Science.gov

Sample records for acid sulfites

  1. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed Central

    Takeuchi, T L; Suzuki, I

    1994-01-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation. PMID:8300544

  2. Non-metal redox kinetics: general-acid-assisted reactions of chloramine with sulfite and hydrogen sulfite

    SciTech Connect

    Yiin, B.S.; Walker, D.M.; Margerum, D.W.

    1987-10-21

    The rate expression for chloramine oxidation of sulfite is -d(NH/sub 2/Cl)dt = k/sub HA/(HA)(SO/sub 3//sup 2 -/)/sub T/(NH/sub 2/Cl), where HA is a general acid and (SO/sub 3//sup 2 -/)/sub T/ = (SO/sub 3//sup 2 -/) + (SHO/sub 3//sup -/) is the sum of concentrations of the isomeric forms HSO/sub 3//sup -/ and SO/sub 3/H/sup -/). Rate constants (M/sup -2/ s/sup -1/, except as noted, 25.0/sup 0/C, ..mu.. = 0.50) are resolved for the SO/sub 3//sup 2 -/ reactions where HA = H/sub 3/O/sup +/ (8 x 10/sup 10/), H/sub 2/PO/sub 4//sup -/ (1.3 x 10/sup 6/), SHO/sub 3//sup -/ (3.7 x 10/sup 5/), B(OH)/sub 3/ (5.8 x 10/sup 3/), NH/sub 4//sup +/ (1.7 x 10/sup 2/) and H/sub 2/O (7.7 M/sup -1/ s/sup -1/). The k/sub HA/ values increase with the acid strength of HA (Broensted ..cap alpha.. = 0.71). In the proposed transition state, simultaneous H/sup +/ transfer from HA to NH/sub 2/Cl and Cl/sup +/ transfer from NH/sub 2/Cl to SO/sub 3//sup 2 -/ occurs. The ClSO/sub 3//sup -/ thus formed hydrolyzes rapidly to give SO/sub 4//sup 2 -/ and Cl/sup -/. The NH/sub 2/Cl reaction with SHO/sub 3//sup -/ also is assisted by acids, and k/sub HA/ values (M/sup -2/ s/sup -1/) are resolved for H/sub 3/O/sup +/ (3.6 x 10/sup 8/), CH/sub 3/COOH (2 x 10/sup 5/), H/sub 2/PO/sub 4//sup -/ (2 x 10/sup 5/), and SHO/sub 3//sup -/ (1.3 x 10/sup 6/). Since the latter three acids have k/sub HA/ values of the same magnitude, cyclic transition states are proposed in which these acids donate a proton NH/sub 2/Cl and accept a proton from SHO/sub 3//sup -/, as the Cl/sup +/ transfers from nitrogen to sulfur.

  3. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  4. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.

    PubMed

    Luo, Xu-Ying; Tu, Yong-Gang; Zhao, Yan; Li, Jian-Ke; Wang, Jun-Jie

    2014-08-01

    To identify inhibitors for lysinoalanine formation in preserved egg, sulfhydryl compounds (glutathione, L-cysteine), carbohydrates (sucrose, D-glucose, maltose), organic acids (L-ascorbic acid, citric acid, DL-malic acid, lactic acid), and sodium sulfite were individually added at different concentrations to a pickling solution to prepare preserved eggs. Lysinoalanine formation as an index of these 10 substances was determined. Results indicate that glutathione, D-glucose, maltose, L-ascorbic acid, citric acid, lactic acid, and sodium sulfite all effectively diminished lysinoalanine formation in preserved egg albumen and yolk. When 40 and 80 mmol/L of sodium sulfite, citric acid, L-ascorbic acid, and D-glucose were individually added into the pickling solution, the inhibition rates of lysinoalanine in the produced preserved egg albumen and yolk were higher. However, the attempt of minimizing lysinoalanine formation was combined with the premise of ensuring preserved eggs quality. Moreover, the addition of 40 and 80 mmol/L of sodium sulfite, 40 and 80 mmol/L of D-glucose, 40 mmol/L of citric acid, and 40 mmol/L of L-ascorbic acid was optimal to produce preserved eggs. The corresponding inhibition rates of lysinoalanine in the albumen were approximately 76.3% to 76.5%, 67.6% to 67.8%, 74.6%, and 74.6%, and the corresponding inhibition rates of lysinoalanine in the yolk were about 68.7% to 69.7%, 50.6% to 51.8%, 70.4%, and 57.8%. It was concluded that sodium sulfite, D-glucose, L-ascorbic, and citric acid at suitable concentrations can be used to control the formation of lysinoalanine during preserved egg processing.

  5. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    SciTech Connect

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.; Utley, B.L.

    1982-12-01

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinic and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.

  6. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue-gas desulfurization. Final report, June 1984-June 1986

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1988-02-01

    This report gives results of a study of organic acid-degradation conjugated with sulfite oxidation under flue-gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic-acid degradation rate and sulfite oxidation-rate times the ratio of the concentrations of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of Mn or Fe. However, k12 is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free-radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide (the major product), smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons.

  7. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  8. The use of pulsed amperometry combined with ion-exclusion chromatography for the simultaneous analysis of ascorbic acid and sulfite.

    PubMed

    Wagner, H P; McGarrity, M J

    1991-06-21

    Initial attempts to monitor ascorbic acid and sulfite, in a beer matrix, by combining ion-exclusion chromatography with a pulsed amperometric detector using a single applied voltage to the platinum working electrode, were unsuccessful. Alternatively, good chromatograms for the separation of the two antioxidants were achieved utilizing a standard, amperometric cell. However, remarkably superior results were observed when this standard cell was operated in a pulsed mode and cleaning cycles were continually applied throughout the analysis. The working electrode stability and precision have been examined. Preliminary spike recovery data indicate acceptable accuracy for the method. Comparisons of this method to standard reference methods are currently ongoing.

  9. Comparison of dilute acid and sulfite pretreatments on Acacia confusa for biofuel application and the influence of its extractives.

    PubMed

    Yeh, Ting-Feng; Chang, Mao-Ju; Chang, Wan-Jung

    2014-11-05

    Chemical components of lignocellulosic biomass may impede biofuel processing efficiency. To understand whether the heartwood of Acacia confusa is suitable for biofuel application, extractive-free heartwood of A. confusa was subjected to dilute acid (DA) or sulfite pretreatments. Sugar recoveries were used to evaluate the performance of different pretreatments. Cell wall properties, such as 4-O-alkylated lignin structures, S/G ratios, and xylan contents, of the pretreated samples showed significant correlations with the enzymatic saccharification of glucan. The 4% bisulfite-pretreated samples produced higher total sugar recoveries than DA-treated samples. The highest total sugar recoveries from DA and sulfite pretreatment were 52.0% (170 °C for 20 min) and 65.3% (4% NaHSO3 and 1% H2SO4), respectively. The results also demonstrated that the existence of extractives in the heartwood of A. confusa hindered the sugar recoveries from both the pretreatments and enzymatic saccharification. Total sugar recoveries were reduced 11.7-17.7% in heartwood samples with extractives.

  10. Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification.

    PubMed

    Li, Zhiqiang; Jiang, Zehui; Fei, Benhua; Cai, Zhiyong; Pan, Xuejun

    2014-01-01

    The response and behavior of bamboo green, timber, and yellow of moso bamboo (Phyllostachys heterocycla) to three pretreatments, sulfite (SPORL), dilute acid (DA), and alkali (NaOH), were investigated and compared with varied chemical loadings at 180°C for 30 min with a 6.25:1 (v/w) liquor-to-bamboo ratio. All the pretreatments improved the enzymatic digestibility of bamboo substrates. Under the investigated conditions, the DA pretreatment achieved better enzymatic digestibility, but had lower sugar recovery yield, and formed more fermentation inhibitors. The results suggested that the SPORL pretreatment be able to generate more readily digestible bamboo substrate with higher sugar yield and fewer fermentation inhibitors than the corresponding DA pretreatment if hemicelluloses are sufficiently removed by adding more acid to bring down the pretreatment pH. Bamboo timber had higher sugar content and better enzymatic digestibility and therefore was a better feedstock for bioconversion than bamboo green and yellow.

  11. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.

    PubMed

    Harner, Nicole K; Bajwa, Paramjit K; Habash, Marc B; Trevors, Jack T; Austin, Glen D; Lee, Hung

    2014-01-01

    A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

  12. Sulfite reductase protects plants against sulfite toxicity.

    PubMed

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  13. Structural insights into sulfite oxidase deficiency.

    PubMed

    Karakas, Erkan; Wilson, Heather L; Graf, Tyler N; Xiang, Song; Jaramillo-Busquets, Sandra; Rajagopalan, K V; Kisker, Caroline

    2005-09-30

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  14. Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.

    PubMed Central

    Lindén, T; Peetre, J; Hahn-Hägerdal, B

    1992-01-01

    From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein). Images PMID:1622236

  15. A novel photochemical system of ferrous sulfite complex: kinetics and mechanisms of rapid decolorization of Acid Orange 7 in aqueous solutions.

    PubMed

    Zhou, Danna; Chen, Long; Zhang, Changbo; Yu, Yingtan; Zhang, Li; Wu, Feng

    2014-06-15

    We previously reported the decolorization of the azo dye Acid Orange 7 (AO7) by sulfate radical (SO4(-)) in the presence of iron(II) sulfite complex and oxygen under UV-vis irradiation (photo-iron(II) sulfite system). This system, however, achieves very limited mineralization of AO7 (in terms of total organic carbon (TOC) removal), which is not in accordance with literature reports on the oxidation of organic contaminants by SO4(-). In the present work, kinetics and products under irradiation of xenon lamp (350 W) were analyzed to reveal the reaction pathway of decolorization of AO7. Steady-state approximation (SSA) of SO4(-) radicals and apparent kinetics of AO7 were examined. The reaction between AO7 and SO4(-) was found to proceed in two steps, namely, electron transfer and SO4(-) addition. The second-order rate constant for the reaction between AO7 and SO4(-) was found to be 8.07 ± 1.07 × 10(9) M(-1) s(-1) by SSA and 6.80 ± 0.68 × 10(9) M(-1) s(-1) by competition kinetics method. The apparent kinetics of the decolorization of AO7 under irradiation closely fits the mechanism of radical chain reactions of various reactive sulfur species. By liquid chromatography coupled with mass spectrometry, we identified the sulfate adduct AO7-SO4 and confirmed the two-step reaction between AO7 and SO4(-). This stable sulfate adduct provides a good explanation of the poor TOC removal during decolorization of AO7 by the photo-iron(II) sulfite system.

  16. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    PubMed

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  17. Cost-effective simultaneous saccharification and fermentation of l-lactic acid from bagasse sulfite pulp by Bacillus coagulans CC17.

    PubMed

    Zhou, Jie; Ouyang, Jia; Xu, Qianqian; Zheng, Zhaojuan

    2016-12-01

    The main barriers to cost-effective lactic acid production from lignocellulose are the high cost of enzymes and the ineffective utilization of the xylose within the hydrolysate. In the present study, the thermophilic Bacillus coagulans strain CC17 was used for the simultaneous saccharification and fermentation (SSF) of bagasse sulfite pulp (BSP) to produce l-lactic acid. Unexpectedly, SSF by CC17 required approximately 33.33% less fungal cellulase than did separate hydrolysis and fermentation (SHF). More interestingly, CC17 can co-ferment cellobiose and xylose without any exogenous β-glucosidase in SSF. Moreover, adding xylanase could increase the concentration of lactic acid produced via SSF. Up to 110g/L of l-lactic acid was obtained using fed-batch SSF, resulting in a lactic acid yield of 0.72g/g cellulose. These results suggest that SSF using CC17 has a remarkable advantage over SHF and that a potentially low-cost and highly-efficient fermentation process can be established using this protocol.

  18. Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite.

    PubMed

    Nair, Bindu; Elmore, Amy R

    2003-01-01

    Metabisulfite, and Potassium Metabisulfite were negative in mutagenicity studies. Sodium Bisulfite produced both positive and negative results. Clinical oral and ocular-exposure studies reported no adverse effects. Sodium Sulfite was not irritating or sensitizing in clinical tests. These ingredients, however, may produce positive reactions in dermatologic patients under patch test. In evaluating the positive genotoxicity data found with Sodium Bisulfite, the equilibrium chemistry of sulfurous acid, sulfur dioxide, bisulfite, sulfite, and metabisulfite was considered. This information, however, suggests that some bisulfite may have been present in genotoxicity tests involving the other ingredients and vice versa. On that basis, the genotoxicity data did not give a clear, consistent picture. In cosmetics, however, the bisulfite form is used at very low concentrations (0.03% to 0.7%) in most products except wave sets. In wave sets, the pH ranges from 8 to 9 where the sulfite form would predominate. Skin penetration would be low due to the highly charged nature of these particles and any sulfite that did penetrate would be converted to sulfate by the enzyme sulfate oxidase. As used in cosmetics, therefore, these ingredients would not present a genotoxicity risk. The Cosmetic Ingredient Review Expert Panel concluded that Sodium Sulfite, Potassium Sulfite, Ammonium Sulfite, Sodium Bisulfite, Ammonium Bisulfite, Sodium Metabisulfite, and Potassium Metabisulfite are safe as used in cosmetic formulations.

  19. Purification of xanthine dehydrogenase and sulfite oxidase from chicken liver.

    PubMed

    Ratnam, K; Brody, M S; Hille, R

    1996-05-01

    Xanthine dehydrogenase and sulfite oxidase from chicken liver are oxomolybdenum enzymes which catalyze the oxidation of xanthine to uric acid and sulfite to sulfate, respectively. Independent purification protocols have been previously described for both enzymes. Here we describe a procedure by which xanthine dehydrogenase and sulfite oxidase are purified simultaneously from the same batch of fresh chicken liver. Also, unlike the protocols described earlier, this procedure avoids the use of acetone extraction as well as a heat step, thus minimizing damage to the molybdenum centers of the enzymes.

  20. Cadmium sulfite hexahydrate revisited

    PubMed Central

    Baggio, Sergio; Ibáñez, Andrés; Baggio, Ricardo

    2008-01-01

    The present structural revision of the title compound, tetra­cadmium tetra­sulfite hexa­hydrate, [Cd4(SO3)4(H2O)5]·H2O, is a low-temperature upgrade (T = 100 K and R = 0.017) of the original room-temperature structure reported by Kiers & Vos [Cryst. Struct. Commun. (1978). 7, 399–403; T = 293 K and R = 0.080). The compound is a three-dimensional polymer with four independent cadmium centres, four sulfite anions and six water mol­ecules, five of them coordinated to two cadmium centres and the remaining one an unbound solvent mol­ecule which completes the asymmetric unit. There are two types of cadmium environment: CdO8 (through four chelating sulfite ligands) and CdO6 (by way of six monocoordinated ligands). The former groups form planar arrays [parallel to (001) and separated by half a unit cell translation along c], made up of chains running along [110] and [10], respectively. These chains are, in turn, inter­connected both in an intra­planar as well as in an inter­planar fashion by the latter CdO6 polyhedra into a tight three-dimensional framework. There is, in addition, an extensive network of hydrogen bonds, in which all 12 water H atoms act as donors and eight O atoms from all four sulfite groups and two water mol­ecules act as acceptors. PMID:21202728

  1. Limestone dissolution in flue gas scrubbing: Effect of sulfite

    SciTech Connect

    Gage, C.L.; Rochelle, G.T. )

    1992-07-01

    Batch limestone dissolution experiments were carried out in a pH stat apparatus at 55 C with CO{sub 2} sparging and dissolved sulfite. Particle size distribution, utilization, sulfite in solution, limestone type, and the approach to calcite equilibrium were all found to contribute to the limestone reactivity. In the absence of sulfite, limestone dissolution was controlled solely by mass transfer. For a given stone under mass transfer control, film thickness was found to be independent of pH. The dissolution rate in the presence of sulfite was controlled by a combined surface kinetics/mass transfer regime. SEM micrographs supported this conclusion. A surface rate correlation was developed which accounted for observed inhibition by an inverse dependence on calcium sulfite concentration at the limestone dependence on calcium sulfite concentration at the limestone surface. While the form of the rate expression was applicable to all stones, the surface rate constant was stone dependent. A computer code which accounted for mass transfer with surface kinetics was tested against experimental observations of four limestone types. Changes in pH and the concentrations of calcium, carbonate, sulfite, sulfate, and adipic acid were accurately modeled.

  2. Molecular Basis for Enzymatic Sulfite Oxidation

    PubMed Central

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei V.; Enemark, John H.; Kappler, Ulrike

    2009-01-01

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2–3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (∼60 and 200 s–1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH. PMID:19004819

  3. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils.

    PubMed

    Mitsuhashi, Hideki; Yamashita, Shin; Ikeuchi, Hidekazu; Kuroiwa, Takashi; Kaneko, Yoriaki; Hiromura, Keiju; Ueki, Kazue; Nojima, Yoshihisa

    2005-12-01

    Sulfite, which is known as a major constituent of volcanic gas, is endogenously produced in mammals, and its concentration in serum is increased in patients with pneumonia. It has been reported that sulfite is produced by oxidation from hydrogen sulfide (H2S) as an intermediate in the mammalian body. The objective of this study was to investigate the ability of reactive oxygen species from neutrophils to produce sulfite from H2S. Sulfite production from activated neutrophils stimulated with N-formyl-methionyl-leucyl-phenylalanine gradually increased with an increased concentration of sodium hydrosulfide (NaHS) in the medium. The production of sulfite was markedly suppressed with an NADPH oxidase inhibitor, diphenyleneiodonium. When NaHS was added to the supernatant of activated neutrophils, a significant amount of sulfite was synthesized in the test tubes. Furthermore, when a medium containing NaHS was incubated with a water-soluble radical initiator, 2,2'-azobis-(amidinopropane) dihydrochloride, sulfite was formed in the solution and this increase was markedly suppressed by ascorbic acid. Finally, we determined serum concentrations of sulfite and H2S in an in vivo model of neutrophil activation induced by systemic injection of lipopolysaccharide (LPS) into rats. We found a significant increase in serum sulfite and H2S after LPS injection. Importantly, coadministration of ascorbic acid with LPS further increased serum H2S but suppressed sulfite levels. This finding implies that oxidative stress-dependent conversion of H2S to sulfite might occur in vivo. Thus, the oxidation of H2S is a novel sulfite production pathway in the inflammatory condition, and this chemical synthesis might be responsible for the upregulation of sulfite production in inflammatory conditions such as pneumonia.

  4. Evaluation of microbial diversity in sulfite-added and sulfite-free wine by culture-dependent and -independent methods.

    PubMed

    Takahashi, Masayuki; Ohta, Tami; Masaki, Kazuo; Mizuno, Akihiro; Goto-Yamamoto, Nami

    2014-05-01

    The difference in microbiota including non-lactic acid bacteria, non-acetic acid bacteria, and wild yeast during winemaking and in the end-products between sulfite-added and sulfite-free wine, was investigated using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and a culture-dependent method. There were differences between the microorganisms detected by PCR-DGGE and those detected by the culture-dependent method, probably because of the selectivity of culture medium and the characteristics of PCR-based method. In both the red wine and white wine, the microbial diversity of the sulfite-added wine was lower than that of the sulfite-free wine during fermentation. Tatumella terrea was detected from the fermenting must by PCR-DGGE and by the culture-dependent method, even though sulfite inhibited its growth to some extent. We confirmed that the addition of sulfite plays an important role in winemaking by inhibiting the growth of unexpected microorganisms, but on the other hand, it was revealed that some microorganisms can survive and grow in sulfite-added fermenting must. We also analyzed 15 samples of commercial wines by the PCR-DGGE method and detected various microorganisms. Among them, Sphingomonas sp., Pseudozyma sp., Ochromonas sp. and Methylophilus sp. were found for the first time in wine as far as we know. We did not identify a specific microorganism that was detected only from wines without sulfite addition. Thus, the microbiota of end-products seemed to be influenced by other factors, such as filtration before bottling, the production equipment and the storage environment.

  5. Free-radical chemistry of sulfite.

    PubMed Central

    Neta, P; Huie, R E

    1985-01-01

    The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699

  6. Sulfite leads to neuron loss in the hippocampus of both normal and SOX-deficient rats.

    PubMed

    Kocamaz, Erdogan; Adiguzel, Esat; Er, Buket; Gundogdu, Gulşah; Kucukatay, Vural

    2012-08-01

    Sulfites are compounds commonly used as preservatives in foods, beverages and pharmaceuticals. Sulfite is also endogenously generated during the metabolism of sulfur-containing amino acids and drugs. It has been shown that sulfite is a highly toxic molecule. Many studies have examined the effects of sulfite toxicity, but the effect of ingested sulfite on the number of neurons in the hippocampus has not yet been reported. The present study was undertaken to investigate the effect of ingested sulfite on pyramidal neurons by counting cells in CA1 and CA3-2 subdivisions of the rat hippocampus. For this purpose, rats were assigned to one of four groups (6 rats per group): control (C), sulfite (S), deficient (D) and deficient+sulfite (DS). Sulfite oxidase deficiency was established by feeding rats a low molybdenum diet and adding 200ppm tungsten (W) to their drinking water. Sulfite (70mg/kg) was also administered to the animals via their drinking water. At the end of the experimental period, the rats were sacrificed by exsanguination under anesthesia, and their brains and livers quickly removed. The livers were used for a SOX activity assay, and the brains were used for neuronal counts in a known fraction of the CA1 and CA3-2 subdivisions of the left hippocampus using the optical fractionator method, which is a stereological method. The results showed that sulfite treatment caused a significant decrease in the total number of pyramidal neurons in three subdivisions of the hippocampus (CA1 and CA3-2) in the S, D and DS groups compared with the control group. It is concluded that exogenous administration of sulfite causes loss of pyramidal neurons in CA1 and CA3-2 subdivisions in both normal and SOX deficient rat hippocampus. This finding provides supporting evidence that sulfite is a neurotoxic molecule.

  7. Sulfite-sulfide-sulfate-carbonate equilibria with applications to Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Kargel, J. S.; Crowley, J. K.; Catling, D. C.

    2013-07-01

    Mars volcanic SO2 and H2S gas emissions are likely the dominant source of martian sulfate, and the source of sulfuric acid. Until this work, the FREZCHEM model lacked SO2 and H2S gases and associated sulfite and sulfide minerals. The specific objectives of this paper were to add these components and associated sulfite and sulfide minerals and phases into FREZCHEM, and to explore some possible roles of these chemistries on Mars. New solid phases added included the sulfites: Na2SO3·7H2O, K2SO3, (NH4)2SO3·H2O, MgSO3·6H2O, CaSO3·0.5H2O, and FeSO3·1.5H2O, and the sulfide: FeS2. The lowest eutectic of these minerals was K2SO3 (= 6.57 m) at 228 K. Because sulfurous acid is stronger than carbonic acid, this causes a much larger fraction of S(IV) to exist as sulfite (SO32-) at acidic to mildly alkaline pH, whereas almost none of the C is present as carbonate anion. Model calculations show that small quantities of SO2 in an early CO2-rich martian atmosphere suppressed formation of carbonates because SO2 is much more water soluble than CO2 and a stronger acid, which may be a major reason why sulfates are much more common than carbonates on Mars. Also, perhaps equally important are low temperatures that favor sulfite mineral precipitation, the oxidation of which leads to sulfate minerals. Another potentially important factor that favors sulfite/sulfide mineral formation is low pH values that cannot allow carbonate minerals, but can allow sulfide minerals such as pyrite (FeS2). The presence of pyrite, highly insoluble, would lead to sulfate minerals when oxygen becomes available in acidic environments. Major cations for both sulfites (or sulfates) and carbonates (Ca and Mg) can limit carbonates. Sulfite-sulfide volcanism on a cold, lower pH, Mars are the primary causes of high sulfate minerals (e.g., Ca and Mg sulfates), compared to volcanism on a warm, higher pH, Earth that led to more abundant carbonate minerals (e.g., Ca and Mg carbonates).

  8. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  9. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  10. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  11. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  12. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  13. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  14. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  15. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  16. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  17. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  18. Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain

    NASA Astrophysics Data System (ADS)

    Liang, Fang; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2014-11-01

    SO2 is very rapidly hydrated to sulfurous acid in water solution at pH value above 6.0, whereby sulfite is yielded from the disassociation of protons. We aimed to improve the sulfite transformation efficiency and provide a basis for the direct utilization of SO2 from flue gas by a microalgal suspension. Chlorella sp. XQ-20044 was cultured in a medium with 20 mmol/L sodium sulfite under different physicochemical conditions. Under light conditions, sulfite concentration in the algal suspension reduced linearly over time, and was completely converted into sulfate within 8 h. The highest sulfite transformation rate (3.25 mmol/(L·h)) was obtained under the following conditions: 35°C, light intensity of 300 μmol/(m2·s), NaHCO3 concentration of 6 g/L, initial cell density (OD540) of 0.8 and pH of 9-10. There was a positive correlation between sulfite transformation rate and the growth of Chlorella, with the conditions favorable to algal growth giving better sulfite transformation. Although oxygen in the air plays a role in the transformation of SO2- 3 to SO2- 4, the transformation is mainly dependent on the metabolic activity of algal cells. Chlorella sp. XQ-20044 is capable of tolerating high sulfite concentration, and can utilize sulfite as the sole sulfur source for maintaining healthy growth. We found that sulfite ≤20 mmol/L had no obvious effect on the total lipid content and fatty acid profiles of the algae. Thus, the results suggest it is feasible to use flue gas for the mass production of feedstock for biodiesel using Chlorella sp. XQ-20044, without preliminary removal of SO2, assuming there is adequate control of the pH.

  19. Nitrogen dioxide absorption in aqueous sodium sulfite

    NASA Astrophysics Data System (ADS)

    Shen, Chen Hua

    The Clean Air Act of 1990 requires additional reduction of acid gases, sulfur dioxide, and nitrogen oxides released into the atmosphere from coal-fired electric power plants. In the case of older existing power plants, a possible retrofit strategy is to oxidize nitric oxide (NO, the major constituent of NOsbX in flue gas) to nitrogen dioxide (NOsb2) by the addition of methanol or other hydrocarbons into the duct at an optimum temperature regime. NOsb2 can then be removed by either modifying existing SOsb2 control equipment or by adding a limestone (CaCOsb3) slurry scrubbing process. Limestone reacts with SOsb2 to from CaSOsb3, and the free sulfite (SO{sb3sp{=}}) in the solution is reactive toward NOsb2. The focus of this research is to study the reaction between NOsb2 and aqueous sulfite at elevated temperature and in the presence of gas phase Osb2. The removal of NOsb2 by limestone slurry scrubbing involves the reaction between NOsb2 and SO{sb3sp{=}}, bisulfite (HSO{sb3sp{-}}) and water. The reactions between NOsb2 and SO{sb3sp{=}}/HSO{sb3sp{-}} are first order in both reactants, while the NOsb2-water reaction is second order in NOsb2 concentration. The rate constants of the above reactions and the NOsb2-thiosulfate (Ssb2O{sb3sp{=}}) reaction were determined at 55sp°C. SO{sb3sp{=}} was found to be the most reactive toward NOsb2, while the contribution of chemical reaction still dominated in the absorption of NOsb2 into water. The effect of gas phase SOsb2 and Osb2, and liquid phase additives such as Ssb2O{sb3sp{=}}, Casp{++}, Mgsp{++}, and Clsp{-} on NOsb2 absorption was also investigated. The absorption of NOsb2 catalyzes free radical reactions that lead to sulfite oxidation. A semi-empirical model was proposed to relate the rate of sulfite oxidation to the rate of NOsb2 absorption. Thiosulfate inhibits sulfite oxidation by providing an alternative route for the termination of the free radical reactions, and a fundamental model was derived to quantify the effect

  20. An Essential Role for Tomato Sulfite Oxidase and Enzymes of the Sulfite Network in Maintaining Leaf Sulfite Homeostasis1[W][OA

    PubMed Central

    Brychkova, Galina; Grishkevich, Vladislav; Fluhr, Robert; Sagi, Moshe

    2013-01-01

    Little is known about the homeostasis of sulfite levels, a cytotoxic by-product of plant sulfur turnover. By employing extended dark to induce catabolic pathways, we followed key elements of the sulfite network enzymes that include adenosine-5′-phosphosulfate reductase and the sulfite scavengers sulfite oxidase (SO), sulfite reductase, UDP-sulfoquinovose synthase, and β-mercaptopyruvate sulfurtransferases. During extended dark, SO was enhanced in tomato (Solanum lycopersicum) wild-type leaves, while the other sulfite network components were down-regulated. SO RNA interference plants lacking SO activity accumulated sulfite, resulting in leaf damage and mortality. Exogenous sulfite application induced up-regulation of the sulfite scavenger activities in dark-stressed or unstressed wild-type plants, while expression of the sulfite producer, adenosine-5′-phosphosulfate reductase, was down-regulated. Unstressed or dark-stressed wild-type plants were resistant to sulfite applications, but SO RNA interference plants showed sensitivity and overaccumulation of sulfite. Hence, under extended dark stress, SO activity is necessary to cope with rising endogenous sulfite levels. However, under nonstressed conditions, the sulfite network can control sulfite levels in the absence of SO activity. The novel evidence provided by the synchronous dark-induced turnover of sulfur-containing compounds, augmented by exogenous sulfite applications, underlines the role of SO and other sulfite network components in maintaining sulfite homeostasis, where sulfite appears to act as an orchestrating signal molecule. PMID:23148079

  1. Oxidation of calcium sulfite slurries in a continuous reactor

    SciTech Connect

    Reynolds, S.D.

    1984-01-01

    The oxidation of calcium sulfate in a gas-solid-liquid system has been studied in a continuous stirred reactor. This oxidation reaction is of interest since it occurs in limestone scrubber systems for flue gas desulfurization. The overall oxidation process consists of oxygen absorption, dissolution of calcium sulfite, and liquid phase reaction, but the emphasis in this work has been done on the dissolution step. The dissolution of calcium sulfite into a solution of adipic acid was studied in the continuous stirred reactor. A model was developed to describe these experiments and good agreement between model and experiment was obtained. Experiments were also performed in which the dissolution of calcium sulfite into adipic acid solutions in the presence of calcium sulfate was examined. A model was developed for this system in which a shift in the equilibrium solubility of calcium sulfite due to the presence of calcium sulfate was included. Moderate success was achieved with this method, as the model described the dissolution experiments with added calcium sulfate and the oxidation experiments. The effect of manganese catalyst on the reaction was also studied. A brief examination of the gas-liquid mass transfer step was made using the model for slurry oxidation.

  2. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase

    SciTech Connect

    Hallenbeck, P.C. ); Clark, M.A.; Barrett, E.L. )

    1989-06-01

    Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions. Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (<0.33%). It was also prevented by the presence of 0.1 mM nitrate. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10{sup {minus}7} M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10{sup {minus}7}M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADHP and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.

  3. Sulfite oxidation in Sinorhizobium meliloti.

    PubMed

    Wilson, Jeremy J; Kappler, Ulrike

    2009-12-01

    Sulfite-oxidizing enzymes (SOEs) are crucial for the metabolism of many cells and are particularly important in bacteria oxidizing inorganic or organic sulfur compounds. However, little is known about SOE diversity and metabolic roles. Sinorhizobium meliloti contains four candidate genes encoding SOEs of three different types, and in this work we have investigated the role of SOEs in S. meliloti and their possible link to the metabolism of the organosulfonate taurine. Low level SOE activity (approximately 1.4 U/mg) was present under all conditions tested while growth on taurine and thiosulfate induced high activities (5.5-8.8 U/mg) although S. meliloti cannot metabolize thiosulfate. Protein purification showed that although expression of two candidate genes matched SOE activity patterns, only a single group 2 SOE, SorT (SMc04049), is responsible for this activity. SorT is a heme-free, periplasmic homodimer (78 kDa) that has low homology to other bacterial SOEs. SorT has an apparent k(cat) of 343 s(-1) and high affinities for both sulfite (K(Mapp_pH8) 15.5 microM) and ferricyanide (K(Mapp_pH8) 3.44 microM), but not cytochrome c, suggesting a need for a high redox potential natural electron acceptor. K(Mapp_sulfite) was nearly invariant with pH which is in contrast to all other well characterized SOEs. SorT is part of an operon (SMc04049-04047) also containing a gene for a cytochrome c and an azurin, and these might be the natural electron acceptors for the enzyme. Phylogenetic analysis of SorT-related SOEs and enzymes of taurine degradation indicate that there is no link between the two processes.

  4. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium...

  5. Risk analysis of sulfites used as food additives in China.

    PubMed

    Zhang, Jian Bo; Zhang, Hong; Wang, Hua Li; Zhang, Ji Yue; Luo, Peng Jie; Zhu, Lei; Wang, Zhu Tian

    2014-02-01

    This study was to analyze the risk of sulfites in food consumed by the Chinese people and assess the health protection capability of maximum-permitted level (MPL) of sulfites in GB 2760-2011. Sulfites as food additives are overused or abused in many food categories. When the MPL in GB 2760-2011 was used as sulfites content in food, the intake of sulfites in most surveyed populations was lower than the acceptable daily intake (ADI). Excess intake of sulfites was found in all the surveyed groups when a high percentile of sulfites in food was in taken. Moreover, children aged 1-6 years are at a high risk to intake excess sulfites. The primary cause for the excess intake of sulfites in Chinese people is the overuse and abuse of sulfites by the food industry. The current MPL of sulfites in GB 2760-2011 protects the health of most populations.

  6. A sensitive and selective on-line amperometric sulfite biosensor using sulfite oxidase immobilized on a magnetite-gold-folate nanocomposite modified carbon-paste electrode.

    PubMed

    Sroysee, Wongduan; Ponlakhet, Kitayanan; Chairam, Sanoe; Jarujamrus, Purim; Amatatongchai, Maliwan

    2016-08-15

    We describe a novel amperometric sulfite biosensor, comprising a carbon-paste electrode (Fe3O4@Au-Cys-FA/CPE) modified with immobilized sulfite oxidase (SOx) on a gold-coated magnetite nanoparticle core, encased within a conjugated folic acid (FA) cysteine (Cys) shell. The biosensor electrode was fabricated using a polydimethylsiloxane (PDMS) and mineral oil mixture as binder, which also enhances the physical stability and sensitivity of the electrode. The developed biosensor displays good electrocatalytic activity toward oxidation of H2O2, which occurs by an enzymatic reaction between SOx and sulfite. The Fe3O4@Au-Cys-FA electrode exhibits good electrocatalytic activity, and has good retention of chemisorbed SOx on the electrode because of its large surface area. Sulfite was quantified using amperometric measurements from the Fe3O4@Au-Cys-FA/CPE biosensor, and using an in-house assembled flow cell at +0.35V (vs. Ag/AgCl), with a phosphate buffer carrier (0.10M, pH 7.0) at a flow rate of 0.8mLmin(-1). The system detects sulfite over the range 0.1-200mgL(-1) (r(2)=0.998), with a detection limit of 10µgL(-1) (3σ of blank). The system exhibits acceptable precision (%R.S.D.=3.1%), rapid sample throughput (109samplesh(-1)), and good stability (2w). The developed biosensor shows satisfactory tolerance to potential interferences, such as sugars, anions, ascorbic acid, and ethanol. We applied the developed method to the determination of sulfite content in wines and pickled food extracts, and our results are in good agreement with those obtained by the standard iodometric method.

  7. Vanillin: Synthetic Flavoring from Spent Sulfite Liquor

    NASA Astrophysics Data System (ADS)

    Hocking, Martin B.

    1997-09-01

    Separation of the lignin component of wood from the cellulose presents an opportunity to access various interesting products from the lignin fragments. The lignin represents availability of a sizable renewable resource. Vanillin, or 3-methoxy-4-hydroxybenzaldehyde, is one of a series of related substituted aromatic flavor constituents, and represents one of the potentially profitable possibilities. Vanillin production from the lignin-containing waste liquor obtained from acid sulfite pulping of wood began in North America in the mid 1930's. By 1981 one plant at Thorold, Ontario produced 60% of the contemporary world supply of vanillin. The process also simultaneously decreased the organic loading of the aqueous waste streams of the pulping process. Today, however, whilst vanillin production from lignin is still practiced in Norway and a few other areas, all North American facilities using this process have closed, primarily for environmental reasons. New North American vanillin plants use petrochemical raw materials. An innovation is needed to help overcome the environmental problems of this process before vanillin production from lignin is likely to resume here. Current interest in the promotion of chemicals production from renewable raw materials reinforces the incentive to do this.

  8. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves

    PubMed Central

    Brychkova, Galina; Yarmolinsky, Dmitry; Batushansky, Albert; Grishkevich, Vladislav; Khozin-Goldberg, Inna; Fait, Aaron; Amir, Rachel; Fluhr, Robert; Sagi, Moshe

    2015-01-01

    Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants. PMID:27135342

  9. Diversity of Dissimilatory Sulfite Reductase Genes (dsrAB) in a Salt Marsh Impacted by Long-Term Acid Mine Drainage▿ †

    PubMed Central

    Moreau, John W.; Zierenberg, Robert A.; Banfield, Jillian F.

    2010-01-01

    Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years. Recovered dsrAB sequences from three sites sampled along an AMD flow path indicated the dominance of a single Desulfovibrio species. Other major sequence clades were related most closely to Desulfosarcina, Desulfococcus, Desulfobulbus, and Desulfosporosinus species. The presence of metal sulfides with low δ34S values relative to δ34S values of pore water sulfate showed that sediment SRB populations were actively reducing sulfate under ambient conditions (pH of ∼2), although possibly within less acidic microenvironments. Interestingly, δ34S values for pore water sulfate were lower than those for sulfate delivered during tidal inundation of marsh sediments. 16S rRNA gene sequence data from sediments and sulfur isotope data confirmed that sulfur-oxidizing bacteria drove the reoxidation of biogenic sulfide coupled to oxygen or nitrate reduction over a timescale of hours. Collectively, these findings imply a highly dynamic microbially mediated cycling of sulfate and sulfide, and thus the speciation and mobility of chalcophilic contaminant metal(loid)s, in AMD-impacted marsh sediments. PMID:20472728

  10. Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats.

    PubMed

    Grings, Mateus; Moura, Alana Pimentel; Parmeggiani, Belisa; Motta, Marcela Moreira; Boldrini, Rafael Mello; August, Pauline Maciel; Matté, Cristiane; Wyse, Angela T S; Wajner, Moacir; Leipnitz, Guilhian

    2016-11-01

    Patients affected by sulfite oxidase (SO) deficiency present severe seizures early in infancy and progressive neurological damage, as well as tissue accumulation of sulfite, thiosulfate and S-sulfocysteine. Since the pathomechanisms involved in the neuropathology of SO deficiency are still poorly established, we evaluated the effects of sulfite on redox homeostasis and bioenergetics in cerebral cortex, striatum, cerebellum and hippocampus of rats with chemically induced SO deficiency. The deficiency was induced in 21-day-old rats by adding 200ppm of tungsten, a molybdenum competitor, in their drinking water for 9weeks. Sulfite (70mg/kg/day) was also administered through the drinking water from the third week of tungsten supplementation until the end of the treatment. Sulfite decreased reduced glutathione concentrations and the activities of glutathione reductase and glutathione S-transferase (GST) in cerebral cortex and of GST in cerebellum of SO-deficient rats. Moreover, sulfite increased the activities of complexes II and II-III in striatum and of complex II in hippocampus, but reduced the activity of complex IV in striatum of SO-deficient rats. Sulfite also decreased the mitochondrial membrane potential in cerebral cortex and striatum, whereas it had no effect on mitochondrial mass in any encephalic tissue evaluated. Finally, sulfite inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex of SO-deficient rats. Taken together, our findings indicate that cerebral cortex and striatum are more vulnerable to sulfite-induced toxicity than cerebellum and hippocampus. It is presumed that these pathomechanisms may contribute to the pathophysiology of neurological damage found in patients affected by SO deficiency.

  11. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms

    PubMed Central

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K.

    2015-01-01

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB. PMID:27682089

  12. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    PubMed

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  13. Sulfite-containing Canadian pharmaceutical products available in 1991.

    PubMed Central

    Miyata, M; Schuster, B; Schellenberg, R

    1992-01-01

    OBJECTIVE: To compile an inclusive list of Canadian pharmaceutical products available in 1991 that contained sulfites. DATA SOURCES: Written and oral responses from 94 pharmaceutical companies selected from the 1989 Compendium of Pharmaceuticals and Specialties. RESULTS: A list of sulfite-containing pharmaceutical products was compiled from data supplied by the 90 responding companies. Companies whose products contained no sulfites were separately identified. CONCLUSIONS: Sulfites are present in many pharmaceutical products and are one of many excipients and additives that have been reported to cause severe adverse reactions. The provided list should be a useful aid for health care practitioners when prescribing pharmaceutical products for sulfite-sensitive patients. PMID:1483237

  14. Oxidation of ammonium sulfite in aqueous solutions using ozone technology

    NASA Astrophysics Data System (ADS)

    Li, Yue; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2013-03-01

    How to deal with unstable ammonium sulfite, the byproduct of flue gas desulfuration by ammonia absorption methods, has been a difficult problem in recent years. Oxidation of ammonium sulfite in aqueous solutions using ozone produced by a surface discharge system was investigated in the paper. The oxidation efficiency of ammonium sulfite by ozone and traditional air aeration were compared, and the factors including ozone concentration, gas flow rate, initial concentration of ammonium sulfite solution and reaction temperature were discussed. The results show that the oxidation efficiency of ammonium sulfite by ozone technology reached nearly 100% under the optimum conditions, which had a significant increase compared with that by air aeration.

  15. Dissolution and crystallization of calcium sulfite platelets

    SciTech Connect

    Gleason, C.L.; Rochelle, G.T.

    1987-01-01

    The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue gas desulfurization. The rates affect the scrubber solution composition, SO/sub 2/ absorption, sulfite oxidation and limestone utilization. The dissolution and crystallization rates of platelet shaped calcium sulfite crystals were measured in the pH state apparatus. The solution pH was varied from 3.0 to 6.0. The effects of sulfate content in the solids and solution were also investigated. The measured rates for the platelets were compared to the rates previously determined for agglomerates. It was determined that there are subtle differences between platelet and agglomerated calcium sulfite. The platelet sample with a low solid sulfate content dissolved and crystallized slower than the sample with a high solid sulfate content and the agglomerated samples. The inhibiting effect of dissolved sulfate was also greater for the low solid sulfate sample. The sample with a high solid sulfate content dissolved and crystallized at approximately the same rate as the agglomerates.

  16. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 4, A laboratory study conducted in fulfillment of Phase 2, Objective 1 titled. Inhibition of acid production in coal refuse amended with calcium sulfite and calcium sulfate - containing FGD solids

    SciTech Connect

    Hao, Y. L.; Dick, W. A.; Stehouwer, R. C.; Bigham, J. M.

    1998-06-30

    Control of S02 emission from coal combustion requires desulfurization of coal before its combustion to produce coal refuse. Alternatively, gaseous emissions from coal combustion may be scrubbed to yield flue gas desulfurization (FGD) by-products that include calcium sulfite (CaSO3∙0.5H2O or simply CaS03). Acid production in coal refuse due to pyrite oxidation and disposal of large amounts of FGD can cause environmental degradation. Addition of CaS03 and CaS03-containing FGD to coal refuse may reduce the amounts of oxygen and ferric ion available to oxidize pyrite because the sulfite moiety in CaS03 is a strong reductant and thus may mitigate acid production in coal refuse. In Chapter 1, it was shown that CaS03 efficiently scavenged dissolved oxygen and ferric ion in water under the conditions commonly encountered in a coal refuse disposal environment. In the presence ofCaS03, the concentration of dissolved oxygen in water exposed to the atmosphere declined to below 0.01 mg L"1 at pH <8.0. In Chapter 2, it was demonstrated that CaS03 prevented a pH drop in coal refuse slurry when 0.2 gCaS03 was added to a 2% fresh coal refuse slurry every three days. Calcium sulfite also inhibited acid leaching from fresh coal refuse in bench-scale columns under controlled conditions. During the initial 13 weeks of leaching, the total amounts of titratable acidity, soluble H\\ Fe, and Al from CaS03-treated refuse (6.4 gin 50 g fresh coal refuse) were only 26%,10%, 32%, and 39% of those of the control columns, respectively. A combination of CaS03 with CaC03 or fly ash enhanced the inhibitory effect of CaS03 on acid leaching. Calcium sulfite-containing FGD which combined CaS03, CaC03, fly ash, and gypsum showed a much stronger inhibitory effect on acid leaching than CaS03 alone. This

  17. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.

    2012-04-18

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.

  18. Thermodynamic fundamentals of ferrous cake sulfitization

    NASA Astrophysics Data System (ADS)

    Tyurin, A. G.; Vasekha, M. V.; Biryukov, A. I.

    2016-03-01

    The Pourbaix diagrams of the systems SO 4 2- -SO 3 2- -H2O and iron hydroxide (oxide)-H2O are refined. The E(pH) dependence of the sulfitization of iron(III) hydroxide is refined with allowance for the regions of predominant phase constituents of the systems. The potential E-pH electrochemical equilibrium diagrams of the systems Fe(OH)3-H2SO4-SO 3 2- -H2O, FeOOH-H2SO4-SO 3 2- -H2O, and Fe2O3-H2SO4-SO 3 2- -H2O are plotted. These diagrams can be considered as a thermodynamic basis for the sulfite conversion of the ferrous cake of copper-nickel production.

  19. Sulfite oxidase deficiency. Biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism.

    PubMed

    Shih, V E; Abroms, I F; Johnson, J L; Carney, M; Mandell, R; Robb, R M; Cloherty, J P; Rajagopalan, K V

    1977-11-10

    Study of a 4 1/2-year-old boy with the unusual combination of acute infantile hemiplegia, ectopia lentis and the absence of homocystinuria showed large amounts of abnormal sulfur-containing metabolites (sulfite, thiosulfate and S-sulfocysteine) in the urine. Sulfite and S-sulfocysteine were also present in the plasma. His inorganic sulfate excretion was only 50 per cent of total sulfur, as compared with 75 to 95 per cent by controls. Loading with L-cysteine hydrochloride and L-methionine further increased the excretion of sulfite and thiosulfate, but not inorganic sulfate excretion. Sulfite oxidase activity in skin fibroblasts average 1.07 nmol of cytochrome d reduced per milligram of protein per minute in control lines; it was not detectable (less than 5 per cent) in the patient. Activity was reduced in both parents (0.50 in the father and 0.32 in the mother)--compatible with autosomal recessive inheritance. Good biochemical responses to a low sulfur amino acid diet suggest that early treatment may benefit the patient.

  20. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  1. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized...

  2. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized...

  3. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized...

  4. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD STANDARDS: GENERAL General Provisions § 130.9 Sulfites in standardized...

  5. 21 CFR 130.9 - Sulfites in standardized food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... presence of the sulfiting agent is declared on the label of the food. ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sulfites in standardized food. 130.9 Section 130.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  6. The oxygen isotope equilibrium fractionation between sulfite species and water

    NASA Astrophysics Data System (ADS)

    Müller, Inigo A.; Brunner, Benjamin; Breuer, Christian; Coleman, Max; Bach, Wolfgang

    2013-11-01

    Sulfite is an important sulfoxy intermediate in oxidative and reductive sulfur cycling in the marine and terrestrial environment. Different aqueous sulfite species exist, such as dissolved sulfur dioxide (SO2), bisulfite (HSO3-), pyrosulfite (S2O52-) and sulfite sensu stricto (SO32-), whereas their relative abundance in solution depends on the concentration and the pH. Conversion of one species into another is rapid and involves in many cases incorporation of oxygen from, or release of oxygen to, water (e.g. SO2 + H2O ↔ HSO3- + H+), resulting in rapid oxygen isotope exchange between sulfite species and water. Consequently, the oxygen isotope composition of sulfite is strongly influenced by the oxygen isotope composition of water. Since sulfate does not exchange oxygen isotopes with water under most earth surface conditions, it can preserve the sulfite oxygen isotope signature that it inherits via oxidative and reductive sulfur cycling. Therefore, interpretation of δO values strongly hinges on the oxygen isotope equilibrium fractionation between sulfite and water which is poorly constrained. This is in large part due to technical difficulties in extraction of sulfite from solution for oxygen isotope analysis.

  7. Synthesis and antiviral evaluation of bisnoradamantane sulfites and related compounds.

    PubMed

    Valverde, Elena; Torres, Eva; Guardiola, Salvador; Naesens, Lieve; Vázquez, Santiago

    2011-03-01

    The reaction of a series of 1,2-diols with thionyl chloride led to bisnoradamantane sulfites in very good yields. The reaction has also been applied to related polycyclic scaffolds. The compounds have been tested for antiviral activity but none of them showed to be active. Several attempts to generate and trap SO from these polycyclic sulfites have been unsuccessful.

  8. Determination of total sulfite in wine by ion chromatography after in-sample oxidation.

    PubMed

    Koch, Matthias; Köppen, Robert; Siegel, David; Witt, Angelika; Nehls, Irene

    2010-09-08

    Sulfur dioxide (SO2) or sulfites are the most common preservatives used in winemaking. The level of total SO2 is subject to regulation. Currently, the regulatory determination of total SO2 (including sulfites) is done by the optimized Monier-Williams (OMW) method, which includes time-consuming distillation and titration steps. This paper describes the development and application of an alternative, rapid, straightforward, and reliable method for the determination of total sulfite in wine. In this method, a simple oxidation step using alkaline hydrogen peroxide (H2O2) solution is followed by ion chromatographic (IC) analysis of sulfate coupled with conductometric detection. Thirteen wines were analyzed in order to compare the in-sample oxidation method with the OMW-procedure. A t-test revealed satisfying compliance regarding sample preparation, i.e., alkaline H2O2 treatment and acidic distillation (OMW method). Comparable results were also obtained between IC analysis and acid/base titration. Our results indicate that the novel method (limit of quantification: 4 mg SO2 L(-1)) is well suited for the cost-efficient monitoring of regulatory limits.

  9. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  10. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  11. Determination of epichlorohydrin by sulfite derivatization and ion chromatography: characterization of the sulfite derivatives by ion chromatography-mass spectrometry.

    PubMed

    Bruzzoniti, Maria Concetta; Andrensek, Samo; Novic, Milko; Perrachon, Daniela; Sarzanini, Corrado

    2004-04-23

    This work is an upgrade of a previously developed method (J. Chromatogr. A 884 (2000) 251] for epichlorohydrin determination by ion chromatography (IC) and conductivity detection. Here, an ion chromatography-mass spectrometry (IC-MS) coupling has been employed for the separation and the identification of products of epichlorohydrin when reacted with the nucleophilic agent SO3(2-). The high capacity column (IonPac AS11-HC) used for separation provided good resolution. This allowed evaluation of the IC behavior and mass spectrometric identification of epichlorohydrin sulfite derivatives. By using atmospheric pressure interfaces (ESI and APCI) the following species were tentatively identified: 2,3-dihydroxy-1-propanesulfonic, 2,3-epoxy-1-propanesulfonic,1,3-dihydroxy-2-propanesulfonic and 3-oxetanesulfonic acids and 2-hydroxy-1,3-propanedisulfonic acid (or its isomer 3-hydroxy-1,2-propanedisulfonic acid). The study showed that chlorine atoms are displaced from epichlorohydrin during the reaction, while mass spectrometry confirmed that none of the products formed contains chlorine atoms.

  12. Determination of added sulfites in dried garlic with a modified version of the optimized Monier-Williams method.

    PubMed

    Lafeuille, Jean-Louis; Lefevre, Stephane; Achouri, Djamila

    2007-01-01

    The optimized Monier-Williams method is slightly modified so that it could be applied for determining sulfite content in dried garlic. Dried garlic sample is directly acidified in a reactor at a pH below 3. At this pH level, the alliinase enzyme activity is irreversibly blocked, and the sulfur-containing amino acids such as alliin (the most abundant) present in dried garlic cannot be transformed into corresponding thiosulfinates such as allicin, which is absent in dried garlic. This prevents allicin from reacting with added sulfites and being probably converted to S-allyl thiosulfate, which is not volatile and has no taste. It is found that at a pH below 2.4 and at boiling water temperature, allicin produces sulfur dioxide in adequate quantity to explain the false-positive results when utilizing the optimized Monier-Williams method with allicin suppression for unsulfited dried garlic samples. Finally, when garlic samples are stabilized in a phosphoric acid buffer at a final pH around 2.4, no sulfite is produced during the Monier-Williams distillation, which is further proof there are no naturally occurring sulfites in unsulfited dried garlic under these mild conditions.

  13. The octaheme SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1

    SciTech Connect

    Shirodkar, Sheetal; Reed, Samantha B.; Romine, Margaret F.; Saffarini, Daad

    2011-01-01

    Shewanella oneidensis MR-1 is a metal reducer that uses a large number of electron acceptors that include thiosulfate, polysulfide, and sulfite. The enzyme required for thiosulfate and polysulfide respiration has been recently identified, but the mechanisms of sulfite reduction remained unexplored. Analysis of MR-1 cultures grown anaerobically with sulfite suggested that the dissimilatory sulfite reductase catalyzes six-electron reduction of sulfite to sulfide. Reduction of sulfite required menaquinones and c cytochromes but appeared to be independent of the intermediate electron carrier CymA. Furthermore, the terminal sulfite reductase, SirA, was identified as an octaheme c cytochrome with an atypical heme binding site that represents a new class of sulfite reductases. The sirA locus was identified in the genomes of several sequenced Shewanella genomes, and its presence appears to be linked to the ability of these organisms to reduce sulfite under anaerobic conditions.

  14. (Bi)sulfite Oxidation by Copper,Zinc-Superoxide Dismutase: Sulfite-Derived, Radical-Initiated Protein Radical Formation

    PubMed Central

    Ranguelova, Kalina; Bonini, Marcelo G.; Mason, Ronald P.

    2010-01-01

    Background Sulfur dioxide, formed during the combustion of fossil fuels, is a major air pollutant near large cities. Its two ionized forms in aqueous solution, sulfite and (bi)sulfite, are widely used as preservatives and antioxidants to prevent food and beverage spoilage. (Bi)sulfite can be oxidized by peroxidases to form the very reactive sulfur trioxide anion radical (•SO3−). This free radical further reacts with oxygen to form the peroxymonosulfate anion radical (−O3SOO•) and sulfate anion radical (SO4• −). Objective To explore the critical role of these radical intermediates in further oxidizing biomolecules, we examined the ability of copper,zinc-superoxide dismutase (Cu,Zn-SOD) to initiate this radical chain reaction, using human serum albumin (HSA) as a model target. Methods We used electron paramagnetic resonance, optical spectroscopy, oxygen uptake, and immuno-spin trapping to study the protein oxidations driven by sulfite-derived radicals. Results We found that when Cu,Zn-SOD reacted with (bi)sulfite, •SO3− was produced, with the concomitant reduction of SOD-Cu(II) to SOD-Cu(I). Further, we demonstrated that sulfite oxidation mediated by Cu,Zn-SOD induced the formation of radical-derived 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-trapped HSA radicals. Conclusions The present study suggests that protein oxidative damage resulting from (bi)sulfite oxidation promoted by Cu,Zn-SOD could be involved in oxidative damage and tissue injury in (bi)sulfite-exacerbated allergic reactions. PMID:20348042

  15. A fast and sensitive HPLC method for sulfite analysis in food based on a plant sulfite oxidase biosensor.

    PubMed

    Theisen, S; Hänsch, R; Kothe, L; Leist, U; Galensa, R

    2010-09-15

    A reliable and sensitive analysis of sulfites in food is essential in food monitoring. However, the established methods exhibit deficiencies in the very low concentration ranges (below 10 mg/L SO(2)), especially with more complex food matrices. With a focus on these challenges, an HPLC method with immobilized enzyme reactor (HPLC-IMER) for the analysis of sulfites in food was optimized and compared to a standard method. A modulated sample preparation procedure and the use of a novel sulfite oxidase from Arabidopsis thaliana were explored to make the method applicable for most food samples. The plant sulfite oxidase turned out to be superior to the commercially available animal sulfite oxidase in terms of detection limit (0.01 mg/L SO(2)), linear range (0.04-20 mg/L SO(2)) and stability. In a small scale comparison within our laboratory, as well as in a standardized proficiency testing, the HPLC-IMER was compared to an established distillative method. The enzyme-based method is not only more sensitive and specific, it also yields higher sulfite recoveries in almost all samples while exhibiting better statistic method parameters.

  16. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR.

    PubMed Central

    Karkhoff-Schweizer, R R; Huber, D P; Voordouw, G

    1995-01-01

    The structural genes for dissimilatory sulfite reductase (desulfoviridin) from Desulfovibrio vulgaris Hilden-borough were cloned as a 7.2-kbp SacII DNA fragment. Nucleotide sequencing indicated the presence of a third gene, encoding a protein of only 78 amino acids, immediately downstream from the genes for the alpha and beta subunits (dsvA and dsvB). We designated this protein DsvD and the gene encoding it the dsvD gene. The alpha- and beta-subunit sequences are highly homologous to those of the dissimilatory sulfite reductase from Archaeoglobus fulgidus, a thermophilic archaeal sulfate reducer, which grows optimally at 83 degrees C. A gene with significant homology to dsvD was also found immediately downstream from the dsrAB genes of A. fulgidus. The remarkable conservation of gene arrangement and sequence across domain (bacterial versus archaeal) and physical (mesophilic versus thermophilic) boundaries indicates an essential role for DsvD in dissimilatory sulfite reduction and allowed the construction of conserved deoxyoligonucleotide primers for detection of the dissimilatory sulfite reductase genes in the environment. PMID:7887608

  17. Modification of the levels of polyphenols in wort and beer by addition of hexamethylenetetramine or sulfite during mashing.

    PubMed

    Andersen, M L; Skibsted, L H

    2001-11-01

    The effects of addition of hexamethylenetetramine (HMT) or sulfite during mashing on the polyphenol content and oxidative stability of wort and beer have been evaluated in a series of laboratory mashings and pilot brews. HMT reduced the concentration of catechin, prodelphinidin B-3, and procyanidin B-3 in wort and beer, whereas the concentration of ferulic acid was unaffected. Sulfite had only a minor effect on the concentration of phenolics in wort and beer. Addition of HMT or sulfite during mashing increased the oxidative stability of the beer slightly as judged by the tendency of formation of radicals (ESR spin trapping technique), although sensory analysis gave identical flavor acceptance scores to beers produced from untreated and HMT-treated wort and lower scores to beer from sulfite-treated wort. No difference in the oxidative stability of the differently treated sweet worts could be detected as judged by the rate of formation of radicals. HMT addition during mashing has thus been demonstrated to be a valuable experimental tool to control the level of polyphenols in wort and for producing brews with various levels of polyphenols from a single malt.

  18. Estimate of intake of sulfites in the Belgian adult population.

    PubMed

    Vandevijvere, S; Temme, E; Andjelkovic, M; De Wil, M; Vinkx, C; Goeyens, L; Van Loco, J

    2010-08-01

    An exposure assessment was performed to estimate the usual daily intake of sulfites in the Belgian adult population. Food consumption data were retrieved from the national food consumption survey. In a first step, individual food consumption data were multiplied with the maximum permitted use levels for sulfites, expressed as sulphur dioxide, per food group (Tier 2). In a second step, on the basis of a literature review of the occurrence of sulfites in different foods, the results of the Tier 2 exposure assessment and available occurrence data from the control programme of the competent authority, a refined list of foods was drafted for the quantification of sulphite. Quantification of sulphite was performed by a high-performance ion chromatography method with eluent conductivity detector in beers and potato products. Individual food consumption data were then multiplied with the actual average concentrations of sulfite per food group, or the maximum permitted levels in case actual levels were not available (partial Tier 3). Usual intakes were calculated using the Nusser method. The mean intake of sulfites was 0.34 mg kg(-1) bw day(-1) (Tier 2), corresponding to 49% of the acceptable daily intake (ADI) and 0.19 mg kg(-1) bw day(-1), corresponding to 27% of the ADI (partial Tier 3). The food group contributing most to the intake of sulfites was wines. The results showed that the intake of sulfites is likely to be below the ADI in Belgium. However, there are indications that high consumers of wine have an intake around the ADI.

  19. Trace determination of aqueous sulfite, sulfide, and methanethiol by fluorometric flow injection analysis

    SciTech Connect

    Dasgupta, P.K.; Yang, H.C.

    1986-11-01

    Preservation of sulfite, sulfide, and methanethiol in buffered formaldehyde and oxaldihydroxamic acid stabilizers has been studied. Flow injection analysis procedures that involve T mixing or membrane-based reagent introduction have been developed for the fast (24 samples/h) analysis of these anions based upon the reaction with N-acridinylmaleimide in a water-N,N-dimethylformamide medium to form a fluorescent product. Detection limits are 0.04, 0.60, and 0.80 ..mu..M, respectively, for the three sulfur species; differential analysis is possible.

  20. Analysis of commercial proanthocyanidins. Part 2: An electrospray mass spectrometry investigation into the chemical composition of sulfited quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood extract.

    PubMed

    Venter, Pieter B; Senekal, Nadine D; Amra-Jordaan, Maryam; Bonnet, Susan L; Van der Westhuizen, Jan H

    2012-06-01

    Proanthocyanidins (PACs) are natural plant-derived polymers used in leather tanning, wood adhesives, water purification, and mud additives for oil drilling. Quebracho (Schinopsis lorentzii and Schinopsis balansae) heartwood and mimosa (Acacia mearnsii) bark extracts are the major industrial sources of PACs. These commercial extracts are often sulfited via treatment with sodium hydrogen sulfite to reduce their viscosity and increase their solubility in water. An ESI-MS investigation into the molecular composition of sulfited (cold-water-soluble) quebracho heartwood extract indicates that sulfitation of the PACs occurs via S(N)2 attack of a sulfite ion at both C-2 and C-4 of the constituent flavan-3-ol monomer extender units. Attack at C-2 leads to the opening of the pyran ring. This releases an additional electron-donating phenolic hydroxy group on the A-ring and renders the extract more nucleophilic and suitable for the manufacturing of adhesives. Attack at C-4 leads to interflavanyl bond fission and decrease of the PAC oligomer chain length. The introduction of sulfonic acid moieties at C-2 or C-4 increases the polarity and water solubility of the hot water soluble (unsulfited) extract and transforms it into a cold-water-soluble extract.

  1. Influence of Distillation Temperature in the Determination of Added Sulfites in Dehydrated Garlic Powders Using the Modified Optimized Monier-Williams Method.

    PubMed

    2016-04-08

    Influence of distillation temperature on the determination of added sulfites in dehydrated garlic originating from China and California using the modified optimized Monier-Williams method was evaluated. In the study, the temperature of the distillation was monitored and maintained from 90° to 95°C instead of boiling temperature (>95°C). Samples from 38 unsulfited dehydrated garlic powders were analyzed at the 90° to 95°C temperature and at boiling temperature (>95°C) at 94 m above sea level. At the boiling distillation temperature, 25 of the 38 unsulfited garlic samples had a positive result for sulfite content ranging from 10.2 to 14.1 ppm using the modified optimized Monier-Williams procedure. Maintaining distillation temperature between 90° and 95°C eliminated false-positive results for added sulfite and had an average spiked sulfite recovery of 95.6% with a coefficient of variation of 3.79%. Lowering of the distillation temperature decreases the possible acid hydrolysis of organosulfur compounds that can lead to positive added sulfite results in unsulfited dehydrated garlic samples.

  2. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine.

    PubMed

    Zhu, J Y; Pan, X J; Wang, G S; Gleisner, R

    2009-04-01

    This study established a novel process using sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust and efficient bioconversion of softwoods. The process consists of sulfite treatment of wood chips under acidic conditions followed by mechanical size reduction using disk refining. The results indicated that after the SPORL pretreatment of spruce chips with 8-10% bisulfite and 1.8-3.7% sulfuric acid on oven dry (od) wood at 180 degrees C for 30 min, more than 90% cellulose conversion of substrate was achieved with enzyme loading of about 14.6 FPU cellulase plus 22.5 CBU beta-glucosidase per gram of od substrate after 48 h hydrolysis. Glucose yield from enzymatic hydrolysis of the substrate per 100 g of untreated od spruce wood (glucan content 43%) was about 37 g (excluding the dissolved glucose during pretreatment). Hemicellulose removal was found to be as critical as lignin sulfonation for cellulose conversion in the SPORL process. Pretreatment altered the wood chips, which reduced electric energy consumption for size reduction to about 19 Wh/kg od untreated wood, or about 19 g glucose/Wh electricity. Furthermore, the SPORL produced low amounts of fermentation inhibitors, hydroxymethyl furfural (HMF) and furfural, of about 5 and 1 mg/g of untreated od wood, respectively. In addition, similar results were achieved when the SPORL was applied to red pine. By building on the mature sulfite pulping and disk refining technologies already practiced in the pulp and paper industry, the SPORL has very few technological barriers and risks for commercialization.

  3. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines.

    PubMed

    Garaguso, Ivana; Nardini, Mirella

    2015-07-15

    Wine exerts beneficial effects on human health when it is drunk with moderation. Nevertheless, wine may also contain components negatively affecting human health. Among these, sulfites may induce adverse effects after ingestion. We examined total polyphenols and flavonoids content, phenolics profile and antioxidant activity of eight organic red wines produced without sulfur dioxide/sulfites addition in comparison to those of eight conventional red wines. Polyphenols and flavonoids content were slightly higher in organic wines in respect to conventional wines, however differences did not reach statistical significance. The phenolic acids profile was quite similar in both groups of wines. Antioxidant activity was higher in organic wines compared to conventional wines, although differences were not statistically significant. Our results indicate that organic red wines produced without sulfur dioxide/sulfites addition are comparable to conventional red wines with regard to the total polyphenols and flavonoids content, the phenolics profile and the antioxidant activity.

  4. Chromogenic and fluorogenic signaling of sulfite by selective deprotection of resorufin levulinate.

    PubMed

    Choi, Myung Gil; Hwang, Jiyoung; Eor, Suyoung; Chang, Suk-Kyu

    2010-12-17

    A new sulfite-selective probe system based on resorufin was investigated. Levulinate of resorufin exhibited a prominent chromogenic and turn-on type fluorogenic signaling toward sulfite ions in aqueous media based on the selective deprotection of the levulinate group. The sulfite-selective signaling was possible in the presence of commonly encountered anions.

  5. Determination of sulfite by pervaporation-flow injection with amperometric detection using copper hexacyanoferrate-carbon nanotube modified carbon paste electrode.

    PubMed

    Alamo, Lori Shayne T; Tangkuaram, Tanin; Satienperakul, Sakchai

    2010-06-15

    A pervaporation-flow injection (PFI) method was developed for the determination of sulfite in selected food samples using a copper hexacyanoferrate-carbon nanotube (CuHCF-CNT)-modified carbon paste electrode. The electrochemical behavior of the modified electrode was observed using cyclic voltammetry in comparison to a CuHCF-modified carbon paste electrode and a bare carbon paste electrode at a scan rate of 100mVs(-1) in 0.10M KNO(3). The bare carbon paste electrode gave the lowest response to sulfite, while the presence of CuHCF made the detection of sulfite possible through electrocatalytic oxidation by the hexacyanoferrate in the modified electrodes. The presence of CNT in the CuHCF-CNT-modified sensor gave the most remarkable current for the detection of sulfite and was then used as a working electrode in the amperometric flow-through cell in the pervaporation flow injection system. The PFI method involves the injection of a standard or sample sulfite solution into a sulfuric acid donor stream to generate sulfur dioxide gas and evaporate into the headspace of the pervaporation unit. The sulfur dioxide diffuses through the PTFE hydrophobic membrane into a potassium nitrate acceptor stream and reverts to the sulfite form, which, subsequently, is transported to the electrochemical flow cell where it is analyzed amperometrically at a CuHCF-CNT-modified electrode at +0.55V (vs. Ag/AgCl). The detection was determined to be applicable in the sulfite concentration range of 0.5-50mgL(-1). The sensitivity, detection limit, and sample throughput were determined to be 2.105nALmg(-1), 0.40mgL(-1) and 11h(-1), respectively. The developed PFI method, coupled with the CuHCF-CNT-modified carbon paste electrode, was applied in the determination of sulfite content in sulfite-containing food products. The results agreed well with those obtained through the officially recommended differential pulse polarographic method.

  6. Hydrogen production via photolytic oxidation of aqueous sodium sulfite solutions.

    PubMed

    Huang, Cunping; Linkous, Clovis A; Adebiyi, Olawale; T-Raissi, Ali

    2010-07-01

    Sulfur dioxide (SO(2)) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO(2)-contaminated air consists of two steps: SO(2) absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na(2)SO(3)), and Na(2)SO(3) oxidation via air purging to produce sodium sulfate (Na(2)SO(4)). In this process, the potential energy of SO(2) is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na(2)SO(3) solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO(3)(2-) to SO(4)(2-) directly and through the dithionate (S(2)O(6)(2-)) ion intermediate. The first route becomes dominant once a photostationary state for S(2)O(6)(2-) is established. The initial pH of Na(2)SO(3) solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na(2)SO(3) photo-oxidation generates Na(2)SO(4) as the final reaction product, while Na(2)S(2)O(6) is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO(3)(-) to elemental sulfur and SO(4)(2-) but no hydrogen production.

  7. Comparison of four different methods for the determination of sulfites in foods marketed in South Korea.

    PubMed

    Lim, Ho-Soo; Park, Sung-Kwan; Kim, So-Hee; Song, Sung-Bong; Jang, Su-Jin; Kim, Meehye

    2014-01-01

    Sulfites in foods were analysed using four methods: optimised Monier-Williams (official method), modified Rankine, HPLC and ion-exchange chromatography (IEC). The modified Rankine and HPLC methods were performed according to the previously reported methods but with some modifications. The IEC method was carried out through a combination of a modified Rankine apparatus and an anion-exchange column for the first time. In false-positive response tests, false-positive results with acetic acid and propionic acid were not observed in the modified Rankine, HPLC or IEC methods, unlike the optimised Monier-Williams method. All methods were evaluated for accuracy, precision and simple correlations. Modified Rankine, HPLC and IEC methods were determined to be suitable for foods with less than 10 mg kg(-1) of sulfur dioxide (SO₂). The modified Rankine and HPLC methods were suggested to be the most appropriate for the determination of sulfites in foods due to their high correlation coefficient with the optimised Monier-Williams method (R(2) = 0.9138 and 0.9011, respectively).

  8. The transition from pH waves to iodine waves in the iodate/sulfite/thiosulfate reaction-diffusion system.

    PubMed

    Gao, Qingyu; Xie, Rongyong

    2008-06-02

    Nonlinear spatial temporal behavior of the iodate/thiosulfate/sulfite reaction is investigated both in a stirred and spatially extended media. In accord with the temporal dynamics in the homogeneous media, both propagating fronts and target patterns are achieved in the spatially extended medium. On increasing the iodate concentration the system evolves from exhibiting propagating fronts to circular waves and then shows target patterns and finally the iodine waves. Influences of concentrations of sulfite, thiosulfate and acid on the reaction kinetics and pattern formation are also investigated systematically, and transitions from pH waves to iodine waves can be achieved via adjusting the concentration of the three species. The propagation velocities of pH and iodine waves are understood with the quadratic and cubic autocatalysis of proton and iodide respectively.

  9. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  10. Clonal mast cell activation syndrome with anaphylaxis to sulfites.

    PubMed

    Cifuentes, Liliana; Ring, Johannes; Brockow, Knut

    2013-01-01

    Sulfites are rarely suspected as causative agents of immediate-type hypersensitivity. We report on a 49-year-old male patient who developed recurrent severe hypotension after food ingestion. A diagnosis of monoclonal mast cell activation syndrome was established. In the double-blind, placebo-controlled food challenge, the patient reacted to potassium metabisulfite with anaphylaxis.

  11. Sulfite-radical anions in isolated soy proteins.

    PubMed

    Lei, Q; Boatright, W L

    2007-06-01

    Aqueous mixtures of manganese and sulfite, at levels found in isolated soy proteins (ISP) and defatted soy flakes, spontaneously react in the presence of oxygen to produce methanethiol from the 1-electron oxidation of methionine. The carbon and sulfur of methanethiol originate from the methyl-carbon and sulfur of methionine. Similar aqueous mixtures of sulfite, manganese, and oxygen also produce sufficient levels of free radicals to degrade fluorescein. The degradation of methionine by free radicals generated in the sulfite, manganese, and oxygen reaction mixture is inhibited by the free radical spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide. Processing ISP with either L-cystine or potassium iodate reduces the free sulfite content of ISP and reduces the headspace methanethiol from aqueous ISP slurries to nondetectable levels. ISP processed without additives contained sufficient levels of free radicals to generate methanethiol from the oxidation of added methionine. There were no detectable levels of methanethiol produced when methionine was added to ISP processed with iodate.

  12. Preparation, Characterization, and Selectivity Study of Mixed-Valence Sulfites

    ERIC Educational Resources Information Center

    Silva, Luciana A.; de Andrade, Jailson B.

    2010-01-01

    A project involving the synthesis of an isomorphic double sulfite series and characterization by classical inorganic chemical analyses is described. The project is performed by upper-level undergraduate students in the laboratory. This compound series is suitable for examining several chemical concepts and analytical techniques in inorganic…

  13. The antibrowning agent sulfite inactivates Agaricus bisporus tyrosinase through covalent modification of the copper-B site.

    PubMed

    Kuijpers, Tomas F M; Gruppen, Harry; Sforza, Stefano; van Berkel, Willem J H; Vincken, Jean-Paul

    2013-12-01

    Sulfite salts are widely used as antibrowning agents in food processing. Nevertheless, the exact mechanism by which sulfite prevents enzymatic browning has remained unknown. Here, we show that sodium hydrogen sulfite (NaHSO3) irreversibly blocks the active site of tyrosinase from the edible mushroom Agaricus bisporus, and that the competitive inhibitors tropolone and kojic acid protect the enzyme from NaHSO3 inactivation. LC-MS analysis of pepsin digests of NaHSO3 -treated tyrosinase revealed two peptides showing a neutral loss corresponding to the mass of SO3 upon MS(2) fragmentation. These peptides were found to be homologous peptides containing two of the three histidine residues that form the copper-B-binding site of mushroom tyrosinase isoform PPO3 and mushroom tyrosinase isoform PPO4, which were both present in the tyrosinase preparation used. Peptides showing this neutral loss behavior were not found in the untreated control. Comparison of the effects of NaHSO3 on apo-tyrosinase and holo-tyrosinase indicated that inactivation is facilitated by the active site copper ions. These data provide compelling evidence that inactivation of mushroom tyrosinase by NaHSO3 occurs through covalent modification of a single amino-acid residue, probably via addition of HSO3(-) to one of the copper-coordinating histidines in the copper-B site of the enzyme.

  14. Short-term lab exposures of immature rainbow trout (Oncorhynchus mykiss) to sulfite and kraft pulp-mill effluents: effects on oxidative stress and circulating sex steroids.

    PubMed

    Oakes, Ken D; Tremblay, Louis A; van der Kraak, Glen J

    2005-06-01

    This study investigates the temporal onset of reactive oxygen species (ROS) damage and changes in circulating sex steroids in immature rainbow trout exposed over 21 d to two pulp-mill effluents. Exposure to effluent from a bleached sulfite mill produced increases in 2-thiobarbituric acid reactive substances (TBARS), ethoxyresorufin O-deethylase (EROD) activity, hepatic free iron, and significant depressions in hepatic ascorbic acid. Impairments in pregnenolone production relative to cholesterol availability suggest an effect of sulfite-mill effluent early in the steroidogenic pathway. Induction of vitellogenin in immature fish exposed to effluent from this mill, relative to waterborne 17 beta-estradiol treatments, indicated sulfite-mill effluent contained constituents capable of binding the estrogen receptor. Exposure to a kraft-mill effluent also elevated hepatic TBARS, tissue normalized fatty acyl-coenzyme A oxidase (FAO) activity, and hepatic free iron while producing commensurate declines in hepatic ascorbic acid. Plasma testosterone, 11-ketotestosterone, and 17 beta-estradiol were elevated with kraft-mill effluent exposure, but no changes in vitellogenin induction were observed. In summary, effluent from bleached sulfite and bleached kraft mills yielded similar oxidative stress responses, but marked differences were observed in the endocrine-disrupting potential of each effluent.

  15. Sulfite triggers sustained calcium overload in cultured cortical neurons via a redox-dependent mechanism.

    PubMed

    Wang, Xiao; Cao, Hui; Guan, Xin-Lei; Long, Li-Hong; Hu, Zhuang-Li; Ni, Lan; Wang, Fang; Chen, Jian-Guo; Wu, Peng-Fei

    2016-09-06

    Sulfite is a compound commonly used as preservative in foods and pharmaceuticals. Many studies have examined the neurotoxicity of sulfite, but its effect on neuronal calcium homeostasis has not yet been reported. Here, we observed the effect of sulfite on the cytosolic free calcium concentration ([Ca(2+)]i) in cultured cortical neurons using Fura-2/AM based calcium imaging technique. Sulfite (250-1000μM) caused a sustained increase in [Ca(2+)]i in the neurons via a dose-dependent manner. In Ca(2+)-free solution, sulfite failed to increase [Ca(2+)]i. After the depletion of the intracellular calcium store, the effect of sulfite on the [Ca(2+)]i was largely abolished. Pharmacological inhibition of phospholipase C (PLC)-inositol 1,4,5-triphosphate (IP3) signaling pathway blocked sulfite-induced increase of [Ca(2+)]i. Interestingly, antioxidants such as trolox and dithiothreitol, abolished the increase of [Ca(2+)]i induced by sulfite. Exposure to sulfite triggered generation of sulfur- and oxygen-centered free radicals in neurons and increased oxidative stress both in the cultured cortical neurons and the prefrontal cortex of rats. Furthemore, sulfite decreased cell viability in cultured cortical neurons via a calcium-dependent manner. Thus, our current study suggests that the redox-dependent calcium overload triggered by sulfite in cortical neuronsmay be involved in its neurotoxicity.

  16. Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants.

    PubMed

    Guo, Yaoguang; Lou, Xiaoyi; Fang, Changling; Xiao, Dongxue; Wang, Zhaohui; Liu, Jianshe

    2013-10-01

    An efficient and green advanced oxidation process (i.e., photo-sulfite reaction) for the simultaneous oxidation of sulfite and organic pollutants in water is reported. The photo-sulfite system (UV-Fe(III)-sulfite) is based on the Fe-catalyzed sulfite oxidation and photochemistry of Fe(III) species. SO4(•-) and (•)OH radicals were identified in the photo-sulfite system with radical scavenging experiments using specific alcohols. This novel technology was consistently proven to be more favorable than the alternative Fe(III)-sulfite systems for the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) and other organic pollutants at all conditions tested. The reactivity of photo-sulfite system was sustained due to the spontaneous switch of photoactive species from Fe(III)-sulfito to Fe(III)-hydroxo complexes with the depletion of sulfite and the decrease in pH. In contrast, in the absence of light the performance of the Fe(III)-sulfite system was greatly diminished after the consumption of sulfite. The formation of the Fe(III)-sulfito complex is a necessary step for initiating the photo-sulfite reaction. Inhibition of the oxidation of 2,4,6-TCP and methyl orange (MO) was observed in the presence of ligands that can stabilize one or more of the reactants: Fe(III), Fe(II), or sulfite. Our study provides a new facile route for the generation of SO4(•-) and simultaneous removal of organic and inorganic pollutants.

  17. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts.

    PubMed

    Nadai, Chiara; Treu, Laura; Campanaro, Stefano; Giacomini, Alessio; Corich, Viviana

    2016-01-01

    From a technological point of view, yeast resistance to sulfite is of great interest and represents an important technological character for winemaking. Several mechanisms are involved, and strain-dependent strategies to obtain SO2 resistance can deeply influence wine quality, although this choice is less relevant in determining the technological performance of the strain during fermentation. In this study, to better understand the strain-specific mechanisms of resistance, 11 Saccharomyces cerevisiae strains, whose genomes have been previously sequenced, were selected. Their attitude towards sulfites, in terms of resistance and production, was evaluated, and RNA-sequencing of four selected strains was performed during fermentation process in synthetic grape must in the presence of SO2. Results demonstrated that at molecular level, the physical effect of SO2 triggered multiple stress responses in the cell and high tolerance to general enological stressing condition increased SO2 resistance. Adaptation mechanism due to high basal gene expression level rather than specific gene induction in the presence of sulfite seemed to be responsible in modulating strain resistance. This mechanism involved higher basal gene expression level of specific cell wall proteins, enzymes for lipid biosynthesis, and enzymes directly involved in SO2 assimilation pathway and efflux.

  18. Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.

    PubMed

    Aranda, Agustín; Jiménez-Martí, Elena; Orozco, Helena; Matallana, Emilia; Del Olmo, Marcellí

    2006-08-09

    Sulfite treatment is the most common way to prevent grape must spoilage in winemaking because the yeast Saccharomyces cerevisiae is particularly resistant to this chemical. In this paper we report that sulfite resistance depends on sulfur and adenine metabolism. The amount of adenine and methionine in a chemically defined growth medium modulates sulfite resistance of wine yeasts. Mutations in the adenine biosynthetic pathway or the presence of adenine in a synthetic minimal culture medium increase sulfite resistance. The presence of methionine has the opposite effect, inducing a higher sensitivity to SO(2). The concentration of methionine, adenine, and sulfite in a synthetic grape must influences the progress of fermentation and at the transcriptional level the expression of genes involved in sulfur (MET16), adenine (ADE4), and acetaldehyde (ALD6) metabolism. Sulfite alters the pattern of expression of all these genes. This fact indicates that the response to this stress is complex and involves several metabolic pathways.

  19. Sulfites--a food and drug administration review of recalls and reported adverse events.

    PubMed

    Timbo, Babgaleh; Koehler, Kathleen M; Wolyniak, Cecilia; Klontz, Karl C

    2004-08-01

    Sulfite-sensitive individuals can experience adverse reactions after consuming foods containing sulfiting agents (sulfites), and some of these reactions may be severe. In the 1980s and 1990s, the U.S. Food and Drug Administration (FDA) acted to reduce the likelihood that sulfite-sensitive individuals would unknowingly consume foods containing sulfites. The FDA prohibited the use of sulfites on fruits and vegetables (except potatoes) to be served or presented fresh to the public and required that the presence of detectable levels of sulfites be declared on food labels, even when these sulfites are used as a processing aid or are a component of another ingredient in the food. In the present study, data from FDA recall records and adverse event reports were used to examine the current status of problems of sensitivity to sulfites in foods. From 1996 through 1999, the FDA processed a total of 59 recalls of foods containing undeclared sulfites; these 59 recalls involved 93 different food products. Fifty (55%) of the recalled products were classified as class I, a designation indicating that a consumer reasonably could have ingested > or = 10 mg of undeclared sulfites on a single occasion, a level that could potentially cause a serious adverse reaction in a susceptible person. From 1996 through mid-1999, the FDA received a total of 34 reports of adverse reactions allegedly due to eating foods containing undeclared sulfites. The average of 10 reports per year, although derived from a passive surveillance system, was lower than the average of 111 reports per year that the FDA received from 1980 to 1987, a decrease that may have resulted in part from FDA regulatory action.

  20. Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency.

    PubMed

    Grings, Mateus; Moura, Alana Pimentel; Parmeggiani, Belisa; Marcowich, Gustavo Flora; Amaral, Alexandre Umpierrez; de Souza Wyse, Angela Terezinha; Wajner, Moacir; Leipnitz, Guilhian

    2013-12-01

    Sulfite oxidase (SO) deficiency is biochemically characterized by tissue accumulation and high urinary excretion of sulfite, thiosulfate and S-sulfocysteine. Affected patients present severe neurological symptoms and cortical atrophy, whose pathophysiology is still poorly established. Therefore, in the present work we investigated the in vitro effects of sulfite and thiosulfate on important parameters of energy metabolism in the brain of young rats. We verified that sulfite moderately inhibited the activity of complex IV, whereas thiosulfate did not alter any of the activities of the respiratory chain complexes. It was also found that sulfite and thiosulfate markedly reduced the activity of total creatine kinase (CK) and its mitochondrial and cytosolic isoforms, suggesting that these metabolites impair brain cellular energy buffering and transfer. In contrast, the activity of synaptic Na(+),K(+)-ATPase was not altered by sulfite or thiosulfate. We also observed that the inhibitory effect of sulfite and thiosulfate on CK activity was prevented by melatonin, reduced glutathione and the combination of both antioxidants, as well as by the nitric oxide synthase N(ω)-nitro-l-arginine methyl ester, indicating the involvement of reactive oxygen and nitrogen species in these effects. Sulfite and thiosulfate also increased 2',7'-dichlorofluorescin oxidation and hydrogen peroxide production and decreased the activity of the redox sensor aconitase enzyme, reinforcing a role for oxidative damage in the effects elicited by these metabolites. It may be presumed that the disturbance of cellular energy and redox homeostasis provoked by sulfite and thiosulfate contributes to the neurological symptoms and abnormalities found in patients affected by SO deficiency.

  1. 40 CFR 430.50 - Applicability; description of the papergrade sulfite subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT... production of pulp and paper at papergrade sulfite mills, where blow pit pulp washing techniques are used; and the integrated production of pulp and paper at papergrade sulfite mills where vacuum or...

  2. 40 CFR 430.50 - Applicability; description of the papergrade sulfite subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT... production of pulp and paper at papergrade sulfite mills, where blow pit pulp washing techniques are used; and the integrated production of pulp and paper at papergrade sulfite mills where vacuum or...

  3. 40 CFR 430.50 - Applicability; description of the papergrade sulfite subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) THE PULP, PAPER, AND PAPERBOARD POINT... production of pulp and paper at papergrade sulfite mills, where blow pit pulp washing techniques are used; and the integrated production of pulp and paper at papergrade sulfite mills where vacuum or...

  4. 40 CFR 430.50 - Applicability; description of the papergrade sulfite subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE... pulp and paper at papergrade sulfite mills, where blow pit pulp washing techniques are used; and the integrated production of pulp and paper at papergrade sulfite mills where vacuum or pressure drums are...

  5. 40 CFR 430.50 - Applicability; description of the papergrade sulfite subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS THE PULP, PAPER, AND PAPERBOARD POINT SOURCE... pulp and paper at papergrade sulfite mills, where blow pit pulp washing techniques are used; and the integrated production of pulp and paper at papergrade sulfite mills where vacuum or pressure drums are...

  6. 40 CFR 415.200 - Applicability; description of the sodium sulfite production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the sodium sulfite production subcategory. 415.200 Section 415.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Sulfite...

  7. Keratin degradation by dermatophytes relies on cysteine dioxygenase and a sulfite efflux pump.

    PubMed

    Grumbt, Maria; Monod, Michel; Yamada, Tsuyoshi; Hertweck, Christian; Kunert, Jiri; Staib, Peter

    2013-06-01

    Millions of people suffer from superficial infections caused by dermatophytes. Intriguingly, these filamentous fungi exclusively infect keratin-rich host structures such as hair, nails, and skin. Keratin is a hard, compact protein, and its utilization by dermatophytes for growth has long been discussed as a major virulence attribute. Here, we provide strong support for the hypothesis that keratin degradation is facilitated by the secretion of the reducing agent sulfite, which can cleave keratin-stabilizing cystine bonds. We discovered that sulfite is produced by dermatophytes from environmental cysteine, which at elevated concentrations is toxic for microbes and humans. We found that sulfite formation from cysteine relies on the key enzyme cysteine dioxygenase Cdo1. Sulfite secretion is supported by the sulfite efflux pump Ssu1. Targeted mutagenesis proved that dermatophyte mutants in either Cdo1 or Ssu1 were highly growth-sensitive to cysteine, and mutants in Ssu1 were specifically sensitive to sulfite. Most notably, dermatophyte mutants in Cdo1 and Ssu1 were specifically growth-defective on hair and nails. As keratin is rich in cysteine, our identified mechanism of cysteine conversion and sulfite efflux supports both cysteine and sulfite tolerance per se and progression of keratin degradation. These in vitro findings have implications for dermatophyte infection pathogenesis.

  8. Reevaluation of Monier-Williams method for determining sulfite in food.

    PubMed

    Warner, C R; Daniels, D H; Joe, F L; Fazio, T

    1986-01-01

    The Monier-Williams distillation procedure has a long history of successful use for determining sulfite in fruit products and wine; however, a systematic evaluation of its accuracy and precision with other food matrices has not been undertaken. We found that the Monier-Williams distillation yielded greater than 90% recovery of sulfite added to foods such as table grapes, hominy, dried mangoes, and lemon juice. Less than 85% recovery was obtained with broccoli, soda crackers, cheese-peanut butter crackers, mushrooms, and potato chips. These results may, in fact, accurately reflect the residual levels of sulfite if a portion of the sulfite undergoes irreversible reaction with some food components. Analysis of commercial food products gave sulfite levels ranging from 1400 ppm in dried apple slices to 25 ppm in cream sherry.

  9. A new diketopyrrolopyrrole-based probe for sensitive and selective detection of sulfite in aqueous solution

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Cui, Yu; Li, Yexin; Zheng, Luyi; Xie, Lijun; Ning, Rui; Liu, Zheng; Lu, Junling; Zhang, Gege; Liu, Chunxiang; Zhang, Guangyou

    2015-02-01

    A new probe was synthesized by incorporating an α,β -unsaturated ketone to a diketopyrrolopyrrole fluorophore. The probe had exhibited a selective and sensitive response to the sulfite against other thirteen anions and biothiols (Cys, Hcy and GSH), through the nucleophilic addition of sulfite to the alkene of probe with the detection limit of 0.1 μM in HEPES (10 mM, pH 7.4) THF/H2O (1:1, v/v). Meanwhile, it could be easily observed that the probe for sulfite changed from pink to colorless by the naked eye, and from pink to blue under UV lamp after the sulfite was added for 20 min. The NMR and Mass spectral analysis demonstrated the expected addition of sulfite to the Cdbnd C bonds.

  10. Determination of sulfite in foods by headspace liquid chromatography

    SciTech Connect

    Lawrence, J.F.; Chadha, R.K.

    1988-01-01

    Sulfite was determined in a variety of foods by liquid chromatography (LC) after the samples were mixed with a solution containing mannitol, FeSO/sub 4/, and Na/sub 2/HPO/sub 4/, adjusted to pH 11, and left to stand for 15 min at room temperature. An aliquot of the mixture was placed in a headspace vial and mixed with 50% H/sub 3/PO/sub 4/. After 15 min, a portion of the headspace was removed with a syringe containing LC mobile phase without acetonitrile. The syringe was shaken and an aliquot of the solution was analyzed on an anion exchange column with a mobile phase of 0.03M methane sulfonate (pH 10.8) containing 5% acetonitrile. Sulfite was detected amperometrically (glassy carbon electrode) at +0.7 V. The method was successfully compared to the FDA-modified Monier-Williams procedure for a variety of foods. Minimum detectable levels were about 1 ..mu..g/g, based on a 15 g sample.

  11. Structural basis of interprotein electron transfer in bacterial sulfite oxidation

    PubMed Central

    McGrath, Aaron P; Laming, Elise L; Casas Garcia, G Patricia; Kvansakul, Marc; Guss, J Mitchell; Trewhella, Jill; Calmes, Benoit; Bernhardt, Paul V; Kappler, Ulrike; Maher, Megan J

    2015-01-01

    Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 μM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly. DOI: http://dx.doi.org/10.7554/eLife.09066.001 PMID:26687009

  12. Characterization of a New Type of Dissimilatory Sulfite Reductase Present in Thermodesulfobacterium commune

    PubMed Central

    Hatchikian, E. C.; Zeikus, J. G.

    1983-01-01

    A new type of dissimilatory bisulfite reductase, desulfofuscidin, was isolated from the nonsporeforming thermophilic sulfate-reducing microorganism Thermodesulfobacterium commune. The molecular weight of the enzyme was estimated at 167,000 by sedimentation equilibrium, and the protein was pure by both disc electrophoresis and ultracentrifugation. The bisulfite reductase was a tetramer and had two types of subunits with an α2β2 structure and an individual molecular weight of 47,000. The enzyme exhibited absorption maxima at 576, 389, and 279 nm, with a weak band at 693 nm. Upon the addition of dithionite, the absorption maxima at 576 and 693 nm were weakened, and a new band appeared at 605 nm. The protein reacted with CO in the presence of dithionite to give a complex with absorption peaks at 593, 548, and 395 nm. The extinction coefficients of the purified enzyme at 576, 389, and 279 nm were 89,000, 310,000, and 663,000 M−1 cm−1, respectively. Siroheme was detected as the prosthetic group. The protein contains 20 to 21 nonheme iron atoms and 16 to 17 acid-labile sulfur groups per molecule. The data suggest the presence of four sirohemes and probably four (4Fe-4S) centers per molecule by comparison with desulfoviridin, the dissimilatory sulfite reductase from Desulfovibrio species. The protein contains 36 cysteine residues and is high in acidic and aromatic amino acids. The N-terminal amino acids of the α and β subunits were threonine and serine, respectively. With reduced methyl viologen as electron donor, the major product of sulfite reduction was trithionate, and the pH optimum for activity was 6.0. The enzyme was stable to 70°C and denatured rapidly above this temperature. The dependence of T. commune bisulfite reductase activity on temperature was linear between 35 and 65°C, and the Q10 values observed were above 3. The presence of this new type of dissimilatory bisulfite reductase in T. commune is discussed in terms of taxonomic significance. PMID

  13. Stability of apigeninidin and its methoxylated derivatives in the presence of sulfites.

    PubMed

    Ojwang, Leonnard O; Awika, Joseph M

    2010-08-25

    3-Deoxyanthocyanin pigments are more stable than anthocyanins and show promising bioactive properties. However, little is known about their stability in the presence of food additives such as sulfites. This work investigates the stability of apigeninidin and its derivatives in the presence of sulfites. Pigment (apigeninidin, 5-mono-, and 5,7-dimethoxyapigeninidin) stability at pH 1.8, 3.0, and 5.0, in the presence of sodium metabisulfite (molar ratio ∼ 1:40, pigment/SO2) was monitored over 21 days at room temperature. The structure of sulfite complexation products was monitored using HPLC-MS and NMR spectroscopy. All pigments were significantly bleached within 30 min in the presence of sulfites; the bleaching effect was more severe at pH 5.0 and 3.0 compared to pH 1.8. Apigeninidin was more resistant to bleaching than its methoxylated derivatives. However, all pigments regained some or all of the bleached color within 14-21 days at pH 3.0 and 1.8 in the presence of sulfites, indicating equilibrium favored flavylium cation at these pH values. Formation of colorless sulfonates via bisulfite ion addition at C-4 was responsible for the bleaching effect. Both structure and pH significantly affected stability of 3-deoxyanthocyanidins in the presence of sulfites. The pigments may have potential applications in low pH systems containing sulfites.

  14. Isolation and characterization of sulfite oxidase from Alligator mississipiensis

    SciTech Connect

    Robbins, A.; Neame, P.J.; Barber, M.J. )

    1991-03-11

    Sulfite oxidase has been isolated from fresh alligator liver using ammonium sulfate and acetone fractionation, DEAE chromatography and FPLC on Mono Q. The enzyme is dimeric and exhibits a subunit M. Wt. of approximately 58 kDa, larger than that of chicken SO. EPR spectroscopy of the partially-reduced enzyme revealed a single Mo(V) species while visible spectroscopy revealed the presence of cytochrome b{sub 557}. Maximal activities were obtained at pH 8 and 9, respectively. K{sub m}'s for SO{sub 3}{sup 2 {minus}}, cyt. c and Fe(CN){sub 6}{sup 3 {minus}} were 23.5 uM, 2.9 uM and 8.0 uM, respectively. Sequencing of peptides obtained by endoprotease K digestion indicated regions of extensive sequence similarity to chicken and rat enzymes in both heme and Mo-pterin domains. Regions of sequence dissimilarity were also found.

  15. [A method of desulfurization with calcium sulfite and it's mechanism].

    PubMed

    Tong, Z; Chen, Z; Peng, Z

    2001-09-01

    Directing to the scaling problem lying in wet desulfurization with lime slurry, a method of desulfurization with calcium sulfite was proposed. Reaction mechanism and the effects of different conditions on desulfurization efficiency were studied. The optimum conditions were obtained, i.e. air velocity of 2.75 m/s in empty tower, L/G = 3.0 L/m3, solid content 6.7%, air temperature 31 degrees C, concentration inlet of SO2 1500 x 10(-6) and inlet suspension pH of 8.0. Under the conditions, the desulfurization efficiency was about 87%. The presented method theoretically and practically solved the scaling problems, which is a novel indirect lime-method with Ca-contained material as desulfurization agent.

  16. Contribution of dissolved sulfates and sulfites in hydrogen sulfide emission from stagnant water bodies in Sri Lanka.

    PubMed

    Kularatne, K I A; Dissanayake, D P; Mahanama, K R R

    2003-08-01

    Accumulation of sulfur-containing compounds and their bacterial mediated reductions have led to the emission of pungent odors from stagnant water bodies. This study is focused on the contribution of inorganic sulfur compounds in the emission of hydrogen sulfide. The measured dissolved oxygen levels have demonstrated good negative correlations with the dissolved sulfide levels implying the oxygen deficiency is the key for the reduction of sulfate ion and sulfite ion to sulfide ion. Particularly, the dissolved molar fractions of sulfide from the total dissolved sulfur compounds (sulfates, sulfites and sulfides) have a very good correlation with the dissolved oxygen for the stagnant water bodies except the artificially aerated prawn farms. For the stagnant water bodies with significant correlations, linear regressions are reported for them to be utilized in estimating one component of the regression from the measurement of the other. The measured data were further utilized to estimate the levels of hydrogen sulfide gas. The pH of the water bodies has confined much of the dissolved sulfides in the form of bisulfide ion and they can be easily escaped to the atmosphere upon acidification due to industrial discharges and/or acidic precipitations. The estimated levels of hydrogen sulfide just above the water surface were plotted for the most polluted stagnant water body in Sri Lanka for the pH range of 5-10 and temperature range of 25-35 degrees C.

  17. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  18. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  19. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  20. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  1. 21 CFR 201.22 - Prescription drugs containing sulfites; required warning statements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... are added to certain drug products to inhibit the oxidation of the active drug ingredient. Oxidation.... Examples of specific sulfites used to inhibit this oxidation process include sodium bisulfite,...

  2. Site-specific DNA damage induced by sulfite in the presence of cobalt(II) ion. Role of sulfate radical.

    PubMed

    Kawanishi, S; Yamamoto, K; Inoue, S

    1989-10-15

    The reactivities of sulfite (SO23-) with DNA in the presence of metal ions were investigated by a DNA sequencing technique using 32P-labeled DNA fragments obtained from human c-Ha-ras-1 protooncogene. Sulfite caused DNA damage in the presence of Co2+, Cu2+ and Mn2+, although sulfite alone or metal ion alone did not. The order of inducing effect on sulfite-dependent DNA damage (Co2+ much greater than Cu2+ greater than Mn2+ Fe3+) was consistent with that of accelerating effect on the initial oxygen consumption rate of sulfite autoxidation. The DNA damage induced by sulfite plus Co2+ was inhibited by 3,5-dibromo-4-nitrobenzenesulfonate, primary and secondary alchols, whereas it was not inhibited by SOD, catalase and tert-butyl alcohol. Incubation of DNA with sulfite plus Co2+ followed by the piperidine treatment led to the predominant cleavage at the positions of guanine especially located 5' to guanine. Sulfite plus Cu2+ gave a DNA cleavage pattern different from that induced by sulfite plus Co2+. The photolysis of peroxydisulfate (S2O28-), which is known to produce SO-4 radicals, gave a DNA cleavage pattern similar to that induced by sulfite plus Co2+. ESR studies using spin-trapping reagent revealed the production of spin adduct possibly of SO-3 radical in a solution of sulfite plus Cu2+, whereas much less spin adduct was produced by sulfite plus Co2+. The results suggest that sulfite is rapidly autoxidized in the presence of Co2+ to produce SO4- radical causing site-specific DNA damage.

  3. Regioselective enzymatic acylations of polyhydroxylated eudesmanes: semisynthesis, theoretical calculations, and biotransformation of cyclic sulfites.

    PubMed

    García-Granados, A; Melguizo, E; Parra, A; Simeó, Y; Viseras, B; Dobado, J A; Molina, J; Arias, J M

    2000-12-01

    Different lipase enzymes have been tested in order to perform regioselective acetylations on the eudesmane tetrol from vulgarin. High yields (95%) of 1,12-diacetoxy derivative (4) were achieved in 1 h with Candida antarctica lipase (CAL). However, only the 12-acetyl derivative (6) was obtained in similar yield with Mucor miehei (MML) or Candida cylindracea (CCL) lipases. The enzymatic protection at C-1 and C-12 has been used to form eudesmane cyclic-sulfites between C-6 and C-4 atoms. The R/S-sulfur configuration has been assigned by means of the experimental and theoretical (13)C and (1)H NMR chemical shifts. The theoretical shifts were calculated using the GIAO method, with a MM+ geometry optimization followed by a single-point calculation at the B3LYP/6-31G(*) level (B3LYP/6-31G(*)//MM+). Moreover, B3LYP/6-31G(*) geometry optimizations were carried out to test the B3LYP/6-31G(*)//MM+ results, for the deacetylated sulfites (12 and 15). In addition to the delta(C) and delta(H) shifts, the (3)J(HH) coupling constants were also calculated and compared with the experimental values when available. Finally, different reactivities have been checked in both sulfites by biotransformation with Rhizopus nigricans. While the R-sulfite gave 2 alpha- and 11 beta-hydroxylated metabolites, the S-sulfite yielded only regioselective deacetylations. Furthermore, both sulfites showed different reactivities in redox processes.

  4. The Structures of the C185S and C185A Mutants of Sulfite Oxidase Reveal Rearrangement of the Active Site

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Pushie, M. Jake; Kisker, Caroline; George, Graham N.; Rajagopalan, K.V.

    2010-11-03

    Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 {angstrom} resolution and to 2.4 {angstrom} resolution in the presence of sulfite, and the C185A variant to 2.8 {angstrom} resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo{sup VI} state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density

  5. Epoxides, cyclic sulfites, and sulfate from natural pentacyclic triterpenoids: theoretical calculations and chemical transformations.

    PubMed

    García-Granados, Andrés; López, Pilar E; Melguizo, Enrique; Moliz, Juan N; Parra, Andrés; Simeó, Yolanda; Dobado, José A

    2003-06-13

    Several triterpenic derivatives, with the A-ring functionalized, were semisynthesized from oleanolic and maslinic acids. The reactivities of sulfites, sulfate, and epoxides in these triterpene compounds were investigated under different reaction conditions. Moreover, contracted A-ring triterpenes (five-membered rings) were obtained, by different treatments of the sulfate 7. From the epoxide 8, deoxygenated and halohydrin derivatives were semisynthesized with several nucleophiles. Ozonolysis and Beckmann reactions were used to yield 4-aza compounds, from five-membered ring olanediene triterpenes. The X-ray structure of sulfate 7 is given and compared with density functional theory geometries. Theoretical (13)C and (1)H chemical shifts (gauge-invariant atomic orbital method at the B3LYP/6-31G*//B3LYP/6-31G* level) and (3)J(H,H) coupling constants were calculated for compounds 5-9 and 34-36, identifying the (R)- or (S)-sulfur and alpha- or beta-epoxide configurations together with 4-aza or 3-aza structures.

  6. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification.

    PubMed

    Grings, Mateus; Moura, Alana P; Amaral, Alexandre U; Parmeggiani, Belisa; Gasparotto, Juciano; Moreira, José C F; Gelain, Daniel P; Wyse, Angela T S; Wajner, Moacir; Leipnitz, Guilhian

    2014-09-01

    Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.

  7. Sulfite determination by a biosensor based on bay leaf tissue homogenate: very simple and economical method.

    PubMed

    Teke, Mustafa; Sezgintürk, Mustafa Kemal; Dinçkaya, Erhan

    2009-01-01

    Of all the food additives for which the FDA has received adverse reaction reports, the ones that most closely resemble true allergens are sulfur-based preservatives. Sulfites are used primarily as antioxidants to prevent or reduce discoloration of light-colored fruits and vegetables, such as dried apples and potatoes, and to inhibit the growth of microorganisms in fermented foods such as wine. This work aims to prepare an electrochemical biosensor based on bay leaf tissue homogenate that contains polyphenol oxidase enzyme abundantly for sulfite detection in foods. The principle of the biosensor is based on the inhibition effect of sulfites on polyphenol oxidase in the bioactive layer. Optimum conditions for the biosensor, such as temperature and pH, were investigated. Some stability parameters of the biosensor were also identified. The biosensor showed a linear calibration graph in the range of 25-100 microM sulfite. The biosensor presents a very simple, economical, reliable, and feasible method for sulfite detection in foods.

  8. Dissolution and crystallization of calcium sulfite platelets. Report for Sep 84-Aug 86

    SciTech Connect

    Gleason, C.L.; Rochelle, G.T.

    1987-01-01

    This paper discusses the dissolution and crystallization of calcium sulfite platelets. The rates of calcium sulfite dissolution and crystallization are important in slurry scrubbing processes for flue-gas desulfurization. The rates affect the scrubber solution composition, SO{sub 2} absorption, sulfite oxidation, and limestone utilization. The dissolution and crystallization rates of platelet shaped calcium sulfite crystals were measured in the pH stat apparatus. The solution pH was varied from 3.0 to 6.0. The effects of sulfate content in the solids and solution were also investigated. The measured rates for the platelets were compared to the rates previously determined for agglomerates. It was determined that there are subtle differences between platelet and agglomerated calcium sulfite. The platelet sample with low solid sulfate content dissolved and crystallized slower than the sample with a high solid sulfate content and the agglomerated samples. The inhibiting effect of dissolved sulfate was also greater for the low solid sulfate sample. The sample with a high solid sulfate content dissolved and crystallized at approximately the same rate as the agglomerates.

  9. Development of an amperometric sulfite biosensor based on SO(x)/PBNPs/PPY modified ITO electrode.

    PubMed

    Rawal, Rachna; Pundir, C S

    2012-11-01

    A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20 mV s⁻¹ in 0.1M Tris-HCl buffer, pH 8.5 and at 35 °C. Linear range and minimum detection limit were 0.5-1000 μM and 0.12 μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4 °C.

  10. Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    SciTech Connect

    Vivak Malhotra

    2010-01-31

    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

  11. Expanding the scope of sulfur-centered Arbuzov rearrangement in diethyl/di-n-propyl sulfite for the synthesis of mixed-ligand di-n-butyltin alkanesulfonates.

    PubMed

    Shankar, Ravi; Singh, Atul Pratap; Upreti, Shailesh

    2006-11-13

    A one-pot reaction between di-n-butyltin oxide and diethyl/di-n-propyl sulfite in the presence of an equimolar amount of alkyl iodide proceeds via sulfur-centered Arbuzov rearrangement to afford the corresponding di-n-butyltin (alkoxy)alkanesulfonates n-Bu2Sn(OR')OS(O)2R [R = R' = Et (1), n-Pr (2); R = Me, R' = Et (3), n-Pr (4)]. The compounds 1 and 3 react with methylphosphonic acid under mild conditions to give [n-Bu2Sn(OS(O)2R)OP(O)(OH)Me]n [R = Et (5), Me (6), respectively].

  12. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with sodium sulfite to form the sulfite addition products and liberate sodium hydroxide (NaOH); however... degrees Celsius (( °deg;C) to minimize the reaction of the methanol groups. 2.1Apparatus Required....

  13. Characterization of two dissimilatory sulfite reductases from sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Moura, I.; Lino, A. R.; Moura, J. J. G.; Legall, J.

    1988-02-01

    Mössbauer, EPR, and biochemical techniques were used to characterize two dissimilatory sulfite reductases: desulforubidin from Desulfovibrio baculatus strain DSM 1743 and desulfoviridin from Desulfovibrio gigas. For each molecule of desulforubidin, there are two sirohemes and four [4Fe-4S] clusters. The [4Fe-4S] clusters are in the diamagnetic 2+ oxidation state. The sirohemes are high-spin ferric (S=5/2) and each siroheme is exchanged-coupled to a [4Fe-4S]2+ cluster. Such an exchange-coupled siroheme-[4Fe-4S] unit has also been found in the assimilatory sulfite reductase from Escherichia coli/1/ and in a low-molecular weight sulfite reductase from Desulfovibrio vulgaris/2/. For each molecule of defulfoviridin, there are two tetrahydroporphyrin groups and four [4Fe-4S]2+ clusters. To our surprise, we discovered that about 80% of the tetrahydroporphyrin groups, however, do not bind iron.

  14. Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite.

    PubMed

    Xiang, Gao; Rui-tang, Guo; Hong-lei, Ding; Zhong-yang, Luo; Ke-fa, Cen

    2009-09-15

    Limestone dissolution rate was measured by a pH-stat method with CO(2) sparging and dissolved sulfite. The dissolution rate of limestone under these conditions was found to be controlled by mass transfer and surface kinetics. As can be seen from the results, in the presence of sulfite, limestone dissolution rate increases with increasing stirring speed, reaction temperature and CO(2) partial pressure. The crystallinity of limestone has a great impact on the dissolution rate: The lower the value of the crystallinity of limestone is, the higher the dissolution rate is. The presence of sulfite promotes the dissolution rate when pH value is below 5.5 but inhibits it when pH value is above 5.5.

  15. Synthesis of cyclic sulfites from epoxides and sulfur dioxide with silica-immobilized homogeneous catalysts.

    PubMed

    Takenaka, Yasumasa; Kiyosu, Takahiro; Mori, Goro; Choi, Jun-Chul; Fukaya, Norihisa; Sakakura, Toshiyasu; Yasuda, Hiroyuki

    2012-01-09

    Quaternary ammonium- and amino-functionalized silica catalysts have been prepared for the selective synthesis of cyclic sulfites from epoxides and sulfur dioxide, demonstrating the effects of immobilizing the homogeneous catalysts on silica. The cycloaddition of sulfur dioxide to various epoxides was conducted under solvent-free conditions at 100 °C. The quaternary ammonium- and amino-functionalized silica catalysts produced cyclic sulfites in high yields (79-96 %) that are comparable to those produced by the homogeneous catalysts. The functionalized silica catalysts could be separated from the product solution by filtration, thereby avoiding the catalytic decomposition of the cyclic sulfite products upon distillation of the product solution. Heterogenization of a homogeneous catalyst by immobilization can, therefore, improve the efficiency of the purification of crude reaction products. Despite a decrease in catalytic activity after each recycling step, the heterogeneous pyridine-functionalized silica catalyst provided high yields after as many as five recycling processes.

  16. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase.

    PubMed

    Reschke, Stefan; Niks, Dimitri; Wilson, Heather; Sigfridsson, Kajsa G V; Haumann, Michael; Rajagopalan, K V; Hille, Russ; Leimkühler, Silke

    2013-11-19

    Sulfite oxidase (SO) is an essential molybdoenzyme for humans, catalyzing the final step in the degradation of sulfur-containing amino acids and lipids, which is the oxidation of sulfite to sulfate. The catalytic site of SO consists of a molybdenum ion bound to the dithiolene sulfurs of one molybdopterin (MPT) molecule, carrying two oxygen ligands, and is further coordinated by the thiol sulfur of a conserved cysteine residue. We have exchanged four non-active site cysteines in the molybdenum cofactor (Moco) binding domain of human SO (SOMD) with serine using site-directed mutagenesis. This facilitated the specific replacement of the active site Cys207 with selenocysteine during protein expression in Escherichia coli. The sulfite oxidizing activity (kcat/KM) of SeSOMD4Ser was increased at least 1.5-fold, and the pH optimum was shifted to a more acidic value compared to those of SOMD4Ser and SOMD4Cys(wt). X-ray absorption spectroscopy revealed a Mo(VI)-Se bond length of 2.51 Å, likely caused by the specific binding of Sec207 to the molybdenum, and otherwise rather similar square-pyramidal S/Se(Cys)O2Mo(VI)S2(MPT) site structures in the three constructs. The low-pH form of the Mo(V) electron paramagnetic resonance (EPR) signal of SeSOMD4Ser was altered compared to those of SOMD4Ser and SOMD4Cys(wt), with g1 in particular shifted to a lower magnetic field, due to the Se ligation at the molybdenum. In contrast, the Mo(V) EPR signal of the high-pH form was unchanged. The substantially stronger effect of substituting selenocysteine for cysteine at low pH as compared to high pH is most likely due to the decreased covalency of the Mo-Se bond.

  17. Impairment of Sulfite Reductase Decreases Oxidative Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Wang, Meiping; Jia, Yunli; Xu, Ziwei; Xia, Zongliang

    2016-01-01

    As an essential enzyme in the sulfate assimilation reductive pathway, sulfite reductase (SiR) plays important roles in diverse metabolic processes such as sulfur homeostasis and cysteine metabolism. However, whether plant SiR is involved in oxidative stress response is largely unknown. Here, we show that SiR functions in methyl viologen (MV)-induced oxidative stress in Arabidopsis. The transcript levels of SiR were higher in leaves, immature siliques, and roots and were markedly and rapidly up-regulated by MV exposure. The SiR knock-down transgenic lines had about 60% residual transcripts and were more susceptible than wild-type when exposed to oxidative stress. The severe damage phenotypes of the SiR-impaired lines were accompanied by increases of hydrogen peroxide (H2O2), malondialdehyde (MDA), and sulfite accumulations, but less amounts of glutathione (GSH). Interestingly, application of exogenous GSH effectively rescued corresponding MV hypersensitivity in SiR-impaired plants. qRT-PCR analysis revealed that there was significantly increased expression of several sulfite metabolism-related genes in SiR-impaired lines. Noticeably, enhanced transcripts of the three APR genes were quite evident in SiR-impaired plants; suggesting that the increased sulfite in the SiR-impaired plants could be a result of the reduced SiR coupled to enhanced APR expression during oxidative stress. Together, our results indicate that SiR is involved in oxidative stress tolerance possibly by maintaining sulfite homeostasis, regulating GSH levels, and modulating sulfite metabolism-related gene expression in Arabidopsis. SiR could be exploited for engineering environmental stress-tolerant plants in molecular breeding of crops. PMID:27994615

  18. A novel treatment for "morning sickness": Nausea of pregnancy could be induced by excess sulfite which molybdenum can help alleviate.

    PubMed

    Taylor, Catherine E

    2016-10-01

    Nausea and vomiting of pregnancy (NVP) remains difficult to treat. Last century, thalidomide was used to alleviate NVP, but it caused teratogenesis by interfering with angiogenesis. The gasotransmitters hydrogen sulfide (H2S) and nitric oxide are mutually dependent on each other for their angiogenesis-related functions. Pregnancy-related requirements for increased endogenous H2S could create a temporary excess of sulfite, an H2S catabolite, which is toxic and can induce nausea. Sulfite oxidase, a molybdenum-containing enzyme, catalyzes oxidation of sulfite to sulfate, which can then be excreted or reused by the body. Supplementation with molybdenum should facilitate enhanced sulfite oxidase activity, thus lowering gestationally-elevated sulfite levels in the gastrointestinal tract and easing NVP.

  19. Phylogenetic diversity of dissimilatory sulfite reductase genes from deep-sea cold seep sediment.

    PubMed

    Fukuba, Tatsuhiro; Ogawa, Mari; Fujii, Teruo; Naganuma, Takeshi

    2003-01-01

    The phylogenetic diversity of dissimilatory sulfite reductase (DSR, EC 1.8.99.3) alpha-subunit genes from a deep-sea cold seep was analyzed. Bulk genomic DNA was extracted from the cold seep sediment and used for amplification by polymerase chain reaction (PCR) of DSR alpha-subunit gene. Two sizes of PCR products, 1.4 kb (expected) and 1.3 kb (unexpected), were amplified. Sixteen clones of the 1.4-kb amplicons and 16 clones of 1.3-kb amplicons, a total of 32 clones, were obtained and grouped into operational DSR units (ODUs) based on restriction fragment length polymorphism (RFLP) by digestion with HaeIII and MboI. A total of 14 ODUs, i.e., 5 ODUs from 1.4-kb amplicon clones and 9 ODUs from 1.3-kb amplicon clones, were recovered. About 400 bp of the 5' ends of all the clones was sequenced and validated the RFLP-based ODU grouping. All the 5'-end 400-bp sequences of ODUs, even from the 1.3-kb amplicons, showed the characteristic DSR amino acid sequence motifs. The ODUs from 1.4-kb amplicons were closely related to the delta-Proteobacterial lineage with the DSR genes from epsilon-Proteobacterial epibionts of the hot vent worm Alvinella pompejana. The ODUs from 1.3-kb amplicons were mostly related to the unknown but possibly archaeal lineage. The diversity of the DSR genes may indicate the diversity of sulfate reducers in the seep sediment as well as the complexity of electron donors including methane.

  20. Decreased immunoglobulin E (IgE) binding to cashew allergens following sodium sulfite treatment and heating.

    PubMed

    Mattison, Christopher P; Desormeaux, Wendy A; Wasserman, Richard L; Yoshioka-Tarver, Megumi; Condon, Brian; Grimm, Casey C

    2014-07-16

    Cashew nut and other nut allergies can result in serious and sometimes life-threatening reactions. Linear and conformational epitopes within food allergens are important for immunoglobulin E (IgE) binding. Methods that disrupt allergen structure can lower IgE binding and lessen the likelihood of food allergy reactions. Previous structural and biochemical data have indicated that 2S albumins from tree nuts and peanuts are potent allergens, and that their structures are sensitive to strong reducing agents such as dithiothreitol. This study demonstrates that the generally regarded as safe (GRAS) compound sodium sulfite effectively disrupted the structure of the cashew 2S albumin, Ana o 3, in a temperature-dependent manner. This study also showed that sulfite is effective at disrupting the disulfide bond within the cashew legumin, Ana o 2. Immunoblotting and ELISA demonstrated that the binding of cashew proteins by rabbit IgG or IgE from cashew-allergic patients was markedly lowered following treatment with sodium sulfite and heating. The results indicate that incorporation of sodium sulfite, or other food grade reagents with similar redox potential, may be useful processing methods to lower or eliminate IgE binding to food allergens.

  1. Promotion effect of sulfite on deoxyosones and 4-methylimidazole in caramel model system.

    PubMed

    Xu, Xian-Bing; Yu, Pei; Yu, Shu-Juan

    2017-05-15

    In this study, hydrogen-deuterium (H/D) exchange experiment was carried out to reveal the promotion effect of sulfite on the formation of deoxyosones and 4-methylimidazole (4-MeI) in the Maillard reaction. Glucose-ammonium (40mmol/L, pH 7.4 in PBS) model systems with different levels of sulfite were incubated at 110°C for 2h. Alpha-dicarbonyls were detected after derivatization by a high-performance liquid chromatography with a diode array detector (HPLC-DAD). 4-MeI in the Maillard reaction was tested using a high-performance anion exchange chromatography with an electrochemical detector (HPAEC-ED). The H/D exchange ratios of hexose (fructose, glucose and mannose) were tested by HPAEC-MS. Results showed that the aldo-enol transition of enediol was promoted by sulfite, which promoted the formation of deoxyosones and 4-MeI. In addition, the oxidation reaction of enediols was inhibited by the antioxidant sulfite, which caused the inhibition of osones formation in the Maillard reaction.

  2. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes

    SciTech Connect

    Klein, Eric L.; Astashkin, Andrei V.; Raitsimring, Arnold M.; Enemark, John H.

    2013-01-01

    Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO32-) to sulfate (SO42-). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH-, H2O, SO32-, or SO42- group, because the primary O and S isotopes (16O and 32S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.

  3. Development of a liquid chromatography-tandem mass spectrometry method for the determination of sulfite in food.

    PubMed

    Robbins, Katherine S; Shah, Romina; MacMahon, Shaun; de Jager, Lowri S

    2015-06-03

    Sulfites are widely used food preservatives that can cause severe reactions in sensitive individuals. As a result, the U.S. FDA requires that sulfites be listed on the label of any food product containing >10 mg/kg (ppm) sulfite (measured as sulfur dioxide). Currently, the optimized Monier-Williams (MW) method (AOAC Official Method 990.28) is the most common approach for determining sulfite concentrations in food samples. However, this method is time-consuming and lacks specificity in certain matrices. An improved rapid, sensitive, and selective method has been developed using electrospray ionization (ESI) high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the determination of sulfite in various food matrices. A total of 12 different types of foods were evaluated. These included dried fruits and vegetables, frozen seafood, sweeteners, and juices. The matrix is extracted with a buffered formaldehyde solution, converting free and reversibly bound sulfite to the stable formaldehyde adduct, hydroxymethylsulfonate (HMS). Extracts are prepared for injection using a C18 SPE cartridge to remove any lipophilic compounds. HMS is then separated from other matrix components using hydrophilic interaction chromatography (HILIC) and detected using multiple reaction monitoring (MRM). The method was validated at 5 concentrations in 12 food matrices. Accuracy data showed spiked recoveries ranging from 84 to 115% in representative foods. Six commercially available sulfited products were analyzed using the LC-MS/MS method, as well as the MW method, to determine if differences exist.

  4. Survey of sulfites in wine and various Turkish food and food products intended for export, 2007-2010.

    PubMed

    Ulca, P; Öztürk, Y; Senyuva, H Z

    2011-01-01

    Surveys were carried out between 2007 and 2010 to determine the total levels of sulfites in 1245 samples of wines, dried apricots, dried vegetables, nuts, juices and purees, frozen foods and cereals containing dried fruit supplied by food inspectors and by food producers for testing or for export certification. Sulfite analysis of wine was carried out using the Ripper method with an LOQ of 5 mg l(-1) and for dried and other foods the Monier-Williams distillation procedure was employed with an LOQ of 10 mg kg(-1). In the survey all wines contained measurable sulfites, but with the exception of one sample of white wine they were otherwise below Turkish Food Codex limits of 160 mg kg(-1) for red wine, 210 mg kg(-1) to white wine and 235 mg kg(-1) for sparkling wine. None of the cereal products, frozen foods, juices or purees contained sulfites above 10 mg kg(-1). However, all dried apricot samples contained significant levels of sulfite with around 40% having levels exceeding the Turkish limit of 2000 mg kg(-1). Significant levels of sulfite were found in other samples of dried fruit with even a fruit and nut bar containing 1395 mg kg(-1) of sulfite, suggesting the dried fruit ingredients contained levels above regulatory limits.

  5. Value-Added Products From FGD Sulfite-Rich Scrubber Materials

    SciTech Connect

    Vivak M. Malhotra

    2006-09-30

    Massive quantities of sulfite-rich flue gas desulfurization (FGD) scrubber materials are produced every year in the USA. In fact, at present, the production of wet sulfite-rich scrubber cake outstrips the production of wet sulfate-rich scrubber cake by about 6 million tons per year. However, most of the utilization focus has centered on FGD gypsum. Therefore, we have recently initiated research on developing new strategies for the economical, but environmentally-sound, utilization of sulfite-rich scrubber material. In this exploratory project (Phase I), we attempted to ascertain whether it is feasible to develop reconstituted wood replacement products from sulfite-rich scrubber material. In pursuit of this goal, we characterized two different wet sulfite-rich scrubber materials, obtained from two power plants burning Midwestern coal, for their suitability for the development of value-added products. The overall strategy adopted was to fabricate composites where the largest ingredient was scrubber material with additional crop materials as additives. Our results suggested that it may be feasible to develop composites with flexural strength as high as 40 MPa (5800 psi) without the addition of external polymers. We also attempted to develop load-bearing composites from scrubber material, natural fibers, and phenolic polymer. The polymer-to-solid ratio was limited to {le} 0.4. The formulated composites showed flexural strengths as high as 73 MPa (10,585 psi). We plan to harness the research outcomes from Phase I to develop parameters required to upscale our value-added products in Phase II.

  6. Rapid flow injection method for the determination of sulfite in wine using the permanganate-luminol luminescence system.

    PubMed

    Navarrro, Mercedes Villar; Payán, María Ramos; López, Miguel Angel Bello; Fernández-Torres, Rut; Mochón, Manuel Callejón

    2010-10-15

    A simple, rapid and sensitive chemiluminescence method for the determination of sulfite has been developed by combining flow-injection analysis and its sensitizing effect on the known chemiluminescence emission produced by the oxidation of luminol in alkaline medium; in this work permanganate has been proposed as oxidizing reactive. The optimum conditions for the chemiluminescence emission were established. The chemiluminescence was proportional to the sulfite concentration over the range 1.6 × 10(-5) and 4.0 × 10(-4)mol L(-1). The detection limit was 4.7 × 10(-6)mol L(-1) of sulfite. The method has been satisfactorily used for the determination of free and bound sulfite in wines.

  7. Pattern formation in the thiourea-iodate-sulfite system: Spatial bistability, waves, and stationary patterns

    NASA Astrophysics Data System (ADS)

    Horváth, Judit; Szalai, István; De Kepper, Patrick

    2010-06-01

    We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.

  8. Multicomponent Convection Induced by Fronts in the Chlorate-Sulfite Reaction

    NASA Technical Reports Server (NTRS)

    Nagy, Istvan P.; Pojman, John A.

    1993-01-01

    An application of a new method is presented for the measurement of the temperature profiles of chemical waves propagating through a solution. Using solutions of thermocolor materials, the temperature distribution caused by the heat released in the propagating chlorate oxidation of sulfite was visualized and recorded using digital image processing methods. After calibration, the temperature gradient was calculated from the gray scale value in a digitized image. Extensive multicomponent convection ('fingering') was induced by descending fronts. Only ascending fingers were observed because of the large thermal gradient that suppressed descending ones. The characteristics of the temperature profile were determined as a function of initial sulfite and chlorate concentration, and tube diameter. Unusual behavior was observed when the fronts propagated under conditions of continuously changing diameter in a conical vessel. Fingering occurred periodically in a front descending in a flask with an increasing diameter. However, when a front propagated down in flask whose diameter decreased, no multicomponent convection was observed.

  9. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases

    PubMed Central

    Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-01-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  10. Techno-economic evaluation of conditioning with sodium sulfite for bioethanol production from softwood.

    PubMed

    Cavka, Adnan; Martín, Carlos; Alriksson, Björn; Mörtsell, Marlene; Jönsson, Leif J

    2015-11-01

    Conditioning with reducing agents allows alleviation of inhibition of biocatalytic processes by toxic by-products generated during biomass pretreatment, without necessitating the introduction of a separate process step. In this work, conditioning of steam-pretreated spruce with sodium sulfite made it possible to lower the yeast and enzyme dosages in simultaneous saccharification and fermentation (SSF) to 1g/L and 5FPU/g WIS, respectively. Techno-economic evaluation indicates that the cost of sodium sulfite can be offset by benefits resulting from a reduction of either the yeast load by 0.68g/L or the enzyme load by 1FPU/g WIS. As those thresholds were surpassed, inclusion of conditioning can be justified. Another potential benefit results from shortening the SSF time, which would allow reducing the bioreactor volume and result in capital savings. Sodium sulfite conditioning emerges as an opportunity to lower the financial uncertainty and compensate the overall investment risk for commercializing a softwood-to-ethanol process.

  11. Theoretical estimation of equilibrium sulfur isotope fractionations among aqueous sulfite species: Implications for isotope models of microbial sulfate reduction

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Farquhar, J.; Guo, W.

    2015-12-01

    Sulfite (sensu lato), an intermediate in a variety sulfur redox processes, plays a particularly important role in microbial sulfate reduction. It exists intracellularly as multiple species between sets of enzymatic reactions that transform sulfate to sulfide, with the exact speciation depending on pH, T, and ionic strength. However, the complex speciation of sulfite is ignored in current isotope partitioning models of microbial sulfate reduction and simplified solely to the pyramidal SO32- (sulfite sensu stricto), due to a lack of appropriate constraints. We theoretically estimated the equilibrium sulfur isotope fractionations (33S/32S, 34S/32S, 36S/32S) among all documented sulfite species in aqueous solution, including sulfite (SO32-), bisulfite isomers and dimers ((HS)O3-, (HO)SO2-, S2O52-), and SO2(aq), through first principles quantum mechanical calculations. The calculations were performed at B3LYP/6-31+G(d,p) level using cluster models with 30-40 water molecules surrounding the solute. Our calculated equilibrium fractionation factors compare well to the available experimental constraints and suggest that the minor and often-ignored tetrahedral (HS)O3- isomer of bisulfite strongly influences isotope partitioning behavior in the sulfite system under most environmentally relevant conditions, particularly fractionation magnitudes and unusual temperature dependence. For example, we predict that sulfur isotope fractionation between sulfite and bulk bisulfite in solution should have an apparent inverse temperature dependence due to the influence of (HS)O3- and its increased stability at higher temperatures. Our findings highlight the need to appropriately account for speciation/isomerization of sulfur species in sulfur isotope studies. We will also present similar calculation results of other aqueous sulfur compounds (e.g., H2S/HS-, SO42-, S2O32-, S3O62-, and poorly documented SO22- species), and discuss the implication of our results for microbial sulfate

  12. Direct Analysis of Free and Sulfite-Bound Carbonyl Compounds in Wine by Two-Dimensional Quantitative Proton and Carbon Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2015-11-03

    Recent developments that have accelerated 2D NMR methods and improved quantitation have made these methods accessible analytical procedures, and the large signal dispersion allows for the analysis of complex samples. Few natural samples are as complex as wine, so the application to challenges in wine analysis look promising. The analysis of carbonyl compounds in wine, key oxidation products, is complicated by a multitude of kinetically reversible adducts, such as acetals and sulfonates, so that sample preparation steps can generate complex interferences. These challenges could be overcome if the compounds could be quantified in situ. Here, two-dimensional ((1)H-(1)H) homonuclear and heteronuclear ((13)C-(1)H) single quantum correlations (correlation spectroscopy, COSY, and heteronuclear single quantum coherence, HSQC) nuclear magnetic resonance spectra of undiluted wine samples were observed at natural abundance. These techniques achieve simultaneous direct identification and quantitation of acetaldehyde, pyruvic acid, acetoin, methylglyoxal, and α-ketoglutaric acid in wine with only a small addition of D2O. It was also possible to observe and sometimes quantify the sulfite, hydrate, and acetal forms of the carbonyl compounds. The accuracy of the method was tested in wine samples by spiking with a mixture of all analytes at different concentrations. The method was applied to 15 wine samples of various vintages and grape varieties. The application of this method could provide a powerful tool to better understand the development, evolution, and perception of wine oxidation and insight into the impact of these sulfite bound carbonyls on antimicrobial and antioxidant action by SO2.

  13. Sulfite oxidation in the purple sulfur bacterium Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process.

    PubMed

    Dahl, Christiane; Franz, Bettina; Hensen, Daniela; Kesselheim, Anne; Zigann, Renate

    2013-12-01

    In phototrophic sulfur bacteria, sulfite is a well-established intermediate during reduced sulfur compound oxidation. Sulfite is generated in the cytoplasm by the reverse-acting dissimilatory sulfite reductase DsrAB. Many purple sulfur bacteria can even use externally available sulfite as a photosynthetic electron donor. Nevertheless, the exact mode of sulfite oxidation in these organisms is a long-standing enigma. Indirect oxidation in the cytoplasm via adenosine-5'-phosphosulfate (APS) catalysed by APS reductase and ATP sulfurylase is neither generally present nor essential. The inhibition of sulfite oxidation by tungstate in the model organism Allochromatium vinosum indicated the involvement of a molybdoenzyme, but homologues of the periplasmic molybdopterin-containing SorAB or SorT sulfite dehydrogenases are not encoded in genome-sequenced purple or green sulfur bacteria. However, genes for a membrane-bound polysulfide reductase-like iron-sulfur molybdoprotein (SoeABC) are universally present. The catalytic subunit of the protein is predicted to be oriented towards the cytoplasm. We compared the sulfide- and sulfite-oxidizing capabilities of A. vinosum WT with single mutants deficient in SoeABC or APS reductase and the respective double mutant, and were thus able to prove that SoeABC is the major sulfite-oxidizing enzyme in A. vinosum and probably also in other phototrophic sulfur bacteria. The genes also occur in a large number of chemotrophs, indicating a general importance of SoeABC for sulfite oxidation in the cytoplasm. Furthermore, we showed that the periplasmic sulfur substrate-binding protein SoxYZ is needed in parallel to the cytoplasmic enzymes for effective sulfite oxidation in A. vinosum and provided a model for the interplay between these systems despite their localization in different cellular compartments.

  14. Effects of the methyltrimethoxysilane coupling agent on phenolic and miscanthus composites containing calcium sulfite scrubber material

    NASA Astrophysics Data System (ADS)

    Jones, Sean

    The purpose of this research is to test the effects of methyltrimethoxysilane coupling agent on composite material containing calcium sulfite obtained from the Southern Illinois Power Co-operative. This scrubber material and the miscanthus plant are of interest due to their use in coal burning power plants to reduce toxic emission. When calcium sulfate is passed through coal fire gas emissions it absorbs mercury and sulfur. In these composites it is used as filler to reduce cost. Miscanthus is a source of both cellulose reinforcement and some natural resin. This plant has low care requirements, little mineral content, useful energy return, and positive environmental effects. Under investigation is whether a post-cure procedure or a silane coupling agent will positively impact the composite. Hot pressing alone may not be enough to fully cure the phenolic. It is hoped that the silane will increase the strength characteristics of the composite by enhancing adhesion between the calcium sulfite and phenolic resin. Possible effects on the miscanthus by the silane will also be tested. Phenolic is being utilized because of its recycling and biodegradable properties along with cost effectiveness in mass production. Composite mechanical performance was measured through 3-point bending to measure flexural strength and strain at breakage. A dynamic mechanical analyzer (DMA) was used to find thermomechanical properties. The post-cure was found to be effective, particularly on the final composite containing silane. When methyltrimethoxysilane was added to the miscanthus prior to fabrication, it was found to reduce flexural strength and density. However the addition of methyltrimethoxysilane to the calcium sulfite altered thermo-mechanical properties to a state more like pure phenolic, with added flexibility and thermal stability.

  15. Determination and application of the equilibrium oxygen isotope effect between water and sulfite

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Bradley, Alexander S.; Eldridge, Daniel L.; Johnston, David T.

    2014-01-01

    The information encoded by the two stable isotope systems in sulfate (δ34SSO4 and δ18OSO4) has been widely applied to aid reconstructions of both modern and ancient environments. Interpretation of δ18OSO4 records has been complicated by rapid oxygen isotope equilibration between sulfoxyanions and water. Specifically, the apparent relationship that develops between δ18OSO4 and δ18Owater during microbial sulfate reduction is thought to result from rapid oxygen isotope equilibrium between intracellular water and aqueous sulfite - a reactive intermediate of the sulfate reduction network that can back-react to produce sulfate. Here, we describe the oxygen equilibrium isotope effect between water and sulfite (referring to all the sum of all S(IV)-oxyanions including sulfite and both isomers and the dimer of bisulfite). Based on experiments conducted over a range of pH (4.5-9.8) and temperature (2-95 °C), where ε = 1000 * (α - 1), we find εSO3-H2O=13.61-0.299∗pH-0.081∗T °C. Thus, at a pH (7.0) and temperature (25 °C) typifying commonly used experimental conditions for sulfate reducing bacterial cultures, sulfite is enriched in 18O by 9.5‰ (±0.8‰) relative to ambient water. We examine the implication of these results in a sulfate reduction network that has been revised to reflect our understanding of the reactions involving oxygen. By evaluating previously published data within this new architecture, our results are consistent with previous suggestions of high reversibility of the sulfate reduction biochemical network. We also demonstrate that intracellular exchange rates between SO32- and water must be on average 1-3 orders of magnitude more rapid than intracellular fluxes of sulfate reduction intermediates and that kinetic isotope effects upstream of SO32- are required to explain previous laboratory and environmental studies of δ18OSO4 resulting as a consequence of sulfate reduction.

  16. Nonvolatile mutagens in drinking water: production by chlorination and destruction by sulfite

    SciTech Connect

    Cheh, A.M.; Skochdopole, J.; Koski, P.; Cole, L.

    1980-01-04

    In a laboratory simulation of a drinking water treatment process, the levels of nonvolatile mutagens in drinking water were quantified. By means of the Ames Salmonella test, unchlorinated water was found to be devoid of mutagens. Chloramine-treated water however, contained mutagenic activity; water chlorinated with free chlorine showed even greater mutagenic activity. Dechlorination of drinking water with sulfite sharply reduced the mutagenic activity. Treatment with sulfur dioxide is proposed as an effective, inexpensive method of reducing the direct-acting mutagenic activity of drinking water and of aqueous industrial effluents. (1 graph, 20 references, 1 table)

  17. Ultrafiltration of sulfite liquors for separation of lignosulfonates removed from water by coagulation

    SciTech Connect

    Medvedev, Yu.M.; Medvedev, M.I.; Tsapyuk, E.A.

    1986-04-10

    This paper attempts to select an ultrafilter retaining lignosulfonate (LS) fractions precipitated by coagulants and to study the relationships of their concentration and efficiency of removal from water by coagulants. The material studied - sulfite liquor from the Syas' pulp and paper combine - was fractionated with the use of ''Vladipor'' cellulose acetate ultrafiltration membranes of various pore sizes. Data on the efficiency of removal from water of LS fractions retained by membranes differing in pore size are presented. It is concluded that ecologically safe LS fractions (removed almost completely by the coagulant) can be obtained by ultrafiltration of technical liquor through UAM-500 membranes under 0.7 MPA pressure.

  18. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied...

  19. 21 CFR Appendix A to Part 101 - Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Monier-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied Nutrition, Food and Drug Administration (November 1985...-Williams Procedure (With Modifications) for Sulfites in Food, Center for Food Safety and Applied...

  20. Sulfite stimulates the ATP hydrolysis activity of but not proton translocation by the ATP synthase of Rhodobacter capsulatus and interferes with its activation by delta muH+.

    PubMed

    Cappellini, P; Turina, P; Fregni, V; Melandri, B A

    1997-09-01

    Sulfite stimulates the rate of ATP hydrolysis by the ATP synthase in chromatophores of Rhodobacter capsulatus. The stimulated activity is inhibited by oligomycin. The activation takes place also in uncoupled chromatophores. The activation consists in an increase of about 12-15-fold of the Vmax for the ATP hydrolysis reaction, while the Km for MgATP is unaffected at 0.16+/-0.03 mM. The dependence of Vmax on the sulfite concentration follows a hyperbolic pattern with half maximum effect at 12 mM. Sulfite affects the ability of the enzyme in translocating protons. Concomitant measurements of the rate of ATP hydrolysis and of ATP-induced protonic flows demonstrate that at sulfite concentrations of greater than 10 mM the hydrolytic reaction becomes progressively uncoupled from the process of proton translocation. This is accompanied by an inhibition of ATP synthesis, either driven by light or by artificially induced ionic gradients. ATP synthesis is totally inhibited at concentrations of at least 80 mM. Sulfite interferes with the mechanism of activation by delta muH+. Low concentrations of this anion (< or = 2 mM) prevent the activation by delta muH+. At higher concentrations a marked stimulation of the activity prevails, regardless of the occurrence of a delta muH+ across the membrane. Phosphate at millimolar concentrations can reverse the inhibition by sulfite. These experimental results can be simulated by a model assuming multiple and competitive equilibria for phosphate or sulfite binding with two binding sites for the two ligands (for sulfite K1S = 0.26 and K2S = 37 mM, and for phosphate K1P = 0.06 and K2P = 4.22 mM), and in which the state bound only to one sulfite molecule is totally inactive in hydrolysis. The competition between phosphate and sulfite is consistent with the molecular structures of the two ligands and of the enzyme.

  1. Detection of sewage organic chlorination products that are resistant to dechlorination with sulfite

    SciTech Connect

    MacCrehan, W.A.; Jensen, J.S.; Helz, G.R.

    1998-11-15

    Most of the 36 billion gal of treated sewage wastewater discharged daily into the environment in the United States is disinfected via chlorination. To minimize toxicity. dechlorination with sulfite or sulfur dioxide is often performed. Although dechlorination is considered instantaneous and complete, several studies have found residual toxicity of chlorinated/dechlorinated effluent to aquatic life. The authors investigated chlorination/dechlorination of the organic nitrogen components of sewage wastewater using both iodometric titration and a novel LC method. For LC, a postcolumn reaction with iodide rendered submicromolar chloramine concentrations detectable with amperometry. Using a gradient-elution LC separation, the retention and dechlorination behavior of a suite of model amines was determined, representing primary and secondary aliphatic, peptide, and protein-N. Chlorination/dechlorination experiments on freshly collected, tertiary-treated wastewater showed a fraction of the organic N-chloramines are dechlorinated slowly by sulfite with half-lives of >20 min. Chromatographic retention and kinetic behavior of the sewage N-chloramines was consistent with the behavior of the model peptides and proteins. Proteolytic hydrolysis markedly increased the peptide fraction observed upon chlorination of the wastewater. These results suggest that peptides and proteins contribute to slow dechlorination of sewage and may be a factor in the toxicity noted for chlorine-disinfected wastewater.

  2. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    SciTech Connect

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin S.; Chu, Rosalie K.; Robinson, Errol W.; Dahl, Christiane; Saraiva, Lígia M.; Pereira, Inês A.C.

    2013-11-29

    Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cell extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.

  3. Concentration of simple aldehydes by sulfite-containing double-layer hydroxide minerals: implications for biopoesis

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Krishnamurthy, R.; Arrhenius, G.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Environmental conditions play an important role in conceptual studies of prebiotically relevant chemical reactions that could have led to functional biomolecules. The necessary source compounds are likely to have been present in dilute solution, raising the question of how to achieve selective concentration and to reach activation. With the assumption of an initial 'RNA World', the questions of production, concentration, and interaction of aldehydes and aldehyde phosphates, potential precursors of sugar phosphates, come into the foreground. As a possible concentration process for simple, uncharged aldehydes, we investigated their adduct formation with sulfite ion bound in the interlayer of positively charged expanding-sheet-structure double-layer hydroxide minerals. Minerals of this type, initially with chloride as interlayer counter anion, have previously been shown to induce concentration and subsequent aldolization of aldehyde phosphates to form tetrose, pentose, and hexose phosphates. The reversible uptake of the simple aldehydes formaldehyde, glycolaldehyde, and glyceraldehyde by adduct formation with the immobilized sulfite ions is characterized by equilibrium constants of K=1.5, 9, and 11, respectively. This translates into an observable uptake at concentrations exceeding 50 mM.

  4. Rapidly responsive and highly selective fluorescent probe for sulfite detection in real samples and living cells.

    PubMed

    Li, Hongda

    2015-10-15

    Sulfites (HSO3(-) or SO3(-)) have very significant toxicity in the environment and in the system. However, developing specific identification of sulfite probes is still very important. In this paper, a highly selective colorimetric and fluorescent probe (HHC) was synthesized to detect HSO3(-) in real samples and living cells. Sensing performance and preponderance are listed as follows. First, probe HHC showed remarkable selectivity for HSO3(-) over varieties of other species, including cysteine, glutathione, S(2-), CN(-), and reactive oxygen species, mainly because of the introduction of the electron-poor C=C double bond for HSO3(-). Second, probe HHC has great molar absorptivity, allowing it to act as a visual detection of probe for HSO3(-). Third, the fluorescence intensities of HHC linearly correlate with the concentration of HSO3(-), with a detection limit of 6.8 nm. Finally, our proposed probe can be applied to the visually determination of trace HSO3(-) in real samples and living HeLa cells with high precision. We hope that our proposed probe will greatly benefit biological sciences when biological researchers survey the role of HSO3(-) in biological systems.

  5. Divergence of the yeast transcription factor FZF1 affects sulfite resistance.

    PubMed

    Engle, Elizabeth K; Fay, Justin C

    2012-01-01

    Changes in gene expression are commonly observed during evolution. However, the phenotypic consequences of expression divergence are frequently unknown and difficult to measure. Transcriptional regulators provide a mechanism by which phenotypic divergence can occur through multiple, coordinated changes in gene expression during development or in response to environmental changes. Yet, some changes in transcriptional regulators may be constrained by their pleiotropic effects on gene expression. Here, we use a genome-wide screen for promoters that are likely to have diverged in function and identify a yeast transcription factor, FZF1, that has evolved substantial differences in its ability to confer resistance to sulfites. Chimeric alleles from four Saccharomyces species show that divergence in FZF1 activity is due to changes in both its coding and upstream noncoding sequence. Between the two closest species, noncoding changes affect the expression of FZF1, whereas coding changes affect the expression of SSU1, a sulfite efflux pump activated by FZF1. Both coding and noncoding changes also affect the expression of many other genes. Our results show how divergence in the coding and promoter region of a transcription factor alters the response to an environmental stress.

  6. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  7. Bisulfite and sulfite as derivatives of sulfur dioxide alters biomechanical behaviors of airway smooth muscle cells in culture.

    PubMed

    Song, Aijing; Lin, Feng; Li, Jianming; Liao, Qingfeng; Liu, Enmei; Jiang, Xuemei; Deng, Linhong

    2014-02-01

    Sulfur dioxide (SO2) is a common air pollutant that triggers asthmatic symptoms, but its toxicological mechanisms are not fully understood. Specifically, it is unclear how SO2 in vivo affects airway smooth muscle (ASM) cells of which the mechanics is known to ultimately mediate airway hyperresponsiveness (AHR) - a hallmark feature of asthma. To this end, we investigated the effects of bisulfite/sulfite (1:3 M/M in neutral fluid to simulate the in vivo derivatives of inhaled SO2 in the airways), on the viability, migration, stiffness and contractility of ASM cells cultured in vitro. The results showed that bisulfite/sulfite consistently increased viability, migration, F-actin intensity and stiffness of ASM cells in similar fashion as concentration increasing from 10(-4) to 10(-1) mmol/L. However, bisulfite/sulfite increased the ASM cell contractility induced by KCl only at the concentration between 10(-4) and 10(-3) mmol/L (p < 0.05), while having no consistent effect on that induced by histamine. At the concentration of 10(0) mmol/L, bisulfite/sulfite became acutely toxic to the ASM cells. Taken together, the data suggest that SO2 derivatives at low levels in vivo may directly increase the mass, stiffness and contractility of ASM cells, which may help understand the mechanism in which specific air pollutants contribute in vivo to the pathogenesis of asthma.

  8. Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic and cDNA sequences corresponding to a ferredoxin-sulfite reductase (SiR) have been cloned from bulb onion (Allium cepa L.) and the expression of the gene and activity of the enzyme characterised with respect to sulfur (S) supply. Cloning, mapping and expression studies revealed that onion ha...

  9. Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles.

    PubMed

    Amatatongchai, Maliwan; Sroysee, Wongduan; Chairam, Sanoe; Nacapricha, Duangjai

    2015-02-01

    A new approach is presented for sensitive and selective measurement of sulfite (SO3(2-)) in beverages based on a simple flow injection system with amperometric detection. In this work, the sulfite sensor was a glassy carbon electrode modified with multiwall carbon nanotubes-poly(diallyldimethylammonium chloride)-gold nanoparticles composites (CNTs-PDDA-AuNPs/GC). Electrochemical oxidation of sulfite with this electrode was first studied in 0.1M phosphate buffer (pH 7.0) using cyclic voltammetry. The results indicated that the CNTs-PDDA-AuNPs/GC electrode possesses electrocatalytic activity for the oxidation of sulfite with high sensitivity and selectivity. Sulfite was quantified using amperometric measurement with the new sensor at +0.4V vs Ag/AgCl in conjunction with flow injection. The linear working range for the quantitation of sulfite was 2-200 mg L(-1) (r(2)=0.998) with a detection limit of 0.03 mg L(-1) (3σ of blank) and an estimated precision of 1.5%.The proposed method was successfully applied to the determination of sulfite in fruit juices and wines with a sample throughput of 23 samples per hour.

  10. Determination of free sulfites (SO3-2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.

    PubMed

    Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J

    2013-01-01

    A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and

  11. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction.

    PubMed

    Venceslau, Sofia S; Cort, John R; Baker, Erin S; Chu, Rosalie K; Robinson, Errol W; Dahl, Christiane; Saraiva, Lígia M; Pereira, Inês A C

    2013-11-29

    Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cell extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.

  12. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    SciTech Connect

    Venceslau, Sofia S.; Cort, John R.; Baker, Erin Shammel; Chu, Rosalie K.; Robinson, Errol W.; Dahl, Christiane; Saraiva, Ligia M.; Pereira, Ines Ac

    2013-11-29

    Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC having two conserved cysteine residues. Here, we report a study of the distribution of DsrC in cell extracts, a cysteine-labelling gel-shift assay to monitor its redox state and behaviour, and procedures to produce the different redox forms. We show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we successfully produced DsrC with an intramolecular disulfide bond (oxidized state) by treatment with arginine.

  13. Comprehensive detection of phototrophic sulfur bacteria using PCR primers that target reverse dissimilatory sulfite reductase gene.

    PubMed

    Mori, Yumi; Purdy, Kevin J; Oakley, Brian B; Kondo, Ryuji

    2010-01-01

    A new set of primers for the detection of phototrophic sulfur bacteria in natural environments is described. The primers target the α-subunit of the reverse dissimilatory sulfite reductase gene (dsrA). PCR-amplification resulted in products of the expected size from all the phototrophic strains tested, including purple sulfur and green sulfur bacteria. Seventy-nine clones obtained from environmental DNA using the primers were sequenced and all found to be closely related to the dsrA of purple sulfur bacteria and green sulfur bacteria. This newly developed PCR assay targeting dsrA is rapid and simple for the detection of phototrophic sulfur bacteria in situ and superior to the use of culture-dependent techniques.

  14. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  15. Mimic of superoxide dismutase activity protects Chlorella sorokiniana against the toxicity of sulfite

    SciTech Connect

    Rabinowitch, H.D.; Rosen, G.M.; Fridovich, I.

    1989-01-01

    The spin-trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) has been used to demonstrate the light-dependent production of O/sub 2/- by Chlorella sorokiniana. In the presence of SO/sub 3/= a light-dependent production of the sulfur trioxy anion radical (SO/sub 3/-.) could also be seen. A complex prepared by reacting desferrioxamine with MnO/sub 2/, which catalyzes the dismutation of O/sub 2/-, protected the alga against the toxicity of sulfite. The data suggest that SO/sub 2/ toxicity is at least partially due to the effects of sulfoxy-free radicals generated by the oxidation of SO3= by O/sub 2/-.

  16. Investigation of the electroreduction of silver sulfite complexes by means of electrochemical FFT impedance spectroscopy.

    PubMed

    Valiūniene, A; Baltrūnas, G; Valiūnas, R; Popkirov, G

    2010-08-15

    The electroreduction kinetics of silver sulfite complexes was investigated by electrochemical fast Fourier transform (FFT) impedance spectroscopy (0.061-1500 Hz). The time dependences of the real and imaginary components of impedance were determined in a solution containing 0.05 M Ag (I) and 1M Na(2)SO(3). The mean duration of silver ad-atom diffusion on the surface to the nearest crystallization centre was calculated: during the first 210 s of contact with the electrolyte, these values increase from 0.66 up to 1.77 s; thereafter, this variation stabilizes and the mean duration of silver ad-atom diffusion reaches an almost constant value (1.56 s).

  17. Effect of controlled aeration on glycerol production in a sulfite process by Saccharomyces cerevisiae

    SciTech Connect

    Kalle, G.P.; Naik, S.C.

    1987-01-01

    In a conventional sulfite process for glycerol production from sugarcane molasses using Saccharomyces cerevisiae, maximum product concentration of only 40 g/L and productivities only up to 5 g/L/day are obtained, making the process industrially unattractive. Fermentation carried out under controlled conditions of aeration improved product concentration in the medium by twofold (96 g/L) and productivity by threefold (16 g/L/day), while permitting the yeast to tolerate higher initial concentration of sugar (400-465 g/L). There was a concomittant increase in glycerol concentration and productivity with increasing aeration rate (0-1.4 vvm), whereas ethanol concentration in the medium dropped by ca. twofold. At aeration rates greater than 1.4 vvm, all these parameters showed a sharp decline, indicating general inhibition of fermentation.

  18. Cellulase production from spent sulfite liquor and paper-mill waste fiber

    SciTech Connect

    Qu Yinbo; Zhao Xin; Gao Peiji; Wang Zunong

    1991-12-31

    Since a high proportion of the overall cost of the conversion of cellulosics to useful products is the expense of cellulose production (1), it is desirable to develop new processes for producing large amounts of cellulase inexpensively. So far, most of the research work on cellulose production has been carried out using milled cellulose powder and inorganic salts as substrates, which significantly increases the cost of enzyme production. In order to reduce the cost of raw materials, we tried to develop from industrial wastes a new medium for the production of cellulose. In this report, we describe a simple method by which an all-waste medium, which was composed of spent ammonium sulfite liquor and cellulosic waste of a paper mill, and a catabolite derepression mutant of Penicillium decumbens were used to produce the enzyme efficiently.

  19. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  20. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods.

    PubMed

    Wang, G S; Pan, X J; Zhu, J Y; Gleisner, R; Rockwood, D

    2009-01-01

    This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180 degrees C, SPORL can achieve near-complete cellulose conversion to glucose in a wide range of pretreatment liquor of pH 2.0-4.5 in only about 10 h enzymatic hydrolysis. The enzyme loading was about 20 FPU cellulase plus 30 CBU beta-glucosidase per gram of cellulose. The production of fermentation inhibitor furfural was less than 20 mg/g of aspen wood at pH 4.5. With pH 4.5, SPORL avoided reactor corrosion problem and eliminated the need for substrate neutralization prior to enzymatic hydrolysis. Similar results were obtained from maple and eucalyptus.

  1. Influence of Cu(II) on the interaction between sulfite and horseradish peroxidase in vitro

    NASA Astrophysics Data System (ADS)

    Lan, Jie; Guo, Dong-Sheng; Yuan, Xiao-Ying

    2007-06-01

    This paper discussed the quantitative influence of Cu(II) on the interaction between horseradish peroxidase (HRP) and sulfite (SO 32-), which is a derivate of sulfite dioxide in human bodies, by using fluorescence spectrum and ultraviolet (UV) absorption spectrometry in vitro. The results show that under the conditions of physiological pH and room-temperature, Cu(II) can bind strongly with both the protein part and the ferroporphyrin part in HRP at a low concentration (10 -4 mol L -1), and the combination constants are 2.047 × 10 3 and 7.66 × 10 2 L mol -1, respectively. Under the same conditions, SO 32- at low concentrations (<0.15 mol L -1) has little quenching for the fluorescence of HRP at 330 nm, and the combination constant is 0.108 L mol -1. While the fluorescence intensity at 440 nm enhance gradually with the increased concentration of SO 32- (<0.1 mol L -1), and the combination constant is 8.219 L mol -1. These indicate that SO 32- at low concentration has little reaction with the enzyme protein part in HRP but obvious reaction with the ferroporphyrin part in HRP. After SO 32- at low concentrations is added into the HRP-Cu(II) binary system, the reaction constants between SO 32- and the enzyme protein part in HRP increase rapidly. Compared with the absence of Cu(II), the combination constant of SO 32- with the enzyme protein part in HRP increases nearly 70 times with a certain Cu(II) concentration (5.0 × 10 -4 mol L -1) in the system. However, the presence of Cu(II) in the system has little effect on the reaction constants between SO 32- and the ferroporphyrin part in HRP.

  2. CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines.

    PubMed

    Zhang, Xiaodan; He, Shaohui; Chen, Zhaohui; Huang, Yuming

    2013-01-30

    Recently, the intrinsic enzyme-like activity of nanoparticles (NPs) has become a growing area of interest. However, the analytical applications of the NP-based enzyme mimetic are mainly concentrated on their peroxidase-like activity; no attempts have been made to investigate the analytical applications based on the oxidase mimic activities of NPs. For the first time, we report that CoFe(2)O(4) NPs were found to possess intrinsic oxidase-like activity and could catalyze luminol oxidation by dissolved oxygen to produce intensified chemiluminescence (CL). The effect of sulfite on CoFe(2)O(4) NP oxidase mimic-mediated CL of aqueous luminol was investigated. It is very interesting that when adding sulfite to the luminol-CoFe(2)O(4) system, the role of sulfite in the luminol-CoFe(2)O(4) NP-sulfite system depends on its concentration. At a relatively low concentration level, sulfite presents an inhibition effect on the luminol-CoFe(2)O(4) NP system. However, it does have an enhancement effect at a higher concentration level. Investigations on the effect of the solution pH and luminol and CoFe(2)O(4) NP concentrations on the kinetic characteristics of the studied CL system in the presence of trace sulfite suggested that the enhancement and inhibition of the luminol-CoFe(2)O(4) NP-sulfite CL system also depended on the solution pH. It seems that the concentrations of luminol and CoFe(2)O(4) NPs did not influence the CL pathway. The possible mechanism of the luminol-CoFe(2)O(4) NP-sulfite CL system was also discussed. On this basis, a flow injection chemiluminescence method was established for the determination of trace sulfite in this study. Under the optimal conditions, the proposed system could respond down to 2.0 × 10(-8) M sulfite. The method has been applied to the determination of trace sulfite in white wine samples with satisfactory results. The results given by the proposed method are in good agreement with those given by the standard titration method.

  3. Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.

    PubMed

    Bastiat, Bénédicte; Sauviac, Laurent; Picheraux, Carole; Rossignol, Michel; Bruand, Claude

    2012-01-01

    Rhizobia are soil bacteria able to establish a nitrogen-fixing symbiosis with legume plants. Both in soil and in planta, rhizobia spend non-growing periods resembling the stationary phase of in vitro-cultured bacteria. The primary objective of this work was to better characterize gene regulation in this biologically relevant growth stage in Sinorhizobium meliloti. By a tap-tag/mass spectrometry approach, we identified five sigma factors co-purifying with the RNA polymerase in stationary phase: the general stress response regulator RpoE2, the heat shock sigma factor RpoH2, and three extra-cytoplasmic function sigma factors (RpoE1, RpoE3 and RpoE4) belonging to the poorly characterized ECF26 subgroup. We then showed that RpoE1 and RpoE4 i) are activated upon metabolism of sulfite-generating compounds (thiosulfate and taurine), ii) display overlapping regulatory activities, iii) govern a dedicated sulfite response by controlling expression of the sulfite dehydrogenase SorT, iv) are activated in stationary phase, likely as a result of endogenous sulfite generation during bacterial growth. We showed that SorT is required for optimal growth of S. meliloti in the presence of sulfite, suggesting that the response governed by RpoE1 and RpoE4 may be advantageous for bacteria in stationary phase either by providing a sulfite detoxification function or by contributing to energy production through sulfite respiration. This paper therefore reports the first characterization of ECF26 sigma factors, the first description of sigma factors involved in control of sulphur metabolism, and the first indication that endogenous sulfite may act as a signal for regulation of gene expression upon entry of bacteria in stationary phase.

  4. Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process.

    PubMed

    Qian, Jin; Wang, Lianlian; Wu, Yaoguo; Bond, Philip L; Zhang, Yuhan; Chang, Xing; Deng, Baixue; Wei, Li; Li, Qin; Wang, Qilin

    2017-06-01

    A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO3(-) + SO3(2-)) and free sulfurous acid (FSA, the unionized form: H2SO3) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10(-8) to 2.0 × 10(-4) mg H2SO3-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage.

  5. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1985-01-01

    The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.

  6. Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer.

    PubMed

    Lund, Marianne N; Krämer, Anna C; Andersen, Mogens L

    2015-09-23

    The radical-mediated reactions occurring during the early stages of beer storage were studied by following the rate of oxygen consumption, radical formation as detected by electron spin resonance spectroscopy, and concentrations of the antioxidant compounds sulfite and thiols. Addition of either Fe(III) or Fe(II) had similar effects, indicating that a fast redox equilibrium is obtained between the two species in beer. Addition of iron in combination with hydrogen peroxide gave the most pronounced levels of oxidation due to a direct initiation of ethanol oxidation through generation of hydroxyl radicals by the Fenton reaction. The concentration of sulfite decreased more than the thiol concentration, suggesting that thiols play a secondary role as antioxidants by mainly quenching 1-hydroxyethyl radicals that are intermediates in the oxidation of ethanol. Increasing the temperature had a minor effect on the rate of oxygen consumption.

  7. A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides.

    PubMed

    Stohs, Sidney J; Miller, Mark J S

    2014-01-01

    A case study is reported whereby an individual with known sulfite and sulfonamide allergies develops hypersensitivity to taurine above a threshold level as well as to the non-nutritive sweetener acesulfame potassium, compounds that are not normally associated with allergic reactions. Sulfites, sulfonamides, taurine and acesulfame potassium all contain a SO3 moiety. Challenge tests provide evidence for the hypersensitivities to taurine and acesulfame potassium. The subject is also allergic to thiuram mix and thimerosal, sulfur containing compounds, as well as to various food products. This may be the first case where hypersensitivities to taurine and acesulfame potassium have been documented and reported. Several mechanistic explanations are provided for the untoward reactions to taurine and acesulfame potassium.

  8. Comparative Study of SPORL and Dilute Acid Pretreatments of Spruce for Cellulosic Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The performance of two pretreatment methods, Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) and Dilute Acid (DA), was compared in pretreating softwood (spruce) for fuel ethanol production under the same conditions of temperature (180°C), time (30 min), sulfuric acid loading...

  9. The first organically templated open-framework metal-sulfites with layered and three-dimensional diamondoid structures.

    PubMed

    Tiwari, Ranjay K; Kumar, Jitendra; Behera, J N

    2016-01-21

    The crystallographic signatures and characterization data of two novel organically templated open-framework zinc-sulfites (NH3CH2CH2NH3)[Zn3(SO3)4], 1, and (CN3H6)2[Zn(SO3)2], 2, are reported for the first time, synthesized under hydrothermal conditions using different amines, namely, ethylenediamine and guanidine, to generate 2D (for 1) and 3D (for 2) assemblies with 4-, 6-, 8- and 12-membered rings.

  10. Analysis of Gill Structure from a Fresh Water Fish (Heteropneustes fossilis) Exposed to Bleached Sulfite Pulp Mill Effluents.

    PubMed

    Dey, Sudip; Rajguru, Utpal; Pathak, Dinesh Chandra; Goswami, Umesh C

    2015-04-01

    The present communication reports toxic effects of bleached sulfite pulp mill effluents in fish (Heteropneustes fossilis) gills, with optical, scanning electron, and transmission electron microscopy. The general adverse effects include dilation of the primary lamellar wall, curling of secondary lamellar terminals, displacement of epithelial cell layers, degeneration of secondary lamella, deposition of mucous, and severe congestion in the gill arch. The significant shortening of secondary lamellae, widening of lamellar tips, and significant decrease in the number of mitochondria in chloride cells as compared to controls are some specific effects of bleached sulfite pulp mill effluents. Scanning electron microscopy demonstrated tearing of tissues in gill lamellae and arches. Transmission electron microscopy revealed membrane distortion of mitochondria in chloride cells, loss of uniformity of microvilli in pavement cells, and abnormalities in nuclear shape in different cells of effluent-exposed fish gills. Toxicity of the bleached sulfite pulp mill effluents and its impact on fish are discussed in the light of existing literature. Further, the importance of microscopy in toxicological evaluation of environmental pollutants is emphasized in view of its specific application potential.

  11. Oxaldihydroxamic acid as a new reagent for the fixation of atmospheric sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Paul, Khana Rani; Gupta, V. K.

    In the present investigation 0.01 M aqueous oxaldihydroxamic acid has been used to stabilize the atmospheric sulfur dioxide. The collection efficiency of the reagent was found to be ~ 100% and the sulfite solution was stable for ⩾ 30 days at room temperature. The sulfite ion was estimated colorimetrically using acidified p-aminoazobenzene and formaldehyde. The pink coloured dye, λmax 505 nm, obeys Beer's law in the range of 0.1-1 ppm. The procedure has been optimized with respect to the acidity, time and reagent concentration. The method is simple, free from pH dependence and several commonly present air pollutants do not interfere.

  12. Effects of increasing concentrations of sodium sulfite on deoxynivalenol and deoxynivalenol sulfonate concentrations of maize kernels and maize meal preserved at various moisture content.

    PubMed

    Paulick, Marleen; Rempe, Inga; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven

    2015-03-09

    Under moderate climatic conditions, deoxynivalenol (DON) contamination occurs frequently on cereals. Detoxification measures are required to avoid adverse effects on farm animals. In the present study, a wet preservation method with sodium sulfite (Na2SO3) and propionic acid was tested to titrate the optimum Na2SO3-dose for maximum DON reduction of contaminated maize kernels and meal and to examine the interaction between dose and moisture content in dependence on the preservation duration. The DON concentration decreased with increasing amounts of supplemented Na2SO3 and with increasing duration of the preservation period in a bi-exponential fashion. Additionally, the feed structure and moisture content had a significant influence on the decontaminating effect. Variants with 30% moisture content favored higher DON reduction rates compared to 14% moisture, but especially at low moisture contents, DON reduction was more pronounced in maize kernels than in maize meal. In addition to the decrease of DON, a concomitant formation of three different DON sulfonates was observed which differed in their formation pattern over the time course of preservation. The overall results and statistical analysis clarified that Na2SO3 addition of 10 g/kg maize at 30% moisture for eight days was necessary to obtain a complete DON reduction.

  13. Enzymatic digestion of alkaline-sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step.

    PubMed

    Mendes, Fernanda M; Laurito, Debora F; Bazzeggio, Mariana; Ferraz, André; Milagres, Adriane M F

    2013-01-01

    Sugar cane bagasse is recalcitrant to enzymatic digestion, which hinders the efficient conversion of its polysaccharides into fermentable sugars. Alkaline-sulfite pretreatment was used to overcome the sugar cane bagasse recalcitrance. Chemical and structural changes that occurred during the pretreatment were correlated with the efficiency of the enzymatic digestion of the polysaccharides. The first 30 min of pretreatment, which removed approximately half of the initial lignin and 30% of hemicellulose seemed responsible for a significant enhancement of the cellulose conversion level, which reached 64%. After the first 30 min of pretreatment, delignification increased slightly, and hemicellulose removal was not enhanced; however, acid groups continued to be introduced into the residual lignin. Water retention values were 145% to the untreated bagasse and 210% to the bagasse pretreated for 120 min and fiber widths increased from 10.4 to 30 μm, respectively. These changes were responsible for an additional increase in the efficiency of enzymatic hydrolysis of the cellulose, which reached 92% with the 120 min pretreated sample.

  14. Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass.

    PubMed

    Chylenski, Piotr; Forsberg, Zarah; Ståhlberg, Jerry; Várnai, Anikó; Lersch, Martin; Bengtsson, Oskar; Sæbø, Solve; Horn, Svein Jarle; Eijsink, Vincent G H

    2017-03-20

    Despite recent progress, saccharification of lignocellulosic biomass is still a major cost driver in biorefining. In this study, we present the development of minimal enzyme cocktails for hydrolysis of Norway spruce and sugarcane bagasse, which were pretreated using the so-called BALI™ process, which is based on sulfite pulping technology. Minimal enzyme cocktails were composed using several glycoside hydrolases purified from the industrially relevant filamentous fungus Trichoderma reesei and a purified commercial β-glucosidase from Aspergillus niger. The contribution of in-house expressed lytic polysaccharide monooxygenases (LPMOs) was also tested, since oxidative cleavage of cellulose by such LPMOs is known to be beneficial for conversion efficiency. We show that the optimized cocktails permit efficient saccharification at reasonable enzyme loadings and that the effect of the LPMOs is substrate-dependent. Using a cocktail comprising only four enzymes, glucan conversion for Norway spruce reached >80% at enzyme loadings of 8mg/g glucan, whereas almost 100% conversion was achieved at 16mg/g.

  15. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  16. Efficient Reductive Decomposition of Perfluorooctanesulfonate in a High Photon Flux UV/Sulfite System.

    PubMed

    Gu, Yurong; Dong, Wenyi; Luo, Cheng; Liu, Tongzhou

    2016-10-04

    Hydrated electron (eaq(-)) induced reduction techniques are promising for decomposing recalcitrant organic pollutants. However, its vigorous reactivity with copresent scavenging species and the difficulty in minimizing the competitive reactions make the proportion of eaq(-) participating in pollutant decomposition low, reflecting by slow decomposition kinetics. In this study, a high photon flux UV/sulfite system was employed to promote eaq(-) production. Its feasibility in enhancing a notorious recalcitrant pollutant, PFOS, decomposition was investigated. The effective photon flux utilized for producing eaq(-) was 9.93 × 10(-8) einstein/cm(2)·s. At initial solution pH 9.2, with DO about 5 mg/L, and at around 25 °C, 98% PFOS was decomposed within 30 min from its initial concentration of 32 μM. The kobs of PFOS decomposition was 0.118 min(-1) (7.08 h(-1)), and about 8-400 folds faster than those obtained in other reductive approaches. In this system, PFOS decomposition showed can tolerate copresent 7 mg N/L of NO3(-). Suggested by molecular orbitals and thermodynamic analyses, the mechanisms responsible for PFOS decomposition involve defluorination, desulfonation, and centermost C-C bond scission. By demonstrating a more practical relevant treatment process, the outcomes of this study would be helpful for facilitating future applications of eaq(-) induced reduction techniques for efficient recalcitrant pollutants decomposition.

  17. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  18. Influence of Cu(II) on the interaction of sulfite with DNA

    NASA Astrophysics Data System (ADS)

    Guo, Dong-Sheng; Yuan, Xiao-Ying; Liang, Jie-Qing

    2006-10-01

    The quantitative influence of Cu(II) on the interaction of eukaryotic DNA with sulfite (SO 32-), which is a derivative of sulfur dioxide in the human body, was studied using ultraviolet (UV) absorption spectrometry. The results showed that under physiological pH conditions, SO 32- reacted weakly with DNA at concentrations of up to 10 -1 M, at which point a rapid increase in the reaction constant and the reaction number of SO 32- with DNA was observed. The addition of Cu(II) at concentrations ranging from 6.67 × 10 -4 to 3.33 × 10 -3 M to DNA-SO 32- binary systems increased the reaction constant of SO 32- with DNA 41- to 115-fold at a low concentration of SO 32- (10 -3 M), and 4- to 84-fold at an intermediate concentration of SO 32- (10 -2 M), but had little influence on the reaction number of SO 32- with DNA compared with the absence of Cu(II). When the concentration of SO 32- reached 10 -1 M, the presence of Cu(II) reduced the reaction number but had no effect on the reaction constant of SO 32- with DNA. These results show that the efficiency of SO 32- is increased in the presence of Cu(II) at high concentrations of SO 32-.

  19. Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pulping process.

    PubMed

    Fatehi, Pedram; Gao, Weijiue; Sun, Yonghui; Dashtban, Mehdi

    2016-10-01

    Acidification has been commercialized for producing kraft lignin from black liquor of kraft pulping process. This work intended to evaluate the effectiveness of acidification in extracting lignocelluloses from the spent liquor of neutral sulfite semichemical pulping (NSSC) process and from prehydrolysis liquor (PHL) of kraft-based dissolving pulp production process. The results showed that the NSSC and PHL spent liquors had some lignin-carbohydrate complexes (LCC), and that the square weighted counts of particles with a chord length of 50-150μm in the spent liquors were significantly increased as pH dropped to 1.5. Interestingly, the acidification reduced the lignosulfonate/lignin content of NSSC and PHL by 13% or 20%, while dropped their oligosugars content by 75% and 38%, respectively. On a dry basis, the precipitates had more carbon, hydrogen and a high heating value of 18-22MJ/kg, but less oxygen, than spent liquors. The precipitates of PHL could be used as fuel.

  20. Structural Insights into Dissimilatory Sulfite Reductases: Structure of Desulforubidin from Desulfomicrobium Norvegicum

    PubMed Central

    Oliveira, Tânia F.; Franklin, Edward; Afonso, José P.; Khan, Amir R.; Oldham, Neil J.; Pereira, Inês A. C.; Archer, Margarida

    2011-01-01

    Dissimilatory sulfite reductases (dSiRs) are crucial enzymes in bacterial sulfur-based energy metabolism, which are likely to have been present in some of the earliest life forms on Earth. Several classes of dSiRs have been proposed on the basis of different biochemical and spectroscopic properties, but it is not clear whether this corresponds to actual physiological or structural differences. Here, we describe the first structure of a dSiR from the desulforubidin class isolated from Desulfomicrobium norvegicum. The desulforubidin (Drub) structure is assembled as α2β2γ2, in which two DsrC proteins are bound to the core [DsrA]2[DsrB]2 unit, as reported for the desulfoviridin (Dvir) structure from Desulfovibrio vulgaris. Unlike Dvir, four sirohemes and eight [4Fe–4S] clusters are present in Drub. However, the structure indicates that only two of the Drub coupled siroheme-[4Fe–4S] cofactors are catalytically active. Mass spectrometry studies of purified Drub and Dvir show that both proteins present different oligomeric complex forms that bind two, one, or no DsrC proteins, providing an explanation for conflicting spectroscopic and biochemical results in the literature, and further indicating that DsrC is not a subunit of dSiR, but rather a protein with which it interacts. PMID:21833321

  1. A Continuous Spectrophotometric Assay for APS Reductase Activity with Sulfite-Selective Probes

    PubMed Central

    Paritala, Hanumantharao; Carroll, Kate S.

    2013-01-01

    Mycobacterium tuberculosis (Mtb) adenosine 5′-phosphosulfate (APS) reductase (EC number 1.8.4.10), (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of essential reduced sulfur-containing biomolecules, such as cysteine, and is essential for survival in the latent phase of TB infection. Despite the importance of APR to Mtb, and other bacterial pathogens, current assay methods depend on use of [35S]-labeled APS or shunt AMP to a coupled-enzyme system. Both methods are cumbersome and require the use of expensive reagents. Here we report the development of a continuous spectrophotometric method for measuring APR activity by using novel sulfite-selective colorimetric or “off-on” fluorescent levulinate-based probes. The APR activity can thus be followed by monitoring the increase in absorbance or fluorescence of the resulting phenolate product. Using this assay, we determined Michelis-Menten kinetic constants (Km, kcat, kcat/Km) and apparent inhibition constant (Ki) for adenosine 5′-diphosphate (ADP), which compared favorably to values obtained in the gold-standard radioactive assay. The newly developed assay is robust and easy to perform with a simple spectrophotometer. PMID:23711725

  2. Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin.

    PubMed

    Kim, Ju Yaen; Nakayama, Masato; Toyota, Hiroshi; Kurisu, Genji; Hase, Toshiharu

    2016-08-01

    The structure of the complex of maize sulfite reductase (SiR) and ferredoxin (Fd) has been determined by X-ray crystallography. Co-crystals of the two proteins prepared under different conditions were subjected to the diffraction analysis and three possible structures of the complex were solved. Although topological relationship of SiR and Fd varied in each of the structures, two characteristics common to all structures were found in the pattern of protein-protein interactions and positional arrangements of redox centres; (i) a few negative residues of Fd contact with a narrow area of SiR with positive electrostatic surface potential and (ii) [2Fe-2S] cluster of Fd and [4Fe-4S] cluster of SiR are in a close proximity with the shortest distance around 12 Å. Mutational analysis of a total of seven basic residues of SiR distributed widely at the interface of the complex showed their importance for supporting an efficient Fd-dependent activity and a strong physical binding to Fd. These combined results suggest that the productive electron transfer complex of SiR and Fd could be formed through multiple processes of the electrostatic intermolecular interaction and this implication is discussed in terms of the multi-functionality of Fd in various redox metabolisms.

  3. Asymmetric synthesis of allylic sulfonic acids: enantio- and regioselective iridium-catalyzed allylations of Na2SO3.

    PubMed

    Liu, Wei; Zhao, Xiao-ming; Zhang, Hong-bo; Zhang, Liang; Zhao, Ming-zhu

    2014-12-15

    An enantioselective allylation reaction of allylic carbonates with sodium sulfite (Na2 SO3 ) catalyzed by Ir complex was accomplished, providing allylic sulfonic acids in good to excellent yields with a high level of enantio- and regioselectivities. (R)-2-Phenyl-2-sulfoacetic acid, a key intermediate for the synthesis of Cefsulodin and Sulbenicillin, was synthesized as well.

  4. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products

    PubMed Central

    Lamas, Alexandre; Miranda, José Manuel; Vázquez, Beatriz; Cepeda, Alberto; Franco, Carlos Manuel

    2016-01-01

    In recent years, the use of nitrites and sulfites as food preservatives has been a cause for concern due to the health problems that these additives can cause in humans. Natural products have been studied as an alternative, but most of them have hardly been applied in the food industry for technological and economic reasons. In this sense, organic salts such as sodium acetate are a good alternative due to their affordability. Thus, this study evaluated the capacity of sodium nitrite, sodium sulfite, a sodium acetate product (TQI C-6000), and chitosan to inhibit two important foodborne pathogens, Salmonella enterica and Listeria monocytogenes. The MIC of each chemical was in vitro evaluated and their antibacterial action was subsequently checked in situ using minced meat as a food model. MIC values of sodium nitrite (10,000 mg/L) and sodium sulfite (50,000 mg/L) for Salmonella enterica were higher than the values allowed by legislation (450 mg/L for sulfites and 150 mg/L for nitrites). Additionally, the sodium acetate product caused the inhibition of Salmonella enterica and Listeria at a relative low quantity. The two foodborne pathogens were inhibited in the food model with 1% of the sodium acetate product. Additionally, there were no significant differences between sodium nitrite, sodium sulfite, and sodium acetate products in the inhibition of Salmonella enterica and Listeria monocytogenes in the food model. Thus, products based on sodium acetate can be an alternative to traditional preservatives in food products. PMID:28231169

  5. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products.

    PubMed

    Lamas, Alexandre; Miranda, José Manuel; Vázquez, Beatriz; Cepeda, Alberto; Franco, Carlos Manuel

    2016-10-31

    In recent years, the use of nitrites and sulfites as food preservatives has been a cause for concern due to the health problems that these additives can cause in humans. Natural products have been studied as an alternative, but most of them have hardly been applied in the food industry for technological and economic reasons. In this sense, organic salts such as sodium acetate are a good alternative due to their affordability. Thus, this study evaluated the capacity of sodium nitrite, sodium sulfite, a sodium acetate product (TQI C-6000), and chitosan to inhibit two important foodborne pathogens, Salmonella enterica and Listeria monocytogenes. The MIC of each chemical was in vitro evaluated and their antibacterial action was subsequently checked in situ using minced meat as a food model. MIC values of sodium nitrite (10,000 mg/L) and sodium sulfite (50,000 mg/L) for Salmonella enterica were higher than the values allowed by legislation (450 mg/L for sulfites and 150 mg/L for nitrites). Additionally, the sodium acetate product caused the inhibition of Salmonella enterica and Listeria at a relative low quantity. The two foodborne pathogens were inhibited in the food model with 1% of the sodium acetate product. Additionally, there were no significant differences between sodium nitrite, sodium sulfite, and sodium acetate products in the inhibition of Salmonella enterica and Listeria monocytogenes in the food model. Thus, products based on sodium acetate can be an alternative to traditional preservatives in food products.

  6. Sulfite-reducing clostridia in the sediment of a high mountain lake (Laguna Grande, Gredos, Spain) as indicators of fecal pollution.

    PubMed

    Robles, S; Rodríguez, J M; Granados, I; Guerrero, M C

    2000-09-01

    We studied the vertical distribution of sulfite-reducing clostridia in the sediment of a Spanish high-mountain lagoon (Laguna Grande de Gredos, central Spain), with optimal sediment characteristics (temperature < 20 degrees C) to maintain spores without growing. This allowed us to assess the original numbers of sulfite-reducing clostridia endospores settled, without postdepositional growing. Sulfite-reducing clostridia are normal inhabitants of the intestinal microbiota of humans and other mammals. These microorganisms may form endospores, which allow the bacteria to survive in almost any habitat, either terrestrial or aquatic, waiting for favorable conditions for growth. Sulfite-reducing clostridia could be suitable indicators of past human pollution because they have a great longevity in natural habitats and they cannot multiply at temperatures below 20 degrees C or in the presence of O2. We found a great increase in the numbers of clostridia (expressed as colony-forming units per gram [CFU/g] of dry weight of sediment) since the 1970s, which reflects the rise of human pressure caused by the practice of outdoor activities. Clostridia CFU/g rose dramatically after the faulty operation of the depuration system of a mountain refuge built close to the lagoon. We compared the vertical distribution of clostridia CFU/g from Laguna Grande sediments with those from a neighbor lagoon (Laguna Cimera), which showed less tourist pressure and no direct disposal of sewage. Finally, we agree with the usefulness of the numbers of sulfite-reducing clostridia as indicators of past pollution.

  7. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system.

    PubMed

    Holkenbrink, Carina; Barbas, Santiago Ocón; Mellerup, Anders; Otaki, Hiroyo; Frigaard, Niels-Ulrik

    2011-04-01

    Green sulfur bacteria (GSB) oxidize sulfide and thiosulfate to sulfate, with extracellular globules of elemental sulfur as an intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245, or the two dsrCABL clusters (CT0851-CT0854, CT2247-2250), abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsrU/CT2246 had no effect. The DSR system also seems to be involved in the formation of thiosulfate, because thiosulfate was released from wild-type cells during sulfide oxidation, but not from the dsr mutants. The dsr mutants incapable of complete substrate oxidation oxidized sulfide and thiosulfate about twice as fast as the wild-type, while having only slightly lower growth rates (70-80 % of wild-type). The increased oxidation rates seem to compensate for the incomplete substrate oxidation to satisfy the requirement for reducing equivalents during growth. A mutant in which two sulfide : quinone oxidoreductases (sqrD/CT0117 and sqrF/CT1087) were deleted exhibited a decreased sulfide oxidation rate (~50 % of wild-type), yet formation and consumption of sulfur globules were not affected. The observation that mutants lacking the DSR system maintain efficient growth suggests that the DSR system is dispensable in environments with sufficiently high sulfide concentrations. Thus, the DSR system in GSB may have been acquired by horizontal gene transfer as a response to a need for enhanced substrate utilization in sulfide-limiting habitats.

  8. Role of. pi. -cation radicals in the enzymatic cycles of peroxidases, catalases, and nitrite and sulfite reductases

    SciTech Connect

    Hanson, L K; Chang, C K; Davis, M S; Fajer, J

    1980-01-01

    Charge iterative extended Hueckel calculations, and magnetic and optical results on porphyrins, chlorins, and isobacteriochlorins (1) suggest that the catalytic cycles of the enzymes horseradish peroxidase, catalase, Neurospora crassa catalase, and nitrite and sulfite reductases proceed via ..pi..-cation radicals of their prosthetic groups; (2) offer distinguishing features for the optical and magnetic spectra of these radicals, pertinent to their detection as enzymatic intermediates; (3) reconcile the seemingly contradictory optical and NMR data on Compounds I of horseradish peroxidase; and (4) predict that the axial ligation of the heme differs for horseradish peroxidase and catalase.

  9. Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading.

    PubMed

    Cheng, Jinlan; Leu, Shao-Yuan; Zhu, J Y; Jeffries, Thomas W

    2014-07-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to an empty fruit bunches (EFB) for ethanol production. SPORL facilitated delignification through lignin sulfonation and dissolution of xylan to result in a highly digestible substrate. The pretreated whole slurry was enzymatically saccharified at a solids loading of 18% using a relatively low cellulase loading of 15 FPU/g glucan and simultaneously fermented without detoxification using Saccharomyces cerevisiae of YRH400. An ethanol yield of 217 L/tonne EFB was achieved at titer of 32 g/L. Compared with literature studies, SPORL produced high ethanol yield and titer with much lower cellulase loading without detoxification.

  10. Determination of dispersion parameters for oxidizing air and the oxidation rate of calcium sulfites in a pilot desulfurization plant

    SciTech Connect

    Burenkov, D.K.; Derevich, I.V.; Rzaev, A.I.

    1995-10-01

    In the effort to remove sulfur oxides from waste gases, the widest use is gained by desulfurization plants based on wet collection of sulfur dioxide in empty absorbers in which a limestone-gypsum suspension is sprayed, with gypsum being produced as a commodity product. Dispersion of oxidizing air in a model liquid and the oxidation rate of calcium sulfites in a suspension contained in the sump of a pilot desulfurization plant absorber are studied experimentally. Flow velocities, bubble trajectories, and oxidation rates were determined and are presented.

  11. The influence of sulfur configuration in (1) H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    PubMed

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on (1) H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete (1) H and (13) C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Direct demonstration of the presence of coordinated sulfate in the reaction pathway of Arabidopsis thaliana sulfite oxidase using 33S labeling and ESEEM spectroscopy

    PubMed Central

    Astashkin, Andrei V.; Johnson-Winters, Kayunta; Klein, Eric L.; Byrne, Robert S.; Hille, Russ; Raitsimring, Arnold M.; Enemark, John H.

    2008-01-01

    Sulfite oxidase from Arabidopsis thaliana has been reduced at pH = 6 with sulfite labeled with 33S (nuclear spin I = 3/2), followed by reoxidation by ferricyanide to generate the Mo(V) state of the active center. To obtain information about the hyperfine interaction (hfi) of 33S with Mo(V), continuous wave EPR and electron spin echo envelope modulation (ESEEM) experiments have been performed. The interpretation of the EPR and ESEEM spectra was facilitated by a theoretical analysis of the nuclear transition frequencies expected for the situation of the nuclear quadrupole interaction being much stronger than the Zeeman and hyperfine interactions. The isotropic hfi constant of 33S determined in these experiments was about 3 MHz, which demonstrates the presence of coordinated sulfate in the sulfite-reduced low-pH form of the plant enzyme. PMID:17983221

  13. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20

    PubMed Central

    Leavitt, William D.; Cummins, Renata; Schmidt, Marian L.; Sim, Min S.; Ono, Shuhei; Bradley, Alexander S.; Johnston, David T.

    2014-01-01

    Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large (34ε ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite (34ε < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved. PMID:25505449

  14. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20.

    PubMed

    Leavitt, William D; Cummins, Renata; Schmidt, Marian L; Sim, Min S; Ono, Shuhei; Bradley, Alexander S; Johnston, David T

    2014-01-01

    Dissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large ((34)ε ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite ((34)ε < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved.

  15. QTL Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae Adaptation to Sulfite

    PubMed Central

    Zimmer, Adrien; Durand, Cécile; Loira, Nicolás; Durrens, Pascal; Sherman, David James; Marullo, Philippe

    2014-01-01

    Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI) involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity. PMID:24489712

  16. Simultaneous electrochemical measurement method of histamine and N(τ)-methylhistamine by high-performance liquid chromatography-amperometry with o-phthalaldehyde-sodium sulfite derivatization.

    PubMed

    Maldonado, Martin; Maeyama, Kazutaka

    2013-01-01

    An electrochemical detection (ECD) method for analyzing sub-micro amounts of histamine (HA) and N(τ)-methylhistamine (N(τ)-MHA) in biological samples by high-performance liquid chromatography (HPLC)-amperometry has been developed. The method consists of a precolumn derivatization of the amines with o-phthalaldehyde (OPA) and sodium sulfite (Na(2)SO(3)) to N-alkyl-1-isoindole sulfonate and posterior separation with the HPLC system. Biological samples were pretreated by using a Vivapure sulfonic acid minifilter in which the reaction of the reagent with the amines took place during filtering. HA and N(τ)-MHA retention times were 11.8 ± 0.02 and 18.3 ± 0.03 min, respectively (means ± standard deviations, n = 3). The lowest limit of amperometric detection at a signal-to-noise ratio of 3:1 was 0.125 pmol in both cases. HA and N(τ)-MHA contents in hypothalamus, cortex, skin, and fundic gland, as well as histamine N-methyltransferase (HMT) activities of mast cell-deficient (Ws/Ws) and Wistar rats, were measured and compared with an HPLC-fluorometry system, among other experiments, in order to validate and demonstrate the usefulness of this assay system. Hence, this consequently confirms not only the sensitivity and specificity of the assay but also the potential and convenience it offers to laboratory work, especially in the analysis of the regulation of histaminergic neurons as well as enzymatic investigation of HA metabolism.

  17. Effect of scrubbing operating conditions on adipic acid degradation. Final report February-August 1980

    SciTech Connect

    Chang, J.C.S.

    1981-02-01

    The report gives results of adipic acid degradation tests at EPA's IERL-RTP limestone SO2 scrubber, to investigate the effects of operating variables on unaccountable adipic acid loss. It was found that: (1) adipic acid degradation could not be totally quenched by only lowering the pH below 5.0; (2) pH change did significantly affect unaccountable adipic acid loss (other factors may increase the adipic acid degradation rate at both high and low pH); (3) an appreciable amount of adipic acid loss was caused by coprecipitation with calcium sulfite; and (4) forced oxidation could aggravate the adipic acid degradation loss even at pH below 5.0. Adipic acid loss could be reduced: at high sulfite concentrations (the adipic acid degradation rate could be decreased by lowering the destructive free radical concentrations by high total sulfite); in the presence of manganous ion at low pH (the metal ion might act as an inhibitor to the oxidative degradation reaction at low pH); and with high natural oxidation (the adipic acid coprecipitation loss might be reduced with the high natural oxidation). Adipic acid degradation (loss) data were compared from four different test facilities. Most of the data also support these conclusions.

  18. Spectroscopic Characterization of YedY: The Role of Sulfur Coordination in a Mo(V) Sulfite Oxidase Family Enzyme Form

    PubMed Central

    Yang, Jing; Rothery, Richard; Sempombe, Joseph

    2011-01-01

    Electronic paramagnetic resonance, electronic absorption, and magnetic circular dichroism spectroscopies have been performed on YedY, a SUOX fold protein with a Mo domain that is remarkably similar to that found in chicken sulfite oxidase, A. thaliana plant sulfite oxidase, and the bacterial sulfite dehydrogenase from S. novella. Low-energy dithiolene→Mo and cysteine thiolate→Mo charge transfer bands have been assigned for the first time in a Mo(V) form of a SUOX fold protein, and the spectroscopic data have been used to interpret the results of bonding calculations. The analysis shows that second coordination sphere effects modulate dithiolene and cysteine sulfur covalency contributions to the Mo bonding scheme. Namely, a more acute Ooxo-Mo-SCys-C dihedral angle results in increased cysteine thiolate S→Mo charge transfer and a high g1 in the EPR spectrum. The spectrosocopic results, coupled with the available structural data, indicate that these second coordination sphere effects may play key roles in modulating the active site redox potential, facilitating hole superexchange pathways for electron transfer regeneration, and affecting the type of reactions catalyzed by sulfite oxidase family enzymes. PMID:19860477

  19. Asymmetric synthesis of tetrahydroquinolin-3-ols via CoCl2-catalyzed reductive cyclization of nitro cyclic sulfites with NaBH4.

    PubMed

    Jagdale, Arun R; Reddy, R Santhosh; Sudalai, Arumugam

    2009-02-19

    A new method for the construction of chiral 3-substituted tetrahydroquinoline derivatives based on asymmetric dihydroxylation and CoCl(2)-catalyzed reductive cyclization of nitro cyclic sulfites with NaBH(4) has been described with high optical purities. This method has been successfully applied in the formal synthesis of PNU 95666E and anachelin H chromophore.

  20. Potential bronchoconstrictor stimuli in acid fog

    SciTech Connect

    Balmes, J.R.; Fine, J.M.; Gordon, T.; Sheppard, D.

    1989-02-01

    Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and nitric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction.

  1. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite.

    PubMed

    Tyson, J F; Palmer, C D

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3s) for selenium was 10microgL(-1), and for sulfide was 70microgL(-1) (200-microL injection volume). The calibration was linear for selenium up to 2mgL(-1) and to 10mgL(-1) for sulfide. The throughput was 180h(-1). The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  2. Protective performances of two anti-graffiti treatments towards sulfite and sulfate formation in SO 2 polluted model environment

    NASA Astrophysics Data System (ADS)

    Carmona-Quiroga, Paula María; Panas, Itai; Svensson, Jan-Erik; Johansson, Lars-Gunnar; Blanco-Varela, María Teresa; Martínez-Ramírez, Sagrario

    2010-11-01

    Specific strategies for protection are being developed to counter both the staining and corrosive effects of polluted air in cities, as well as to allow for efficient removal of unwanted graffiti paintings. These protection strategies employ molecules with tailored functionalities, e.g. being hydrophobic, while maintaining porosity for molecular water vapour permeation. The present study employs SO 2 and water to probe the behaviors of two anti-graffiti treatments, a water-base fluoroalkylsiloxane ("Protectosil Antigraffiti" marketed by Degussa) and an organically modified silicate (Ormosil) synthesized from a polymer chain (polydimethyl siloxane, PDMS) and two network forming alkoxides (Zr propoxide and methyl triethoxy silane, MTES) dissolved in n-propanol, on five building materials, comprising limestone, aged lime mortar, hydrated cement mortar, granite, and brick material. The materials were exposed to a synthetic atmosphere for 20 h in a climate chamber, 0.78 ± 0.03 ppm of SO 2 and 95% RH. Diffuse reflectance Fourier transform infrared (DR-FTIR) spectra were registered before and after exposure in the climate chamber in the cases of both treated and untreated samples. DR-FTIR, scanning electron microscope (SEM) images and energy dispersive X-ray (EDX) analyses, suggest the anti-graffiti Ormosil to suppress formation of calcium sulfite hemihydrate (the primary initial product of the reaction of calcium compounds with SO 2 and water) on carbonate materials (limestone and lime mortar). In case of the granite, brick and cement mortar, Ormosil has a negligible influence on the SO 2 capture. While no sulfite formation was detected by DR-FTIR, gypsum is inferred to form due to metal oxides and minority compounds catalysed oxidation of sulfite to sulfate. In case of brick, this understanding finds support from SEM images as well as EDX. A priori presence of gypsum in hydrated cement mortars prevents positive identification by SEM. However, support for sulfur

  3. Selection and validation of reference genes for quantitative real-time PCR studies during Saccharomyces cerevisiae alcoholic fermentation in the presence of sulfite.

    PubMed

    Nadai, Chiara; Campanaro, Stefano; Giacomini, Alessio; Corich, Viviana

    2015-12-23

    Sulfur dioxide is extensively used during industrial fermentations and contributes to determine the harsh conditions of winemaking together with low pH, high sugar content and increasing ethanol concentration. Therefore the presence of sulfite has to be considered in yeast gene expression studies to properly understand yeast behavior in technological environments such as winemaking. A reliable expression pattern can be obtained only using an appropriate reference gene set that is constitutively expressed regardless of perturbations linked to the experimental conditions. In this work we tested 15 candidate reference genes suitable for analysis of gene expression during must fermentation in the presence of sulfite. New reference genes were selected from a genome-wide expression experiment, obtained by RNA sequencing of four Saccharomyces cerevisiae wine strains grown in enological conditions. Their performance was compared to that of the most common genes used in previous studies. The most popular software based on different statistical approaches (geNorm, NormFinder and BestKeeper) were chosen to evaluate expression stability of the candidate reference genes. Validation was obtained using other wine strains by comparing normalized gene expression data with transcriptome quantification both in the presence and absence of sulfite. Among 15 reference genes tested ALG9, FBA1, UBC6 and PFK1 appeared to be the most reliable while ENO1, PMA1, DED1 and FAS2 were the worst. The most popular reference gene ACT1, widely used for S. cerevisiae gene expression studies, showed a stability level markedly lower than those of our selected reference genes. Finally, as the expression of the new reference gene set remained constant over the entire fermentation process, irrespective of the perturbation due to sulfite addition, our results can be considered also when no sulfite is added to the must.

  4. Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor- and electron acceptor-limited growth.

    PubMed

    Villanueva, Laura; Haveman, Shelley A; Summers, Zara M; Lovley, Derek R

    2008-09-01

    Previous studies have suggested that levels of transcripts for dsrA, a gene encoding a subunit of the dissimilatory sulfite reductase, are not directly related to the rates of sulfate reduction in sediments under all conditions. This phenomenon was further investigated with chemostat-grown Desulfovibrio vulgaris. Under sulfate-limiting conditions, dsrA transcript levels increased as the bulk rates of sulfate reduction in the chemostat increased, but transcript levels were similar at all sulfate reduction rates under electron donor-limiting conditions. When both electron donor- and electron acceptor-limiting conditions were considered, there was a direct correspondence between dsrA transcript levels and the rates of sulfate reduction per cell. These results suggest that dsrA transcript levels may provide important information on the metabolic state of sulfate reducers.

  5. Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

    PubMed Central

    Drögemüller, Cord; Tetens, Jens; Sigurdsson, Snaevar; Gentile, Arcangelo; Testoni, Stefania; Lindblad-Toh, Kerstin; Leeb, Tosso

    2010-01-01

    Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development. PMID:20865119

  6. Inhibition of superoxide dismutase, Vitamin C and glutathione on chemiluminescence produced by luminol and the mixture of sulfite and bisulfite

    NASA Astrophysics Data System (ADS)

    Geng, Hong; Meng, Ziqiang

    2006-05-01

    In a system which consisted of luminol (3-aminophthalhydrazide), cobalt sulfate (CoSO 4), alkaline buffer and the mixture of NaSO 3 and sodium bisulfite (NaHSO 3) (sulfite and bisulfite = 3:1, m/m), a strong chemiluminescence (CL) was observed using a BPCL ultra-weak luminometer. The CL signals resulted from 3-aminophthalate (the product of oxidized luminol), and were affected by the buffer pH, buffer medium and the concentrations of luminol, CoSO 4 and the NaSO 3-NaHSO 3 mixture. The observation that the CL intensities were inhibited by superoxide dismutase (SOD), Vitamin C (Vc) and glutathione (GSH) in a dose-dependent manner suggested that superoxide radical (O 2rad -) was involved in the CL reaction and responsible for oxidation of luminol.

  7. Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse.

    PubMed

    Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André

    2016-03-01

    Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.

  8. 40 CFR 63.444 - Standards for the pulping system at sulfite processes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... strong liquor storage tank; and (iii) Each acid condensate storage tank. (b) Equipment listed in... systems listed in paragraph (a) of this section and the vents, wastewater, and condensate streams from...

  9. 40 CFR 63.444 - Standards for the pulping system at sulfite processes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... strong liquor storage tank; and (iii) Each acid condensate storage tank. (b) Equipment listed in... systems listed in paragraph (a) of this section and the vents, wastewater, and condensate streams from...

  10. 40 CFR 63.444 - Standards for the pulping system at sulfite processes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... strong liquor storage tank; and (iii) Each acid condensate storage tank. (b) Equipment listed in... systems listed in paragraph (a) of this section and the vents, wastewater, and condensate streams from...

  11. 40 CFR 63.444 - Standards for the pulping system at sulfite processes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... strong liquor storage tank; and (iii) Each acid condensate storage tank. (b) Equipment listed in... systems listed in paragraph (a) of this section and the vents, wastewater, and condensate streams from...

  12. 40 CFR 63.444 - Standards for the pulping system at sulfite processes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... strong liquor storage tank; and (iii) Each acid condensate storage tank. (b) Equipment listed in... systems listed in paragraph (a) of this section and the vents, wastewater, and condensate streams from...

  13. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal.

    ERIC Educational Resources Information Center

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  14. Purification, crystallization and preliminary X-ray analysis of the dissimilatory sulfite reductase from Desulfovibrio vulgaris Miyazaki F.

    PubMed

    Ogata, Hideaki; Shomura, Yasuhito; Goenka Agrawal, Aruna; Kaur, Amrit Pal; Gärtner, Wolfgang; Higuchi, Yoshiki; Lubitz, Wolfgang

    2010-11-01

    Dissimilatory sulfite reductase (Dsr) plays an important role in sulfate respiration in many sulfate-reducing bacteria. Dsr from Desulfovibrio vulgaris Miyazaki F has been purified and crystallized at 277 K using the sitting-drop vapour-diffusion method with PEG 3350 and potassium thiocyanate as precipitants. A data set was collected to 3.7 Å resolution from a single crystal at 100 K using synchrotron radiation. The Dsr crystal belonged to space group P4(1)2(1)2, with unit-cell parameters a = b = 163.26, c = 435.32 Å. The crystal structure of Dsr was determined by the molecular-replacement method based on the three-dimensional structure of Dsr from D. vulgaris Hildenborough. The crystal contained three α(2)β(2)γ(2) units per asymmetric unit, with a Matthews coefficient (V(M)) of 2.35 Å(3) Da(-1); the solvent content was estimated to be 47.7%.

  15. Determination of Histamine by High-Performance Liquid Chromatography After Precolumn Derivatization with o-Phthalaldehyde-Sulfite.

    PubMed

    Chen, Rongxiang; Deng, Yinghua; Yang, Liu; Wang, Jie; Xu, Fuqiang

    2016-04-01

    A fast and sensitive method was developed for in vivo determination of histamine in the brain microdialysate by reverse ion pair chromatography with electrochemical detection. The microdialysates were derivatized with o-phthalaldehyde and sodium sulfite, and separation was achieved using isocratic elution within 10 min. The separation was performed in an Agilent Eclipse Plus C18 column (3.0 × 150 mm, particle size 3.5 μm), and the mobile phase consisted of 100 mM monosodium phosphate (pH 6.0), 500 mg L(-1) OSA and 20% methanol (v/v). The linearity (R(2)) was found to be >0.999, with a range from 2 to 50 nM and excellent repeatability (relative standard deviation, 2.29-6.04%), and the limit of detection was 0.4 nM. This method was successfully applied to analyze the extracellular concentration of histamine in the hypothalamus of rats, with probe recovery calculated in vivo.

  16. Isolation and characterization of a resident tolerant Saccharomyces cerevisiae strain from a spent sulfite liquor fermentation plant

    PubMed Central

    2012-01-01

    Spent Sulfite Liquor (SSL) from wood pulping facilities is a sugar rich effluent that can be used as feedstock for ethanol production. However, depending on the pulping process conditions, the release of monosaccharides also generates a range of compounds that negatively affect microbial fermentation. In the present study, we investigated whether endogenous yeasts in SSL-based ethanol plant could represent a source of Saccharomyces cerevisiae strains with a naturally acquired tolerance towards this inhibitory environment. Two isolation processes were performed, before and after the re-inoculation of the plant with a commercial baker’s yeast strain. The isolates were clustered by DNA fingerprinting and a recurrent Saccharomyces cerevisiae strain, different from the inoculated commercial baker’s yeast strain, was isolated. The strain, named TMB3720, flocculated heavily and presented high furaldehyde reductase activity. During fermentation of undiluted SSL, TMB3720 displayed a 4-fold higher ethanol production rate and 1.8-fold higher ethanol yield as compared to the commercial baker’s yeast. Another non-Saccharomyces cerevisiae species, identified as the pentose utilizing Pichia galeiformis, was also recovered in the last tanks of the process where the hexose to pentose sugar ratio and the inhibitory pressure are expected to be the lowest. PMID:23237549

  17. pH-oscillations in the bromate–sulfite reaction in semibatch and in gel-fed batch reactors

    SciTech Connect

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Orbán, Miklós; Rábai, Gyula

    2015-06-15

    The simplest bromate oxidation based pH-oscillator, the two component BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH∼3), long lasting (11–24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na{sub 2}SO{sub 3} and H{sub 2}SO{sub 4} was pumped into the solution of BrO{sub 3}{sup −} with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na{sub 2}SO{sub 3}. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO{sub 3}{sup −}–SO{sub 3}{sup 2–} pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  18. C-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants

    PubMed Central

    Kobayashi, Yusuke; Otani, Takuto; Ishibashi, Kota; Shikanai, Toshiharu; Nishimura, Yoshiki

    2016-01-01

    Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, such as Zea mays and Arabidopsis thaliana. To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial ribbon–helix–helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus vulgaris. The addition of the CEP drastically altered the intra-cp localization of AtSiR to cp nucleoids. Our analysis supports the possible functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp nucleoid protein. PMID:27189994

  19. pH-oscillations in the bromate-sulfite reaction in semibatch and in gel-fed batch reactors

    NASA Astrophysics Data System (ADS)

    Poros, Eszter; Kurin-Csörgei, Krisztina; Szalai, István; Rábai, Gyula; Orbán, Miklós

    2015-06-01

    The simplest bromate oxidation based pH-oscillator, the two component BrO3--SO32- flow system was transformed to operate under semibatch and closed arrangements. The experimental preconditions of the pH-oscillations in semibatch configuration were predicted by model calculations. Using this information as guideline large amplitude (ΔpH˜3), long lasting (11-24 h) pH-oscillations accompanied with only a 20% increase of the volume in the reactor were measured when a mixture of Na2SO3 and H2SO4 was pumped into the solution of BrO3- with a very low rate. Batch-like pH-oscillations, similar in amplitude and period time appeared when the sulfite supply was substituted by its dissolution from a gel layer prepared previously in the reactor in presence of high concentration of Na2SO3. The dissolution vs time curve and the pH-oscillations in the semibatch and closed systems were successfully simulated. Due to the simplicity in composition and in experimental technique, the semibatch and batch-like BrO3--SO32- pH-oscillators may become superior to their CSTR (continuous flow stirred tank reactor) version in some present and future applications.

  20. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    PubMed

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

  1. Fermentation Kinetics for Xylitol Production by a Pichia stipitis d-Xylulokinase Mutant Previously Grown in Spent Sulfite Liquor

    NASA Astrophysics Data System (ADS)

    Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.

    Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

  2. Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity.

    PubMed

    Kim, Ju Yaen; Kinoshita, Misaki; Kume, Satoshi; Gt, Hanke; Sugiki, Toshihiko; Ladbury, John E; Kojima, Chojiro; Ikegami, Takahisa; Kurisu, Genji; Goto, Yuji; Hase, Toshiharu; Lee, Young-Ho

    2016-11-01

    Although electrostatic interactions between negatively charged ferredoxin (Fd) and positively charged sulfite reductase (SiR) have been predominantly highlighted to characterize complex formation, the detailed nature of intermolecular forces remains to be fully elucidated. We investigated interprotein forces for the formation of an electron transfer complex between Fd and SiR and their relationship to SiR activity using various approaches over NaCl concentrations between 0 and 400 mM. Fd-dependent SiR activity assays revealed a bell-shaped activity curve with a maximum ∼40-70 mM NaCl and a reverse bell-shaped dependence of interprotein affinity. Meanwhile, intrinsic SiR activity, as measured in a methyl viologen-dependent assay, exhibited saturation above 100 mM NaCl. Thus, two assays suggested that interprotein interaction is crucial in controlling Fd-dependent SiR activity. Calorimetric analyses showed the monotonic decrease in interprotein affinity on increasing NaCl concentrations, distinguished from a reverse bell-shaped interprotein affinity observed from Fd-dependent SiR activity assay. Furthermore, Fd:SiR complex formation and interprotein affinity were thermodynamically adjusted by both enthalpy and entropy through electrostatic and non-electrostatic interactions. A residue-based NMR investigation on the addition of SiR to (15)N-labeled Fd at the various NaCl concentrations also demonstrated that a combination of electrostatic and non-electrostatic forces stabilized the complex with similar interfaces and modulated the binding affinity and mode. Our findings elucidate that non-electrostatic forces are also essential for the formation and modulation of the Fd:SiR complex. We suggest that a complex configuration optimized for maximum enzymatic activity near physiological salt conditions is achieved by structural rearrangement through controlled non-covalent interprotein interactions.

  3. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Zhu, Lu; Wu, Feng; Li, Li; Zhang, Rong; Chen, Shi

    2014-01-01

    Lithium difluoromono(oxalato)borate (LiODFB) has been used as a novel lithium salt for battery in recent studies. In this study, a series of novel electrolytes has been prepared by adding 30 vol% dimethyl sulfite (DMS) or dimethyl carbonate (DMC) as co-solvent into an ethylene carbonate (EC)/ethyl methyl carbonate (EMC) + LiX mixture, in which the LiX could be LiClO4, LiODFB, LiBOB, LiTFSI, or LiCF3SO3. These ternary electrolytes have been investigated for use in lithium ion batteries. FT-IR spectroscopy analysis shows that characteristic functional groups (-CO3, -SO3) undergo red-shift or blue-shift with the addition of different lithium salts. The LiODFB-EC/EMC/DMS electrolyte exhibits high ionic conductivity, which is mainly because of the low melting point of DMS, and LiODFB possessing high solubility. The Li/MCMB cells containing this novel electrolyte exhibit high capacities, good cycling performance, and excellent rate performance. These performances are probably because both LiODFB and DMS can assist in the formation of SEI films by reductive decomposition. Additionally, the discharge capacity of Li/LiCoO2 half cell containing LiODFB-EC/EMC/DMS electrolyte is 130.9 mAh g-1 after 50 cycles, and it is very comparable with the standard-commercial electrolyte. The results show that this study produces a promising electrolyte candidate for lithium ion batteries.

  4. Community composition and distribution of sulfate- and sulfite-reducing prokaryotes in sediments from the Changjiang estuary and adjacent East China Sea

    NASA Astrophysics Data System (ADS)

    He, Hui; Zhen, Yu; Mi, Tiezhu; Xu, Bochao; Wang, Guoshan; Zhang, Yu; Yu, Zhigang

    2015-11-01

    Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a vital role in both sulfur and carbon cycles. Community composition and abundance of SSRP were investigated using dissimilatory sulfite reductase β subunit (dsrB) gene sequencing in sediments from the Changjiang estuary and its adjacent area in the East China Sea (ECS). Clone libraries were constructed and real-time fluorescence quantitative polymerase chain reaction (qPCR) was applied to understand the community information of SSRP. In addition to sequences affiliated to sulfate-reducing prokaryotes (SRP), those affiliated with sulfite-reducing prokaryotes (SiRP) were also observed. Four phylotypes of SRP in this study showed genetic similarity to Desulfobulbaceae, Syntrophobacteraceae, Desulfobacteraceae and Peptococcaceae, and an unknown group that could not be clearly affiliated with known lineages was found. Salinity, temperature and contents of total organic carbon (TOC) were most closely correlated with the SSRP communities by canonical correspondence analysis (CCA). 210Pb activities demonstrated the sedimentary environment at S33 was more stable than that at S31. Intense resuspension and reconstruction of sediments made the vertical abundance profile of SSRP fluctuate violently. For surface sediments, the dsrB gene copy numbers near the Changjiang estuary were higher than those in the mouth of Hangzhou Bay and the mud deposits along the Zhejiang coast, and contents of TOC were positively related to the copy numbers of dsrB gene. Our data provided valuable information to achieve a better understanding of the potential role of SSRP in sediments from the Changjiang estuary and adjacent East China Sea.

  5. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  6. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions.

    PubMed

    Lu, Huiying J; Breidt, Frederick; Pérez-Díaz, Ilenys M; Osborne, Jason A

    2011-06-01

    Outbreaks of disease due to vegetative bacterial pathogens associated with acid foods (such as apple cider) have raised concerns about acidified vegetables and related products that have a similar pH (3.2 to 4.0). Escherichia coli O157:H7 and related strains of enterohemorrhagic E. coli (EHEC) have been identified as the most acid resistant vegetative pathogens in these products. Previous research has shown that the lack of dissolved oxygen in many hermetically sealed acid or acidified food products can enhance survival of EHEC compared with their survival under aerobic conditions. We compared the antimicrobial effects of several food acids (acetic, malic, lactic, fumaric, benzoic, and sorbic acids and sulfite) on a cocktail of EHEC strains under conditions representative of non-heat-processed acidified vegetables in hermetically sealed jars, holding the pH (3.2) and ionic strength (0.342) constant under anaerobic conditions. The overall antimicrobial effectiveness of weak acids used in this study was ranked, from most effective to least effective: sulfite > benzoic acid > sorbic acid > fumaric acid > L- and D-lactic acid > acetic acid > malic acid. These rankings were based on the estimated protonated concentrations required to achieve a 5-log reduction in EHEC after 24 h of incubation at 30°C. This study provides information that can be used to formulate safer acid and acidified food products and provides insights about the mode of action of weak acids against EHEC.

  7. A rate law model for the explanation of complex pH oscillations in the thiourea-iodate-sulfite flow system.

    PubMed

    Liu, Haimiao; Horváth, Attila K; Zhao, Yuemin; Lv, Xiaoli; Yang, Li; Gao, Qingyu

    2012-01-28

    In a continuous flow stirred tank reactor (CSTR), the reaction of thiourea-iodate-sulfite (TuIS) exhibits a rich variety of complex oscillations in pH. The transitions from 1(n) type oscillations to 1(3), 1(2) type and simple oscillations were observed on decreasing the flow rate gradually in small steps at 30.2 °C and 20.5 °C, respectively. The transitions from 1(n) type oscillations to 1(0)1(4), 1(0)1(3) type and simple oscillations were observed as well on increasing the temperature in small steps at a given flow rate. Based on the analogous iodate-sulfite-thiosulfate system a simple empirical rate law model is suggested to give a sound agreement between the experimental and simulated results on the complex oscillatory behaviour. A possible explanation of the emergence of the simple empirical rate law model from the mechanism of the individual reactions of the TuIS system is also discussed.

  8. Studies on the bioavailability of deoxynivalenol (DON) and DON sulfonate (DONS) 1, 2, and 3 in pigs fed with sodium sulfite-treated DON-contaminated maize.

    PubMed

    Paulick, Marleen; Winkler, Janine; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven

    2015-11-05

    Deoxynivalenol (DON) exposure of pigs might cause serious problems when critical dietary toxin concentrations are exceeded. As DON contamination of agricultural crops cannot be completely prevented, detoxification measures are needed. Wet preservation with sodium sulfite resulted in a significant DON reduction of naturally-contaminated maize in previous experiments. The preserved material had a characteristic DON sulfonates (DONS) pattern. DONS is known to be less toxic than DON but its stability was shown to depend on pH, which gives rise to the question if a back-conversion to DON occurs in vivo. Therefore, the toxicokinetics and bioavailability of DON and DONS were studied in pigs. After the administration of a single oral or intravenous bolus of DON or DONS, serial blood samples were collected and subsequently analyzed. DONS was not detectable after oral administration of DONS mixtures. The results showed further that the bioavailability of DONS as DON in pigs fed maize preserved wet with sodium sulfite was significantly decreased compared to untreated control maize (DON), indicating that DONS obviously did not convert back to DON to a large extent in vivo. Moreover, the fact that DONS was not detectable in systemic blood requires further investigations regarding their ingestive and/or metabolic fate.

  9. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  10. Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation.

    PubMed

    Zhu, J Y; Chandra, M Subhosh; Gu, Feng; Gleisner, Roland; Reiner, Rick; Sessions, John; Marrs, Gevan; Gao, Johnway; Anderson, Dwight

    2015-03-01

    This study demonstrated at the pilot-scale (50 kg) use of Douglas-fir forest harvest residue, an underutilized forest biomass, for the production of high titer and high yield bioethanol using sulfite chemistry without solid-liquor separation and detoxification. Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) was directly applied to the ground forest harvest residue with no further mechanical size reduction, at a low temperature of 145°C and calcium bisulfite or total SO2 loadings of only 6.5 or 6.6 wt% on oven dry forest residue, respectively. The low temperature pretreatment facilitated high solids fermentation of the un-detoxified pretreated whole slurry. An ethanol yield of 282 L/tonne, equivalent to 70% theoretical, with a titer of 42 g/L was achieved. SPORL solubilized approximately 45% of the wood lignin as directly marketable lignosulfonate with properties equivalent to or better than a commercial lignosulfonate, important to improve the economics of biofuel production.

  11. Studies on the Bioavailability of Deoxynivalenol (DON) and DON Sulfonate (DONS) 1, 2, and 3 in Pigs Fed with Sodium Sulfite-Treated DON-Contaminated Maize

    PubMed Central

    Paulick, Marleen; Winkler, Janine; Kersten, Susanne; Schatzmayr, Dian; Schwartz-Zimmermann, Heidi Elisabeth; Dänicke, Sven

    2015-01-01

    Deoxynivalenol (DON) exposure of pigs might cause serious problems when critical dietary toxin concentrations are exceeded. As DON contamination of agricultural crops cannot be completely prevented, detoxification measures are needed. Wet preservation with sodium sulfite resulted in a significant DON reduction of naturally-contaminated maize in previous experiments. The preserved material had a characteristic DON sulfonates (DONS) pattern. DONS is known to be less toxic than DON but its stability was shown to depend on pH, which gives rise to the question if a back-conversion to DON occurs in vivo. Therefore, the toxicokinetics and bioavailability of DON and DONS were studied in pigs. After the administration of a single oral or intravenous bolus of DON or DONS, serial blood samples were collected and subsequently analyzed. DONS was not detectable after oral administration of DONS mixtures. The results showed further that the bioavailability of DONS as DON in pigs fed maize preserved wet with sodium sulfite was significantly decreased compared to untreated control maize (DON), indicating that DONS obviously did not convert back to DON to a large extent in vivo. Moreover, the fact that DONS was not detectable in systemic blood requires further investigations regarding their ingestive and/or metabolic fate. PMID:26556376

  12. Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film.

    PubMed

    Sartori, Elen Romão; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando

    2011-12-15

    The modification of a glassy carbon electrode with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film for the development of a biosensor is proposed. This approach provides an efficient method used to immobilize polyphenol oxidase (PPO) obtained from the crude extract of sweet potato (Ipomoea batatas (L.) Lam.). The principle of the analytical method is based on the inhibitory effect of sulfite on the activity of PPO, in the reduction reaction of o-quinone to catechol and/or the reaction of o-quinone with sulfite. Under the optimum experimental conditions using the differential pulse voltammetry technique, the analytical curve obtained was linear in the concentration of sulfite in the range from 0.5 to 22 μmol L(-1) with a detection limit of 0.4 μmol L(-1). The biosensor was applied for the determination of sulfite in white and red wine samples with results in close agreement with those results obtained using a reference iodometric method (at a 95% confidence level).

  13. Isolation and Characterization of Methanesulfonic Acid-Degrading Bacteria from the Marine Environment

    PubMed Central

    Thompson, A. S.; Owens, N.; Murrell, J. C.

    1995-01-01

    Two methylotrophic bacterial strains, TR3 and PSCH4, capable of growth on methanesulfonic acid as the sole carbon source were isolated from the marine environment. Methanesulfonic acid metabolism in these strains was initiated by an inducible NADH-dependent monooxygenase, which cleaved methanesulfonic acid into formaldehyde and sulfite. The presence of hydroxypyruvate reductase and the absence of ribulose monophosphate-dependent hexulose monophosphate synthase indicated the presence of the serine pathway for formaldehyde assimilation. Cell suspensions of bacteria grown on methanesulfonic acid completely oxidized methanesulfonic acid to carbon dioxide and sulfite with a methanesulfonic acid/oxygen stoichiometry of 1.0:2.0. Oxygen electrode-substrate studies indicated the dissimilation of formaldehyde to formate and carbon dioxide for energy generation. Carbon dioxide was not fixed by ribulose bisphosphate carboxylase. It was shown that methanol is not an intermediate in methanesulfonic acid metabolism, although these strains grew on methanol and other one-carbon compounds, as well as a variety of heterotrophic carbon sources. These two novel marine facultative methylotrophs have the ability to mineralize methanesulfonic acid and may play a role in the cycling of global organic sulfur. PMID:16535055

  14. Evaluation of di(2,2,2-trifluoroethyl) sulfite as a film-forming additive on the MCMB anode of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangzhen; Wang, Wenguo; Huang, Tao; Fang, Guihuang; Pan, Ying; Wu, Maoxiang

    2016-10-01

    This study demonstrates a sulfur-based compound, di(2,2,2-trifluoroethyl) sulfite (DTFES), as a new solid electrolyte interphase (SEI) forming additive on mesocarbon microbeads (MCMB). When placed in the electrolyte, it can dramatically enhance the performance of lithium-ion batteries (LIBs). The capacity loss was significantly decreased from 17.4% to 6.3% after 100 charge-discharge cycles due to the addition of DTFES. Differential capacity (dQ/dV) versus voltage (V) analysis showed that DTFES was decomposed in advance versus to electrolyte solvents. The effects of DTFES were characterized by charge-discharge testing, electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). These results indicate that the SEI film formed on MCMB by DTFES plays an important role in LIBs performance. Their subsequent reaction pathways are proposed in the paper.

  15. Synthesis and solid state properties of the 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, cyclic sulfate not available through sulfite oxidation procedure

    NASA Astrophysics Data System (ADS)

    Bredikhina, Zemfira A.; Gubaidullin, Aidar T.; Bredikhin, Alexander A.

    2010-12-01

    The chiral adrenoblocker propranolol precursor 4-naphthyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, 2, was obtained in racemic and scalemic form. It was found that sulfates 2 are practically unavailable through the standard Ru-catalyzed sulfite oxidation procedure, but could be obtained by the direct action of SO 2Cl 2 on the corresponding vicinal diols 3. The published properties of the sulfate were corrected. Thermodynamic characteristics and binary melting phase diagram were evaluated for compound 2 by DSC. The crystal structure of rac- and scal- 2 was established by single crystal X-ray analysis and the absolute configuration of scal- 2 was established by the Flack method. The flexible nature of the sulfur-containing cycle, and the sensitivity of the compound conformation to homo- and heterochiral crystal environment was demonstrated.

  16. The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly.

    PubMed

    Askenasy, Isabel; Pennington, Joseph M; Tao, Yeqing; Marshall, Alan G; Young, Nicolas L; Shang, Weifeng; Stroupe, M Elizabeth

    2015-07-31

    Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the β subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8β4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme.

  17. The N-terminal Domain of Escherichia coli Assimilatory NADPH-Sulfite Reductase Hemoprotein Is an Oligomerization Domain That Mediates Holoenzyme Assembly*

    PubMed Central

    Askenasy, Isabel; Pennington, Joseph M.; Tao, Yeqing; Marshall, Alan G.; Young, Nicolas L.; Shang, Weifeng; Stroupe, M. Elizabeth

    2015-01-01

    Assimilatory NADPH-sulfite reductase (SiR) from Escherichia coli is a structurally complex oxidoreductase that catalyzes the six-electron reduction of sulfite to sulfide. Two subunits, one a flavin-binding flavoprotein (SiRFP, the α subunit) and the other an iron-containing hemoprotein (SiRHP, the β subunit), assemble to make a holoenzyme of about 800 kDa. How the two subunits assemble is not known. The iron-rich cofactors in SiRHP are unique because they are a covalent arrangement of a Fe4S4 cluster attached through a cysteine ligand to an iron-containing porphyrinoid called siroheme. The link between cofactor biogenesis and SiR stability is also ill-defined. By use of hydrogen/deuterium exchange and biochemical analysis, we show that the α8β4 SiR holoenzyme assembles through the N terminus of SiRHP and the NADPH binding domain of SiRFP. By use of small angle x-ray scattering, we explore the structure of the SiRHP N-terminal oligomerization domain. We also report a novel form of the hemoprotein that occurs in the absence of its cofactors. Apo-SiRHP forms a homotetramer, also dependent on its N terminus, that is unable to assemble with SiRFP. From these results, we propose that homotetramerization of apo-SiRHP serves as a quality control mechanism to prevent formation of inactive holoenzyme in the case of limiting cellular siroheme. PMID:26088143

  18. Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate systems

    NASA Astrophysics Data System (ADS)

    Eldridge, D. L.; Guo, W.; Farquhar, J.

    2016-12-01

    We present theoretical calculations for all three isotope ratios of sulfur (33S/32S, 34S/32S, 36S/32S) at the B3LYP/6-31+G(d,p) level of theory for aqueous sulfur compounds modeled in 30-40H2O clusters spanning the range of sulfur oxidation state (Sn, n = -2 to +6) for estimating equilibrium fractionation factors in aqueous systems. Computed 34β values based on major isotope (34S/32S) reduced partition function ratios (RPFRs) scale to a first order with sulfur oxidation state and coordination, where 34β generally increase with higher oxidation state and increasing coordination of the sulfur atom. Exponents defining mass dependent relationships based on β values (x/34κ = ln(xβ)/ln(34β), x = 33 or 36) conform to tight ranges over a wide range of temperature for all aqueous compounds (33/34κ ≈ 0.5148-0.5159, 36/34κ ≈ 1.89-1.90 from T ⩾ 0 °C). The exponents converge near a singular value for all compounds at the high temperature limit (33/34κT→∞ = 0.51587 ± 0.00003 and 36/34κT→∞ = 1.8905 ± 0.0002; 1 s.d. of all computed compounds), and typically follow trends based on oxidation state and coordination similar to those seen in 34β values at lower temperatures. Theoretical equilibrium fractionation factors computed from these β-values are compared to experimental constraints for HSO3-T(aq)/SO2(g, aq), SO2(aq)/SO2(g), H2S(aq)/H2S(g), H2S(aq)/HS-(aq), SO42-(aq)/H2ST(aq), S2O32-(aq) (intramolecular), and S2O32-(aq)/H2ST(aq), and generally agree within a reasonable estimation of uncertainties. We make predictions of fractionation factors where other constraints are unavailable. Isotope partitioning of the isomers of protonated compounds in the sulfite and sulfoxylate systems depend strongly on whether protons are bound to either sulfur or oxygen atoms. The magnitude of the HSO3-T/SO32- major isotope (34S/32S) fractionation factor is predicted to increase with temperature from 0 to 70 °C due to the combined effects of the large magnitude (HS)O3

  19. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications.

    PubMed

    Xiao, Qian; Wang, Ting; Yu, Shuili; Yi, Peng; Li, Lei

    2017-03-15

    Bromate (BrO3(-)) is a possible human carcinogen regulated worldwide at a strict standard of 10 μg/L in drinking water. Removal of BrO3(-) by advanced reduction processes (ARPs) has attracted much attention due to its high reduction efficiency and easier combination with ultraviolet (UV) disinfection. In this study, we employed a UV/sulfite process to degrade BrO3(-) and studied the effects of UV lamp, sulfur(IV) concentration, and pH on effectiveness of the system in degrading BrO3(-). Low-pressure UV lamps (UV-L) instead of medium-pressure UV lamps (UV-M) were selected because of the high ultraviolet-C (UV-C) efficiency of UV-L. The increased sulfur(IV) concentration is proportionally correlated with enhanced degradation kinetics. BrO3(-) reduction was improved by increasing pH when pH is within 6.0-9.0, and principal component analysis demonstrated that pH is the most influential factor over sulfur(IV) concentration and type of UV lamp. Degradation mechanisms at different pH levels were subsequently investigated. Results showed that the reduction reactions are induced by hydrated electron (eaq(-)) at pH > 9.0, by H at pH 4.0, and by both eaq(-) and H at pH 7.0. Effective quantum efficiency for the formation of eaq(-) and H in the photocatalytic systems was determined to be 0.109 ± 0.001 and 0.034 ± 0.001 mol E(-1), respectively. Furthermore, mass balance calculation of bromine and sulfur at pH 7 showed that bromide, sulfate and possibly dithionate ions were the major products, and a degradation pathway was proposed accordingly. Moreover, UV/sulfite processes could reduce the initial bromate concentration of 0.1 mM by 82% and 95% in the presence and absence of O2 in tap water respectively, and 99% in the absence of O2 in deionized water within 20 min at pH 9.0 and 2.0 mM sulfur (IV).

  20. Determination of the Distance between the Mo(V) and Fe(III) Heme Centers of Wild Type Human Sulfite Oxidase by Pulsed EPR Spectroscopy

    PubMed Central

    Astashkin, Andrei V.; Rajapakshe, Asha; Cornelison, Matthew; Johnson-Winters, Kayunta; Enemark, John H.

    2012-01-01

    Intramolecular electron transfer (IET) between the molybdenum and heme centers of vertebrate sulfite oxidase (SO) is proposed to be a key step in the catalytic cycle of the enzyme. However, the X-ray crystallographic distance between these centers, RMoFe = 32.3 Å, appears to be too long for the rapid IET rates observed in liquid solution. The Mo and heme domains are linked by a flexible tether, and it has been proposed that dynamic interdomain motion brings the two metal centers closer together and thereby facilitates rapid IET. To date there have been no direct distance measurements for SO in solution that would support or contradict this model. In this work, pulsed electron-electron double resonance (ELDOR) and relaxation induced dipolar modulation enhancement (RIDME) techniques were used to obtain information about RMoFe in the Mo(V)Fe(III) state of wild type recombinant human SO in frozen glassy solution. Surprisingly, the data obtained suggest a fixed structure with RMoFe = 32 Å, similar to that determined by X-ray crystallography for chicken SO, although the orientation of the RMoFe radius-vector with respect to the heme center was found to be somewhat different. The implications of these findings for the flexible tether model are discussed. PMID:22229742

  1. Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis.

    PubMed

    Mori, Yumi; Kataoka, Takafumi; Okamura, Takahiko; Kondo, Ryuji

    2013-05-01

    This study investigated the spatiotemporal abundance and diversity of the α-subunit of the dissimilatory sulfite reductase gene (dsrA) in the meromictic Lake Suigetsu for assessing the sulfur-oxidizing bacterial community. The density of dsrA in the chemocline reached up to 3.1 × 10(6) copies ml(-1) in summer by means of quantitative real-time PCR and it was generally higher than deeper layers. Most of the dsrA clones sequenced were related to green sulfur bacteria such as Chlorobium phaeovibrioides, C. limicola, and C. luteolum. Below the chemocline of the lake, we also detected other dsrA clones related to the purple sulfur bacterium Halochromatium salexigens and some branching lineages of diverse sequences that were related to chemotrophic sulfur bacterial species such as Magnetospirillum gryphiswaldense, Candidatus Ruthia magnifica, and Candidatus Thiobios zoothamnicoli. The abundance and community compositions of sulfur-oxidizing bacteria changed depending on the water depth and season. This study indicated that the green sulfur bacteria dominated among sulfur-oxidizing bacterial population in the chemocline of Lake Suigetsu and that certain abiotic environmental variables were important factors that determined sulfur bacterial abundance and community structure.

  2. Effects of reduced levels of sulfite in wine production using mixtures with lysozyme and dimethyl dicarbonate on levels of volatile and biogenic amines.

    PubMed

    Ancín-Azpilicueta, Carmen; Jiménez-Moreno, Nerea; Moler, José Antonio; Nieto-Rojo, Rodrigo; Urmeneta, Henar

    2016-10-01

    Sulphur dioxide (SO2) is an important preservative for wine, but its presence in foods can cause allergies and this has given impetus to the research for alternatives. The aim of this study was to reduce levels of sulfite in wine production using mixtures with lysozyme and dimethyl dicarbonate and examine the influence on levels of volatile and biogenic amines. To do so, vinifications were carried out using lysozyme, dimethyl dicarbonate (DMDC) and mixtures of these with SO2 in different concentrations (25 and 50 mg l(-1)). Results were compared with a control vinification with only SO2 (50 mg l(-1)). Mixing low concentrations of SO2 with lysozyme and DMDC reduced the concentration of biogenic amines (histamine, tyramine, putrescine, cadaverine, phenylethylamine + spermidine and spermine). In general, the total concentration of volatile amines (dimethylamine, isopropylamine, isobutylamine, pyrrolidine, ethylamine, diethylamine, amylamine and hexylamine) was higher in the sample fermented only with SO2. The concentrations of amines with secondary amino groups (dimethylamine, diethylamine, pyrrolidine) were higher in the sample only fermented with SO2 than those fermented with DMDC and lysozyme or with a mixture of preservatives. When SO2 was the only preservative in wine, total amine concentration (biogenic and volatile amines) was higher than for the rest of the treatments. Lysozyme by itself, and lysozyme mixed with SO2, both reduced the formation of biogenic amines but given the antioxidant activity of SO2 the use of the preservative mixture seems more advisable.

  3. Development of a new analytical method for the determination of sulfites in fresh meats and shrimps by ion-exchange chromatography with conductivity detection.

    PubMed

    Iammarino, Marco; Di Taranto, Aurelia; Muscarella, Marilena; Nardiello, Donatella; Palermo, Carmen; Centonze, Diego

    2010-07-05

    An accurate and reliable analytical method, based on ion chromatography and suppressed conductivity detection, has been developed and validated for the quantitative determination of sulfites in fresh meats and shrimps. The chromatographic separation was accomplished by using an anion-exchange column eluted with sodium carbonate and sodium hydroxide. The optimized step-change elution, followed by column re-equilibration at the initial mobile phase composition, guaranteed a good resolution even toward endogenous interfering peaks, and an excellent retention time repeatability (1.1%, n=6). Good results in terms of sample extract stability, recovery efficiency were achieved with an extraction solvent mixture based on sodium hydroxide, fructose and EDTA. The method validation, performed by an in-house model according to Decision 657/2002/EC and Regulation 882/2004/EC, provided excellent results with respect to linearity (correlation coefficient up to 0.9998), limits of detection and quantification (2.7 and 8.2 mg kg(-1), respectively, expressed as SO(2)), expanded measurement uncertainty (below 10%), recovery values (ranging from 85% to 92%) and repeatability (down to 8%), demonstrating the conformity of the proposed method with the European directives. Finally, by major changes ruggedness studies, the method applicability to the quantitative analysis of cow hamburger, pork and horse sausage, and shrimps was demonstrated.

  4. Phylogeography of Sulfate-Reducing Bacteria among Disturbed Sediments, Disclosed by Analysis of the Dissimilatory Sulfite Reductase Genes (dsrAB)

    PubMed Central

    Pérez-Jiménez, J. R.; Kerkhof, L. J.

    2005-01-01

    Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time. PMID:15691959

  5. Impact of flue gas desulfurization-calcium sulfite and gypsum on soil microbial activity and wheat growth

    SciTech Connect

    Lee, Y.B.; Bigham, J.M.; Dick, W.A.; Kim, P.J.

    2008-08-15

    We conducted greenhouse tests to evaluate the effects of FGD-CaSO{sub 3} applied at rates of 0, 2.2, 4.4, and 8.8 Mg ha(-1) on wheat growth, soil enzyme activities, and the chemical properties of two soils with differing pH (4.0 vs. 6.2). A gypsum treatment applied at the rate of 2.2 Mg ha{sup -1} was used as a positive control. Exchangeable Ca{sup 2+} and water-extractable Ca{sup 2+} and SO{sub 4}{sup 2-} increased significantly with increasing FGD-CaSO{sub 3} application. SO{sub 4}{sup 2-} increased in both soils, indicating rapid oxidation of SO{sub 3}{sup 2-} to SO{sub 4}{sup 2-} when neither water nor oxygen was limiting. No changes in soil pH were measured. Applications of 2.2, 4.4, or 8.8 Mg CaSO{sub 3} ha{sup -1} to the pH 6.2 soil produced no effect on wheat growth or the uptake of N, P, Ca{sup 2+}, and Mg{sup 2+}. The uptake of SO{sub 4}{sup 2-} -S increased, whereas K uptake decreased. No significant differences in the activities of urease, {beta}-glucosidase, alkaline phosphatase, or arylsulfatase were observed relative to a control. In the acid soil, an application of 2.2 Mg ha{sup -1} FGD-CaSO{sub 3} increased wheat root growth and dry matter yield compared with an untreated control. The uptake of N, P, Ca{sup 2+}, and K{sup +} also increased presumably because of enhanced root development resulting from decreases in exchangeable Al{sup 3+} and increases in soluble Ca{sup 2+}. Wheat growth and alkaline phosphatase and arylsulfatase activities were significantly inhibited by addition of 8.8 Mg ha{sup -1} of FGD-CaSO{sub 3} compared with the untreated control or the same soil receiving 2.2 Mg ha{sup -1} gypsum. We conclude that surface applications of FGD-CaSO{sub 3} may be as effective as gypsum for inhibiting soil crusting, improving water infiltration, and promoting the movement of Ca{sup 2+} into acid subsoils. Moreover, application rates of equal to or less than 4.4 Mg ha-1 should have no negative impact on soil microbial activities or plant growth.

  6. Experimental and theoretical investigations of the sulfite-based polyoxometalate cluster redox series: alpha- and beta-[Mo(18)O(54)(SO(3))(2)](4-/5-/6-).

    PubMed

    Baffert, Carole; Boas, John F; Bond, Alan M; Kögerler, Paul; Long, De-Liang; Pilbrow, John R; Cronin, Leroy

    2006-11-15

    The synthesis, isolation and structural characterization of the sulfite polyoxomolybdate clusters alpha-(D(3h))(C(20)H(44)N)(4){alpha-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN and beta-(D(3d))(C(20)H(44)N)(4){beta-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN is presented. Voltammetric studies in acetonitrile (0.1 M Hx(4)NClO(4), Hx(4)N=tetra-n-hexylammonium) reveal the presence of an extensive series of six one-electron reduction processes for both isomers. Under conditions of bulk electrolysis, the initial [Mo(18)O(54)(SO(3))(2)](4-/5-) and [Mo(18)O(54)(SO(3))(2)](5-/6-) processes produce stable [Mo(18)O(54)(SO(3))(2)](5-) and [Mo(18)O(54)(SO(3))(2)](6-) species, respectively, and the same reduced species may be produced by photochemical reduction. Spectroelectrochemical data imply that retention of structural form results upon reduction, so that both alpha and beta isomers are available at each of the 4-, 5-, and 6-redox levels. However, the alpha isomer is the thermodynamically favored species in both the one- and two-electron-reduced states, with beta-->alpha isomerization being detected in both cases on long time scales (days). EPR spectra also imply that increasing localization of the unpaired electron occurs over the alpha- and beta-[Mo(18)O(54)(SO(3))(2)](5-) frameworks as the temperature approaches 2 K where the EPR spectra show orthorhombic symmetry with different g and hyperfine values for the alpha and beta isomers. Theoretical studies support the observation that it is easier to reduce the alpha cluster than the beta form and also provide insight into the driving force for beta-->alpha isomerization in the reduced state. Data are compared with that obtained for the well studied alpha-[Mo(18)O(54)(SO(4))(2))](4-) sulfate cluster.

  7. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating solid electrolyte interphase formation in lithium ion batteries.

    PubMed

    Sun, Youmin; Wang, Yixuan

    2017-03-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIBs) the supermolecular clusters [(ES)Li(+)(PC)m](PC)n (m = 1-2; n = 0, 6 and 9) were used to investigate the electroreductive decompositions of the electrolyte additive ethylene sulfite (ES) as well as the solvent propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has a much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has a lower energy barrier than paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or reduction potential and dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A > C > D, which further signifies the importance of the concerted new path in facilitating the SEI formation. The hybrid models, the supermolecular clusters augmented by a polarized continuum model, PCM-[(ES)Li(+)(PC)2](PC)n (n = 0, 6 and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li(+) in [(ES)Li(+)(PC)2](PC)n (n = 6 and 9) partially compensates the overestimation of solvent effects arising from the PCM for the naked (ES)Li(+)(PC)2, and the theoretical reduction potential of PCM-[(ES)Li(+)(PC)2](PC)6 (1.90-1.93 V) agrees very well with the experimental one (1.8-2.0 V).

  8. Pulsed ELDOR spectroscopy of the Mo(V)/Fe(III) state of sulfite oxidase prepared by one-electron reduction with Ti(III) citrate.

    PubMed

    Codd, Rachel; Astashkin, Andrei V; Pacheco, Andrew; Raitsimring, Arnold M; Enemark, John H

    2002-03-01

    The titration of chicken liver sulfite oxidase (SO) with the one-electron reductant Ti(III) citrate, at pH 7.0, results in nearly quantitative selective reduction of the Mo(VI) center to Mo(V), while the b-type heme center remains in the fully oxidized Fe(III) state. The selective reduction of the Mo(VI/V) couple has been established from electronic and EPR spectra. The electronic spectrum of the Fe(III) heme center is essentially unchanged during the titration, and the continuous wave (CW)-EPR spectrum shows the appearance of the well-known Mo(V) signal due to the low pH ( lpH) form of SO. Further confirmation of the selective formation of the Mo(V)/Fe(III) form of SO is provided by the approximately 1:1 ratio of the integrated intensities of the Mo(V) and low-spin Fe(III) EPR signals after addition of one equivalent of Ti(III). The selective generation of the Mo(V)/Fe(III) form of SO is unexpected, considering that previous microcoulometry and flash photolysis investigations have indicated that the Mo(VI/V) and Fe(III/II) couples of SO have similar reduction potentials at pH 7. The nearly quantitative preparation of the one-electron reduced Mo(V)/Fe(III) form of SO by reduction with Ti(III) has enabled the interaction between these two paramagnetic metal centers, which are linked by a flexible loop with no secondary structure, to be investigated for the first time by variable-frequency pulsed electron-electron double resonance (ELDOR) spectroscopy. The ELDOR kinetics were obtained from frozen solutions at 4.2 K at several microwave frequencies by pumping on the narrow Mo(V) signal and observing the effect on the Fe(III) primary echo at both higher and lower frequencies within the microwave C-band region. The ELDOR data indicate that freezing the solution of one-electron reduced SO produces localized regions where the concentration of SO approaches that in the crystal structure, which results in the interpair interactions being the dominant dipolar interaction

  9. Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth.

    PubMed

    Kensy, Frank; Zimmermann, Hartmut F; Knabben, Ingo; Anderlei, Tibor; Trauthwein, Harald; Dingerdissen, Uwe; Büchs, Jochen

    2005-03-20

    Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent

  10. The genome of Variovorax paradoxus strain TBEA6 provides new understandings for the catabolism of 3,3'-thiodipropionic acid and hence the production of polythioesters.

    PubMed

    Wübbeler, Jan Hendrik; Hiessl, Sebastian; Meinert, Christina; Poehlein, Anja; Schuldes, Jörg; Daniel, Rolf; Steinbüchel, Alexander

    2015-09-10

    The betaproteobacterium Variovorax paradoxus strain TBEA6 is capable of using 3,3'-thiodipropionic acid (TDP) as sole carbon and energy source for growth. This thioether is employed for several industrial applications. It can be applied as precursor for the biotechnical production of polythioesters (PTE), which represent persistent bioplastics. Consequently, the genome of V. paradoxus strain TBEA6 was sequenced. The draft genome sequence comprises approximately 7.2Mbp and 6852 predicted open reading frames. Furthermore, transposon mutagenesis to unravel the catabolism of TDP in strain TBEA6 was performed. Screening of 20,000 mutants mapped the insertions of Tn5::mob in 32 mutants, which all showed no growth with TDP as sole carbon source. Based on the annotated genome sequence together with transposon-induced mutagenesis, defined gene deletions, in silico analyses and comparative genomics, a comprehensive pathway for the catabolism of TDP is proposed: TDP is imported via the tripartite tricarboxcylate transport system and/or the TRAP-type dicarboxylate transport system. The initial cleavage of TDP into 3-hydroxypropionic acid (3HP) and 3-mercaptopropionic acid (3MP), which serves as precursor substrate for PTE synthesis, is most probably performed by the FAD-dependent oxidoreductase Fox. 3HP is presumably catabolized via malonate semialdehyde, whereas 3MP is oxygenated by the 3MP-dioxygenase Mdo yielding 3-sulfinopropionic acid (3SP). Afterwards, 3SP is linked to coenzyme A. The next step is the abstraction of sulfite by a desulfinase, and the resulting propionyl-CoA enters the central metabolism. Sulfite is oxidized to sulfate by the sulfite-oxidizing enzyme SoeABC and is subsequently excreted by the cells by the sulfate exporter Pse.

  11. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO.sub.2 ; (B) contacting the gas sample of step (A) comprising NO.sub.2 with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0.degree. and 100.degree. C. at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environ-mentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed.

  12. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    USGS Publications Warehouse

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  13. Effect of ethylenediaminetetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide

    SciTech Connect

    Uchihara, Toshio ); Matsumura, Michio; Ono, Junichi; Tsubomura, Hiroshi )

    1990-01-11

    Photocatalyzed hydrogen evolution on Pt-loaded CdS powder from aqueous solutions of sodium sulfite is enhanced by addition of a small amount of ethylenediaminetetraacetic acid (EDTA) to the solution. EDTA is hardly consumed by the reaction. It has been concluded from the measurements of the flat-band potential of CdS electrodes that EDTA and other chelating agents, such as 1,2-cyclohexanediaminetetraacetic acid and nitrilotriacetic acid, are adsorbed strongly on the surface of CdS and shift the conduction band energy toward the negative. The enhancement of the photocatalytic hydrogen evolution by the addition of EDTA is explained as being caused by the upward shift of the conduction band energy of CdS due to the negative charge of the chelating agents. The change of the conduction band energy by the adsorption of EDTA is observed also for CdSe electrodes. Although Pt-loaded CdSe powder is inactive for the hydrogen evolution from aqueous solutions of sodium sulfite, it generates hydrogen when EDTA is added to the solution.

  14. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  15. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    SciTech Connect

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  16. Role of tartaric and malic acids in wine oxidation.

    PubMed

    Danilewicz, John C

    2014-06-04

    Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.

  17. Lignor process for acidic rock drainage treatment.

    PubMed

    Zhuang, J M; Walsh, T

    2004-09-01

    The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the dotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 - 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability.

  18. [Microbiological research methods of drinking water regulation in West Germany from 1986. Suitability of the specifications of DIN 38411, Part 7, for the detection of sulfite-reducing, spore-forming anaerobes (Clostridia)].

    PubMed

    Schneider, J; Edenharder, R; Borneff, J

    1988-01-01

    The drinking-water regulations of the Federal Republic of Germany, from 22.05.1986, contains in paragraph 1 the instructions: "Drinking-water must be free of pathogens", and further in paragraph 11, "Responsibilities of the employer or other owner of a water supplying facility", include that: "The official authority may direct, that the employer...of a water supplying facility has to extend or has to cause to extend the microbiological examinations in order to determine, that...sulfite-reducing, spore-forming anaerobes (Clostridia) can not be detected in 20 ml of water..." The drinking-water regulations do not prescribe a bacteriological examination method in detail. Appendix 1 rules only that the examination for sulfite-reducing, spore-forming anaerobes (Clostridia) has to be performed after heating the sample to 75 degrees C (+/- 5 degrees C) for 10 min, by either the multiple-tube or membrane filtration method and cultivation in DRCM1-medium. If growth occurs, the presence of Clostridia must be confirmed by anaerobic and aerobic subcultivation. Furthermore, a DIN-instruction (DIN 38411, part 7) exists, which prescribes a detailed procedure for multiple-tube and membrane filtration methods, but does not provide for strict anaerobiosis. We were, however, unable to detect Clostridia in a multitude of water samples with the methods of the DIN-regulation. In order to examine if neglect of strict anaerobiosis was the reason for these failures, we checked the suitability of the DIN-regulation for the isolation of Clostridia from drinking water. In preliminary tests we examined up to four strains of the species C. botulinum, C. cadaveris, C. cochlearium, C. difficile, C. innocuum, C. perfringens and C. tertium for their ability to form heat-resistent spores in four sporulation media. It was, however, not possible to find a medium, in which all strains could sporulate within one week. In order to characterize the detection of these anaerobes in water, one particularly

  19. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    PubMed Central

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  20. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    PubMed

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  1. Enzymatic redox chemistry: A proposed reaction pathway for the six-electron reduction of SO sub 3 sup 2 minus to S sup 2 minus by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough)

    SciTech Connect

    Tan, Jian; Cowan, J.A. )

    1991-09-10

    A detailed reaction pathway for the six-electron reduction of SO{sub 3}{sup 2{minus}} to S{sup 2{minus}} by the assimilatory-type sulfite reductase (SiR) from Desulfovibrio vulgaris (Hildenborough) has been deduced from experiments with {sup 35}S-labeled enzyme and the relative reaction rates of nitrogenous substrates. The ligand bridging the prosthetic (Fe{sub 4}S{sub 4})-siroheme center is apparently exchanged by {sup 35}S{sup 2{minus}} in both oxidized and reduced enzyme. This {sup 35}S{sup 2{minus}} label was retained in the course of SO{sub 3}{sup 2{minus}} reduction, implicating substrate binding to the nonbridging axial site of the siroheme. A reaction mechanism is proposed in which SO{sub 3}{sup 2{minus}} binds to Fe{sup 2+} through the sulfur atom, followed by a series of two-electron reductive cleavages of S-O bonds. Protonation of oxygen facilitates bond cleavage, giving hydroxide as leaving group. The bridge remains intact throughout the course of the reaction, providing an efficient coupling pathway for electron transfer between the cluster and siroheme.

  2. Technical note: In vitro digestibility of amylase-treated, ash-corrected neutral detergent fiber, with addition of sodium sulfite, at 240 hours with or without rumen fluid reinoculation.

    PubMed

    Palmonari, A; Canestrari, G; Bonfante, E; Fustini, M; Mammi, L; Formigoni, A

    2017-02-01

    Long-term in vitro fermentation (240 h) evaluating amylase-treated, ash-corrected neutral detergent fiber, with addition of sodium sulfite (aNDFom) digestibility is required to quantify the indigestible fiber fraction. It is commonly accepted to inoculate rumen fluid more than one time during such fermentations, every 96 h or at 120 h. However, no studies have been conducted to verify if the reinoculation is actually required to properly carry out the fermentation process. The current study aims to evaluate the effects of these procedures on aNDFom digestibility at 240 h. The study was conducted on a total of 24 forage samples (8 alfalfa hays, 8 grass hays, and 8 corn silages). Samples were digested in triplicate at 240 h in vitro. Rumen fluid was added twice (at 96 and 192 h) in treatment 1, after 120 h in treatment 2, whereas no addition was made in treatment 3. At the end of the fermentations, residual aNDFom was quantified to calculate digestibility. Among treatments, no difference was found in digestibility of aNDFom. Moreover, treatment 1 resulted in higher variability compared with other treatments. Results obtained in the current study show that subsequent addition of rumen fluid is not necessary for a proper estimation of aNDFom digestibility, and can be avoided.

  3. Role of sulfites and 4-hexylresorcinol in microbial growth and melanosis prevention of deepwater pink shrimp (Parapenaeus longirostris) using a controlled atmosphere.

    PubMed

    Martínez-Alvarez, O; Gómez-Guillén, M C; Montero, P

    2005-01-01

    A controlled atmosphere containing 48% CO2 and 7% O2 was used in association with refrigeration for storage of deepwater pink shrimp (Parapenaeus longirostris). Shrimp were treated with two different concentrations of sodium metabisulfite or 4-hexylresorcinol and subjected to the controlled atmosphere immediately after capture onboard ship or on arrival in port. Total volatile basic nitrogen, total viable counts, enterobacteria, lactic acid bacteria, and luminescent bacteria were determined, and black spot progression was evaluated. The combined effect of controlled atmosphere and melanosis inhibitors was used to delay black spot development as compared to the shrimp stored in ice alone. Storage under the controlled atmosphere without ice limited microbiological quality, namely, total viable counts, but enterobacterial growth was lower.

  4. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  5. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  6. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  7. Analysis of Dissimilatory Sulfite Reductase and 16S rRNA Gene Fragments from Deep-Sea Hydrothermal Sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific

    PubMed Central

    Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu

    2004-01-01

    This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and ɛ-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments. PMID:14711668

  8. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  9. Reclamation of acid, toxic coal spoils using wet flue gas desulfurization by-product, fly ash and sewage sludge. Final report

    SciTech Connect

    Kost, D.A.; Vimmerstedt, J.P.; Stehouwer, R.C.

    1997-03-01

    Establishment of vegetation on acid abandoned minelands requires modification of soil physical and chemical conditions. Covering the acid minesoil with topsoil or borrow soil is a common practice but this method may be restricted by availability of borrow soil and cause damage to the borrow site. An alternative approach is to use waste materials as soil amendments. There is a long history of using sewage sludge and fly ash as amendments for acid minesoils. Flue gas desulfurization (FGD) by-products are newer materials that are also promising amendments. Most flue gas sludges are mixtures of Calcium sulfate (CaSO{sub 4}), calcium sulfite (CaSO{sub 3}), calcium carbonate (CaCO{sub 3}), calcium hydroxide [Ca(OH){sub 2}], and fly ash. Some scrubbing processes produce almost pure gypsum (CaSO{sub 4}2H{sub 2}O). The primary purpose of the project is to evaluate two wet FGD by-products for effects on vegetation establishment and surface and ground water quality on an acid minesoil. One by-product from the Conesville, OH power plant (American Electric Power Service Corporation) contains primarily calcium sulfite and fly ash. The other by-product (Mg-gypsum FGD) from an experimental scrubber at the Zimmer power plant (Cincinnati Gas and Electric Company) is primarily gypsum with 4% magnesium hydroxide. These materials were compared with borrow soil and sewage sludge as minesoil amendments. Combinations of each FGD sludge with sewage sludge were also tested. This report summarizes two years of measurements of chemical composition of runoff water, ground water at two depths in the subsoil, soil chemical properties, elemental composition and yield of herbaceous ground cover, and elemental composition, survival and height of trees planted on plots treated with the various amendments. The borrow soil is the control for comparison with the other treatments.

  10. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  11. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  12. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  13. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  14. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  15. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  16. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  17. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  18. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  19. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  20. Microarray and Functional Gene Analyses of Sulfate-Reducing Prokaryotes in Low-Sulfate, Acidic Fens Reveal Cooccurrence of Recognized Genera and Novel Lineages

    PubMed Central

    Loy, Alexander; Küsel, Kirsten; Lehner, Angelika; Drake, Harold L.; Wagner, Michael

    2004-01-01

    Low-sulfate, acidic (approximately pH 4) fens in the Lehstenbach catchment in the Fichtelgebirge mountains in Germany are unusual habitats for sulfate-reducing prokaryotes (SRPs) that have been postulated to facilitate the retention of sulfur and protons in these ecosystems. Despite the low in situ availability of sulfate (concentration in the soil solution, 20 to 200 μM) and the acidic conditions (soil and soil solution pHs, approximately 4 and 5, respectively), the upper peat layers of the soils from two fens (Schlöppnerbrunnen I and II) of this catchment displayed significant sulfate-reducing capacities. 16S rRNA gene-based oligonucleotide microarray analyses revealed stable diversity patterns for recognized SRPs in the upper 30 cm of both fens. Members of the family “Syntrophobacteraceae” were detected in both fens, while signals specific for the genus Desulfomonile were observed only in soils from Schlöppnerbrunnen I. These results were confirmed and extended by comparative analyses of environmentally retrieved 16S rRNA and dissimilatory (bi)sulfite reductase (dsrAB) gene sequences; dsrAB sequences from Desulfobacca-like SRPs, which were not identified by microarray analysis, were obtained from both fens. Hypotheses concerning the ecophysiological role of these three SRP groups in the fens were formulated based on the known physiological properties of their cultured relatives. In addition to these recognized SRP lineages, six novel dsrAB types that were phylogenetically unrelated to all known SRPs were detected in the fens. These dsrAB sequences had no features indicative of pseudogenes and likely represent novel, deeply branching, sulfate- or sulfite-reducing prokaryotes that are specialized colonists of low-sulfate habitats. PMID:15574893

  1. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  2. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study.

    PubMed

    Al-Hosney, H A; Grassian, V H

    2005-03-21

    Calcium carbonate (CaCO3) is a reactive component of mineral dust aerosol as well as buildings, statues and monuments. In this study, attenuated total reflection (ATR) and transmission Fourier transform infrared spectroscopy (FTIR) have been used to study the uptake of water, sulfur dioxide and nitric acid on CaCO3 particles at 296 K. Under atmospheric conditions, CaCO3 particles are terminated by a Ca(OH)(CO3H) surface layer. In the presence of water vapor between 5 and 95% relative humidity (RH), water molecularly adsorbs on the Ca(OH)(CO3H) surface resulting in the formation of an adsorbed thin water film. The adsorbed water film assists in the enhanced uptake of sulfur dioxide and nitric acid on CaCO3 in several ways. Under dry conditions (near 0% RH), sulfur dioxide and nitric acid react with the Ca(OH)(CO3H) surface to form adsorbed carbonic acid (H2CO3) along with sulfite and nitrate, respectively. Adsorbed carbonic acid is stable on the surface under vacuum conditions. Once the surface saturates with a carbonic acid capping layer, there is no additional uptake of gas-phase sulfur dioxide and nitric acid. However, upon adsorption of water, carbonic acid dissociates to form gaseous carbon dioxide and there is further uptake of sulfur dioxide and nitric acid. In addition, adsorbed water increases the mobility of the ions at the surface and enhances uptake of SO2 and HNO3. In the presence of adsorbed water, CaSO3 forms islands of a crystalline hydrate whereas Ca(NO3)2 forms a deliquescent layer or micropuddles. Thus adsorbed water plays an important and multi-faceted role in the uptake of pollutant gases on CaCO3.

  3. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  4. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  5. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  6. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  7. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  8. Acid Rain

    MedlinePlus

    ... EPA Is Doing Acid Rain Program Cross-State Air Pollution Rule Progress Reports Educational Resources Kid's Site for ... Monitoring National Atmospheric Deposition Program (NADP) Exit Interstate Air Pollution Transport Contact Us to ask a question, provide ...

  9. Folic Acid

    MedlinePlus

    ... folic acid can hide signs that you lack vitamin B12, which can cause nerve damage. 10 Do I ... Rosenberg, I.H., et al. (2007). Folate and vitamin B12 status in relation to anemia, macrocytosis and cognitive ...

  10. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  11. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  12. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  13. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast.

    PubMed

    Nigam, J N

    2002-08-07

    Water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate has been utilized as a substrate for ethanol production using Pichia stipitis NRRL Y-7124. Hydrolysate fermentability was considerable improved by boiling, and overliming up to pH 10.0 with solid Ca(OH)(2) in combination with sodium sulfite. The percent total sugar utilized and ethanol yield (Y(p/s)) for the untreated hydrolysate were 20.15+/-0.17% and 0.19+/-0.003 g(p) g(s)(-1), respectively, compared with 76.0+/-0.32% and 0.35 g(p) g(s)(-1), respectively for the treated material. The fermentation was very effective at an aeration rate of 0.02 v/v/m, temperature 30+/-0.2 degrees C and pH 6.0+/-0.2. However, the volumetric productivity (Q(p)) was still considerably less than observed in a simulated synthetic hydrolysate medium with a sugar composition similar to the hemicellulose acid hydrolysate. L-Arabinose was not fermented but assimilated. The presence of acetic acid in the hydrolysate decreased the ethanol yield and productivity considerably.

  14. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1993-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  15. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  16. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  17. Desulfotomaculum alcoholivorax sp. nov., a moderately thermophilic, spore-forming, sulfate-reducer isolated from a fluidized-bed reactor treating acidic metal- and sulfate-containing wastewater.

    PubMed

    Kaksonen, Anna H; Spring, Stefan; Schumann, Peter; Kroppenstedt, Reiner M; Puhakka, Jaakko A

    2008-04-01

    A moderately thermophilic, Gram-positive, endospore-forming, sulfate-reducing bacterium was isolated from a fluidized-bed reactor treating acidic water containing metal and sulfate. The strain, designated RE35E1T, was rod-shaped and motile. The temperature range for growth was 33-51 degrees C (optimum 44-46 degrees C) and the pH range was 6.0-7.5 (optimum pH 6.4-7.3). The strain grew optimally without additional NaCl. The electron acceptors were 10 mM sulfate, thiosulfate and elemental sulfur and 1 mM (but not 10 mM) sulfite. Various alcohols and carboxylic acids were utilized as electron donors. Fermentative growth occurred on pyruvate. The cell wall contained meso-diaminopimelic acid, and the major respiratory isoprenoid quinone was menaquinone MK-7. The major whole-cell fatty acids were iso-C15 : 0, iso-C17 : 1 omega 10c and iso-C17 : 0. Strain RE35E1T was related to representatives of the genera Desulfotomaculum and Sporotomaculum, the closest relatives being Desulfotomaculum arcticum DSM 17038T (96.3 % 16S rRNA gene sequence similarity) and Sporotomaculum hydroxybenzoicum DSM 5475T (92.0 % similarity). Strain RE35E1T represents a novel species, for which the name Desulfotomaculum alcoholivorax sp. nov. is proposed. The type strain is RE35E1T (=DSM 16058T=JCM 14019T).

  18. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  19. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 007 www.epa.gov / iris TOXICOLOGICAL REVIEW OF DICHLOROACETIC ACID ( CAS No . 79 - 43 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) August 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been revi

  20. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 09 / 003F www.epa.gov / iris TOXICOLOGICAL REVIEW OF TRICHLOROACETIC ACID ( CAS No . 76 - 03 - 9 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2011 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document has

  1. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  2. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  3. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  4. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  5. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  6. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  7. Azelaic acid.

    PubMed

    Nazzaro-Porro, M

    1987-12-01

    This review is an update on the literature accumulated over the past 10 years following the original observation that azelaic acid, a naturally occurring and nontoxic C9 dicarboxylic acid, possesses significant biologic properties and a potential as a therapeutic agent. These studies have shown that azelaic acid is a reversible inhibitor of tyrosinase and other oxidoreductases in vitro and that it inhibits mitochondrial respiration. It can also inhibit anaerobic glycolysis. Both in vitro and in vivo it has an antimicrobial effect on both aerobic and anaerobic (Propionibacterium acnes) microorganisms. In tissue culture it exerts a dose- and time-dependent cytotoxic effect on malignant melanocytes, associated with mitochondrial damage and inhibition of deoxyribonucleic acid (DNA) synthesis. Tumoral cell lines not containing tyrosinase are equally affected. Normal cells in culture exposed to the same concentrations of the diacid that are toxic for tumoral cells are in general not damaged. Radioactive azelaic acid has been shown to penetrate tumoral cells at a higher level than normal cells of the corresponding line. Topically applied (a 20% cream), it has been shown to be of therapeutic value in skin disorders of different etiologies. Its beneficial effect on various forms of acne (comedogenic, papulopustular, nodulocystic) has been clearly demonstrated. Particularly important is its action on abnormal melanocytes, which has led to the possibility of obtaining good results on melasma and highly durable therapeutic responses on lentigo maligna. It is also capable of causing regression of cutaneous malignant melanoma, but its role in melanoma therapy remains to be investigated.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    PubMed

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

  9. Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant

    PubMed Central

    Dümig, Michaela; O'Keeffe, Gráinne; Binder, Jasmin; Doyle, Sean; Beilhack, Andreas

    2016-01-01

    Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements of A. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection. PMID:26787716

  10. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment

    PubMed Central

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  11. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  12. Acidic domains around nucleic acids.

    PubMed Central

    Lamm, G; Pack, G R

    1990-01-01

    The hydrogen ion concentration in the vicinity of DNA was mapped out within the Poisson-Boltzmann approximation. Experimental conditions were modeled by assuming Na-DNA to be solvated in a buffer solution containing 45 mM Tris and 3 mM Mg cations at pH 7.5. Three regions of high H+ concentration (greater than 10 microM) are predicted: one throughout the minor groove of DNA and two localized in the major groove near N7 of guanine and C5 of cytosine for a G.C base pair. These acidic domains correlate well with the observed covalent binding sites of benzo[a]pyrene epoxide (N2 of guanine) and of aflatoxin B1 epoxide (N7 of guanine), chemical carcinogens that presumably undergo acid catalysis to form highly reactive carbocations that ultimately bind to DNA. It is suggested that these regions of high H+ concentration may also be of concern in understanding interactions involving proteins and noncarcinogenic molecules with or near nucleic acids. PMID:2123348

  13. Folic Acid and Pregnancy

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  14. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  15. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  16. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  17. Acid rain

    SciTech Connect

    Boyle, R.H.; Boyle, R.A.

    1983-01-01

    Acid rain, says Boyle is a chemical leprosy eating into the face of North America and Europe, perhaps the major ecological problem of our time. Boyle describes the causes and scope of the phenomenon; the effects on man, wildlife, water, and our cultural heritage. He probes the delays of politicians and the frequent self-serving arguments advanced by industry in the face of what scientists have proved. The solutions he offers are to strengthen the Clean Air Act and require emission reductions that can be accomplished by establishing emission standards on a regional or bubble basis, burn low-sulfur coal, install scrubbers at critical plants, and invest in alternative energy sources. 73 references, 1 figure.

  18. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    PubMed Central

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  19. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    PubMed

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

  20. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    DOE PAGES

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; ...

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiablemore » carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.« less

  1. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  2. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    PubMed

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  3. [Teichoic acids from lactic acid bacteria].

    PubMed

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  4. Organic acids tunably catalyze carbonic acid decomposition.

    PubMed

    Kumar, Manoj; Busch, Daryle H; Subramaniam, Bala; Thompson, Ward H

    2014-07-10

    Density functional theory calculations predict that the gas-phase decomposition of carbonic acid, a high-energy, 1,3-hydrogen atom transfer reaction, can be catalyzed by a monocarboxylic acid or a dicarboxylic acid, including carbonic acid itself. Carboxylic acids are found to be more effective catalysts than water. Among the carboxylic acids, the monocarboxylic acids outperform the dicarboxylic ones wherein the presence of an intramolecular hydrogen bond hampers the hydrogen transfer. Further, the calculations reveal a direct correlation between the catalytic activity of a monocarboxylic acid and its pKa, in contrast to prior assumptions about carboxylic-acid-catalyzed hydrogen-transfer reactions. The catalytic efficacy of a dicarboxylic acid, on the other hand, is significantly affected by the strength of an intramolecular hydrogen bond. Transition-state theory estimates indicate that effective rate constants for the acid-catalyzed decomposition are four orders-of-magnitude larger than those for the water-catalyzed reaction. These results offer new insights into the determinants of general acid catalysis with potentially broad implications.

  5. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  6. Uric acid - urine

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003616.htm Uric acid urine test To use the sharing features on this page, please enable JavaScript. The uric acid urine test measures the level of uric acid ...

  7. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  8. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour in ...

  9. Methylmalonic acid blood test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003565.htm Methylmalonic acid blood test To use the sharing features on this page, please enable JavaScript. The methylmalonic acid blood test measures the amount of methylmalonic acid ...

  10. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  11. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  12. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  13. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  14. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  15. Toxicity of adipic acid.

    PubMed

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests.

  16. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  17. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  18. Non-lactic acid, contaminating microbial flora in ready-to-eat foods: a potential food-quality index.

    PubMed

    Angelidis, A S; Chronis, E N; Papageorgiou, D K; Kazakis, I I; Arsenoglou, K C; Stathopoulos, G A

    2006-02-01

    The bacteriological profile of 87 samples of commercially available ready-to-eat (RTE) dairy and meat-products, packaged sandwiches and salads was obtained by testing for aerobic colony count, for lactic acid bacterial (LAB) count, for the presence and the extent of non-LAB microflora (contaminating microflora), and by testing for certain food-borne pathogens. The pathogens Listeria monocytogenes, Salmonella spp. and sulfite-reducing clostridia were not detected in any of the analysed samples. Whereas only three samples (3.4%) were deemed unacceptable for consumption for exceeding the established pathogen tolerance levels (for Staphylococcus aureus and Escherichia coli), several samples were found to contain non-lactic acid contaminating microflora of considerable magnitude. The log10 cfu g(-1) counts for contaminating microflora in the food categories examined were as follows: hard cheeses 4.85 (SD 1.17); semi-hard cheeses 5.39 (SD 1.37); soft cheeses 5.13 (SD 1.03); whey cheeses 6.55 (1.24); fermented meat-products 4.18 (SD 1.48); heat-treated meat-products 3.47 (SD 1.99); salads 3.37 (SD 1.56) and sandwiches 5.04 (SD 0.96). Approximately 1 in every 30 to 80 bacterial cells found on different types of cheeses and salads was a non-LAB microorganism; the respective ratios for fermented meat-products, heat-treated meat-products and sandwiches were 1 in 6, 2.5 and 15. The assessment of the contaminating microflora magnitude at various steps during the manufacture and distribution of RTE foods can serve as an index for monitoring the microbiological quality of the starting materials, the sanitation efficacy during processing and possible temperature abuse during processing, transportation or storage.

  19. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  20. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  1. Sulfuric acid poisoning

    MedlinePlus

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  2. Lactic acid test

    MedlinePlus

    Lactate test ... test. Exercise can cause a temporary increase in lactic acid levels. ... not getting enough oxygen. Conditions that can increase lactic acid levels include: Heart failure Liver disease Lung disease ...

  3. Folic Acid Quiz

    MedlinePlus

    ... About Us Information For... Media Policy Makers Folic Acid Quiz Language: English Español (Spanish) Recommend on Facebook ... button beside the question. Good Luck! 1. Folic acid is: A a B vitamin B a form ...

  4. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, such ... poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  5. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel and foam is used to clear the bumps, lesions, and swelling caused by rosacea (a skin ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat the pimples and ...

  6. Zoledronic Acid Injection

    MedlinePlus

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  7. Alpha Hydroxy Acids

    MedlinePlus

    ... Cosmetics Home Cosmetics Products & Ingredients Ingredients Alpha Hydroxy Acids Share Tweet Linkedin Pin it More sharing options ... for Industry: Labeling for Cosmetics Containing Alpha Hydroxy Acids The following information is intended to answer questions ...

  8. Uric Acid Test

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  9. Amino Acid Metabolism Disorders

    MedlinePlus

    ... breaks the food parts down into sugars and acids, your body's fuel. Your body can use this ... process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple ...

  10. Valproic Acid and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Valproic Acid and Pregnancy Wednesday, 01 July 2015 In every ... This sheet talks about whether exposure to valproic acid may increase the risk for birth defects over ...

  11. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  12. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  13. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  14. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  15. Refining Lurgi tar acids

    SciTech Connect

    Greco, N.P.

    1984-04-17

    There is disclosed a process for removing tar bases and neutral oils from the Lurgi tar acids by treating the tar acids with aqueous sodium bisulfate to change the tar bases to salts and to hydrolyze the neutral oils to hydrolysis products and distilling the tar acids to obtain refined tar acid as the distillate while the tar base salts and neutral oil hydrolysis products remain as residue.

  16. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  17. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic..., polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid (CAS Reg. No. 1357486-09- 9) when used as an inert ingredient in a pesticide formulation. Advance Polymer Technology submitted a...

  18. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  19. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  20. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  1. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  2. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  3. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  4. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  5. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  6. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  7. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  8. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  9. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  11. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  12. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  13. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  14. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  15. Oxidation of sulfites on vanadium-molybdenum oxides

    NASA Astrophysics Data System (ADS)

    Matrosova, O. V.; Vishnetskaya, M. V.

    2014-01-01

    The low temperature emission of 1O2 singlet oxygen from xV2O5 · yMoO3 binary oxides is investigated by means of flash desorption. Conditions for the generation of 1O2 on their surfaces are determined, along with the correlation between the amount of 1O2 and the degree of NaHSO3 conversion in the oxidation reaction. It is shown that on the surface of oxides there are oxygen species that upon decomposition produce 1O2 involved in the oxidation of HSO{3/-}.

  16. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  17. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  18. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  19. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  20. Recovery of organic acids

    DOEpatents

    Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  1. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  2. Parenteral Nutrition: Amino Acids.

    PubMed

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  3. Parenteral Nutrition: Amino Acids

    PubMed Central

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  4. Diterpenoid acids from Grindelia nana.

    PubMed

    Mahmoud, A A; Ahmed, A A; Tanaka, T; Iinuma, M

    2000-03-01

    Two new norditerpenoid acids of the labdane-type (norgrindelic acids), 4,5-dehydro-6-oxo-18-norgrindelic acid (1) and 4beta-hydroxy-6-oxo-19-norgrindelic acid (2), as well as a new grindelic acid derivative, 18-hydroxy-6-oxogrindelic acid (3), were isolated from the aerial parts of Grindelia nana. In addition, the known compounds, 6-oxogrindelic acid, grindelic acid, methyl grindeloate, 7alpha,8alpha-epoxygrindelic acid, and 4alpha-carboxygrindelic acid were also isolated. The structures of the new compounds were characterized on the basis of spectroscopic analysis.

  5. Structure of Acid phosphatases.

    PubMed

    Araujo, César L; Vihko, Pirkko T

    2013-01-01

    Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis. The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609-2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes. Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation. Phosphate monoester + H2O -->/<-- alcohol + phosphate. The general classification "acid phosphatase" relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by L-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important

  6. Folic Acid and Pregnancy

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Folic Acid ... > For Parents > Folic Acid and Pregnancy A A A What's ...

  7. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  8. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  9. Salicylic Acid Topical

    MedlinePlus

    Propa pH® Peel-Off Acne Mask ... pimples and skin blemishes in people who have acne. Topical salicylic acid is also used to treat ... medications called keratolytic agents. Topical salicylic acid treats acne by reducing swelling and redness and unplugging blocked ...

  10. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  11. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  12. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  13. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  14. Production of shikimic acid.

    PubMed

    Ghosh, Saptarshi; Chisti, Yusuf; Banerjee, Uttam C

    2012-01-01

    Shikimic acid is a key intermediate for the synthesis of the antiviral drug oseltamivir (Tamiflu®). Shikimic acid can be produced via chemical synthesis, microbial fermentation and extraction from certain plants. An alternative production route is via biotransformation of the more readily available quinic acid. Much of the current supply of shikimic acid is sourced from the seeds of Chinese star anise (Illicium verum). Supply from star anise seeds has experienced difficulties and is susceptible to vagaries of weather. Star anise tree takes around six-years from planting to bear fruit, but remains productive for long. Extraction and purification from seeds are expensive. Production via fermentation is increasing. Other production methods are too expensive, or insufficiently developed. In the future, production in recombinant microorganisms via fermentation may become established as the preferred route. Methods for producing shikimic acid are reviewed.

  15. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  16. Design and Performance Testing of a DNA Extraction Assay for Sensitive and Reliable Quantification of Acetic Acid Bacteria Directly in Red Wine Using Real Time PCR

    PubMed Central

    Longin, Cédric; Guilloux-Benatier, Michèle; Alexandre, Hervé

    2016-01-01

    Although strategies exist to prevent AAB contamination, the increased interest for wines with low sulfite addition leads to greater AAB spoilage. Hence, there is a real need for a rapid, specific, sensitive, and reliable method for detecting these spoilage bacteria. All these requirements are met by real time Polymerase Chain Reaction (or quantitative PCR; qPCR). Here, we compare existing methods of isolating DNA and their adaptation to a red wine matrix. Two different protocols for isolating DNA and three PCR mix compositions were tested to select the best method. The addition of insoluble polyvinylpolypyrrolidone (PVPP) at 1% (v/v) during DNA extraction using a protocol succeeded in eliminating PCR inhibitors from red wine. We developed a bacterial internal control which was efficient in avoiding false negative results due to decreases in the efficiency of DNA isolation and/or amplification. The specificity, linearity, repeatability, and reproducibility of the method were evaluated. A standard curve was established for the enumeration of AAB inoculated into red wines. The limit of quantification in red wine was 3.7 log AAB/mL and about 2.8 log AAB/mL when the volume of the samples was increased from 1 to 10 mL. Thus, the DNA extraction method developed in this paper allows sensitive and reliable AAB quantification without underestimation thanks to the presence of an internal control. Moreover, monitoring of both the AAB population and the amount of acetic acid in ethanol medium and red wine highlighted that a minimum about 6.0 log cells/mL of AAB is needed to significantly increase the production of acetic acid leading to spoilage. PMID:27313572

  17. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid.

    PubMed

    Shah, Sayali; White, Jonathan M; Williams, Spencer J

    2014-12-14

    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers.

  18. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  19. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  20. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  1. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  2. Aminolevulinic Acid Topical

    MedlinePlus

    ... under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated ...

  3. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  4. Folic acid - test

    MedlinePlus

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider ...

  5. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  6. Amoxicillin and Clavulanic Acid

    MedlinePlus

    ... Amoxicillin is in a class of medications called penicillin-like antibiotics. It works by stopping the growth ... allergic to amoxicillin (Amoxil, Trimox, Wymox), clavulanic acid, penicillin, cephalosporins, or any other medications.tell your doctor ...

  7. Amino Acid Metabolism Disorders

    MedlinePlus

    ... acidemia? In ASA, the body can’t remove ammonia or a substance called argininosuccinic acid from the ... and children include: Breathing problems High levels of ammonia in the bloodIntense headache, especially after a high- ...

  8. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  9. Citric acid urine test

    MedlinePlus

    ... used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The normal range is 320 ... tubular acidosis and a tendency to form calcium kidney stones. The following may decrease urine citric acid levels: ...

  10. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  11. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  12. The linoleic acid and trans fatty acids of margarines.

    PubMed

    Beare-Rogers, J L; Gray, L M; Hollywood, R

    1979-09-01

    Fifty brands of margarine were analysed for cis-polyunsaturated acids by lipoxidase, for trans fatty acid by infared spectroscopy, and for fatty acid composition by gas-liquid chromatography. High concentrations of trans fatty acids tended to be associated with low concentrations of linoleic acid. Later analyses on eight of the brands, respresenting various proportions of linoleic to trans fatty acids, indicated that two of them contained still higher levels of trans fatty acids (greater than 60%) and negligible amounts of linoleic acid. It is proposed that margarine could be a vehicle for the distribution of some dietary linoleic acid and that the level of linoleic acid and the summation of the saturated plus trans fatty acids be known to ascertain nutritional characteristics.

  13. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  14. [Acids in coffee. XI. The proportion of individual acids in the total titratable acid].

    PubMed

    Engelhardt, U H; Maier, H G

    1985-07-01

    22 acids in ground roast coffees and instant coffees were determined by GLC of their silyl derivatives (after preseparation by gel electrophoresis) or isotachophoresis. The contribution to the total acidity (which was estimated by titration to pH 8 after cation exchange of the coffee solutions) was calculated for each individual acid. The mentioned acids contribute with 67% (roast coffee) and 72% (instant coffee) to the total acidity. In the first place citric acid (12.2% in roast coffee/10.7% in instant coffee), acetic acid (11.2%/8.8%) and the high molecular weight acids (8%/9%) contribute to the total acidity. Also to be mentioned are the shares of chlorogenic acids (9%/4.8%), formic acid (5.3%/4.6%), quinic acid (4.7%/5.9%), malic acid (3.9%/3%) and phosphoric acid (2.5%/5.2%). A notable difference in the contribution to total acidity between roast and instant coffee was found for phosphoric acid and pyrrolidonecarboxylic acid (0.7%/1.9%). It can be concluded that those two acids are formed or released from e.g. their esters in higher amounts than other acids during the production of instant coffee.

  15. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  16. The second acidic constant of salicylic acid.

    PubMed

    Porto, Raffaella; De Tommaso, Gaetano; Furia, Emilia

    2005-01-01

    The second dissociation constant of salicylic acid (H2L) has been determined, at 25 degrees C, in NaCl ionic media by UV spectrophotometric measurements. The investigated ionic strength values were 0.16, 0.25, 0.50, 1.0, 2.0 and 3.0 M. The protolysis constants calculated at the different ionic strengths yielded, with the Specific Interaction Theory, the infinite dilution constant, log beta1(0) = 13.62 +/- 0.03, for the equilibrium L2- + H+ <==> HL-. The interaction coefficient between Na+ and L2-, b(Na+, L2-) = 0.02 +/- 0.07, has been also calculated.

  17. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid.

    PubMed

    Seow, Chun Ling; Lau, Aik Jiang

    2017-03-10

    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.

  18. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  19. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  20. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  1. Dethiosulfatibacter aminovorans gen. nov., sp. nov., a novel thiosulfate-reducing bacterium isolated from coastal marine sediment via sulfate-reducing enrichment with Casamino acids.

    PubMed

    Takii, Susumu; Hanada, Satoshi; Tamaki, Hideyuki; Ueno, Yutaka; Sekiguchi, Yuji; Ibe, Akihiro; Matsuura, Katsumi

    2007-10-01

    A sulfate-reducing enrichment culture originating from coastal marine sediment of the eutrophic Tokyo Bay, Japan, was successfully established with Casamino acids as a substrate. A thiosulfate reducer, strain C/G2(T), was isolated from the enrichment culture after further enrichment with glutamate. Cells of strain C/G2(T) were non-motile rods (0.6-0.8 microm x 2.2-4.8 microm) and were found singly or in pairs and sometimes in short chains. Spores were not formed. Cells of strain C/G2(T) stained Gram-negatively, despite possessing Gram-positive cell walls. The optimum temperature for growth was 28-30 degrees C, the optimum pH was around 7.8 and the optimum salt concentration was 20-30 g l(-1). Lactate, pyruvate, serine, cysteine, threonine, glutamate, histidine, lysine, arginine, Casamino acids, peptone and yeast extract were fermented as single substrates and no sugar was used as a fermentative substrate. A Stickland reaction was observed with some pairs of amino acids. Fumarate, alanine, proline, phenylalanine, tryptophan, glutamine and aspartate were utilized only in the presence of thiosulfate. Strain C/G2(T) fermented glutamate to H2, CO2, acetate and propionate. Thiosulfate and elemental sulfur were reduced to sulfide. Sulfate, sulfite and nitrate were not utilized as electron acceptors. The growth of strain C/G2(T) on Casamino acids or glutamate was enhanced by co-culturing with Desulfovibrio sp. isolated from the original mixed culture enriched with Casamino acids. The DNA G+C content of strain C/G2(T) was 41.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain C/G2(T) formed a distinct cluster with species of the genus Sedimentibacter. The closest relative was Sedimentibacter hydroxybenzoicus (with a gene sequence similarity of 91 %). On the basis of its phylogenetic and phenotypic properties, strain C/G2(T) (=JCM 13356(T)=NBRC 101112(T)=DSM 17477(T)) is proposed as representing a new genus and novel species, Dethiosulfatibacter

  2. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  3. Recurrent uric acid stones.

    PubMed

    Kamel, K S; Cheema-Dhadli, S; Shafiee, M A; Davids, M R; Halperin, M L

    2005-01-01

    A 46-year-old female had a history of recurrent uric acid stone formation, but the reason why uric acid precipitated in her urine was not obvious, because the rate of urate excretion was not high, urine volume was not low, and the pH in her 24-h urine was not low enough. In his discussion of the case, Professor McCance provided new insights into the pathophysiology of uric acid stone formation. He illustrated that measuring the pH in a 24-h urine might obscure the fact that the urine pH was low enough to cause uric acid to precipitate during most of the day. Because he found a low rate of excretion of NH(4)(+) relative to that of sulphate anions, as well as a high rate of citrate excretion, he speculated that the low urine pH would be due to a more alkaline pH in proximal convoluted tubule cells. He went on to suspect that there was a problem in our understanding of the function of renal medullary NH(3) shunt pathway, and he suggested that its major function might be to ensure a urine pH close to 6.0 throughout the day, to minimize the likelihood of forming uric acid kidney stones.

  4. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  5. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  6. Biodegradation of Cyanuric Acid

    PubMed Central

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  7. [Aristolochic acid nephropathy].

    PubMed

    Witkowicz, Joanna

    2009-01-01

    Aristolochic acid nephropathy is a chronic, fibrosing, interstitial nephritis caused by aristolochic acid (AA), which is a component of the plants of Aristolochiacae family. It was first reported in 1993, in Belgium as a Chinese herb nephropathy, in patients who received a slimming regimen containing AA. The term aristolochic acid nephropathy also includes Balcan endemic nephropathy and other endemic tubulointerstitial fibrosis. Moreover, AA is a human carcinogen which induces urothelial cancer. The AA-containing herbs are banned in many countries and FDA published the warnings concerning the safety of AA-containing botanical remedies in 2000. Regarding the increasing interest in herbal medicines, uncontrolled access to botanical remedies and replacement of one herb by another AA-containing compounds makes thousands of people all around the world at risk of this grave disease.

  8. Calorimetry of Nucleic Acids.

    PubMed

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  9. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  10. Ethylenediaminetetraacetic acid in endodontics.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-09-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented.

  11. Ethylenediaminetetraacetic acid in endodontics

    PubMed Central

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented. PMID:24966721

  12. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  13. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  14. Oxalic acid excretion after intravenous ascorbic acid administration.

    PubMed

    Robitaille, Line; Mamer, Orval A; Miller, Wilson H; Levine, Mark; Assouline, Sarit; Melnychuk, David; Rousseau, Caroline; Hoffer, L John

    2009-02-01

    Ascorbic acid is frequently administered intravenously by alternative health practitioners and, occasionally, by mainstream physicians. Intravenous administration can greatly increase the amount of ascorbic acid that reaches the circulation, potentially increasing the risk of oxalate crystallization in the urinary space. To investigate this possibility, we developed gas chromatography mass spectrometry methodology and sampling and storage procedures for oxalic acid analysis without interference from ascorbic acid and measured urinary oxalic acid excretion in people administered intravenous ascorbic acid in doses ranging from 0.2 to 1.5 g/kg body weight. In vitro oxidation of ascorbic acid to oxalic acid did not occur when urine samples were brought immediately to pH less than 2 and stored at -30 degrees C within 6 hours. Even very high ascorbic acid concentrations did not interfere with the analysis when oxalic acid extraction was carried out at pH 1. As measured during and over the 6 hours after ascorbic acid infusions, urinary oxalic acid excretion increased with increasing doses, reaching approximately 80 mg at a dose of approximately 100 g. We conclude that, when studied using correct procedures for sample handling, storage, and analysis, less than 0.5% of a very large intravenous dose of ascorbic acid is recovered as urinary oxalic acid in people with normal renal function.

  15. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring.

    PubMed

    Yoneda, Yasuko; Yoshida, Takashi; Kawaichi, Satoshi; Daifuku, Takashi; Takabe, Keiji; Sako, Yoshihiko

    2012-07-01

    A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1(T), was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0-3.0 µm long) and motile due to peritrichous flagella. Strain Ug1(T) grew chemolithoautotrophically on CO (100% in the gas phase) with reduction of ferric citrate, amorphous iron (III) oxide, 9,10-anthraquinone 2,6-disulfonate, thiosulfate or elemental sulfur. No carboxydotrophic growth occurred with sulfate, sulfite, nitrate or fumarate as electron acceptor. During growth on CO, H(2) and CO(2) were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N(2) atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth was 50-70 °C, with an optimum at 65 °C. The pH(25 °C) range for growth was 4.6-8.6, with an optimum between 6.0 and 6.5. The doubling time under optimum conditions using CO with ferric citrate was 1.5 h. The DNA G+C content was 42.2 mol%. Analysis of 16S rRNA gene sequences demonstrated that this strain belongs to the thermophilic carboxydotrophic bacterial genus Carboxydothermus, with sequence similarities of 94.1-96.6% to members of this genus. The isolate can be distinguished from other members of the genus Carboxydothermus by its ability to grow with elemental sulfur or thiosulfate coupled to CO oxidation. On the basis of phylogenetic analysis and unique physiological features, the isolate represents a novel species of the genus Carboxydothermus for which the name Carboxydothermus pertinax sp. nov. is proposed; the type strain of the novel species is Ug1(T) (=DSM 23698(T)=NBRC 107576(T)).

  16. Heterogeneous reactions of gaseous hydrogen peroxide on pristine and acidic gas-processed calcium carbonate particles: Effects of relative humidity and surface coverage of coating

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Chen, Zhongming; Shen, Xiaoli; Huang, Dao

    2013-03-01

    Atmospheric aging appears to alter physical and chemical properties of mineral dust aerosol and thus its role as reactive surface in the troposphere. Yet, previous studies in the atmosphere have mainly focused on the pristine surfaces of mineral dust aerosol, and the reactivity of aged mineral dust toward atmospheric trace gases is poorly recognized. This work presents the first laboratory investigation of heterogeneous reactions of gaseous hydrogen peroxide (H2O2), an important atmospheric oxidant, on the surfaces of HNO3 and SO2-processed calcium carbonate particles as surrogates of atmospheric mineral dust aged by acidic trace gases. It is found that the processing of the calcium carbonate particles with HNO3 and SO2 has a strong impact on their reactivity toward H2O2. On HNO3-processed particles, the presence of nitrate acts to either decrease or increase H2O2 uptake, greatly depending on RH and surface coverage of nitrate. On SO2-processed particles, the presence of surface sulfite appears to enhance the intrinsic reactivity of the mineral particles due to its affinity for H2O2, and the uptake of H2O2 increases significantly relative to the pristine particles, in particular at high RH. The mechanisms for heterogeneous reactions of H2O2 with these processed particles are discussed, as well as their potential implications on tropospheric chemistry. The results of our study suggest that the reactivity of mineral dust aerosol toward H2O2 and maybe other trace gases is markedly dependent on the chemical composition and coverage of the coatings as well as ambient RH, and thus will vary considerably in different polluted air masses.

  17. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  18. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  19. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  20. Hydrofluoric acid poisoning

    MedlinePlus

    Chemical Emergencies: Case Definition: Hydrofluoric Acid . Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2005. Goldfrank LR, ed. Goldfrank's Toxicologic Emergencies . 8th ed. New York, NY: McGraw Hill; 2006. Wax PM, Young A. ...

  1. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  2. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  3. Acid Rain Investigations.

    ERIC Educational Resources Information Center

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  4. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  5. Acid Rain Classroom Projects.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  6. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Bybee, Rodger; And Others

    1984-01-01

    Describes an activity which provides opportunities for role-playing as industrialists, ecologists, and government officials. The activity involves forming an international commission on acid rain, taking testimony, and, based on the testimony, making recommendations to governments on specific ways to solve the problem. Includes suggestions for…

  7. Acid rain bibliography

    SciTech Connect

    Sayers, C.S.

    1983-09-01

    This bibliography identifies 900 citations on various aspects of Acid Rain, covering published bibliographies, books, reports, conference and symposium proceedings, audio visual materials, pamphlets and newsletters. It includes five sections: citations index (complete record of author, title, source, order number); KWIC index; title index; author index; and source index. 900 references.

  8. Docosahexaenoic acid and lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina, and brain, and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews dat...

  9. Spermatotoxicity of dichloroacetic acid

    EPA Science Inventory

    The testicular toxicity of dichloroacetic acid (DCA), a disinfection byproduct of drinking water, was evaluated in adult male rats given both single and multiple (up to 14 d) oral doses. Delayed spermiation and altered resorption of residual bodies were observed in rats given sin...

  10. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  11. Acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1984-01-01

    Discusses the problem of acid rain and how it can be controlled. The book is divided into seven key sections: the problem and the legislative solutions; international mitigation programs; planning the US program; emissions reduction-before combustion; emissions/reduction-during combustion; emissions reduction-after combustion and engineering solutions under development. 13 papers have been abstracted separately.

  12. The acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1985-01-01

    A reference collection of specialized information discussions on areas critical to the acid rain issue: problem definition, impact of legislation, emissions standards, international perspective, cost scenarios, and engineering solutions. The text is reinforced with 130 illustrations and about 50 tables. Contents: International mitigation programs. Emissions reduction: before combustion; during combustion; after combustion. Engineering solutions under development.

  13. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  14. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  15. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations.

  16. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  17. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  18. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  19. Radioenzymatic assay for quinolinic acid

    SciTech Connect

    Foster, A.C.; Okuno, E.; Brougher, D.S.; Schwarcz, R.

    1986-10-01

    A new and rapid method for the determination of the excitotoxic tryptophan metabolite quinolinic acid is based on its enzymatic conversion to nicotinic acid mononucleotide and, in a second step utilizing (/sup 3/H)ATP, further to (/sup 3/H) deamido-NAD. Specificity of the assay is assured by using a highly purified preparation of the specific quinolinic acid-catabolizing enzyme, quinolinic acid phosphoribosyltransferase, in the initial step. The limit of sensitivity was found to be 2.5 pmol of quinolinic acid, sufficient to conveniently determine quinolinic acid levels in small volumes of human urine and blood plasma.

  20. Progress in engineering acid stress resistance of lactic acid bacteria.

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  1. 21 CFR 73.85 - Caramel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (i) Acids: Acetic acid. Citric acid. Phosphoric acid. Sulfuric acid. Sulfurous acid. (ii) Alkalis... and fractions thereof. Sucrose. (2) The food-grade acids, alkalis, and salts listed in this... phosphate), sulfate, and sulfite. (3) Polyglycerol esters of fatty acids, identified in § 172.854 of...

  2. 21 CFR 73.85 - Caramel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (i) Acids: Acetic acid. Citric acid. Phosphoric acid. Sulfuric acid. Sulfurous acid. (ii) Alkalis... and fractions thereof. Sucrose. (2) The food-grade acids, alkalis, and salts listed in this... phosphate), sulfate, and sulfite. (3) Polyglycerol esters of fatty acids, identified in § 172.854 of...

  3. 21 CFR 73.85 - Caramel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (i) Acids: Acetic acid. Citric acid. Phosphoric acid. Sulfuric acid. Sulfurous acid. (ii) Alkalis... and fractions thereof. Sucrose. (2) The food-grade acids, alkalis, and salts listed in this... phosphate), sulfate, and sulfite. (3) Polyglycerol esters of fatty acids, identified in § 172.854 of...

  4. 21 CFR 73.85 - Caramel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (i) Acids: Acetic acid. Citric acid. Phosphoric acid. Sulfuric acid. Sulfurous acid. (ii) Alkalis... and fractions thereof. Sucrose. (2) The food-grade acids, alkalis, and salts listed in this... phosphate), sulfate, and sulfite. (3) Polyglycerol esters of fatty acids, identified in § 172.854 of...

  5. 21 CFR 73.85 - Caramel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (i) Acids: Acetic acid. Citric acid. Phosphoric acid. Sulfuric acid. Sulfurous acid. (ii) Alkalis... and fractions thereof. Sucrose. (2) The food-grade acids, alkalis, and salts listed in this... phosphate), sulfate, and sulfite. (3) Polyglycerol esters of fatty acids, identified in § 172.854 of...

  6. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    PubMed

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  7. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  8. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  9. Boric/sulfuric acid anodize - Alternative to chromic acid anodize

    NASA Astrophysics Data System (ADS)

    Koop, Rodney; Moji, Yukimori

    1992-04-01

    The suitability of boric acid/sulfuric acid anodizing (BSAA) solution as a more environmentally acceptable replacement of the chromic acid anodizing (CAA) solution was investigated. Results include data on the BSAA process optimization, the corrosion protection performance, and the compatibility with aircraft finishing. It is shown that the BSSA implementation as a substitude for CAA was successful.

  10. Circulating folic acid in plasma: relation to folic acid fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implementation of folic acid fortification in the United States has resulted in unprecedented amounts of this synthetic form of folate in the American diet. Folic acid in circulation may be a useful measure of physiologic exposure to synthetic folic acid, and there is a potential for elevated co...

  11. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  12. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  13. Autohydrolysis of phytic acid.

    PubMed

    Hull, S R; Gray, J S; Montgomery, R

    1999-09-10

    The autohydrolysis of phytic acid at 120 degrees C resulted in the formation of most of the phosphate esters of myo-inositol in varying amounts depending upon the reaction time. Eighteen of the 39 chromatographically distinct myo-inositol mono-, bis-, tris-, tetrakis-, pentakis-, and hexakisphosphates have been characterized using two different HPLC systems. These myo-inositol phosphates were partially purified by preparative anion-exchange chromatography under acidic and alkaline elution conditions. The combination of these two methods provides a two-tiered chromatographic approach to the rapid and sensitive identification of inositol phosphates in complex mixtures. Identification of the products was confirmed by 1D and 2D (1)H NMR analysis. The analytical procedure was applied to the autohydrolysis of the mixture of inositol phosphates from corn steep water.

  14. Optimize acid gas removal

    SciTech Connect

    Nicholas, D.M.; Wilkins, J.T.

    1983-09-01

    Innovative design of physical solvent plants for acid gas removal can materially reduce both installation and operating costs. A review of the design considerations for one physical solvent process (Selexol) points to numerous arrangements for potential improvement. These are evaluated for a specific case in four combinations that identify an optimum for the case in question but, more importantly, illustrate the mechanism for use for such optimization elsewhere.

  15. Perfluorooctanoic acid and environmental risks

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids (PFAA) family of chemicals, which consist of a carbon backbone typically four to fourteen carbons in length and a charged functional moiety.

  16. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  17. Pantothenic acid (Vitamin B5)

    MedlinePlus

    Pantothenic acid is a vitamin, also known as vitamin B5. It is widely found in both plants and animals ... Vitamin B5 is commercially available as D-pantothenic acid, as well as dexpanthenol and calcium pantothenate, which ...

  18. Folic Acid Questions and Answers

    MedlinePlus

    ... Controls NCBDDD Cancel Submit Search The CDC Folic Acid Note: Javascript is disabled or is not supported ... please visit this page: About CDC.gov . Folic Acid Homepage Facts Quiz Frequently Asked Questions General Information ...

  19. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  20. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.