of 5 mM dithiothreitol. TA3 sulfate (TA3S) and 3,3'-TA2S were also tested as substrate since sulfation is known to accelerate T3 and 3,3'-T2 conversion. Reaction products were analyzed on Sephadex LH-20 and HPLC. TA3 underwent only inner ring deiodination (IRD), but 3,3'-TA2 was equally converted by IRD and outer ring deiodination (ORD). TA3S was metabolized very rapidly by IRD to 3,3'-TA2S which was only observed transiently due to its rapid deiodination predominantly in the outer ring. Kinetic studies under initial reaction rate conditions yielded apparent Michaelis-Menten (Km) values (micromolar) of 1.8 for TA3, 0.8 for 3,3'-TA2, and 0.004 for TA3S, and 0.02 for 3,3'-TA2S and Vmax values (picomoles per min/mg protein) of 174 for TA3, 49 for 3,3'-TA2, 21 for TA3S, and 63 for 3,3'-TA2S. The Vmax/Km ratios for the IRD of TA3 and TA3S were 16 and 930 times higher, respectively, relative to T3. Deiodinations were sensitive to propylthiouracil inhibition, indicating the involvement of the type I iodothyronine deiodinase. Furthermore, the iodothyroacetic acid derivatives competitively inhibited the ORD of rT3 with apparent inhibition constant (Ki) values (0.45 microM for TA3, 4 nM for TA3S, and 0.04 microM for 3,3'-TA2S) in agreement with corresponding Km values. We conclude that 1) TA3 and 3,3'-TA2 are better substrates than T3 and 3,3'-T2 for the type I deiodinase of rat liver; 2) the IRD of TA3 and ORD of 3,3'-TA2 are markedly enhanced by sulfation similar to the parent iodothyronines; and 3) TA3S in the best known substrate for IRD due to its very high affinity for the type I deiodinase. PMID:2737156

  1. Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates.

    PubMed

    Cannon, Jennifer L; Aydin, Ali; Mann, Amy N; Bolton, Stephanie L; Zhao, Tong; Doyle, Michael P

    2012-08-01

    Human noroviruses are the most common etiologic agent of foodborne illness in the United States. The inability to culture human noroviruses in the laboratory necessitates the use of surrogate viruses such as murine norovirus (MNV-1) and feline calicivirus (FCV) for inactivation studies. In this study, a novel sanitizer of organic acid (levulinic acid) plus the anionic detergent sodium dodecyl sulfate (SDS) was evaluated. Viruses were treated with levulinic acid (0.5 to 5%), SDS (0.05 to 2%), or combinations of levulinic acid plus SDS (1:10 solution of virus to sanitizer). MNV-1 inoculated onto stainless steel also was treated with a 5% levulinic acid plus 2% SDS liquid or foaming solution. Log reductions of viruses were determined with a plaque assay. Neither levulinic acid nor SDS alone were capable of inactivating MNV-1 or FCV, resulting in a ≤0.51-log reduction of the infectious virus titer. However, the combination of 0.5% levulinic acid plus 0.5% SDS inactivated both surrogates by 3 to 4.21 log PFU/ml after 1 min of exposure. Similarly, MNV-1 inoculated onto stainless steel was reduced by >1.50 log PFU/ml after 1 min and by >3.3 log PFU/ml after 5 min of exposure to a liquid or foaming solution of 5% levulinic acid plus 2% SDS. The presence of organic matter (up to 10%) in the virus inoculum did not significantly affect sanitizer efficacy. The fact that both of the active sanitizer ingredients are generally recognized as safe to use as food additives by the U.S. Food and Drug Administration further extends its potential in mitigating foodborne disease. PMID:22856583

  2. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  3. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  4. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  5. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  6. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  7. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  8. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water.

    PubMed

    Pruden, A; Messner, N; Pereyra, L; Hanson, R E; Hiibel, S R; Reardon, K F

    2007-02-01

    Sulfate-reducing permeable reactive zones (SR-PRZs) are a passive means of immobilizing metals and neutralizing the pH of mine drainage through microbially mediated reactions. In this bench-scale study, the influence of inoculum on the performance of columns simulating SR-PRZs was investigated using chemical and biomolecular analyses. Columns inoculated from two sources (bovine dairy manure (DM) and a previous sulfate-reducing column (SRC)) and uninoculated columns (U) were fed a simulated mine drainage and compared on the basis of pH neutralization and removal of cadmium, zinc, iron, and sulfate. Cadmium, zinc, and sulfate removal was significantly higher in SRC columns than in the DM and U columns, while there was no significant difference between the DM and U columns. Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community composition among columns with different inocula, and indicated that the microbial community in the SRC columns was the first to reach a pseudo-steady state. In the SRC columns, a higher proportion of the DGGE band DNA sequences were related to microorganisms that carry out cellulose degradation, the rate-limiting step in SR-PRZ energy flow, than was the case in the other columns. The proportion of sulfate-reducing bacteria of the genus Desulfobacterium was monitored using real-time quantitative PCR and was observed to be consistently higher in the SRC columns. The results of this study suggest that the inoculum plays an important role in SR-PRZ performance. This is the first report providing a detailed analysis of the effect of different microbial inocula on the remediation of acid mine drainage. PMID:17222885

  9. The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Hu, Chiyu; Tang, Shenzhi; Zhu, Junsheng; Guo, Chenfeng

    2014-12-01

    Conventional tetrabasic lead sulfate used as positive active material additive shows the results of the low effective lead dioxide conversion rate due to the large grain size and crossed the crystal structure. In this paper, we study on a type of nanometer tetrabasic lead sulfate. Through the XRD and SEM test and Material Studio software calculation, the purity of tetrabasic lead sulfate is very high, the grain size of the nanometer 4BS is almost unanimous, and can be controlled below 200 nm. When charged and discharged in 1.75 V-2.42 V with the current density of 40 mA g-1, 80 mA g-1 and 160 mA g-1, the effective lead dioxide conversion rate of nanometer 4BS after formation can achieve to 83.48%, 71.42%, and 66.96%. Subsequently, the nanometer 4BS as additive is added to positive paste of lead-acid battery. When the batteries are tested galvanostatically between 1.75 V and 2.42 V at 0.25 C charge and 0.5 C discharge rates at room temperature. The ratio of adding nanometer 4BS is 0%, 1% and 4% and the initial discharge specific capacities are 60 mAh g-1, 65 mAh g-1 and 68 mAh g-1. After 80 cycles, the initial discharge capacity of positive active material with 1% nanometer 4BS decreased less than 10%, while adding 4% nanometer 4BS, the initial discharge capacity doesn't decrease obviously.

  10. Distribution of ascorbate-2-sulfate and distribution, half-life and turnover rates of (1-/sup 14/C)ascorbic acid in rainbow trout

    SciTech Connect

    Tucker, B.W.; Halver, J.E.

    1984-06-01

    Rainbow trout (250 g) were maintained at 15 degrees C for 3 months on a low ascorbic acid diet, given (1-/sup 14/C)ascorbic acid by gavage, then fed the NAS/NRC requirement 12 times per week. Total urine, fecal water and branchial water were collected daily from five fish placed in metabolism chambers for four successive 5-day periods. Tissue samples were analyzed for /sup 14/C, ascorbic acid (C1) and ascorbate-2-sulfate (C2). Excretion analysis indicated t1/2 . 42 days. After 20 days, the feeding schedule was changed to 3 times per week. Fish fed /sup 14/C were sampled after 1, 2, 3 and 4 months. The half-life in each organ except brain was inversely proportional to the dietary level of ascorbate. Concentrations of C1 and C2 in the various tissues reflected dietary intake of vitamin C. Total C (CT . C1 + C2) levels were maintained in the liver even with the low vitamin C diet. Estimates of body pool for C1 are 27-29 mg/kg. At the higher ascorbate intake CT was 92-114 mg/kg, but decreased by 34% at the lower feeding rate to 51-62 mg/kg. Data indicate that there are two or more body pools that include a store of C2, which is readily interconverted in metabolizing tissues to and from C1. Since air and water stable C2 is antiscorbutic for fish, it is the preferred form of ascorbate for fish feeds.

  11. Biosignatures in Fe- and As-rich acidic water

    NASA Astrophysics Data System (ADS)

    Casiot, C.; Bruneel, O.; Donard, O.; Morin, G.; Leblanc, M.; Personné, C.; Elbaz-Poulichet, F.

    2003-04-01

    The acid waters (pH 2.5-3.5) originating from the Carnoulès mine tailings contain elevated dissolved concentrations of arsenite (As(III)) (50-350 mg.l-1) and ferrous iron (Fe(II)) (˜2000 mg.l-1). In such extreme conditions, a number of microorganisms mainly bacteria can grow and influence water chemistry. In the acidic creek of Carnoulès, twenty to sixty percent of the arsenite initially present in water is removed from the aqueous phase within the first 30 m of the creek, as a result of its precipitation with iron. The precipitates contain 20% As around bacteria-made structures. Isotopic measurements revealed an important isotopic fractionation of iron in the stromatolites, which are enriched in 54Fe compared to the primary ore material. This enrichment may be related to the biologically-mediated oxidation of Fe(II) and subsequent immobilisation of Fe(III) by the bacteria of the Carnoulès creek. XANES analysis of sediments and stromatolite samples showed the formation of As(III)-rich compounds, tooeleite, a rare ferric arsenite sulfate oxy-hydroxide mineral and amorphous mixed As(III)/As(V)-Fe(III) oxyhydroxide compounds. These As(III)-rich compounds are dominant during the wet season; ex-situ experiments showed that the formation of these compounds may be related to the activity of bacterial strains of Acidithiobacillus ferrooxidans that oxidize Fe(II) but not As(III). In contrast, amorphous As(V)-Fe(III) oxy-hydroxides dominate in the sediments during the dry season; they originate from both biotic and abiotic oxidation of As(III). Different strains of As-oxidizing bacteria were isolated from the Carnoulès creek water and identified as strains of the genus Thiomonas.

  12. Determination of benzoic acid, chlorobenzoic acids and chlorendic acid in water

    SciTech Connect

    Dietz, E.A.; Cortellucci, N.J.; Singley, K.F. )

    1993-01-01

    To characterize and conduct treatment studies of a landfill leachate an analysis procedure was required to determine concentrations of benzoic acid, the three isomers of chlorobenzoic acid and chlorendic acid. The title compounds were isolated from acidified (pH 1) water by extraction with methyl t-butyl ether. Analytes were concentrated by back-extracting the ether with 0.1 N sodium hydroxide which was separated and acidified. This solution was analyzed by C[sub 18] reversed-phase HPLC with water/acetonitrile/acetic acid eluent and UV detection at 222 nm. The method has detection limits of 200 [mu]g/L for chlorendic acid and 100 [mu]g/L for benzoic acid and each isomer of chlorobenzoic acid. Validation studies with water which was fortified with the analytes at concentrations ranging from one to ten times detection limits resulted in average recoveries of >95%.

  13. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Russell, L. M.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2010-07-01

    Submicron particles were collected on board the NOAA R/V Ronald H. Brown during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific marine boundary layer in October and November 2008. The aerosol in this region was characterized by low numbers of particles (150-700 cm-3) that were dominated by sulfate ions at concentrations of 0.9 ± 0.7 μg m-3 and organic mass at 0.6 ± 0.4 μg m-3, with no measurable nitrate and low ammonium ion concentrations. Measurements of submicron organic aerosol functional groups and trace elements show that continental outflow of anthropogenic emissions is the dominant source of organic mass (OM) to the southeast Pacific with an additional, smaller contribution of organic mass from primary marine sources. This continental source is supported by a correlation between OM and radon. Saturated aliphatic C-CH (alkane) composed 41 ± 27% of OM. Carboxylic acid COOH (32 ± 23% of OM) was observed in single particles internally mixed with ketonic carbonyl, carbonate, and potassium. Organosulfate COSO3 (4 ± 8% of OM) was observed only during the periods of highest organic and sulfate concentrations and lowest ammonium concentrations, consistent with a sulfuric acid epoxide hydrolysis for proposed surrogate compounds (e.g., isoprene oxidation products) or reactive glyoxal uptake mechanisms from laboratory studies. This correlation suggests that in high-sulfate, low-ammonium conditions, the formation of organosulfate compounds in the atmosphere contributes a significant fraction of aerosol OM (up to 13% in continental air masses). Organic hydroxyl C-OH composed 20 ± 12% of OM and up to 50% of remote marine OM and was inversely correlated with radon indicating a marine source. A two-factor solution of positive matrix factorization (PMF) analysis resulted in one factor dominated by organic hydroxyl (>70% by mass) and one factor dominated by saturated aliphatic C-CH (alkane) and carboxylic acid

  14. Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California

    USGS Publications Warehouse

    Filipek, L.H.; Kirk, Nordstrom D.; Ficklin, W.H.

    1987-01-01

    Acid mine drainage has acidified large volumes of water and added high concentrations of dissolved heavy metals to West Squaw Creek, a California stream draining igneous rocks of low acid-neutralizing capacity. During mixing of the acid sulfate stream waters in the South Fork of West Squaw Creek with an almost equal volume of dilute uncontaminated water, Cu, Zn, Mn, and Al remained in solution rather than precipitating or adsorbing on solid phases. Changes in the concentration of these generally conservative metals could be used to determine relative flow volumes of acid tributaries and the main stream. An amorphous orange precipitate (probably ferric hydroxides or a mixture of ferric hydroxides and jarosite) was ubiquitous in the acid stream beds and was intimately associated with algae at the most acid sites. Relative sorption of cations decreased with decreasing water pH. However, arsenic was almost completely scavenged from solution within a short distance from the sulfide sources.

  15. Spatial and temporal patterns in sulfate aerosol acidity and neutralization within a metropolitan area

    SciTech Connect

    Waldman, J.M.; Lloy, P.J. ); Thurston, G.D.; Lippmann, M. )

    1988-01-01

    Measurements of atmospheric acidity are relatively new and not routine. The influences and variability due to local phenomena have not been investigated heretofore. As part of a U.S. EPA-sponsored air pollution-health effects study in metropolitan Toronto (population 2.3 million), aerosol acidity was monitored at three sites. This study is discussed in the book. The primary objective was to document human exposures to acidic aerosol during the study period. Because of its chemical reactivity, it was not known whether substantial variations in acidic aerosol concentrations would be found within the subregion (area 60 km{sup 2}). A network of three acidic aerosol monitoring sites was used. Hence, this study design offered the first opportunity to compare spatial and temporal patterns of acidic aerosol levels within a large, receptor region.

  16. Desulfocarbo indianensis gen. nov., sp. nov., a benzoate-oxidizing, sulfate-reducing bacterium isolated from water extracted from a coal bed.

    PubMed

    An, Thuy T; Picardal, Flynn W

    2014-08-01

    A novel, strictly anaerobic, sulfate-reducing bacterium, designated strain SCBM(T), was isolated from water extracted from a coal bed in Indiana, USA. The isolate was characterized by a polyphasic taxonomic approach that included phenotypic and genotypic characterizations. Cells of strain SCBM(T) were vibrio-shaped, polarly flagellated, Gram-negative, motile, oxidase-negative and weakly catalase-positive. Growth of strain SCBM(T) was observed at NaCl concentrations ranging from 0 to 300 mM. However, no growth was observed when 1 M or more NaCl was present. Growth was observed at 16-37 °C, with optimal growth at 30 °C. The optimum pH for growth was 7, although growth was observed from pH 6.5 to 8. The doubling time under optimal growth conditions (30 °C, pH 7, 2.5 mM benzoate, 14 mM sulfate) was 2.7 days. Bicarbonate, HEPES, PIPES and MES were effective buffers for growth of strain SCBM(T), but citrate inhibited growth. When sulfate was provided as the electron acceptor, strain SCBM(T) grew autotrophically with hydrogen as the electron donor and heterotrophically on benzoate, formate, acetate, pyruvate, butyrate, fumarate, succinate and palmitate. None of the substrates tested supported fermentative growth. Thiosulfate and sulfate were used as electron acceptors coupled to benzoate oxidation, but sulfite, elemental sulfur, DMSO, anthraquinone 2,6-disulfonate, nitrate, nitrite, ferric citrate, hydrous iron oxide and oxygen were not. The G+C content of genomic DNA was 62.5 mol%. The major cellular fatty acids were anteiso-C(15 : 0) and C(18 : 1)ω7c. Phylogenetic analysis based on 16S rRNA gene sequencing placed strain SCBM(T) into a distinct lineage within the class Deltaproteobacteria. The closest, cultivated phylogenetic relative of strain SCBM(T) was Desulfarculus baarsii DSM 2075(T), with only 91.7% 16S rRNA gene sequence identity. On the basis of phenotypic and genotypic analyses, strain SCBM(T) represents a novel genus and species of sulfate

  17. Water and UV degradable lactic acid polymers

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.

    1990-06-26

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylane glycols (PVB 6/22/90), propylene and and polypropylene (PVB 6/22/90) glycols, P-dioxanone, 1, 5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  18. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  19. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  20. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  1. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  2. Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Hausrath, E. M.; Golden, D. C.; Morris, R. V.; Agresti, D. G.; Ming, D. W.

    2013-01-01

    Phosphate-rich rocks and a nearby phosphate-rich soil, Paso Robles, were analyzed in Gusev Crater, Mars, by the Mars Exploration Rover Spirit and interpreted to be highly altered, possibly by hydrothermal or fumarolic alteration of primary, phosphate-rich material. To test mineral phases resulting from such alteration, we performed hydrothermal acid-vapor and acid-fluid experiments on olivine (Ol), fluorapatite (Ap), and basaltic glass (Gl) as single phases and a mixture of phases. Minerals formed include Ca-, Al-, Fe- and Mg-sulfates with different hydration states (anhydrite, bassanite, gypsum; alunogen; hexahydrite, and pentahydrite). Phosphate-bearing minerals formed included monocalcium phosphate monohydrate (MCP) (acid-vapor and acid-fluid alteration of fluorapatite only) and ferrian giniite (acid-fluid alteration of the Ol + Gl + Ap mixture). MCP is likely present in Paso Robles if primary Ca-phosphate minerals reacted with sulfuric acid with little transport of phosphate. Under fluid:rock ratios allowing transport of phosphate, a ferric phosphate phase such as ferrian giniite might form instead. Mössbauer measurements of ferrian giniite-bearing alteration products and synthetic ferrian giniite are consistent with Spirit's Mössbauer measurements of the ferric-bearing phase in Paso Robes soil, but are also consistent with ferric sulfate phases in the low-P soil Arad_Samra. Therefore, Mössbauer data alone do not constrain the fluid:rock ratio. However, the excess iron (hematite) in Paso Robles soil, which implies aqueous transport, combined with our laboratory experiments, suggest acid-sulfate alteration in a hydrothermal (fumarolic) environment at fluid:rock ratios sufficient to allow dissolution, transport, and precipitation of secondary chemical components including a ferric phosphate such as ferrian giniite.

  3. Enhancement of bacterial iron and sulfate respiration for in situ bioremediation of acid mine drainage sites: a case study

    SciTech Connect

    Bilgin, A.A.; Harrington, J.M.; Silverstein, J.

    2007-08-15

    The prevention of acid mine drainage (AMD) in situ is more attractive than down-gradient treatment alternatives that do not involve source control. AMD source control can be achieved by shifting the microbial activity in the sulfidic rock from pyrite oxidation to anaerobic heterotrophic activity. This is achieved by adding biodegradable organic carbon amendments to the sulfidic rock. This technique was applied to an abandoned coal mine pool in Pennsylvania. The pool had a pH of 3.0 to 3.5. Following treatment, near-neutral pH and decreased effluent heavy metal concentrations were achieved. In situ bioremediation by the enhancement of bacterial iron and sulfate reduction is a promising technology for AMD prevention.

  4. Acidification and buffering mechanisms in acid sulfate soil wetlands of the Murray-Darling Basin, Australia.

    PubMed

    Glover, Fiona; Whitworth, Kerry L; Kappen, Peter; Baldwin, Darren S; Rees, Gavin N; Webb, John A; Silvester, Ewen

    2011-04-01

    The acid generation mechanisms and neutralizing capacities of sulfidic sediments from two inland wetlands have been studied in order to understand the response of these types of systems to drying events. The two systems show vastly different responses to oxidation, with one (Bottle Bend (BB) lagoon) having virtually no acid neutralizing capacity (ANC) and the other (Psyche Bend (PB) lagoon) an ANC that is an order of magnitude greater than the acid generation potential. While BB strongly acidifies during oxidation the free acid generation is less than that expected from the measured proton production and consumption processes, with additional proton consumption attributed to the formation of an acid-anion (chloride) FeIII (oxyhydr)oxide product, similar to akaganéite (Fe(OH)2.7Cl0.3). While such products can partially attenuate the acidification of these systems, resilience to acidification is primarily imparted by sediment ANC. PMID:21375259

  5. Effectiveness of acidic calcium sulfate with propionic and lactic acid and lactates as postprocessing dipping solutions to control Listeria monocytogenes on frankfurters with or without potassium lactate and stored vacuum packaged at 4.5 degrees C.

    PubMed

    Nuñez de Gonzalez, Maryuri T; Keeton, Jimmy T; Acuff, Gary R; Ringer, Larry J; Lucia, Lisa M

    2004-05-01

    The safety of ready-to-eat meat products such as frankfurters can be enhanced by treating with approved antimicrobial substances to control the growth of Listeria monocytogenes. We evaluated the effectiveness of acidic calcium sulfate with propionic and lactic acid, potassium lactate, or lactic acid postprocessing dipping solutions to control L. monocytogenes inoculated (ca. 10(8) CFU/ml) onto the surface of frankfurters with or without potassium lactate and stored in vacuum packages at 4.5 degrees C for up to 12 weeks. Two frankfurter formulations were manufactured without (control) or with potassium lactate (KL, 3.3% of a 60% [wt/wt] commercially available syrup). After cooking, chilling, and peeling, each batch was divided into inoculated (four strains of L. monocytogenes mixture) and noninoculated groups. Each group was treated with four different dips: (i) control (saline solution), (ii) acidic calcium sulfate with propionic and lactic acid (ACS, 1:2 water), (iii) KL, or (iv) lactic acid (LA, 3.4% of a 88% [wt/wt] commercially available syrup) for 30 s. Noninoculated frankfurters were periodically analyzed for pH, water activity, residual nitrite, and aerobic plate counts (APCs), and L. monocytogenes counts (modified Oxford medium) were determined on inoculated samples. Surface APC counts remained at or near the lower limit of detection (<2 log CFU per frank) on franks with or without KL and treated with ACS or LA throughout 12 weeks at 4.5 degrees C. L. monoctogenes counts remained at the minimum level of detection on all franks treated with the ACS dip, which indicated a residual bactericidal effect when L. monocytogenes populations were monitored over 12 weeks. L. monocytogenes numbers were also reduced, but not to the same degree in franks made without or with KL and treated with LA. These results revealed the effectiveness of ACS (bactericidal effect) or LA (bacteriostatic effect) as postprocessing dipping solutions to inhibit or control the growth of L

  6. Phase equilibria of the magnesium sulfate-water system to 4 kbars

    NASA Technical Reports Server (NTRS)

    Hogenboom, D. L.; Kargel, J. S.; Ganasan, J. P.; Lee, L.

    1993-01-01

    Magnesium sulfate is the most abundant salt in carbonaceous chondrites, and it may be important in the low-temperature igneous evolution and aqueous differentiation of icy satellites and large chondritic asteroids. Accordingly, we are investigating high-pressure phase equilibria in MgSO4-H2O solutions under pressures up to four kbars. An initial report was presented two years ago. This abstract summarizes our results to date including studies of solutions containing 15.3 percent, 17 percent, and 22 percent MgSO4. Briefly, these results demonstrate that increasing pressure causes the eutectic and peritectic compositions to shift to much lower concentrations of magnesium sulfate, and the existence of a new low-density phase of magnesium sulfate hydrate.

  7. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Effect of alpha-naphthalene acetic acid and thidiazuron on seedling of economic crops grown in endosulfan sulfate-spiked sand.

    PubMed

    Somtrakoon, Khanitta; Kruatrachue, Maleeya

    2014-11-01

    The effect of two plant growth regulators, alpha-naphthalene acetic acid (NAA) and thidiazuron (TDZ) on the growth of sweet corn (Zea mays), cowpea (Vigna sinensis) and cucumber (Cucurmis sativus) seedling planted in 1-100 mg kg(-1) of endosulfan sulfate spiked sand was investigated. Endosulfan sulfate had no apparent toxicity as seedlings of these crop plants grew normally in endosulfan sulfate spiked sand. Concentration of endosulfan sulfate in sand affected the response of seedling induction by NAA or TDZ. Induction of crop seeds by NAA or TDZ did not promote growth of sweet corn, cowpea and cucumber to an appreciable extent. Both plant regulators at concentration of 10 mg l(-1) seemed to exert adverse effect on crop seedling. TDZ decreased shoot length, root length and chlorophyll contents in leaves of sweet corn and cowpea growing in endosulfan sulfate spiked sand. In contrast, NAA was not toxic and promoted growth of sweet corn and cowpea seedling. However, cucumber was affected by NAA and TDZ more than other plants. TDZ significantly decreased biomass and root length of cucumber. Also, NAA significantly decreased cucumber root length and tended to increase cucumber root dried weight when grown in 100 mg kg(-1) of endosulfan sulfate spiked sand. PMID:25522501

  9. Laboratory Hydrothermal Alteration of Basaltic Tephra by Acid Sulfate Solutions: An Analog Process for Martian Weathering

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.

    2003-01-01

    The objective of this study is to conduct simulated Mars-like weathering experiments in the laboratory to determine the weathering products that might form during oxidative, acidic weathering of Mars analog materials.

  10. COMPARISON OF PHYLOGENETIC RELATIONSHIPS BASED ON PHOSPHOLIPID FATTY ACID PROFILES AND RIBOSOMAL RNA SEQUENCE SIMILARITIES AMONG DISSIMILATORY SULFATE-REDUCING BACTERIA

    EPA Science Inventory

    Twenty-five isolates of dissimilatory sulfate-reducing bacteria were clustered based on similarity analysis of their phospholipid ester-linked fatty acids (PLFA). f these, twenty-three showed the phylogenetic relationships based on the sequence similarity of their 16S rRNA direct...

  11. Effectiveness of copper sulfate, potassium permanganate, and peracetic acid to reduce mortality and infestation of Ichthyobodo nector in channel catfish Ictalurus punctatus (Rafinesque 1818)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyobodo necator is a single celled bi-flagellate parasite, and in high density can causes significant mortality in young fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated con...

  12. IMPACT OF PRIMARY SULFATE AND NITRATE EMISSIONS FROM SELECTED MAJOR SOURCES. PHASE 2: SULFURIC ACID PLANT AND PULP AND PAPER MILL

    EPA Science Inventory

    The report covers Phase two of a two phase study of the near source impacts of primary sulfate and nitrate emission sources. The phase two portion of the study was an investigation of the impact of the emissions from a sulfuric acid plant, and a pulp and paper mill. The study was...

  13. Phyllosilicate and Hydrated Sulfate Deposits in Meridiani

    NASA Technical Reports Server (NTRS)

    Wiseman, S. M.; Avidson, R. E.; Murchie, S.; Poulet, F.; Andrews-Hanna, J. C.; Morris, R. V.; Seelos, F. P.

    2008-01-01

    Several phyllosilicate and hydrated sulfate deposits in Meridiani have been mapped in detail with high resolution MRO CRISM [1] data. Previous studies have documented extensive exposures of outcrop in Meridiani (fig 1), or etched terrain (ET), that has been interpreted to be sedimentary in origin [e.g., 2,3]. These deposits have been mapped at a regional scale with OMEGA data and show enhanced hydration (1.9 m absorption) in several areas [4]. However, hydrated sulfate detections were restricted to valley exposures in northern Meridiani ET [5]. New high resolution CRISM images show that hydrated sulfates are present in several spatially isolated exposures throughout the ET (fig 1). The hydrated sulfate deposits in the valley are vertically heterogeneous with layers of mono and polyhydrated sulfates and are morphologically distinct from other areas of the ET. We are currently mapping the detailed spatial distribution of sulfates and searching for distinct geochemical horizons that may be traced back to differential ground water recharge and/or evaporative loss rates. The high resolution CRISM data has allowed us to map out several phyllosilicate deposits within the fluvially dissected Noachian cratered terrain (DCT) to the south and west of the hematite-bearing plains (Ph) and ET (fig 1). In Miyamoto crater, phyllosilicates are located within 30km of the edge of Ph, which is presumably underlain by acid sulfate deposits similar to those explored by Opportunity. The deposits within this crater may record the transition from fluvial conditions which produced and/or preserved phyllosilicates deposits to a progressively acid sulfate dominated groundwater system in which large accumulations of sulfate-rich evaporites were deposited .

  14. Combined Sulfur K-edge XANES Spectroscopy and Stable Isotope Analysis of Fulvic Acids and Groundwater Sulfate Identify Sulfur Cycling in a Karstic Catchment Area

    SciTech Connect

    Einsiedl,F.; Schafer, T.; Northrup, P.

    2007-01-01

    Chemical and isotope analyses on groundwater sulfate, atmospheric deposition sulfate and fulvic acids (FAs) associated sulfur were used to determine the S cycling in a karstic catchment area of the Franconian Alb, Southern Germany. Sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy provided information on the oxidation state and the mechanism of the incorporation of sulfur in FAs. During base flow {delta}{sup 34}S values of groundwater sulfate were slightly depleted to those of recent atmospheric sulfate deposition with mean amount-weighted {delta}{sup 34}S values of around + 3{per_thousand}. The {delta}{sup 18}O values of groundwater sulfate shifted to lower values compared to those of atmospheric deposition and indicated steadiness from base flow to peak flow. The reduced sulfur species (S{sub -1}/thiol; S{sub 0}/thiophene, disulfide, S{sub +2}2/sulfoxide) of soil FAs averaged around 49% of the total sulfur and {delta}{sup 34}S value in FAs was found to be 0.5{per_thousand}. The formation of polysulfides and thiols in FAs in concert with a decreasing isotope value of {delta}{sup 34}S in FAs with respect to those of atmospheric deposition sulfate suggests oxidation of H{sub 2}S, enriched in the {sup 32}S isotope, with organic material. The depletion of {delta}{sup 18}O-SO{sub 4}{sup 2-} by several per mil in groundwater sulfate with respect to those of atmospheric deposition is, therefore, consistent with the hypothesis that SO{sub 4}{sup 2-} has been cycled through the organic S pool as well as that groundwater sulfate is formed by oxidation of H{sub 2}S with organic matter in the mineral soil of the catchment area.

  15. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies. PMID:21419855

  16. Functional chondroitin sulfate from Enteroctopus dofleini containing a 3-O-sulfo glucuronic acid residue.

    PubMed

    Higashi, Kyohei; Okamoto, Yusuke; Mukuno, Ann; Wakai, Jun; Hosoyama, Saori; Linhardt, Robert J; Toida, Toshihiko

    2015-12-10

    There are several reports that chondroitin sulfate containing K-type units [GlcA (3S)-GalNAc (4S)] exhibiting similar levels of neurite outgrowth promoting activities as CS having high amounts of B-, D- and E-type disulfated disaccharides. Although CS containing K-type units possess important biological activities, there are only few sources, such as king crab cartilage, squid cartilage or sea cucumber. In this study, CS containing 13.9% of K-type units was found in octopus (Enteroctopus dofleini) cartilage using different substrate specificities of chondroitinases. The 2D NMR spectra showed cross-peaks assigned to protons on sugar ring of GlcA (3S), demonstrating the presence of K-type units in octopus CS. Furthermore, proportion of fucosylated disaccharide units in octopus CS was very low. Octopus CS showed high affinity for growth factors and stimulated neurite outgrowth of hippocampal neurons, similar to the activity of squid CS-E. These results strongly suggest that octopus cartilage is a rich source of CS-K and has important biological activities. PMID:26428158

  17. Dodecyl sulfate-hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water.

    PubMed

    Zhao, Hongting; Nagy, Kathryn L

    2004-06-15

    A series of hybrid organic-inorganic nanocomposite materials was synthesized by three different procedures using sodium dodecyl sulfate (DDS) and magnesium-aluminum layered double hydroxide (Mg/Al LDH with a Mg/Al molar ratio of 2 to 5). Both the pH of the exchange medium (6.5 to 10) and the Mg/Al molar ratio of the LDH affected the basal spacing, the content of DDS retained and the orientation of the DDS chains within the interlamellar space. For LDH with higher charge density (Mg/Al=2 and 3), DDS molecules likely formed a perpendicular monolayer within the LDH interlayer and the solution pH had little effect on the basal spacing, with a mean and standard deviation of 25.5+/-0.4 A. However, for LDH with lower charge density (Mg/Al=4 and 5), DDS molecules more likely formed an interpenetrating bilayer, and the basal spacing significantly increased with increasing pH, with a mean and standard deviation of 32.7+/-5.2 A. Sorption of trichloroethylene and tetrachloroethylene by DDS-LDH varied with synthesis conditions, LDH type and DDS configuration in the interlayer. DDS-Mg(3)Al-LDH had the highest affinity for both trichloroethylene and tetrachloroethylene in water, either comparable to or as much as four times higher than other clay-derived sorbents, followed by DDS-Mg(4)Al-LDH and DDS-Mg(5)Al-LDH. DDS-Mg(2)Al-LDH had the lowest sorption affinity although the highest amount of DDS. The pH of the exchange solution also affected the amount of DDS retained by the LDH as well as the sorption efficiency. Mg(3)Al-LDH has a charge equivalent area of 32.2 A(2)/charge, which allows the formation of optimal DDS configuration within its interlayer, thus resulting in the highest affinity for the chlorinated compounds. The DDS-Mg/Al-LDHs can be easily synthesized either ex situ or in situ at low temperature, indicating the feasibility of practical applications. The results obtained by controlling the synthesis procedure suggest that different arrangements of DDS molecules in the

  18. Differentiating atmospheric and mineral sources of sulfur during snowmelt using δ 34S, 35S activity, and δ 18O of sulfate and water as tracers

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Mayer, B.; Mitchell, M. J.; Michel, R. L.; Bailey, S.; Kendall, C.

    2003-12-01

    The biogeochemical cycling of sulfur was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a combination of isotopic, chemical, and hydrometric measurements. The snowpack and 10 streams of varying size and land use were sampled for sulfate concentrations and isotopic analyses of 35S, δ 34S, and δ 18O of sulfate. Values of δ 18O of water were measured at one of the streams. Apportionment of atmospheric and mineral S sources based on δ 34S was possible at 7 of the 10 streams. Weathering of S-containing minerals was a major contributor to sulfate flux in streamwater, but atmospheric contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. In contrast, δ 18Osulfate values of streamwater remained significantly lower than those of atmospheric sulfate throughout the melt period, indicating that atmospheric sulfate undergoes microbial redox reactions in the soil that replace the oxygen of atmospheric sulfate with isotopically lighter oxygen from soil water. Streamwater 35S activities were low relative to those of the snowpack; the youngest 35S-ages of the atmospheric S component in each of the 7 streams ranged from 184 to 320 days. Atmospheric S contributions to streamwater, as determined by δ 34S values, co-varied both with 35S activity and new water contributions as determined by δ 18Owater. However, the δ 18Osulfate and 35S ages clearly show that this new water carries very little of the atmospheric sulfate entering with the current snowmelt to the stream. Most incoming atmospheric sulfate first cycles through the organic soil S pool and ultimately reaches the stream as pedogenic sulfate.

  19. Oxidative stress markers, secondary bile acids and sulfated bile acids classify the clinical liver injury type: Promising diagnostic biomarkers for cholestasis.

    PubMed

    Masubuchi, Noriko; Sugihara, Masahiro; Sugita, Tomonori; Amano, Katsushi; Nakano, Masanori; Matsuura, Tomokazu

    2016-08-01

    Clinicians sometimes encounter difficulty in choosing a therapeutic strategy due to the uncertainty regarding the type of liver injury. In particular, cholestasis is difficult to diagnose by conventional markers at an early stage of disease. The aim of this study was to identify promising biomarkers for distinguishing the symptom-based types of liver injury (e.g. hepatocellular injury, cholestasis), which was derived from a rigorously statistical perspective. The associations between diagnostic biomarkers (e.g. bile acid components, oxidative stress markers and liver fibrosis markers) and the liver injury types were assessed by a multiple logistic regression analysis using 304 blood samples from patients with liver disease. As a result, reductions in the lithocholic acid (LCA) and deoxycholic acid (DCA) levels, and elevation of the serum sulfated bile acid (SSBA), liver fibrosis marker IV collagen (type IV collagen), hyaluronic acid (HA) and reactive oxygen species (ROS) levels were all significantly associated with cholestasis. On the other hand, elevations in the LCA and type IV collagen levels, and a reduction in the ursodeoxy cholic acid (UDCA) level, were significantly associated with hepatocellular injury. The receiver operating characteristic (ROC) analyses showed that the largest area under the ROC curve (AUC) was found for ROS, followed by DCA, HA, LCA, SSBA and type IV collagen in the cholestatic-type cases. These results indicated that ROS, the secondary bile acid levels such as DCA and LCA, and SSBA are promising biomarkers for cholestasis and for classifying the type of liver injuries. This comprehensive approach will allow for an accurate diagnosis, which will facilitate the selection of an appropriate therapy at the onset of disease. PMID:26325587

  20. Sulfate-Reducing Bioreactors For The Treatment Of Acid Mine Drainage

    EPA Science Inventory

    Mine influenced water (MIW) affects a large portion of mountainous surface water bodies in the western United States as well as elsewhere. In this study, the purpose of this applied research is to compare different substrates used in biochemical reactors (BCRs) field test cells ...

  1. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    SciTech Connect

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-15

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln{sub 2}(phen){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub n} (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]{sub n} (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO{sub 4}{sup 2−} anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of {sup 5}D{sub 0}→{sup 7}F{sub J} (J=0–4) of the Eu(III)

  2. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  3. Stannous sulfate as an electrolyte additive for lead acid battery made from a novel ultrafine leady oxide

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Liu, Jianwen; Yang, Danni; Yuan, Xiqing; Li, Lei; Zhu, Xinfeng; Zhang, Wei; Hu, Yucheng; Sun, Xiaojuan; Liang, Sha; Hu, Jingping; Kumar, R. Vasant; Yang, Jiakuan

    2015-07-01

    The effects of SnSO4 as an electrolyte additive on the microstructure of positive plate and electrochemical performance of lead acid battery made from a novel leady oxide are investigated. The novel leady oxide is synthesized through leaching of spent lead paste in citric acid solution. The novel leady oxides are used to prepare working electrode (WE) subjected to electrochemical cyclic voltammetry (CV) tests. Moreover, the novel leady oxides are used as active materials of positive plate assembled as a testing battery of 1.85 A h capacity. In CV tests, SEM/EDX results show that the major crystalline phase of the paste in WE after CV cycles is PbSO4. The larger column-shaped PbSO4 crystals easily generate in the paste of WE without an electrolyte additive of SnSO4. However, PbSO4 crystals significantly become smaller with the addition of SnSO4 in the electrolyte. In batteries testing, SEM results show that an electrolyte additive of SnSO4 could effectively decrease PbO2 particle size in the positive active materials of the teardown battery at the end of charging procedure. It is indicated that an electrolyte additive of SnSO4 could have a positive influence on restraining larger particles of irreversible sulfation in charge/discharge cycles of battery testing.

  4. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate.

    PubMed

    Chen, Dong; Zhao, Tong; Doyle, Michael P

    2015-08-17

    The efficacy of levulinic acid (LVA) plus sodium dodecyl sulfate (SDS) to remove or inactivate Listeria monocytogenes, Salmonella Typhimurium, and Shiga toxin-producing Escherichia coli (STEC) in biofilms on the surface of stainless steel coupons was evaluated. Five- or six-strain mixtures (ca. 9.0 log CFU/ml) of the three pathogens were separately inoculated on stainless steel coupons. After incubation at 21 °C for 72 h, the coupons were treated for 10 min by different concentrations of LVA plus SDS (0.5% LVA+0.05% SDS, 1% LVA+0.1% SDS, and 3% LVA+2% SDS) and other commonly used sanitizers, including a commercial quaternary ammonium-based sanitizer (150 ppm), lactic acid (3%), sodium hypochlorite (100 ppm), and hydrogen peroxide (2%). The pathogens grew in the biofilms to ca. 8.6 to 9.3 log CFU/coupon after 72 h of incubation. The combined activity of LVA with SDS was bactericidal in biofilms for cells of the three pathogens evaluated, with the highest concentrations (3% LVA+2% SDS) providing the greatest log reduction. Microscopic images indicated that the cells were detached from the biofilm matrix and the integrity of cell envelopes were decreased after the treatment of LVA plus SDS. This study is conducive to better understanding the antimicrobial behavior of LVA plus SDS to the foodborne pathogens within biofilms. PMID:25950851

  5. Study of the dose response of the system ferrous ammonium sulfate-sucrose-xylenol orange in acid aqueous solution

    NASA Astrophysics Data System (ADS)

    Juarez-Calderon, J. M.; Negron-Mendoza, A.; Ramos-Bernal, S.

    2014-11-01

    An aqueous solution of ammonium ferrous sulfate-sucrose-xylenol orange in sulfuric acid (FSX) is proposed as a dosimetric system for the processes of gamma irradiation in a range between 0.3 and 6 Gy. This system is based on the indirect oxidation of ferrous ion by an organic compound (sucrose) to ferric ion and on the formation of a color complex of Fe3+ in an acidic medium with xylenol orange (a dye). After gamma radiation, an observable change occurs in the color of the system. Irradiation was executed at three different temperatures (13 °C, 22 °C, and 40 °C). A spectrometric readout method at 585 nm was employed to evaluate the system's dose response. In all of the cases analyzed, the responses had a linear behavior, and a slight effect of irradiation temperature was observed. Post-irradiation response was also evaluated and showed the stability of the solutions 24 h after the irradiation. The results obtained suggest that FSX might be used as a dosimeter for low doses of gamma irradiation because it provides a stable signal, good reproducibility, and an accessible technique for analysis.

  6. Hyaluronic acid and glucosamine sulfate for adult Kashin-Beck disease: a cluster-randomized, placebo-controlled study.

    PubMed

    Xia, Chuan-Tao; Yu, Fang-Fang; Ren, Feng-Ling; Fang, Hua; Guo, Xiong

    2016-05-01

    To evaluate the efficacy and safety of hyaluronic acid (HA) and glucosamine sulfate (GS) in alleviating symptoms and improving function of Kashin-Beck disease (KBD). A cluster-randomized, placebo-controlled trial was conducted in 150 patients with KBD. Participants were randomly allocated to receive intra-articular injection hyaluronic acid (IAHA) for 4 weeks, oral GS for 12 weeks, or oral placebo for 12 weeks. The primary outcome measures were 20 % and 50 % reductions in pain from baseline measured by the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index. Secondary outcome measures included WOMAC index parameters of pain, stiffness, and physical function. The third outcome measure was mean change in Lequence score. HA and GS were effective in reducing WOMAC pain by 20 % (differences of 43.5 % and 25.4 %) and 50 % (differences of 43.4 % and 26.9 %). Both HA and GS significantly reduced WOMAC pain, WOMAC stiffness, and WOMAC normalized score compared with placebo group (all P < 0.05). IAHA was significantly more effective than oral GS in improving WOMAC normalized score (P = 0.034), pain (P = 0.002), stiffness (P = 0.018), and function (P = 0.044). The results indicate that HA and GS were more effective than placebo in treating KBD and HA was more effective than GS. PMID:25388643

  7. 75 FR 78243 - Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... and bactericide that is used to control fungi and bacteria in stored hay and grains, inhibit bacterial growth in drinking water for livestock and poultry, control mold and fungi in poultry litter and...

  8. Processes at the sediment water interface after addition of organic matter and lime to an acid mine pit lake mesocosm

    SciTech Connect

    Matthias Koschorreck; Elke Bozau; Rene Froemmichen; Walter Geller; Peter Herzsprung; Katrin Wendt-Potthoff

    2007-03-01

    A strategy to neutralize acidic pit lakes was tested in a field mesocosm of 4500 m{sup 3} volume in the Acidic Pit Mine Lake 111 in the Koyne-Plessa lignite mining district of Lusatia, Germany. Carbokalk, a byproduct from sugar production, and wheat straw was applied near to the sediment surface to stimulate in lake microbial alkalinity generation by sulfate and iron reduction. The biogeochemical processes at the sediment-water interface were studied over 3 years by geochemical monitoring and an in situ microprofiler. Substrate addition generated a reactive zone at the sediment surface where sulfate and iron reduction proceeded. Gross sulfate reduction reached values up to 10 mmol m{sup -2} d{sup -1}. The neutralization rates between 27 and 0 meq m{sup -2} d{sup -1} were considerably lower than in previous laboratory experiments. The precipitation of ferric iron minerals resulted in a growing acidic sediment layer on top of the neutral sediment. In this layer sulfate reduction was observed but iron sulfides could not precipitate. In the anoxic sediment H{sub 2}S was oxidized by ferric iron minerals. H{sub 2}S partly diffused to the water column where it was oxidized. As a result the net formation of iron sulfides decreased after 1 year although gross sulfate reduction rates continued to be high. The rate of iron reduction exceeded the sulfate reduction rate, which resulted in high fluxes of ferrous iron out of the sediment. 46 refs., 6 figs., 1 tab.

  9. Isotopic evidence for water-column denitrification and sulfate reduction at the end-Guadalupian (Middle Permian)

    NASA Astrophysics Data System (ADS)

    Saitoh, Masafumi; Ueno, Yuichiro; Isozaki, Yukio; Nishizawa, Manabu; Shozugawa, Katsumi; Kawamura, Tetsuya; Yao, Jianxin; Ji, Zhansheng; Takai, Ken; Yoshida, Naohiro; Matsuo, Motoyuki

    2014-12-01

    The total nitrogen and pyrite sulfur isotopic compositions of the Guadalupian-Lopingian (Middle-Upper Permian) shelf carbonates are analyzed at Chaotian in northern Sichuan, South China, to clarify the environmental changes in the relatively deep disphotic zone (generally deeper than 150 m) in the ocean at the end-Guadalupian, focusing on the possible relationships with the deep-sea oxygen depletion and the shallow-sea extinction. At Chaotian, the Guadalupian Maokou Formation and the Early Lopingian Wujiaping Formation are primarily composed of bioclastic limestone of shallow-water facies, although the topmost part of the Maokou Formation (ca. 11 m thick) is composed of bedded black mudstone and chert that was deposited on the disphotic slope/basin under anoxic conditions. Substantially high δ15N values of total nitrogen (up to + 14‰) in the topmost Maokou Formation of the deep-water facies indicate water-mass denitrification. In the same disphotic interval, the consistently low δ34S values of pyrite (ca. - 37‰) suggest sulfate reduction in the sulfate-rich water column. The new nitrogen and sulfur isotopic records at Chaotian indicate the enhanced anaerobic respiration in the oxygen-depleted disphotic zone in the Late Guadalupian in northwestern South China. The active water-column sulfate reduction likely resulted in the emergence of a sulfidic deep-water mass on the disphotic slope/basin, which is supported by the high proportions of pyrite Fe to highly reactive Fe in the rocks shown using 57Fe Mössbauer spectroscopy. The anaerobic respiration in the disphotic zone at the end-Guadalupian may have been enhanced by an expansion of the oxygen minimum zone (OMZ) caused by the increased primary productivity in the surface oceans; the OMZ expansion may have corresponded to the onset of prolonged oxygen depletion in the deep sea. The clear stratigraphic relationship at Chaotian shows the emergence of the sulfidic deep-waters preceding the extinction, implying

  10. Thermodynamics of micelle formation in a water-alcohol solution of sodium tetradecyl sulfate

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-01-01

    The effects of addition of ethanol and propan-1-ol on sodium tetradecyl sulfate micelle formation in an aqueous solution are studied via microprobe fluorescence microscopy and conductometry. The critical micelle concentration, quantitative characteristics of micelles, and thermodynamic parameters of micelle formation are determined. Addition of 5-15 vol % of ethanol or 5-10 vol % of propan-1-ol is shown to result in a lower critical micelle concentration than in the aqueous solution, and in the formation of mixed spherical micelles whose sizes and aggregation numbers are less than those for the systems without alcohol. The contribution from the enthalpy factor to the free energy of sodium tetradecyl sulfate micelle formation is found to dominate in mixed solvents, in contrast to aqueous solutions.

  11. Coefficients of caffeine distribution in aliphatic alcohol-ammonium sulfate-water systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-11-01

    The extraction of caffeine with aliphatic alcohols C3-C9 from aqueous solutions in the presence of a salting-out agent (ammonium sulfate) is studied. Quantitative characteristics of extraction are calculated: the distribution coefficients ( D) and the degree of recovery ( R, %). Relations are found between log D of caffeine and the length of the hydrocarbon radical in the alcohol molecule, along with certain physicochemical properties of the extragents.

  12. Factors controlling water movement in acid spoils

    SciTech Connect

    Evangelou, V.P.; Grove, J.H.; Phillips, R.E.

    1982-12-01

    The rate of water movement through toxic spoils plays a major role in reclamation. The toxic chemical constituents found in spoils need to be leached beyond the six inch depth (the usual depth of lime incorporation) since they can easily move upward during periods of high evapotranspiration. The rate of water infiltration plays a role in effective utilization of rain water, and conversely, the amount of surface runoff dictates the degree of surface erosion. Underground water quality may be affected by rates of water movement through a toxic spoil zone. Factors that control water movement through acid spoils were investigated through the use of a column one meter long and 8.0 cm in internal diameter. The maximum hydraulic conductivity was observed in the upper portion of the column where minimum salt buildup occurred. The hydraulic conductivity in this region was 0.5 cm/hr. In the middle portion of the column where a salty (14.0 mmhos/cm) solution was encountered, the hydraulic conductivity was 0.08 cm/hr. In the lower portion of the column where the maximum salt buildup took place (16.8 mmhos/cm), the hydraulic conductivity was found to be 0.03 cm/hr. Similar results were obtained with a small column experiment using calcite and dolomite as different lime sources. The hydraulic conductivity in the dolomitic small column remained relatively unchanged with time and salt depletion.

  13. Equilibrium phase diagrams and water absorption properties of aqueous mixtures of malonic acid and inorganic salts.

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Salgado-Olea, G.

    2006-12-01

    Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. Solubility in water, water activity of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid with ammonium sulfate, ammonium bisulfate, and ammonium nitrate at 25oC over the full range of composition (from 0 wt% to the solubility limit of the mixture components). The data was used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity. Measured water activity of liquid solutions was compared with an extended Zdanovskii-Stokes-Robinson (ZSR) expression, which then was used to predict water absorption of the mixtures.

  14. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. PMID:24779765

  15. Freshwater Plants Synthesize Sulfated Polysaccharides: Heterogalactans from Water Hyacinth (Eicchornia crassipes)

    PubMed Central

    Dantas-Santos, Nednaldo; Gomes, Dayanne Lopes; Costa, Leandro Silva; Cordeiro, Sara Lima; Costa, Mariana Santos Santana Pereira; Trindade, Edvaldo Silva; Franco, Célia Regina Chavichiolo; Scortecci, Kátia Castanho; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira

    2012-01-01

    Sulfated polysaccharides (SP) are found mainly in seaweeds and animals. To date, they have only been found in six plants and all inhabit saline environments. Furthermore, there are no reports of SP in freshwater or terrestrial plants. As such, this study investigated the presence of SP in freshwaters Eichhornia crassipes, Egeria densa, Egeria naja, Cabomba caroliniana, Hydrocotyle bonariensis and Nymphaea ampla. Chemical analysis identified sulfate in N. ampla, H. bonariensis and, more specifically, E. crassipes. In addition, chemical analysis, FT-IR spectroscopy, histological analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDXA), as well as agarose gel electrophoresis detected SP in all parts of E. crassipes, primarily in the root (epidermis and vascular bundle). Galactose, glucose and arabinose are the main monosaccharides found in the sulfated polysaccharides from E. crassipes. In activated partial thromboplastin time (APTT) test, to evaluate the intrinsic coagulation pathway, SP from the root and rhizome prolonged the coagulation time to double the baseline value, with 0.1 mg/mL and 0.15 mg/mL, respectively. However, SP from the leaf and petiole showed no anticoagulant activity. Eichornia SP demonstrated promising anticoagulant potential and have been selected for further studies on bioguided fractionation; isolation and characterization of pure polysaccharides from this species. Additionally in vivo experiments are needed and are already underway. PMID:22312297

  16. [The use of potassium-magnesium-sodium chloride-sulfate mineral water and direct current (experimental research)].

    PubMed

    Mishchuk, A V; Gereliuk, I P

    1989-01-01

    To evaluate a therapeutic potential of a test treatment of chronic hepatitis with mineral water followed by hepatic galvanization, the authors have conducted an experimental study on 38 rats. The animals were divided into 4 experimental and 4 control groups. Experimental animals of groups 1 and 2 underwent galvanization of the liver 1 hour after the intake of mineral water in combination with 22Na-labelled sodium chloride, of group 3 in combination with 35S-labelled sodium sulfate, of group 4--with labelled rubidium. Control animals were treated according to the same schedule but galvanization. The study of the hepatic tissue of the sacrificed rats evidenced that oral administration of mineral water followed in an hour by hepatic galvanization results in a significant elevation of hepatic content of labelled sulphur and rubidium, whereas the level of labelled sodium remained unchanged. The data obtained by the authors need to be confirmed in further clinical trials. PMID:2800438

  17. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, S.; Lawson, D.B.

    1994-02-15

    A process for recovering zinc-rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered by distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10 C, separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream. 1 figure.

  18. Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust

    DOEpatents

    Zaromb, Solomon; Lawson, Daniel B.

    1994-01-01

    A process for recovering zinc/rich and iron-rich fractions from the baghouse dust that is generated in various metallurgical operations, especially in steel-making and other iron-making plants, comprises the steps of leaching the dust by hot concentrated sulfuric acid so as to generate dissolved zinc sulfate and a precipitate of iron sulfate, separating the precipitate from the acid by filtration and washing with a volatile liquid, such as methanol or acetone, and collecting the filtered acid and the washings into a filtrate fraction. The volatile liquid may be recovered distillation, and the zinc may be removed from the filtrate by alternative methods, one of which involves addition of a sufficient amount of water to precipitate hydrated zinc sulfate at 10.degree. C., separation of the precipitate from sulfuric acid by filtration, and evaporation of water to regenerate concentrated sulfuric acid. The recovery of iron may also be effected in alternative ways, one of which involves roasting the ferric sulfate to yield ferric oxide and sulfur trioxide, which can be reconverted to concentrated sulfuric acid by hydration. The overall process should not generate any significant waste stream.

  19. Raman spectroscopy of the system iron(III)-sulfuric acid-water: an approach to Tinto River's (Spain) hydrogeochemistry.

    PubMed

    Sobron, P; Rull, F; Sobron, F; Sanz, A; Medina, J; Nielsen, C J

    2007-12-15

    Acid mine drainage is formed when pyrite (FeS(2)) is exposed and reacts with air and water to form sulfuric acid and dissolved iron. Tinto River (Huelva, Spain) is an example of this phenomenon. In this study, Raman spectroscopy has been used to investigate the speciation of the system iron(III)-sulfuric acid-water as an approach to Tinto River's aqueous solutions. The molalities of sulfuric acid (0.09 mol/kg) and iron(III) (0.01-1.5 mol/kg) were chosen to mimic the concentration of the species in Tinto River waters. Raman spectra of the solutions reveal a strong iron(III)-sulfate inner-sphere interaction through the nu(1) sulfate band at 981 cm(-1) and its shoulder at 1005 cm(-1). Iron(III)-sulfate interaction may also be facilitated by hydrogen bonds and monitored in the Raman spectra through the symmetric stretching band of bisulfate at 1052 cm(-1) and a shoulder at 1040 cm(-1). Other bands in the low-frequency region of the Raman spectra are attributed to the hydrogen-bonded complexes formation as well. PMID:17869164

  20. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006

  1. Coupled ferric oxides and sulfates on the Martian surface.

    PubMed

    Bibring, J-P; Arvidson, R E; Gendrin, A; Gondet, B; Langevin, Y; Le Mouelic, S; Mangold, N; Morris, R V; Mustard, J F; Poulet, F; Quantin, C; Sotin, C

    2007-08-31

    The Mars Exploration Rover (MER), Opportunity, showed that layered sulfate deposits in Meridiani Planum formed during a period of rising acidic ground water. Crystalline hematite spherules formed in the deposits as a consequence of aqueous alteration and were concentrated on the surface as a lag deposit as wind eroded the softer sulfate rocks. On the basis of Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) orbital data, we demonstrate that crystalline hematite deposits are associated with layered sulfates in other areas on Mars, implying that Meridiani-like ground water systems were indeed widespread and representative of an extensive acid sulfate aqueous system. PMID:17673623

  2. Sulfate and conductivity as field indicators for detecting coal-mining pollution.

    PubMed

    Rikard, M; Kunkle, S

    1990-07-01

    A water quality assessment was conducted on three Appalachian streams polluted by coal mining at the Big South Fork National River and Recreation Area, Tennessee and Kentucky. Results showed that sulfate was an excellent parameter for detecting the effects of coal mining and that sulfate analyses used in conjunction with conductivity readings provided the best detection index. Acidity and pH readings were relatively insensitive indicators, reflecting the mining pollution only after sulfate concentrations already indicated severe pollution levels. PMID:24243428

  3. Use of a passive bioreactor to reduce water-borne plant pathogens, nitrate, and sulfate in greenhouse effluent.

    PubMed

    Gruyer, Nicolas; Dorais, Martine; Alsanius, Beatrix W; Zagury, Gérald J

    2013-01-01

    The goal of this study was to evaluate the use of passive bioreactors to reduce water-borne plant pathogens (Pythium ultimum and Fusarium oxysporum) and nutrient load (NO(-) 3 and SO(2-) 4) in greenhouse effluent. Sterilized and unsterilized passive bioreactors filled with a reactive mixture of organic carbon material were used in three replicates. After a startup period of 2 (sterilized) or 5 (unsterilized) weeks, the bioreactor units received for 14 weeks a reconstituted commercial greenhouse effluent composed of 500 mg L(-1) SO(2-) 4 and 300 mg L(-1) NO(-) 3 and were inoculated three times with P. ultimum and F. oxysporum (10(6) CFU mL(-1)). Efficacy in removing water-borne plant pathogens and nitrate reached 99.9% for both the sterilized and unsterilized bioreactors. However, efficacy in reducing the SO(2-) 4 load sharply decreased from 89% to 29% after 2 weeks of NO(-) 3-supply treatment for the unsterilized bioreactors. Although SO(2-) 4 removal efficacy for the sterilized bioreactors did not recover after 4 weeks of NO(-) 3-supply treatment, the unsterilized bioreactor nearly reached a similar level of SO(2-) 4 removal after 4 weeks of NO(-) 3-supply treatment compared with affluent loaded only with SO(2-) 4, where no competition for the carbohydrate source occurred between the denitrification process and sulfate-reducing bacteria activity. Performance differences between the sterilized and unsterilized bioreactors clearly show the predominant importance of sulfate-reducing bacteria. Consequently, when sulfate-reducing bacteria reach their optimal activity, passive bioreactors may constitute a cheap, low-maintenance method of treating greenhouse effluent to recycle wastewater and eliminate nutrient runoff, which has important environmental impacts. PMID:23947714

  4. IMPORTANCE OF GROUNDWATER SULFATE TO ACIDIFICATION IN THE GOOSE RIVER WATERSHED, MAINE

    EPA Science Inventory

    The role of groundwater sulfate discharge to ponds and streams within the Goose River basin (33.3 km2) is examined. While airborne sulfate disposition has declined, acidity in surface waters locally remains elevated. Monthly SO2-4 analyses (1999-2...

  5. Modeling coupled sorption and transformation of 17β-estradiol-17-sulfate in soil-water systems

    NASA Astrophysics Data System (ADS)

    Bai, Xuelian; Shrestha, Suman L.; Casey, Francis X. M.; Hakk, Heldur; Fan, Zhaosheng

    2014-11-01

    Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17β-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R2adj = 0.93 and d = 0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.

  6. Effect of Magnesium Ion on the Zinc Electrodeposition from Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Xie, Gang; Yu, Xiao-Hua; Li, Rong-Xing; Zeng, Gui-Sheng

    2012-02-01

    The effects of Mg2+ ion on the zinc electrodeposition were systematically investigated in sulfuric acid solution through the characterizations of current efficiency (CE), power consumption (PC), deposit morphology, cathodic polarization, and cyclic voltammetry. The results demonstrate that there is no significant influence on CE and PC in the Mg2+ concentration range of 1 to 10 g L-1, but with a drastic decrease of the CE and rapid increase of PC at Mg2+ ion concentration above 15 g L-1. Based on the morphology observation and polarization curves, the presence of Mg2+ ions could also induce the coarse surface on the electrodeposited zinc accompanying the enhancement of the cathodic polarization, which becomes more distinct at a high concentration above 15 g L-1. Furthermore, hydrogen evolution could be promoted with the existence of Mg2+ ions according to cyclic voltammograms.

  7. Harmful algal bloom removal and eutrophic water remediation by commercial nontoxic polyamine-co-polymeric ferric sulfate-modified soils.

    PubMed

    Dai, Guofei; Zhong, Jiayou; Song, Lirong; Guo, Chunjing; Gan, Nanqin; Wu, Zhenbin

    2015-07-01

    Harmful algal bloom has posed great threat to drinking water safety worldwide. In this study, soils were combined with commercial nontoxic polyamine poly(epichlorohydrin-dimethylamine) (PN) and polymeric ferric sulfate (PFS) to obtain PN-PFS soils for Microcystis removal and eutrophic water remediation under static laboratory conditions. High pH and temperature in water could enhance the function of PN-PFS soil. Algal removal efficiency increased as soil particle size decreased or modified soil dose increased. Other pollutants or chemicals (such as C, P, and organic matter) in eutrophic water could participate and promote algal removal by PN-PFS soil; these pollutants were also flocculated. During PN-PFS soil application in blooming field samples, the removal efficiency of blooming Microcystis cells exceeded 99 %, the cyanotoxin microcystins reduced by 57 %. Water parameters (as TP, TN, SS, and SPC) decreased by about 90 %. CODMn, PO4-P, and NH4-N also sharply decreased by >45 %. DO and ORP in water improved. Netting and bridging effects through electrostatic attraction and complexation reaction could be the two key mechanisms of Microcystis flocculation and pollutant purification. Considering the low cost of PN-PFS soil and its nontoxic effect on the environment, we proposed that this soil combination could be applied to remove cyanobacterial bloom and remediate eutrophic water in fields. PMID:25752635

  8. Studies on the fractionation of equine antivenom IgG by combinations of ammonium sulfate and caprylic acid.

    PubMed

    Eursakun, Sukanya; Simsiriwong, Pavinee; Ratanabanangkoon, Kavi

    2012-11-01

    This study involved the use of combined stepwise ammonium sulfate (AS) and caprylic acid (CA) fractionation of equine antivenom IgG without intermediate separation of precipitate. Using a microplate and checker board titration format, plasma was treated under 66 conditions with varying concentrations of AS (0-25% saturation) and CA (0-5% v/v). The filtrate of each well was assayed for protein and antibody activity. At about 1.5-4.0% CA without AS, the precipitated plasma gave high specific antibody activity. Twelve precipitation conditions selected from the microplate experiment were studied in detail in tubes. The highest turbidity was with 5% CA alone. The highest antibody recovery of 95.45% was observed at 15% AS with 3.0% CA. The highest specific activity with 3.28 folds purification was observed with 4.0% CA. Thus, AS could reduce the turbidity induced by CA and increase the yield but not the purity of antibody. Size exclusion HPLC showed the antibody to be one single peak with 1.5% of soluble protein aggregate. When all parameters were considered, the optimum fractionation condition appeared to be 3.5% CA alone which gave high specific antibody activity (3.26 folds purification), antibody recovery (93.93%) and low turbidity (0.56% solid). Furthermore, better overall results were observed with one hour than overnight precipitation. PMID:22842065

  9. Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic Acid and chondroitin sulfate for cartilage regeneration.

    PubMed

    Dinescu, Sorina; Gălăţeanu, Bianca; Albu, Mădălina; Lungu, Adriana; Radu, Eugen; Hermenean, Anca; Costache, Marieta

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS) scaffolds improved with HA (5% or 10%) and CS (5% or 10%) were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications. PMID:24308001

  10. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate.

    PubMed

    Levett, Peter A; Melchels, Ferry P W; Schrobback, Karsten; Hutmacher, Dietmar W; Malda, Jos; Klein, Travis J

    2014-01-01

    The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in Gel-MA-based hydrogels, and show that with the incorporation of small quantities of photocrosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesized extracellular matrix (ECM) throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 114 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications. PMID:24140603

  11. Chondroitin sulfate

    MedlinePlus

    ... If you have asthma, use chondroitin sulfate cautiously. Blood clotting disorders: In theory, administering chondroitin sulfate might increase the risk of bleeding in people with blood clotting disorders. Prostate cancer: Early research suggests that chondroitin ...

  12. Glucosamine sulfate

    MedlinePlus

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  13. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  14. Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily

    NASA Astrophysics Data System (ADS)

    De Waele, Jo; Audra, Philippe; Madonia, Giuliana; Vattano, Marco; Plan, Lukas; D'Angeli, Ilenia M.; Bigot, Jean-Yves; Anoux, Catherine; Nobécourt, Jean-Claude

    2016-01-01

    Caves formed by rising sulfuric waters have been described from all over the world in a wide variety of climate settings, from arid regions to mid-latitude and alpine areas. H2S is generally formed at depth by reduction of sulfates in the presence of hydrocarbons and is transported in solution through the deep aquifers. In tectonically disturbed areas major fractures eventually allow these H2S-bearing fluids to rise to the surface where oxidation processes can become active producing sulfuric acid. This extremely strong acid reacts with the carbonate bedrock creating caves, some of which are among the largest and most spectacular in the world. Production of sulfuric acid mostly occurs at or close to the water table but also in subaerial conditions in moisture films and droplets in the cave environment. These caves are generated at or immediately above the water table, where condensation-corrosion processes are dominant, creating a set of characteristic meso- and micromorphologies. Due to their close connection to the base level, these caves can also precisely record past hydrological and geomorphological settings. Certain authigenic cave minerals, produced during the sulfuric acid speleogenesis (SAS) phase, allow determination of the exact timing of speleogenesis. This paper deals with the morphological, geochemical and mineralogical description of four very typical sulfuric acid water table caves in Europe: the Grotte du Chat in the southern French Alps, the Acqua Fitusa Cave in Sicily (Italy), and the Bad Deutsch Altenburg and Kraushöhle caves in Austria.

  15. Chemistry of the calcite/water interface: Influence of sulfate ions and consequences in terms of cohesion forces

    SciTech Connect

    Pourchet, Sylvie Pochard, Isabelle; Brunel, Fabrice; Perrey, Danièle

    2013-10-15

    Calcite suspensions are used to mimic the behavior of more complex cementitious systems. Therefore the characterization of calcite–water interface in strong alkaline conditions, through ionic adsorption, electrokinetic measurements, static rheology and atomic force microscopy is a prerequisite. Calcium, a potential determining ion for calcite, adsorbs specifically onto the weakly positively charged calcite surface in water. This leads to an increase of the repulsive electric double layer force and thus weakens the particle cohesion. Sulfate adsorption, made at constant calcium concentration and ionic strength, significantly increases the attractive interactions between the calcite particles despite its very low adsorption. This is attributed to a lowering of the electrostatic repulsion in connection with the evolution of the zeta potential. The linear relationship found between the yield stress and ζ{sup 2} proves that the classical DLVO theory applies for these systems, contrary to what was previously observed with C–S–H particles under the same conditions.

  16. Application of the cell growth and DNA-inhibition tests for characterizing sulfate pulp mill waste waters.

    PubMed

    Cernáková, M; Slamenová, D; Golis, E; Sutý, L

    1993-01-01

    The evaluation of cytotoxic and genotoxic effects of selected technological samples from sulfate pulp mill waste waters by using the growing activity method for pseudodiploid fibroblasts V79 from lungs of the Chinese hamster and from human heteroploid fibroblasts EUE has been described along with the DNA-inhibition test for studying the synthesis of DNA after it has been influenced by the above-mentioned samples. Both the waste solution produced during the preparation of bleaching agents and the liquor generated after using hypochlorite (1st stage) as a fourth filter (after the production of paper pulp) are cytotoxic waste waters. Black liquor generated during the production of viscose pulp may have mutagenic effects and black liquor obtained from the production of paper pulp is characterized by mutagenic as well as carcinogenic effects. PMID:8262452

  17. Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection

    NASA Astrophysics Data System (ADS)

    Audra, Philippe; Gázquez, Fernando; Rull, Fernando; Bigot, Jean-Yves; Camus, Hubert

    2015-10-01

    The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, and fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric Acid Speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo

  18. Acid gas extraction of pyridine from water

    SciTech Connect

    Laitinen, A.; Kaunisto, J.

    2000-01-01

    Pyridine was extracted from aqueous solutions initially containing 5 or 15 wt % pyridine by using liquid or supercritical carbon dioxide at 10 MPa as a solvent in a mechanically agitated countercurrent extraction column. The lowest pyridine concentration in the raffinate was 0.06 wt %, whereas the pyridine concentration in the extract was 86--94 wt %. From the initial amount of pyridine, 96--99% was transferred from the feed stream to the extract by using relatively small solvent-to-feed ratios of 2.8--4.6 (kg of solvent/kg of feed). The measured distribution coefficients for the water/pyridine/carbon dioxide system ranged from 0.3 to 1 (weight units), depending on the initial pyridine concentration in water. Carbon dioxide is a particularly suitable solvent for the extraction of pyridine from concentrated aqueous solutions. The efficiency may be the result of an acid-base interaction between weakly basic pyridine solute and weakly acidic carbon dioxide solvent in an aqueous environment.

  19. Investigation of Two Novel Approaches for Detection of Sulfate Ion and Methane Dissolved in Sediment Pore Water Using Raman Spectroscopy

    PubMed Central

    Du, Zengfeng; Chen, Jing; Ye, Wangquan; Guo, Jinjia; Zhang, Xin; Zheng, Ronger

    2015-01-01

    The levels of dissolved sulfate and methane are crucial indicators in the geochemical analysis of pore water. Compositional analysis of pore water samples obtained from sea trials was conducted using Raman spectroscopy. It was found that the concentration of SO42− in pore water samples decreases as the depth increases, while the expected Raman signal of methane has not been observed. A possible reason for this is that the methane escaped after sampling and the remaining concentration of methane is too low to be detected. To find more effective ways to analyze the composition of pore water, two novel approaches are proposed. One is based on Liquid Core Optical Fiber (LCOF) for detection of SO42−. The other one is an enrichment process for the detection of CH4. With the aid of LCOF, the Raman signal of SO42− is found to be enhanced over 10 times compared to that obtained by a conventional Raman setup. The enrichment process is also found to be effective in the investigation to the prepared sample of methane dissolved in water. By CCl4 extraction, methane at a concentration below 1.14 mmol/L has been detected by conventional Raman spectroscopy. All the obtained results suggest that the approach proposed in this paper has great potential to be developed as a sensor for SO42− and CH4 detection in pore water. PMID:26016919

  20. REE speciation in low-temperature acidic waters and the competitive effects of aluminum

    USGS Publications Warehouse

    Gimeno, Serrano M.J.; Auque, Sanz L.F.; Nordstrom, D.K.

    2000-01-01

    The effect of simultaneous competitive speciation of dissolved rare earth elements (REEs) in acidic waters (pH 3.3 to 5.2) has been evaluated by applying the PHREEQE code to the speciation of water analyses from Spain, Brazil, USA, and Canada. The main ions that might affect REE are Al3+, F-, SO42-, and PO43-. Fluoride, normally a significant complexer of REEs, is strongly associated with Al3+ in acid waters and consequently has little influence on REEs. The inclusion of aluminum concentrations in speciation calculations for acidic waters is essential for reliable speciation of REEs. Phosphate concentrations are too low (10-4 to 10-7 m) to affect REE speciation. Consequently, SO42- is the only important complexing ligand for REEs under these conditions. According to Millero [Millero, F.J., 1992. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta, 56, 3123-3132], the lanthanide sulfate stability constants are nearly constant with increasing atomic number so that no REE fractionation would be anticipated from aqueous complexation in acidic waters. Hence, REE enrichments or depletions must arise from mass transfer reactions. (C) 2000 Elsevier Science B.V. All rights reserved.

  1. Theoretical study on the reactivity of sulfate species with hydrocarbons

    USGS Publications Warehouse

    Ma, Q.; Ellis, G.S.; Amrani, A.; Zhang, T.; Tang, Y.

    2008-01-01

    The abiotic, thermochemically controlled reduction of sulfate to hydrogen sulfide coupled with the oxidation of hydrocarbons, is termed thermochemical sulfate reduction (TSR), and is an important alteration process that affects petroleum accumulations in nature. Although TSR is commonly observed in high-temperature carbonate reservoirs, it has proven difficult to simulate in the laboratory under conditions resembling nature. The present study was designed to evaluate the relative reactivities of various sulfate species in order to provide greater insight into the mechanism of TSR and potentially to fill the gap between laboratory experimental data and geological observations. Accordingly, quantum mechanics density functional theory (DFT) was used to determine the activation energy required to reach a potential transition state for various aqueous systems involving simple hydrocarbons and different sulfate species. The entire reaction process that results in the reduction of sulfate to sulfide is far too complex to be modeled entirely; therefore, we examined what is believed to be the rate limiting step, namely, the reduction of sulfate S(VI) to sulfite S(IV). The results of the study show that water-solvated sulfate anions SO42 - are very stable due to their symmetrical molecular structure and spherical electronic distributions. Consequently, in the absence of catalysis, the reactivity of SO42 - is expected to be extremely low. However, both the protonation of sulfate to form bisulfate anions (HSO4-) and the formation of metal-sulfate contact ion-pairs could effectively destabilize the sulfate molecular structure, thereby making it more reactive. Previous reports of experimental simulations of TSR generally have involved the use of acidic solutions that contain elevated concentrations of HSO4- relative to SO42 -. However, in formation waters typically encountered in petroleum reservoirs, the concentration of HSO4- is likely to be significantly lower than the levels

  2. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.

    PubMed

    Zhu, Meng; Tu, Chen; Hu, Xuefeng; Zhang, Haibo; Zhang, Lijuan; Wei, Jing; Li, Yuan; Luo, Yongming; Christie, Peter

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0-4weeks), 6.7-74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4-8weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of DPAA

  3. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration.

    PubMed

    Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F

    2016-05-20

    Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. PMID:27021959

  4. Ultrasound-assisted one-pot synthesis of substituted coumarins catalyzed by poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst.

    PubMed

    Khaligh, Nader Ghaffari

    2013-07-01

    Poly(4-vinylpyridinium) hydrogen sulfate solid acid was found to be efficient catalyst for synthesis of substituted coumarins via Pechmann reaction using ultrasound irradiation at room temperature and neat condition in high yields with short reaction times. This methodology offers momentous improvements over various options for the synthesis of coumarins with regard to yield of products, simplicity in operation and green aspects by avoiding toxic catalysts and solvents. Further, the catalyst can be reused and recovered for several times. PMID:23395258

  5. [Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate].

    PubMed

    Yang, De-Yu; Zhang, Ying; Shi, Rong-Jiu; Han, Si-Qin; Li, Guang-Zhe; Li, Guo-Qiao; Zhao, Jin-Yi

    2014-01-01

    Growth and metabolic activity of sulfate-reducing bacteria (SRB) can result in souring of oil reservoirs, leading to various problems in aspects of environmental pollution and corrosion. Nitrate addition and management of nitrate-reducing bacteria (NRB) offer potential solutions to controlling souring in oil reservoirs. In this paper, a facultive chemolithotrophic NRB, designated as DNB-8, was isolated from the produced fluid of a water-flooded oil reservoir at Daqing oilfield. Then the efficacies and mechanisms of various concentrations of nitrate in combination with DNB-8 in the inhibition of the activity of SRB enriched culture were compared. Results showed that 1.0 mmol x L(-1) of nitrate or 0.45 mmol x L(-1) of nitrite inhibited the sulfate-reducing activity of SRB enrichments; the competitive reduction of nitrate by DNB-8 and the nitrite produced were responsible for the suppression. Besides, the SRB enrichment cultures showed a metabolic pathway of dissimilatory nitrate reduction to ammonium (DNRA) via nitrite. The SRB cultures could possibly alleviate the nitrite inhibition by DNRA when they were subjected to high-strength nitrate. PMID:24720222

  6. Geochemical and isotopic composition of ground water with emphasis on sources of sulfate in the upper Floridan Aquifer and intermediate aquifer system in southwest Florida

    USGS Publications Warehouse

    Sacks, Laura A.; Tihansky, Ann B.

    1996-01-01

    In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer

  7. Sulfate scale dissolution

    SciTech Connect

    Morris, R.L.; Paul, J.M.

    1992-01-28

    This patent describes a method for removing barium sulfate scale. It comprises contacting the scale with an aqueous solution having a pH of about 8 to about 14 and consisting essentially of a chelating agent comprising a polyaminopolycarboxylic acid or salt of such an acid in a concentration of 0.1 to 1.0 M, and anions of a monocarboxylic acid selected form mercaptoacetic acid, hydroxyacetic acid, aminoacetic acid, or salicyclic acid in a concentration of 0.1 to 1.0 M and which is soluble in the solution under the selected pH conditions, to dissolve the scale.

  8. Response to Julian et al. (2015) "Comment on and Reinterpretation of Gabriel et al. (2014) `Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area'"

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Axelrad, Don; Orem, William; Osborne, Todd Z.

    2015-06-01

    The purpose of this forum is to respond to a rebuttal submitted by Julian et al., Environ Manag 55:1-5, 2015 where they outlined their overall disagreement with the data preparation, methods, and interpretation of results presented in Gabriel et al. (Environ Manag 53:583-593, 2014). Here, we provide background information on the research premise presented in Gabriel et al. (Environ Manag 53:583-593, 2014) and provide a defense for this work using five themes. In spite of what Julian et al. perceive as limitations in the sampling methods and analytical tools used for this work, the relationships found between fish total mercury and surface water sulfate concentrations in Gabriel et al. (Environ Manag 53:583-593, 2014) are comparable to relationships between pore water methylmercury (MeHg) and pore water sulfate found in past studies indicating that sulfate is important to MeHg production and bioaccumulation in the Everglades. Julian et al. state "…there is no way to justify any ecosystem-wide sulfur strategy as a management approach to reduce mercury risk in the (Everglades) as suggested by Gabriel et al. (Environ Manag 53:583-593, 2014), Corrales et al. (Sci Tot Environ 409:2156-2162, 2011) and Orem et al. (Rev Environ Sci Technol 41 (S1):249-288, 2011)." We disagree, and having stated why sulfate input reduction to the Everglades may be the most effective means of reducing mercury in Everglades fish, it is important that research on sulfur and mercury biogeochemistry continues. If further studies support the relationship between sulfate loading reduction and MeHg reduction, sulfur mass balance studies should commence to (1) better quantify agricultural and connate seawater sulfate inputs and (2) define opportunities to reduce sulfate inputs to the Everglades ecosystem.

  9. Response to Julian et al. (2015) "comment on and reinterpretation of Gabriel et al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'".

    PubMed

    Gabriel, Mark C; Axelrad, Don; Orem, William; Osborne, Todd Z

    2015-06-01

    The purpose of this forum is to respond to a rebuttal submitted by Julian et al., Environ Manag 55:1-5, 2015 where they outlined their overall disagreement with the data preparation, methods, and interpretation of results presented in Gabriel et al. (Environ Manag 53:583-593, 2014). Here, we provide background information on the research premise presented in Gabriel et al. (Environ Manag 53:583-593, 2014) and provide a defense for this work using five themes. In spite of what Julian et al. perceive as limitations in the sampling methods and analytical tools used for this work, the relationships found between fish total mercury and surface water sulfate concentrations in Gabriel et al. (Environ Manag 53:583-593, 2014) are comparable to relationships between pore water methylmercury (MeHg) and pore water sulfate found in past studies indicating that sulfate is important to MeHg production and bioaccumulation in the Everglades. Julian et al. state "…there is no way to justify any ecosystem-wide sulfur strategy as a management approach to reduce mercury risk in the (Everglades) as suggested by Gabriel et al. (Environ Manag 53:583-593, 2014), Corrales et al. (Sci Tot Environ 409:2156-2162, 2011) and Orem et al. (Rev Environ Sci Technol 41 (S1):249-288, 2011)." We disagree, and having stated why sulfate input reduction to the Everglades may be the most effective means of reducing mercury in Everglades fish, it is important that research on sulfur and mercury biogeochemistry continues. If further studies support the relationship between sulfate loading reduction and MeHg reduction, sulfur mass balance studies should commence to (1) better quantify agricultural and connate seawater sulfate inputs and (2) define opportunities to reduce sulfate inputs to the Everglades ecosystem. PMID:25860595

  10. Biochemical and Molecular Characterization of Potential Phosphate-Solubilizing Bacteria in Acid Sulfate Soils and Their Beneficial Effects on Rice Growth

    PubMed Central

    Panhwar, Qurban Ali; Naher, Umme Aminun; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  11. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  12. Comment on and Reinterpretation of Gabriel et al. (2014) `Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area'

    NASA Astrophysics Data System (ADS)

    Julian, Paul; Gu, Binhe; Redfield, Garth

    2015-01-01

    Mercury (Hg) methylation and bioaccumulation is a major environmental issue in the Everglades Protection Area (EvPA). Therefore, it is critical to improve our predictive understanding of Hg dynamics. This commentary critically reviews a recently published manuscript concerning the possible relationship between Hg in fish tissue and surface water sulfate within EvPA marshes. The commentary addresses fundamental issues with the authors' data analysis, results and interpretation as well as highlights inconsistencies with published literature and the lack of support for their suggested ecosystem management actions. A number of chemical, biological, and physical factors influence Hg methylation and bioaccumulation, and water sulfate is sometimes viewed as a keystone factor, Gabriel et al. (2014) conclude that Hg bioaccumulation is favored at elevated sulfate concentrations, and suggest mitigation strategies to reduce sulfate inputs to the EvPA. A careful review of their data and conclusions reveals major flaws and in fact, a more straightforward and defensible interpretation of their data would be that no predictable relationship exists between fish tissue Hg and surface water sulfate concentrations in south Florida. Given the complexity of Hg cycling and the influence of trophic and habitat characteristics on aquatic consumer Hg accumulation, expecting one parameter to predict Hg accumulation dynamics within fish species within a dynamic marsh environment is unrealistic. Furthermore, proposing any management guidance from this relationship with little to no quantitative statistical analysis is inappropriate and misleading.

  13. Comment on and reinterpretation of Gabriel et Al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'.

    PubMed

    Julian, Paul; Gu, Binhe; Redfield, Garth

    2015-01-01

    Mercury (Hg) methylation and bioaccumulation is a major environmental issue in the Everglades Protection Area (EvPA). Therefore, it is critical to improve our predictive understanding of Hg dynamics. This commentary critically reviews a recently published manuscript concerning the possible relationship between Hg in fish tissue and surface water sulfate within EvPA marshes. The commentary addresses fundamental issues with the authors' data analysis, results and interpretation as well as highlights inconsistencies with published literature and the lack of support for their suggested ecosystem management actions. A number of chemical, biological, and physical factors influence Hg methylation and bioaccumulation, and water sulfate is sometimes viewed as a keystone factor, Gabriel et al. (2014) conclude that Hg bioaccumulation is favored at elevated sulfate concentrations, and suggest mitigation strategies to reduce sulfate inputs to the EvPA. A careful review of their data and conclusions reveals major flaws and in fact, a more straightforward and defensible interpretation of their data would be that no predictable relationship exists between fish tissue Hg and surface water sulfate concentrations in south Florida. Given the complexity of Hg cycling and the influence of trophic and habitat characteristics on aquatic consumer Hg accumulation, expecting one parameter to predict Hg accumulation dynamics within fish species within a dynamic marsh environment is unrealistic. Furthermore, proposing any management guidance from this relationship with little to no quantitative statistical analysis is inappropriate and misleading. PMID:25248934

  14. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland.

    PubMed

    Yu, Ri-Qing; Adatto, Isaac; Montesdeoca, Mario R; Driscoll, Charles T; Hines, Mark E; Barkay, Tamar

    2010-12-01

    Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 10⁴ cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems. PMID:20955196

  15. Multifunctional Hyaluronic Acid and Chondroitin Sulfate Nanoparticles: Impact of Glycosaminoglycan Presentation on Receptor Mediated Cellular Uptake and Immune Activation.

    PubMed

    Oommen, Oommen P; Duehrkop, Claudia; Nilsson, Bo; Hilborn, Jöns; Varghese, Oommen P

    2016-08-17

    Hyaluronic acid (HA) and chondroitin sulfate (CS) polymers are extensively used for various biomedical applications, such as for tissue engineering, drug delivery, and gene delivery. Although both these biopolymers are known to target cell surface CD44 receptors, their relative cellular targeting properties and immune activation potential have never been evaluated. In this article, we present the synthesis and characterization of novel self-assembled supramolecular HA and CS nanoparticles (NPs). These NPs were developed using fluorescein as a hydrophobic component that induced amphiphilicity in biopolymers and also efficiently stabilized anticancer drug doxorubicin (DOX) promoting a near zero-order drug release. The cellular uptake and cytotoxicity studies of these NPs in different human cancer lines, namely, human colorectal carcinoma cell line HCT116 and human breast cancer cell line MCF-7 demonstrated dose dependent cytotoxicity. Interestingly, both NPs showed CD44 dependent cellular uptake with the CS-DOX NP displaying higher dose-dependent cytotoxicity than the HA-DOX NP in different mammalian cells tested. Immunological evaluation of these nanocarriers in an ex vivo human whole blood model revealed that unlike unmodified polymers, the HA NP and CS NP surprisingly showed platelet aggregation and thrombin-antithrombin complex formation at high concentrations (0.8 mg/mL). We also observed a clear difference in early- and late-stage complement activation (C3a and sC5b-9) with CS and CS NP triggering significant complement activation at high concentrations (0.08-0.8 mg/mL), unlike HA and HA NP. These results offer new insight into designing glycosaminoglycan-based NPs and understanding their hematological responses and targeting ability. PMID:27468113

  16. Aluminum potassium sulfate and tannic acid sclerotherapy for Goligher Grades II and III hemorrhoids: Results from a multicenter study

    PubMed Central

    Miyamoto, Hidenori; Hada, Takenori; Ishiyama, Gentaro; Ono, Yoshito; Watanabe, Hideo

    2016-01-01

    AIM: To show that aluminum potassium sulfate and tannic acid (ALTA) sclerotherapy has a high success rate for Grade II and III hemorrhoids. METHODS: This study was based on the clinical data of 604 patients with hemorrhoids who underwent ALTA sclerotherapy between January 2009 and February 2015. The objective of this study was to assess the efficacy of this treatment for Grades II and III hemorrhoids. Preoperative and postoperative symptoms, complications and success rate were all assessed retrospectively. Follow-up consisted of a simple questionnaire, physical examination and an anoscopy. Patients were followed-up at one day, one week, two weeks, one month, one year, two years, three years, four years and five years after the ALTA sclerotherapy. RESULTS: One hundred and sixty-nine patients were diagnosed with Grade II hemorrhoids and 435 patients were diagnosed with Grade III hemorrhoids. The one year, three year and five year cumulative success rates of ALTA sclerotherapy for Grades II and III hemorrhoids were 95.9% and 93.1%; 89.3% and 83.7%; and 89.3% and 78.2%, respectively. No significant differences were observed in the cumulative success rates after ALTA sclerotherapy between Grades II and III hemorrhoids (P = 0.09). There were forty-seven post-operative complications (low grade fever; anal pain; urinary retention; rectal ulcer; and others). No serious or life-threatening complications occurred and all cases improved through conservative treatment. At univariate analysis there were no predictive factors of failure. CONCLUSION: ALTA sclerotherapy has had a high success rate for Grade II and III hemorrhoids during five years of post-operative treatment. However, additional studies are needed to evaluate the efficacy of this ALTA sclerotherapy in the management of hemorrhoidal disease. PMID:27458504

  17. Acid-sulfate mixtures from Río Tinto, Spain: Spectral masking relationships and implications for Mars

    NASA Astrophysics Data System (ADS)

    Cull-Hearth, Selby; van Venrooy, Alexis; Caroline Clark, M.; Cvitkovic, Adriana

    2016-06-01

    Most sulfate minerals form only in specific pH conditions, making them useful markers of past environmental conditions on Mars. However, interpreting past environments requires a full understanding of the suite of minerals present, a task which is complicated by the fact that some minerals can spectrally mask others in the visible- to near-infrared (VNIR, 0.4-2.5 μm). Here, we report VNIR spectra of two-phase mineral combinations obtained from the Río Tinto acid mine drainage system of southern Spain. Our results show that in VNIR reflectance spectroscopy: (1) copiapite masks rhomboclase and partially masks melanterite; (2) coquimbite masks copiapite, jarosite, and rhomboclase; (3) at wavelengths <1.2 μm, gypsum is consistently masked by copiapite, jarosite, and melanterite, though at wavelengths >1.2 μm, gypsum masks these minerals; (4) unlike copiapite, jarosite, or melanterite, halotrichite masks gypsum completely; (5) in two-phase mixtures of copiapite and jarosite, both phases are evident. No consistent VNIR relationship is observed in two-phase mixtures of melanterite and halotrichite, suggesting that microtextures are likely more important than optical properties in determining VNIR reflectance. We also show that the shorter wavelengths are more sensitive to the presence of both phases: even in mixtures where one phase is masking another, both phases usually impact absorptions in the 0.75-0.95 μm region. This region may therefore be useful in remotely identifying mineral mixtures on Mars. These results have implications for several regions on Mars: most notably, they imply that the jarosite exposures reported at Mawrth Vallis may be jarosite-copiapite mixtures.

  18. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    PubMed

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. PMID:26454048

  19. DEVELOPMENT AND VALIDATION OF AN ACID MINE DRAINAGE TREATMENT PROCESS FOR SOURCE WATER

    SciTech Connect

    Lane, Ann

    2015-12-31

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  20. Synthesis of sulfated titania supported on mesoporous silica using direct impregnation and its application in esterification of acetic acid and n-butanol

    NASA Astrophysics Data System (ADS)

    Wang, Yuhong; Gan, Yunting; Whiting, Roger; Lu, Guanzhong

    2009-09-01

    A new method has been developed for the preparation of sulfated titania (S-TiO 2) supported on mesoporous silica. The use of direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 substrate produced a product with high sulfur content without serious blockage of the pore structure of MCM-41. The pore sizes and volumes of the resultant S-TiO 2/MCM-41 composites were found to vary markedly with the loading of TiO 2. The strong acidic character of the composites obtained was examined by using them as catalysts for the esterification of acetic acid and n-butanol.

  1. Role of vanadium(V) in the aging of the organic phase in the extraction of uranium(VI) by Alamine 336 from acidic sulfate leach liquors

    SciTech Connect

    Chagnes, A.; Cote, G.; Courtaud, B.; Thiry, J.

    2008-07-01

    The present work is focussed on the chemical degradation of Alamine 336-tridecanol-n-dodecane solvent which used in the recovery of uranium by solvent extraction. Degradation occurs due to the presence of vanadium(V), an oxidant, in the feed solution. After a brief overview of the chemistry of vanadium, the kinetics of degradation of the solvent when contacted with acidic sulfate leach liquor was investigated and interpreted by the Michelis-Menten mechanism. GCMS analyses evidenced the presence of tridecanoic acid and dioctylamine as degradation products. A mechanism of degradation is discussed. (authors)

  2. Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment.

    PubMed

    Karnachuk, Olga V; Mardanov, Andrey V; Avakyan, Marat R; Kadnikov, Vitaly V; Vlasova, Maria; Beletsky, Alexey V; Gerasimchuk, Anna L; Ravin, Nikolai V

    2015-02-01

    The sulfidogenic bacterium Desulfovibrio sp. TomC was isolated from acidic waste at the abandoned gold ore mining site in the Martaiga gold ore belt, Western Siberia. This bacterium, being the first reported acid-tolerant gram-negative sulfate-reducer of the order Deltaproteobacteria, is able to grow at pH as low as 2.5 and is resistant to high concentrations of metals. The draft 5.3 Mb genome sequence of Desulfovibrio sp. TomC has been established and provides the genetic basis for application of this microorganism in bioreactors and other bioremediation schemes for the treatment of metal-containing wastewater. PMID:25724779

  3. Bicarbonate, sulfate, and chloride water in a shallow, clastic-dominated coastal flow system, Argentina

    SciTech Connect

    Logan, W.S.; Auge, M.P.; Panarello, H.O.

    1999-03-01

    Most of the cities southeast of Buenos Aires, Argentina, depend heavily on ground water for water supply. Whereas ground water quality is generally good in the region, economic development along the coastal plain has been constrained by high salinities. Fifty-four wells were sampled for major ions in zones of recharge, transport and discharge in an area near La Plata, 50 km southeast of Buenos Aires. The shallow, southwest to northeast coastal flow system is >30 km long but is only 50 to 80 m thick. It consists of Plio-Pleistocene fluvial sand overlain by Pleistocene eolian and fluvial silt and Holocene estuarine silty clay. Hydrochemical endmembers include HCO{sub 3}, SO{sub 4}, and Cl water. Bicarbonate-type water includes high plain recharge water that evolves through cation exchange and calcite dissolution to a high pH, pure Na-HCO{sub 3} endmember at the southwest edge of the coastal plain. Similar Na-HCO{sub 3} water is also found underlying recharge areas of the central coastal plain, and a lens of Ca-HCO{sub 3} water is associated with a ridge of shell debris parallel to the coast. Mixed cation-Cl water near the coastline represents intruded sea water that has undergone cation exchange. Chemically similar water underlying the southwest coastal plain, however, can be shown isotopically to have formed from fairly dilute solutions concentrated many times by evapotranspiration.

  4. Effect of Sodium Lauryl Sulfate-Fumaric Acid Coupled Addition on the In Vitro Rumen Fermentation with Special Regard to Methanogenesis

    PubMed Central

    Abdl-Rahman, M. A.; Sawiress, F. A. R.; Abd El-Aty, A. M.

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH3–N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (YATP). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH3–N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency. PMID:20445794

  5. Importance of groundwater sulfate to acidification in the Goose River watershed, Maine

    NASA Astrophysics Data System (ADS)

    Sidle, William C.; Allen, Derrick

    2004-09-01

    The role of groundwater sulfate discharge to ponds and streams within the Goose River basin (33.3 km2) is examined. While airborne sulfate deposition has declined, acidity in surface waters locally remains elevated. Monthly SO42- analyses (1999-2002) of wet deposition and surface waters are reported, and a sulfate budget for six catchments of the Goose River watershed, Maine is calculated. Groundwater ? values from different bedrock types are beneficial in identifying groundwater source(s) of sulfate in surface waters and discriminating them from atmospheric sulfate deposition. The variability of proposed sulfide oxidation among certain local chalcophile rocks and the depth of aeration in these sheared granitoids are elucidated from ? and ? data. Cosmogenic ? residence times estimate new atmospheric SO42- deposition in the catchments and production of SO42- from water-rock interactions among some fractured granitoids.

  6. Topographic regulation of sulfate concentrations in shallow ground water at a Catskill Mountain (New York) catchment

    NASA Astrophysics Data System (ADS)

    Welsch, D. L.; Burns, D. A.

    2001-05-01

    The relation of topography to ion concentrations in shallow groundwater is not well understood. In this investigation, we identified and explained relations between SO42- concentrations and topographic position in shallow groundwater at a 23-ha Catskill Mountain catchment that had previously been clearcut. A lack of nitrogen uptake by vegetation and increased soil temperatures following the clearcut resulted in enhanced rates of NO3- movement through soils and consequent soil acidification. Decreased soil pH resulted in greater SO42- adsorption capacity, and thus, decreased SO42- concentrations in shallow groundwater. The topographic index (ln a /tan B) was inversely related to groundwater SO42- concentrations during five storms sampled, suggesting that SO42- concentrations decreased with increased soil wetness. Catchment locations with greater topographic index values should have longer subsurface flowpaths, and therefore, greater soil contact times. We believe this mechanism is responsible for the inverse relation of SO42- concentrations to topographic index values observed in shallow groundwater. Sulfate reduction is not a likely explanation for these results because the shallow groundwater has abundant dissolved oxygen and high concentrations of NO3-, which should be preferentially reduced before SO42- reduction proceeds.

  7. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  8. INFLUENCE OF AQUEOUS ALUMINUM AND ORGANIC ACIDS ON MEASUREMENT OF ACID NEUTRALIZING CAPACITY IN SURFACE WATERS

    EPA Science Inventory

    Acid neutralizing capacity (ANC) is used to quantify the acid-base status of surface waters. Acidic waters have bean defined as having ANC values less than zero, and acidification is often quantified by decreases in ANC. Measured and calculated values of ANC generally agree, exce...

  9. Bioabsorbable bone fixation plates for X-ray imaging diagnosis by a radiopaque layer of barium sulfate and poly(lactic-co-glycolic acid).

    PubMed

    Choi, Sung Yoon; Hur, Woojune; Kim, Byeung Kyu; Shasteen, Catherine; Kim, Myung Hun; Choi, La Mee; Lee, Seung Ho; Park, Chun Gwon; Park, Min; Min, Hye Sook; Kim, Sukwha; Choi, Tae Hyun; Choy, Young Bin

    2015-04-01

    Bone fixation systems made of biodegradable polymers are radiolucent, making post-operative diagnosis with X-ray imaging a challenge. In this study, to allow X-ray visibility, we separately prepared a radiopaque layer and attached it to a bioabsorbable bone plate approved for clinical use (Inion, Finland). We employed barium sulfate as a radiopaque material due to the high X-ray attenuation coefficient of barium (2.196 cm(2) /g). The radiopaque layer was composed of a fine powder of barium sulfate bound to a biodegradable material, poly(lactic-co-glycolic acid) (PLGA), to allow layer degradation similar to the original Inion bone plate. In this study, we varied the mass ratio of barium sulfate and PLGA in the layer between 3:1 w/w and 10:1 w/w to modulate the degree and longevity of X-ray visibility. All radiopaque plates herein were visible via X-ray, both in vitro and in vivo, for up to 40 days. For all layer types, the radio-opacity decreased with time due to the swelling and degradation of PLGA, and the change in the layer shape was more apparent for layers with a higher PLGA content. The radiopaque plates released, at most, 0.5 mg of barium sulfate every 2 days in a simulated in vitro environment, which did not appear to affect the cytotoxicity. The radiopaque plates also exhibited good biocompatibility, similar to that of the Inion plate. Therefore, we concluded that the barium sulfate-based, biodegradable plate prepared in this work has the potential to be used as a fixation device with both X-ray visibility and biocompatibility. PMID:24964903

  10. Synergistic effects of lactic acid and sodium dodecyl sulfate to decontaminate Escherichia coli O157:H7 on cattle hide sections.

    PubMed

    Elramady, Mohamed G; Aly, Sharif S; Rossitto, Paul V; Crook, J