Science.gov

Sample records for acid synthesis characterisation

  1. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids.

    PubMed

    Söderlind, Fredrik; Pedersen, Henrik; Petoral, Rodrigo M; Käll, Per-Olov; Uvdal, Kajsa

    2005-08-01

    Nanocrystals of Gd2O3 have been prepared by various methods, using, e.g., trioctylphosphine oxide (TOPO), diethylene glycol (DEG) or glycine. The crystalline particles were of sizes 5 to 15 nm. Different carboxylic acids, e.g., oleic acid or citric acid, were adsorbed onto the surface of the particles made with DEG. IR measurements show that the molecules coordinate to the Gd2O3 surface via the carboxylate group in a bidentate or bridging manner. The organic-acid/particle complexes were characterised by XRPD, TEM, FTIR, Raman, and XPS.

  2. Synthesis and structural characterisation of amides from picolinic acid and pyridine-2,6-dicarboxylic acid

    PubMed Central

    Devi, Prarthana; Barry, Sarah M.; Houlihan, Kate M.; Murphy, Michael J.; Turner, Peter; Jensen, Paul; Rutledge, Peter J.

    2015-01-01

    Coupling picolinic acid (pyridine-2-carboxylic acid) and pyridine-2,6-dicarboxylic acid with N-alkylanilines affords a range of mono- and bis-amides in good to moderate yields. These amides are of interest for potential applications in catalysis, coordination chemistry and molecular devices. The reaction of picolinic acid with thionyl chloride to generate the acid chloride in situ leads not only to the N-alkyl-N-phenylpicolinamides as expected but also the corresponding 4-chloro-N-alkyl-N-phenylpicolinamides in the one pot. The two products are readily separated by column chromatography. Chlorinated products are not observed from the corresponding reactions of pyridine-2,6-dicarboxylic acid. X-Ray crystal structures for six of these compounds are described. These structures reveal a general preference for cis amide geometry in which the aromatic groups (N-phenyl and pyridyl) are cis to each other and the pyridine nitrogen anti to the carbonyl oxygen. Variable temperature 1H NMR experiments provide a window on amide bond isomerisation in solution. PMID:25954918

  3. Synthesis, characterisation and biological evaluation of copper and silver complexes based on acetylsalicylic acid.

    PubMed

    Rubner, Gerhard; Bensdorf, Kerstin; Wellner, Anja; Bergemann, Silke; Gust, Ronald

    2011-10-01

    Metalcarbonyl complexes with ligands derived from acetylsalicylic acid demonstrated high cytotoxic potential against various tumor cell lines and strong inhibition of the cyclooxygenase enzymes COX-1 and 2. In this study we tried to achieve comparable effects with [alkyne]silver or copper trifluoromethanesulfonate complexes which are more hydrophilic then the uncharged metalcarbonyl derivatives. All compounds were evaluated for growth inhibition against breast (MCF-7, MDA-MB 231) and colon cancer (HT-29) cell lines and for COX-1 and COX-2 inhibitory effects at isolated isoenzymes. Pure ligands showed neither cytotoxic nor COX-inhibitory effects. While the silver complexes of (but-2-ynyl)-2-acetoxybenzoate (But-ASS-Ag) and (but-2-yne-1,4-diyl)-bis(2-acetoxybenzoate) (Di-ASS-But-Ag) were strong cytostatics, only the copper complex Di-ASS-But-Cu was active. At the COX enzymes the complexes were more effective than their ligands and aspirin.

  4. Lanthanide(III) and Yttrium(III) Complexes of Benzimidazole-2-Acetic Acid: Synthesis, Characterisation and Effect of La(III) Complex on Germination of Wheat

    PubMed Central

    Gudasi, Kalagouda B.; Shenoy, Rashmi V.; Vadavi, Ramesh S.; Patil, Manjula S.; Patil, Siddappa A.; Hanchinal, Rayappa R.; Desai, Srinivas A.; Lohithaswa, H.

    2006-01-01

    The synthesis and characterisation of lanthanide(III) and yttrium(III) nitrate complexes of benzimidazole-2-acetic acid (HBIA) are reported. The complexes have been characterised by elemental analysis, molar conductance, magnetic studies, IR, 1H NMR, UV-visible, EPR, and TG/DTA studies. They have the stoichiometry [Ln3(BIA)2(NO3)7(H2O)4] · 3H2O where Ln=La(III), Pr(III), Nd(II), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), and Y(III). The effect of La(III) complex on germination, coleoptile, and root length of two local varieties of wheat DWR-195 and GW-349 for different treatment periods has been investigated. The complex was found to exhibit enhanced activity, compared to HBIA or metal salt alone at lower treatment periods. PMID:17497017

  5. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier.

    PubMed

    Zecheru, Teodora; Rotariu, Traian; Rusen, Edina; Mărculescu, Bogdan; Miculescu, Florin; Alexandrescu, Laura; Antoniac, Iulian; Stancu, Izabela-Cristina

    2010-10-01

    In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.

  6. Chiral phosphinoferrocene carboxamides with amino acid substituents as ligands for Pd-catalysed asymmetric allylic substitutions. Synthesis and structural characterisation of catalytically relevant Pd complexes.

    PubMed

    Tauchman, Jiří; Císařová, Ivana; Stěpnička, Petr

    2011-11-28

    An extensive series of chiral amino acid amides prepared from 1'-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) or its planar-chiral isomer, 2-(diphenylphosphino)ferrocene-1-carboxylic acid, have been tested as ligands for Pd-catalysed asymmetric allylic substitution reactions. In alkylation of 1,3-diphenylallyl acetate as a model substrate with dimethyl malonate the ligands performed well in terms of both reaction rate and enantioselectivity, achieving up to 98% ee. In contrast, the reactions of the same substrate with other nucleophiles proceeded either slowly and with poor ee's (amination with benzylamine) or not at all (etherification with benzyl alcohol). In order to rationalise the influence of the ligand structure on the reaction course, three model complexes, viz. [(η(3)-methallyl)PdCl(L-κP)], [(η(3)-methallyl)Pd(L-κ(2)O,P)]ClO(4) and [(η(3)-methallyl)Pd(L-κP)(2)]ClO(4) have been prepared from the achiral amide Ph(2)PfcCONHCH(2)CO(2)Me (L; fc = ferrocene-1,1'-diyl) and structurally characterised. The coordination study showed that the amido-phosphines readily form 1 : 1 complexes as O,P-chelates where the amino acid chirality is brought close to the Pd atom. At higher ligand-to-metal ratios, however, simple P-monodentate coordination prevails, minimising the influence of the chiral amino acid pendant.

  7. The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid.

    PubMed

    Bryant, Macguire R; Burrows, Andrew D; Fitchett, Christopher M; Hawes, Chris S; Hunter, Sally O; Keenan, Luke L; Kelly, David J; Kruger, Paul E; Mahon, Mary F; Richardson, Christopher

    2015-05-21

    The synthesis, structural and thermal characterisation of a number of coordination complexes featuring the N,O-heteroditopic ligand 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoate, HL are reported. The reaction of H2L with cobalt(II) and nickel(II) nitrates at room temperature in basic DMF/H2O solution gave discrete mononuclear coordination complexes with the general formula {[M(HL)2(H2O)4]·2DMF} (M = Co (1), Ni (2)), whereas the reaction with zinc(II) nitrate gave [Zn(HL)2]∞, 3, a coordination polymer with distorted diamondoid topology and fourfold interpenetration. Coordination about the tetrahedral Zn(II) nodes in 3 are furnished by two pyrazolyl nitrogen atoms and two carboxylate oxygen atoms to give a mixed N2O2 donor set. Isotopological coordination polymers of zinc(II), {[Zn(HL)2]·2CH3OH·H2O}∞, 4, and cobalt(II), [Co(HL)2]∞, 5, are formed when the reactions are carried out under solvothermal conditions in methanol (80 °C) and water (180 °C), respectively. The reaction of H2L with cadmium(II) nitrate at room temperature in methanol gives {[Cd(HL)2(MeOH)2]·1.8MeOH}∞6, a 2-D (4,4)-connected coordination polymer, whereas with copper(II) the formation of green crystals that transform into purple crystals is observed. The metastable green phase [Cu3(HL)4(μ2-SO4)(H2O)3]∞, 7, crystallises with conserved binding domains of the heteroditopic ligand and contains two different metal nodes: a dicopper carboxylate paddle wheel motif, and, a dicopper unit bridged by sulfate ions and coordinated by ligand pyrazolyl nitrogen atoms. The resultant purple phase {[Cu(HL)2]·4CH3OH·H2O}∞, 8, however, has single copper ion nodes coordinated by mixed N2O2 donor sets with trans-square planar geometry and is threefold interpenetrated. The desolvation of 8 was followed by powder X-ray diffraction and single crystal X-ray diffraction which show desolvation induces the transition to a more closely packed structure while the coordination geometry about the copper ions and

  8. Synthesis and structural characterisation of selective non-carbohydrate-based inhibitors of bacterial sialidases.

    PubMed

    Brear, Paul; Telford, Judith; Taylor, Garry L; Westwood, Nicholas J

    2012-11-05

    The major human pathogen Streptococcus pneumoniae plays a key role in several disease states including septicaemia, meningitis and community-acquired pneumonia. Although vaccines against S. pneumoniae are available as prophylactics, there remains a need to identify and characterise novel chemical entities that can treat the diseases caused by this pathogen. S. pneumoniae expresses three sialidases, enzymes that cleave sialic acid from carbohydrate-based surface molecules. Two of these enzymes, NanA and NanB, have been implicated in the pathogenesis of S. pneumoniae and are considered to be validated drug targets. Here we report our studies on the synthesis and structural characterisation of novel NanB-selective inhibitors that are inspired by the β-amino-sulfonic acid family of buffers.

  9. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  10. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-11-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  11. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2016-04-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  12. Synthesis, characterisation and applications of coiled carbon nanotubes.

    PubMed

    Hanus, Monica J; Harris, Andrew T

    2010-04-01

    Coiled carbon nanotubes are helical carbon structures formed when heptagonal and pentagonal rings are inserted into the hexagonal backbone of a 'straight' nanotube. Coiled carbon nanotubes have been reported with both regular and irregular helical structures. In this work the structure, growth mechanism(s), synthesis, properties and potential applications of coiled carbon nanotubes are reviewed. Published data suggests that coiled carbon nanotube synthesis occurs due to nonuniform extrusion of carbon from a catalyst surface. To date, coiled carbon nanotubes have been synthesised using catalyst modification techniques including: (i) the addition of S or P containing compounds during synthesis; (ii) the use of binary or ternary metal catalysts; (iii) the use of microwaves to create a local temperature gradient around individual catalyst particles and; (iv) the use of pH control during catalyst preparation. In most instances coiled carbon nanotubes are produced as a by-product; high yield and/or large-scale synthesis of coiled carbon nanotubes remains problematic. The qualitative analysis of coiled carbon nanotubes is currently hindered by the absence of specific characterisation data in the literature, e.g., oxidation profiles measured by thermogravimetric analysis and Raman spectra of pure coiled carbon nanotube samples.

  13. Chemical characterisation and application of acid whey in fermented milk.

    PubMed

    Lievore, Paolla; Simões, Deise R S; Silva, Karolline M; Drunkler, Northon L; Barana, Ana C; Nogueira, Alessandro; Demiate, Ivo M

    2015-04-01

    Acid whey is a by-product from cheese processing that can be employed in beverage formulations due to its high nutritional quality. The objective of the present work was to study the physicochemical characterisation of acid whey from Petit Suisse-type cheese production and use this by-product in the formulation of fermented milk, substituting water. In addition, a reduction in the fermentation period was tested. Both the final product and the acid whey were analysed considering physicochemical determinations, and the fermented milk was evaluated by means of sensory analysis, including multiple comparison and acceptance tests, as well as purchase intention. The results of the physicochemical analyses showed that whey which was produced during both winter and summer presented higher values of protein (1.22 and 0.97 %, w/v, respectively), but there were no differences in lactose content. During the autumn, the highest solid extract was found in whey (6.00 %, w/v), with larger amounts of lactose (4.73 %, w/v) and ash (0.83 %, w/v). When analysing the fermented milk produced with added acid whey, the acceptance test resulted in 90 % of acceptance; the purchase intention showed that 54 % of the consumers would 'certainly buy' and 38 % would 'probably buy' the product. Using acid whey in a fermented milk formulation was technically viable, allowing by-product value aggregation, avoiding discharge, lowering water consumption and shortening the fermentation period.

  14. Synthesis and characterisation of zirconium complexes for cell tracking with Zr-89 by positron emission tomography.

    PubMed

    Ferris, Trevor J; Charoenphun, Putthiporn; Meszaros, Levente K; Mullen, Gregory E D; Blower, Philip J; Went, Michael J

    2014-10-21

    The increasing availability of the long half-life positron emitter Zr-89 (half life 78.4 h) suggests that it is a strong candidate for cell labelling and hence cell tracking using positron emission tomography. The aim was to produce a range of neutral ZrL4 lipophilic complexes for cell labelling which could be prepared under radiopharmaceutical conditions. This was achieved when the ligand was oxine, tropolone or ethyl maltol. The complexes can be prepared in high yield from zirconium(iv) precursors in hydrochloric or oxalic acid solution. The oxinate and tropolonate complexes were the most amenable to chromatographic characterisation, and HPLC and ITLC protocols have been established to monitor their radiochemical purity. The radiochemical synthesis and quality control of (89)Zr(oxinate)4 is reported as well as preliminary cell labelling data for the oxinate, tropolonate and ethyl maltolate complexes which indicates that (89)Zr(oxinate)4 is the most promising candidate for further evaluation.

  15. Borinic acid catalysed peptide synthesis.

    PubMed

    El Dine, Tharwat Mohy; Rouden, Jacques; Blanchet, Jérôme

    2015-11-18

    The catalytic synthesis of peptides is a major challenge in the modern organic chemistry hindered by the well-established use of stoichiometric coupling reagents. Herein, we describe for the first time that borinic acid is able to catalyse this reaction under mild conditions with an improved activity compared to our recently developed thiophene-based boronic acid. This catalyst is particularly efficient for peptide bond synthesis affording dipeptides in good yields without detectable racemization.

  16. Isolation and characterisation of lactic acid bacteria from donkey milk.

    PubMed

    Soto Del Rio, Maria de Los Dolores; Andrighetto, Christian; Dalmasso, Alessandra; Lombardi, Angiolella; Civera, Tiziana; Bottero, Maria Teresa

    2016-08-01

    During the last years the interest in donkey milk has increased significantly mainly because of its compelling functional elements. Even if the composition and nutritional properties of donkey milk are known, its microbiota is less studied. This Research Communication aimed to provide a comprehensive characterisation of the lactic acid bacteria in raw donkey milk. RAPD-PCR assay combined with 16S rDNA sequencing analysis were used to describe the microbial diversity of several donkey farms in the North West part of Italy. The more frequently detected species were: Lactobacillus paracasei, Lactococcus lactis and Carnobacterium maltaromaticum. Less abundant genera were Leuconostoc, Enterococcus and Streptococcus. The yeast Kluyveromyces marxianus was also isolated. The bacterial and biotype distribution notably diverged among the farms. Several of the found species, not previously detected in donkey milk, could have an important probiotic activity and biotechnological potential. This study represents an important insight to the ample diversity of the microorganisms present in the highly selective ecosystem of raw donkey milk.

  17. Bile acids: regulation of synthesis.

    PubMed

    Chiang, John Y L

    2009-10-01

    Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.

  18. Purification, amino acid sequence and characterisation of kangaroo IGF-I.

    PubMed

    Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z

    1998-01-01

    Insulin-like growth factor-I (IGF-I) and IGF-II have been purified to homogeneity from kangaroo (Macropus fuliginosus) serum, thus this represents the first report of the purification, sequencing and characterisation of marsupial IGFs. N-Terminal protein sequencing reveals that there are six amino acid differences between kangaroo and human IGF-I. Kangaroo IGF-II has been partially sequenced and no differences were found between human and kangaroo IGF-II in the 53 residues identified. Thus the IGFs appear to be remarkably structurally conserved during mammalian radiation. In addition, in vitro characterisation of kangaroo IGF-I demonstrated that the functional properties of human, kangaroo and chicken IGF-I are very similar. In an assay measuring the ability of the proteins to stimulate protein synthesis in rat L6 myoblasts, all IGF-I proteins were found to be equally potent. The ability of all three proteins to compete for binding with radiolabelled human IGF-I to type-1 IGF receptors in L6 myoblasts and in Sminthopsis crassicaudata transformed lung fibroblasts, a marsupial cell line, was comparable. Furthermore, kangaroo and human IGF-I react equally in a human IGF-I RIA using a human reference standard, radiolabelled human IGF-I and a polyclonal antibody raised against recombinant human IGF-I. This study indicates that not only is the primary structure of eutherian and metatherian IGF-I conserved, but also the proteins appear to be functionally similar.

  19. Synthesis and Characterisation of Silica-Modified Titania for Photocatalytic Decolouration of Crystal Violet.

    PubMed

    Shahid, Mohammad; El Saliby, Ibrahim; Tijing, Leonard D; McDonagh, Andrew; Park, Se Min; Lee, Kwang Young; Shon, Ho Kyong; Kim, Jong-Ho

    2015-07-01

    In the past few years, silica-modified titania has drawn increasing attention due to their special properties making them ideal candidates for a wide range of applications. In this study, we report a novel method for the synthesis of silica-modified titania by a sol-gel method using sodium silicate solution (1 M). The hydrolysis and condensation reactions of titanium dioxide (TiO2, Degussa Aeroxide® P25) in sodium silicate solution proceeded with citric acid (3 M) as a catalyst. The orbital shaking method was followed for the removal of sodium salt formed during the sol-gel process. Solvent exchange was carried out using methanol and hexane. Finally, chemical modification of the gel was conducted using trimethylchlorosilane followed by ambient pressure drying. The obtained silica-modified titania was characterised for nanostructural analysis using scanning electron microscopy and transmission electron microscopy. The nitrogen adsorption-desorption measurements were employed to investigate the BET surface area, pore structure and pore volume of specimens. Thermal gravimetric analysis showed exothermic peaks at temperature range of 90-190 °C representing the oxidation of organic groups from--Si-R network. The silica-modified titania showed high photocatalytic activity and an easy recovery using crystal violet as model water pollutant.

  20. Synthesis and characterisation of core-shell structures for orthopaedic surgery.

    PubMed

    Rusen, Edina; Zaharia, Cătălin; Zecheru, Teodora; Mărculescu, Bogdan; Filmon, Robert; Chappard, Daniel; Bădulescu, Roxana; Cincu, Corneliu

    2007-01-01

    This paperwork deals with the obtaining and characterisation of new acrylic cements for bone surgery. The final mixture of cement contains derivatives of methacryloyloxyethyl phosphate, methacrylic acid or 2-acrylamido-2-methyl-1-propane sulphonic acid. The idea of using these monomers is sustained by their ability to form ionic bonds with barium, which is responsible for X-ray reflection and by the biocompatibility of these structures. The strategy consists in the obtaining of core-shell structures through heterogeneous polymerisation, which are used for final cement's manufacture. The orthopaedic cements were characterised by SEM, EDX, compression resistance and cytotoxicity assays.

  1. Isotopic characterisation of prebiotic synthesis of organic material

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Chang, S.

    1986-01-01

    Many primitive meteorites contain an insoluble organic material, much like terrestrial kerogen, whose mode of origin is currently unknown. When sujbected to stepwise decomposition, this material, unlike its terrestrial counterpart, reveals characteristic release patterns for the stable isotopes of carbon, hydrogen and nitrogen as a function of fractional release of each element. The purpose of this study is to try to match those release patterns using organic matter synthesised in the laboratory under controlled conditions. If successful, such a study would shed light on the origin of kerogen-like organic matter in the early solar system and, by extension, on prebiotic organic synthesis in general. The range of possible syntheses, starting materials and reaction conditions to be investigated is considerable. Samples analysed to date include: a heavy oil produced by Fischer-Tropsch-type catalysis of CO + H2; a solid residue generated by a plasma discharge in CO + H2 + N2; a solid deposited on the electrodes of a Miller-Urey synthesis operating on CH4 + H2O + N2; and a solid residue formed by polymerization of light hydrocarbons procured by a Miller-Urey discharge acting on CH4. Significant structure is observed in the release patterns for the carbon and hydrogen isotopes from the synthetic samples, though there is little evidence for isotopic fractionation during the analysis itself.

  2. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  3. Synthesis, characterisation, electrical and optical properties of copper borate compounds

    SciTech Connect

    Kipcak, Azmi Seyhun; Senberber, Fatma Tugce; Aydin Yuksel, Sureyya; Derun, Emek Moroydor; Piskin, Sabriye

    2015-10-15

    Highlights: • Cu(BO{sub 2}){sub 2} was synthesized at the form of with pdf number of “00-001-0472”. • Particle sizes were found between 162.72 and 56.44 nm and 195.76 and 75.73 nm at CuSNaH. • Reaction yields were 90.4 ± 0.84, 96.9 ± 0.78 and 78.9 ± 0.76% for CuST, CuSB and CuSNaH. • The resistivity of CuST, CuSB and CuSNaH are 1.10 × 10{sup 7}, 7.02 × 10{sup 6} and 8.62 × 10{sup 5} Ωm. • The optical energy gap was 3.76 eV. - Abstract: The hydrothermal synthesis of copper borate compounds [Cu(BO{sub 2}){sub 2}] was studied, and several parameters were found to affect the synthesis. Raw materials, including CuSO{sub 4}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O, NaOH and H{sub 3}BO{sub 3}, were used. Reaction temperatures and reaction times between 40 °C and 100 °C and 15 and 240 min, respectively, were used. The as-synthesised copper borate was analysed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The yields of the reactions were also calculated. Single-phase, nanoparticulate copper borate compounds (Cu(BO{sub 2}){sub 2}) possessing high XRD crystal scores were obtained; the reactions used to obtain these materials were highly efficient. Electrical resistivity and optical absorbance measurements were carried out on the compounds obtained from the highest yielding reactions. The results of this study showed that even using a reaction time of 15 min, copper borate formation was successfully achieved.

  4. Ferrocenyl-phosphonium ionic liquids - synthesis, characterisation and electrochemistry.

    PubMed

    Kübler, Paul; Sundermeyer, Jörg

    2014-03-07

    New unsymmetrically substituted ferrocenyl-phosphonium ionic liquids (ILs) [FcPR2R']NTf2 are synthesized by two or three step syntheses starting from ferrocene, Fc = (C5H5)Fe(C5H4); R = Me, (n)Bu, (n)Hex, Ph; R' = Me, (n)Pr, (n)Bu, Ph; NTf2 = N(SO2CF3)2. The selective synthesis of alkyl phosphines FcPR2via a Friedel-Crafts phosphorylation is highlighted as an alternative for the standard protocol commonly used for ferrocenyl arylphosphines involving lithiation of FcH followed by phosphorylation. The influence of the P-substituents on thermal stability, electrochemical potential, chemical shift, and UV-Vis absorption behavior of the ILs is studied. The phosphonium group acts both as an ionic tag and as an electron-withdrawing substituent directly bound at the Cp-ring position. Therefore the title compounds are attractive for further studies to use them as tunable redox mediators for (photo)electrochemical devices such as dye sensitized solar cells (DSSCs) or redox flow batteries.

  5. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers

    NASA Astrophysics Data System (ADS)

    Şen, Murat; Hayrabolulu, Hande

    2012-09-01

    In this study radiation synthesis and characterisation of the network structure of acrylic acid sodium salt/locust bean gum, (AAcNa/LBG) natural/synthetic double-network super absorbent polymers were investigated. Quartet systems composed of acrylic acid sodium salt/locust bean gum/N,N methylene bis acrylamide/water (AAcNa/LBG/MBAAm/water) were prepared at varying degree of neutralisations (DN) by controlling the DN value of AAc and irradiated with gamma rays at ambient temperature at a very low dose rate. The influences of the DN on the swelling and network properties were examined. It was observed that the DN strongly affected the gelation and super absorption properties of the gels. Molecular weight between crosslinks (M), effective crosslink density (νe) and mesh size (ξ) of SAPs were calculated from swelling and shear modules data obtained from compression and oscillatory frequency sweep tests. M values obtained from the uniaxial deformation experiments were very close to those obtained from the oscillatory shear experiments excluding the completely neutralised gel system. It was concluded that the uniaxial compression technique could be used for the characterisation of the network structure of a hydrogel as along with the rheological analyses; however, a very precise control of the gel size was also needed.

  6. Synthesis and crystal structure characterisation of sodium neptunate compounds

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Raison, P. E.; Konings, R. J. M.

    2011-06-01

    The present work reports studies of the chemical reactions between neptunium dioxide and sodium oxide either in the presence of oxygen or inert gas (Ar), leading to compounds with hexavalent, heptavalent or pentavalent/tetravalent neptunium, respectively. Solid state synthesis with different NpO 2/Na 2O ratios led to the following polycrystalline compounds: Na 2Np 2O 7 monoclinic (P12 11), α-Na 2NpO 4 orthorhombic (Pbam), β-Na 2NpO 4 orthorhombic (Pbca), β-Na 4NpO 5 tetragonal (I4/mmm), Na 5NpO 6 monoclinic (C2/m) and a cubic compound (Fm-3m) that could either be Na 3NpO 4 or Na 4NpO 4. The crystal structures of the α-Na 2NpO 4 and Na 2Np 2O 7 compounds were refined by Rietveld analysis. Evolution of the cell parameters of α-Na 2NpO 4 was also followed as a function of temperature up to 1273 K by X-ray diffraction. The corresponding linear thermal expansion coefficients along the different axis were determined: αa = 41.3 × 10 -6 K -1, αb = 35.0 × 10 -6 K -1, αc ˜ 0 K -1. From the high temperature X-ray diffraction experiment it was also possible to evidence formation of diverse phases at different temperatures and to review parts of the Na-Np-O system.

  7. Carbon nanotubes linked with pitavastatin: synthesis and characterisation.

    PubMed

    Borowiak-Palen, E; Skupin, P; Kruszynska, M; Sobotta, L; Mielcarek, J

    2011-04-01

    The paper presents a study on functionalisation of multi-walled carbon nanotubes in the area of lattice defects and an attempt to bind the nanotubes with pitavastatin. Carbon nanotubes were synthesised by alcohol-chemical vapour deposition in the presence of the catalyst Fe-Co/MgO. The nanotubes were purified and the product was subjected to chemical functionalisation. Functional groups were introduced in the reaction of the purified nanotubes with thionyl chloride to obtain acidic chlorides linked to pitavastatin. The properties and structure of the nanotubes were analysed by FT-IR and Raman spectroscopies, transmission electron microscopy and liquid chromatography coupled with mass spectrometry. Photochemical stability of pitavastatin linked with carbon nanotubes has been found to be increased.

  8. Synthesis and characterisation of self-assembled and self-adjuvanting asymmetric multi-epitope lipopeptides of ovalbumin.

    PubMed

    Eskandari, Sharareh; Stephenson, Rachel J; Fuaad, Abdullah Ahmad; Apte, Simon H; Doolan, Denise L; Toth, Istvan

    2015-01-12

    Designing a lipopeptide (LP) vaccine with a specific asymmetric arrangement of epitopes may result in an improved display of antigens, increasing host-cell recognition and immunogenicity. This study aimed to synthesise and characterise the physicochemical properties of a library of asymmetric LP-based vaccine candidates that contained multiple CD4(+) and CD8(+) T-cell epitopes from the model protein antigen, ovalbumin. These fully synthetic vaccine candidates were prepared by microwave-assisted solid phase peptide synthesis. The C12 or C16 lipoamino acids were coupled to the N or C terminus of the OVA CD4 peptide epitope. The OVA CD4 LPs and OVA CD8 peptide constructs were then conjugated using azide-alkyne Huisgen cycloaddition to give multivalent synthetic vaccines. Physiochemical characterisation of these vaccines showed a tendency to self-assemble in aqueous media. Changes in lipid length and position induced self-assembly with significant changes to their morphology and secondary structure as shown by transmission electron microscopy and circular dichroism.

  9. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  10. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  11. Hydroxamic Acids in Asymmetric Synthesis

    PubMed Central

    Li, Zhi; Yamamoto, Hisashi

    2012-01-01

    Metal-catalyzed stereoselective reactions are a central theme in organic chemistry research. In these reactions, the stereoselection is achieved predominantly by introducing chiral ligands at the metal catalyst’s center. For decades, researchers have sought better chiral ligands for asymmetric catalysis and have made great progress. Nevertheless, to achieve optimal stereoselectivity and to catalyze new reactions, new chiral ligands are needed. Due to their high metal affinity, hydroxamic acids play major roles across a broad spectrum of fields from biochemistry to metal extraction. Dr. K. Barry Sharpless first revealed their potential as chiral ligands for asymmetric synthesis in 1977: He published the chiral vanadium-hydroxamic-acid-catalyzed, enantioselective epoxidation of allylic alcohols before his discovery of Sharpless Asymmetric Epoxidation, which uses titanium-tartrate complex as the chiral reagent. However, researchers have reported few highly enantioselective reactions using metal-hydroxamic acid as catalysts since then. This Account summarizes our research on metal-catalyzed asymmetric epoxidation using hydroxamic acids as chiral ligands. We designed and synthesized a series of new hydroxamic acids, most notably the C2-symmetric bis-hydroxamic acid (BHA) family. V-BHA-catalyzed epoxidation of allylic and homoallylic alcohols achieved higher activity and stereoselectivity than Sharpless Asymmetric Epoxidation in many cases. Changing the metal species led to a series of unprecedented asymmetric epoxidation reactions, such as (i) single olefins and sulfides with Mo-BHA, (ii) homoallylic and bishomoallylic alcohols with Zr- and Hf-BHA, and (iii) N-alkenyl sulfonamides and N-sulfonyl imines with Hf-BHA. These reactions produce uniquely functionalized chiral epoxides with good yields and enantioselectivities. PMID:23157425

  12. Green synthesis and characterisation of platinum nanoparticles using quail egg yolk

    NASA Astrophysics Data System (ADS)

    Nadaroglu, Hayrunnisa; Gungor, Azize Alayli; Ince, Selvi; Babagil, Aynur

    2017-02-01

    Nanotechnology is extensively used in all parts today. Therefore, nano synthesis is also significant in all explored areas. The results of studies conducted have revealed that nanoparticle synthesis is performed by using both chemical and physical methods. It is well known that these syntheses are carried out at high charge, pressure and temperature in harsh environments. Therefore, this study investigated green synthesis method that sustains more mild conditions. In this study, quail egg yolk having high vitamin and protein content was prepared for green synthesis reaction and used for the synthesis of platinum nanoparticles in the reaction medium. Reaction situations were optimised as a function of pH, temperature, time and concentration by using quail egg yolk. The results showed that the highest platinum nanoparticles were synthesised at 20 °C and pH 6.0 for 4 h. Also, optimal concentration of metal ions was established as 0.5 mM. The synthesised platinum nanoparticles were characterised by using UV spectrum, X-ray diffraction and scanning electron microscope.

  13. Phosphatidic Acid Synthesis in Bacteria

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2012-01-01

    Membrane phospholipid synthesis is a vital facet of bacterial physiology. Although the spectrum of phospholipid headgroup structures produced by bacteria is large, the key precursor to all of these molecules is phosphatidic acid (PtdOH). Glycerol-3-phosphate derived from the glycolysis via glycerol-phosphate synthase is the universal source for the glycerol backbone of PtdOH. There are two distinct families of enzymes responsible for the acylation of the 1-position of glycerol-3-phosphate. The PlsB acyltransferase was discovered in Escherichia coli, and homologs are present in many eukaryotes. This protein family primarily uses acyl-acyl carrier protein (ACP) endproducts of fatty acid synthesis as acyl donors, but may also use acyl-CoA derived from exogenous fatty acids. The second protein family, PlsY, is more widely distributed in bacteria and utilizes the unique acyl donor, acyl-phosphate, which is produced from acyl-ACP by the enzyme PlsX. The acylation of the 2-position is carried out by members of the PlsC protein family. All PlsCs use acyl-ACP as the acyl donor, although the PlsCs of the γ-proteobacteria also may use acyl-CoA. Phospholipid headgroups are precursors in the biosynthesis of other membrane-associated molecules and the diacylglycerol product of these reactions is converted to PtdOH by one of two distinct families of lipid kinases. The central importance of the de novo and recycling pathways to PtdOH in cell physiology suggest these enzymes are suitable targets for the development of antibacterial therapeutics in Gram-positive pathogens. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:22981714

  14. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  15. Abscisic Acid Synthesis and Response

    PubMed Central

    Finkelstein, Ruth

    2013-01-01

    Abscisic acid (ABA) is one of the “classical” plant hormones, i.e. discovered at least 50 years ago, that regulates many aspects of plant growth and development. This chapter reviews our current understanding of ABA synthesis, metabolism, transport, and signal transduction, emphasizing knowledge gained from studies of Arabidopsis. A combination of genetic, molecular and biochemical studies has identified nearly all of the enzymes involved in ABA metabolism, almost 200 loci regulating ABA response, and thousands of genes regulated by ABA in various contexts. Some of these regulators are implicated in cross-talk with other developmental, environmental or hormonal signals. Specific details of the ABA signaling mechanisms vary among tissues or developmental stages; these are discussed in the context of ABA effects on seed maturation, germination, seedling growth, vegetative stress responses, stomatal regulation, pathogen response, flowering, and senescence. PMID:24273463

  16. Characterising the phase behaviour of stearic acid and its triethanolamine soap and acid-soap by infrared spectroscopy.

    PubMed

    Pudney, Paul D A; Mutch, Kevin J; Zhu, Shiping

    2009-07-07

    The behaviour of stearic acid neutralised by triethanolamine to form soap and its acid-soap has been examined by infrared spectroscopy. It was found that not only could the neutralisation behaviour be characterised, but the thermotropic behaviour could also be followed. The neutralisation confirmed the formation of a fixed stoichiometeric ratio, 2 : 1, acid-soap. When following the thermotropic behaviour the break up of the acid-soap could be followed along with various disordering and melting transitions of the alkyl chain tail. This allowed all the thermal transitions that have been observed to be characterised in terms of the type of molecular rearrangement that was occurring and also the transition temperature at which they occurred. This allowed the binary phase diagram to be plotted and understood for this system. This is the first time IR has been used to measure a whole phase diagram of this type. The nature of the acid-soap complex itself was also characterised, with very short hydrogen bonds being present as well as a free, non-hydrogen bonded, hydroxyl group.

  17. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions.

    PubMed

    Verboekend, D; Nuttens, N; Locus, R; Van Aelst, J; Verolme, P; Groen, J C; Pérez-Ramírez, J; Sels, B F

    2016-06-13

    Faujasite (X, Y, and USY) zeolites represent one of the most widely-applied and abundant catalysts and sorbents in the chemical industry. In the last 5 years substantial progress was made in the synthesis, characterisation, and catalytic exploitation of hierarchically-structured variants of these zeolites. Hererin, we provide an overview of these contributions, highlighting the main advancements regarding the evaluation of the nature and functionality of introduced secondary porosity. The novelty, efficiency, versatility, and sustainability of the reported bottom-up and (predominately) top-down strategies are discussed. The crucial role of the relative stability of faujasites in aqueous media is highlighted. The interplay between the physico-chemical properties of the hierarchical zeolites and their use in petrochemical and biomass-related catalytic processes is assessed.

  18. Enzymatic synthesis of cinnamic acid derivatives.

    PubMed

    Lee, Gia-Sheu; Widjaja, Arief; Ju, Yi-Hsu

    2006-04-01

    Using Novozym 435 as catalyst, the syntheses of ethyl ferulate (EF) from ferulic acid (4-hydroxy 3-methoxy cinnamic acid) and ethanol, and octyl methoxycinnamate (OMC) from p-methoxycinnamic acid and 2-ethyl hexanol were successfully carried out in this study. A conversion of 87% was obtained within 2 days at 75 degrees C for the synthesis of EF. For the synthesis of OMC at 80 degrees C, 90% conversion can be obtained within 1 day. The use of solvent and high reaction temperature resulted in better conversion for the synthesis of cinnamic acid derivatives. Some cinnamic acid esters could also be obtained with higher conversion and shorter reaction times in comparison to other methods reported in the literature. The enzyme can be reused several times before significant activity loss was observed.

  19. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  20. Synthesis, characterisation and drug release properties of microspheres of polystyrene with aliphatic polyester side-chains.

    PubMed

    Kukut, Manolya; Karal-Yilmaz, Oksan; Yagci, Yusuf

    2014-01-01

    A series of graft copolymers consisting of polystyrene backbone with biocompatible side chains based on (co)polymers of l-lactic acid and glycolic acid were synthesised by combination two controlled polymerisations, namely, nitroxide mediated radical polymerisation (NMRP) and ring opening polymerisation (ROP) with "Click" chemistry. The main goal of this work was to design new biodegradable microspheres using obtained graft copolymers for long-term sustained release of imatinib mesylate (IMM) as a model drug. The IMM loaded microspheres of the graft copolymers, polystyrene-g-poly(lactide-co-glycolide) (PS-g-PLLGA), polystyrene-g-poly(lactic acid) (PS-g-PLLA) and poly(lactic-coglycolic acid) (PLLGA) were then prepared by a modified water-in-oil-in-water (w1/o/w2) double emulsion/solvent evaporation technique. The optimised microspheres were characterised by particle size, encapsulation efficiency, and surface morphology also; their degradation and release properties were studied in vitro. The degradation studies of three different types of microspheres showed that the PS backbone of the graft copolymers slows down the degradation rate compared to PLLGA.

  1. Synthesis of Pulcherriminic Acid by Bacillus subtilis

    PubMed Central

    Uffen, Robert L.; Canale-Parola, E.

    1972-01-01

    The pathway of pulcherriminic acid synthesis in Bacillus subtilis strains AM and AM-L11 (a leucine-requiring auxotroph) was investigated. Determinations of radioactivity in pulcherriminic acid synthesized by cells growing in media containing 14C-labeled amino acids indicated that B. subtilis produced pulcherriminic acid from l-leucine. The organism utilized the carbon skeletons of two l-leucine molecules to synthesize one molecule of pulcherriminic acid. Similar results were obtained with starved cell suspensions. Growing cells formed significant amounts of pulcherriminic acid only in media including a carbohydrate such as starch. However, carbohydrate carbon was not required for the synthesis of pulcherriminic acid molecules. Data obtained with cell suspensions supported the hypothesis that cyclo-l-leucyl-l-leucyl is an intermediate in pulcherriminic acid biosynthesis and indicated that molecular oxygen is required for the conversion of cyclo-l-leucyl-l-leucyl to pulcherriminic acid. A pathway for the synthesis of pulcherrimin from l-leucine in B. subtilis is proposed. PMID:4204912

  2. Nitrated fatty acids: synthesis and measurement.

    PubMed

    Woodcock, Steven R; Bonacci, Gustavo; Gelhaus, Stacy L; Schopfer, Francisco J

    2013-06-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia/reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis and sample extraction from complex biological matrices and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by liquid chromatography-mass spectrometry. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed.

  3. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  4. New indole-isoxazolone derivatives: Synthesis, characterisation and in vitro SIRT1 inhibition studies.

    PubMed

    Panathur, Naveen; Gokhale, Nikhila; Dalimba, Udayakumar; Koushik, Pulla Venkat; Yogeeswari, Perumal; Sriram, Dharmarajan

    2015-07-15

    A new series of indole-isoxazolone hybrids bearing substituted amide, substituted [(1,2,3-triazol-4-yl)methoxy]methyl group or substituted benzylic ether at position-2 of the indole nucleus was synthesised using a facile synthetic route and the molecules were characterised using spectroscopic techniques. The molecules were screened against three human cancer cell lines to evaluate their in vitro cytotoxic property. Most of the trifluoromethyl substituted derivatives exhibited better growth inhibition activity than their methyl substituted analogues. The SIRT1 inhibition activity of two potent molecules (I17 and I18) was investigated and the SIRT1 IC50 values are 35.25 and 37.36 μM, respectively for I17 and I18. The molecular docking studies with SIRT1 enzyme revealed favourable interactions of the molecule I17 with the amino acids constituting the receptor enzyme.

  5. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  6. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  7. [Total synthesis of nordihydroguaiaretic acid].

    PubMed

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized.

  8. Characterisation of separator papers for use in valve regulated lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Ball, R. J.; Evans, R.; Stevens, R.

    Separator papers are an essential component of a valve regulated lead/acid (VRLA) battery. In addition to separating the positive and negative electrodes, they provide a constant pressure on the active materials thereby reducing the rate of degradation during cycling. Dendrites formed from the negative active material are also less likely to cause short circuits in batteries where a separator is employed. The level to which a separator will influence the performance of a VRLA battery it strongly dependent on its properties. This paper describes the results from a series of tests used to characterise the properties of separators most influential to battery performance. These properties include, the macroscopic structure, permittivity and wicking rates. During the operational life of a VRLA battery the volume of electrolyte will decrease, due mainly to the electrolysis of water during overcharging. The consequence of this process is a variation of acid saturation during the life of the battery, which will have a direct influence on the compressive and diffusive properties of the separator. Compressive and diffusive characteristics were therefore measured over a range of saturation levels. Characterisation was conducted on three separator types. Types A and B were 100% glass but had slightly different structures and type C contained 8% polyester fibres mixed with glass.

  9. Pectin functionalised by fatty acids: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic characterisation

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania

    2015-01-01

    Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.

  10. Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies

    PubMed Central

    Yamgar, Ramesh S.; Nivid, Y.; Nalawade, Satish; Mandewale, Mustapha; Atram, R. G.; Sawant, Sudhir S.

    2014-01-01

    The synthesis and antimicrobial activity of novel Zn(II) metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z)-{[3-(N-methylamino)propyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E)-{[4-(1H-1,2,4-triazol-1-ylmethyl)phenyl]imino}methyl]phenol, and (4S)-4-{4-[(E)-(2-hydroxybenzylidene)amino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria: E. coli and Pseudomonas fluorescens, Gram positive bacteria: Staphylococcus aureus, and also against fungi, that is, C. albicans and A. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL). The “in vitro” data has identified [Zn(NMAPIMHMC)2]·2H2O, [Zn(TMPIMP)2]·2H2O, and [Zn(HBABO)2]·2H2O as potential therapeutic antifungal agents against C. albicans and A. niger. PMID:24707242

  11. Synthesis of pyromellitic acid esters

    NASA Technical Reports Server (NTRS)

    Fedorova, V. A.; Donchak, V. A.; Martynyuk-Lototskaya, A. N.

    1985-01-01

    The ester acids necessary for studyng the thermochemical properties of pyromellitic acid (PMK)-based peroxides were investigated. Obtaining a tetramethyl ester of a PMK was described. The mechanism of an esterification reaction is discussed, as is the complete esterification of PMK with primary alcohol.

  12. A plausibly prebiotic synthesis of phosphonic acids.

    PubMed

    de Graaf, R M; Visscher, J; Schwartz, A W

    1995-11-30

    The insolubility of calcium phosphate in water is a significant stumbling block in the chemistry required for the origin of life. The discovery of alkyl phosphonic acids in the Murchison meteorite suggests the possibility of delivery of these water-soluble, phosphorus-containing molecules by meteorites or comets to the early Earth. This could have provided a supply of organic phosphorus for the earliest stages of chemical evolution; although probably not components of early genetic systems, phosphonic acids may have been precursors to the first nucleic acids. Here we report the synthesis of several phosphonic acids, including the most abundant found in the Murchison meteorite, by ultraviolet irradiation of orthophosphorous acid in the presence of formaldehyde, primary alcohols, or acetone. We argue that similar reactions might explain the presence of phosphonic acids in Murchison, and could also have occurred on the prebiotic Earth.

  13. Synthesis of Alkyl Methylphosphonic Acid Esters

    SciTech Connect

    Mong, Gary M.; Harvey, Scott D.; Campbell, James A.

    2005-08-01

    This manuscript describes a simple synthesis and purification of cyclohexyl methylphosphonic and isopropyl methylphosphonic acids that provides high purity (>95% purity) product in gram quantities. Based on needs for improved analytical methods for indirect detection of nerve agent use, there is an increasing demand for these nerve agent hydrolysis products. These products are not commercially available. Synthesis is based on reaction of equimolar amounts of alcohol with methylphosphonic dichloride in toluene followed by the addition of excess water (two mole equivalents). The product was then extracted from the resulting aqueous layer into chloroform. The extraction scheme proved highly effective in removing unreacted starting materials and reaction by-products.

  14. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the snythesis methods of the prior art.

  15. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Martins, Cláudia P B; Freeman, Sally; Alder, John F; Brandt, Simon D

    2009-08-14

    The psychoactive properties of N,N-dimethyltryptamine (DMT) are known to induce altered states of consciousness in humans. These properties attract great interest from clinical, neuroscientific, clandestine and forensic communities. The Breath of Hope Synthesis was reported on an internet website as a convenient two-step methodology for the preparation of DMT. The analytical characterisation of the first stage was the subject of previous publications by the authors and involved the thermal decarboxylation of tryptophan and the formation of tryptamine. The present study reports on the characterisation of the second step of this procedure which was based on the methylation of tryptamine. This employed methyl iodide and benzyltriethylammonium chloride/sodium hydroxide as a phase transfer catalyst. The reaction product was characterised by liquid chromatography/electrospray ionisation tandem mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry. Quantitative evaluation was carried out in positive multiple reaction monitoring mode (MRM), which included synthesis of the identified reaction products. MRM screening of the product did not lead to the detection of DMT. Instead, 11.1% tryptamine starting material, 21.0% N,N,N-trimethyltryptammonium iodide (TMT) and 47.4% 1-N-methyl-TMT were detected. A 0.5% trace of the monomethylated N-methyltryptamine was also detected. This study demonstrated the impact on product purity of doubtful synthetic methodologies discussed on the internet.

  16. Methotrexate-conjugated quantum dots: synthesis, characterisation and cytotoxicity in drug resistant cancer cells.

    PubMed

    Johari-Ahar, Mohammad; Barar, Jaleh; Alizadeh, Ali Mohammad; Davaran, Soodabeh; Omidi, Yadollah; Rashidi, Mohammad-Reza

    2016-01-01

    Methotrexate (MTX), a folic acid derivative, is a potent anticancer used for treatment of different malignancies, but possible initiation of drug resistance to MTX by cancer cells has limited its applications. Nanoconjugates (NCs) of MTX to quantum dots (QDs) may favour the cellular uptake via folate receptors (FRs)-mediated endocytosis that circumvents the efflux functions of cancer cells. We synthesised MTX-conjugated l-cysteine capped CdSe QDs (MTX-QD nanoconjugates) and evaluated their internalisation and cytotoxicity in the KB cells with/without resistancy to MTX. The NCs were fully characterised by high resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and optical spectroscopy. Upon conjugation with MTX, the photoluminescence (PL) properties of QDs altered, while an obvious quenching in PL of QDs was observed after physical mixing. The MTX-QD nanoconjugates efficiently internalised into the cancer cells, and induced markedly high cytotoxicity (IC50, 12.0 µg/mL) in the MTX-resistant KB cells as compared to the free MTX molecules (IC50,105.0 µg/mL), whereas, these values were respectively about 7.0 and 0.6 µg/mL in the MTX-sensitive KB cells. Based on these findings, the MTX-QD nanoconjugates are proposed for the targeted therapy of MTX-resistant cancers, which may provide an improved outcome in the relapsed FR-overexpressing cancers.

  17. Synthesis and structural characterisation using Rietveld and pair distribution function analysis of layered mixed titaniumzirconium phosphates

    SciTech Connect

    Burnell, Victoria A.; Readman, Jennifer E.; Tang, Chiu C; Parker, Julia E.; Thompson, Stephen P.; Hriljac, Joseph A.

    2010-07-24

    Crystalline metal (IV) phosphates with variable zirconium-to-titanium molar ratios of general formula (Ti1-xZrx)(HPO4)2 • H2O have been prepared by precipitation of soluble salts of the metals with phosphoric acid and heating the amorphous solids in 12 M H3PO4 in an autoclave. The new materials are structurally characterised by Rietveld analysis of synchrotron X-ray powder diffraction data and pair distribution function (PDF) analysis of high energy synchrotron X-ray total scattering data. A broad range of zirconium-titanium phosphate solid solutions were formed showing isomorphous substitution of titanium by zirconium in the α-titanium phosphate lattice and vice versa for titanium substitution into the α-zirconium phosphate lattice. In both cases the solubility is partial with the coexistence of two substituted phases observed in samples with nominal compositions between the solubility limits.

  18. Benzene-free synthesis of adipic acid.

    PubMed

    Niu, Wei; Draths, K M; Frost, J W

    2002-01-01

    Strains of Escherichia coli were constructed and evaluated that synthesized cis,cis-muconic acid from D-glucose under fed-batch fermentor conditions. Chemical hydrogenation of the cis,cis-muconic acid in the resulting fermentation broth has also been examined. Biocatalytic synthesis of adipic acid from glucose eliminates two environmental concerns characteristic of industrial adipic acid manufacture: use of carcinogenic benzene and benzene-derived chemicals as feedstocks and generation of nitrous oxide as a byproduct of a nitric acid catalyzed oxidation. While alternative catalytic syntheses that eliminate the use of nitric acid have been developed, most continue to rely on petroleum-derived benzene as the ultimate feedstock. In this study, E. coli WN1/pWN2.248 was developed that synthesized 36.8 g/L of cis,cis-muconic acid in 22% (mol/mol) yield from glucose after 48 h of culturing under fed-batch fermentor conditions. Optimization of microbial cis,cis-muconic acid synthesis required expression of three enzymes not typically found in E. coli. Two copies of the Klebsiella pneumoniae aroZ gene encoding DHS dehydratase were inserted into the E. coli chromosome, while the K. pneumoniae aroY gene encoding PCA decarboxylase and the Acinetobacter calcoaceticus catA gene encoding catechol 1,2-dioxygenase were expressed from an extrachromosomal plasmid. After fed-batch culturing of WN1/pWN2.248 was complete, the cells were removed from the broth, which was treated with activated charcoal and subsequently filtered to remove soluble protein. Hydrogenation of the resulting solution with 10% Pt on carbon (5% mol/mol) at 3400 kPa of H2 pressure for 2.5 h at ambient temperature afforded a 97% (mol/mol) conversion of cis,cis-muconic acid into adipic acid.

  19. Synthesis of alpha-amino acids

    DOEpatents

    Davis, J.W. Jr.

    1983-01-25

    A method is described for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R[sub 1]R[sub 2]C(OSOCl)CN, R[sub 1]R[sub 2]C(Cl)CN and [R[sub 1]R[sub 2]C(CN)O][sub 2]SO wherein R[sub 1] and R[sub 2] are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art. No Drawings

  20. Synthesis, characterisation and structures of thio-, seleno- and telluro-ether complexes of gallium(III).

    PubMed

    Gurnani, Chitra; Levason, William; Ratnani, Raju; Reid, Gillian; Webster, Michael

    2008-11-28

    The reactions of GaX3 (X = Cl, Br or I) with SMe2, SeMe2 and TeMe2 (L) in non-coordinating solvents produces only the pseudo-tetrahedral [GaX3L], which have been characterised by IR, Raman and multinuclear NMR (1H, 71Ga, 77Se or 125Te) spectroscopy, and by the crystal structure of [GaCl3(SeMe2)]. The 71Ga NMR resonances show small low frequency shifts for fixed halides as the neutral donors change from S --> Se --> Te. Bidentate ligands including MeS(CH2)2SMe, PhS(CH2)2SPh, MeSe(CH2)2SeMe, nBuSe(CH2)2Se(n)Bu and MeTe(CH2)3TeMe (L-L) also produce complexes with 4-coordinate gallium centres, [(GaX3)2(mu-L-L)], confirmed by the crystal structures of [(GaI3)2(mu-MeS(CH2)2SMe)], [(GaCl3)2(mu-PhS(CH2)2SPh)] and [(GaCl3)2(mu-nBuSe(CH2)2Se(n)Bu)]. The structural data are consistent with the weaker Lewis acidity of the gallium as the halide co-ligands become heavier. Multinuclear NMR studies suggest that in chlorocarbon solutions partial dissociation of the ligands occur, which increases with the halide co-ligand Cl < Br < I. The o-xylyl dithioether, o-C6H4(CH2SMe)2, despite being pre-organised for chelation, also forms [(GaCl3)2(mu-L-L)]. The corresponding diselenoether complex decomposes in solution with C-Se bond cleavage to form the selenonium salt [o-C6H4CH2Se(Me)CH2][GaCl4], which was structurally characterised. The ditelluroether o-C6H4(CH2TeMe)2 undergoes rapid C-Te bond fission and rearrangement upon reaction with GaCl3, and the telluronium species [o-C6H4CH2Te(Me)CH2]+ and [MeTe(CH2(o-C6H4)CH2TeMe)2]+ have been identified by ES+ mass spectrometry from their characteristic isotope patterns.

  1. Benzimidazolium-based novel silver N-heterocyclic carbene complexes: synthesis, characterisation and in vitro antimicrobial activity.

    PubMed

    Sarı, Yakup; Akkoç, Senem; Gök, Yetkin; Sifniotis, Vicki; Özdemir, İlknur; Günal, Selami; Kayser, Veysel

    2016-12-01

    This study reports the synthesis, characterisation and antimicrobial activity of five novel silver N-heterocyclic carbene (Ag-NHC) complexes obtained by N-propylphthalimide and N-methyldioxane substituted benzimidazolium salts with silver oxide. The reactions were performed at room temperature for 24 h in the absence of light. The obtained complexes were identified and characterised by (1)H and (13)C NMR, FT-IR and elemental analysis techniques. The minimum inhibitory concentration (MIC) of the complexes was determined for E. coli, P. aeruginosa, E. faecalis, S. aureus, C. tropicalis and C. albicans in vitro through agar and broth dilution. The results indicated that these complexes exhibit antimicrobial activity. In particular, complex 3 presented the significant broad spectrum antimicrobial activity.

  2. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  3. Cloning and functional characterisation of an enzyme involved in the elongation of Delta6-polyunsaturated fatty acids from the moss Physcomitrella patens.

    PubMed

    Zank, Thorsten K; Zähringer, Ulrich; Beckmann, Christoph; Pohnert, Georg; Boland, Wilhelm; Holtorf, Hauke; Reski, Ralf; Lerchl, Jens; Heinz, Ernst

    2002-08-01

    The moss Physcomitrella patens contains high proportions of polyunsaturated very-long-chain fatty acids with up to 20 carbon atoms. Starting from preformed C18 polyunsaturated fatty acids, their biosynthesis involves a sequence of Delta6-desaturation, Delta6-elongation and Delta5-desaturation. In this report we describe for the first time the characterisation of a cDNA (PSE1) of plant origin with homology to the ELO-genes from Saccharomyces cerevisiae, encoding a component of the Delta6-elongase. Functional expression of PSE1 in S. cerevisiae led to the elongation of exogenously supplied Delta6-polyunsaturated fatty acids. By feeding experiments with different trienoic fatty acids of natural and synthetic origin, both substrate specificity and substrate selectivity of the enzyme were investigated. The activity of Pse1, when expressed in yeast, was not sensitive to the antibiotic cerulenin, which is an effective inhibitor of fatty acid synthesis and elongation. Furthermore, the PSE1 gene was disrupted in the moss by homologous recombination. This led to a complete loss of all C20 polyunsaturated fatty acids providing additional evidence for the function of the cDNA as coding for a component of the Delta6-elongase. The elimination of the elongase was not accompanied by a visible alteration in the phenotype, indicating that C20-PUFAs are not essential for viability of the moss under phytotron conditions.

  4. Characterisation of a highly saturated Irvingia gabonensis seed kernel oil with unusual linolenic acid content.

    PubMed

    Zoué, Lessoy T; Bédikou, Micaël E; Faulet, Betty M; Gonnety, Jean T; Niamké, Sébastien L

    2013-02-01

    The search for new sources of oil with improved characteristics has focused our attention on the characterisation of Irvingia gabonensis seed kernel oil. Physicochemical analysis have revealed the following assets: refractive index (1.42 ± 0.00), free fatty acids (2.3 ± 0.8%), peroxide value (3.33 ± 0.57 meq O(2)/kg), iodine value (32.43 ± 1.22 g I(2)/100 g), saponification value (233.75 ± 2.60 mg KOH/g), unsaponifiable matter (1.5 ± 0.02%), carotenoids (63 ± 0.01 mg β-carotene/100 g) and phospholipids (2.1 ± 0.01%). Absorbance of this oil decreased abruptly in the range of UV-B and UV-A wavelengths. Gas chromatography analysis showed that the major fatty acids were saturated, being mainly composed of lauric (C12:0, 39.35 ± 0.01%) and myristic acids (C14:0, 20.54 ± 0.01%). Nevertheless, an unusually high amount (6.44 ± 0.02%) of linolenic acid was also noted. Mass spectrometer analysis of volatile compounds highlighted the presence of various aromatic and aliphatic organic compounds. I. gabonensis seed kernel oil also showed oxidative stability at 60 °C after 12 days of storage with maximum peroxide value of 34.66 meq O(2)/kg. In view of these interesting characteristics, I. gabonensis seed kernel could be used as an alternative source of oil for lipid industries.

  5. Characterisation of patients with primary biliary cirrhosis responding to long term ursodeoxycholic acid treatment

    PubMed Central

    Leuschner, M; Dietrich, C; You, T; Seidl, C; Raedle, J; Herrmann, G; Ackermann, H; Leuschner, U

    2000-01-01

    BACKGROUND—In some patients with primary biliary cirrhosis, ursodeoxycholic acid causes full biochemical normalisation of laboratory data; in others, indexes improve but do not become normal.
AIMS—To characterise complete and incomplete responders.
METHODS—Seventy patients with primary biliary cirrhosis were treated with ursodeoxycholic acid 10-15 mg/kg/day and followed up for 6-13 years.
RESULTS—In 23 patients (33%) with mainly stage I or II disease, cholestasis indexes and aminotransferases normalised within 1-5 years, except for antimitochondrial antibodies. Histological findings improved. Indexes were not normalised in 47 patients (67%) although the improvement of their biochemical functions parallelled the trend in the first group. In these incomplete responders histological findings improved to a lesser extent. The only difference between the two groups before treatment was higher levels of alkaline phosphatase and γ glutamyl transpeptidase in the incomplete responders. At onset of treatment the discriminant value separating responders from incomplete responders was 660 U/l for alkaline phosphatase and 131 U/l for γ glutamyl transpeptidase. One year later it was 239 and 27 U/l (overall predictive value for responders 92%, for incomplete responders 81%). There were no differences between the two groups concerning immune status, antimitochondrial antibody subtypes, liver histology, or any other data. HLA-B39, DRB1*08, DQB1*04 dominated in both groups.
CONCLUSIONS—In patients with mainly early stages of primary biliary cirrhosis, higher values of alkaline phosphatase and γ glutamyl transpeptidase are the only biochemical indexes which allow discrimination between patients who will completely or incompletely respond to ursodeoxycholic acid treatment.


Keywords: primary biliary cirrhosis; prognostic indexes; full response to ursodeoxycholic acid; incomplete responders; anti-p53 autoantibodies; HLA typing PMID:10601067

  6. Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp.

    PubMed

    Karthik, Narayanan; Binod, Parameswaran; Pandey, Ashok

    2015-01-01

    An extremely acidic extracellular chitinase produced by a Streptomyces sp. was purified 12.44-fold by ammonium sulphate precipitation, ion-exchange chromatography and gel-permeation chromatography and further characterised. The molecular mass of the enzyme was estimated to be about 40 kDa by SDS-PAGE. The optimum pH and temperature of the purified enzyme were pH 2 and 6, and 50 °C respectively. The enzyme showed high stability in the acidic pH range of 2-6 and temperature stability of up to 50 °C. Additionally, the effect of some cations and other chemical compounds on the chitinase activity was studied. The activity of the enzyme was considerably retained under salinity conditions of up to 3%. The Km and Vmax values of the enzyme were determined to be 6.74 mg mL(-1) and 61.3 U mg(-1) respectively using colloidal chitin. This enzyme exhibited antifungal activity against phytopathogens revealing a potential biocontrol application in agriculture.

  7. Odiel River, acid mine drainage and current characterisation by means of univariate analysis.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2003-04-01

    Water pollution caused by sulfide oxidation responds to two geochemical processes: a natural one of temporal patterns, and the 'acid mine drainage', an accelerated process derived from the extractive activity. The Odiel River is located in Southwestern Spain; it flows to the south and into the Atlantic Ocean after joining the Tinto River near its mouth, forming a common estuary. There are three kinds of metallic mining in the Odiel River Basin: manganese, gold and silver, and pyrite mining, the latter being the most important in this basin, which is the object of this study. The main objective of the present study is centred in the characterisation of the sources responsible for the 'acid mine drainage' processes in the Odiel River Basin, through the sampling and subsequent chemical and statistical analyses of water samples collected in three types of sources: mine dumps, active mines and abandoned mines. The main conclusion is that mean pH values in the target area are remarkably lower than those in other active and abandoned mines outside of the study zone. On the contrary, mean values for heavy metal sulfates are much higher. Regarding mine dumps, mean values for pH, sulfates and heavy metals are within a similar range to those data known for areas outside the study zone.

  8. Synthesis and optical characterisation of triphenylamine-based hole extractor materials for CdSe quantum dots.

    PubMed

    Planells, Miquel; Reynolds, Luke X; Bansode, Umesh; Chhatre, Shraddha; Ogale, Satishchandra; Robertson, Neil; Haque, Saif A

    2013-05-28

    We report the synthesis and optical characterisation of different triphenylamine-based hole capture materials able to anchor to CdSe quantum dots (QDs). Cyclic voltammetry studies indicate that these materials exhibit reversible electrochemical behaviour. Photoluminescence and transient absorption spectroscopy techniques are used to study interfacial charge transfer properties of the triphenylamine functionalized CdSe QDs. Specifically, we show that the functionalized QDs based on the most easily oxidised triphenylamine display efficient hole-extraction and long-lived charge separation. The present findings should help identify new strategies to control charge transfer QD-based optoelectronic devices.

  9. The analysis of substituted cathinones. Part 3. Synthesis and characterisation of 2,3-methylenedioxy substituted cathinones.

    PubMed

    Kavanagh, Pierce; O'Brien, John; Fox, John; O'Donnell, Cora; Christie, Rachel; Power, John D; McDermott, Seán D

    2012-03-10

    The first synthesis of the 2,3-isomers of MDPV, butylone and methylone is reported. The isomers were characterised by (1)H and (13)C NMR spectroscopy and compared to the corresponding 3,4-isomers. A GC method is described which separates the 3,4- and the 2,3-isomers from each other. IR spectra of the 2,3-isomers are also compared with the corresponding 3,4-isomers. Two seized drug samples were analysed by GCMS and the samples were found to contain the 3,4-isomers.

  10. Characterisation of embroidered 3D electrodes by use of anthraquinone-1,5-disulfonic acid as probe system

    NASA Astrophysics Data System (ADS)

    Aguiló-Aguayo, Noemí; Bechtold, Thomas

    2014-05-01

    New electrode designs are required for electrochemical applications such as batteries or fuel cells. Embroidered 3D Cu porous electrodes with a geometric surface of 100 cm2 are presented and characterised by means of the anthraquinone-1,5-disfulfonic acid (AQDS2-) redox system in alkaline solution. The electrochemical behaviour of the 3D electrode is established by the comparison of cyclic voltammetry responses using a micro cell and a 100 cm2 plane Cu-plate electrode. Dependencies of the peak currents and peak-to-peak potential separation on scan rate and AQDS2- concentration are studied. The AQDS2- characterisation is also performed by means of spectroelectrochemical experiments.

  11. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage.

    PubMed

    Muyanja, C M B K; Narvhus, J A; Treimo, J; Langsrud, T

    2003-02-15

    One hundred and thirteen strains of lactic acid bacteria (LAB) were selected from 351 isolates from 15 samples of traditionally fermented household bushera from Uganda and also from laboratory-prepared bushera. Isolates were phenotypically characterised by their ability to ferment 49 carbohydrates using API 50 CHL kits and additional biochemical tests. Coliforms, yeasts and LAB were enumerated in bushera. The pH, volatile organic compounds and organic acids were also determined. The LAB counts in household bushera varied between 7.1 and 9.4 log cfu ml(-1). The coliform counts varied between < 1 and 5.2 log cfu ml(-1). The pH of bushera ranged from 3.7 to 4.5. Ethanol (max, 0.27%) was the major volatile organic compound while lactic acid (max, 0.52%) was identified as the dominant organic acid in household bushera. The initial numbers of LAB and coliforms in laboratory-fermented bushera were similar; however, the LAB numbers increased faster during the first 24 h. LAB counts increased from 5.5 to 9.0 log cfu ml(-1) during the laboratory fermentation. Coliform counts increased from 5.9 to 7.8 log cfu ml(-1) at 24 h, but after 48 h, counts were less 4 log cfu ml(-1). Yeasts increased from 4.3 to 7.7 log cfu ml(-1) at 48 h, but thereafter decreased slightly. The pH declined from 7.0 to around 4.0. Lactic acid and ethanol increased from zero to 0.75% and 0.20%, respectively. Lactic acid bacteria isolated from household bushera belonged to Lactobacillus, Streptococcus and Enterococcus genera. Tentatively, Lactobacillus isolates were identified as Lactobacillus plantarum, L. paracasei subsp. paracasei, L. fermentum, L. brevis and L. delbrueckii subsp. delbrueckii. Streptococcus thermophilus strains were also identified in household bushera. LAB isolated from bushera produced in the laboratory belonged to five genera (Lactococcus, Leuconostoc, Lactobacillus, Weissella and Enterococcus. Eight isolates were able to produce acid from starch and were identified as Lactococcus

  12. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  13. Physicochemical characterisation of a novel thermogelling formulation for percutaneous penetration of 5-aminolevulinic acid.

    PubMed

    Grüning, Nadja; Müller-Goymann, Christel Charlotte

    2008-06-01

    The present contribution was dedicated to the development and characterisation of a semisolid formulation of 5-aminolevulinic acid (5-ALA), appropriate for the diagnosis and treatment of actinic keratosis in photodynamic therapy. To achieve sufficiently high concentrations of the polar substance within the living epithelium after topical application, the semisolid base was enriched with penetration enhancers. A semisolid liquid crystalline system for drug delivering was the formulation of choice. It was composed of isopropyl alcohol, dimethyl isosorbide, medium chain triglycerides, water, and Pluronic F 127 as a polyoxyethylene-polyoxypropylene surface-active block copolymer. Rheometrical investigations were performed in the oscillatory mode and showed a thermo reversible gelification behaviour of the formulation, which therefore was denoted Thermogel. Permeation studies through human stratum corneum revealed higher permeation coefficients for 5-ALA from the Thermogel than from different German Pharmacopoeia creams. For example a 7.5-fold increase in comparison with Basiscreme DAC, and a 19.5-fold increase compared to water containing hydrophilic ointment. With respect to Dolgit(R) Mikrogel, the permeation coefficient from the Thermogel was 6.4-fold higher. These results were in accordance with those of differential scanning calorimetry measurements. Thermogel disclosed the strongest interactions with stratum corneum lipids.

  14. Electrochemical synthesis and characterisation of hybrid materials polypyrrole/dodecatungstophosphate as protective agents against steel corrosion

    NASA Astrophysics Data System (ADS)

    Bonastre Cano, Jose Antonio

    hand, this pretreatment should guarantee appropriate conditions in order to obtain a coating with high adhesion on carbon steel. Once studied the better parameters for the synthesis of the hybrid material by cyclic voltammetry, hybrid material is morphological, chemical and electrochemical characterised by the following techniques: Cyclic Voltammetry, Scanning Electron Microscopy, Energy Dispersive X Ray, X Ray Photoelectron Spectroscopy and Electrochemical Impedance Spectroscopy. The hybrid material polypyrrole/PW 12O403-. chemical structure presents Fe oxides and hydroxide within the polypyrrole polycationic matrix. Hybrid material polypyrrol/PW12O403- diminishes the corrosion of carbon steel in NaOH and Porland cement filtering solutions. These cement solutions simulate the pore fluid conditions existing in cured mortar or concrete elements. Fe ion concentration data were determinated in corrosion tests. Voltammetric response of polymeric coatings was evaluated by cyclic voltammetry. Finally, the protection provided by hybrid material polypyrrole/PW 12O403, in oxidised and reduced state, was evaluated on carbon steel electrodes embedded in Portland cement mortars immersed in seawater and submitted to an accelerated carbonation process for 265 days. Polymeric material covered carbon steel electrodes in reduced state suffer a Fe gravimetric loss 15 times lower than the ones of bare electrodes against chlorides attack, due to the effect of physical barrier. Hybrid material covered electrodes in oxidised state after being submitted to a carbonation process suffer a Fe gravimetric loss 2.5 times lower than the ones of bare electrodes, due to galvanic protection provided by hybrid material polypyrrole/PW 12O403- on carbon steel.

  15. Chemical Synthesis of a Hyaluronic Acid Decasaccharide

    PubMed Central

    Lu, Xiaowei; Kamat, Medha N.; Huang, Lijun; Huang, Xuefei

    2009-01-01

    The chemical synthesis of a hyaluronic acid decasaccharide using the pre-activation based chemoselective glycosylation strategy is described. Assembly of large oligosaccharides is generally challenging due to the increased difficulties in both glycosylation and deprotection. Indeed, the same building blocks previously employed for hyaluronic acid hexasaccharide syntheses failed to yield the desired decasaccharide. After extensive experimentation, the decasaccharide backbone was successfully constructed with an overall yield of 37% from disaccharide building blocks. The trichloroacetyl group was used as the nitrogen protective group for the glucosamine units and the addition of TMSOTf was found to be crucial to suppress the formation of trichloromethyl oxazoline side-product and enable high glycosylation yield. For deprotections, the combination of a mild basic condition and the monitoring methodology using 1H-NMR allowed the removal of all base-labile protective groups, which facilitated the generation of the fully deprotected HA decasaccharide. PMID:19764799

  16. Chemoenzymatic synthesis of surfactants from carbohydrates, amino acids, and fatty acids.

    PubMed

    Bellahouel, S; Rolland, V; Roumestant, M L; Viallefont, P; Martinez, J

    2001-02-01

    The chemoenzymatic synthesis of new surfactants is reported; they were prepared from unprotected carbohydrates, amino acids, and fatty acids. This study pointed out the factors that govern the possibility to enzymatically bind the carbohydrate to the amino acid.

  17. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  18. Supercritical Propanol-Water Synthesis and Comprehensive Size Characterisation of Highly Crystalline anatase TiO 2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hald, Peter; Becker, Jacob; Bremholm, Martin; Pedersen, Jan S.; Chevallier, Jacques; Iversen, Steen B.; Iversen, Bo B.

    2006-08-01

    Highly crystalline anatase TiO 2 nanoparticles have been synthesised in less than 1 min in a supercritical propanol-water mixture using a continuous flow reactor. The synthesis parameter space ( T, P, concentration) has been explored and the average particle size can be accurately controlled within 10-18 nm with narrow size distributions (2-3 nm). At subcritical conditions amorphous products are obtained, whereas a broad range of T and P in the supercritical regime gives 11-14 nm particles. At high temperature and pressure, the particles size increase to 18 nm. The nanoparticles have been extensively characterised with powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) with excellent agreement on size and size distribution parameters. The SAXS analysis suggests disk-shaped particles with diameters that are approximately double the height. For comparison, a series of conventional autoclave sol-gel syntheses have been carried out. These also produce phase-pure anatase nanoparticles, but with much broader size distributions and at much longer synthesis times (hours). The study demonstrates that synthesis in supercritical fluids is a very promising method for manipulating the size and size distribution of nanoparticles, thus removing one of the key limitations in many applications of nanomaterials.

  19. Escherichia coli Unsaturated Fatty Acid Synthesis

    PubMed Central

    Feng, Youjun; Cronan, John E.

    2009-01-01

    Although the unsaturated fatty acid (UFA) synthetic pathway of Escherichia coli is the prototype of such pathways, several unresolved issues have accumulated over the years. The key players are the fabA and fabB genes. Earlier studies of fabA transcription showed that the gene was transcribed from two promoters, with one being positively regulated by the FadR protein. The other weaker promoter (which could not be mapped with the technology then available) was considered constitutive because its function was independent of FadR. However, the FabR negative regulator was recently shown to represses fabA transcription. We report that the weak promoter overlaps the FadR-dependent promoter and is regulated by FabR. This promoter is strictly conserved in all E. coli and Salmonella enterica genomes sequenced to date and is thought to provide insurance against inappropriate regulation of fabA transcription by exogenous saturated fatty acids. Also, the fabAup promoter, a mutant promoter previously isolated by selection for increased FabA activity, was shown to be a promoter created de novo by a four-base deletion within the gene located immediately upstream of fabA. Demonstration of the key UFA synthetic reaction catalyzed by FabB has been elusive, although it was known to catalyze an elongation reaction. Strains lacking FabB are UFA auxotrophs indicating that the enzyme catalyzes an essential step in UFA synthesis. Using thioesterases specific for hydrolysis of short chain acyl-ACPs, the intermediates of the UFA synthetic pathway have been followed in vivo for the first time. These experiments showed that a fabB mutant strain accumulated less cis-5-dodecenoic acid than the parental wild-type strain. These data indicate that the key reaction in UFA synthesis catalyzed by FabB is elongation of the cis-3-decenoyl-ACP produced by FabA. PMID:19679654

  20. Synthesis and characterisation of YSZ-Al2O3 nanostructured materials.

    PubMed

    Santoyo-Salazar, J; González, G; Schabes-Retchkiman, P S; Ascencio, J A; Tartaj-Salvador, J; Chávez-Carvayar, J A

    2006-07-01

    In this work a co-precipitation route was used to synthesise two yttria-stabilised-zirconia (YSZ) phases with different concentrations of alumina (Al2O3). A tetragonal, with 3 mol% yttria, and a cubic, with 8 mol% yttria, phases were added with alumina in different weight proportions, 90/10, 80/20, 70/30, and 60/40, respectively. After synthesised, products were sintered in a range 800-1100 degrees C for different intervals of time. Compounds were characterised by X-ray diffraction, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Rietveld refinements, using FULPROF-Suite software, were carried out to obtain the cell parameters and structural characterisation of products.

  1. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Devi, P Uma; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond.

  2. Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa.

    PubMed

    Zaka, Mehreen; Abbasi, Bilal Haider; Rahman, Latif-Ur; Shah, Afzal; Zia, Muhammad

    2016-06-01

    The synthesis, characterisation and application of metal nanoparticles have become an important and attractive branch of nanotechnology. In current study, metallic nanoparticles of silver, copper, and gold were synthesised using environment friendly method (polyols process), and applied on medicinally important plant: Eruca sativa. Effects of application of these nanoparticles were evaluated on seed germination frequency and biochemical parameters of plant tissues. Seeds of E. sativa were germinated on Murashige and Skoog (MS) medium incorporated with various combinations of nanoparticles suspension (30 µg/ml). Phytotoxicity study showed that nanoparticles could induce stress in plants by manipulating the endogenous mechanisms. In response to these stresses, plants release various defensive compounds; known as antioxidant secondary metabolites. These plants derived secondary metabolites having a great potential in treating the common human ailments. In the authors study, small-sized nanoparticles showed higher toxicity levels and enhanced secondary metabolites production, total protein content, total flavonoids content and total phenolics content.

  3. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA.

    PubMed

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2012-11-05

    The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.

  4. Catalysis of the Carbonylation of Alcohols to Carboxylic Acids Including Acetic Acid Synthesis from Methanol.

    ERIC Educational Resources Information Center

    Forster, Denis; DeKleva, Thomas W.

    1986-01-01

    Monsanto's highly successful synthesis of acetic acid from methanol and carbon monoxide illustrates use of new starting materials to replace pretroleum-derived ethylene. Outlines the fundamental aspects of the acetic acid process and suggests ways of extending the synthesis to higher carboxylic acids. (JN)

  5. Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu(cdoa)(phen)2].8.8H(2)O and [Cu(4-Mecdoa)(phen)2].13H2O (phen=1,10-phenanthroline).

    PubMed

    Creaven, Bernadette S; Egan, Denise A; Karcz, Dariusz; Kavanagh, Kevin; McCann, Malachy; Mahon, Mary; Noble, Andy; Thati, Bhumika; Walsh, Maureen

    2007-08-01

    Two novel coumarin-based ligands, coumarin-6,7-dioxyacetic acid (1) (cdoaH(2)) and 4-methylcoumarin-6,7-dioxyacetic acid (2) (4-MecdoaH(2)), were reacted with copper(II) and manganese(II) salts to give [Cu(cdoa)(H(2)O)(2)].1.5H(2)O (3), [Cu(4-Mecdoa)(H(2)O)(2)] (4), [Mn(cdoa)(H(2)O)(2)] (5) and [Mn(4-Mecdoa)(H(2)O)(2)].0.5H(2)O (6). The metal complexes, 3-6, were characterised by elemental analysis, IR and UV-Vis spectroscopy, and magnetic susceptibility measurements and were assigned a polymeric structure. 1 and 2 react with Cu(II) in the presence of excess 1,10-phenanthroline (phen) giving [Cu(cdoa)(phen)(2)].8.8H(2)O (7) and [Cu(4-Mecdoa)(phen)(2)].13H(2)O (8), respectively. The X-ray crystal structures of 7 and 8 confirmed trigonal bipyramidal geometries, with the metals bonded to the four nitrogen atoms of the two chelating phen molecules and to a single carboxylate oxygen of the dicarboxylate ligand. The complexes were screened for their antimicrobial activity against a number of microbial species, including methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans. The metal-free ligands 1 and 2 were active against all of the microbes. Complexes 3-6 demonstrated no significant activity whilst the phen adducts 7 and 8 were active against MRSA (MIC(80)=12.1microM), E. coli (MIC(80)=14.9microM) and Patonea agglumerans (MIC(80)=12.6microM). Complex 7 also demonstrated anti-Candida activity (MIC(80)=22microM) comparable to that of the commercially available antifungal agent ketoconazole (MIC(80)=25microM).

  6. Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter.

    PubMed

    Chekli, Laura; Phuntsho, Sherub; Roy, Maitreyee; Shon, Ho Kyong

    2013-09-01

    Iron oxide nanoparticles are becoming increasingly popular for various applications including the treatment of contaminated soil and groundwater; however, their mobility and reactivity in the subsurface environment are significantly affected by their tendency to aggregate. One solution to overcome this issue is to coat the nanoparticles with dissolved organic matter (DOM). The advantages of DOM over conventional surface modifiers are that DOM is naturally abundant in the environment, inexpensive, non-toxic and readily adsorbed onto the surface of metal oxide nanoparticles. In this study, humic acid (HA) and Suwannee River natural organic matter (SRNOM) were tested and compared as surface modifiers for Fe2O3 nanoparticles (NPs). The DOM-coated Fe2O3 NPs were characterised by various analytical methods including: flow field-flow fractionation (FlFFF), high performance size exclusion chromatography (HPSEC) and Fourier transform infrared spectroscopy (FTIR). The stability of the coated NPs was then evaluated by assessing their aggregation and disaggregation behaviour over time. Results showed that both HA and SRNOM were rapidly and readily adsorbed on the surface of Fe2O3 NPs, providing electrosteric stabilisation over a wide range of pH. HPSEC results showed that the higher molecular weight components of DOM were preferentially adsorbed onto the surface of Fe2O3. As SRNOM consists of macromolecules with a higher molecular weight than HA, the measured size of the SRNOM-coated Fe2O3 NPs was 30% larger than the HA-coated Fe2O3 NPs. FTIR results indicated the occurrence of hydrogen bonding arising from electrostatic interaction between the DOM and Fe2O3 NPs. Finally, a stability study showed that after 14 days, small agglomerates and aggregates were formed. The HA-coated Fe2O3 NPs formed agglomerates which were easily disaggregated using a vortex mixer, with the coated NPs returning to their initial size. However, SRNOM-coated Fe2O3 NPs were only partially disaggregated

  7. Characterisation of hexane-degrading microorganisms in a biofilter by stable isotope-based fatty acid analysis, FISH and cultivation.

    PubMed

    Friedrich, Michèle M; Lipski, André

    2010-01-01

    The hexane-degrading bacterial community of a biofilter was characterised by a combination of stable isotope-based phospholipid fatty acid analyses, fluorescence in situ hybridisation and cultivation. About 70 bacterial strains were isolated from a full-scale biofilter used for treatment of hexane containing waste gas of an oil mill. The isolation approach led to 16 bacterial groups, which were identified as members of the Alpha-, Beta- and Gammaproteobacteria, Actinobacteria and Firmicutes. Three groups showed good growth on hexane as the sole source of carbon. These groups were allocated to the genera Gordonia and Sphingomonas and to the Nevskia-branch of the Gammaproteobacteria. Actively degrading populations in the filter material were characterised by incubation of filter material samples with deuterated hexane and subsequent phospholipid fatty acid analysis. Significant labelling of the fatty acids 16:1 cis10, 18:1 cis9 and 18:0 10methyl affiliated the hexane-degrading activity of the biofilter with the isolates of the genus Gordonia. In vitro growth on hexane and in situ labelling of characteristic fatty acids confirmed the central role of these organisms in the hexane degradation within the full-scale biofilter.

  8. Structural characterisation of the fatty acid biosynthesis enzyme FabF from the pathogen Listeria monocytogenes

    PubMed Central

    Soares da Costa, Tatiana P.; Nanson, Jeffrey D.; Forwood, Jade K.

    2017-01-01

    Development of new antimicrobial agents is required against the causative agent for listeriosis, Listeria monocytogenes, as the number of drug resistant strains continues to increase. A promising target is the β-ketoacyl-acyl carrier protein synthase FabF, which participates in the catalysis of fatty acid synthesis and elongation, and is required for the production of phospholipid membranes, lipoproteins, and lipopolysaccharides. In this study, we report the 1.35 Å crystal structure of FabF from L. monocytogenes, providing an excellent platform for the rational design of novel inhibitors. By comparing the structure of L. monocytogenes FabF with other published bacterial FabF structures in complex with known inhibitors and substrates, we highlight conformational changes within the active site, which will need to be accounted for during drug design and virtual screening studies. This high-resolution structure of FabF represents an important step in the development of new classes of antimicrobial agents targeting FabF for the treatment of listeriosis. PMID:28045020

  9. Characterisation of non-autoinducing tropodithietic Acid (TDA) production from marine sponge Pseudovibrio species.

    PubMed

    Harrington, Catriona; Reen, F Jerry; Mooij, Marlies J; Stewart, Fiona A; Chabot, Jean-Baptiste; Guerra, Antonio F; Glöckner, Frank O; Nielsen, Kristian F; Gram, Lone; Dobson, Alan D W; Adams, Claire; O'Gara, Fergal

    2014-12-10

    The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.

  10. Characterisation of Non-Autoinducing Tropodithietic Acid (TDA) Production from Marine Sponge Pseudovibrio Species

    PubMed Central

    Harrington, Catriona; Reen, F. Jerry; Mooij, Marlies J.; Stewart, Fiona A.; Chabot, Jean-Baptiste; Guerra, Antonio F.; Glöckner, Frank O.; Nielsen, Kristian F.; Gram, Lone; Dobson, Alan D. W.; Adams, Claire; O’Gara, Fergal

    2014-01-01

    The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule. PMID:25513851

  11. Characterisation of fatty acids in drying oils used in paintings on canvas by GC and GC-MS analysis.

    PubMed

    Cartoni, G; Russo, M V; Spinelli, F; Talarico, F

    2001-01-01

    Of the various binding media used in paintings, this work examines drying oils. During the initial phase of polymerisation and the progressive ageing process, the fraction of unsaturated and polyunsaturated fatty acids undergoes various changes (reticulation, oxidation, etc.), that give rise to characteristic compounds. Within a broader research project, aimed at the characterisation of binding media, a preliminary study was made of the ageing process of linseed oil. In this regard, linseed oil was spread on a glass or canvas support and then dried in the open air. The ageing of the spread linseed oil was monitored by taking samples of the material at regular intervals. After the fatty acids had changed into methylesters, the samples were analysed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The results obtained have been reported as a ratio between the areas of the chromatographic peaks of the different fatty acids found.

  12. Motualevic Acids and Analogs: Synthesis and Antimicrobial Structure Activity Relationships

    PubMed Central

    Cheruku, Pradeep; Keffer, Jessica L.; Dogo-Isonagie, Cajetan; Bewley, Carole A.

    2010-01-01

    Synthesis of the marine natural products motualevic acids A, E, and analogs in which modifications have been made to the ω-brominated lipid (E)-14,14-dibromotetra-deca-2,13-dienoic acid or amino acid unit are reported, together with antimicrobial activities against Staphylococcus aureus, methicillin-resistant S. aureus, Enterococcus faecium, and vancomycin-resistant Enterococcus. PMID:20538459

  13. Synthesis, characterisation, stereochemistry and biological activity of N-formylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Sakthivel, P.; Ponnuswamy, S.

    2014-09-01

    A new series of N-formyl-2,6-bis(4-methoxyphenyl)piperidin-4-ones 5-8 has been synthesized and characterised using IR, mass and 1H, 13C, DEPT and 2D (COSY and HSQC) NMR spectral techniques. The NMR spectral data indicated that the N-formylpiperidin-4-ones 5-8 prefer to exist in a conformational equilibrium between a syn rotamer with a twist boat conformation (TB1) and an anti rotamer with a twist boat conformation (TB2) in solution. The stereodynamics of these systems have been studied by recording the dynamic 1H NMR spectra of compound 5, and the energy barrier for the N-CO rotation was determined to be 64.3 kJ/mol. All of the synthesized compounds (5-8) were screened for their biological activity.

  14. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  15. Derivatives of diphosphonic acids: synthesis and biological activity

    NASA Astrophysics Data System (ADS)

    Zolotukhina, M. M.; Krutikov, V. I.; Lavrent'ev, A. N.

    1993-07-01

    The scientific-technical and patent literature on the synthesis of derivatives of diphosphonic acids is surveyed. Various methods of synthesis of diphosphonate, phosphonylphosphinyl, and phosphonophosphate compounds are described. The principal aspects of the use of the above compounds in medicine, biochemistry, and agriculture are examined. The bibliography includes 174 references.

  16. Transaminases for the synthesis of enantiopure beta-amino acids

    PubMed Central

    2012-01-01

    Optically pure β-amino acids constitute interesting building blocks for peptidomimetics and a great variety of pharmaceutically important compounds. Their efficient synthesis still poses a major challenge. Transaminases (also known as aminotransferases) possess a great potential for the synthesis of optically pure β-amino acids. These pyridoxal 5'-dependent enzymes catalyze the transfer of an amino group from a donor substrate to an acceptor, thus enabling the synthesis of a wide variety of chiral amines and amino acids. Transaminases can be applied either for the kinetic resolution of racemic compounds or the asymmetric synthesis starting from a prochiral substrate. This review gives an overview over microbial transaminases with activity towards β-amino acids and their substrate spectra. It also outlines current strategies for the screening of new biocatalysts. Particular emphasis is placed on activity assays which are applicable to high-throughput screening. PMID:22293122

  17. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates.

    PubMed

    Chaudhry, Aqif A; Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-09-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO₃-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO₃-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO₃-HA. For silicate-substituted hydroxyapatite (SiO₄-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO₄-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy.

  18. SYNTHESIS OF RIBONUCLEIC ACID BY X-IRRADIATED BACTERIA1

    PubMed Central

    Frampton, E. W.

    1964-01-01

    Frampton, E. W. (The University of Texas M. D. Anderson Hospital and Tumor Institute, Houston). Synthesis of ribonucleic acid by X-irradiated bacteria. J. Bacteriol. 87:1369–1376. 1964.—Postirradiation synthesis of total ribonucleic acid (RNA) and of RNA components was measured after exposure of Escherichia coli B/r to X rays. Net synthesis of RNA measured by the orcinol reaction and by the incorporation of uridine-2-C14 was depressed in irradiated cells, but paralleled the period of postirradiation growth (30 to 40 min). Incorporation of uridine-2-C14, added after net synthesis of RNA had ceased, detected an apparent turnover in a portion of the RNA. Irradiated cells retained their ability to adjust RNA synthesis to growth rate. After a shift-down in growth rate, irradiated cells incorporated radioactive uridine, while the net synthesis of RNA ceased—presumptive evidence for a continued synthesis of messenger RNA. Chloramphenicol addition (100 μg/ml) did not influence the total amount of RNA synthesized. Synthesis of ribosomes and transfer RNA preceded by 0, 5, 10, and 15 min of postirradiation incubation was observed by the resolution of cell-free extracts on sucrose density gradients. Little immediate influence of irradiation could be detected on the synthesis of 50S and 30S ribosomes. A decline was observed in the synthesis of 50S ribosomes with continued postirradiation incubation; 30S ribosomes, ribosomal precursors, and 4S RNA continued to be synthesized. PMID:14188715

  19. Synthesis, purification and mass spectrometric characterisation of a fluorescent Au9@BSA nanocluster and its enzymatic digestion by trypsin

    NASA Astrophysics Data System (ADS)

    Fernández-Iglesias, Nerea; Bettmer, Jörg

    2013-12-01

    Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented for the identification of generated peptides and show a distinctive pattern in comparison to the pure protein. It can be concluded that Au9@BSA might be, in future, an interesting candidate for in vitro studies of protease activities.Nanoclusters of noble metals like Ag and Au have attracted great attention as they form a missing link between isolated metal atoms and nanoparticles. Their particular properties like luminescence in the visible range and nontoxicity make them attractive for bioimaging and biolabelling purposes, especially with use of proteins as stabilising agents. In this context, this study intends the synthesis of a specific Au nanocluster covered by bovine serum albumin (BSA). It is shown that size-exclusion chromatography is feasible for the purification and isolation of the nanocluster. A mass spectrometric characterisation, preferably by ESI-MS, indicates the presence of an Au9@BSA nanocluster. Enzymatic digestion of the nanocluster with trypsin results in a significant increase of the fluorescence intensity at 650 and 710 nm, whereas complementary MALDI-MS studies are presented

  20. Direct Catalytic Asymmetric Synthesis of β-Hydroxy Acids from Malonic Acid.

    PubMed

    Gao, Hang; Luo, Zhenli; Ge, Pingjin; He, Junqian; Zhou, Feng; Zheng, Peipei; Jiang, Jun

    2015-12-18

    A nickel(II) catalyzed asymmetric synthesis of β-hydroxy acids from malonic acid and ketones was developed, revealing for the first time the synthetic utility of malonic acid in the construction of chiral carboxyl acids; importantly, the synthetic potential of this strategy was further demonstrated by the rapid construction of cephalanthrin A, phaitanthrin B, cruciferane, and rice metabolites.

  1. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers.

    PubMed

    Prolongo, S G; Gude, M R; Ureña, A

    2009-10-01

    Epoxy nanocomposites were fabricated using two kinds of nanofiller, amino-functionalized multi-walled carbon nanotubes (CNTs) and non-treated long carbon nanofibers (CNFs). The non-cured mixtures were analysed through viscosity measurements. The effect of the nanoreinforcement on the curing process was determined by differential scanning calorimetry. Finally, the characterisation of cured nanocomposites was carried out studying their thermo-mechanical and electrical behaviour. At room temperature, the addition of CNTs causes a viscosity increase of epoxy monomer much more marked than the introduction of CNFs due to their higher specific area. It was probed that in that case exists chemical reaction between amino-functionalized CNTs and the oxirane rings of epoxy monomer. The presence of nanoreinforcement induces a decrease of curing reaction rate and modifies the epoxy conversion reached. The glass transition temperature of the nanocomposites decreases with the contents of CNTs and CNFs added, which could be related to plasticization phenomena of the nanoreinforcements. The storage modulus of epoxy resin significantly increases with the addition of CNTs and CNFs. This augment is higher with amino-functionalized CNTs due, between other reasons, to the stronger interaction with the epoxy matrix. The electrical conductivity is greatly increased with the addition of CNTs and CNFs. In fact, the percolation threshold is lower than 0.25 wt% due to the high aspect ratio of the used nanoreinforcements.

  2. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    SciTech Connect

    Biswick, Timothy; Jones, William . E-mail: wj10@cam.ac.uk; Pacula, Aleksandra; Serwicka, Ewa

    2006-01-15

    Anion exchange reactions of four structurally related hydroxy salts, Cu{sub 2}(OH){sub 3}NO{sub 3}, Mg{sub 2}(OH){sub 3}NO{sub 3}, Ni{sub 2}(OH){sub 3}NO{sub 3} and Zn{sub 3}(OH){sub 4}(NO{sub 3}){sub 2} are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides. -- Graphical abstract: PXRD patterns of exchange products of (a) Zn{sub 3}(OH){sub 4}(NO{sub 3}){sub 2} (b) Zn{sub 5}(OH){sub 8}(NO{sub 3}){sub 2}.2H{sub 2}O and (c) Cu{sub 2}(OH){sub 3}NO{sub 3} with benzoate anions.

  3. Synthesis, characterisation and application of copper modified brookite titania photocatalyst activated by visible light.

    PubMed

    Osei, Prince Bonsu; Lü, Xiaomeng; Xie, Jimin; Jiang, Deli; Chen, Min; Wei, Xiaojun

    2014-09-01

    Brookite titania nanomaterials modified with Copper Nanoparticles (NPs) Cu-TiO2 were prepared in this research. Hydrothermal method was used to prepare Brookite Titania whiles, copper NPs were loaded on its surface by consecutive ion adsorption and photoreduction. The photocatalyst was characterised by Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance Spectrum (UV-vis DRS) and Inductively Coupled Plasma-Atomic Emission spectroscopy (ICP-AES). The photocatalytic activity of the prepared composite was also determined by photodecolorisation of organic pollutants under visible light. Crystal Violet dye (CV) was used as a model organic pollutant. The optimum loading ratio of Cu/Ti which resulted in the best photodecolorisation efficiency was also determined. The results revealed that the sample Cu-TiO2 (Cu/Ti = 2% molar ratio) with copper particle size of 3 nm had the best photocatalytic decolorisation efficiency of 98% after 50 min of irradiation under visible light. The decolorisation efficiency of the sample Cu-TiO2 (2%) was also higher than that of commercial P25 (38%).

  4. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation.

    PubMed

    Killion, John A; Kehoe, Sharon; Geever, Luke M; Devine, Declan M; Sheehan, Eoin; Boyd, Daniel; Higginbotham, Clement L

    2013-10-01

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone graft materials and exhibited enhanced biomechanical properties compared to the polyethylene glycol hydrogel scaffolds along. Together, the combination of enhanced mechanical properties and the deposition of apatite on the surface of these hydrogel based composites make them an ideal candidate as bone graft substitutes in cancellous bone defects or low load bearing applications.

  5. Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes

    NASA Astrophysics Data System (ADS)

    Surendra Dilip, C.; Siva Kumar, V.; John Venison, S.; Vetha potheher, I.; Rajalaxmi (a) Subahashini, D.

    2013-05-01

    Mixed ligand complexes were synthesised using nicotinamide as the primary ligand and nitrite as the secondary ligand were characterised by FT-IR, UV-Vis, 1H NMR, TG-DTA-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesised complexes a general formula of [M(ONO)2(NA)2] where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) and [Cr2(ONO)6(NA)2] with a distorted octahedral structure were proposed. Thermal analyses show that the complexes lose molecules of hydration initially and subsequently expel anionic and organic ligands in continuous steps. The kinetic parameter values, such as, E*, ΔH*, ΔS* and ΔG* illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficacy of the ligand and its complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to posses efficient antimicrobial properties compared to nicotinamide and a few of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. The intercalating interaction of Cu(II) complex with CT-DNA was inspected by absorption spectral and viscosity studies, thermal denaturation and electro-analytical experiments.

  6. Synthesis, characterisation and molecular structure of stannyl derivatives of molybdenum and iron

    NASA Astrophysics Data System (ADS)

    Neto, J. L.; de Lima, G. M.; Porto, A. O.; Ardisson, J. D.; Doriguetto, A. C.; Ellena, J.

    2006-01-01

    In this paper, we have determined the crystal structure of [Mo(CO) 3(Cp)SnCl 3] ( 1) and used [{Fe(CO) 2Cp}SnCl 2] ( 2) to prepare two new Fe-Sn containing compounds [{Fe(CO) 2Cp}Sn(PDC)] ( 3), where PDC=2,6-pyridinedicarboxylate and [{Fe(CO) 2Cp}Sn(SPy) 2] ( 4). All compounds were fully characterised by multinuclear NMR [ 1H, 13C{ 1H} and 119Sn{ 1H}] and 119Sn [( 2)-( 4)] and 57Fe-Mössbauer spectroscopies. In addition, the structure of ( 1) and ( 3) was determined by X-ray crystallographic studies, which can be summarised as follows: ( 1) triclinic, P-1, a=7.66700(10), b=8.6000(2), c=11.3550(2) Å, α=92.8630(10)°, β=106.5030(10)° and γ=109.4020(10)°, V=668.42(2) Å 3 and Z=2. ( 3) Monoclinic, P-21/c, a=7.6586(4) Å, b=14.4866(8) Å, c=20.1209(8) Å; β=101.690(3)°, 2186.05(19) Å 3 and Z=4.

  7. Inadequacy of prebiotic synthesis as origin of proteinous amino acids.

    PubMed

    Wong, J T; Bronskill, P M

    1979-07-18

    The production of some nonproteinous, and lack of production of other proteinous, amino acids in model prebiotic synthesis, along with the instability of glutamine and asparagine, suggest that not all of the 20 present day proteinous amino acids gained entry into proteins directly from the primordial soup. Instead, a process of active co-evolution of the genetic code and its constituent amino acids would have to precede the final selection of these proteinous amono acids.

  8. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    PubMed Central

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  9. Synthesis and characterisation of bis-cyclen based dinuclear lanthanide complexes.

    PubMed

    Gunnlaugsson, Thorfinnur; Harte, Andrew J

    2006-04-21

    The design and synthesis of several bis-macrocyclic cyclen (1,4,7,10-tetraazacyclododecane) ligands and their corresponding lanthanum or europium complexes is described; these dinuclear lanthanide systems were made by connecting two macrocyclic cyclen moieties through a rigid, covalent, p-xylylenediamide bridge or a flexible aliphatic hexane bridge. These ligands were subsequently functionalised with six acetamide pendant arms (CONR1R2: R1 = R2 = H or CH3, or R1 = H, R2 = CH3). The corresponding lanthanide bis-complexes were then formed by reaction with La(III) and Eu(III) triflates, yielding overall cationic (+VI charged) complexes.

  10. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  11. Synthesis and characterisation of magnetised Dacron-heparin composite employed for antithrombin affinity purification.

    PubMed

    Mercês, Aurenice Arruda Dutra das; Silva, Ricardo de Souza; Silva, Karciano José Santos; Maciel, Jackeline da Costa; Oliveira, Givanildo Bezerra; Buitrago, Davian Martinez; de Aguiar, José Albino Oliveira; de Carvalho-Júnior, Luiz Bezerra

    2016-12-01

    Human antithrombin is a blood derivative widely used in the treatment of coagulation dysfunction. Affinity chromatography using heparin (HEP) derivatives is usually used for antithrombin purification. In this study, an affinity procedure based on a magnetic Dacron-HEP composite is proposed. Dacron was firstly converted to Dacron-hydrazide and magnetised by co-precipitation with of Fe(2+)/Fe(3+) (mDAC). HEP was activated by carbodiimide and N-hydroxysuccinimide and covalently linked to mDAC (mDAC-HEP). EDX and infrared spectra analyses confirmed each synthesis step of mDAC-HEP. This composite exhibited superparamagnetism behaviour. Human plasma was incubated with mDAC-HEP (fresh and stored over a long period) and washed with phosphate buffer containing increasing concentrations of NaCl. Human plasma antithrombin activity was reduced by approximately 20% in the presence of the 1.0M NaCl fraction, and this eluate was able to prolong coagulation time (aPTT) using both preparations. Electrophoresis of the eluates revealed bands corresponding to the expected size of antithrombin (58kDa). The mDAC-HEP particles are reusable. This method presents the following advantages: easy, low-cost synthesis of the composite, magnet-based affinity purification steps, and reusability.

  12. Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation

    SciTech Connect

    Rajkumar, M.; Meenakshisundaram, N.; Rajendran, V.

    2011-05-15

    In this study, a novel method was used to produce a nanostructured composite consisting of hydroxyapatite and sodium alginate by varying the composition of sodium alginate. The structure, morphology, simulated body fluid response and mechanical properties of the synthesised nanocomposites were characterised. From X-ray diffraction analysis, an increase in crystallite size and degree of crystallinity with an increase in the composition of sodium alginate up to 1.5 wt.% was observed. Further, it was found to decrease with an increase in the composition of sodium alginate. A notable peak shift from 1635 to 1607 cm{sup -1} and 1456 to 1418 cm{sup -1} in the Fourier transform infrared spectra of the nanocomposite was observed towards the lower wave number side when compared with pure hydroxyapatite. It reveals a strong interaction between the positively charged calcium (Ca{sup 2+}) and the negatively charged carboxyl group (COO{sup -}) in sodium alginate. Transmission electron microscopy images of pure hydroxyapatite showed a short nanorod-like morphology with an average particle size of 13 nm. Bioresorbability of the samples was observed by immersing them in simulated body fluid medium for 14 days to evaluate the changes in pH and Ca{sup 2+} ion strength. Microhardness shows an increasing trend with an increase in the composition of sodium alginate from 1.5 to 3.0 wt.%, which is similar to that in the density. - Research Highlights: {yields} We have prepared nanohydroxyapatite/sodium alginate as a composite. {yields} Effect of sodium alginate on the properties of nanohydrroxyapatite has been studied. {yields} The sodium alginate ranges from 0 to 3.75 wt.% has been used. {yields} Composites show improved biological and mechanical properties.

  13. A novel Schiff base: Synthesis, structural characterisation and comparative sensor studies for metal ion detections

    NASA Astrophysics Data System (ADS)

    Köse, Muhammet; Purtas, Savas; Güngör, Seyit Ali; Ceyhan, Gökhan; Akgün, Eyup; McKee, Vickie

    2015-02-01

    A novel Schiff base ligand was synthesized by the condensation reaction of 2,6-diformylpyridine and 4-aminoantipyrine in MeOH and characterised by its melting point, elemental analysis, FT-IR, 1H, 13C NMR and mass spectroscopic studies. Molecular structure of the ligand was determined by single crystal X-ray diffraction technique. The electrochemical properties of the Schiff base ligand were studied in different solvents at various scan rates. Sensor ability of the Schiff base ligand was investigated by colorimetric and fluorometric methods. Visual colour change of the ligand was investigated in MeOH solvent in presence of various metal ions Na+, Mg2+, Al3+, K+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+. Upon addition of Al3+ ion into a MeOH solution of the ligand, an orange colour developed which is detectable by naked eye. Fluorescence emission studies showed that the ligand showed single emission band at 630-665 nm upon excitation at 560 nm. Addition of metal ions Na+, Mg2+, K+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ (1:1 M ratio) cause fluorescence quenching, however addition of Al+3 resulted in an increase in fluorescence intensity. No significant variation was observed in the fluorescence intensity caused by Al3+ in presence of other metal ions. Therefore, the Schiff base ligand can be used for selective detection of Al3+ ions in the presence of the other metal ions studied.

  14. Tin(IV) complexes of pyrrolidinedithiocarbamate: synthesis, characterisation and antifungal activity.

    PubMed

    Menezes, D C; Vieira, F T; de Lima, G M; Porto, A O; Cortés, M E; Ardisson, J D; Albrecht-Schmitt, T E

    2005-12-01

    The reaction of ammonium pyrrolidinedithiocarbamate, [NH4{S2CN(CH2)4}], with SnCl2, [Sn(C6H5)2Cl2], [Sn(C6H5)3Cl], [Sn(C4H9)2Cl2] and [Sn(C6H11)3Cl] produced in good yield the compounds [Sn{S2CN(CH2)4}2Cl2] (1), [Sn{S2CN(CH2)4}2Ph2] (2), [Sn{S2CN(CH2)4}Ph3] (3), [Sn{S2CN(CH2)4}2 n-Bu2] (4) and [Sn{S2CN(CH2)4}Cy3] (5). The complexes were characterised by infrared, multinuclear NMR (1H, 13C{1H} and 119Sn{1H}) and 119Sn Mössbauer spectroscopies. In addition, the crystal structure of 4 was determined by X-ray crystallography. The in vitro antifungal activity of the tin(IV) complexes as well of the ligand was performed on human pathogenic fungi, Candida albicans, in concentrations of 0.025; 0.050; 0.100; 0.200; 0.400; 0.800; 1.600 and 3.200 mM. The microorganism presented resistance to the dithiocarbamate ligand and all tin(IV) complexes tested were actives. The highest activity was found for compounds 1 and 4.

  15. Lysophosphatidic acid synthesis and phospholipid metabolism in rat mast cells

    SciTech Connect

    Fagan, D.L.

    1986-01-01

    The role of lysophosphatidic acid in mast cell response to antigen was investigated using an isolated rat serosal mast cell model. The cells were incubated with monoclonal murine immunoglobulin E to the dinitrophenyl hapten and prelabeled with /sup 32/P-orthophosphate or /sup 3/H-fatty acids. Lysophosphatidic acid was isolated form cell extracts by 2-dimensional thin-layer chromatography, and the incorporated radioactivity was assessed by liquid scintillation counting. Lysophosphatidic acid labeling with /sup 32/P was increased 2-4 fold within 5 minutes after the addition of antigen or three other mast cell agonists. Functional group analyses unequivocally showed that the labeled compound was lysophosphatidic acid. Lysophosphatidic acid synthesis was dependent on the activity of diacylglycerol lipase, suggesting formation from monoacylglycerol. In addition, the studies of lysophosphatidic acid synthesis suggest that the addition of antigen to mast cells may initiate more than one route of phospholipid degradation and resynthesis. Whatever the origin of lysophosphatidic acid, the results of this study demonstrated that lysophosphatidic acid synthesis is stimulated by a variety of mast cell agonists. Dose-response, kinetic, and pharmacologic studies showed close concordance between histamine release and lysophosphatidic acid labeling responses. These observations provide strong evidence that lysophosphatidic acid plays an important role in mast cell activation.

  16. Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa dyes

    NASA Astrophysics Data System (ADS)

    Natte, Kishore; Behnke, Thomas; Orts-Gil, Guillermo; Würth, Christian; Friedrich, Jörg F.; Österle, Werner; Resch-Genger, Ute

    2012-02-01

    Current and future developments in the emerging field of nanobiotechnology are closely linked to the rational design of novel fluorescent nanomaterials, e.g. for biosensing and imaging applications. Here, the synthesis of bright near infrared (NIR)-emissive nanoparticles based on the grafting of silica nanoparticles (SNPs) with 3-aminopropyl triethoxysilane (APTES) followed by covalent attachment of Alexa dyes and their subsequent shielding by an additional silica shell are presented. These nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. TEM studies revealed the monodispersity of the initially prepared and fluorophore-labelled silica particles and the subsequent formation of raspberry-like structures after addition of a silica precursor. Measurements of absolute fluorescence quantum yields of these scattering particle suspensions with an integrating sphere setup demonstrated the influence of dye labelling density-dependent fluorophore aggregation on the signaling behaviour of such nanoparticles.

  17. Oleochemical synthesis of an acid cleavable hydrophobe for surfactant use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of a series of branched hydroxy stearates from commercially available methyl oleate and common organic acids is reported. A variety of different acids, with 3 to 8 carbon atoms, and also varying in their branching and functionality, were used. The kinetics of the ring opening reactio...

  18. The enxymatic synthesis and characterization of disolketal iminodiacetic acid (DSIDA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Esterifications between iminodiacetic acid and its methyl and ethyl derivatives with glycerol or solketal have been studied. The synthesis of IDA with solketal was unsuccessful under experimental conditions of 70 degrees C and 200 torr for 24h. However, using dimethyl iminodiacetic acid with solke...

  19. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  20. Co(II) and Cd(II) complexes derived from heterocyclic Schiff-Bases: synthesis, structural characterisation, and biological activity.

    PubMed

    Ahmed, Riyadh M; Yousif, Enaam I; Al-Jeboori, Mohamad J

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L¹) and N'-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L²) are reported. Schiff-base ligands L¹ and L² were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)₂]Cl₂ (where M = Co(II) or Cd(II), L = L¹ or L²) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, ¹H, and ¹³C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G-) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands.

  1. Nucleic acid arrays and methods of synthesis

    DOEpatents

    Sabanayagam, Chandran R.; Sano, Takeshi; Misasi, John; Hatch, Anson; Cantor, Charles

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  2. Phosphoric Acid-Mediated Synthesis of Vinyl Sulfones through Decarboxylative Coupling Reactions of Sodium Sulfinates with Phenylpropiolic Acids.

    PubMed

    Rong, Guangwei; Mao, Jincheng; Yan, Hong; Zheng, Yang; Zhang, Guoqi

    2015-08-07

    A novel phosphoric acid -mediated synthesis of vinyl sulfones through decarboxylative coupling reactions of sodium sulfinates with phenylpropiolic acids is described. This transformation is efficient and environmentally friendly.

  3. Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction.

    PubMed

    Gärtner, Felix; Cozzula, Daniela; Losse, Sebastian; Boddien, Albert; Anilkumar, Gopinatan; Junge, Henrik; Schulz, Thomas; Marquet, Nicolas; Spannenberg, Anke; Gladiali, Serafino; Beller, Matthias

    2011-06-14

    The synthesis of novel, monocationic iridium(III) photosensitisers (Ir-PSs) with the general formula [Ir(III)(C^N)(2)(N^N)](+) (C^N: cyclometallating phenylpyridine ligand, N^N: neutral bidentate ligand) is described. The structures obtained were examined by cyclic voltammetry, UV/Vis and photoluminescence spectroscopy and X-ray analysis. All iridium complexes were tested for their ability as photosensitisers to promote homogeneously catalysed hydrogen generation from water. In the presence of [HNEt(3)][HFe(3)(CO)(11)] as a water-reduction catalyst (WRC) and triethylamine as a sacrificial reductant (SR), seven of the new iridium complexes showed activity. [Ir(6-iPr-bpy)(ppy)(2)]PF(6) (bpy: 2,2'-bipyridine, ppy: 2-phenylpyridine) turned out to be the most efficient photosensitiser. This complex was also tested in combination with other WRCs based on rhodium, platinum, cobalt and manganese. In all cases, significant hydrogen evolution took place. Maximum turnover numbers of 4550 for this Ir-PS and 2770 for the Fe WRC generated in situ from [HNEt(3)][HFe(3)(CO)(11)] and tris[3,5-bis(trifluoromethyl)phenyl]phosphine was obtained. These are the highest overall efficiencies for any Ir/Fe water-reduction system reported to date. The incident photon to hydrogen yield reaches 16.4% with the best system.

  4. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kale, Girish M; Lad, Umesh; Kantardjiev, T

    2010-09-01

    Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis. The antibacterial activity of the synthesized hybrid materials against etalon strains of three different groups of bacteria -Staphylococcus aureus (gram-positive bacteria), Escherichia coli (gram-negative bacteria), Pseudomonas aeruginosa (non-ferment gram-negative bacteria) has been studied as they are commonly found in hospital environment. The hybrid materials showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and therefore have potential applications in biotechnology and biomedical science.

  5. Synthesis and characterisation of large chlorapatite single-crystals with controlled morphology and surface roughness

    PubMed Central

    Couceiro, Ramiro; Franco, Jaime; Saiz, Eduardo; Guitián, Francisco

    2013-01-01

    This work describes the synthesis of chlorapatite single crystals using the molten salt method with CaCl2 as a flux. By manipulating the processing conditions (amount of flux, firing time and temperature, and cooling rates) it is possible to manipulate the crystal morphology from microscopic fibres to large crystals (up to few millimetre long and ~100 μm thick). The crystal roughness can be controlled to achieve very flat surfaces by changing the melt composition “in situ” at high temperature. The Young modulus and hardness of the crystals are 110 ± 15 and 6.6 ± 1.5 GPa respectively as measured by nanoindentation. Crystal dissolution in Hanks solution starts around the defects. Several in vitro assays were performed; ClAp crystals with different size and shape are biocompatible. Cell apoptosis was very low at 5, 10, and 15 days (Caspase-3) for all the samples. Proliferation (MTT) showed to be influenced by surface roughness and size of the crystals. PMID:22806077

  6. New coumarin carboxylates having trifluoromethyl, diethylamino and morpholino terminal groups: Synthesis and mesomorphic characterisations

    NASA Astrophysics Data System (ADS)

    Srinivasa, Hosapalya Thimmaiah; Harishkumar, Hosanagara Narayana; Palakshamurthy, Bandrehalli Siddagangappa

    2017-03-01

    New set of trifluromethyl, diethylamino and morpholino derived coumarin compounds were prepared by reacting various coumarin 3-carboxylic acids with various phenyl esters with peripheral alkyl, ester and polar cyano moieties in the presence of EDC.HCl/DMAP as esterification agent. The chemical structures of new coumarin derivatives were confirmed by standard spectroscopic techniques and mesomorphic behaviours were established by polarised optical microscopy (POM) and differential scanning calorimetry (DSC). Trifluoromethane and morpholino derivatives show SmA/Nematic phase, while diethylamino derivatives did not show liquid crystalline property.

  7. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  8. Effects of bile acid administration on bile acid synthesis and its circadian rhythm in man

    SciTech Connect

    Pooler, P.A.; Duane, W.C.

    1988-09-01

    In man bile acid synthesis has a distinct circadian rhythm but the relationship of this rhythm to feedback inhibition by bile acid is unknown. We measured bile acid synthesis as release of 14CO2 from (26-14C)cholesterol every 2 hr in three normal volunteers during five separate 24-hr periods. Data were fitted by computer to a cosine curve to estimate amplitude and acrophase of the circadian rhythm. In an additional six volunteers, we measured synthesis every 2 hr from 8:00 a.m. to 4:00 p.m. only. During the control period, amplitude (expressed as percentage of mean synthesis) averaged 52% and acrophase averaged 6:49 a.m. During administration of ursodeoxycholic acid (15 mg per kg per day), synthesis averaged 126% of baseline (p less than 0.1), amplitude averaged 43% and acrophase averaged 6:20 a.m. During administration of chenodeoxycholic acid (15 mg per kg per day), synthesis averaged 43% of baseline (p less than 0.001), amplitude averaged 53% and acrophase averaged 9:04 a.m. Addition of prednisone to this regimen of chenodeoxycholic acid to eliminate release of 14CO2 from corticosteroid hormone synthesis resulted in a mean amplitude of 62% and a mean acrophase of 6:50 a.m., values very similar to those in the baseline period. Administration of prednisone alone also did not significantly alter the baseline amplitude (40%) or acrophase (6:28 a.m.). We conclude that neither chenodeoxycholic acid nor ursodeoxycholic acid significantly alters the circadian rhythm of bile acid synthesis in man.

  9. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    NASA Technical Reports Server (NTRS)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  10. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

    PubMed Central

    van der Bij, Hendrik E.

    2015-01-01

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus–zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus–zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research. PMID:26051875

  11. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis.

    PubMed

    van der Bij, Hendrik E; Weckhuysen, Bert M

    2015-10-21

    Phosphorus and microporous aluminosilicates, better known as zeolites, have a unique but poorly understood relationship. For example, phosphatation of the industrially important zeolite H-ZSM-5 is a well-known, relatively inexpensive and seemingly straightforward post-synthetic modification applied by the chemical industry not only to alter its hydrothermal stability and acidity, but also to increase its selectivity towards light olefins in hydrocarbon catalysis. On the other hand, phosphorus poisoning of zeolite-based catalysts, which are used for removing nitrogen oxides from exhaust fuels, poses a problem for their use in diesel engine catalysts. Despite the wide impact of phosphorus-zeolite chemistry, the exact physicochemical processes that take place require a more profound understanding. This review article provides the reader with a comprehensive and state-of-the-art overview of the academic literature, from the first reports in the late 1970s until the most recent studies. In the first part an in-depth analysis is undertaken, which will reveal universal physicochemical and structural effects of phosphorus-zeolite chemistry on the framework structure, accessibility, and strength of acid sites. The second part discusses the hydrothermal stability of zeolites and clarifies the promotional role that phosphorus plays. The third part of the review paper links the structural and physicochemical effects of phosphorus on zeolite materials with their catalytic performance in a variety of catalytic processes, including alkylation of aromatics, catalytic cracking, methanol-to-hydrocarbon processing, dehydration of bioalcohol, and ammonia selective catalytic reduction (SCR) of NOx. Based on these insights, we discuss potential applications and important directions for further research.

  12. Total Synthesis of (±)- and (−)-Actinophyllic Acid

    PubMed Central

    Martin, Connor L.; Overman, Larry E.; Rohde, Jason M.

    2010-01-01

    Development of efficient sequences for the total syntheses of (±)-actinophyllic acid (rac-1) and (−)-actinophyllic acid (1) are described. The central step in these syntheses is the aza-Cope/Mannich reaction, which constructs the previously unknown hexacyclic ring system of actinophyllic acid in one step from much simpler tetracyclic precursors. The tetracyclic hexahydro-1,5-methano-1H-azocino[4,3-b]indole ketone rac-37 is assembled from o-nitrophenylacetic acid in four steps, with oxidative cyclization of a dienolate derivative of tricyclic precursor rac-35 being the central step. In the first-generation synthesis, this intermediate is transformed in two steps to homoallyl amine rac-43, whose formaldiminium derivative undergoes efficient aza-Cope/Mannich reaction to give pentacyclic ketone rac-44. In four additional steps, this intermediate is advanced to (±)-actinophyllic acid. The synthesis is streamlined by elaborating ketone rac-37 to β-hydroxyester intermediate rac-53, which is directly transformed to (±)-actinophyllic acid upon exposure to HCl and paraformaldehyde. This concise second-generation total synthesis of (±)-actinophyllic acid is realized in 22% overall yield from commercially available di-tert-butylmalonate and o-nitrophenylacetic acid by a sequence that proceeds by way of only six isolated intermediates. The first enantioselective total synthesis of (−)-actinophyllic acid (1) is accomplished by this direct sequence from tricyclic keto malonate (S)-35. Catalytic enantioselective reduction of α,β-unsaturated ketone 66 is the key step in the preparation of intermediate (S)-35 from the commercially available Boc-amino acid 65. Discussed also is the possibility that the aza-Cope/Mannich reaction might be involved in the biosynthesis of (−)-actinophyllic acid. PMID:20218696

  13. Induction of collagen synthesis by ascorbic acid. A possible mechanism.

    PubMed

    Pinnel, S R; Murad, S; Darr, D

    1987-12-01

    L-Ascorbic acid stimulates procollagen synthesis in cultured human skin fibroblasts without appreciably altering noncollagen protein synthesis. The effect is unrelated to intracellular degradation of newly synthesized procollagen. Levels of mRNA for pro alpha 1(I), pro alpha 2(I), and pro alpha 1(III), measured by hybridization with the corresponding cDNA probes, are elevated in the presence of ascorbic acid, whereas the level of mRNA for fibronectin is unchanged. Levels of functional mRNA for procollagen, measured in a cell-free translation assay, are specifically increased in the presence of ascorbic acid. Thus, ascorbic acid appears to control the expression of three different procollagen genes, each of which is located on a separate chromosome. It is proposed that intracellularly accumulated procollagen in ascorbate deficiency may lead to a translational repression of procollagen synthesis. Ascorbic acid may relieve this block by promoting hydroxyproline formation and, consequently, secretion of procollagen from the cell. The increased level of procollagen mRNA under the influence of ascorbic acid may be secondary to increased synthesis of procollagen polypeptides; the control point may be gene transcription or mRNA degradation.

  14. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  15. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    PubMed

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.

  16. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    PubMed

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  17. Pyrophosphate-condensing activity linked to nucleic acid synthesis.

    PubMed Central

    Volloch, V Z; Rits, S; Tumerman, L

    1979-01-01

    In some preparations of DNA dependent RNA polymerase a new enzymatic activity has been found which catalyzes the condensation of two pyrophosphate molecules, liberated in the process of RNA synthesis, to one molecule of orthophosphate and one molecule of Mg (or Mn) - chelate complex with trimetaphosphate. This activity can also cooperate with DNA-polymerase, on condition that both enzymes originate from the same cells. These results point to two general conclusions. First, energy is conserved in the overall process of nucleic acid synthesis and turnover, so that the process does not require an energy influx from the cell's general resources. Second, the synthesis of nucleic acids is catalyzed by a complex enzyme system which contains at least two separate enzymes, one responsible for nucleic acid polymerization and the other for energy conservation via pyrophosphate condensation. Images PMID:88040

  18. Fatty acid microemulsion for the treatment of neonatal conjunctivitis: quantification, characterisation and evaluation of antimicrobial activity.

    PubMed

    Butt, Ummara; ElShaer, Amr; Snyder, Lori A S; Chaidemenou, Athina; Alany, Raid G

    2016-12-01

    Fatty acids (FAs) are used by many organisms as defence mechanism against virulent bacteria. The high safety profile and broad spectrum of activity make them potential alternatives to currently used topical antibiotics for the treatment of eye infections in neonates. The current study utilised a Design of Experiment approach to optimise the quantification of five fatty acids namely; lauric acid, tridecanoic acid, myristoleic acid, palmitoleic acid and α-linolenic acid. The significance of the influence of the experimental parameters such as volume of catalyst, volume of n-hexane, incubation temperature, incubation time and the number of extraction steps on derivatisation was established by statistical screening with a factorial approach. Derivatisation was confirmed using attenuated total reflectance infrared (ATR) and 1H NMR spectrum. A gas chromatographic method (GC-FID) was developed and validated according to ICH guidelines for the identification and quantification of fatty acids. The results were found to be linear over the concentration range studied with coefficient of variation greater than 0.99 and high recovery values and low intra-day and inter-day variation values for all FAs. Then, different α-linolenic acid-based microemulsions (MEs) were prepared using Tween 80 as surfactant, polyethylene glycol 400 (PEG 400) as co surfactant and water as aqueous phase. The developed GC method was used to quantify the FA content in ME formulations. The results indicated that the developed GC method is very effective to quantify the FA content in the ME formulations. The antimicrobial efficacy of FA-based MEs were tested against Staphylococcus aureus. It was concluded that the FA-based MEs have strong antimicrobial effect against S. aureus.

  19. Synthesis, characterisation and bioimaging of a fluorescent rhenium-containing PNA bioconjugate.

    PubMed

    Gasser, Gilles; Pinto, Antonio; Neumann, Sebastian; Sosniak, Anna M; Seitz, Michael; Merz, Klaus; Heumann, Rolf; Metzler-Nolte, Nils

    2012-02-28

    A new rhenium tricarbonyl complex of a bis(quinoline)-derived ligand (2-azido-N,N-bis((quinolin-2-yl)methyl)ethanamine, L-N(3)), namely [Re(CO)(3)(L-N(3))]Br was synthesized and characterized in-depth, including by X-ray crystallography. [Re(CO)(3)(L-N(3))]Br exhibits a strong UV absorbance in the range 300-400 nm with a maximum at 322 nm, and upon photoexcitation, shows two distinct emission bands at about 430 and 560 nm in various solvents (water, ethylene glycol). [Re(CO)(3)(L-N(3))]Br could be conjugated, on a solid phase, to a peptide nucleic acid (PNA) oligomer using the copper(I)-catalyzed azide-alkyne cycloaddition reaction (Cu-AAC, "click" chemistry) and an alkyne-containing PNA building block to give Re-PNA. It was demonstrated that upon hybridisation with a complementary DNA strand (DNA), the position of the maxima and emission intensity for the hybrid Re-PNA·DNA remained mainly unchanged compared to those of the single strand Re-PNA. The rhenium-containing PNA oligomer Re-PNA could be then mediated in living cells where they have been shown to be non-toxic contrary to the general notion that organometallic compounds are usually unstable under physiological conditions and/or cytotoxic. Furthermore, Re-PNA could be detected in living cells using fluorescent microscopy.

  20. Synthesis and characterisation of the complete series of B-N analogues of triptycene.

    PubMed

    Seven, Omer; Popp, Sebastian; Bolte, Michael; Lerner, Hans-Wolfram; Wagner, Matthias

    2014-06-14

    The reaction between the bisborate Li2[o-C6H4(BH3)2] and 2 equivalents of an appropriate pyrazole derivative (Hpz(R)) in the presence of Me3SiCl yields o-phenylene-bridged pyrazaboles HB(μ-pz(R))2(μ-o-C6H4)BH (3a-3e; Hpz(R) = 4-iodopyrazole (3a), 4-(trimethylsilyl)pyrazole (3b), 3,5-dimethylpyrazole (3c), 3,5-di(tert-butyl)pyrazole (3d), 3,5-bis(trifluoromethyl)pyrazole (3e)). The synthesis approach thus provides access to uncharged B-N triptycenes bearing (i) functionalisable groups, (ii) electron-donating or -withdrawing substituents and (iii) pyrazole rings of varying steric demand. Treatment of p-R*C6H4BBr2 with the potassium tris(pyrazol-1-yl)borates K[HBpz3] or K[p-R*C6H4Bpz3] yields cationic pyrazolyl-bridged pyrazaboles [p-BrC6H4B(μ-pz)3BH]Br ([4a]Br) and [p-R*C6H4B(μ-pz)3Bp-C6H4R*]Br (R* = Br ([4b]Br), I ([4c]Br), SiMe3 ([4d]Br)), which can be regarded as full B-N analogues of triptycene. The B-H bonds of 3b and [4a]Br are unreactive towards tBuC[triple bond, length as m-dash]CH even at temperatures of 80 °C, thereby indicating an appreciable thermal stability of the corresponding B-N cage bonds. Most of the cage compounds are sufficiently inert towards water to allow quick aqueous workup. However, NMR spectroscopy in CD3OD solution reveals degradation of 3b or [4a]Br to the corresponding pyrazoles and o-C6H4(B(OCD3)2)2 or p-BrC6H4B(OCD3)2/B(OCD3)3. The diphenylated species [4b]Br is significantly more stable under the same measurement conditions; even after 76 d, most of the material degrades only to the stage of the syn/anti-pyrazaboles p-BrC6H4(CD3O)B(μ-pz)2B(OCD3)p-C6H4Br (11a/11b). A derivatisation of [4c]Br with nBu3SnC≡CtBu through Stille-type coupling reactions furnishes the alkynyl derivative [p-tBuC≡CC6H4B(μ-pz)3Bp-C6H4C≡CtBu]Br ([4e]Br). Larger B-N aggregates are also accessible: treatment of the tetrakisborate Li4[1,2,4,5-C6H2(BH3)4] with 4 equivalents of Hpz(R) in the presence of Me3SiCl leads to the corresponding B

  1. Synthesis of α-aminoboronic acids.

    PubMed

    Andrés, Patricia; Ballano, Gema; Calaza, M Isabel; Cativiela, Carlos

    2016-04-21

    This review describes available methods for the preparation of α-aminoboronic acids in their racemic or in their enantiopure form. Both, highly stereoselective syntheses and asymmetric procedures leading to the stereocontrolled generation of α-aminoboronic acid derivatives are included. The preparation of acyclic, carbocyclic and azacyclic α-aminoboronic acid derivatives is covered. Within each section, the different synthetic approaches have been classified according to the key bond which is formed to complete the α-aminoboronic acid skeleton.

  2. Physical and structural characterisation of starch/polyester blends with tartaric acid.

    PubMed

    Olivato, J B; Müller, C M O; Carvalho, G M; Yamashita, F; Grossmann, M V E

    2014-06-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch+PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ((13)C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging.

  3. Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments.

    PubMed

    Król, Bożena; Król, Piotr; Pikus, Stanisław; Chmielarz, Paweł; Skrzypiec, Krzysztof

    2010-08-01

    Polyurethane cationomers were synthesised in the reaction of 4,4'-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. (1)H, (13)C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on (1)H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss-Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m(2). That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions.

  4. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  5. Characterisation of a fatty acid and retinol binding protein orthologue from the hookworm Ancylostoma ceylanicum.

    PubMed

    Fairfax, Keke C; Vermeire, Jon J; Harrison, Lisa M; Bungiro, Richard D; Grant, Wayne; Husain, Sohail Z; Cappello, Michael

    2009-12-01

    Hookworms, bloodfeeding intestinal nematodes, infect nearly one billion people in resource limited countries and are a leading cause of anaemia and malnutrition. Like other nematodes, hookworms lack the capacity to synthesise essential fatty acids de novo and therefore must acquire those from exogenous sources. The cDNA corresponding to a putative Ancylostoma ceylanicum fatty acid and retinol binding protein-1 (AceFAR-1) was amplified from adult hookworm mRNA. Studies using quantitative reverse transcriptase real-time PCR demonstrate that AceFAR-1 transcripts are most abundant in the earliest developmental stages of the parasite, and greater in females than males. Using in vitro assays, the recombinant AceFAR-1 (rAceFAR-1) was shown to bind individual fatty acids with equilibrium dissociation constants in the low micromolar range. The pattern of fatty acid uptake by live adult worms cultured ex vivo was similar to the in vitro binding profile of rAceFAR-1, raising the possibility that the native protein may be involved in acquisition of fatty acids by A. ceylanicum. Animals vaccinated orally with rAceFAR-1 and the mucosal adjuvant cholera toxin exhibited a statistically significant (40-47%) reduction in intestinal worm burden compared with controls immunized with antigen or adjuvant alone. Together, these data suggest a potential role for AceFAR-1 in hookworm biology, making it a potentially valuable target for drug and vaccine development.

  6. Specific glycosylation of α1-acid glycoprotein characterises patients with familial Mediterranean fever and obligatory carriers of MEFV

    PubMed Central

    Poland, D; Drenth, J; Rabinovitz, E; Livneh, A; Bijzet, J; van het, Hof B; van Dijk, W

    2001-01-01

    BACKGROUND—Familial Mediterranean fever (FMF) is a periodic febrile disorder, characterised by fever and serositis. The acute phase response during attacks of FMF results from the release of cytokines, which in turn induce increased expression and changed glycosylation of acute phase proteins. A recent study indicated that attacks in FMF are accompanied by a rise of plasma concentrations of serum amyloid A (SAA) and C reactive protein (CRP), which remain significantly raised during remission relative to healthy controls. Another study suggested that obligatory heterozygotes also display an inflammatory acute phase response.
OBJECTIVE—To determine the state of inflammation in homozygotic and heterozygotic MEFV genotypes.
METHODS—CRP and SAA were studied by enzyme linked immunosorbent assay (ELISA). The glycosylation of the acute phase protein, α1-acid glycoprotein (AGP), was visualised with crossed affinoimmunoelectrophoresis with concanavalin A as diantennary glycan-specific component and Aleuria aurantia lectin as fucose-specific affinity component.
RESULTS—FMF attacks were associated with an increase (p<0.05) in the serum inflammation parameters CRP, SAA, and AGP. The glycosylation of AGP showed an increase (p<0.05) in fucosylated AGP glycoforms, whereas the branching of the glycans remained unaffected. The glycosylation of AGP in the MEFV carrier group, compared with that in a healthy control group, was characterised by a significant increase (p<0.05) in branching of the glycans, whereas the fucosylation remained unaffected.
CONCLUSION—The findings suggest an FMF-specific release of cytokines, resulting in a different glycosylation of AGP between a homozygotic and heterozygotic MEFV genotype.

 PMID:11454642

  7. Design and synthesis of "dumb-bell" and "triangular" inorganic-organic hybrid nanopolyoxometalate clusters and their characterisation through ESI-MS analyses.

    PubMed

    Pradeep, Chullikkattil P; Li, Feng-Yan; Lydon, Claire; Miras, Haralampos N; Long, De-Liang; Xu, Lin; Cronin, Leroy

    2011-06-27

    A series of tris(hydroxymethyl)aminomethane (TRIS)-based linear (bis(TRIS)) and triangular (tris(TRIS)) ligands has been synthesised and were covalently attached to the Wells-Dawson type cluster [P(2)V(3)W(15)O(62)](9-) to generate a series of nanometer-sized inorganic-organic hybrid polyoxometalate clusters. These huge hybrids, with a molecular mass similar to that of small proteins in the range of ≈10-16 kDa, were unambiguously characterised by using high-resolution ESI-MS. The ESI-MS spectra of these compounds revealed, in negative ion mode, a characteristic pattern showing distinct groups of peaks corresponding to different anionic charge states ranging from 3(-) to 8(-) for the hybrids. Each peak in these individual groups could be unambiguously assigned to the corresponding hybrid cluster anion with varying combinations of tetrabutylammonium (TBA) and other cations. This study therefore highlights the prowess of the high-resolution ESI-MS for the unambiguous characterisation of large, nanoscale, inorganic-organic hybrid clusters that have huge mass, of the order of 10-16 kDa. Also, the designed synthesis of these compounds points to the fact that we were able to achieve a great deal of structural pre-design in the synthesis of these inorganic-organic hybrid polyoxometalates (POMs) by means of a ligand design route, which is often not possible in traditional "one-pot" POM synthesis.

  8. Some instrumental methods applied in food chemistry to characterise lactulose and lactobionic acid.

    PubMed

    Bisinella, Radla Zabian Bassetto; Ribeiro, Jéssica Caroline Bigaski; de Oliveira, Cristina Soltovski; Colman, Tiago André Denck; Schnitzler, Egon; Masson, Maria Lúcia

    2017-04-01

    Lactose is obtained as a by-product from whey. It is a source of several derivatives, including lactulose and lactobionic acid. These two compounds were analysed by using the following techniques: thermogravimetry/derivative thermogravimetry (TG/DTG), differential scanning calorimetry coupled with optical microscope (DSC-thermomicroscopy), infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). The DSC technique coupled with microscopy made it possible to observe that the lactobionic acid showed several thermal events upon decomposition, which occurred at temperatures higher than 50°C. The lactulose began to decompose above 180°C. The DSC curve was used to calculate the purity of the lactulose (according to Van't Hoff equation), which was 98% and the melting point peak occurred at 171°C. The lactulose showed crystalline behaviour that was different to that of the lactobionic acid, which was attributed to its high hygroscopicity. Purity of lactobionic acid was not calculated because the decomposition occurred in consecutive stages.

  9. Purification and biochemical characterisation of acid phosphatase-I from seeds of Nelumbo nucifera.

    PubMed

    Khan, Sanaullah; Khan, Shahnaz; Batool, Sajida; Ahmed, Mushtaq

    2016-01-01

    Acid phosphatase-I (Apase-I) from seeds of Nelumbo nucifera was purified to electrophoretic homogeneity by combination of ammonium sulfate precipitation, size-exclusion and ion exchange chromatography. SDS-PAGE of purified Apase-I gave a single band with molecular mass of 80 kDa under reducing and non-reducing conditions, indicating that the enzyme was a monomer. The purified enzyme showed maximum activity at 50°C and at pH 5. The Km, Vmax and Kcat for p-nitrophenyl phosphate were 132 μM, 10 μmol/min/mg and 6.7/sec respectively. Apase-I activity was strongly inhibited by Zn(2+), W(2+); weakly inhibited by Cu(2+), Mo(2+) and Cr(6+) and moderately activated by Mg(2+). The enzyme was shown to be thermolabile as it lost 50% of its activity at 50°C after incubation for 1 hour. The amino acid analysis of enzyme revealed high proportion of acidic amino acids, which is very similar to that of tomato Apase-I and lower than potato Apase.

  10. The use of supported acidic ionic liquids in organic synthesis.

    PubMed

    Skoda-Földes, Rita

    2014-06-26

    Catalysts obtained by the immobilisation of acidic ionic liquids (ILs) on solid supports offer several advantages compared to the use of catalytically active ILs themselves. Immobilisation may result in an increase in the number of accessible active sites of the catalyst and a reduction of the amount of the IL required. The ionic liquid films on the carrier surfaces provide a homogeneous environment for catalytic reactions but the catalyst appears macroscopically as a dry solid, so it can simply be separated from the reaction mixture. As another advantage, it can easily be applied in a continuous fixed bed reactor. In the present review the main synthetic strategies towards the preparation of supported Lewis acidic and Brønsted acidic ILs are summarised. The most important characterisation methods and structural features of the supported ionic liquids are presented. Their efficiency in catalytic reactions is discussed with special emphasis on their recyclability.

  11. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    NASA Astrophysics Data System (ADS)

    Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.

  12. By-products of electrochemical synthesis of suberic acid

    SciTech Connect

    Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.; Antonenko, N.S.; Grudtsyn, Yu.D.

    1988-05-10

    By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.

  13. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  14. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I.

    PubMed

    Boshoff, Helena I; Mizrahi, Valerie; Barry, Clifton E

    2002-04-01

    The effects of low extracellular pH and intracellular accumulation of weak organic acids were compared with respect to fatty acid synthesis by whole cells of Mycobacterium tuberculosis and Mycobacterium smegmatis. The profile of fatty acids synthesized during exposure to benzoic, nicotinic, or pyrazinoic acids, as well as that observed during intracellular hydrolysis of the corresponding amides, was not a direct consequence of modulation of fatty acid synthesis by these compounds but reflected the response to inorganic acid stress. Analysis of fatty acid synthesis in crude mycobacterial cell extracts demonstrated that pyrazinoic acid failed to directly modulate the fatty acid synthase activity catalyzed by fatty acid synthase I (FAS-I). However, fatty acid synthesis was irreversibly inhibited by 5-chloro-pyrazinamide in a time-dependent fashion. Moreover, we demonstrate that pyrazinoic acid does not inhibit purified mycobacterial FAS-I, suggesting that this enzyme is not the immediate target of pyrazinamide.

  15. The spark discharge synthesis of amino acids from various hydrocarbons

    NASA Technical Reports Server (NTRS)

    Ring, D.; Miller, S. L.

    1984-01-01

    The spark discharge synthesis of amino acids using an atmosphere of CH4+N2+H2O+NH3 has been investigated with variable pNH3. The amino acids produced using higher hydrocarbons (ethane, ethylene, acetylene, propane, butane, and isobutane) instead of CH4 were also investigated. There was considerable range in the absolute yields of amino acids, but the yields relative to glycine (or alpha-amino-n-butyric acid) were more uniform. The relative yields of the C3 to C6 aliphatic alpha-amino acids are nearly the same (with a few exceptions) with all the hydrocarbons. The glycine yields are more variable. The precursors to the C3-C6 aliphatic amino acids seem to be produced in the same process, which is separate from the synthesis of glycine precursors. It may be possible to use these relative yields as a signature for a spark discharge synthesis provided corrections can be made for subsequent decomposition events (e.g. in the Murchison meteorite).

  16. Synthesis of monomethyl 5,5'-dehydrodiferulic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthesis of the internal reference compound, monomethyl 5,5’-dehydrodiferulic acid, is described. The synthetic scheme relies on a selective monomethylation of the known compound 5,5-dehydrodivanillin, followed by elaboration into the dehydrodiferulic framework through a dual Horner-Emmons-Wadswort...

  17. Amino acid metabolism and protein synthesis in malarial parasites*

    PubMed Central

    Sherman, I. W.

    1977-01-01

    Malaria-infected red cells and free parasites have limited capabilities for the biosynthesis of amino acids. Therefore, the principal amino acid sources for parasite protein synthesis are the plasma free amino acids and host cell haemoglobin. Infected cells and plasmodia incorporate exogenously supplied amino acids into protein. However, the hypothesis that amino acid utilization (from an external source) is related to availability of that amino acid in haemoglobin is without universal support: it is true for isoleucine and for Plasmodium knowlesi and P. falciparum, but not for methionine, cysteine, and other amino acids, and it does not apply to P. lophurae. More by default than by direct evidence, haemoglobin is believed to be the main amino acid reservoir available to the intraerythrocytic plasmodium. Haemoglobin, ingested via the cytostome, is held in food vacuoles where auto-oxidation takes place. As a consequence, haem is released and accumulates in the vacuole as particulate haemozoin (= malaria pigment). Current evidence favours the view that haemozoin is mainly haematin. Acid and alkaline proteases (identified in crude extracts from mammalian and avian malarias) are presumably secreted directly into the food vacuole. They then digest the denatured globin and the resulting amino acids are incorporated into parasite protein. Cell-free protein synthesizing systems have been developed using P. knowlesi and P. lophurae ribosomes. In the main these systems are typically eukaryotic. Studies of amino acid metabolism are exceedingly limited. Arginine, lysine, methionine, and proline are incorporated into protein, whereas glutamic acid is metabolized via an NADP-specific glutamic dehydrogenase. Glutamate oxidation generates NADPH and auxiliary energy (in the form of α-ketoglutarate). The role of red cell glutathione in the economy of the parasite remains obscure. Important goals for future research should be: quantitative assessment of the relative importance of

  18. Orthogonal Synthesis of Xeno Nucleic Acids.

    PubMed

    Fiers, Guillaume; Chouikhi, Dalila; Oswald, Laurence; Al Ouahabi, Abdelaziz; Chan-Seng, Delphine; Charles, Laurence; Lutz, Jean-François

    2016-12-12

    Sequence-defined peptide triazole nucleic acids (PTzNA) were synthesized by means of a solid-phase orthogonal "AB+CD" iterative strategy. In this approach, AB and CD building blocks containing carboxylic acid (A), azide (B), alkyne (C), and primary amine (D) functions are assembled together by successive copper-catalyzed azide-alkyne cycloaddition (CuAAC) and acid-amine coupling steps. Different PTzNA genetic sequences were prepared using a library of eight building blocks (i.e., four AB and four CD building blocks).

  19. Amino acid synthesis in a supercritical carbon dioxide - water system.

    PubMed

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-06-15

    Mars is a CO(2)-abundant planet, whereas early Earth is thought to be also CO(2)-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO(2)/liquid H(2)O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life's origin.

  20. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  1. [Possible route for thiamine participation in fatty acid synthesis].

    PubMed

    Buko, V U; Larin, F S

    1976-01-01

    The possibility of thiamine partaking in the synthesis of fatty acids through the functions unrelated to the catalytic properties of thiamine-diphosphate was studied. Rats kept on a fat-free ration devoid of thiamine were given thiamine of thiochrome with no vitaminic properties. The total fatty acids content in different tissues and incorporation therein of tagged acetate and pyruvate was determined, while the fatty acids composition of the liver was investigated by using gas chromatography. Thiamine and thiochrome produced a similar effect on a number of the study factors, i.e. they forced down the total acids level in the spleen, intensified incorporation of tagged acetate and pyruvate in fatty acids of the heart and uniformly changed the fatty acids composition in the liver. It is suggested that the unindirectional effects of thiamine and thiochrome is due to the oxidative transformation of thiamine into thiochrome.

  2. Synthesis of gold nanoparticles using various amino acids.

    PubMed

    Maruyama, Tatsuo; Fujimoto, Yuhei; Maekawa, Tetsuya

    2015-06-01

    Gold nanoparticles (4-7nm) were synthesized from tetraauric acid using various amino acids as reducing and capping agents. The gold nanoparticles were produced from the incubation of a AuCl4(-) solution with an amino acid at 80°C for 20min. Among the twenty amino acids tested, several amino acids produced gold nanoparticles. The color of the nanoparticle solutions varied with the amino acids used for the reduction. We adopted l-histidine as a reducing agent and investigated the effects of the synthesis conditions on the gold nanoparticles. The His and AuCl4(-) concentrations affected the size of the gold nanoparticles and their aggregates. The pH of the reaction solution also affected the reaction yields and the shape of the gold nanoparticles.

  3. Stereoselective synthesis of stable-isotope-labeled amino acids

    SciTech Connect

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  4. Chemical modification of human albumin at cys34 by ethacrynic acid: structural characterisation and binding properties.

    PubMed

    Bertucci, C; Nanni, B; Raffaelli, A; Salvadori, P

    1998-10-01

    Derivatization of the free cys3,4 in human albumin, which is reported to occur under physiological conditions, has been performed in vitro by reaction of the protein with ethacrynic acid. This modification has been investigated by mass spectrometry and circular dichroism. Ethacrynic acid has been proven to bind human albumin either covalently and non-covalently. This post-translational modification does not determine significant changes in the secondary structure of the protein, as shown by the comparable circular dichroism spectra of the native and the modified proteins. Furthermore, the binding properties of the human albumin samples have been investigated by circular dichroism and equilibrium dialysis. The affinity to the higher affinity binding sites does not change either for drugs binding to site I, like phenylbutazone, or to site II, like diazepam, while a small but significant increase has been observed for bilirubin, known to bind to site III. Nevertheless significant decreases of the affinity at the lower affinity binding sites of the modified protein were observed for both drugs binding to site I or to site II.

  5. Isolation and characterisation of lactic acid bacterium for effective fermentation of cellobiose into optically pure homo L-(+)-lactic acid.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Zendo, Takeshi; Shibata, Keisuke; Sonomoto, Kenji

    2011-02-01

    Effective utilisation of cellulosic biomasses for economical lactic acid production requires a microorganism with potential ability to utilise efficiently its major components, glucose and cellobiose. Amongst 631 strains isolated from different environmental samples, strain QU 25 produced high yields of l-(+)-lactic acid of high optical purity from cellobiose. The QU 25 strain was identified as Enterococcus mundtii based on its sugar fermentation pattern and 16S rDNA sequence. The production of lactate by fermentation was optimised for the E. mundtii QU25 strain. The optimal pH and temperature for batch culturing were found to be 7.0°C and 43°C, respectively. E. mundtii QU 25 was able to metabolise a mixture of glucose and cellobiose simultaneously without apparent carbon catabolite repression. Moreover, under the optimised culture conditions, production of optically pure l-lactic acid (99.9%) increased with increasing cellobiose concentrations. This indicates that E. mundtii QU 25 is a potential candidate for effective lactic acid production from cellulosic hydrolysate materials.

  6. Simple, high-yield synthesis of polyhedral carborane amino acids

    SciTech Connect

    Kahl, S.B.; Kasar, R.A.

    1996-02-07

    Boron neutron capture therapy (BNCT) is a form of binary cancer therapy that offers the potential of delivering spatially selective, high linear energy transfer radiation to the target cells while sparing surrounding normal tissue. We have demonstarted a versatile, general method for the conversion of o- ,m-, and p-carborane to their corresponding Boc-protected amino acids. Heterobifunctional polyhedral carboranes are exceedingly rare in the literature, and the amino acids prepared by this general method may prove to be valuable synthons for use in the synthesis of tumor-seeking compounds for BNCT or PDT. Morever, these conformationally constrained amino acids should be particularly interesting for use in peptide synthesis. The dihedral angle between the carbon atoms of these polyhedra increases in the order 60{degree} (ortho), 110{degree} (meta), and 180{degree} (para), allowing the peptide chemist to select a desired conformation. 11 refs.

  7. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  8. Lactide Synthesis and Chirality Control for Polylactic acid Production.

    PubMed

    Van Wouwe, Pieter; Dusselier, Michiel; Vanleeuw, Evelien; Sels, Bert

    2016-05-10

    Polylactic acid (PLA) is a very promising biodegradable, renewable, and biocompatible polymer. Aside from its production, its application field is also increasing, with use not only in commodity applications but also as durables and in biomedicine. In the current PLA production scheme, the most expensive part is not the polymerization itself but obtaining the building blocks lactic acid (LA) and lactide, the actual cyclic monomer for polymerization. Although the synthesis of LA and the polymerization have been studied systematically, reports of lactide synthesis are scarce. Most lactide synthesis methods are described in patent literature, and current energy-intensive, aselective industrial processes are based on archaic scientific literature. This Review, therefore, highlights new methods with a technical comparison and description of the different approaches. Water-removal methodologies are compared, as this is a crucial factor in PLA production. Apart from the synthesis of lactide, this Review also emphasizes the use of chemically produced racemic lactic acid (esters) as a starting point in the PLA production scheme. Stereochemically tailored PLA can be produced according to such a strategy, giving access to various polymer properties.

  9. Characterisation of the products from pyrolysis of residues after acid hydrolysis of Miscanthus.

    PubMed

    Melligan, F; Dussan, K; Auccaise, R; Novotny, E H; Leahy, J J; Hayes, M H B; Kwapinski, W

    2012-03-01

    Platform chemicals such as furfural and hydroxymethylfurfural are major products formed during the acid hydrolysis of lignocellulosic biomass in second generation biorefining processes. Solid hydrolysis residues (HR) can amount to 50 wt.% of the starting biomass materials. Pyrolysis of the HRs gives rise to biochar, bio-liquids, and gases. Time and temperature were variables during the pyrolysis of HRs in a fixed bed tubular reactor, and both parameters have major influences on the amounts and properties of the products. Biochar, with potential for carbon sequestration and soil conditioning, composed about half of the HR pyrolysis product. The amounts (11-20 wt.%) and compositions (up to 77% of phenols in organic fraction) of the bio-liquids formed suggest that these have little value as fuels, but could be sources of phenols, and the gas can have application as a fuel.

  10. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium.

    PubMed

    Paganelli, Fernanda L; van de Kamer, Tim; Brouwer, Ellen C; Leavis, Helen L; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    2017-03-01

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA) (1,3-polyglycerol-phosphate linked to glycolipid) in its cell wall. The small-molecule inhibitor 1771 [2-oxo-2-(5-phenyl-1,3,4-oxadiazol-2-ylamino)ethyl 2-naphtho[2,1-b]furan-1-ylacetate] specifically blocks the activity of Staphylococcus aureus LtaS synthase, which polymerises 1,3-glycerolphosphate into LTA polymers. Here we characterised the effects of the small-molecule inhibitor 1771 on the growth of E. faecium isolates, alone (28 strains) or in combination with the antibiotics vancomycin, daptomycin, ampicillin, gentamicin or linezolid (15 strains), and on biofilm formation (16 strains). Inhibition of LTA synthesis at the surface of the cell by compound 1771 in combination with current antibiotic therapy abrogates enterococcal growth in vitro but does not affect mature E. faecium biofilms. Targeting LTA synthesis may provide new possibilities to treat MDR E. faecium infections.

  11. Genetic and Technological Characterisation of Vineyard- and Winery-Associated Lactic Acid Bacteria

    PubMed Central

    Nisiotou, Aspasia A.; Filippousi, Maria-Evangelia; Fragkoulis, Petros; Tassou, Chryssoula; Banilas, Georgios

    2015-01-01

    Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine. PMID:25866789

  12. Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis.

    PubMed

    Lippold, Felix; vom Dorp, Katharina; Abraham, Marion; Hölzl, Georg; Wewer, Vera; Yilmaz, Jenny Lindberg; Lager, Ida; Montandon, Cyrille; Besagni, Céline; Kessler, Felix; Stymne, Sten; Dörmann, Peter

    2012-05-01

    During stress or senescence, thylakoid membranes in chloroplasts are disintegrated, and chlorophyll and galactolipid are broken down, resulting in the accumulation of toxic intermediates, i.e., tetrapyrroles, free phytol, and free fatty acids. Chlorophyll degradation has been studied in detail, but the catabolic pathways for phytol and fatty acids remain unclear. A large proportion of phytol and fatty acids is converted into fatty acid phytyl esters and triacylglycerol during stress or senescence in chloroplasts. We isolated two genes (PHYTYL ESTER SYNTHASE1 [PES1] and PES2) of the esterase/lipase/thioesterase family of acyltransferases from Arabidopsis thaliana that are involved in fatty acid phytyl ester synthesis in chloroplasts. The two proteins are highly expressed during senescence and nitrogen deprivation. Heterologous expression in yeast revealed that PES1 and PES2 have phytyl ester synthesis and diacylglycerol acyltransferase activities. The enzymes show broad substrate specificities and can employ acyl-CoAs, acyl carrier proteins, and galactolipids as acyl donors. Double mutant plants (pes1 pes2) grow normally but show reduced phytyl ester and triacylglycerol accumulation. These results demonstrate that PES1 and PES2 are involved in the deposition of free phytol and free fatty acids in the form of phytyl esters in chloroplasts, a process involved in maintaining the integrity of the photosynthetic membrane during abiotic stress and senescence.

  13. Fatty acid effects on fibroblast cholesterol synthesis

    SciTech Connect

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-05-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 ..mu..mol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 ..mu..Ci (/sup 14/C)acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest (/sup 14/C)acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total /sup 14/C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1(BSA).

  14. Folate/NIR 797-conjugated albumin magnetic nanospheres: synthesis, characterisation, and in vitro and in vivo targeting evaluation.

    PubMed

    Tang, Qiusha; An, Yanli; Liu, Dongfang; Liu, Peidang; Zhang, Dongsheng

    2014-01-01

    A practical and effective strategy for synthesis of Folate-NIR 797-conjugated Magnetic Albumin Nanospheres (FA-NIR 797-MAN) was developed. For this strategy, Magnetic Albumin Nanospheres (MAN), composed of superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA), were covalently conjugated with folic acid (FA) ligands to enhance the targeting capability of the particles to folate receptor (FR) over-expressing tumours. Subsequently, a near-infrared (NIR) fluorescent dye NIR 797 was conjugated with FA-conjugated MAN for in vivo fluorescence imaging. The FA-NIR 797-MAN exhibited low toxicity to a human nasopharyngeal epidermal carcinoma cell line (KB cells). Additionally, in vitro and in vivo evaluation of the dynamic behaviour and targeting ability of FA-NIR 797-MAN to KB tumours validated the highly selective affinity of FA-NIR 797-MAN for FR-positive tumours. In summary, the FA-NIR 797-MAN prepared here exhibited great potential for tumour imaging, since the near-infrared fluorescence contrast agents target cells via FR-mediated endocytosis. The high fluorescence intensity together with the targeting effect makes FA-NIR 797-MAN a promising candidate for imaging, monitoring, and early diagnosis of cancer at the molecular and cellular levels.

  15. A Concise Synthesis of Berkelic Acid Inspired by Combining the Natural Products Spicifernin and Pulvilloric Acid

    PubMed Central

    Bender, Christopher F.; Yoshimoto, Francis K.; Paradise, Christopher L.; De Brabander, Jef K.

    2009-01-01

    We describe a concise synthesis of the structurally novel fungal extremophile metabolite berkelic acid – an effort leading to an unambiguous assignment of C22 stereochemistry. Our synthetic approach was inspired by the recognition that berkelic acid displays structural characteristics reminiscent of two other fungal metabolites, spicifernin and pulvilloric acid. Based on this notion, we executed a synthesis that features a Ag-catalyzed cascade dearomatization-cycloisomerization-cycloaddition sequence to couple two natural product inspired fragments. Notably, a spicifernin-like synthon was prepared with defined C22 stereochemistry in seven steps and three purifications (24–28% overall yield). A potentially useful anti-selective conjugate propargylation reaction was developed to introduce the vicinal stereodiad. An enantioconvergent synthesis of the other coupling partner, the aromatic precursor to pulvilloric acid methyl ester, was achieved in eight steps and 48% overall yield. The total synthesis of berkelic acid and its C22 epimer was thus completed in 10 steps longest linear sequence and 11–27% overall yield. PMID:19722648

  16. Stimulation of protein synthesis by phosphatidic acid in rat cardiomyocytes.

    PubMed

    Xu, Y J; Yau, L; Yu, L P; Elimban, V; Zahradka, P; Dhalla, N S

    1996-12-13

    Phosphatidic acid (PA) was observed to stimulate protein synthesis in adult cardiomyocytes in a time- and concentration-dependent manner. The maximal stimulation in protein synthesis (142 +/- 12% vs 100% as the control) was achieved at 10 microM PA within 60 min and was inhibited by actinomycin D (107 +/- 4% of the control) or cycloheximide (105 +/- 6% of the control). The increase in protein synthesis due to PA was attenuated or abolished by preincubation of cardiomyocytes with a tyrosine kinase inhibitor, genistein (94 +/- 9% of the control), phospholipase C inhibitors 2-nitro-4-carboxyphenyl N,N-diphenyl carbamate or carbon-odithioic acid O-(octahydro-4,7-methanol-1H-inden-5-yl (101 +/- 6 and 95 +/- 5% of the control, respectively), protein kinase C inhibitors staurosporine or polymyxin B (109 +/- 3 and 93 +/- 3% of the control), and chelators of extracellular and intracellular free Ca2+ EGTA or BAPTA/AM (103 +/- 6 and 95 +/- 6% of the control, respectively). PA at different concentrations (0.1 to 100 microM) also caused phosphorylation of a cell surface protein of approximately 24 kDa. In addition, mitogen-activated protein kinase was stimulated by PA in a concentration-dependent manner; maximal stimulation (217 +/- 6% of the control) was seen at 10 microM PA. These data suggest that PA increases protein synthesis in adult rat cardiomyocytes and thus may play an important role in the development of cardiac hypertrophy.

  17. Inhibition of in vitro cholesterol synthesis by fatty acids.

    PubMed

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  18. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20% for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  19. Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids.

    PubMed

    Hari Das, Rakha; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip

    2016-07-02

    Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids.

  20. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1987-01-01

    The autocondensation of the glyceroyl thioester, S-glyceroyl-ethane-thiol, yielded olioglyceric acid. The rates of autocondensation and hydrolysis of the thioester increased from pH 6.5 to pH 7.5 in 2,6-lutidine and imidazole buffers. Autocondensation and hydrolysis were much more rapid in imidazole buffers as compared to 2,6-lutidine and phosphate buffers. The efficiency of ester bond synthesis was about 20 percent for 40 mM S-glyceroyl-ethane-thiol in 2,6-lutidine and imidazole buffers near neutral pH. The size and yield of the olioglyceric acid products increased when the concentration of the thioester was increased. The relationship of these results to prebiotic polymer synthesis is discussed.

  1. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.

    PubMed

    Kim, Tae Yoon; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-04-01

    The search for novel antibacterial agents is necessary to combat microbial resistance to current antibiotics. Silver nanoparticles (AgNPs) have been reported to be effective antibacterial agents. Tannic acid is a polyphenol compound from plants with antioxidant and antibacterial activities. In this report, AgNPs were prepared from silver ions by tannic acid-mediated green synthesis (TA-AgNPs). The reaction process was facile and involved mixing both silver ions and tannic acid. The absorbance at 423 nm in the UV-Visible spectra demonstrated that tannic acid underwent a reduction reaction to produce TA-AgNPs from silver ions. The synthetic yield of TA-AgNPs was 90.5% based on inductively coupled plasma mass spectrometry analysis. High-resolution transmission electron microscopy and atomic force microscopy images indicated that spherical-shaped TA-AgNPs with a mean particle size of 27.7-46.7 nm were obtained. Powder high-resolution X-ray diffraction analysis indicated that the TA-AgNP structure was face-centered cubic with a zeta potential of -27.56 mV. The hydroxyl functional groups of tannic acid contributed to the synthesis of TA-AgNPs, which was confirmed by Fourier transform infrared spectroscopy. The in vitro antibacterial activity was measured using the minimum inhibitory concentration (MIC) method. The TA-AgNPs were more effective against Gram-negative bacteria than Gram-positive bacteria. The MIC for the TA-AgNPs in all of the tested strains was in a silver concentration range of 6.74-13.48 μg/mL. The tannic acid-mediated synthesis of AgNPs afforded biocompatible nanocomposites for antibacterial applications.

  2. Is acetylcarnitine a substrate for fatty acid synthesis in plants

    SciTech Connect

    Roughan, G. ); Post-Beittenmiller, D.; Ohlrogge, J. ); Browse, J. )

    1993-04-01

    Long-chain fatty acid synthesis from [1-[sup 14]C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-[sup 14]C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-[sup 14]C]Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-[sup 14]C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-[sup 14]C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-[sup 14]C]acetylcarnitine and 47 to 57% of the [1-[sup 14]C]acetate taken up was incorporated into lipids. Most (78--82%) of the [1-[sup 14]C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants. 29 refs., 5 tabs.

  3. A new regulatory mechanism for bacterial lipoic acid synthesis

    PubMed Central

    Zhang, Huimin; Luo, Qixia; Gao, Haichun; Feng, Youjun

    2015-01-01

    Lipoic acid, an essential enzyme cofactor, is required in three domains of life. In the past 60 years since its discovery, most of the pathway for lipoic acid synthesis and metabolism has been elucidated. However, genetic control of lipoic acid synthesis remains unclear. Here, we report integrative evidence that bacterial cAMP-dependent signaling is linked to lipoic acid synthesis in Shewanella species, the certain of unique marine-borne bacteria with special ability of metal reduction. Physiological requirement of protein lipoylation in γ-proteobacteria including Shewanella oneidensis was detected using Western blotting with rabbit anti-lipoyl protein primary antibody. The two genes (lipB and lipA) encoding lipoic acid synthesis pathway were proved to be organized into an operon lipBA in Shewanella, and the promoter was mapped. Electrophoretic mobility shift assays confirmed that the putative CRP-recognizable site (AAGTGTGATCTATCTTACATTT) binds to cAMP-CRP protein with origins of both Escherichia coli and Shewanella. The native lipBA promoter of Shewanella was fused to a LacZ reporter gene to create a chromosome lipBA-lacZ transcriptional fusion in E. coli and S. oneidensis, allowing us to directly assay its expression level by β-galactosidase activity. As anticipated, the removal of E. coli crp gene gave above fourfold increment of lipBA promoter-driven β-gal expression. The similar scenario was confirmed by both the real-time quantitative PCR and the LacZ transcriptional fusion in the crp mutant of Shewanella. Furthermore, the glucose effect on the lipBA expression of Shewanella was evaluated in the alternative microorganism E. coli. As anticipated, an addition of glucose into media effectively induces the transcriptional level of Shewanella lipBA in that the lowered cAMP level relieves the repression of lipBA by cAMP-CRP complex. Therefore, our finding might represent a first paradigm mechanism for genetic control of bacterial lipoic acid synthesis. PMID

  4. A new regulatory mechanism for bacterial lipoic acid synthesis.

    PubMed

    Zhang, Huimin; Luo, Qixia; Gao, Haichun; Feng, Youjun

    2015-01-22

    Lipoic acid, an essential enzyme cofactor, is required in three domains of life. In the past 60 years since its discovery, most of the pathway for lipoic acid synthesis and metabolism has been elucidated. However, genetic control of lipoic acid synthesis remains unclear. Here, we report integrative evidence that bacterial cAMP-dependent signaling is linked to lipoic acid synthesis in Shewanella species, the certain of unique marine-borne bacteria with special ability of metal reduction. Physiological requirement of protein lipoylation in γ-proteobacteria including Shewanella oneidensis was detected using Western blotting with rabbit anti-lipoyl protein primary antibody. The two genes (lipB and lipA) encoding lipoic acid synthesis pathway were proved to be organized into an operon lipBA in Shewanella, and the promoter was mapped. Electrophoretic mobility shift assays confirmed that the putative CRP-recognizable site (AAGTGTGATCTATCTTACATTT) binds to cAMP-CRP protein with origins of both Escherichia coli and Shewanella. The native lipBA promoter of Shewanella was fused to a LacZ reporter gene to create a chromosome lipBA-lacZ transcriptional fusion in E. coli and S. oneidensis, allowing us to directly assay its expression level by β-galactosidase activity. As anticipated, the removal of E. coli crp gene gave above fourfold increment of lipBA promoter-driven β-gal expression. The similar scenario was confirmed by both the real-time quantitative PCR and the LacZ transcriptional fusion in the crp mutant of Shewanella. Furthermore, the glucose effect on the lipBA expression of Shewanella was evaluated in the alternative microorganism E. coli. As anticipated, an addition of glucose into media effectively induces the transcriptional level of Shewanella lipBA in that the lowered cAMP level relieves the repression of lipBA by cAMP-CRP complex. Therefore, our finding might represent a first paradigm mechanism for genetic control of bacterial lipoic acid synthesis.

  5. Novel fully protected muramic acid: A facile synthesis and structural study

    NASA Astrophysics Data System (ADS)

    Kovačević, Monika; Rapić, Vladimir; Lukač, Iva; Molčanov, Krešimir; Kodrin, Ivan; Barišić, Lidija

    2013-09-01

    Synthesis and structural characterisation of novel fully protected muramic acid 2 (N-Boc-Mur-OMe, Mur = muramic acid) has been reported. N-Ac-Mur-OMe (1) prepared starting from commercially available N-acetylglucosamine, was treated with di-tert-butyl dicarbonate (Boc2O) and N,N-dimethyl-4-aminopyridine (DMAP) in tetrahydrofuran. The intermediate mixed imide N-Ac-N-Boc-Mur-OMe was converted to N-Boc-Mur-OMe (2) upon in situ treatment with hydrazine hydrate in methanol. The structural analysis of 2, performed by IR and NMR spectroscopic methods and X-ray crystallography, was augmented by computational calculations including molecular and density functional theory studies (DFT) using M06/6-31G(d) computational model. The spectroscopic and DFT data obtained for novel Boc-protected 2 were compared with corresponding experimental values of its previously described Ac-protected analogue 1 in order to examine if the replacement of the protecting groups influences the conformational properties.

  6. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate.

    PubMed

    Huang, Shun-Li; Zhao, Li-Na; Cai, Xixi; Wang, Shao-Yun; Huang, Yi-Fan; Hong, Jing; Rao, Ping-Fan

    2015-02-01

    The bioavailability of dietary ionised calcium is affected by intestinal basic environment. Calcium-binding peptides can form complexes with calcium to improve its absorption and bioavailability. The aim of this study was focused on isolation and characterisation of a calcium-binding peptide from whey protein hydrolysates. Whey protein was hydrolysed using Flavourzyme and Protamex with substrate to enzyme ratio of 25:1 (w/w) at 49 °C for 7 h. The calcium-binding peptide was isolated by DEAE anion-exchange chromatography, Sephadex G-25 gel filtration and reversed phase high-performance liquid chromatography (RP-HPLC). A purified peptide of molecular mass 204 Da with strong calcium binding ability was identified on chromatography/electrospray ionisation (LC/ESI) tandem mass spectrum to be Glu-Gly (EG) after analysis and alignment in database. The calcium binding capacity of EG reached 67·81 μg/mg, and the amount increased by 95% compared with whey protein hydrolysate complex. The UV and infrared spectrometer analysis demonstrated that the principal sites of calcium-binding corresponded to the carboxyl groups and carbonyl groups of glutamic acid. In addition, the amino group and peptide amino are also the related groups in the interaction between EG and calcium ion. Meanwhile, the sequestered calcium percentage experiment has proved that EG-Ca is significantly more stable than CaCl2 in human gastrointestinal tract in vitro. The findings suggest that the purified dipeptide has the potential to be used as ion-binding ingredient in dietary supplements.

  7. A Study on Amino Acids: Synthesis of Alpha-Aminophenylacetic Acid (Phenylglycine) and Determination of its Isoelectric Point.

    ERIC Educational Resources Information Center

    Barrelle, M.; And Others

    1983-01-01

    Background information and procedures are provided for an experimental study on aminophenylacetic acid (phenylglycine). These include physical chemistry (determination of isoelectric point by pH measurement) and organic chemistry (synthesis of an amino acid in racemic form) experiments. (JN)

  8. Biotin and Lipoic Acid: Synthesis, Attachment and Regulation

    PubMed Central

    Cronan, John E.

    2014-01-01

    Summary Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as “swinging arms” that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well-described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like “arm” of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized and thus there is no transcriptional control of the synthetic genes. In contrast transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA a dual function protein that both represses

  9. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    PubMed

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis.

  10. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  11. Synthesis and Characterization of Fatty Acid Conjugates of Niacin and Salicylic Acid.

    PubMed

    Vu, Chi B; Bemis, Jean E; Benson, Ericka; Bista, Pradeep; Carney, David; Fahrner, Richard; Lee, Diana; Liu, Feng; Lonkar, Pallavi; Milne, Jill C; Nichols, Andrew J; Picarella, Dominic; Shoelson, Adam; Smith, Jesse; Ting, Amal; Wensley, Allison; Yeager, Maisy; Zimmer, Michael; Jirousek, Michael R

    2016-02-11

    This report describes the synthesis and preliminary biological characterization of novel fatty acid niacin conjugates and fatty acid salicylate conjugates. These molecular entities were created by covalently linking two bioactive molecules, either niacin or salicylic acid, to an omega-3 fatty acid. This methodology allows the simultaneous intracellular delivery of two bioactives in order to elicit a pharmacological response that could not be replicated by administering the bioactives individually or in combination. The fatty acid niacin conjugate 5 has been shown to be an inhibitor of the sterol regulatory element binding protein (SREBP), a key regulator of cholesterol metabolism proteins such as PCSK9, HMG-CoA reductase, ATP citrate lyase, and NPC1L1. On the other hand, the fatty acid salicylate conjugate 11 has been shown to have a unique anti-inflammatory profile based on its ability to modulate the NF-κB pathway through the intracellular release of the two bioactives.

  12. Ribonucleic Acid Regulation in Permeabilized Cells of Escherichia coli Capable of Ribonucleic Acid and Protein Synthesis1

    PubMed Central

    Atherly, Alan G.

    1974-01-01

    A cell permeabilization procedure is described that reduces viability less than 10% and does not significantly reduce the rates of ribonucleic acid and protein synthesis when appropriately supplemented. Permeabilization abolishes the normal stringent coupling of protein and ribonucleic acid synthesis. PMID:4364330

  13. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    SciTech Connect

    Mamani, J.B.; Costa-Filho, A.J.; Cornejo, D.R.; Vieira, E.D.; Gamarra, L.F.

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  14. Synthesis, characterisation and adsorption properties of a porous copper(II) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide.

    PubMed

    Eckold, Pierre; Gee, William J; Hill, Matthew R; Batten, Stuart R

    2012-11-21

    The synthesis and characterisation of microporous coordination polymers containing copper(II) or cobalt(II) and 2-(pyridin-4-yl)malonaldehyde (Hpma) is described and the gas adsorption properties evaluated. Single-crystal X-ray structure determinations identified the structures as [M(pma)(2)]·2X (M = Cu, 1; Co, 2; X = MeOH, MeCN), which contain 3D networks with rutile topology and continuous 1D rectangular channels with diameters ranging from 3 to 4 Å. The materials exhibit low BET surface areas of 143 m(2) g(-1), but possess large capacities for carbon dioxide capture of 14.1 wt%. The small pore channels are shown to account for this, delivering a particularly strong binding enthalpy to adsorbed CO(2) of 38 kJ mol(-1), and a very large adsorption capacity relative to the low surface area.

  15. Synthesis and characterisation of a new stable organo-mineral hybrid nanomaterial: 4-Chlorobenzenesulfonate in the zinc-aluminium layered double hydroxide

    SciTech Connect

    Lakraimi, Mohamed; Legrouri, Ahmed . E-mail: legrouri@aui.ma; Barroug, Allal; De Roy, Andre; Besse, Jean Pierre

    2006-09-14

    4-Chlorobenzenesulfonate (4-CBS) was intercalated between layers of Zn-Al layered double hydroxides (LDHs). Two methods of incorporation were applied: (1) direct synthesis by coprecipitation of metal nitrates and sodium 4-CBS and (2) ion exchange of the LDH nitrate with the organic ion. The solids were characterized by X-ray diffraction and infrared spectroscopy. The direct method, effected at different pH values, led to a hybrid material with good degree of intercalation. In order to optimise the exchange conditions, particular attention was given to the effect of solution pH, 4-CBS/NO{sub 3} ratio and exchange temperature. The total exchange was successful and a new stable hybrid nanostructured material was obtained at pH 8 and with a 4-CBS concentration of 0.0028 M. This solid was further characterised by chemical and thermal analyses.

  16. Synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid.

    PubMed

    Wang, Yun; Zhang, Dong-Hao; Chen, Na; Zhi, Gao-Ying

    2015-12-01

    In this study, lipase catalysis was successfully applied in synthesis of benzyl cinnamate through esterification of cinnamic acid with benzyl alcohol. Lipozyme TLIM was found to be more efficient for catalyzing this reaction than Novozym 435. In order to increase the yield of benzyl cinnamate, several media, including acetone, trichloromethane, methylbenzene, and isooctane, were used in this reaction. The reaction showed a high yield using isooctane as medium. Furthermore, the effects of several parameters such as water activity, reaction temperature, etc, on this reaction were analyzed. It was pointed out that too much benzyl alcohol would inhibit lipase activity. Under the optimum conditions, lipase-catalyzed synthesis of benzyl cinnamate gave a maximum yield of 97.3%. Besides, reusable experiment of enzyme demonstrated that Lipozyme TLIM retained 63% of its initial activity after three cycles. These results were of general interest for developing industrial processes for the preparation of benzyl cinnamate.

  17. Xenograft Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer

    DTIC Science & Technology

    2000-08-01

    Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer PRINCIPAL INVESTIGATOR: Francis P. Kuhajda, M.D. CONTRACTING ORGANIZATION...SUBTITLE 5. FUNDING NUMBERS Xenograft Studies of Fatty Acid Synthesis DAMD17-96-1-6235 Inhibition as Novel Therapy for Breast Cancer 6. AUTHOR(S...5012. 13. ABSTRACT (Maximum 200 Words) This grant proposed to study the effect of fatty acid synthesis inhibition in human breast cancer xenografts

  18. Synthesis of amino Derivatives of Dithio Acids as Potential Radiation Protective Agents

    DTIC Science & Technology

    1984-08-01

    ation Management S SI ____ K> AD Synthesis of Amino Derivatives of Dithio Acids as Potential Radiation Protective Agents * 0 Annual Report "TIi: o DTIC...Sftcuntiy Clatuftcatio") Synthesis of Amino Derivatives of Dithio Acids as PotentitI- Radiation Protective Agents 12l PERISONAL. Ak.TI4OR(S) * William...methyl- picoline derivatives was accomplished. Use of N-mthyl-2,6-dimethylpyridine also allowed the synthesis of a bis(dithioacetic acid) function not

  19. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: Synthesis, characterisation, and mechanistic studies

    PubMed Central

    Cropek, Donald M.; Metz, Anja; Müller, Astrid M.; Gray, Harry B.; Horne, Toyketa; Horton, Dorothy C.; Poluektov, Oleg; Tiede, David M.; Weber, Ralph T.; Jarrett, William L.; Phillips, Joshua D.

    2012-01-01

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2′-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl3·xH2O to produce [Ru(pbt)2Cl2] ·0.25CH3COCH3, 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3 in order to produce [Ru(pbt)2(phendione)](PF6)2·4H2O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)2(L-pyr)](PF6)2·9.5H2O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluorboryldimethylglyoximate) in order to produce the mixed-metal binuclear complex, [Ru(pbt)2(L-pyr)Co(dmgBF2)2(H2O)](PF6)2·11H2O·1.5CH3COCH3, 6. [Ru(Me2bpy)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 7 (where Me2bpy = 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine) and [Ru(phen)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 8 were also synthesised. All complexes were characterized by elemental analysis, UV-visible absorption, 11B, 19F, and 59Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H2 gas in the presence of H+ ions. A proposed mechanism for the generation of hydrogen is presented. PMID:23001132

  20. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: synthesis, characterisation and mechanistic studies.

    PubMed

    Cropek, Donald M; Metz, Anja; Müller, Astrid M; Gray, Harry B; Horne, Toyketa; Horton, Dorothy C; Poluektov, Oleg; Tiede, David M; Weber, Ralph T; Jarrett, William L; Phillips, Joshua D; Holder, Alvin A

    2012-11-14

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2'-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl(3)·xH(2)O to produce [Ru(pbt)(2)Cl(2)]·0.25CH(3)COCH(3), 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3, in order to produce [Ru(pbt)(2)(phendione)](PF(6))(2)·4H(2)O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)(2)(L-pyr)](PF(6))(2)·9.5H(2)O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF(2))(2)(H(2)O)(2)] (where dmgBF(2) = difluoroboryldimethylglyoximato) in order to produce the mixed-metal binuclear complex, [Ru(pbt)(2)(L-pyr)Co(dmgBF(2))(2)(H(2)O)](PF(6))(2)·11H(2)O·1.5CH(3)COCH(3), 6. [Ru(Me(2)bpy)(2)(L-pyr)Co(dmgBF(2))(2)(OH(2))](PF(6))(2), 7 (where Me(2)bpy = 1,10-phenanthroline, 4,4'-dimethyl-2,2'-bipyridine) and [Ru(phen)(2)(L-pyr)Co(dmgBF(2))(2)(OH(2))](PF(6))(2), 8 were also synthesised. All complexes were characterized by elemental analysis, ESI MS, HRMS, UV-visible absorption, (11)B, (19)F, and (59)Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H(2) gas in the presence of H(+) ions. A proposed mechanism for the generation of hydrogen is presented.

  1. Quantification of ethylenediamine-N,N'-bis(hydroxysulfophenylacetic) acid regioisomers and structural characterisation of its related polycondensation products by porous graphitic carbon high-performance liquid chromatography coupled to electrospray tandem mass spectrometry.

    PubMed

    Biasone, Alessandro; Cianci, Giusto; Di Tommaso, Donata; Piaggesi, Alberto; D'Alessandro, Nicola

    2013-10-18

    Among the commercial ethylenediamine-N,N'-bis(2-hydroxy)phenylacetic acid/iron(III) derivatives, ethylenediamine-N,N'-bis(2-hydroxy-5-sulphophenylacetic) acid/iron(III) (EDDHSA/Fe) represents one of the promising chelates for the treatment of chlorotic plants. Industrial synthesis of EDDHSA/Fe leads to relevant amounts of o,o-EDDHSA condensation products (o,o-EDDHSAcps) and other secondary products that might have important relevance from the agronomic point of view. However, their chemical structures have remained unknown to date. Analysis of iron complexes by ion-pair reversed-phase chromatography, coupled with electrospray tandem mass spectrometry revealed the presence of the meso-o,o-EDDHSA/Fe, rac-o,o-EDDHSA/Fe, o,p-EDDHSA/Fe regioisomers, the hydroxyl derivative of o,o-EDDHSA/Fe, and the three main EDDHSA condensation products chelating the iron(III) (EDDHSAcps/nFe). However, the chromatographic peaks of EDDHSAcps/Fe are not well resolved due to the large numbers of stereoisomers and the poor efficiency of the ion-pair reversed-phase separation method. An alternative chromatographic method is based on porous graphitic carbon (PGC) separation after pre-column decomplexation of the chelates with trifluoracetic acid, which was developed to allow detection of EDDHSA stereo/regioisomers, EDDHSAcps, and low-molecular-weight by-products. This extensive PGC-HPLC-ESI-MS/MS investigation provides quantitative determination of meso-o,o-EDDHSA, rac-o,o-EDDHSA and o,p-EDDHSA, in addition to characterisation of EDDHSAcps and the low-molecular-weight by-products. PGC separation coupled to a triple quadrupole ESI-MS detector allowed characterisation of free ligands using collision-induced dissociation experiments in positive and negative ionisation mode, providing comparative evaluation of EDDHSAcps in three commercial samples. For detection, the PGC-HPLC-ESI-MS/MS is the best method according to the limit of quantification and limit of detection (picomolar and sub

  2. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis

    PubMed Central

    Arendt, Kristin L.; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M.; Tang, Yitai; Cho, Ahryon; Graef, Isabella A.; Chen, Lu

    2015-01-01

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca2+ levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca2+-levels to RA synthesis remains unknown. Here we identify the Ca2+-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca2+-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity. PMID:26443861

  3. Synthesis and characterization of copolyanhydrides of carbohydrate-based galactaric acid and adipic acid.

    PubMed

    Mehtiö, Tuomas; Nurmi, Leena; Rämö, Virpi; Mikkonen, Hannu; Harlin, Ali

    2015-01-30

    A series of copolyanhydrides, consisting of 2,3,4,5-tetra-O-acetylgalactaric acid (AGA) and adipic acid (AA) as monomer units, was polymerized. Synthesis of AGA monomer consisted of two steps. First, O-acetylation of galactaric acid secondary hydroxyl groups was performed using acetic anhydride as a reagent. Acetic anhydride was then further used as a reagent in the synthesis of diacetyl mixed anhydride of AGA. Polymerizations were conducted as bulk condensation polymerization at 150 °C. Thermal properties of the copolymers varied depending on monomer composition. Increase in the AGA content had a clear increasing effect on the Tg. A similar increasing effect was observed in Tm. The degree of crystallinity decreased as AGA content increased. There was a slightly lowering tendency in the molecular weights of the obtained polymers when the AGA content in the polymerization mixtures increased. The described synthesis route shows that bio-based aldaric acid monomers are potential candidates for the adjustment of thermal properties of polyanhydrides.

  4. Synthesis and biological activity of novel deoxycholic acid derivatives.

    PubMed

    Popadyuk, Irina I; Markov, Andrey V; Salomatina, Oksana V; Logashenko, Evgeniya B; Shernyukov, Andrey V; Zenkova, Marina A; Salakhutdinov, Nariman F

    2015-08-01

    We report the synthesis and biological activity of new semi-synthetic derivatives of naturally occurring deoxycholic acid (DCA) bearing 2-cyano-3-oxo-1-ene, 3-oxo-1(2)-ene or 3-oxo-4(5)-ene moieties in ring A and 12-oxo or 12-oxo-9(11)-ene moieties in ring C. Bioassays using murine macrophage-like cells and tumour cells show that the presence of the 9(11)-double bond associated with the increased polarity of ring A or with isoxazole ring joined to ring A, improves the ability of the compounds to inhibit cancer cell growth.

  5. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation.

    PubMed

    Lluch, Cristina; Esteve-Zarzoso, Braulio; Bordons, Albert; Lligadas, Gerard; Ronda, Juan C; Galià, Marina; Cádiz, Virginia

    2014-08-01

    In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylene glycol) monoamine (Jeffamine M-600) via aminolysis and ii) Jeffamine M-600 layer complexation with iodine. The antimicrobial activity of the iodine-containing polyurethanes is demonstrated by its capacity to inhibit the growth of Staphylococcus aureus, and Candida albicans in agar media.

  6. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  7. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  8. Vanadyl complexes with dansyl-labelled di-picolinic acid ligands: synthesis, phosphatase inhibition activity and cellular uptake studies.

    PubMed

    Collins, Juliet; Cilibrizzi, Agostino; Fedorova, Marina; Whyte, Gillian; Mak, Lok Hang; Guterman, Inna; Leatherbarrow, Robin; Woscholski, Rudiger; Vilar, Ramon

    2016-04-28

    Vanadium complexes have been previously utilised as potent inhibitors of cysteine based phosphatases (CBPs). Herein, we present the synthesis and characterisation of two new fluorescently labelled vanadyl complexes (14 and 15) with bridged di-picolinic acid ligands. These compounds differ significantly from previous vanadyl complexes with phosphatase inhibition properties in that the metal-chelating part is a single tetradentate unit, which should afford greater stability and scope for synthetic elaboration than the earlier complexes. These new complexes inhibit a selection of cysteine based phosphatases (CBPs) in the nM range with some selectivity. Fluorescence spectroscopic studies (including fluorescence anisotropy) were carried out to demonstrate that the complexes are not simply acting as vanadyl delivery vehicles but they interact with the proteins. Finally, we present preliminary fluorescence microscopy studies to demonstrate that the complexes are cell permeable and localise throughout the cytoplasm of NIH3T3 cells.

  9. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  10. The synthesis and characterisation of MDMA derived from a catalytic oxidation of material isolated from black pepper reveals potential route specific impurities.

    PubMed

    Plummer, Christopher M; Breadon, Thomas W; Pearson, James R; Jones, Oliver A H

    2016-05-01

    This work examines the chemical synthesis of 3,4-methylenedioxy-N-methylamphetamine (MDMA) from piperonal prepared via a catalytic ruthenium tetroxide oxidation of piperine extracted from black pepper. A variety of oxidation conditions were experimented with including different solvent systems and co-oxidants. A sample of prepared piperonal was successfully converted into MDMA via 3,4-methylenedioxyphenyl-2-nitropropene (MDP2NP) and 3,4-methylenedioxyphenyl-2-propanone (MDP2P) and the impurities within each product characterised by GC-MS to give a contaminant profile of the synthetic pathway. Interestingly, it was discovered that a chlorinated analogue of piperonal (6-chloropiperonal) was created during the oxidation process by an as yet unknown mechanism. This impurity reacted alongside piperonal to give chlorinated analogues of each precursor, ultimately yielding 2-chloro-4,5-methylenedioxymethamphetamine (6-Cl-MDMA) as an impurity within the MDMA sample. The methodology developed is a simple way to synthesise a substantial amount of precursor material with easy to obtain reagents. The results also show that chlorinated MDMA analogues, previously thought to be deliberately included adulterants, may in fact be route specific impurities with potential application in determining the origin and synthesis method of seized illicit drugs.

  11. Effect of mitochondrial ascorbic acid synthesis on photosynthesis.

    PubMed

    Senn, M E; Gergoff Grozeff, G E; Alegre, M L; Barrile, F; De Tullio, M C; Bartoli, C G

    2016-07-01

    Ascorbic acid (AA) is synthesized in plant mitochondria through the oxidation of l-galactono-1,4-lactone (l-GalL) and then distributed to different cell compartments. AA-deficient Arabidopsis thaliana mutants (vtc2) and exogenous applications of l-GalL were used to generate plants with different AA content in their leaves. This experimental approach allows determining specific AA-dependent effects on carbon metabolism. No differences in O2 uptake, malic and citric acid and NADH content suggest that AA synthesis or accumulation did not affect mitochondrial activity; however, l-GalL treatment increased CO2 assimilation and photosynthetic electron transport rate in vtc2 (but not wt) leaves demonstrating a stimulation of photosynthesis after l-GalL treatment. Increased CO2 assimilation correlated with increased leaf stomatal conductance observed in l-GalL-treated vtc2 plants.

  12. Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

    PubMed Central

    Matthessen, Roman; Fransaer, Jan; Binnemans, Koen

    2014-01-01

    Summary The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process. PMID:25383120

  13. Biosynthesis of Polyunsaturated Fatty Acids in Sea Urchins: Molecular and Functional Characterisation of Three Fatty Acyl Desaturases from Paracentrotus lividus (Lamark 1816).

    PubMed

    Kabeya, Naoki; Sanz-Jorquera, Alicia; Carboni, Stefano; Davie, Andrew; Oboh, Angela; Monroig, Oscar

    2017-01-01

    Sea urchins are broadly recognised as a delicacy and their quality as food for humans is highly influenced by their diet. Lipids in general and the long-chain polyunsaturated fatty acids (LC-PUFA) in particular, are essential nutrients that determine not only the nutritional value of sea urchins but also guarantee normal growth and reproduction in captivity. The contribution of endogenous production (biosynthesis) of LC-PUFA in sea urchins remained unknown. Using Paracentrotus lividus as our model species, we aimed to characterise both molecularly and functionally the repertoire of fatty acyl desaturases (Fads), key enzymes in the biosynthesis of LC-PUFA, in sea urchins. Three Fads, namely FadsA, FadsC1 and FadsC2, were characterised. The phylogenetic analyses suggested that the repertoire of Fads within the Echinodermata phylum varies among classes. On one hand, orthologues of the P. lividus FadsA were found in other echinoderm classes including starfishes, brittle stars and sea cucumbers, thus suggesting that this desaturase is virtually present in all echinoderms. Contrarily, the FadsC appears to be sea urchin-specific desaturase. Finally, a further desaturase termed as FadsB exists in starfishes, brittle stars and sea cucumbers, but appears to be missing in sea urchins. The functional characterisation of the P. lividus Fads confirmed that the FadsA was a Δ5 desaturase with activity towards saturated and polyunsaturated fatty acids (FA). Moreover, our experiments confirmed that FadsA plays a role in the biosynthesis of non-methylene interrupted FA, a group of compounds typically found in marine invertebrates. On the other hand, both FadsC desaturases from P. lividus showed Δ8 activity. The present results demonstrate that P. lividus possesses desaturases that account for all the desaturation reactions required to biosynthesis the physiological essential eicosapentaenoic and arachidonic acids through the so-called "Δ8 pathway".

  14. Biosynthesis of Polyunsaturated Fatty Acids in Sea Urchins: Molecular and Functional Characterisation of Three Fatty Acyl Desaturases from Paracentrotus lividus (Lamark 1816)

    PubMed Central

    Carboni, Stefano; Davie, Andrew; Oboh, Angela

    2017-01-01

    Sea urchins are broadly recognised as a delicacy and their quality as food for humans is highly influenced by their diet. Lipids in general and the long-chain polyunsaturated fatty acids (LC-PUFA) in particular, are essential nutrients that determine not only the nutritional value of sea urchins but also guarantee normal growth and reproduction in captivity. The contribution of endogenous production (biosynthesis) of LC-PUFA in sea urchins remained unknown. Using Paracentrotus lividus as our model species, we aimed to characterise both molecularly and functionally the repertoire of fatty acyl desaturases (Fads), key enzymes in the biosynthesis of LC-PUFA, in sea urchins. Three Fads, namely FadsA, FadsC1 and FadsC2, were characterised. The phylogenetic analyses suggested that the repertoire of Fads within the Echinodermata phylum varies among classes. On one hand, orthologues of the P. lividus FadsA were found in other echinoderm classes including starfishes, brittle stars and sea cucumbers, thus suggesting that this desaturase is virtually present in all echinoderms. Contrarily, the FadsC appears to be sea urchin-specific desaturase. Finally, a further desaturase termed as FadsB exists in starfishes, brittle stars and sea cucumbers, but appears to be missing in sea urchins. The functional characterisation of the P. lividus Fads confirmed that the FadsA was a Δ5 desaturase with activity towards saturated and polyunsaturated fatty acids (FA). Moreover, our experiments confirmed that FadsA plays a role in the biosynthesis of non-methylene interrupted FA, a group of compounds typically found in marine invertebrates. On the other hand, both FadsC desaturases from P. lividus showed Δ8 activity. The present results demonstrate that P. lividus possesses desaturases that account for all the desaturation reactions required to biosynthesis the physiological essential eicosapentaenoic and arachidonic acids through the so-called “Δ8 pathway”. PMID:28052125

  15. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-05

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid.

  16. Synthesis and characterization of acetic acid and ethanoic acid (based)-maleimide

    NASA Astrophysics Data System (ADS)

    Poad, Siti Nashwa Mohd; Hassan, Nurul Izzaty; Hassan, Nur Hasyareeda

    2016-11-01

    A new route to the synthesis of maleimide is described. 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)acetic acid maleimide (1) and 2-(4-(2,5-Dioxo-2,5-dihydro- 1H-pyrrol-1-yl)phenyl)ethanoic acid maleimide (2) have been synthesized by the reaction of maleic anhydride with glycine and 4-aminophenyl acetic aicd. Maleimide (1) was synthesized by conventional technique while maleimide (2) was synthesized by microwave method. The compounds were characterized using FT-Infrared (FT-IR), 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopies and Mass Spectrometry.

  17. Alternative kynurenic acid synthesis routes studied in the rat cerebellum

    PubMed Central

    Blanco Ayala, Tonali; Lugo Huitrón, Rafael; Carmona Aparicio, Liliana; Ramírez Ortega, Daniela; González Esquivel, Dinora; Pedraza Chaverrí, José; Pérez de la Cruz, Gonzalo; Ríos, Camilo; Schwarcz, Robert; Pérez de la Cruz, Verónica

    2015-01-01

    Kynurenic acid (KYNA), an astrocyte-derived, endogenous antagonist of α7 nicotinic acetylcholine and excitatory amino acid receptors, regulates glutamatergic, GABAergic, cholinergic and dopaminergic neurotransmission in several regions of the rodent brain. Synthesis of KYNA in the brain and elsewhere is generally attributed to the enzymatic conversion of L-kynurenine (L-KYN) by kynurenine aminotransferases (KATs). However, alternative routes, including KYNA formation from D-kynurenine (D-KYN) by D-amino acid oxidase (DAAO) and the direct transformation of kynurenine to KYNA by reactive oxygen species (ROS), have been demonstrated in the rat brain. Using the rat cerebellum, a region of low KAT activity and high DAAO activity, the present experiments were designed to examine KYNA production from L-KYN or D-KYN by KAT and DAAO, respectively, and to investigate the effect of ROS on KYNA synthesis. In chemical combinatorial systems, both L-KYN and D-KYN interacted directly with peroxynitrite (ONOO−) and hydroxyl radicals (OH•), resulting in the formation of KYNA. In tissue homogenates, the non-specific KAT inhibitor aminooxyacetic acid (AOAA; 1 mM) reduced KYNA production from L-KYN and D-KYN by 85.1 ± 1.7% and 27.1 ± 4.5%, respectively. Addition of DAAO inhibitors (benzoic acid, kojic acid or 3-methylpyrazole-5-carboxylic acid; 5 μM each) attenuated KYNA formation from L-KYN and D-KYN by ~35% and ~66%, respectively. ONOO− (25 μM) potentiated KYNA production from both L-KYN and D-KYN, and these effects were reduced by DAAO inhibition. AOAA attenuated KYNA production from L-KYN + ONOO− but not from D-KYN + ONOO−. In vivo, extracellular KYNA levels increased rapidly after perfusion of ONOO− and, more prominently, after subsequent perfusion with L-KYN or D-KYN (100 μM). Taken together, these results suggest that different mechanisms are involved in KYNA production in the rat cerebellum, and that, specifically, DAAO and ROS can function as alternative

  18. Synthesis, characterisation and in vitro anticancer activity of hexanuclear thiolato-bridged arene ruthenium metalla-prisms.

    PubMed

    Furrer, Mona A; Garci, Amine; Denoyelle-Di-Muro, Emmanuel; Trouillas, Patrick; Giannini, Federico; Furrer, Julien; Clavel, Catherine M; Dyson, Paul J; Süss-Fink, Georg; Therrien, Bruno

    2013-02-25

    Hexanuclear thiolato-bridged arene ruthenium metalla-prisms of the general formula [(p-cymene)(6)Ru(6)(SR)(6)(tpt)(2) ](6+) (R=CH(2)Ph, CH(2)C(6)H(4)-p-tBu, CH(2)CH(2)Ph; tpt=2,4,6-tris(4-pyridyl)-1,3,5-triazine), obtained from the dinuclear precursors [(p-cymene)(2)Ru(2)(SR)(2)Cl(2)], AgCF(3)SO(3) and tpt, have been isolated and fully characterised as triflate salts. The metalla-prisms are highly cytotoxic against human ovarian cancer cells, especially towards the cisplatin-resistant cell line A2780cisR (IC(50) <0.25 μM).

  19. Synthesis, characterisation and biological evaluation of lanthanide(III) complexes with 3-acetylcoumarin-o-aminobenzoylhydrazone (ACAB).

    PubMed

    Gudasi, Kalagouda B; Shenoy, Rashmi V; Vadavi, Ramesh S; Patil, Manjula S; Patil, Siddappa A

    2005-09-01

    Lanthanide(III) complexes of the general formula [Ln(ACAB)(2)(NO(3))(2)(H(2)O)(2)].NO(3).H(2)O where Ln=La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III), Dy(III) and Y(III), ACAB=3-acetylcoumarin-o-aminobenzoylhydrazone have been isolated and characterised based on elemental analyses, molar conductance, IR, (1)H- and (13)C-NMR, UV, TG/DTA and EPR spectral studies. The ligand behaves in bidentate fashion coordinating through hydrazide >C=O and nitrogen of >C=N. A coordination number of ten is assigned to the complexes. Antibacterial and Antifungal studies indicate an enhancement of activity of the ligand on complexation.

  20. Synthesis and characterisation of chitosan crosslinked-β-cyclodextrin grafted silylated magnetic nanoparticles for controlled release of Indomethacin

    NASA Astrophysics Data System (ADS)

    Anirudhan, T. S.; Dilu, D.; Sandeep, S.

    2013-10-01

    In this work, a novel hydrogel, chitosan crosslinked β-cyclodextrin grafted silylated magnetic nanoparticle (CTSCD-g-SilylMNP) was synthesised as a drug delivery system onto which Indomethacin (IND) drug was loaded. Characterisation of the drug delivery system was carried out by Tunnelling electron microscopy, Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis, Dynamic light scattering and a Vibrating sample magnetometer. Swelling behaviour, in vitro drug release kinetics, and encapsulation efficiency of CTSCD-g-SilylMNP were studied. Swelling behaviour varied according to pH. In vitro release studies revealed that CTSCD-g-SilylMNP demonstrated a swelling and diffusion controlled release. Dependence of pH was also studied. Encapsulation efficiency (EE) at different percentages of drug loadings was studied. The results collectively suggest that the hydrogel has promising application in the field of controlled drug release. The biodegradability also adds to the advantage.

  1. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  2. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation.

    PubMed Central

    Trgovcević, Z; Petranović, D; Petranović, M; Salaj-Smic, E

    1980-01-01

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA. PMID:6997276

  3. Induction of fatty acid synthesis by pravastatin sodium in rat liver and primary hepatocytes.

    PubMed

    Fujioka, T; Tsujita, Y; Shimotsu, H

    1997-06-11

    We examined the effect of pravastatin sodium (pravastatin), a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on fatty acid synthesis in rat liver. The repeated administration of pravastatin to rats at 250 mg/kg for 7 days led to a 2.8-fold increase in fatty acid synthesis in the liver. The diurnal change of fatty acid synthesis was not affected by the treatment. Hepatic fatty acid synthase activity was increased 3.2-fold, while acetyl-CoA carboxylase activity was not changed by the repeated administration of pravastatin. In rat hepatocytes, the incubation with 2 microg/ml pravastatin for 24 h increased fatty acid synthase activity 1.5-fold, as well as HMG-CoA reductase activity 2.8-fold. These results suggest that HMG-CoA reductase inhibitors might increase fatty acid synthesis in vivo through the induction of hepatic fatty acid synthase.

  4. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  5. Indole diterpene synthetic studies. Total synthesis of (+)-nodulisporic acid F and construction of the heptacyclic cores of (+)-nodulisporic acids A and B and (-)-nodulisporic acid D.

    PubMed

    Smith, Amos B; Davulcu, Akin H; Cho, Young Shin; Ohmoto, Kazuyuki; Kürti, László; Ishiyama, Haruaki

    2007-06-22

    A first-generation strategy for construction of (+)-nodulisporic acids A (1) and B (2) is described. The strategy entails union of the eastern and western hemisphere subtargets via the indole synthesis protocol developed in our laboratory. Subsequent elaboration of rings E and F, however, revealed the considerable acid instability of the C(24) hydroxyl, thereby preventing further advancement. Nonetheless, preparation of the heptacyclic core of (+)-nodulisporic acids A and B, the total synthesis of (+)-nodulisporic acid F, the simplest member of the nodulisporic acid family, and elaboration of the heptacyclic core of (-)-nodulisporic acid D were achieved.

  6. Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids.

    PubMed

    Milne, Jacqueline E; Storz, Thomas; Colyer, John T; Thiel, Oliver R; Dilmeghani Seran, Mina; Larsen, Robert D; Murry, Jerry A

    2011-11-18

    A new convenient and scalable synthesis of phenylacetic acids has been developed via the iodide catalyzed reduction of mandelic acids. The procedure relies on in situ generation of hydroiodic acid from catalytic sodium iodide, employing phosphorus acid as the stoichiometric reductant.

  7. Synthesis and characterisations of Au-nanoparticle-doped TiO2 and CdO thin films

    NASA Astrophysics Data System (ADS)

    Gültekin, Aytaç; Karanfil, Gamze; Özel, Faruk; Kuş, Mahmut; Say, Ridvan; Sönmezoğlu, Savaş

    2014-06-01

    In the present study, pure and gold nanoparticle (Au NP)-doped titanium dioxide (TiO2) and cadmium oxide (CdO) thin film were prepared by the sol-gel method, and the effect of Au NP doping on the optical, structural and morphological properties of these thin films was investigated. The prepared thin films were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectra. While the optical band increases from 3.62 to 3.73 for TiO2 thin films, it decreases from 2.20 to 1.55 for CdO thin films with increasing Au doping concentration. Analysis of XRD indicates that the intensities of peaks of the crystalline phase have increased with the increasing Au NP concentrations in all thin films. SEM images demonstrate that the surface morphologies of the samples were affected by the incorporation of Au NPs. Consequently, the most significant results of the present study are that the Au NPs can be used to modify the optical, structural and morphological properties of TiO2 and CdO thin films.

  8. Design, synthesis and characterisation of new chimeric ruthenium(II)-gold(I) complexes as improved cytotoxic agents.

    PubMed

    Massai, Lara; Fernández-Gallardo, Jacob; Guerri, Annalisa; Arcangeli, Annarosa; Pillozzi, Serena; Contel, María; Messori, Luigi

    2015-06-28

    Two heterobimetallic complexes, i.e. [RuCl2(p-cymene)(μ-dppm)AuC] (1) and [RuCl2(p-cymene)(μ-dppm)Au(S-thiazoline)] (3), based on known cytotoxic [Ru(p-cymene)Cl2(PR3)] and [AuX(PR3)] (X = Cl, SR) molecular scaffolds, with the diphosphane linker 1,1-bis(diphenylphosphino)methane, dppm, were conveniently prepared and characterised. Remarkably, the new compounds manifested a more favourable in vitro pharmacological profile toward cancer cells than individual ruthenium and gold species being either more cytotoxic or more selective. The interactions of the studied compounds with (pBR322) DNA and their inhibitory effects on cathepsin B were also assessed. In addition, their reactivity toward suitable models of protein targets was explored and clear evidence gained for disruption of the bimetallic motif and for protein binding of monometallic fragments. Overall, the data reported here strongly support the concept of multifunctional heterometallic compounds as "improved" candidate agents for cancer treatment. The mechanistic and pharmacological implications of the present findings are discussed.

  9. Hyaluronic acid synthesis is required for zebrafish tail fin regeneration

    PubMed Central

    Ouyang, Xiaohu; Panetta, Nicholas J.; Talbott, Maya D.; Payumo, Alexander Y.; Halluin, Caroline; Longaker, Michael T.

    2017-01-01

    Using genome-wide transcriptional profiling and whole-mount expression analyses of zebrafish larvae, we have identified hyaluronan synthase 3 (has3) as an upregulated gene during caudal fin regeneration. has3 expression is induced in the wound epithelium within hours after tail amputation, and its onset and maintenance requires fibroblast growth factor, phosphoinositide 3-kinase, and transforming growth factor-ß signaling. Inhibition of hyaluronic acid (HA) synthesis by the small molecule 4-methylumbelliferone (4-MU) impairs tail regeneration in zebrafish larvae by preventing injury-induced cell proliferation. In addition, 4-MU reduces the expression of genes associated with wound epithelium and blastema function. Treatment with glycogen synthase kinase 3 inhibitors rescues 4-MU-induced defects in cell proliferation and tail regeneration, while restoring a subset of wound epithelium and blastema markers. Our findings demonstrate a role for HA biosynthesis in zebrafish tail regeneration and delineate its epistatic relationships with other regenerative processes. PMID:28207787

  10. Total Synthesis of Five Lipoteichoic acids of Clostridium difficile.

    PubMed

    Hogendorf, Wouter F J; Gisch, Nicolas; Schwudke, Dominik; Heine, Holger; Bols, Mikael; Pedersen, Christian Marcus

    2014-10-13

    The emergence of hypervirulent resistant strains have made Clostridium difficile a notorious nosocomial pathogen and has resulted in a renewed interest in preventive strategies, such as vaccines based on (synthetic) cell wall antigens. Recently, the structure of the lipoteichoic acid (LTA) of this species has been elucidated. Additionally, this LTA was found to induce the formation of protective antibodies against C. difficile in rabbits and mice. The LTA from C. difficile is isolated as a microheterogenous mixture, differing in size and composition, impeding any structure-activity relationship studies. To ensure reliable biological results, pure and well-defined synthetic samples are required. In this work the total synthesis of LTAs from C. difficile with defined chain length is described and the initial biological results are presented.

  11. Synthesis and characterization of 2-mercaptoethanesulfonic acid albumin.

    PubMed

    Bauer, H H; Ehmig, S; Engels, J W; Voelcker, G

    1998-06-01

    Autoimmune patients treated with ifosfamide (CAS 3778-73-2) and mesna (2-mercaptoethanesulfonic acid, CAS 3375-50-6) in some cases suffered from severe allergic reactions that were proposed to be due to mesna linked to serum albumin by a disulfide bond. To prove the existence of the hypothetic mesna albumin adduct in vivo it was synthesized: The free thiol group of albumin (molecular mass determined by MALDI spectroscopy: 67009 Da) was converted to S-phenylsulfonyl albumin and reacted with mesna to albumin mesna (molecular mass: 67159 Da). In an alternative synthesis albumin was incubated with mesna at pH 8, 40 degrees C (molecular mass of the adduct: 67166 Da).

  12. Characterisation of Sol-Gel Synthesis of Phase Pure CaTiO3 Nano Powders after Drying

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Biswal, G.; Patnaik, S. C.; Senapati, S. K.

    2015-02-01

    According to a few recent studies, calcium titanate (CT) is a material that is similar to hydroxyapatite in biological properties. However, calcium titanate is not currently being used in the biomedical applications as to hydroxyapatite. The objective is to prepare nano calcium titanate powders from the equimolar solution of calcium oxide, ethanol and Titanium (IV) isopropoxide via sol-gel synthesis. The phase analysis and morphology of powder particles were studied by X-ray diffraction (XRD), while the composition and size of powder particles were determined by Transmission electron microscope (TEM) attached with energy dispersive x-ray spectrometer (EDS). As results, XRD confirm the presence of phase pure crystalline CaTiO3 after drying at 100°C for 24 hours, while TEM analysis confirms about 13 nm sizes of CaTiO3 particles and some agglomerated particle of 20-30 nm. Moreover, EDS analysis indicates that the approximately stoichiometric Ca/Ti ratio 1:1 was obtained in the CaTiO3 powders. Finally, it can be concluded that described sol-gel synthesis could be novel method for the production of nano CaTiO3 particles at lower temperature compared to any other methods of production.

  13. Senescence in isolated carnation petals : effects of indoleacetic Acid and inhibitors of protein synthesis.

    PubMed

    Wulster, G; Sacalis, J; Janes, H W

    1982-10-01

    Indoleacetic acid induces senescence in isolated carnation (Dianthus caryophyllus, cv. White Sim) petals, increasing the duration and amount of ethylene production. This effect is inhibited by Actinomycin D, an inhibitor of RNA synthesis, and cycloheximide, a translational inhibitor of protein synthesis. The ability of petals to respond to indoleacetic acid appears to be a function of physiological age. Indoleacetic acid is capable of enhancing ethylene evolution and senescence only in specific portions of the petal.

  14. Efficient ytterbium triflate catalyzed microwave-assisted synthesis of 3-acylacrylic acid building blocks.

    PubMed

    Tolstoluzhsky, Nikita V; Gorobets, Nikolay Yu; Kolos, Nadezhda N; Desenko, Sergey M

    2008-01-01

    The derivatives of 4-(hetero)aryl-4-oxobut-2-enoic acid are useful as building blocks in the synthesis of biologically active compounds. An efficient general protocol for the synthesis of these building blocks was developed. This method combines microwave assistance and ytterbium triflate catalyst and allows the fast preparation of the target acids starting from different (hetero)aromatic ketones and glyoxylic acid monohydrate giving pure products in 52-75% isolated yields.

  15. Enantiospecific Synthesis of a Genetically Encodable Fluorescent Unnatural Amino Acid L-3-(6-Acetylnaphthalen-2-ylamino)-2-aminopropanoic Acid

    PubMed Central

    Xiang, Zheng; Wang, Lei

    2011-01-01

    Fluorescent unnatural amino acids (Uaas), when genetically incorporated into proteins, can provide unique advantages for imaging biological processes in vivo. Synthesis of optically pure L-enantiomer of fluorescent Uaas is crucial for their effective application in live cells. An efficient six-step synthesis of L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (L-Anap), a genetically encodable and polarity-sensitive fluorescent Uaa, has been developed. The synthesis takes advantage of a high-yield and enantiospecific Fukuyama-Mitsunobu reaction as the key transformation. PMID:21732687

  16. Synthesis, spectral, thermal, optical, electrical, mechanical and structural characterisations and quantum chemical study of 4-nitrophenol: Urea molecular adduct crystals

    NASA Astrophysics Data System (ADS)

    Muthuraja, P.; Sethuram, M.; Sethu Raman, M.; Dhandapani, M.; Amirthaganesan, G.

    2013-12-01

    Organic non-linear single crystals of 4-Nitrophenol: Urea Adduct (NPUA) have been grown by slow evaporation-solution growth technique. The elemental analysis of the compound satisfies the stoichiometric expectations. Vibrational frequencies of the grown crystals have been identified by using FT-IR analysis. The presence of different protons and carbon atoms of the grown adduct was ascertained by 1H and 13C NMR analyses. The UV-Visible spectroscopy study revealed that the grown crystal has excellent transmittance and has wide band gap in the visible province. The fluorescence emission spectrum has also been recorded. Photoconductivity studies confirm positive photoconductivity nature of the crystals. The crystal belongs to the triclinic system with space group P1. The complete structural analysis of the grown crystal has been done using single crystal X-ray diffraction technique. Thermogravimetry (TG), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC) were carried out to characterise the thermal behaviour and stability of NPUA. Dielectric studies have been carried out at room temperature. Mechanical behaviour of NPUA was studied by Vickers's microhardness test. The nonlinear optical (NLO) activity test using a Q-switched and pulsed Nd: YAG laser confirms the generation of second harmonics. The Density Functional Theoretical (DFT) study affords further insight on the properties of the compound. Quantum Chemical Calculations (QCC) have been performed through DFT method at B3LYP/6-31G(d) level of theory. The optimised geometric parameters such as bond lengths, bond angles, dipole moment, optimisation energy and vibrational frequencies were reported and compared with the experimental data.

  17. Synthesis, structural and magnetic characterisation of the fully fluorinated compound 6H-BaFeO{sub 2}F

    SciTech Connect

    Clemens, Oliver; Wright, Adrian J.; Berry, Frank J.; Smith, Ronald I.; Slater, Peter R.

    2013-02-15

    The compound 6H-BaFeO{sub 2}F (P6{sub 3}/mmc) was synthesised by the low temperature fluorination of 6H-BaFeO{sub 3-d} using polyvinylidenedifluoride (PVDF) as a fluorination agent. Structural characterisation by XRD and NPD suggests that the local positions of the oxygen and fluorine atoms vary with no evidence for ordering on the anion sites. This compound shows antiferromagnetic ordering at room temperature with antiparallel alignment of the magnetic moments along the c-axis. The use of PVDF also allows the possibility of tuning the fluorine content in materials of composition 6H-BaFeO{sub 3-d}F{sub y} to any value of 0

  18. Synthesis and photochromic property of nanosized amino acid polyoxometalate compounds

    NASA Astrophysics Data System (ADS)

    Sun, Dehui; Zhang, Jilin; Ren, Huijuan; Cui, Zhenfeng

    2009-07-01

    A series of novel nanosized amino acid-polyoxometalate compounds were successfully synthesized using a low temperature solid-state chemical reaction method. Their compositions, structures, morphologies, photochromic properties were characterized by ICP-AES/MS, TG/DTA, FTIR, XRD, SEM and UV-Vis diffuse reflectance spectra (DRS), respectively. The elemental analysis results showed that the compounds ((HThr)7PMo12O42•4H2O, (HTyr)7PMo12O42Â.5H2O, (HSer)7PMo12O42•5H2O and (HGlu)7PMo12O42•4H2O) were obtained. The analyses of the TG/DTA, XRD and FTIR confirmed that the four compounds are new phases different from the corresponding reactants and they are composed of the polyoxometalate anions and the corresponding protonated amino acids, respectively. Observation of the SEM revealed that the particle shape (e.g. (HThr)7PMo12O42Â.4H2O nanoplates, (HTyr)7PMo12O42•5H2O nanorods, (HSer)7PMo12O42•5H2O and (HGlu)7PMo12O42•4H2O nanoparticles) depended strongly on the structures of amino acids. This implied that the amino acids can play a structural template agent role in synthesis of the Silverton-type polyoxometalate compounds. After irradiated with ultraviolet light, these samples all exhibited photochromism. Their photochromic mechanism may be explained based on Yamase's photochromic model. These photochromic compounds could be applied to the field of photosensitive materials.

  19. Ribonucleic acid synthesis in yeast. The effect of cycloheximide on the synthesis of ribonucleic acid in Saccharomyces carlsbergensis

    PubMed Central

    de Kloet, S. R.

    1966-01-01

    1. Cycloheximide causes the release of the control amino acids have over RNA synthesis in Saccharomyces carlsbergensis N.C.T.C. 74. 2. The antibiotic causes a gradual deceleration of RNA formation. After incubation for 60min. at 30° RNA synthesis usually proceeds at a rate only a few per cent of that of the untreated control. 3. In the presence of cycloheximide two types of RNA accumulate in the cell: soluble RNA and a high-molecular-weight RNA. The latter has a base composition intermediate between those of yeast DNA and yeast ribosomal RNA, and sediments in a sucrose gradient at a rate faster than that of the 23s ribosomal RNA component. 4. Yeast ribosomal RNA contains methylated bases. Judged from the incorporation of [Me-14C]methionine, the extent of methylation of ribosomal RNA is about 20% of that of the `soluble' RNA fraction. The high-molecular-weight RNA formed in the presence of cycloheximide is less methylated than normal RNA. In this case the sucrose-density-gradient sedimentation patterns of newly methylated and newly synthesized RNA do not coincide. 5. In the presence of cycloheximide, polysomal material accumulates, indicating that messenger RNA is formed. 6. The effect of the antibiotic on protein and RNA synthesis can be abolished by washing of the cells. The RNA that has accumulated during incubation of the cells with the antibiotic is not stable on removal of cycloheximide. 7. The results presented in this study are discussed in relation to the regulation of RNA formation in yeast. PMID:5964958

  20. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

    PubMed

    Sekine, Airi; Okamoto, Misaki; Kanatani, Yuka; Sano, Mitsue; Shibata, Katsumi; Fukuwatari, Tsutomu

    2015-01-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.

  1. Synthesis, structural and magnetic characterisation of the fluorinated compound 15R-BaFeO{sub 2}F

    SciTech Connect

    Clemens, Oliver; Berry, Frank J.; Bauer, Jessica; Wright, Adrian J.; Knight, Kevin S.; Slater, Peter R.

    2013-07-15

    The compounds 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.27}F{sub 0.5} have been synthesised by the low temperature fluorination of 15R-BaFeO{sub 3−d}F{sub 0.2} using polyvinylidenedifluoride (PVDF) as a fluorination agent. The materials have been structurally characterised by Rietveld analysis of the X-ray- and HRPD-powder neutron diffraction data. A detailed analysis of bond valence sums suggests that the oxide and fluoride ions order on the different anion sites. A reinvestigation of our recently published structure (Clemens et al., 2013) [34] of 6H-BaFeO{sub 2}F is also reported and incorporation of fluoride in h-type layers is also confirmed in this compound. The magnetic moments for 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.25}F{sub 0.5} align in the a/b-plane with antiferromagnetic alignment of the moments between adjacent layers, and are flipped by 90° as compared to the precursor compound. 15R-BaFeO{sub 2}F exhibits very robust antiferromagnetism with a Néel temperature between 300 and 400 °C. - Graphical abstract: The crystal and magnetic structure of the perovskite phase 15R-BaFeO{sub 2}F. - Highlights: • 15R-BaFeO{sub 2}F and 15R-BaFeO{sub 2.27}F{sub 0.5}were prepared via low temperature fluorination using PVDF. • A structural investigation of the compounds BaFeO{sub 2}F is presented in detail. • This analysis suggests ordering of O{sup 2−} and F{sup −} anions between different layers. • 15R-BaFeO{sub 2}F shows antiferromagnetic ordering at 300 K with T{sub N} ∼300–400 °C. • The magnetic moments align in the a/b-plane.

  2. Design, synthesis, characterisation and chemical reactivity of mixed-ligand platinum(II) oxadiazoline complexes with potential cytotoxic properties.

    PubMed

    Wagner, Gabriele; Marchant, Anthony; Sayer, James

    2010-09-07

    A series of mixed ligand platinum(II) oxadiazoline complexes bearing 7-nitro-1,3,5-triazaadamantane (7-NO(2)TAA) as a labile and reactive nitrogen ligand has been synthesised from easily accessible starting materials. [2+3] cycloaddition of nitrones R(1)R(2)C-N(+)(Me)O(-) to only one of the nitrile ligands in trans-[PtX(2)(PhCN)(2)] (X = Cl, Br) results in the selective formation of mono-oxadiazoline complexes trans-[PtX(2)(PhCN){N=C(Ph)-O-N(Me)-CR(1)R(2)}] from which the remaining nitrile can be replaced by 7-NO(2)TAA. The resulting complexes trans-[PtX(2)(7-NO(2)TAA) {N=C(Ph)-O-N(Me)-CR(1)R(2)}] and their precursors were characterised by elemental analysis, IR and multinuclear NMR spectroscopy.The suitability of the target complexes as anticancer agents was extrapolated from their general chemical reactivity. They are stable in DMSO, but react with thiols and undergo aquation of a chloro ligand. In the absence of a competing ligand, the coordinated 7-NO(2)TAA ligand slowly hydrolyses in an aqueous medium under release of formaldehyde, and this could induce bioactivity independent of the one typically found with platinum compounds. With nitrogen heterocycles such as pyridine a slow exchange of the 7-NO(2)TAA ligand occurs. A combined DFT/AIM study confirms the reaction observed in the experiment and predicts that other nitrogen heterocycles such as DNA nucleobases should react in the same way. Moreover, the 7-NO(2)TAA should be even more labile in an aqueous medium where protonation of the remaining amines can occur. A PM6 molecular modelling study suggests that the PtCl(oxadiazoline) fragment formed after release of one chloro and the labile 7-NO(2)TAA ligand fits well into the DNA groove and is able to form d(GpG) intrastrand crosslinks similar to the ones observed with cisplatin.

  3. Role of fatty-acid synthesis in dendritic cell generation and function.

    PubMed

    Rehman, Adeel; Hemmert, Keith C; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R; Barilla, Rocky; Quesada, Juan P; Zambirinis, Constantinos P; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H Leon; Graffeo, Christopher S; Acehan, Devrim; Miller, George

    2013-05-01

    Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4(+) and CD8(+) T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.

  4. Role of Fatty-acid Synthesis in Dendritic Cell Generation and Function

    PubMed Central

    Rehman, Adeel; Hemmert, Keith C.; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R.; Barilla, Rocky; Quesada, Juan P.; Zambirinis, Constantinos P.; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S.; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H. Leon; Graffeo, Christopher S.; Acehan, Devrim; Miller, George

    2013-01-01

    Dendritic cells (DC) are professional antigen presenting cells that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of Cleaved Caspase 3 and BCL-xL, and down-regulation of Cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHCII, ICAM-1, B7-1, B7-2 but increased their production of selected pro-inflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacityto activate allogeneic as well as antigen-restricted CD4+ and CD8+ T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune-phenotype and IFN-γ production. Since endoplasmic reticular (ER)-stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAP kinase and Akt signaling. Further, lowering ER-stress by 4-phenylbutyrate mitigated the enhanced immune-stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy. PMID:23536633

  5. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    PubMed

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.

  6. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology

    PubMed Central

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost. PMID:26657030

  7. 4-hydroxyphenylacetic acid derivatives of inositol from dandelion (Taraxacum officinale) root characterised using LC-SPE-NMR and LC-MS techniques.

    PubMed

    Kenny, O; Smyth, T J; Hewage, C M; Brunton, N P; McLoughlin, P

    2014-02-01

    The combination of hyphenated techniques, LC-SPE-NMR and LC-MS, to isolate and identify minor isomeric compounds from an ethyl acetate fraction of Taraxacum officinale root was employed in this study. Two distinct fractions of 4-hydroxyphenylacetic acid derivatives of inositol were isolated and characterised by spectroscopic methods. The (1)H NMR spectra and MS data revealed two groups of compounds, one of which were derivatives of the di-4-hydroxyphenylacetic acid derivative of the inositol compound tetrahydroxy-5-[2-(4-hydroxyphenyl)acetyl] oxycyclohexyl-2-(4-hydroxyphenyl) acetate, while the other group consisted of similar tri-substituted inositol derivatives. For both fractions the derivatives of inositols vary in the number of 4-hydroxyphenylacetic acid groups present and their position and geometry on the inositol ring. In total, three di-substituted and three tri-substituted 4-hydroxyphenylacetic acid inositol derivates were identified for the first time along with a further two previously reported di-substituted inositol derivatives.

  8. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein

    PubMed Central

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R.; Puig, Sergi; Navarro, Juan C.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs. PMID:28335553

  9. Synthesis and characterisation of a new hydrated bismuth (III) oxalate : Bi2(C2O4)3,6H2O

    NASA Astrophysics Data System (ADS)

    Tortet, L.; Monnereau, O.; Roussel, P.; Conflant, P.

    2004-11-01

    This study presents results on synthesis and crystal structure of a new hydrated bismuth(III) oxalate : Bi2(C2O{4})3,6H2O. This compound is obtained by precipitation from Bi(NO3)3 solution and oxalic acid. Its structure is determined by X-ray crystallographic analysis from a single crystal: it is monoclinic with a = 9.761(1)Å, b = 8.193(1)Å, c = 10.214(1)Å, β = 99.66(1)circ, G.S. P2{1}/n. Its chemical composition is confirmed by chemical analyses, FTIR and TG-DTA experiments.

  10. Synthesis of hybrid hydrazino peptides: protected vs unprotected chiral α-hydrazino acids.

    PubMed

    Suć, Josipa; Jerić, Ivanka

    2015-01-01

    Peptidomimetics based on hydrazino derivatives of α-amino acids represent an important class of peptidic foldamers with promising biological activities, like protease inhibition and antimicrobial activity. However, the lack of straightforward method for the synthesis of optically pure hydrazino acids and efficient incorporation of hydrazino building blocks into peptide sequence hamper wider exploitation of hydrazino peptidomimetics. Here we described the utility of N (α)-benzyl protected and unprotected hydrazino derivatives of natural α-amino acids in synthesis of peptidomimetics. While incorporation of N (α)-benzyl-hydrazino acids into peptide chain and deprotection of benzyl moiety proceeded with difficulties, unprotected hydrazino acids allowed fast and simple construction of hybrid peptidomimetics.

  11. A convenient synthesis of anthranilic acids by Pd-catalyzed direct intermolecular ortho-C-H amidation of benzoic acids.

    PubMed

    Ng, Ka-Ho; Ng, Fo-Ning; Yu, Wing-Yiu

    2012-12-11

    An efficient method for synthesis of anthranilic acids by Pd-catalyzed ortho-C-H amidation of benzoic acids is disclosed. The amidation is proposed to proceed by carboxylate-assisted ortho-C-H palladation to form an arylpalladium(II) complex, followed by nitrene insertion to the Pd-C bond.

  12. ORAL AND INTRAVENOUSLY ADMINISTERED AMINO ACIDS PRODUCE SIMILAR EFFECTS ON MUSCLE PROTEIN SYNTHESIS IN THE ELDERLY

    PubMed Central

    Rasmussen, B.B.; Wolfe, R.R.; Volpi, E.

    2011-01-01

    BACKGROUND Muscle protein synthesis is stimulated in the elderly when amino acid availability is increased. OBJECTIVE To determine which mode of delivery of amino acids (intravenous vs. oral ingestion) is more effective in stimulating the rate of muscle protein synthesis in elderly subjects. DESIGN Fourteen elderly subjects were assigned to one of two groups. Following insertion of femoral arterial and venous catheters, subjects were infused with a primed, continuous infusion of L-[ring-2H5] phenylalanine. Blood samples and muscle biopsies were obtained to measure muscle protein fractional synthesis rate (FSR) with the precursor-product model, phenylalanine kinetics across the leg with the three-pool model, and whole body phenylalanine kinetics. Protein metabolism parameters were measured in the basal period, and during the administration of oral amino acids (n=8) or a similar amount of intravenous amino acids (n=6). RESULTS Enteral and parenteral amino acid administration increased amino acid arterial concentrations and delivery to the leg to a similar extent in both groups. Muscle protein synthesis as measured by both FSR, and the three-pool model, increased during amino acid administration (P < 0.05 vs. basal) in both groups with no differences between groups. Whole body proteolysis did not change with the oral amino acids whereas it increased slightly during parenteral amino acid administration. CONCLUSIONS Increased amino acid availability stimulates the rate of muscle protein synthesis independent of the route of administration (enteral vs. parenteral). PMID:12459885

  13. Amino Acid Synthesis in Seafloor Environments on Icy Worlds

    NASA Astrophysics Data System (ADS)

    Flores, Erika; Barge, Laura; VanderVelde, David; Kallas, Kayo; Baum, Marc M.; Russell, Michael J.; Kanik, Isik

    2016-10-01

    In 2005, the Cassini mission detected plumes erupting from Enceladus' surface, containing carbon dioxide, methane, silica, and possibly ammonia. Subsequent laboratory experiments indicated that the silica particles in the plumes were generated under alkaline conditions and at moderate temperatures of ~90°C (Hsu et al., 2015); one scenario for such conditions would be the existence of alkaline (serpentinization-driven) hydrothermal activity within Enceladus. Alkaline vents are significant since they have been proposed as a likely environment for the emergence of metabolism on the early Earth (Russell et al. 2014) and thus could also provide a mechanism for origin of life on ocean worlds with a water-rock interface. Alkaline vents in an acidic, iron-containing ocean could produce mineral precipitates that could act as primitive enzymes or catalysts mediating organic reactions; for example, metal sulfides can catalyze the reductive amination of pyruvate to alanine (Novikov and Copley 2013). We have conducted experiments testing the synthesis of amino acids catalyzed by other iron minerals that might be expected to precipitate on the seafloor of early Earth or Enceladus. Preliminary results indicate that amino acids as well as other organic products can be synthesized in 1-3 days under alkaline hydrothermal conditions. We also find that the yield and type of organic products is highly dependent on pH and temperature, implying that understanding the specifics of the geochemical hydrothermal gradients on Enceladus (or other ocean worlds) will be significant in determining their potential for synthesizing building blocks for life.Hsu, H.-W. et al. (2015), Nature 519, 207-210.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Novikov Y. and Copley S. D. (2013) PNAS 110, 33, 13283-13288.

  14. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    PubMed

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins.

  15. DFT study of the Lewis acid mediated synthesis of 3-acyltetramic acids.

    PubMed

    Mikula, Hannes; Svatunek, Dennis; Skrinjar, Philipp; Horkel, Ernst; Hametner, Christian; Fröhlich, Johannes

    2014-05-01

    The synthesis of 3-acyltetramic acids by C-acylation of pyrrolidine-2,4-diones was studied by density functional theory (DFT). DFT was applied to the mycotoxin tenuazonic acid (TeA), an important representative of these bioactive natural compounds. Lewis acid mediated C-acylation in combination with previous pH-neutral domino N-acylation-Wittig cyclization can be used for the efficient preparation of 3-acyltetramic acids. Nevertheless, quite harsh conditions are still required to carry out this synthetic step, leading to unwanted isomerization of stereogenic centers in some cases. In the presented study, the reaction pathway for the C-acetylation of (5S,6S-5-s-butylpyrrolidine-2,4-dione was studied in terms of mechanism, solvent effects, and Lewis acid activation, in order to obtain an appropriate theoretical model for further investigations. Crucial steps were identified that showed rather high activation barriers and rationalized previously reported experimental discoveries. After in silico optimization, aluminum chlorides were found to be promising Lewis acids that promote the C-acylation of pyrrolidine-2,4-diones, whereas calculations performed in various organic solvents showed that the solvent had only a minor effect on the energy profiles of the considered mechanisms. This clearly indicates that further synthetic studies should focus on the Lewis-acidic mediator rather than other reaction parameters. Additionally, given the results obtained for different reaction routes, the stereochemistry of this C-acylation is discussed. It is assumed that the formation of Z-configured TeA is favored, in good agreement with our previous studies.

  16. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    SciTech Connect

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  17. Synthesis and cytotoxic activity of new betulin and betulinic acid esters with conjugated linoleic acid (CLA).

    PubMed

    Tubek, Barbara; Mituła, Paweł; Niezgoda, Natalia; Kempińska, Katarzyna; Wietrzyk, Joanna; Wawrzeńczyk, Czesław

    2013-04-01

    The synthesis of new ester derivatives of betulin (3a-c) and betulinic acid (4) with conjugated linoleic acid isomers (CLA; in a mixture of 43.4% 9c, 11t; 49.5% 10t, 12c; 7.1% other isomers) is presented. Esterification was carried out with N,N'-dicyclohexylcarbodiimide (DCC) as the coupling agent in the presence of 4-dimethylamino-pyridine (DMAP) in dichloromethane (or pyridine). The in vitro cytotoxic effect of betulin (1), betulinic acid (2), a mixture of CLA isomers and their derivatives (3a-c, 4) was examined using the MTT assay against four cancer cell lines (P388, CEM/C2, CCRF/CEM and HL-60) and the SRB assay on the HT-29 cell line. Ester 4 was the most active among the esters synthesized against the CEM/C2 cell line with an ID50 value 16.9 +/- 6.5 microg/mL. Betulin (1), betulinic acid (2) and CLA were the most active agents against the cancer cell lines studied.

  18. Synthesis and characterisation of La 1-xMnO 3± δ nanopowders prepared by acrylamide polymerisation

    NASA Astrophysics Data System (ADS)

    Dezanneau, G.; Sin, A.; Roussel, H.; Vincent, H.; Audier, M.

    2002-01-01

    La 1-xMnO 3± δ (x=-0.02 to 0.35) nanocrystalline powders were prepared by a new sol-gel method. It is used the acrylamide gelification to form an organic 3D tangled network where a solution of the respective cations is soaked. This method was adapted to cover a broad range of high impact electro-ceramic oxides, which a particular example is the CMR nanopowders reported in this work. The acrylamide sol-gel process is a fast, cheaper and easy to scale-up method for obtaining fine powders of complex oxides. This synthesis method allows performing 100 g of highly pure nanopowders in one run with simple laboratory scale. The sponge like powder obtained consists of thin sheets composed of nanocrystallites whose size varies from 66 nm to 30 nm, depending on composition. The oxygen content of the manganite powder is shown to decrease with vacancy-doping on lanthanum site. Such a evolution can be explained for La/Mn<0.9 by considering a demixtion of the powder into La 0.9MnO 3 and Mn 3O 4 phases, while for La/Mn>0.9, the high oxygen excess leads to consider vacancies on both lanthanum and manganese sites. Both hypotheses are supported by magnetic measurements, which show a constant Curie temperature of 295 K for La/Mn<0.9, while for La/Mn>0.9, the occurrence of vacancies on manganese sites progressively impedes the ferromagnetic interactions, leading to a cluster-glass behaviour in the case of the highly manganese-deficient La 0.94Mn 0.92O 3 compound.

  19. Synthesis, characterisation, and preliminary anti-cancer photodynamic therapeutic in vitro studies of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes

    PubMed Central

    Taylor, Patrick; Magnusen, Anthony R.; Moffett, Erick T.; Meyer, Kyle; Hong, Yiling; Ramsdale, Stuart E.; Gordon, Michelle; Stubbs, Javelyn; Seymour, Luke A.; Acharya, Dhiraj; Weber, Ralph T.; Smith, Paul F.; Dismukes, G. Charles; Ji, Ping; Menocal, Laura; Bai, Fengwei; Williams, Jennie L.; Cropek, Donald M.; Jarrett, William L.

    2013-01-01

    We report the synthesis and characterisation of mixed-metal binuclear ruthenium(II)-vanadium(IV) complexes, which were used as potential photodynamic therapeutic agents for melanoma cell growth inhibition. The novel complexes, [Ru(pbt)2(phen2DTT)](PF6)2•1.5H2O 1 (where phen2DTT = 1,4-bis(1,10-phenanthrolin-5-ylsulfanyl)butane-2,3-diol and pbt = 2-(2'-pyridyl)benzothiazole) and [Ru(pbt)2(tpphz)](PF6)2•3H2O 2 (where tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2‴,3‴-j]phenazine) were synthesised and characterised. Compound 1 was reacted with [VO(sal-L-tryp)(H2O)] (where sal-L-tryp = N-salicylidene-L-tryptophanate) to produce [Ru(pbt)2(phen2DTT)VO(sal-L-tryp)](PF6)2•5H2O 4; while [VO(sal-L-tryp)(H2O)] was reacted with compound 2 to produce [Ru(pbt)2(tpphz)VO(sal-L-tryp)](PF6)2•6H2O 3. All complexes were characterised by elemental analysis, HRMS, ESI MS, UV-visible absorption, ESR spectroscopy, and cyclic voltammetry, where appropriate. In vitro cell toxicity studies (with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay) via dark and light reaction conditions were carried out with sodium diaqua-4,4',4”,4”'tetrasulfophthalocyaninecobaltate(II) (Na4[Co(tspc)(H2O)2]), [VO(sal-L-tryp)(phen)]•H2O, and the chloride salts of complexes 3 and 4. Such studies involved A431, human epidermoid carcinoma cells; human amelanotic malignant melanoma cells; and HFF, non-cancerous human skin fibroblast cells. Both chloride salts of complexes 3 and 4 were found to be more toxic to melanoma cells than to non-cancerous fibroblast cells, and preferentially led to apoptosis of the melanoma cells over non-cancerous skin cells. The anti-cancer property of the chloride salts of complexes 3 and 4 was further enhanced when treated cells were exposed to light, while no such effect was observed on non-cancerous skin fibroblast cells. ESR and 51V NMR spectroscopic studies were also used to assess the stability of the chloride salts of

  20. Long-term leucine induced stimulation of muscle protein synthesis is amino acid dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusing leucine for 1 h increases skeletal muscle protein synthesis in the neonate, but this is not sustained for 2 h unless the corresponding fall in amino acids is prevented. This study aimed to determine whether a continuous leucine infusion can stimulate protein synthesis for a prolonged period...

  1. Synthesis and characterisation of dimeric eight-coordinate lanthanide(III) complexes of a macrocyclic tribenzylphosphinate ligand.

    PubMed

    Senanayake, Kanthi; Thompson, Amber L; Howard, Judith A K; Botta, Mauro; Parker, David

    2006-12-07

    The macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7-triyl(methylenebenzyl-phosphinic acid) H3L3, has been prepared and its complexes with Eu, Gd and Tb(III) studied by NMR, relaxometry, luminescence and single crystal X-ray crystallography. In solution and in the crystal, the complexes have eight-coordinate metal centres with bridging phosphinate groups linking the two twisted square antiprismatic coordination polyhedra. A single stereoisomer crystallises from solution with an RRR and SSS configuration at the P centres in each sub-unit. The relaxivity of [GdL3]2 is low (1.9 mM-1 s-1, 298 K, 20 MHz), consistent with the absence of any proximate water molecules. The terbium dimer possesses a relatively long excited state lifetime (2.47 ms, 298 K).

  2. The Synthesis of an Amino Acid Derivative and Spectroscopic Monitoring of Dipeptide Formation.

    ERIC Educational Resources Information Center

    Simmonds, Richard J.

    1987-01-01

    Described are experiments to give students experience in the synthesis of peptides from amino acids and to use visible spectroscopy to measure a rate of reaction. The activities were designed for undergraduate courses. (RH)

  3. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  4. Synthesis of 1-O-methylchlorogenic acid: reassignment of structure for MCGA3 isolated from bamboo (Phyllostachys edulis) leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first synthesis of 1-O-methylchlorogenic acid is described. The short and efficient synthesis of this compound provides laboratory-scale quantities of the material to investigate its biological properties. The synthesis involved C-1 alkylation of the known (-)-4,5-cyclohexylidenequinic acid lact...

  5. Synthesis, structural and magnetic characterisation of iron(II/III), cobalt(II) and copper(II) cluster complexes of the polytopic ligand: N-(2-pyridyl)-3-carboxypropanamide.

    PubMed

    Russell, Mark E; Hawes, Chris S; Ferguson, Alan; Polson, Matthew I J; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S; Kruger, Paul E

    2013-10-07

    Herein we describe the synthesis, structural and magnetic characterisation of three transition metal cluster complexes that feature the polytopic ligand N-(2-pyridyl)-3-carboxypropanamide (H2L): [Fe3(III)Fe2(II)(HL)6(O)(H2O)3][ClO4]5·3MeCN·4H2O, 1, [Co8(HL)8(O)(OH)4(MeOH)3(H2O)]-[ClO4]3·5MeOH·2H2O, 2, and [Cu6(L(ox))4(MeOH)(H2O)3]·MeOH, 3. Complex 1 is a mixed valence penta-nuclear iron cluster containing the archetypal {Fe3(III)O} triangular basic carboxylate cluster at its core, with two Fe(II) ions above and below the core coordinated to three bidentate pyridyl-amide groups. The structure of the octanuclear Co(II) complex, 2, is based upon a central Co4 square with the remaining four Co(II) centres at the 'wing-tips' of the complex. The cluster core is replete with bridging oxide, hydroxide and carboxylate groups. Cluster 3 contains an oxidised derivative of the ligand, L(ox), generated in situ through hydroxylation of an α-carbon atom. This hexanuclear cluster has a 'barrel-like' core and contains Cu(II) ions in both square planar and square-based pyramidal geometries. Bridging between Cu(II) centres is furnished by alkoxide and carboxylate groups. Magnetic studies on 1-3 reveals dominant antiferro-magnetic interactions for 1 and 2, leading to small non-zero spin ground states, while 3 shows ferro-magnetic exchange between the Cu(II) centres to give an S = 3 spin ground state.

  6. Synthesis of unnatural amino acids from serine derivatives by beta-fragmentation of primary alkoxyl radicals.

    PubMed

    Boto, Alicia; Gallardo, Juan A; Hernández, Dacil; Hernández, Rosendo

    2007-09-14

    The fragmentation of primary alkoxyl radicals has been scarcely used in synthesis since other competing processes (such as oxidation or hydrogen abstraction) usually predominate. However, when serine derivatives were used as substrates, the scission took place in excellent yields. Tandem scission-allylation, -alkylation, or -arylation reactions were subsequently developed. This one-pot methodology was applied to the synthesis of unnatural amino acids, which are useful synthetic blocks or amino acid surrogates in peptidomimetics.

  7. Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O.

    PubMed

    Motokura, Ken; Kashiwame, Daiki; Miyaji, Akimitsu; Baba, Toshihide

    2012-05-18

    A copper-catalyzed formic acid synthesis from CO2 with hydrosilanes has been accomplished. The Cu(OAc)2·H2O-1,2-bis(diphenylphosphino)benzene system is highly effective for the formic acid synthesis under 1 atm of CO2. The TON value approached 8100 in 6 h. The reaction pathway was revealed by in situ NMR analysis and isotopic experiments.

  8. Synthesis of stable C-linked ferrocenyl amino acids and their use in solution-phase peptide synthesis.

    PubMed

    Philip, Anijamol T; Chacko, Shibin; Ramapanicker, Ramesh

    2015-12-01

    Incorporation of ferrocenyl group to peptides is an efficient method to alter their hydrophobicity. Ferrocenyl group can also act as an electrochemical probe when incorporated onto functional peptides. Most often, ferrocene is incorporated onto peptides post-synthesis via amide, ester or triazole linkages. Stable amino acids containing ferrocene as a C-linked side chain are potentially useful building units for the synthesis of ferrocene-containing peptides. We report here an efficient route to synthesize ferrocene-containing amino acids that are stable and can be used in peptide synthesis. Coupling of 2-ferrocenyl-1,3-dithiane and iodides derived from aspartic acid or glutamic acid using n-butyllithium leads to the incorporation of a ferrocenyl unit to the δ-position or ε-position of an α-amino acid. The reduction or hydrolysis of the dithiane group yields an alkyl or an oxo derivative. The usability of the synthesized amino acids is demonstrated by incorporating one of the amino acids in both C-terminus and N-terminus of tripeptides in solution phase.

  9. Synthesis, characterisation and catalytic potential of hydrazonato-vanadium(V) model complexes with [VO]3+ and [VO2]+ cores.

    PubMed

    Maurya, Mannar R; Agarwal, Shalu; Bader, Cerstin; Ebel, Martin; Rehder, Dieter

    2005-02-07

    Reaction between [VO(acac)2] and H2L (H2L are the hydrazones H2sal-nah I or H2sal-fah II; sal = salicylaldehyde, nah = nicotinic acid hydrazide and fah = 2-furoic acid hydrazide) in methanol leads to the formation of oxovanadium(IV) complexes [VOL.H2O](H2L = I: 1, H2L = II: 4). Aerial oxidation of the methanolic solutions of 1 and 4 yields the dinuclear oxo-bridged monooxovanadium(V) complexes [{VOL}2mu-O](H2L = I: 2, H2L = II: 5). These dinuclear complexes slowly convert, in excess methanol, to [VO(OMe)(MeOH)L](H(2)L = I: 9, H(2)L = II: 10), the crystal and molecular structures of which have been determined, confirming the ONO binding mode of the dianionic ligands in their enolate form. Reaction of aqueous K[VO3] with the ligands at pH ca. 7.5 results in the formation of [K(H2O)][VO2L](H2L = I: 3, H2L = II: 6). Treatment of 3 and 6 with H2O2 yields (unstable) oxoperoxovanadium(v) complexes K[VO(O2)L], the formation of which has been monitored spectrophotometrically. Acidification of methanolic solutions of 3 and 6 with HCl affords oxohydroxo complexes, while the neutral complexes [VO2(Hsal-nah)] 7 and [VO2(Hsal-fah)] 8 were isolated on treatment of aqueous solutions of 3 and 6 with HClO4. These complexes slowly transform into 9 and 10 in methanol, as confirmed by 1H, 13C and 51V NMR. The anionic complexes 3 and 6 catalyse the oxidative bromination of salicylaldehyde in water in the presence of H2O2/KBr to 5-bromosalicylaldehyde and 3,5-dibromosalicylaldehyde, a reaction similar to that exhibited by vanadate-dependent haloperoxidases. They are also catalytically active for the oxidation of benzene to phenol and phenol to catechol and p-hydroquinone.

  10. Distribution, synthesis, and absorption of kynurenic acid in plants.

    PubMed

    Turski, Michal P; Turska, Monika; Zgrajka, Wojciech; Bartnik, Magdalena; Kocki, Tomasz; Turski, Waldemar A

    2011-05-01

    Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidoniummajus). The highest concentration of this compound was detected in leaves of dandelion--a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort--33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement.

  11. Evolution of Abscisic Acid Synthesis and Signaling Mechanisms

    PubMed Central

    Hauser, Felix; Waadt, Rainer; Schroeder, Julian I.

    2011-01-01

    The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized. PMID:21549957

  12. Evolution of abscisic acid synthesis and signaling mechanisms.

    PubMed

    Hauser, Felix; Waadt, Rainer; Schroeder, Julian I

    2011-05-10

    The plant hormone abscisic acid (ABA) mediates seed dormancy, controls seedling development and triggers tolerance to abiotic stresses, including drought. Core ABA signaling components consist of a recently identified group of ABA receptor proteins of the PYRABACTIN RESISTANCE (PYR)/REGULATORY COMPONENT OF ABA RECEPTOR (RCAR) family that act as negative regulators of members of the PROTEIN PHOSPHATASE 2C (PP2C) family. Inhibition of PP2C activity enables activation of SNF1-RELATED KINASE 2 (SnRK2) protein kinases, which target downstream components, including transcription factors, ion channels and NADPH oxidases. These and other components form a complex ABA signaling network. Here, an in depth analysis of the evolution of components in this ABA signaling network shows that (i) PYR/RCAR ABA receptor and ABF-type transcription factor families arose during land colonization of plants and are not found in algae and other species, (ii) ABA biosynthesis enzymes have evolved to plant- and fungal-specific forms, leading to different ABA synthesis pathways, (iii) existing stress signaling components, including PP2C phosphatases and SnRK kinases, were adapted for novel roles in this plant-specific network to respond to water limitation. In addition, evolutionarily conserved secondary structures in the PYR/RCAR ABA receptor family are visualized.

  13. WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds1[OPEN

    PubMed Central

    Browse, John

    2016-01-01

    Previous attempts at engineering Arabidopsis (Arabidopsis thaliana) to produce seed oils containing hydroxy fatty acids (HFA) have resulted in low yields of HFA compared with the native castor (Ricinus communis) plant and caused undesirable effects, including reduced total oil content. Recent studies have led to an understanding of problems involved in the accumulation of HFA in oils of transgenic plants, which include metabolic bottlenecks and a decrease in the rate of fatty acid synthesis. Focusing on engineering the triacylglycerol assembly mechanisms led to modest increases in the HFA content of seed oil, but much room for improvement still remains. We hypothesized that engineering fatty acid synthesis in the plastids to increase flux would facilitate enhanced total incorporation of fatty acids, including HFA, into seed oil. The transcription factor WRINKLED1 (WRI1) positively regulates the expression of genes involved in fatty acid synthesis and controls seed oil levels. We overexpressed Arabidopsis WRI1 in seeds of a transgenic line expressing the castor fatty acid hydroxylase. The proportion of HFA in the oil, the total HFA per seed, and the total oil content of seeds increased to an average of 20.9%, 1.26 µg, and 32.2%, respectively, across five independent lines, compared with 17.6%, 0.83 µg, and 27.9%, respectively, for isogenic segregants. WRI1 and WRI1-regulated genes involved in fatty acid synthesis were up-regulated, providing for a corresponding increase in the rate of fatty acid synthesis. PMID:27208047

  14. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?

    PubMed

    Parsons, Joshua B; Rock, Charles O

    2011-10-01

    The emergence of resistance against most current drugs emphasizes the need to develop new approaches to control bacterial pathogens, particularly Staphylococcus aureus. Bacterial fatty acid synthesis is one such target that is being actively pursued by several research groups to develop anti-Staphylococcal agents. Recently, the wisdom of this approach has been challenged based on the ability of a Gram-positive bacterium to incorporate extracellular fatty acids and thus circumvent the inhibition of de novo fatty acid synthesis. The generality of this conclusion has been challenged, and there is enough diversity in the enzymes and regulation of fatty acid synthesis in bacteria to conclude that there is not a single organism that can be considered typical and representative of bacteria as a whole. We are left without a clear resolution to this ongoing debate and await new basic research to define the pathways for fatty acid uptake and that determine the biochemical and genetic mechanisms for the regulation of fatty acid synthesis in Gram-positive bacteria. These crucial experiments will determine whether diversity in the control of this important pathway accounts for the apparently different responses of Gram-positive bacteria to the inhibition of de novo fatty acid synthesis in presence of extracellular fatty acid supplements.

  15. Cooperative Brønsted Acid-Type Organocatalysis for the Stereoselective Synthesis of Deoxyglycosides

    PubMed Central

    2016-01-01

    A practical approach for the α-stereoselective synthesis of deoxyglycosides using cooperative Brønsted acid-type organocatalysis has been developed. The method is tolerant of a wide range of glycoside donors and acceptors, and its versatility is exemplified in the one-pot synthesis of a trisaccharide. Mechanistic studies suggest that thiourea-induced acid amplification of the chiral acid via H-bonding is key for the enhancement in reaction rate and yield, while stereocontrol is dependent on the chirality of the acid. PMID:28004941

  16. Synthesis and characterisation of bismacrocyclic DO3A-amide derivatives - an approach towards metal-responsive PARACEST agents.

    PubMed

    Cakić, Nevenka; Verbić, Tatjana Ž; Jelić, Ratomir M; Platas-Iglesias, Carlos; Angelovski, Goran

    2016-04-21

    Three new bismacrocyclic Ln(3+) chelates consisting of triamide derivatives of cyclen with glycine, methyl and tert-butyl substituents (, respectively) linked to an acyclic EGTA-derived calcium chelator were synthesised as potential MRI contrast agents (EGTA - ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid). Eu(3+) and Yb(3+) complexes of were investigated as chemical exchange saturation transfer (CEST) agents. Moderate to minor CEST effects were observed for , and complexes in the absence of Ca(2+), with negligible changes upon addition of this metal ion. Luminescence steady-state emission and lifetime experiments did not reveal any changes in the coordination environment of the complexes, while the number of inner-sphere water molecules remained constant in the absence and presence of Ca(2+). The protonation constants of and and stability constants of their complexes with Ca(2+), Mg(2+) and Zn(2+) were determined by means of potentiometric titrations. The results show that the charge of the complex dramatically affects the protonation constants of the EGTA-binding unit. The stability constants of the complexes formed with Ca(2+), Mg(2+) and Zn(2+) are several orders of magnitude lower than those of EGTA. These findings indicate that the nature of Ln(3+) chelates and their charge are the main reasons for the observed results and weaker response of these EGTA-derived triamide derivatives compared to their tricarboxylate analogues.

  17. Exogenous amino acids stimulate net muscle protein synthesis in the elderly.

    PubMed Central

    Volpi, E; Ferrando, A A; Yeckel, C W; Tipton, K D; Wolfe, R R

    1998-01-01

    We have investigated the response of amino acid transport and protein synthesis in healthy elderly individuals (age 71+/-2 yr) to the stimulatory effect of increased amino acid availability. Muscle protein synthesis and breakdown, and amino acid transport were measured in the postabsorptive state and during the intravenous infusion of an amino acid mixture. Muscle-free amino acid kinetics were calculated by means of a three compartment model using data obtained by femoral arterio-venous catheterization and muscle biopsies from the vastus lateralis during the infusion of stable isotope tracers of amino acids. In addition, muscle protein fractional synthetic rate (FSR) was measured. Peripheral amino acid infusion significantly increased amino acid delivery to the leg, amino acid transport, and muscle protein synthesis when measured either with the three compartment model (P < 0.05) or with the traditional precursor-product approach (FSR increased from 0. 0474+/-0.0054 to 0.0940+/-0.0143%/h, P < 0.05). Because protein breakdown did not change during amino acid infusion, a positive net balance of amino acids across the muscle was achieved. We conclude that, although muscle mass is decreased in the elderly, muscle protein anabolism can nonetheless be stimulated by increased amino acid availability. We thus hypothesize that muscle mass could be better maintained with an increased intake of protein or amino acids. PMID:9576765

  18. Preparation of a mercaptopropyl bonded silica intermediate in supercritical carbon dioxide: synthesis, characterisation and chromatography of a quinine based chiral stationary phase.

    PubMed

    Scully, Norma M; O'Sullivan, Gerard P; Healy, Liam O; Glennon, Jeremy D; Dietrich, Benjamin; Albert, Klaus

    2007-07-13

    This research examines the preparation of a mercaptopropyl bonded silica intermediate in supercritical carbon dioxide (sc-CO(2)) and the subsequent conversion in sc-CO(2) to a quinine derived chiral stationary phase (CSP). The effects of reaction temperature, pressure and time on the surface coverage of the silica intermediate were investigated when porous silica particles (Exsil-Avanti, 3microm) were reacted with 3-trimethoxymercaptopropylsilane in sc-CO(2). We present results which demonstrate that a stable mercaptopropyl bonded silica intermediate can be successfully prepared under supercritical conditions of 40 degrees C, 483bar, in a substantially reduced reaction time of 1h with superior surface coverages compared to organic solvent based methods. The further utility of this supercritical fluid technology was demonstrated by the free radical addition of a quinine derived chiral selector onto a mercaptopropyl bonded silica intermediate in sc-CO(2). This supercritical fluid generated chiral stationary phase (CSP) was utilised for the direct LC enantioseparation of a series of 3,5-dinitrobenzoyl (DNB) amino acids. Bonded silica samples were characterised using elemental analysis, diffuse reflectance infrared fourier transform (DRIFT) spectroscopy, solid state (13)C and (29)Si CP-MAS NMR spectroscopy, and thermogravimetric analysis (TGA). This supercritical fluid functionalisation approach offers an efficient and cleaner alternative to existing organic solvent based approaches for the preparation of bonded silica phases.

  19. The inhibitory effect of glycolic acid and lactic acid on melanin synthesis in melanoma cells.

    PubMed

    Usuki, Akiko; Ohashi, Akiko; Sato, Hirofumi; Ochiai, Yasunobu; Ichihashi, Masamitsu; Funasaka, Yoko

    2003-01-01

    Alpha-hydroxy acids (AHAs) such as glycolic acid (GA) and lactic acid (LA) have been reported to be effective in treating pigmentary lesions such as melasma, solar lentigines, and postinflammatory hyperpigmentation. The mechanism of this effect might be due to epidermal remodeling and accelerated desquamation, which would result in quick pigment dispersion. However, the direct effect of AHAs on melanin synthesis has not yet been well studied. To elucidate such a direct effect of AHAs on melanogenesis, we performed melanin assays, growth curve determinations, Northern and Western blotting for melanogenic proteins [tyrosinase, tyrosinase related protein (TRP)-1 and TRP-2], and tyrosinase and, 4-dihydroxyphenylalaninechrome tautomerase enzyme activity assays using mouse B16 and human melanoma cells. GA or LA (at doses of 300 or 500 microg/ml) inhibited melanin formation in similar dose-dependent manner, without affecting cell growth. Although the mRNA and protein expression or molecular size of tyrosinase, TRP-1 and TRP-2 were not affected, tyrosinase activity was inhibited. To see whether GA and/or LA directly inhibit tyrosinase catalytic function, the effect of GA and LA on human tyrosinase purified from the melanosome-rich large granule fraction of human melanoma cells was performed. GA or LA were shown to inhibit tyrosinase enzyme activity directly, but this effect was not due to the acidity of GA or LA, because adjusting the pH to 5.6 (the pH of GA and LA at concentrations of 2500 microg/ml), did not affect tyrosinase activity. Taken together, these results show that GA and LA suppress melanin formation by directly inhibiting tyrosinase activity, an effect independent of their acidic nature. GA and LA might work on pigmentary lesions not only by accelerating the turnover of the epidermis but also by directly inhibiting melanin formation in melanocytes.

  20. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    SciTech Connect

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-15

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  1. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    SciTech Connect

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-04-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis.

  2. Synthesis, characterisation, and evaluation of a cross-linked disulphide amide-anhydride-containing polymer based on cysteine for colonic drug delivery.

    PubMed

    Lim, Vuanghao; Peh, Kok Khiang; Sahudin, Shariza

    2013-12-18

    The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5-1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon.

  3. Eicosanoid synthesis in cardiomyocytes: influence of hypoxia, reoxygenation, and polyunsaturated fatty acids.

    PubMed

    Oudot, F; Grynberg, A; Sergiel, J P

    1995-01-01

    The synthesis of eicosanoids was investigated in cultured rat ventricular myocytes. Under normoxia, the cardiomyocytes released 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) and prostaglandin (PG) E2 and smaller amounts of PGF2 alpha and thromboxane B2. Hypoxia enhanced the production of PGE2 and PGF2 alpha, whereas the synthesis of 6-keto-PGF1 alpha was not affected. Conversely, posthypoxic reoxygenation greatly increased the synthesis of 6-keto-PGF1 alpha, whereas the synthesis of PGF2 alpha, was not affected and that of PGE2 was reduced. The cardiomyocyte polyunsaturated fatty acid (PUFA) profile was altered by arachidonic acid or eicosapentaenoic acid and docosahexaenoic acid. Under normoxia, the eicosanoid production appeared to be roughly related to the cell phospholipid arachidonic acid content. Conversely, during posthypoxic reoxygenation, the production of eicosanoids was related to the cell phospholipid n-3 PUFA content, with the n-3-rich cells displaying a marked inhibition of the synthesis. This inhibition was mainly attributed to eicosapentaenoic acid and/or docosapentaenoic acid. Whether this inhibition occurs in vivo during postischemic reperfusion, it may contribute to the beneficial effect of n-3 PUFA on the heart.

  4. Characterization of a novel N-acetylneuraminic acid lyase favoring N-acetylneuraminic acid synthesis

    PubMed Central

    Ji, Wenyan; Sun, Wujin; Feng, Jinmei; Song, Tianshun; Zhang, Dalu; Ouyang, Pingkai; Gu, Zhen; Xie, Jingjing

    2015-01-01

    N-Acetylneuraminic acid lyase (NAL, E.C. number 4.1.3.3) is a Class I aldolase that catalyzes the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) from pyruvate and N-acetyl-D-mannosamine (ManNAc). Due to the equilibrium favoring Neu5Ac cleavage, the enzyme catalyzes the rate-limiting step of two biocatalytic reactions producing Neu5Ac in industry. We report the biochemical characterization of a novel NAL from a “GRAS” (General recognized as safe) strain C. glutamicum ATCC 13032 (CgNal). Compared to all previously reported NALs, CgNal exhibited the lowest kcat/Km value for Neu5Ac and highest kcat/Km values for ManNAc and pyruvate, which makes CgNal favor Neu5Ac synthesis the most. The recombinant CgNal reached the highest expression level (480 mg/L culture), and the highest reported yield of Neu5Ac was achieved (194 g/L, 0.63 M). All these unique properties make CgNal a promising biocatalyst for industrial Neu5Ac biosynthesis. Additionally, although showing the best Neu5Ac synthesis activity among the NAL family, CgNal is more related to dihydrodipicolinate synthase (DHDPS) by phylogenetic analysis. The activities of CgNal towards both NAL's and DHDPS' substrates are fairly high, which indicates CgNal a bi-functional enzyme. The sequence analysis suggests that CgNal might have adopted a unique set of residues for substrates recognition. PMID:25799411

  5. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acids in relaxed and stringent amino acid auxotrophs of Escherichia coli.

    PubMed

    Gray, W J; Midgley, J E

    1972-08-01

    The biosynthesis and stability of various RNA fractions was studied in RC(str) and RC(rel) multiple amino acid auxotrophs of Escherichia coli. In conditions of amino acid deprivation, RC(str) mutants were labelled with exogenous nucleotide bases at less than 1% of the rate found in cultures growing normally in supplemented media. Studies by DNA-RNA hybridization and by other methods showed that, during a period of amino acid withdrawal, not more than 60-70% of the labelled RNA formed in RC(str) mutants had the characteristics of mRNA. Evidence was obtained for some degradation of newly formed 16S and 23S rRNA species to heterogeneous material of lower molecular weight. This led to overestimations of the mRNA content of rapidly labelled RNA from such methods as simple examination of sucrose-density-gradient profiles. In RC(rel) strains the absolute and relative rates of synthesis of the various RNA fractions were not greatly affected. However, the stability of about half of the mRNA fraction was increased in RC(rel) strains during amino acid starvation, giving kinetics of mRNA labelling and turnover that were identical with those found in either RC(str) or RC(rel) strains inhibited by high concentrations of chloramphenicol. Coincidence hybridization techniques showed that the mRNA content of amino acid-starved RC(str) auxotrophs was unchanged from that found in normally growing cells. In contrast, RC(rel) strains deprived of amino acids increased their mRNA content about threefold. In such cultures the mRNA content of accumulating newly formed RNA was a constant 16% by wt.

  6. Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841.

    PubMed

    Tett, Adrian J; Karunakaran, Ramakrishnan; Poole, Philip S

    2014-01-01

    Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants.

  7. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes.

    PubMed

    Tang, Yao; Li, Xihong; Chen, Peter X; Zhang, Bing; Hernandez, Marta; Zhang, Hua; Marcone, Massimo F; Liu, Ronghua; Tsao, Rong

    2015-05-01

    Composition of fatty acids, tocopherols, tocotrienols, and carotenoids, and their contribution to antioxidant activities were investigated in seeds of three coloured quinoa cultivars (white, red and black). The major components and individual compounds were significantly different, and their concentrations were higher in darker seeds (p < 0.05). The oil yield was 6.58-7.17% which contained predominantly unsaturated fatty acids (89.42%). The ratio of omega-6/omega-3 fatty acid was ca. 6/1. The total tocopherol content ranged from 37.49 to 59.82 μg/g and mainly consisted of γ-tocopherol. Trace amount of α- and β-tocotrienols was also found. Black quinoa had the highest vitamin E followed by red and white quinoas. Carotenoids, mainly trans-lutein (84.7-85.6%) and zeaxanthin were confirmed for the first time in quinoa seeds, and the concentration was also the highest in black seeds. The antioxidant activities of lipophilic extracts were positively correlated with polyunsaturated fatty acids, total carotenoids and total tocopherols.

  8. New tetradentate N,N,N,N-chelating α-diimine ligands and their corresponding zinc and nickel complexes: synthesis, characterisation and testing as olefin polymerisation catalysts.

    PubMed

    Li, Lidong; Gomes, Clara S B; Gomes, Pedro T; Duarte, M Teresa; Fan, Zhiqiang

    2011-04-07

    A series of zinc complexes of the general formula {[ZnCl(ArN=C(An)-C(An)=NAr)](+)}(2)[Zn(2)Cl(6)](2-) (where Ar = 2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl 2a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)phenyl 2b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl 2c; An = acenaphthene backbone) were prepared by the condensation of acenaphthenequinone with the corresponding o-triazolyl-substituted anilines (2-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline 1a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)aniline 1b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline 1c) which were formed by the copper(I)-catalyzed Huisgen[3+2] dipolar cycloaddition between 2-ethynylaniline and the corresponding azides in high yields, using anhydrous ZnCl(2) as the metal template, in boiling glacial acetic acid. Zinc complexes of the type [ZnCl(ArN=C(An)-C(An)=NAr)](+)[ZnCl(3)(NCCH(3))](-) (4a-c) were synthesized by crystallisation of the corresponding complexes 2a-c in acetonitrile, at -20 °C. After removal of zinc dichloride from complexes 2a-c by the addition of potassium oxalate, in dichloromethane, the tetradentate N,N,N,N-chelating α-diimine ligands of the type ArN=C(An)-C(An)=NAr (5a-c) were obtained. The new ligand precursors and zinc complexes were characterised by elemental analysis, (1)H and (13)C{(1)H} NMR spectroscopy, two-dimensional NMR spectroscopy, and X-ray diffraction. Reaction of the ligand precursors 5a-c with [NiBr(2)(DME)], in dichloromethane, gave nickel complexes of the type [NiBr(2)(ArN=C(An)-C(An)=NAr)] (6a-c). The results of single crystal X-ray diffraction characterisation and magnetic susceptibility measurements demonstrated that nickel complexes 6a-c possess octahedral geometries around the nickel atoms with variable configurations, the Br atoms of which can be ionized when dissolved in methanol. In preliminary catalytic tests, complexes 6a-c revealed to be active as catalysts for the polymerisation of norbornene and styrene, when activated by cocatalyst MAO. The characterisation

  9. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    PubMed Central

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  10. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running.

    PubMed

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-06-28

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d₃-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  11. Crystal structure of Spot 14, a modulator of fatty acid synthesis

    SciTech Connect

    Colbert, Christopher L.; Kim, Chai-Wan; Moon, Young-Ah; Henry, Lisa; Palnitkar, Maya; McKean, William B.; Fitzgerald, Kevin; Deisenhofer, Johann; Horton, Jay D.; Kwon, Hyock Joo

    2011-09-06

    Spot 14 (S14) is a protein that is abundantly expressed in lipogenic tissues and is regulated in a manner similar to other enzymes involved in fatty acid synthesis. Deletion of S14 in mice decreased lipid synthesis in lactating mammary tissue, but the mechanism of S14's action is unknown. Here we present the crystal structure of S14 to 2.65 {angstrom} and biochemical data showing that S14 can form heterodimers with MIG12. MIG12 modulates fatty acid synthesis by inducing the polymerization and activity of acetyl-CoA carboxylase, the first committed enzymatic reaction in the fatty acid synthesis pathway. Coexpression of S14 and MIG12 leads to heterodimers and reduced acetyl-CoA carboxylase polymerization and activity. The structure of S14 suggests a mechanism whereby heterodimer formation with MIG12 attenuates the ability of MIG12 to activate ACC.

  12. Thermal synthesis and hydrolysis of polyglyceric acid. [in orgin of life studying

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Polyglyceric acid was synthesized by thermal condensation of glyceric acid at 80 C in the presence and absence of two mole percent of sulfuric acid catalyst. The acid catalyst accelerated the polymerization over 100-fold and made possible the synthesis of insoluble polymers of both L- and DL-glyceric acid by heating for less than 1 day. Racemization of L-glyceric acid yielded less than 1 percent D-glyceric acid in condensations carried out at 80 C with catalyst for 1 day and without catalyst for 12 days. The condensation of L-glyceric acid yielded an insoluble polymer much more readily than condensation of DL-glyceric acid. Studies of the hydrolysis of poly-DL-glyceric acid revealed that it was considerably more stable under mild acidic conditions compared to neutral pH. The relationship of this study to the origin of life is discussed.

  13. Synthesis and spectroscopic studies of iron (III) complex with a quinolone family member (pipemidic acid)

    NASA Astrophysics Data System (ADS)

    Skrzypek, D.; Szymanska, B.; Kovala-Demertzi, Dimitra; Wiecek, Joanna; Talik, E.; Demertzis, Mavroudis A.

    2006-12-01

    The interaction of iron (III) with pipemidic acid, Hpipem, afforded the complex [Fe (pipem) (HO)2 (H2O)]2. The new complex has been characterised by elemental analyses, infra-red, EPR and XPS spectroscopies. The monoanion, pipem, exhibits O, O ligation through the carbonyl and carboxylato oxygen atoms. Six coordinate dimer distorted octahedral configuration has been proposed for [Fe (pipem) (HO)2 (H2O)]2.

  14. Characterisation of the nucleic acid binding features of the PRRSV 7ap and its ability to induce antinuclear antibodies.

    PubMed

    Olasz, Ferenc; Dénes, Béla; Bálint, Ádám; Magyar, Tibor; Belák, Sándor; Zádori, Zoltán

    2017-03-01

    A short alternative open reading frame named ORF7a has recently been discovered within the nucleocapsid gene of the porcine reproductive and respiratory syndrome virus (PRRSV) genome. Proteins (7ap) translated from the ORF7a of two divergent strains - a type I and a type II - are able to completely reduce the motility of nucleic acids at relatively high molar charge ratios in gel retardation assays indicating strong dsDNA- and ssRNA-binding capability. Conserved RNA- and DNA-binding properties suggest that nucleic acid binding is a functional property of the divergent 7aps, and not an arbitrary consequence of their net positive charge. Sera from Hu7ap-immunised pigs and mice did not react with Hu7ap or Hu7ap-GFP; however, antinuclear antibodies were detected in the sera of the immunised animals, suggesting an ability of Hu7ap to interact with or mimic autoantigenic macromolecules.

  15. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  16. Isolation and structural characterisation of acid- and pepsin-soluble collagen from the skin of squid Sepioteuthis lessoniana (Lesson, 1830).

    PubMed

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2014-01-01

    Acid-solubilised collagen (ASC) and pepsin-solubilised collagen (PSC) were effectively isolated from squid skin with good yield and total protein content. ASC and PSC consist of two α-chains with an imino acid content of 182.6 and 184 imino acid residues/1000 residues. The molecular weight was determined to be between 73 and 107 kDa by using SDS-PAGE. For peptide mapping, collagens were digested with achromo endopeptidase, and all components, including α, β-chains, were markedly hydrolysed. Degradation peptides with molecular weights between 106.9 and 15.47 kDa were obtained. UV-vis absorption spectrum revealed distinct absorption at 220-240 nm. FT-IR spectra of collagens were almost similar when compared with standard. In differential scanning calorimetry profile, ASC and PSC exhibited a To of 59.10, 62.18°C and TP of 104.91, 98.10 °C, respectively. This investigation indicates that the collagen isolated from the squid skin, which is thrown as waste in the seafood-processing plant, might supplement the vertebrate collagen in industrial applications.

  17. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    PubMed Central

    Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768

  18. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    NASA Technical Reports Server (NTRS)

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  19. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  20. Prolonged stimulation of protein synthesis by leucine is dependent on amino acid availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leucine is unique among the amino acids in its ability to enhance protein synthesis by activating translation initiation (Kimball and Jefferson, 2005). Our laboratory has shown that raising leucine to postprandial levels, whilst keeping all other amino acids at the post absorptive, level acutely st...

  1. Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

    PubMed

    Lu, Ping; Haagsma, Anna C; Pham, Hoang; Maaskant, Janneke J; Mol, Selena; Lill, Holger; Bald, Dirk

    2011-11-01

    Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.

  2. Facile synthesis of nucleic acid-polymer amphiphiles and their self-assembly.

    PubMed

    Jia, Fei; Lu, Xueguang; Tan, Xuyu; Zhang, Ke

    2015-05-07

    A solid-phase synthesis for nucleic acid-polymer amphiphiles is developed. Using this strategy, several DNA-b-polymer amphiphiles are synthesized, and their self-assembly in aqueous solution is investigated. This general method can in principle be extended to nearly all polymers synthesized by atom transfer radical polymerization to produce a variety of nucleic acid-polymer conjugates.

  3. Synthesis of Nucleic Acid and Protein in L Cells Infected with the Agent of Meningopneumonitis

    PubMed Central

    Schechter, Esther M.

    1966-01-01

    Schechter, Esther M. (The University of Chicago, Chicago, Ill.). Synthesis of nucleic acid and protein in L cells infected with the agent of meningopneumonitis. J. Bacteriol. 91:2069–2080. 1966.—Synthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein in uninfected L cells and in L cells infected with the meningopneumonitis agent was compared by measuring rates of incorporation of H3-cytidine and C14-lysine into nuclear, cytoplasmic, and agent fractions in successive 5-hr periods during the meningopneumonitis growth cycle. Synthesis of meningopneumonitis DNA, RNA, and protein was first clearly evident in the labeling period 15 to 20 hr after infection, soon after initiation of agent multiplication. The rates of synthesis of agent DNA, RNA, and protein increased logarithmically for a brief period and then declined. However, rates of isotope incorporation into all three meningopneumonitis macromolecules were sustained at near maximal values throughout the remainder of the meningopneumonitis growth cycle. These data are most readily interpreted in terms of multiplication of the meningopneumonitis agent by binary fission. The L cell response to infection was a decreased rate of DNA and RNA synthesis and an accelerated rate of cell death. Host protein synthesis was unaffected. The inhibition of nucleic acid synthesis in infected L cells probably involved competition between host and parasite for nucleic acid precursors. Different sublines of L cells varied greatly in the degree to which their nucleic acid-synthesizing mechanisms were damaged by infection. The cytoplasm of infected L cells contained newly synthesized DNA and RNA that could not be accounted for as intact meningopneumonitis cells. This nucleic acid probably arose from disintegration of the fragile intracellular forms of the meningopneumonitis agent. Images PMID:5937251

  4. Total synthesis of racemic and (R) and (S)-4-methoxyalkanoic acids and their antifungal activity.

    PubMed

    Das, Biswanath; Shinde, Digambar Balaji; Kanth, Boddu Shashi; Kamle, Avijeet; Kumar, C Ganesh

    2011-07-01

    The total synthesis of 4-methoxydecanoic acid and 4-methoxyundecanoic acid in racemic and stereoselective [(R) and (S)] forms has been accomplished. For stereoselective synthesis of the compounds (S) and (R)-BINOL complexes have been used to generate the required chiral centres. The antifungal activity of these compounds has been studied against different organisms and the results were found to be impressive. The activity of the compounds in racemic and in stereoselective forms was compared. (R)-4-Methoxydecanoic acid was found to be most potent (MIC: 0.019 mg/mL against Candida albicans MTCC 227, C. albicans MTCC 4748, Aspergillus brasiliensis (niger) MTCC 281 and Issatchenkia orientalis MTCC 3020).

  5. Final Step of Phosphatidic Acid Synthesis in Pea Chloroplasts Occurs in the Inner Envelope Membrane 1

    PubMed Central

    Andrews, Jaen; Ohlrogge, John B.; Keegstra, Kenneth

    1985-01-01

    The second enzyme of phosphatidic acid synthesis from glycerol-3-phosphate, 1-acylglycerophospate acyltransferase, was localized to the inner envelope membrane of pea chloroplasts. The activity of this enzyme was measured by both a coupled enzyme assay and a direct enzyme assay. Using the coupled enzyme assay, phosphatidic acid phosphatase was also localized to the inner envelope membrane, although this enzyme has very low activity in pea chloroplasts. The addition of UDP-galactose to unfractionated pea chloroplast envelope preparations did not result in significant conversion of newly synthesized diacylglycerol to monogalactosyldiacylglycerol. Thus, the envelope synthesized phosphatidic acid may not be involved in galactolipid synthesis in pea chloroplasts. PMID:16664266

  6. Selective inhibition of leukotriene C/sub 4/ synthesis in human neutrophils by ethacrynic acid

    SciTech Connect

    Leung, K.H.

    1986-05-29

    Addition of glutathione S-transferase inhibitors, ethyacrynic acid (ET), caffeic acid (CA), and ferulic acid (FA) to human neutrophils led to inhibition of leukotriene C/sub 4/ (LTC/sub 4/) synthesis induced by calcium ionophore A23187. ET is the most specific of these inhibitors for it had little effect on LTB/sub 4/, PGE/sub 2/, and 5-HETE synthesis. The inhibition of LTC/sub 4/ was irreversible and time dependent. ET also had little effect on /sup 3/H-AA release from A23187-stimulated neutrophils.

  7. Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions.

    PubMed

    Dine, Tharwat Mohy El; Evans, David; Rouden, Jacques; Blanchet, Jérôme

    2016-04-18

    A highly efficient and mild transamidation of amides with amines co-catalysed by borinic acid and acetic acid has been reported. A wide range of functionalised formamides was synthesized in excellent yields, including important chiral α-amino acid derivatives, with minor racemisation being observed. Experiments suggested that the reaction rely on a cooperative catalysis involving an enhanced boron-derived Lewis acidity rather than an improved Brønsted acidity of acetic acid.

  8. Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina.

    PubMed

    Hao, Guangfei; Chen, Haiqin; Wang, Lei; Gu, Zhennan; Song, Yuanda; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2014-05-01

    The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi.

  9. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids

    PubMed Central

    Ring, David; Wolman, Yecheskel; Friedmann, Nadav; Miller, Stanley L.

    1972-01-01

    The formation of amino acids by the action of electric discharges on a mixture of methane, nitrogen, and water with traces of ammonia was studied in detail. The presence of glycine, alanine, α-amino-n-butyric acid, α-aminoisobutyric acid, valine, norvaline, isovaline, leucine, isoleucine, alloisoleucine, norleucine, proline, aspartic acid, glutamic acid, serine, threonine, allothreonine, α-hydroxy-γ-aminobutyric acid, and α,γ-diaminobutyric acid was confirmed by ion-exchange chromatography and gas chromatography-mass spectrometry. All of the primary α-amino acids found in the Murchison Meteorite have been synthesized by this electric discharge experiment. PMID:4501592

  10. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  11. [New synthesis of the anticoagulant pentasaccharide idraparinux and preparation of its analogues containing sulfonic acid moieties].

    PubMed

    Herczeg, Mihály

    2012-01-01

    Two novel synthetic pathways were elaborated for the preparation of idraparinux, a heparin-related fully O-sulfated, O-methylated anticoagulant pentasaccharide. Both methods based upon a [2+3] block synthesis utilizing the same trisaccharide acceptor which was coupled to either a uronic acid disaccharide donor or its nonoxidized precursor. Two bioisosteric sulfonic acid analogues of idraparinux were also prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic acid esters were found to be excellent donors and acceptors in the glycosylation reactions. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of the reference compound idraparinux and the new sulfonic acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic acid moiety resulted in a notable decrease in the anti-Xa activity.

  12. Characterisation and classification of solid wastes coming from reductive acid leaching of low-grade manganiferous ore.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco

    2009-03-15

    The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.

  13. Characterisation and evaluation of metal-loaded iminodiacetic acid-silica of different porosity for the selective enrichment of phosphopeptides.

    PubMed

    Trojer, L; Stecher, G; Feuerstein, I; Lubbad, S; Bonn, G K

    2005-06-24

    Silica particles of different porosity were functionalised with iminodiacetic acid (IDA) and loaded with Fe(III) to yield immobilised metal affinity chromatography stationary phases (Fe(III)-IDA-silica) for phosphopeptide enrichment. The elution step of bound phosphopeptides was optimised with a 32P radioactive labelled peptide by a comprehensive study. Several elution systems, including phosphate buffers of different pH and concentration and ethylenediaminetetraacetic acid solutions were employed. Furthermore the effect of support porosity on elution behaviour was investigated. Under best conditions recoveries higher than 90% were achieved. A solid-phase extraction (SPE) protocol was developed for fractionation of phosphorylated and non-phosphorylated peptides and desalting of the fractions which is essential for subsequent mass spectrometric analysis by the combination of Fe(III)-IDA-silica and C18-silica particles. The pH of the loading buffer was found to be a critical parameter for the efficiency of the SPE protocol. As tryptic digests of alpha-lactalbumin, lysozyme and ribonuclease A mixed with three synthetic phosphopeptides were fractionated, pH 2.5 provided minimal proportion of unspecific bound peptides when comparing the fractions after mu-LC-electrospray ionization MS separation. The effect of a sample derivatisation reaction (methylation) on the efficiency of phosphopeptide enrichment was further investigated. Blocking carboxylate groups by methyl ester formation totally prevented unspecific interaction with the immobilised Fe(III) ions, but generated partially methylated phosphopeptides that increased the complexity of the phosphorylated fraction.

  14. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    SciTech Connect

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  15. A review on synthesis and characterization of solid acid materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohammad, Norsyahida; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Loh, Kee Shyuan

    2016-08-01

    Solid acids emerged as an electrolyte material for application in fuel cells due to their high protonic conductivity and stability at high temperatures between 100 °C and 250 °C. This paper gives an overview of the different solid acid materials and their properties, such as high protonic conductivity and thermal stability, in relation to phase transitions and mechanisms of proton transport. Various solid acid synthesis methods including aqueous and dry mixing, electrospinning, sol-gel, impregnation and thin-film casting will be discussed, and the impact of synthesis methods on the properties of solid acids will be highlighted. The properties of solid acids synthesized as either single crystals and or polycrystalline powders were identified via X-ray diffraction, nuclear magnetic resonance, thermal analyses, optical microscopy and infrared spectroscopy. A selection of electrolyte-electrode assembly methods and the performance of solid acid fuel cell prototypes are also reviewed.

  16. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets

    PubMed Central

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health. PMID:27783700

  17. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets.

    PubMed

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health.

  18. Preparation and characterisation of Chlorogenic acid-gelatin: A type of biologically active film for coating preservation.

    PubMed

    Fu, Shalu; Wu, Chunhua; Wu, Tiantian; Yu, Haixia; Yang, Shuibing; Hu, Yaqin

    2017-04-15

    Chlorogenic acid (CGA), a type of plant polyphenol, was conjugated onto gelatin (Gel) to prepare a novel coating material for the preservation of fresh seafood. The optimal reaction molar ratio of CGA to gelatin (4:1) was determined according to the CGA content in the CGA-Gel conjugate. CGA was confirmed to be successfully conjugated onto gelatin by (1)H nuclear magnetic resonance and Fourier transform-infrared spectroscopy. The antioxidant activity of CGA-Gel was proven to be higher than that of the free CGA in 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) radical scavenging, hydrogen peroxide scavenging, ferric ion reducing power and lipid oxidation assays. The minimum inhibitory concentrations (MIC) of CGA against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus were 1, 1, 2 and 2mg/mL, respectively. The antibacterial activity of CGA-Gel was unaffected by conjugation.

  19. How Bacterial Pathogens Eat Host Lipids: Implications for the Development of Fatty Acid Synthesis Therapeutics*

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2015-01-01

    Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors. PMID:25648887

  20. Synthesis of bile acid monosulphates by the isolated perfused rat kidney.

    PubMed Central

    Summerfield, J A; Gollan, J L; Billing, B H

    1976-01-01

    Perfusion of an isolated rat kidney with labelled bile acids, in a protein-free medium, resulted in the urinary excretion of the labelled bile acid, 3% being converted into polar metabolities in 1h. These metabolities were neither glycine nor taurine conjugates, nor bile acid glucuronides, and on solovolysis yielded the free bile acid. On t.l.c. the metabolite of [24-14C]lithocholic acid had the mobility of lithocholate 3-sulphate. The principal metabolite of [24-14C]chenodeoxycholic acid had the mobility of chenodeoxycholate 7-sulphate; trace amounts appeared as chenodeoxycholate 3-sulphate. [35S]sulphate was incorporated in chenodeoxycholic acid by the kidney, resulting in a similar pattern of sulphation. No disulphate salt of chenodeoxycholic acid was detected. These findings lend support to the hypothesis that renal synthesis may account for some of the bile acid sulphates present in urine in the cholestatic syndrome in man. PMID:942413

  1. Synthesis of maltodextrin-grafted-cinnamic acid and evaluation on its ability to stabilize anthocyanins via microencapsulation.

    PubMed

    Ma, Yi; Hou, Chang-Jun; Wu, Hui-Xiang; Fa, Huan-Bao; Li, Jun-Jie; Shen, Cai-Hong; Li, Dan; Huo, Dan-Qun

    2016-09-01

    In this work, maltodextrin-grafted-cinnamic acid (MD-g-CA) was synthesised and used as wall material to improve the stability of purple sweet potato anthocyanins (PSPa) via microencapsualtion. MD-g-CA was prepared through esterification in a two-step convenient synthesis procedure and characterised using infra-red (IR) spectroscopy. The IR data indicated the typical ester carbonyl stretching at around 1721 cm(-1). Moreover, MD-g-CA could give about 40% inhibition of DPPH radical and present excellent UV-absorption, which were notably better than that of native MD. Maltodextrin (MD) and MD-g-CA were used to prepare PSPa microcapsules by spray drying. The stability of PSPa was evaluated by UV-Vis analysis. The microcapsules produced by MD-g-CA showed a spheres-like appearance with some cracks. Storage tests revealed that the degradation rate of PSPa embedded by MD-g-CA was much lower than that of free PSPa under the same condition. Thus, MD-g-CA could be used as an effective wall material to improve stability of anthocyanins.

  2. Application of engineered cytochrome P450 mutants as biocatalysts for the synthesis of benzylic and aromatic metabolites of fenamic acid NSAIDs.

    PubMed

    Venkataraman, Harini; Verkade-Vreeker, Marlies C A; Capoferri, Luigi; Geerke, Daan P; Vermeulen, Nico P E; Commandeur, Jan N M

    2014-10-15

    Cytochrome P450 BM3 mutants are promising biocatalysts for the production of drug metabolites. In the present study, the ability of cytochrome P450 BM3 mutants to produce oxidative metabolites of structurally related NSAIDs meclofenamic acid, mefenamic acid and tolfenamic acid was investigated. A library of engineered P450 BM3 mutants was screened with meclofenamic acid (1) to identify catalytically active and selective mutants. Three mono-hydroxylated metabolites were identified for 1. The hydroxylated products were confirmed by NMR analysis to be 3'-OH-methyl-meclofenamic acid (1a), 5-OH-meclofenamic acid (1b) and 4'-OH-meclofenamic acid (1c) which are human relevant metabolites. P450 BM3 variants containing V87I and V87F mutation showed high selectivity for benzylic and aromatic hydroxylation of 1 respectively. The applicability of these mutants to selectively hydroxylate structurally similar drugs such as mefenamic acid (2) and tolfenamic acid (3) was also investigated. The tested variants showed high total turnover numbers in the order of 4000-6000 and can be used as biocatalysts for preparative scale synthesis. Both 1 and 2 could undergo benzylic and aromatic hydroxylation by the P450 BM3 mutants, whereas 3 was hydroxylated only on aromatic rings. The P450 BM3 variant M11 V87F hydroxylated the aromatic ring at 4' position of all three drugs tested with high regioselectivity. Reference metabolites produced by P450 BM3 mutants allowed the characterisation of activity and regioselectivity of metabolism of all three NSAIDs by thirteen recombinant human P450s. In conclusion, engineered P450 BM3 mutants that are capable of benzylic or aromatic hydroxylation of fenamic acid containing NSAIDs, with high selectivity and turnover numbers have been identified. This shows their potential use as a greener alternative for the generation of drug metabolites.

  3. Lewis Acid Promoted Oxonium Ion Driven Carboamination of Alkynes for the Synthesis of 4-Alkoxy Quinolines.

    PubMed

    Gharpure, Santosh J; Nanda, Santosh K; Adate, Priyanka A; Shelke, Yogesh G

    2017-02-17

    Lewis acid mediated multisegment coupling cascade is designed for the synthesis of densely substituted 4-alkoxy quinolines via an oxonium ion triggered alkyne carboamination sequence involving C-C and C-N bond formations. Cyclic ether fused-quinolines could also be accessed using this fast, operationally simple, high yielding, chemoselective and functional group tolerant method. Versatility and utility of this methodology is demonstrated by postfunctionalization of products obtained and its use in synthesis of potent drug molecules.

  4. Copper-mediated arylation with arylboronic acids: Facile and modular synthesis of triarylmethanes

    PubMed Central

    Rao, A Veera Bhadra

    2016-01-01

    Summary A facile and modular synthesis of triarylmethanes was achieved in good yield via a two-step sequence in which the final step is the copper(II)-catalyzed arylation of diarylmethanols with arylboronic acids. By using this protocol a variety of symmetrical and unsymmetrical triarylmethanes were synthesized. As an application of the newly developed methodology, we demonstrate a high-yielding synthesis of the triarylmethane intermediate towards an anti-breast-cancer drug candidate. PMID:27340442

  5. Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry.

    PubMed

    Boschmans, Bart; Van Royen, Pieter; Van Vaeck, Luc

    2005-01-01

    The application of polyatomic primary ions is a strongly developing branch of static secondary ion mass spectrometry (S-SIMS), since these projectiles allow a significant increase in the secondary ion yields to be achieved. However, the different limitations and possibilities of certain polyatomic primary ions for use on specific functional classes of samples are still not completely known. This paper compares the use of monoatomic and polyatomic primary ions in S-SIMS for thin layers of polylactic acid (PLA), obtained by spin-coating solutions on silicon wafers. Bombardment with Ga+, Xe+ and SF5+ primary ions allowed the contribution of the projectile mass and number of atoms in the gain in ion yield and molecular specificity (relative importance of high m/z and low m/z signals) to be assessed. Samples obtained by spin-coating solutions with increasing concentration showed that optimal layer thickness depended on the primary ion used. In comparison with the use of Ga+ projectiles, the yield of structural ions increased by a factor of about 1.5 to 2 and by about 7 to 12 when Xe+ and SF5+ primary ion bombardment were applied, respectively. A detailed fragmentation pattern was elaborated to interpret ion signal intensity changes for different projectiles in terms of energy deposition and collective processes in the subsurface, and the internal energy of radical and even-electron precursor ions.

  6. Rh(III)-catalyzed synthesis of sultones through C-H activation directed by a sulfonic acid group.

    PubMed

    Qi, Zisong; Wang, Mei; Li, Xingwei

    2014-09-04

    A new rhodium-catalyzed synthesis of sultones via the oxidative coupling of sulfonic acids with internal alkynes is described. The reaction proceeds via aryl C-H activation assisted by a sulfonic acid group.

  7. Orthogonally Protected Furanoid Sugar Diamino Acids for Solid-Phase Synthesis of Oligosaccharide Mimetics.

    PubMed

    John, Franklin; Wittmann, Valentin

    2015-08-07

    Sugar diamino acids (SDAs), which differ from the widely used sugar amino acids in the presence of a second amino group connected to the carbohydrate core, share structural features of both amino acids and carbohydrates. They can be used for the preparation of linear and branched amide-linked oligosaccharide mimetics. Such oligomers carry free amino groups, which are positively charged at neutral pH, in a spatially defined way and, thus, represent a potential class of aminoglycoside mimetics. We report here the first examples of orthogonally protected furanoid SDAs and their use in solid-phase synthesis. Starting from d-glucose, we developed a divergent synthetic route to three derivatives of 3,5-diamino-3,5-dideoxy-d-ribofuranose. These building blocks are compatible with solid-phase peptide synthesis following the 9-fluorenylmethoxycarbonyl (Fmoc) strategy, which we demonstrate by the synthesis of an SDA tetramer.

  8. New hydroxamic acid derivatives of fluoroquinolones: synthesis and evaluation of antibacterial and anticancer properties.

    PubMed

    Rajulu, Gavara Govinda; Bhojya Naik, Halehatty Seephya; Viswanadhan, Abhilash; Thiruvengadam, Jayaraman; Rajesh, Kondodiyil; Ganesh, Sambasivam; Jagadheshan, Hiriyan; Kesavan, Poonimangadu Koppolu

    2014-01-01

    A series of new hydroxamic acid derivatives (6a-f) at C-3 position of fluoroquinolones were designed and synthesized through multistep synthesis. The design concept involved replacement of the 3-carboxylic acid in fluoquinolones with hydroxamic acid as an acid mimicking group. The synthetic work employed in this work provides a good example for the synthesis of pure hydroxamic acid based fluoroquinolones. The synthesized compounds were characterized by (1)H-NMR, electrospray ionization (ESI)-MS and IR. The new compounds were tested for their in vitro antimicrobial and anti-proliferative activity. Out of the six derivatives, compound 6e exhibited moderate antibacterial activity by inhibiting the growth of Escherichia coli and Klebsiella pneumoniae (MIC: 4.00-8.00 µg/mL). Compounds 6b and 6f displayed good growth inhibition against A549 Lung adenocarcinoma and HCT-116 Colon carcinoma cell lines.

  9. Synthesis of 5,9-hexacosadienoic acid phospholipids. 11. Phospholipid studies of marine organisms.

    PubMed

    Mena, P L; Djerassi, C

    1985-01-01

    The synthesis of phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS) containing two acyl chains of the naturally occurring sponge fatty acid (5Z,9Z)-5,9-hexacosadienoic acid as well as its hitherto unknown geometrical isomers is described. The PCs were prepared by deacylation of natural lecithins, followed by reacylation with fatty acid anhydrides. The synthesis of mixed-acid PCs is also reported: a diacyl product was converted to the lyso-PC by treatment with phospholipase A2 and subsequent acylation of the secondary hydroxyl group to give the desired mixed-acid PCs. The PEs and the PSs were prepared from the corresponding PCs by enzymatic transphosphatidylation catalyzed by phospholipase D. Structural assignments of the compounds were confirmed by spectroscopy (1H-NMR and MS). Ammonia chemical ionization mass spectrometry provided molecular ion and significant fragment peaks for PCs and PEs.

  10. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Trifonov, R. E.

    2015-09-01

    Literature data published mainly in the last 15 years on the synthesis and biological properties of amino acid analogues and derivatives containing tetrazolyl moieties are analyzed. Tetrazolyl analogues and derivatives of amino acids and peptides are shown to be promising for medicinal chemistry. Being polynitrogen heterocyclic systems comprising four endocyclic nitrogen atoms, tetrazoles can behave as acids and bases and form strong hydrogen bonds with proton donors (more rarely, with acceptors). They have high metabolic stability and are able to penetrate biological membranes. The review also considers the synthesis and properties of linear and cyclic peptides based on modified amino acids incorporating a tetrazolyl moiety. A special issue is the discussion of the biological properties of tetrazole-containing amino acids and peptides, which exhibit high biological activity and can be used to design new drugs. The bibliography includes 200 references.

  11. Stimulation of Ribonucleic Acid Synthesis by Chloramphenicol in a rel+ Aminoacyl-Transfer Ribonucleic Acid Synthetase Mutant of Escherichia coli

    PubMed Central

    Yegian, Charles D.; Vanderslice, Rebecca W.

    1971-01-01

    Escherichia coli strain 9D3 possesses a highly temperature-sensitive valyl-transfer ribonucleic acid (tRNA) synthetase (EC 6.1.1.9). Since 9D3 is a rel+ strain, it cannot carry out net RNA synthesis at high temperature. A 100-μg amount of chloramphenicol (CAP) per ml added in the absence of valine cannot stimulate RNA synthesis. Either 300 μg of CAP or 100 μg of CAP plus 50 μg of valine per ml, however, promotes nearly maximal RNA synthesis. These results can be understood as follows. (i) Valyl-tRNA is required for net RNA synthesis, (ii) the synthetase lesion is incomplete, (iii) the rate of mutant acylation of tRNAval at high temperature is valine-dependent, and (iv) the CAP concentration determines the rate of residual protein synthesis. Data are also presented which demonstrate that the rate of net RNA synthesis can greatly increase long after the addition of CAP, if the amount of valyl-tRNA increases. PMID:4942766

  12. Aromatic amino acids are utilized and protein synthesis is stimulated during amino acid infusion in the ovine fetus.

    PubMed

    Liechty, E A; Boyle, D W; Moorehead, H; Auble, L; Denne, S C

    1999-06-01

    The purpose of this study was to determine whether the ovine fetus is capable of increased disposal of an amino acid load; if so, would it respond by increased protein synthesis, amino acid catabolism or both? A further purpose of the study was to determine whether the pathways of aromatic amino acid catabolism are functional in the fetus. Late gestation ovine fetuses of well-nourished ewes received an infusion of Aminosyn PF alone (APF), and Aminosyn PF + glycyl-L-tyrosine (APF+GT) at rates estimated to double the intake of these amino acids. The initial study, using APF, was performed at 126 +/- 1.4 d; the APF+GT study was performed at 132 +/- 1.7 d (term = 150 d). Phenylalanine and tyrosine kinetics were determined using both stable and radioactive isotopes. Plasma concentrations of most amino acids, but not tyrosine, increased during both studies; tyrosine concentration increased only during the APF+GT study. Phenylalanine rate of appearance and phenylalanine hydroxylation increased during both studies. Tyrosine rate of appearance increased only during the APF+GT study; tyrosine oxidation did not increase during either study. Fetal protein synthesis increased significantly during both studies, producing a significant increase in fetal protein accretion. Fetal proteolysis was unchanged in response to either amino acid infusion. These results indicate that the fetus responds to an acute increase in amino acid supply primarily by increasing protein synthesis and accretion, with a smaller but significant increase in amino acid catabolism also. Both phenylalanine hydroxylation and tyrosine oxidation are active in the fetus, and the fetus is able to increase phenylalanine hydroxylation rapidly in response to increased supply.

  13. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis.

    PubMed

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C; García-Ruiz, Carmen

    2015-12-08

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.

  14. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis

    PubMed Central

    Martínez, Laura; Torres, Sandra; Baulies, Anna; Alarcón-Vila, Cristina; Elena, Montserrat; Fabriàs, Gemma; Casas, Josefina; Caballeria, Joan; Fernandez-Checa, Jose C.; García-Ruiz, Carmen

    2015-01-01

    Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy. PMID:26539645

  15. Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis.

    PubMed

    Farese, R V; Konda, T S; Davis, J S; Standaert, M L; Pollet, R J; Cooper, D R

    1987-05-01

    The mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes were examined. When [3H]arachidonate labeling of phospholipids was used as an indicator of phospholipase C activation, transient increases in [3H]diacylglycerol were observed between 0.5 and 10 minutes after the onset of insulin treatment. With [3H]glycerol labeling as an indicator of de novo phospholipid synthesis, [3H]diacylglycerol was increased maximally at 1 minute and remained elevated for 20 minutes. [3H]Glycerol-labeled diacylglycerol was largely derived directly from phosphatidic acid. Insulin increased de novo phosphatidic acid synthesis within 5 to 10 seconds; within 1 minute, this synthesis was 60 times greater than that of controls. Thus, the initial increase in diacylglycerol is due to both increased hydrolysis of phospholipids and a burst of de novo phosphatidic acid synthesis. After 5 to 10 minutes, de novo phosphatidic acid synthesis continues as a major source of diacylglycerol. Both phospholipid effects of insulin seem important for generating diacylglycerol and other phospholipid-derived intracellular signaling substances.

  16. Characterisation of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltammetry

    PubMed Central

    Pazur, Alexander

    2004-01-01

    Background Previous reports indicate altered metabolism and enzyme kinetics for various organisms, as well as changes of neuronal functions and behaviour of higher animals, when they were exposed to specific combinations of weak static and alternating low frequency electromagnetic fields. Field strengths and frequencies, as well as properties of involved ions were related by a linear equation, known as the formula of ion cyclotron resonance (ICR, abbreviation mentioned first by Liboff). Under certain conditions already a aqueous solution of the amino acid and neurotransmitter glutamate shows this effect. Methods An aqueous solution of glutamate was exposed to a combination of a static magnetic field of 40 μT and a sinusoidal electromagnetic magnetic field (EMF) with variable frequency (2–7 Hz) and an amplitude of 50 nT. The electric conductivity and dielectric properties of the solution were investigated by voltammetric techniques in combination with non linear dielectric spectroscopy (NLDS), which allow the examination of the dielectric properties of macromolecules and molecular aggregates in water. The experiments target to elucidate the biological relevance of the observed EMF effect on molecular level. Results An ion cyclotron resonance (ICR) effect of glutamate previously reported by the Fesenko laboratory 1998 could be confirmed. Frequency resolution of the sample currents was possible by NLDS techniques. The spectrum peaks when the conditions for ion cyclotron resonance (ICR) of glutamate are matched. Furthermore, the NLDS spectra are different under ICR- and non-ICR conditions: NLDS measurements with rising control voltages from 100–1100 mV show different courses of the intensities of the low order harmonics, which could possibly indicate "intensity windows". Furthermore, the observed magnetic field effects are pH dependent with a narrow optimum around pH 2.85. Conclusions Data will be discussed in the context with recent published models for the

  17. Synthesis of alpha-hydroxyphosphonic acids from Lesquerella oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella oil has been a substance of growing chemical interest, due to the ease with which it is produced and its similarity in structure to castor oil. The primary fatty acid in Lesquerella oil, lesquerolic acid, is very similar to the principal component of castor oil, ricinoleic acid, and may ...

  18. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    ERIC Educational Resources Information Center

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  19. Stimulation of muscle protein synthesis by prolonged parenteral infusion of leucine is dependent on amino acid availability in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The postprandial rise in amino acids, particularly leucine, stimulates muscle protein synthesis in neonates. Previously, we showed that a 1-h infusion of leucine increased protein synthesis, but this response was not sustained for 2 h unless the leucine-induced decrease in amino acids was prevented....

  20. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study...

  1. Relationship of lipogenic enzyme activities to the rate of rat liver fatty acid synthesis

    SciTech Connect

    Nelson, G.; Kelley, D.; Schmidt, P.; Virk, S.; Serrato, C.

    1986-05-01

    The mechanism by which diet regulates liver lipogenesis is unclear. Here the authors report how dietary alterations effect the activities of key enzymes of fatty acid (FA) synthesis. Male Sprague-Dawley rats, 400-500 g, were fasted for 48h and then refed a fat-free, high carbohydrate (HC) diet (75% cal. from sucrose) for 0,3,9,24 and 48h, or refed a HC diet for 48h, then fed a high-fat (HF) diet (44% cal. from corn oil) for 3,9,24 and 48h. The FA synthesis rate and the activities of acetyl CoA carboxylase (AC), fatty acid synthase (FAS), ATP citrate lyase (CL), and glucose 6-phosphate dehydrogenase (G6PDH) were determined in the livers. FA synthesis was assayed with /sup 3/H/sub 2/O, enzyme activities were measured spectrophotometrically except for AC which was assayed with /sup 14/C-bicarbonate. There was no change in the activity of AC during fasting or on the HC diet. Fasting decreased the rate of FA synthesis by 25% and the activities of FAS and CL by 50%; refeeding the HC diet induced parallel changes in FA synthesis and the activities of FAS, CL, and G6PDH. After 9h on the HF diet, FA synthesis had decreased sharply, AC activity increased significantly while no changes were detected in the other activities. Subsequently FA synthesis did not change while the activities of the enzymes decreased slowly. These enzymes did not appear to regulate FA synthesis during inhibition of lipogenesis, but FAS, CL or G6PDH may be rate limiting in the induction phase. Other key factors may regulate FA synthesis during dietary alterations.

  2. Amino Acid Starvation Has Opposite Effects on Mitochondrial and Cytosolic Protein Synthesis

    PubMed Central

    Pearce, Sarah F.; Rorbach, Joanna; He, Jiuya; Brea-Calvo, Gloria; Minczuk, Michal; Reyes, Aurelio; Holt, Ian J.; Spinazzola, Antonella

    2014-01-01

    Amino acids are essential for cell growth and proliferation for they can serve as precursors of protein synthesis, be remodelled for nucleotide and fat biosynthesis, or be burnt as fuel. Mitochondria are energy producing organelles that additionally play a central role in amino acid homeostasis. One might expect mitochondrial metabolism to be geared towards the production and preservation of amino acids when cells are deprived of an exogenous supply. On the contrary, we find that human cells respond to amino acid starvation by upregulating the amino acid-consuming processes of respiration, protein synthesis, and amino acid catabolism in the mitochondria. The increased utilization of these nutrients in the organelle is not driven primarily by energy demand, as it occurs when glucose is plentiful. Instead it is proposed that the changes in the mitochondrial metabolism complement the repression of cytosolic protein synthesis to restrict cell growth and proliferation when amino acids are limiting. Therefore, stimulating mitochondrial function might offer a means of inhibiting nutrient-demanding anabolism that drives cellular proliferation. PMID:24718614

  3. Metabolism of fatty acid in yeast: characterisation of beta-oxidation and ultrastructural changes in the genus Sporidiobolus sp. cultivated on ricinoleic acid methyl ester.

    PubMed

    Feron, Gilles; Blin-Perrin, Caroline; Krasniewski, Isabelle; Mauvais, Geneviève; Lherminier, Jeannine

    2005-09-01

    Cell structure modifications and beta-oxidation induction were monitored in two strains of Sporidiobolus, Sp. Ruinenii and Sp. pararoseus after cultivation on ricinoleic acid methyl ester. Ultrastructural observations of the yeast before and after cultivation on fatty acid esters did not reveal major modifications in Sp. ruinenii. Unexpectedly, in Sp. pararoseus a proliferation of the mitochondrion was observed. After induction, Sp. ruinenii principally exhibited an increase in the activities of acyl-CoA oxidase (ACO), hydroxyacyl-CoA deshydrogenase (HAD), thiolase and catalase. In contrast, Sp. pararoseus lacked ACO and catalase activities, but an increase in acyl-CoA deshydrogenase (ACDH) and enoyl-CoA hydratase (ECH) activity was observed. These data suggest that in Sp. ruinenii, beta-oxidation is preferentially localized in the microbody, whereas in Sp. pararoseus it might be localized in the mitochondria.

  4. Synthesis and characterization of bis-thiourea having amino acid derivatives

    NASA Astrophysics Data System (ADS)

    Fakhar, Imran; Yamin, Bohari M.; Hasbullah, Siti Aishah

    2016-11-01

    In this article four new symmetric bis-thiourea derivatives having amino acid linkers were reported with good yield. Isophthaloyl dichloride was used as spacer and L-alanine, L-aspartic acid, L-phenylalanine and L-glutamic acid were used as linkers. Bis-thiourea derivatives were prepared from relatively stable isophthaloyl isothiocyanate intermediate. Newly synthesized bis-thiourea derivatives were characterized by FTIR, H-NMR, 13C-NMR and CHNS-O elemental analysis techniques. Characterization data was in good agreement with the expected derivatives, hence confirmed the synthesis of four new derivatives of bis-thiourea having amino acids.

  5. A note on the prebiotic synthesis of organic acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Strong similarities between monocarboxylic and hydrocarboxylic acids in the Murchison meteorite suggest corresponding similarities in their origins. However, various lines of evidence apparently implicate quite different precursor compounds in the synthesis of the different acids. These seeming inconsistencies can be resolved by postulating that the apparent precursors also share a related origin. Pervasive D enrichment indicates that this origin was in a presolar molecular cloud. The organic acids themselves were probably synthesized in an aqueous environment on an asteroidal parent body, the hydroxy (and amino) acids by means of the Strecker cyanohydrin reaction.

  6. The Use of Ascorbate as an Oxidation Inhibitor in Prebiotic Amino Acid Synthesis: A Cautionary Note

    NASA Astrophysics Data System (ADS)

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.

  7. The use of ascorbate as an oxidation inhibitor in prebiotic amino acid synthesis: a cautionary note.

    PubMed

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO(2)-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO(2) was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO(2)-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO(2)-rich atmosphere under the conditions studied.

  8. Acyl Meldrum's acid derivatives: application in organic synthesis

    NASA Astrophysics Data System (ADS)

    Janikowska, K.; Rachoń, J.; Makowiec, S.

    2014-07-01

    This review is focused on an important class of Meldrum's acid derivatives commonly known as acyl Meldrum's acids. The preparation methods of these compounds are considered including the recently proposed and rather rarely used ones. The chemical properties of acyl Meldrum's acids are described in detail, including thermal stability and reactions with various nucleophiles. The possible mechanisms of these transformations are analyzed. The bibliography includes 134 references.

  9. Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal-Organic Frameworks.

    PubMed

    Gutov, Oleksii V; Molina, Sonia; Escudero-Adán, Eduardo C; Shafir, Alexandr

    2016-09-12

    The synthesis of zirconium metal-organic frameworks (Zr MOFs) modulated by various amino acids, including l-proline, glycine, and l-phenylalanine, is shown to be a straightforward approach toward functional-group incorporation and particle-size control. High yields in Zr-MOF synthesis are achieved by employing 5 equivalents of the modulator at 120 °C. At lower temperatures, the method provides a series of Zr MOFs with increased particle size, including many suitable for single-crystal X-ray diffraction studies. Furthermore, amino acid modulators can be incorporated at defect sites in Zr MOFs with an amino acid/ligand ratio of up to 1:1, depending on the ligand structure and reaction conditions. The MOFs obtained through amino acid modulation exhibit an improved CO2 -capture capacity relative to nonfunctionalized materials.

  10. Synthesis and biological activity of glutamic acid derivatives.

    PubMed

    Receveur, J M; Guiramand, J; Récasens, M; Roumestant, M L; Viallefont, P; Martinez, J

    1998-01-20

    In order to develop new specific glutamate analogues at metabotropic glutamate receptors, Diels-Alder, 1-4 ionic and radical reactions were performed starting from (2S)-4-methyleneglutamic acid. Preliminary pharmacological evaluation by measuring IP accumulation using rat forebrain synaptoneurosomes has shown that (2S)-4-(2-phthalimidoethyl)glutamic acid (3a), (2S)-4-(4-phthalimidobutyl)glutamic acid (3b) and 1-[(S)-2-amino-2-carboxyethyl]-3,4-dimethylcyclohex-3-ene-1-carbox ylic acid (8) presented moderate antagonist activities.

  11. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  12. Indole-3-acetic Acid Synthesis in Tumorous and Nontumorous Species of Nicotiana 1

    PubMed Central

    Liu, Shih-Tung; Katz, Charles D.; Knight, C. Arthur

    1978-01-01

    The synthesis of indole-3-acetic acid (IAA) in the enzyme extracts of Nicotiana glauca, Nicotiana langsdorffii, their F1 hybrid, their amphidiploid hybrid, and the nontumorous mutant of the hybrid was investigated. Tryptamine, a possible precursor of IAA biosynthesis in Nicotiana tabacum, was not found in the callus tissue of N. glauca, N. langsdorffii, and their F1 hybrid. In petiole slices, the synthesis of IAA progressively increased during 5 hours of incubation in [14C]tryptophan. The rate of synthesis was about equal in the hybrid and N. langsdorffii but lower in N. glauca on either a cell or fresh weight basis. It was also found that tryptophan was about 25 times more efficient than tryptamine in promoting synthesis of IAA in petiole slices. It was found that indoleacetaldehyde oxidase, indoleacetaldehyde reductase, and tryptophan aminotransferase activities were present in all of the species examined; however, tryptophan decarboxylase activity was not found. The tryptophan aminotransferase activity in N. glauca, N. langsdorffii, and the nontumorous mutant required α-ketoglutaric acid and pyridoxal 5-phosphate whereas the addition of pyridoxal 5-phosphate seemed not to increase the enzyme activity in tumor plants. The tryptophan aminotransferase in the amphidiploid hybrid was partially purified by acetone precipitation. The enzyme activity had a temperature optimum at 49 C and a pH optimum at 8.9. It is suggested that there is an indolepyruvic acid pathway in the synthesis of IAA in the Nicotiana species examined. PMID:16660376

  13. Synthesis of phosphonic analogues of carnitine and gamma-amino-beta-hydroxybutyric acid.

    PubMed

    Tadeusiak, Elzbieta J

    2004-12-01

    The involvement of carnitine and gamma-amino-beta-hydroxybutyric acid in the biology of mammalian cells, the physiology of the human body, and some important aspects of medicinal treatment has induced many research groups to develop their pharmacologically potent analogues. Among them are the very important phosphonic analogues: phosphocarnitine and gamma-amino-beta-hydroxypropylphosphonic acid. This mini-review describes the various methodologies used for the synthesis of these compounds.

  14. 5'to 3' nucleic acid synthesis using 3'-photoremovable protecting group

    DOEpatents

    Pirrung, Michael C.; Shuey, Steven W.; Bradley, Jean-Claude

    1999-01-01

    The present invention relates, in general, to a method of synthesizing a nucleic acid, and, in particular, to a method of effecting 5' to 3' nucleic acid synthesis. The method can be used to prepare arrays of oligomers bound to a support via their 5' end. The invention also relates to a method of effecting mutation analysis using such arrays. The invention further relates to compounds and compositions suitable for use in such methods.

  15. 5[prime] to 3[prime] nucleic acid synthesis using 3[prime]-photoremovable protecting group

    DOEpatents

    Pirrung, M.C.; Shuey, S.W.; Bradley, J.C.

    1999-06-01

    The present invention relates, in general, to a method of synthesizing a nucleic acid, and, in particular, to a method of effecting 5[prime] to 3[prime] nucleic acid synthesis. The method can be used to prepare arrays of oligomers bound to a support via their 5[prime] end. The invention also relates to a method of effecting mutation analysis using such arrays. The invention further relates to compounds and compositions suitable for use in such methods.

  16. [Genetic code: codon bases--the symbols of amino acid synthesis and catabolism pathways].

    PubMed

    Konyshev, V A

    1983-01-01

    The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.

  17. Resistance of lung fatty acid synthesis to inhibition by dietary fat in the meal-fed rat.

    PubMed

    Clarke, S D; Wilson, M D; Ibnoughazala, T

    1984-03-01

    One-half of the palmitate utilized by the lung for production of the surfactant phospholipid, dipalmitoyl phosphatidylcholine, originates from de novo palmitate synthesis in the lung. In this report the lung was examined for the influence of dietary fat on the lung de novo fatty acid synthesis pathway. Lung lipogenesis was reduced by fasting and accelerated by carbohydrate refeeding or insulin injection. However, in general lung fatty acid synthesis was unaffected by dietary fat. Supplementing one meal (high glucose diet) with as much as 36% additional fat kilocalories did not suppress lung fatty acid synthesis. An inhibition of fatty acid synthesis resulted from a fat supplement of +60 and +120% of meal kilocalories, but this inhibition was likely due to an attenuated rate of glucose absorption. Ingestion of a high carbohydrate diet supplemented with 10, 17, or 30% added kilocalories as safflower oil or palmitate had no effect on lipogenesis after 10 days. On the other hand, liver fatty acid synthesis and acetyl-CoA carboxylase were selectively suppressed by safflower oil, whereas dietary palmitate was ineffective as an inhibitor of lipogenesis. These data clearly demonstrate that the well-characterized preferential suppression of liver lipogenesis by dietary polyunsaturated fats does not extend to lung tissue, and, more importantly, the inhibition of liver lipogenesis is not secondary to an essential fatty acid deficiency. The marked resistance of lung fatty acid synthesis to inhibition by dietary fat might be a biological protective mechanism to ensure adequate palmitate for dipalmitoyl phosphatidylcholine synthesis.

  18. Synthesis and characterization of L-lactide and polylactic acid (PLA) from L-lactic acid for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rahmayetty, Sukirno, Prasetya, Bambang; Gozan, Misri

    2017-02-01

    Lactide is the monomer for the polymer polylactic acid (PLA) from lactic acid through polycondensation and depolymerization process. The properties of PLA strongly depend on the quality of the lactide monomer from which it is synthesized. Optical purity of lactide produced in depolymerization process confirmed to be L-lactide. The highest yield of crude lactide was 38.5% at temperature 210 °C with average molecular weight (Mn) of oligomer was 2389. Ring opening polymerization of lactide using Candida rugosa lipase as biocatalyst to PLLA synthesis has been achieved to generate useful biomedical materials free from heavy metal.

  19. Improved synthesis of isostearic acid using zeolite catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  20. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  1. Asymmetric synthesis of aromatic β-amino acids using ω-transaminase: Optimizing the lipase concentration to obtain thermodynamically unstable β-keto acids.

    PubMed

    Mathew, Sam; Jeong, Seong-Su; Chung, Taeowan; Lee, Sang-Hyeup; Yun, Hyungdon

    2016-01-01

    Synthesized aromatic β-amino acids have recently attracted considerable attention for their application as precursors in many pharmacologically relevant compounds. Previous studies on asymmetric synthesis of aromatic β-amino acids using ω-transaminases could not be done efficiently due to the instability of β-keto acids. In this study, a strategy to circumvent the instability problem of β-keto acids was utilized to generate β-amino acids efficiently via asymmetric synthesis. In this work, thermodynamically stable β-ketoesters were initially converted to β-keto acids using lipase, and the β-keto acids were subsequently aminated using ω-transaminase. By optimizing the lipase concentration, we successfully overcame the instability problem of β-keto acids and enhanced the production of β-amino acids. This strategy can be used as a general approach to efficiently generate β-amino acids from β-ketoesters.

  2. Total synthesis of (±)-epithuriferic acid methyl ester via Diels-Alder reaction.

    PubMed

    Koprowski, Marek; Bałczewski, Piotr; Owsianik, Krzysztof; Różycka-Sokołowska, Ewa; Marciniak, Bernard

    2016-02-07

    In this paper, we have described the first total synthesis of (±)-epithuriferic acid methyl ester from non-natural sources, in four steps (20% overall yield). The key step involves the Diels-Alder reaction of isobenzofuran with methyl 3-(dimethoxyphosphoryl)acrylate which is controlled by "ortho" regio- and endo stereoselectivities due to the COOMe group.

  3. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary α-Amino Acids

    PubMed Central

    Cativiela, Carlos; Ordóñez, Mario

    2010-01-01

    The most recent papers describing the stereoselective synthesis of cyclic quaternary α-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton. PMID:20300486

  4. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  5. Total synthesis of (−)-dihydroprotolichesterenic acid via diastereoselective conjugate addition to chiral fumarates

    PubMed Central

    Hethcox, J. Caleb; Shanahan, Charles S.; Martin, Stephen F.

    2013-01-01

    A diastereoselective conjugate addition of a variety of monoorganocuprates, Li[RCuI], to chiral fumarates to provide funtionalized succinates has been developed. The utility of this reaction is demonstrated in a concise total synthesis of (−)-dihydroprotolichesterenic acid that required only four steps and proceeded in an overall 31% yield. PMID:23539490

  6. Diastereoselective addition of monoorganocuprates to a chiral fumarate: reaction development and synthesis of (-)-dihydroprotolichesterinic acid.

    PubMed

    Hethcox, J Caleb; Shanahan, Charles S; Martin, Stephen F

    2015-09-16

    Recent studies of diastereoselective conjugate additions of monoorganocuprates, Li[RCuI], to chiral γ-alkoxycrotonates and fumarates are disclosed. This methodology was applied to the shortest total synthesis of (-)-dihydroprotolichesterinic acid to date, but several attempts to prepare other succinate-derived natural products, such as pilocarpine and antrodin E, were unsuccessful.

  7. Stimulation of muscle protein synthesis by leucine is dependent on plasma amino acid availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reported that a physiological increase in plasma leucine increased translation initiation factor activity during 60- and 120-min leucine infusion. Muscle protein synthesis was stimulated at 60 min but not at 120 min, perhaps due to the decrease (-50%) in plasma essential amino acids (AA). ...

  8. An Overview of Stereoselective Synthesis of α-Aminophosphonic Acids and Derivatives

    PubMed Central

    Ordóñez, Mario; Rojas-Cabrera, Haydée; Cativiela, Carlos

    2009-01-01

    An overview of all methodologies published during the last few years focused to the stereoselective (diastereoselective or enantioselective) synthesis of α-aminophosphonic acids and derivatives is reported. The procedures have been classified according a retrosynthetic strategy and taking into account the formation of each one of the bonds connected to the chiral centre. PMID:20871799

  9. Methods for the synthesis of tritium-labelled fatty acids and their derivatives, oxylipins and steroids

    NASA Astrophysics Data System (ADS)

    Shevchenko, Valerii P.; Nagaev, Igor Yu; Myasoedov, Nikolai F.

    1999-10-01

    The achievements in the field of synthesis and application of tritium-labelled oxylipins, steroids, fatty acids, phospho-, sphingo- and other lipids are reviewed. The importance of these studies for the solution of current problems of biochemistry, biology and pharmacology is exemplified in the application of labelled compounds. The bibliography includes 148 references.

  10. Synthesis of mixed acid anhydrides from methane and carbon dioxide in acid solvents.

    PubMed

    Zerella, Mark; Mukhopadhyay, Sudip; Bell, Alexis T

    2003-09-04

    [reaction: see text] The reaction of CH(4) with CO(2) has been performed in anhydrous acids using VO(acac)(2) and K(2)S(2)O(8) as promoters. NMR analysis establishes that the primary product is a mixed anhydride of acetic acid and the acid solvent. In sulfuric acid, the overall reaction is CH(4) + CO(2) + SO(3) --> CH(3)C(O)-O-SO(3)H. Hydrolysis of the mixed anhydride produces acetic acid and the solvent acid. When trifluoroacetic acid is the solvent, acetic acid is primarily formed via the reaction CH(4) + CF(3)COOH --> CH(3)COOH + CHF(3).

  11. Synthesis of polyacrylic-acid-based thermochromic polymers

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  12. Microbiologically produced carboxylic acids used as building blocks in organic synthesis.

    PubMed

    Aurich, Andreas; Specht, Robert; Müller, Roland A; Stottmeister, Ulrich; Yovkova, Venelina; Otto, Christina; Holz, Martina; Barth, Gerold; Heretsch, Philipp; Thomas, Franziska A; Sicker, Dieter; Giannis, Athanassios

    2012-01-01

    Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-D-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under "green" conditions and their use as promising new building

  13. Synthesis of deuterated [D32 ]oleic acid and its phospholipid derivative [D64 ]dioleoyl-sn-glycero-3-phosphocholine.

    PubMed

    Darwish, Tamim A; Luks, Emily; Moraes, Greta; Yepuri, Nageshwar R; Holden, Peter J; James, Michael

    2013-01-01

    Oleic acid and its phospholipid derivatives are fundamental to the structure and function of cellular membranes. As a result, there has been increasing interest in the availability of their deuterated forms for many nuclear magnetic resonance, infrared, mass spectroscopy and neutron scattering studies. Here, we present for the first time a straightforward, large-scale (gram quantities) synthesis of highly deuterated [D32 ]oleic acid by using multiple, yet simple and high yielding reactions. The precursors for the synthesis of [D32 ]oleic acid are [D14 ]azelaic acid and [D17 ]nonanoic acid, which were obtained by complete deuteration (>98% D) of their (1) H forms by using metal catalysed hydrothermal H/D exchange reactions. The oleic acid was produced with ca. 94% D isotopic purity and with no contamination by the trans-isomer (elaidic acid). The subsequent synthesis of [D64 ]dioleoyl-sn-glycero-3-phosphocholine from [D32 ]oleic acid is also described.

  14. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  15. [Clarification on publications concerning the synthesis of acetylsalicylic acid].

    PubMed

    Lafont, O

    1996-01-01

    Charles Frédéric Gerhardt (1816-1856) mentioned in his Traité de chimie Organique (1854) a publication, in French (realized in 1852 but published in 1853) entitled "Researches on anhydrous organic acids" in which, was reported the reaction of sodium salicylate with acetyl chloride. He thought that the reaction product was an acid anhydride, but obtained really crude acetylsalicylic acid. Later on, but also in 1853, a publication in german, by the same author related the same experiments. Surprisingly only the second publication has been mentioned in most of the historical studies on the subject. Acetyl salicylic acid was identified and synthesised in 1859 by von Gilm by another method and the product obtained by Gerhardt was identified to it in 1869.

  16. Nalidixic Acid and Macromolecular Metabolism in Tetrahymena pyriformis: Effects on Protein Synthesis

    PubMed Central

    de Castro, J. F.; Carvalho, J. F. O.; Moussatché, N.; de Castro, F. T.

    1975-01-01

    A study on the effect of nalidixic acid on macromolecular metabolism, particularly of protein, in Tetrahymena pyriformis was performed. It was shown that the compound is a potent inhibitor of deoxyribonucleic acid, ribonucleic acid, and protein synthesis for this organism. A conspicuous breakdown of polysomes, accompanied by the accumulation of 80S ribosomes, occurred in cells incubated for 10 min with the drug; polysome formation was prevented. The accumulating 80S particles were shown to be run-off ribosomal units. The incorporation of amino acids by a cell-free system is not affected by nalidixic acid. In nonproliferating cells the incorporation was also not prevented, unless the cells were previously incubated with the drug. These results are discussed in terms of the possible mechanism of action of nalidixic acid in T. pyriformis. PMID:807153

  17. Synthesis of an indole analog of folic acid

    SciTech Connect

    Shengeliya, M.S.; Avramenko, V.G.; Kuleshova, L.N.; Ershova, Yu.A.; Chernov, V.A.; Surorov, N.N.

    1987-06-01

    The authors study the replacement of the p-aminobenzoic acid (PABA) moiety. The authors synthesized an indole analog of folic acid, namely dimethyl N-(5-(2'-amino-4'-oxo-6'-pteridinyl)methylaminoindol-2-yl)glutamate. The physicochemical properties and the chemical shifts in the PMR spectra of the compounds obtained are shown. The examination of the compound for antitumor activity was carried out using rats and mice.

  18. Synthesis and biological activity of alkynoic acids derivatives against mycobacteria

    PubMed Central

    Vilchèze, Catherine; Leung, Lawrence W.; Bittman, Robert; Jacobs, William R.

    2015-01-01

    2-alkynoic acids have bactericidal activity against Mycobacterium smegmatis but their activity fall sharply as the length of the carbon chain increased. In this study, derivatives of 2- alkynoic acids were synthesized and tested against fast- and slow-growing mycobacteria. Their activity was first evaluated in M. smegmatis against their parental 2-alkynoic acids, as well as isoniazid, a first-line antituberculosis drug. The introduction of additional unsaturation or heteroatoms into the carbon chain enhanced the antimycobacterial activity of longer chain alkynoic acids (more than 19 carbons long). In contrast, although the modification of the carboxylic group did not improve the antimycobacterial activity, it significantly reduced the toxicity of the compounds against eukaryotic cells. Importantly, 4-(alkylthio)but-2-ynoic acids, had better bactericidal activity than the parental 2-alkynoic acids and on a par with isoniazid against the slow-grower Mycobacterium bovis BCG. These compounds had also low toxicity against eukaryotic cells, suggesting that they could be potential therapeutic agents against other types of topical mycobacterial infections causing skin diseases including Mycobacterium abscessus, Mycobacterium ulcerans, and Mycobacterium leprae. Moreover, they provide a possible scaffold for future drug development. PMID:26256431

  19. Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylneuraminic acid.

    PubMed

    Hooks, David O; Blatchford, Paul A; Rehm, Bernd H A

    2013-05-01

    N-Acetylneuraminic acid is produced by alkaline epimerization of N-acetylglucosamine to N-acetylmannosamine and then subsequent condensation with pyruvate catalyzed by free N-acetylneuraminic acid aldolase. The high-alkaline conditions of this process result in the degradation of reactants and products, while the purification of free enzymes to be used for the synthesis reaction is a costly process. The use of N-acetylglucosamine 2-epimerase has been seen as an alternative to the alkaline epimerization process. In this study, these two enzymes involved in N-acetylneuraminic acid production were immobilized to biopolyester beads in vivo in a one-step, cost-efficient process of production and isolation. Beads with epimerase-only, aldolase-only, and combined epimerase/aldolase activity were recombinantly produced in Escherichia coli. The enzymatic activities were 32 U, 590 U, and 2.2 U/420 U per gram dry bead weight, respectively. Individual beads could convert 18% and 77% of initial GlcNAc and ManNAc, respectively, at high substrate concentrations and near-neutral pH, demonstrating the application of this biobead technology to fine-chemical synthesis. Beads establishing the entire N-acetylneuraminic acid synthesis pathway were able to convert up to 22% of the initial N-acetylglucosamine after a 50-h reaction time into N-acetylneuraminic acid.

  20. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells.

    PubMed

    Berod, Luciana; Friedrich, Christin; Nandan, Amrita; Freitag, Jenny; Hagemann, Stefanie; Harmrolfs, Kirsten; Sandouk, Aline; Hesse, Christina; Castro, Carla N; Bähre, Heike; Tschirner, Sarah K; Gorinski, Nataliya; Gohmert, Melanie; Mayer, Christian T; Huehn, Jochen; Ponimaskin, Evgeni; Abraham, Wolf-Rainer; Müller, Rolf; Lochner, Matthias; Sparwasser, Tim

    2014-11-01

    Interleukin-17 (IL-17)-secreting T cells of the T helper 17 (TH17) lineage play a pathogenic role in multiple inflammatory and autoimmune conditions and thus represent a highly attractive target for therapeutic intervention. We report that inhibition of acetyl-CoA carboxylase 1 (ACC1) restrains the formation of human and mouse TH17 cells and promotes the development of anti-inflammatory Foxp3(+) regulatory T (Treg) cells. We show that TH17 cells, but not Treg cells, depend on ACC1-mediated de novo fatty acid synthesis and the underlying glycolytic-lipogenic metabolic pathway for their development. Although TH17 cells use this pathway to produce phospholipids for cellular membranes, Treg cells readily take up exogenous fatty acids for this purpose. Notably, pharmacologic inhibition or T cell-specific deletion of ACC1 not only blocks de novo fatty acid synthesis but also interferes with the metabolic flux of glucose-derived carbon via glycolysis and the tricarboxylic acid cycle. In vivo, treatment with the ACC-specific inhibitor soraphen A or T cell-specific deletion of ACC1 in mice attenuates TH17 cell-mediated autoimmune disease. Our results indicate fundamental differences between TH17 cells and Treg cells regarding their dependency on ACC1-mediated de novo fatty acid synthesis, which might be exploited as a new strategy for metabolic immune modulation of TH17 cell-mediated inflammatory diseases.

  1. Synthesis and Bioactivity of (R)-Ricinoleic Acid Derivatives: A Review.

    PubMed

    Pabiś, Sylwia; Kula, Józef

    2016-01-01

    (R)-Ricinoleic acid (RA) [(12R,9Z)-hydroxyoctadecenoic acid], the main compound of castor seed oil, because of its unusual structure readily undergoes multi-directional chemical and biochemical transformations to produce derivatives with the retained carbon skeleton or with its degradation. Many of these are of high biological activity, as documented by an in vitro study, and possess therapeutic potential. This review article provides an overview of the recent developments in the area of synthesis of RA based compounds with anticancer and antimicrobial activities. Moreover, the antiinflammatory and analgesic properties of some ricinoleic acid derivatives are also highlighted.

  2. Gibberellic Acid-Induced Synthesis of Protease by Isolated Aleurone Layers of Barley 1

    PubMed Central

    Jacobsen, John V.; Varner, J. E.

    1967-01-01

    The production of protease by isolated aleurone layers of barley in response to gibberellic acid has been examined. The protease arises in the aleurone layer and is mostly released from the aleurone cells. The courses of release of amylase and protease from aleurone layers, the dose responses to gibberellic acid and the effects of inhibitors on the production of both enzymes are parallel. As is the case for amylase, protease is made de novo in response to the hormone. These data give some credence to the hypothesis that the effect of gibberellic acid is to promote the simultaneous synthesis and secretion of a group of hydrolases. PMID:16656695

  3. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D. V. S.; Sharma, Rohit K.

    2014-10-01

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  4. Double-helical nucleic acids with cross-linked strands: synthesis and applications in molecular biology

    NASA Astrophysics Data System (ADS)

    Antsypovitch, Sergei I.; Oretskaya, Tat'yana S.

    1998-03-01

    Data on the methods employed for cross-linking of DNA strands and for the synthesis of oligonucleotide duplexes with cross-links between strands are summarised. Existing methods are systematised; their advantages and drawbacks are discussed. The examples of applications of DNA duplexes with covalently cross-linked chains for the study of protein-nucleic acid recognition and mechanisms of action of nucleic acid-binding proteins for gaining information about the spatial structure of nucleic acids, and for the solution of other problems of molecular biology are given. The bibliography includes 131 references.

  5. Recent advances in the synthesis and application of fluorescent α-amino acids.

    PubMed

    Harkiss, Alexander H; Sutherland, Andrew

    2016-09-26

    Fluorescence spectroscopy has become a powerful technique for probing a range of complex biological processes including enzyme mechanisms and protein-protein interactions. While the application of this technique uses a number of strategies, many of these rely on the use of fluorescent α-amino acids. This review highlights the recent synthetic methods developed for the incorporation of highly conjugated chromophores into the side-chain of α-amino acids and the application of these compounds as probes for imaging in medicine and biology. In particular, the design and synthesis of α-amino acids bearing coumarin, flavone and polyaromatic derived chromophores is described.

  6. Enzymatic Synthesis of Nucleic Acids with Defined Regioisomeric 2'-5' Linkages.

    PubMed

    Cozens, Christopher; Mutschler, Hannes; Nelson, Geoffrey M; Houlihan, Gillian; Taylor, Alexander I; Holliger, Philipp

    2015-12-14

    Information-bearing nucleic acids display universal 3'-5' linkages, but regioisomeric 2'-5' linkages occur sporadically in non-enzymatic RNA synthesis and may have aided prebiotic RNA replication. Herein we report on the enzymatic synthesis of both DNA and RNA with site-specific 2'-5' linkages by an engineered polymerase using 3'-deoxy- or 3'-O-methyl-NTPs as substrates. We also report the reverse transcription of the resulting modified nucleic acids back to 3'-5' linked DNA with good fidelity. This enables a fast and simple method for "structural mutagenesis" by the position-selective incorporation of 2'-5' linkages, whereby nucleic acid structure and function may be probed through local distortion by regioisomeric linkages while maintaining the wild-type base sequence as we demonstrate for the 10-23 RNA endonuclease DNAzyme.

  7. Synthesis, characterisation and study of thermal, electrical and photocatalytic activity of nanocomposite of PANI with [Co(NH3)4 (C12H8N2)] Cl3·5H2O photoadduct

    NASA Astrophysics Data System (ADS)

    Naqash, Waseem; Majid, Kowsar

    2016-10-01

    A new polyaniline (PANI) nanocomposite with [Co(NH3)4 (C12H8N2)] Cl3·5H2O photoadduct as filler was synthesised via in-situ oxidative polymerisation by ammonium persulphate in non-aqueous DMSO medium. The photoadduct has been synthesised through photo substitution by 1,10-phenenthroline (phen) ligand on irradiation. The as synthesised photoadduct was reduced in size prior to its incorporation in the PANI matrix. The synthesised photoadduct and PANI nanocomposite were characterised by FTIR, XRD, UV-Vis, SEM and elemental analysis. The results showed successful synthesis of photoadduct and PANI nanocomposite. The thermal and electrical measurement of PANI nanocomposite was carried out by thermal gravimetric technique (TGA) and four probe conductivity metre respectively. The results showed improvement in the thermal stability and conductance of nanocomposite over PANI. Besides, the nanocomposite was investigated for photocatalytic activity in the photochemical degradation of methyl orange (MO) dye.

  8. Enantiomeric deoxycholic acid: total synthesis, characterization, and preliminary toxicity toward colon cancer cell lines.

    PubMed

    Katona, Bryson W; Rath, Nigam P; Anant, Shrikant; Stenson, William F; Covey, Douglas F

    2007-11-23

    Deoxycholic acid (DCA) is an endogenous secondary bile acid implicated in numerous pathological conditions including colon cancer formation and progression and cholestatic liver disease. DCA involvement in these disease processes results partly from its ability to modulate signaling cascades within the cell, presumably through both direct receptor activation and general detergent mediated membrane changes. To further explore DCA induced changes in cell signaling, we completed a total synthesis of enantiomeric deoxycholic acid (ent-DCA) from achiral 2-methyl-1,3-cyclopentanedione. Using a modified method of the synthesis of ent-testosterone that proceeds through the (R)-(-)-Hajos-Parrish ketone, we have completed the successful synthesis of ent-DCA in 25 steps with a yield of 0.3% with all stereochemical assignments of the product confirmed by X-ray crystallography. Our studies toward this synthesis also uncovered the methodology for the development of a novel A,B-cis steroidal skeleton system containing a C3-C9 single bond as well as conditions to selectively ketalize the typically less reactive 12-carbonyl in poly-keto A,B-cis androgens. The critical micelle concentration (cmc) of ent-DCA, determined by a dye solubilization method, was identical to the cmc of natural DCA. Toxicity studies toward HT-29 and HCT-116 human colon cancer cell lines demonstrated that ent-DCA had similar effects on proliferation, yet showed a markedly decreased ability to induce apoptosis as compared to natural DCA.

  9. The promoting effects of geniposidic acid and aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis.

    PubMed

    Li, Y; Sato, T; Metori, K; Koike, K; Che, Q M; Takahashi, S

    1998-12-01

    We have reported that collagen synthesis was stimulated by the administration of a hot water extract from the leaves of Eucommia ulmoides OLIVER, Eucommiaceae (Du-Zhong leaves) in false aged model rats. In this paper, we set out to examine the compounds in Du-Zhong leaves that stimulated collagen synthesis in false aged model rats. In experiment 1, a methanol extract of Du-Zhong leaves also stimulated collagen synthesis in aged model rats. An acetone fraction was derived from the methanol extract by silica gel chromatography in experiment 2. The acetone fraction mainly contained iridoides mono-glycosides such as geniposidic acid and aucubin. The administration of geniposidic acid or aucubin stimulated collagen synthesis in aged model rats in experiments 3 and 4 (significance (p<0.05)). The reported pharmacological effects of Du-Zhong leaves, including healing organs and strengthening bone and muscle, are closely related to collagen metabolism. It appears that geniposidic acid and aucubin are the actual compounds in Du-Zhong which caused the effect in our experiments.

  10. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  11. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    SciTech Connect

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T; Bauer, Christopher; Wang, Xiqing; Veith, Gabriel M; Dai, Sheng

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contents were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.

  12. Novel chemical synthesis of ginkgolic acid (13:0) and evaluation of its tyrosinase inhibitory activity.

    PubMed

    Fu, Yuanqing; Hong, Shan; Li, Duo; Liu, Songbai

    2013-06-05

    A novel efficient synthesis of ginkgolic acid (13:0) from abundant 2,6-dihydroxybenzoic acid was successfully developed through a state-of-the-art palladium-catalyzed cross-coupling reaction and catalytic hydrogenation with an overall yield of 34% in five steps. The identity of the synthesized ginkgolic acid (13:0) was confirmed by nuclear magnetic resonance, mass spectrometry, infrared, and high-performance liquid chromatography. The reaction sequence of this method can be readily extended to the synthesis of other ginkgolic acids. The synthesized ginkgolic acid (13:0) exhibited promising anti-tyrosinase activity (IC₅₀ = 2.8 mg/mL) that was not correlated to antioxidant activity as probed by 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ferric reducing ability of plasma, and oxygen radical absorbance capacity assays. The synthetic strategy developed in this work will significantly facilitate biological studies of ginkgolic acids that have great potential applications in food and pharmaceuticals.

  13. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  14. Synthesis of asymmetric tetracarboxylic acids and corresponding dianhydrides

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2008-01-01

    This invention relates to processes for preparing asymmetrical biphenyl tetracarboxylic acids and the corresponding asymmetrical dianhydrides, namely 2,3,3',4'-biphenyl dianhydride (a-BPDA), 2,3,3',4'-benzophenone dianhydride (a-BTDA) and 3,4'-methylenediphthalic anhydride (-MDPA). By cross-coupling reactions of reactive metal substituted o-xylenes or by cross-coupling o-xylene derivatives in the presence of catalysts, this invention specifically produces asymmetrical biphenyl intermediates that are subsequently oxidized or hydrolyzed and oxidized to provide asymmetric biphenyl tetracarboxylic acids in comparatively high yields. These asymmetrical biphenyl tetracarboxylic acids are subsequently converted to the corresponding asymmetrical dianhydrides without contamination by symmetrical biphenyl dianhydrides.

  15. Survival, Deoxyribonucleic Acid Breakdown, and Synthesis in Salmonella typhimurium as Compared with Escherichia coli B Strains

    PubMed Central

    Hudnik-Plevnik, Tamara A.; Djordjević, Nadežda

    1970-01-01

    Salmonella typhimurium LT-2 was compared with radioresistant (B/r) and radiosensitive (Bs−2) strains of Escherichia coli in respect to the survival, deoxyribonucleic acid (DNA) breakdown, and DNA synthesis after X irradiation. It is shown that S. typhimurium LT-2 is about four times more sensitive than E. coli B/r but less sensitive than Bs−2. The DNA breakdown is in S. typhimurium LT-2 lower than the postirradiation breakdown of DNA in both E. coli strains and DNA synthesis proceeds in this bacterium in spite of a much lower survival, as in the radioresistant E. coli B/r. PMID:4916313

  16. Convenient and Scalable Synthesis of Fmoc-Protected Peptide Nucleic Acid Backbone

    PubMed Central

    Feagin, Trevor A.; Shah, Nirmal I.; Heemstra, Jennifer M.

    2012-01-01

    The peptide nucleic acid backbone Fmoc-AEG-OBn has been synthesized via a scalable and cost-effective route. Ethylenediamine is mono-Boc protected, then alkylated with benzyl bromoacetate. The Boc group is removed and replaced with an Fmoc group. The synthesis was performed starting with 50 g of Boc anhydride to give 31 g of product in 32% overall yield. The Fmoc-protected PNA backbone is a key intermediate in the synthesis of nucleobase-modified PNA monomers. Thus, improved access to this molecule is anticipated to facilitate future investigations into the chemical properties and applications of nucleobase-modified PNA. PMID:22848796

  17. Hydrothermal synthesis of hollow silica spheres under acidic conditions.

    PubMed

    Yu, Qiyu; Wang, Pengpeng; Hu, Shi; Hui, Junfeng; Zhuang, Jing; Wang, Xun

    2011-06-07

    It is well-known that silica can be etched in alkaline media or in a unique hydrofluoric acid (HF) solution, which is widely used to prepare various kinds of hollow nanostructures (including silica hollow structures) via silica-templating methods. In our experiments, we found that stöber silica spheres could be etched in generic acidic media in a well-controlled way under hydrothermal conditions, forming well-defined hollow/rattle-type silica spheres. Furthermore, some salts such as NaCl and Na(2)SO(4) were found to be favorable for the formation of hollow/rattle-type silica spheres.

  18. Recent Advances in Substrate-Controlled Asymmetric Induction Derived from Chiral Pool α-Amino Acids for Natural Product Synthesis.

    PubMed

    Paek, Seung-Mann; Jeong, Myeonggyo; Jo, Jeyun; Heo, Yu Mi; Han, Young Taek; Yun, Hwayoung

    2016-07-21

    Chiral pool α-amino acids have been used as powerful tools for the total synthesis of structurally diverse natural products. Some common naturally occurring α-amino acids are readily available in both enantiomerically pure forms. The applications of the chiral pool in asymmetric synthesis can be categorized prudently as chiral sources, devices, and inducers. This review specifically examines recent advances in substrate-controlled asymmetric reactions induced by the chirality of α-amino acid templates in natural product synthesis research and related areas.

  19. The Synthesis and Evaluation of Arctigenin Amino Acid Ester Derivatives.

    PubMed

    Cai, En-Bo; Yang, Li-Min; Jia, Cai-Xia; Zhang, Wei-Yuan; Zhao, Yan; Li, Wei; Song, Xing-Zhuo; Zheng, Man-Ling

    2016-10-01

    The use of arctigenin (ARG), a traditional medicine with many pharmacological activities, has been restricted due to its poor solubility in water. Five amino acid derivatives of ARG have been synthesized using glycine, o-alanine, valine, leucine, and isoleucine, which have t-butyloxy carbonyl (BOC) as a protective group. In this study, we examined the effects of removing these protective groups. The results showed that the amino acid derivatives have better solubility and nitrite-clearing ability than ARG. Among the compounds tested, the amino acid derivatives without protective group were the best. Based on these results, ARG and its two amino acid derivatives without protective group (ARG8, ARG10) were selected to evaluate their anti-tumor activity in vivo at a dosage of 40 mg/kg. The results indicated that ARG8 and ARG10 both exhibit more anti-tumor activity than ARG in H22 tumor-bearing mice. The tumor inhibition rates of ARG8 and ARG10 were 69.27 and 43.58%, which was much higher than ARG. Furthermore, the mice treated with these compounds exhibited less damage to the liver, kidney and immune organs compared with the positive group. Furthermore, ARG8 and ARG10 improved the serum cytokine levels significantly compared to ARG. In brief, this study provides a method to improve the water solubility of drugs, and we also provide a reference basis for new drug development.

  20. Synthesis and physical properties of isostearic acids and their esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated branched-chain fatty acids (sbc-FAs) are found as minor constituents in several natural fats and oils. Sbc-FAs are of interest since they have lower melting points than their linear counterparts and exhibit good oxidative stability; properties that make them ideally suited in a number of ...

  1. Synthesis of 9-oxononanoic acid, a precursor for biopolymers.

    PubMed

    Otte, Konrad B; Kirtz, Marko; Nestl, Bettina M; Hauer, Bernhard

    2013-11-01

    Polymers based on renewable resources have become increasingly important. The natural functionalization of fats and oils enables an easy access to interesting monomeric building blocks, which in turn transform the derivative biopolymers into high-performance materials. Unfortunately, interesting building blocks of medium-chain length are difficult to obtain by traditional chemical means. Herein, a biotechnological pathway is established that could provide an environmentally suitable and sustainable alternative. A multiple enzyme two-step one-pot process efficiently catalyzed by a coupled 9S-lipoxygenase (St-LOX1, Solanum tuberosum) and 9/13-hydroperoxide lyase (Cm-9/13HPL, Cucumis melo) cascade reaction is proposed as a potential route for the conversion of linoleic acid into 9-oxononanoic acid, which is a precursor for biopolymers. Lipoxygenase catalyzes the insertion of oxygen into linoleic acid through a radical mechanism to give 9S-hydroperoxy-octadecadienoic acid (9S-HPODE) as a cascade intermediate, which is subsequently cleaved by the action of Cm-9/13HPL. This one-pot process afforded a yield of 73 % combined with high selectivity. The best reaction performance was achieved when lipoxygenase and hydroperoxide lyase were applied in a successive rather than a simultaneous manner. Green leaf volatiles, which are desired flavor and fragrance products, are formed as by-products in this reaction cascade. Furthermore, we have investigated the enantioselectivity of 9/13-HPLs, which exhibited a strong preference for 9S-HPODE over 9R-HPODE.

  2. Synthesis of copper sulphide nanoparticles in carboxylic acids as solvent.

    PubMed

    Armelao, Lidia; Camozzo, Daniele; Gross, Silvia; Tondello, Eugenio

    2006-02-01

    A novel method for the preparation of CuS nanoparticles based on the fast nucleation of the sulphide has been developed. The particles have been synthesized by reaction of thioacetic acid with water and copper carboxylates (acetate, propionate) in the corresponding carboxylic acid (acetic, propionic) as a solvent. The use of carboxylic acids presents several advantages: (i) the hydrolysis of the C-S bond is favoured thus producing a fast CuS supersaturation and a high nucleation rate; (ii) the mobility of the precursor molecules is limited so that nucleation events are favoured with respect to particle growth; (iii) the low dielectric constant of the medium stabilises the nanoparticles dispersion by reducing the critical coagulation concentration. The prepared nanoparticles were investigated by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and dynamic light scattering. The nanoparticle suspensions are clear and characterized by a blue-shifted adsorption edge with respect to bulk CuS. Light scattering measurements performed on acetic acid suspensions evidence the formation of monodispersed nanoparticles with an average diameter of about 5 nm.

  3. First Synthesis of 1,4-Dimethoxy-2-Naphthoxyacetic acid.

    PubMed

    Chinea, Kimberly; Banerjee, Ajoy K

    2015-07-01

    2-Acetyl-1-hydroxynaphthalene was converted into 1,4-dimethoxy-2-naphthoxyacetic acid in seven steps (methylation, Bayer-Villiger oxidation, hydrolysis, bromination, methylation, alkylation and hydrolysis). 2-Hydroxy-1,4-naphthoquinone on acetylation, aromatization, methylation and hydrolysis, respectively, also yielded the title compound.

  4. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    PubMed Central

    Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A

    2016-01-01

    Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357

  5. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies.

  6. Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2

    PubMed Central

    Qian, Qingli; Zhang, Jingjing; Cui, Meng; Han, Buxing

    2016-01-01

    Acetic acid is an important bulk chemical that is currently produced via methanol carbonylation using fossil based CO. Synthesis of acetic acid from the renewable and cheap CO2 is of great importance, but state of the art routes encounter difficulties, especially in reaction selectivity and activity. Here we report a route to produce acetic acid from CO2, methanol and H2. The reaction can be efficiently catalysed by Ru–Rh bimetallic catalyst using imidazole as the ligand and LiI as the promoter in 1,3-dimethyl-2-imidazolidinone (DMI) solvent. It is confirmed that methanol is hydrocarboxylated into acetic acid by CO2 and H2, which accounts for the outstanding reaction results. The reaction mechanism is proposed based on the control experiments. The strategy opens a new way for acetic acid production and CO2 transformation, and represents a significant progress in synthetic chemistry. PMID:27165850

  7. Synthesis and Biological Evaluation of Novel Phosphatidylcholine Analogues Containing Monoterpene Acids as Potent Antiproliferative Agents

    PubMed Central

    Gliszczyńska, Anna; Niezgoda, Natalia; Gładkowski, Witold; Czarnecka, Marta; Świtalska, Marta; Wietrzyk, Joanna

    2016-01-01

    The synthesis of novel phosphatidylcholines with geranic and citronellic acids in sn-1 and sn-2 positions is described. The structured phospholipids were obtained in high yields (59–87%) and evaluated in vitro for their cytotoxic activity against several cancer cell lines of different origin: MV4-11, A-549, MCF-7, LOVO, LOVO/DX, HepG2 and also towards non-cancer cell line BALB/3T3 (normal mice fibroblasts). The phosphatidylcholines modified with monoterpene acid showed a significantly higher antiproliferative activity than free monoterpene acids. The highest activity was observed for the terpene-phospholipids containing the isoprenoid acids in sn-1 position of phosphatidylcholine and palmitic acid in sn-2. PMID:27310666

  8. Progressive familial intrahepatic cholestasis and inborn errors of bile acid synthesis.

    PubMed

    Jankowska, Irena; Socha, Piotr

    2012-06-01

    Progressive familial intrahepatic cholestasis (PFIC), types 1, 2 and 3, are due to defects in genes involved in bile secretion (FIC1, BSEP, MDR3). PFIC and inborn errors of bile acid synthesis (IEBAS) often present in infancy with cholestasis. The distinctive feature of PFIC 1 and 2 and IEBAS is a normal level of GGT, while IEBAS are suspected in patients with low plasma bile acids concentration. Molecular testing, urinary bile acid analysis (IEBAS), liver biopsy and immuno-staining are used for the diagnosis. Some patients with PFIC can be successfully treated with ursodeoxycholic acid or partial external biliary diversion. IEBAS is treated with cholic acid. Liver transplantation is required for cirrhosis with liver failure. Hepatocarcinoma has been reported in PFIC2.

  9. Synthesis of medronic acid monoesters and their purification by high-performance countercurrent chromatography or by hydroxyapatite

    PubMed Central

    Vepsäläinen, Jouko; Turhanen, Petri A

    2016-01-01

    Summary We achieved the synthesis of important medronic acid monoalkyl esters via the dealkylation of mixed trimethyl monoalkyl esters of medronic acid. Two methods were developed for the purification of medronic acid monoesters: 1) small scale (10–20 mg) purification by using hydroxyapatite and 2) large scale (tested up to 140 mg) purification by high-performance countercurrent chromatography (HPCCC). PMID:27829921

  10. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  11. Developmental aspects and factors influencing the synthesis and status of ascorbic Acid in the pig.

    PubMed

    Mahan, D C; Ching, S; Dabrowski, K

    2004-01-01

    Ascorbic acid synthesis in the pig occurs at mid-pregnancy, but activity of the enzyme l-gulono-gamma-lactone oxidase (GLO) declines thereafter during gestation and remains low when the pig nurses the sow. During late gestation the ascorbic acid concentration in the fetus increases, but serum and liver ascorbic acid concentration in the sow declines without affecting the dam's liver GLO activity. It is presumed that as gestation progresses an increased amount of maternal ascorbic acid is transferred to the fetus and to the mammary gland. Colostrum and milk are rich sources of the vitamin and supply the nursing pig with ascorbic acid. The available data suggest that high amounts of ascorbic acid appear to suppress liver GLO activity in the pig. Upon weaning, when exogenous vitamin C is generally not provided, liver GLO activity and serum ascorbic acid increases. During the initial periods postweaning, some reports have indicated growth benefits of supplemental vitamin C. Body tissues differ in their concentrations of ascorbic acid, but tissues of high metabolic need generally have greater concentrations. The corpus luteum in the female, the testis in the male, and the adrenal glands in all pigs contain greater concentrations of the vitamin. Knockout genes preventing ascorbic acid synthesis in pigs have demonstrated poor skeletal and collagen formation and poor antioxidant protection. Under periods of stress ascorbic acid declines in the adrenal, but the pig rapidly recovers to its resting state once the stressor agent is removed. Although there are periods when supplemental vitamin C has been shown to promote pig performance (e.g., during high environmental stress and early postweaning), supplemental vitamin C has not been shown to routinely enhance pig performance.

  12. Fatty Acid Synthesis Intermediates Represent Novel Noninvasive Biomarkers of Prostate Cancer Chemoprevention by Phenethyl Isothiocyanate.

    PubMed

    Singh, Krishna B; Singh, Shivendra V

    2017-03-14

    Increased de novo synthesis of fatty acids is a distinctive feature of prostate cancer, which continues to be a leading cause of cancer-related deaths among American men. Therefore, inhibition of de novo fatty acid synthesis represents an attractive strategy for chemoprevention of prostate cancer. We have shown previously that dietary feeding of phenethyl isothiocyanate (PEITC), a phytochemical derived from edible cruciferous vegetables such as watercress, inhibits incidence and burden of poorly-differentiated prostate cancer in Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model. The present study was designed to test the hypothesis of whether fatty acid intermediate(s) can serve as noninvasive biomarker(s) of prostate cancer chemoprevention by PEITC using archived plasma and tumor specimens from the TRAMP study as well as cellular models of prostate cancer. Exposure of prostate cancer cells (LNCaP and 22Rv1) to pharmacological concentrations of PEITC resulted in downregulation of key fatty acid metabolism proteins, including acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A). The mRNA expression of FASN and CPT1A as well as acetyl-CoA levels were decreased by PEITC treatment in both cell lines. PEITC administration to TRAMP mice also resulted in a significant decrease in tumor expression of FASN protein. Consistent with these findings, the levels of total free fatty acids, total phospholipids, triglyceride, and ATP were significantly lower in the plasma and/or prostate tumors of PEITC-treated TRAMP mice compared with controls. The present study is the first to implicate inhibition of fatty acid synthesis in prostate cancer chemoprevention by PEITC.

  13. Green synthesis of gold-chitosan nanocomposites for caffeic acid sensing.

    PubMed

    Di Carlo, Gabriella; Curulli, Antonella; Toro, Roberta G; Bianchini, Chiara; De Caro, Tilde; Padeletti, Giuseppina; Zane, Daniela; Ingo, Gabriel M

    2012-03-27

    In this work, colloidal gold nanoparticles (AuNPs) stabilized into a chitosan matrix were prepared using a green route. The synthesis was carried out by reducing Au(III) to Au(0) in an aqueous solution of chitosan and different organic acids (i.e., acetic, malonic, or oxalic acid). We have demonstrated that by varying the nature of the acid it is possible to tune the reduction rate of the gold precursor (HAuCl(4)) and to modify the morphology of the resulting metal nanoparticles. The use of chitosan, a biocompatible and biodegradable polymer with a large number of amino and hydroxyl functional groups, enables the simultaneous synthesis and surface modification of AuNPs in one pot. Because of the excellent film-forming capability of this polymer, AuNPs-chitosan solutions were used to obtain hybrid nanocomposite films that combine highly conductive AuNPs with a large number of organic functional groups. Herein, Au-chitosan nanocomposites are successfully proposed as sensitive and selective electrochemical sensors for the determination of caffeic acid, an antioxidant that has recently attracted much attention because of its benefits to human health. A linear response was obtained over a wide range of concentration from 5.00 × 10(-8) M to 2.00 × 10(-3) M, and the limit of detection (LOD) was estimated to be 2.50 × 10(-8) M. Moreover, further analyses have demonstrated that a high selectivity toward caffeic acid can be achieved without interference from catechin or ascorbic acid (flavonoid and nonphenolic antioxidants, respectively). This novel synthesis approach and the high performances of Au-chitosan hybrid materials in the determination of caffeic acid open up new routes in the design of highly efficient sensors, which are of great interest for the analysis of complex matrices such as wine, soft drinks, and fruit beverages.

  14. Akt Phosphorylation and Regulation of Transketolase Is a Nodal Point for Amino Acid Control of Purine Synthesis

    PubMed Central

    Saha, Arindam; Connelly, Stephen; Jiang, Jingjing; Zhuang, Shunhui; Amador, Deron T.; Phan, Tony; Pilz, Renate B.; Boss, Gerry R.

    2014-01-01

    SUMMARY The phosphatidylinositol 3-kinase (PI3K)/Akt pathway integrates environmental clues to regulate cell growth and survival. We showed previously that depriving cells of a single essential amino acid rapidly and reversibly arrests purine synthesis. Here we demonstrate that amino acids via mTORC2 and IκB kinase regulate Akt activity, and Akt association and phosphorylation of transketolase (TKT), a key enzyme of the non-oxidative pentose phosphate pathway (PPP). Akt phosphorylates TKT on Thr382, markedly enhancing enzyme activity and increasing carbon flow through the non-oxidative PPP, thereby increasing purine synthesis. Mice fed a lysine-deficient diet for two days show decreased Akt activity, TKT activity, and purine synthesis in multiple organs. These results provide a new mechanism whereby Akt coordinates amino acid availability with glucose utilization, purine synthesis, and RNA and DNA synthesis. PMID:24981175

  15. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability.

    PubMed Central

    Bostian, K A; Lemire, J M; Halvorson, H O

    1982-01-01

    The synthesis of repressible acid phosphatase in Saccharomyces cerevisiae was examined under conditions of blocked derepression as described by Toh-e et al. (Mol. Gen. Genet. 162:139-149, 1978). Based on a genetic and biochemical analysis of the phenomenon these authors proposed a new regulatory model for acid phosphatase expression involving a simultaneous interaction of regulatory factors in the control of structural gene transcription. We demonstrate here that under growth conditions that fail to produce acid phosphatase the enzyme is readily inactivated. Furthermore, we demonstrate under these conditions the production of acid phosphatase mRNA which is active both in vitro and in vivo in the synthesis of enzyme. This eliminates any step prior to translation of acid phosphatase polypeptide as an explanation for the phenomenon. We interpret our results for the block in appearance of acid phosphatase as a result of both deaccelerated growth and cellular biosynthesis during derepression, accompanied by an enhanced instability of the enzyme. Images PMID:7050664

  16. Role of ferrocyanides in the prebiotic synthesis of α-amino acids.

    PubMed

    Ruiz-Bermejo, Marta; Osuna-Esteban, Susana; Zorzano, María-Paz

    2013-06-01

    We investigated the synthesis of α-amino acids under possible prebiotic terrestrial conditions in the presence of dissolved iron (II) in a simulated prebiotic ocean. An aerosol-liquid cycle with a prebiotic atmosphere is shown to produce amino acids via Strecker synthesis with relatively high yields. However, in the presence of iron, the HCN was captured in the form of a ferrocyanide, partially inhibiting the formation of amino acids. We showed how HCN captured as Prussian Blue (or another complex compound) may, in turn, have served as the HCN source when exposed to UV radiation, allowing for the sustained production of amino acids in conjunction with the production of oxyhydroxides that precipitate as by-products. We conclude that ferrocyanides and related compounds may have played a significant role as intermediate products in the prebiotic formation of amino acids and oxyhydroxides, such as those that are found in iron-containing soils and that the aerosol cycle of the primitive ocean may have enhanced the yield of the amino acid production.

  17. Nucleic acid and protein synthesis during lateral root initiation in Marsilea quadrifolia (Marsileaceae)

    NASA Technical Reports Server (NTRS)

    Lin, B. L.; Raghavan, V.

    1991-01-01

    The pattern of DNA, RNA, and protein synthesis during lateral root initiation in Marsilea quadrifolia L. was monitored by autoradiography of incorporated of 3H-thymidine, 3H-uridine, and 3H-leucine, respectively. DNA synthesis was associated with the enlargement of the lateral root initial prior to its division. Consistent with histological studies, derivatives of the lateral root initial as well as the cells of the adjacent inner cortex and pericycle of the parent root also continued to synthesize DNA. RNA and protein synthetic activities were found to be higher in the lateral root initials than in the endodermal initials of the same longitudinal layer. The data suggest a role for nucleic acid and protein synthesis during cytodifferentiation of a potential endodermal cell into a lateral root initial.

  18. Protein and Ribonucleic Acid Synthesis During the Diploid Life Cycle of Allomyces arbuscula

    PubMed Central

    Burke, Daniel J.; Seale, Thomas W.; McCarthy, Brian J.

    1972-01-01

    The diploid life cycle of Allomyces arbuscula may be divided into four parts: spore induction, germination, vegetative growth, and mitosporangium formation. Spore induction, germination, and mitosporangium formation are insensitive to inhibition of actinomycin D, probably indicating that stable, pre-existing messenger ribonucleic acid (RNA) is responsible for these developmental events. Protein synthesis is necessary during the entire life cycle except for cyst formation. A system for obtaining synchronous germination of mitospores is described. During germination there is a characteristic increase in the rate of synthesis of RNA and protein although none of the other morphogenetic changes occurring during the life cycle are necessarily accompanied by an appreciable change in the rate of macromolecular synthesis. PMID:4113121

  19. Concise synthesis of the A/BCD-ring fragment of gambieric acid A

    PubMed Central

    Fuwa, Haruhiko; Fukazawa, Ryo; Sasaki, Makoto

    2014-01-01

    Gambieric acid A (GAA) and its congeners belong to the family of marine polycyclic ether natural products. Their highly complex molecular architecture and unique biological activities have been of intense interest within the synthetic community. We have previously reported the first total synthesis, stereochemical reassignment, and preliminary structure–activity relationships of GAA. Here we disclose a concise synthesis of the A/BCD-ring fragment of GAA. The synthesis started from our previously reported synthetic intermediate that represents the A/B-ring. The C-ring was synthesized via an oxiranyl anion coupling and a 6-endo cyclization, and the D-ring was forged by means of an oxidative lactonization and subsequent palladium-catalyzed functionalization of the lactone ring. In this manner, the number of linear synthetic steps required for the construction of the C- and D-rings was reduced from 22 to 11. PMID:25629027

  20. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    NASA Astrophysics Data System (ADS)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  1. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    PubMed Central

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-01-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon. PMID:25648201

  2. Synthesis and verification of biobased terephthalic acid from furfural.

    PubMed

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-ichi

    2015-02-04

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  3. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives.

  4. Enzymatic synthesis of palm olein-based fatty thiohydroxamic acids.

    PubMed

    Al-Mulla, Emad A Jaffar; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa Bt; Rahman, Mohd Zaki Ab

    2010-01-01

    Fatty thiohydroxamic acids (FTAs) have been successfully synthesized from palm olein and thiohydroxamic acid by a one-step lipase catalyzed reaction. The use of immobilized lipase (Lipozyme RMIM) as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The FTAs were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The highest conversion percentage (95 %) was obtained when the process was carried out for 30 hours using urea to palm oil ratio of 6.0: 1.0 at 40 °C. The method employed offers several advantages such as renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product.

  5. First synthesis of thia steroids from cholic acid.

    PubMed

    Ibrahim-Ouali, Malika; Rocheblave, Luc

    2010-10-01

    Heterosteroids remain interesting due to their potential biological activities. This prompted us to synthesize novel thia steroids possessing the heteroatom in the A-ring. We set out to describe a new and versatile method for preparing 3-thia steroids from cholic acid via a selective oxidation of one hydroxyl group, a Baeyer-Villiger oxidation and a photolysis as the key steps. The characteristic (1)H and (13)C NMR spectroscopic features of the synthesized compounds are reported.

  6. An approach for the synthesis of nakamuric acid

    PubMed Central

    Wang, Xiaolei; Chen, Chuo

    2014-01-01

    The biosynthesis of dimeric pyrrole–imidazole alkaloids is likely mediated by enzyme-catalyzed reversible single-electron transfer (SET) cycloaddition. We now show that Ir(ppy)3 can promote SET-mediated formal [2+2] and [4+2] cycloaddition reactions of pyrrole–imidazole alkaloids-related substrates under photolytic conditions. This biomimetic approach is useful for the construction of the core skeleton of nakamuric acid and sceptrin. PMID:25983349

  7. Synthesis and characterization of fatty hydroxamic acids from triacylglycerides.

    PubMed

    Hoidy, Wisam H; Ahmad, Mansor B; Al-Mulla, Emad A Jaffar; Yunus, Wan Md Zin Wan; Ibrahim, Nor azowa Bt

    2010-01-01

    In this study, fatty haydroxamic acids (FHAs), which have biological activities as antibiotics and antifungal, have been synthesized via refluxing of triacylglycrides, palm olein, palm stearin or corn oil with hydroxylamine hydrochloride. The products were characterized using the complex formation test of hydroxamic acid group with zinc(I), copper(II) and iron(III), various technique methods including nuclear magnetic resonance ((1)H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Parameters that may affect the conversion of oils to FHAs including the effect of reaction time, effect of organic solvent and effect of hydro/oil molar issue were also investigated in this study. Results of characterization indicate that FHAs were successfully produced from triacylglycrides. The conversion percentages of palm stearin, palm olein and corn oil into their fatty hydroxamic acids are 82, 81 and 78, respectively. Results also showed that hexane is the best organic solvent to produce the FHAs from the three oils used in this study. The optimum reaction time to achieve the maximum conversion percentage of the oils to FHAs was found to be 10 hours for all the three oils, while the optimum molar ration of hydro/to oil was found to be 7:1 for all the different three oils.

  8. Synthesis, crystal structure and computational studies of 4-nitrobenzylphosphonic acid

    NASA Astrophysics Data System (ADS)

    Wilk, Magdalena; Jarzembska, Katarzyna N.; Janczak, Jan; Hoffmann, Józef; Videnova-Adrabinska, Veneta

    2014-09-01

    4-Nitrobenzylphosphonic acid (1a) has been synthesized and structurally characterized by vibrational spectroscopy (IR and Raman) and single-crystal X-ray diffraction. Additionally, Hirshfeld surface analysis and computational methods have been used to compare the intermolecular interactions in the crystal structures of 1a and its carboxylic analogue, 4-nitrobenzylcarboxylic acid (4-NBCA). The crystal structure analysis of 1a has revealed that the acid molecules are extended into helical chains along the b axis using one of the hydrogen bonds established between phosphonic groups. The second (P)Osbnd H⋯O(P) hydrogen bond cross-links the inversion-related chains to form a thick monolayer with phosphonic groups arranged inwards and aromatic rings outwards. The nitro groups serve to link the neighbouring monolayers by weak Csbnd H⋯O(N) hydrogen bonds. Computations have confirmed the great contribution of electrostatic interactions for the crystal lattice stability. The cohesive energy, computed for the crystal structure of 1a exceeds 200 kJ mol-1 in magnitude and is nearly twice as large as that of 4-NBCA. The calculated cohesive energy values have been further related to the results of thermal analyses.

  9. Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium.

    PubMed

    Glaser, Robert; Venus, Joachim

    2017-02-08

    Three Bacillus coagulans strains were characterised in terms of their ability to grow in lignin-containing fermentation media and to consume the lignocellulose-related sugars glucose, xylose, and arabinose. An optical-density high-throughput screening was used for precharacterisation by means of different mathematical models for comparison (Logistic, Gompertz, Baranyi, Richards & Stannard, and Schnute). The growth response was characterised by the maximum growth rate and lag time. For a comparison of the screening and fermentation results, an unstructured mathematical model was proposed to characterise the lactate production, bacterial growth and substrate consumption. The growth model was then applied to fermentation procedures using wheat straw hydrolysates. The results indicated that the unstructured growth model can be used to evaluate lactate producing fermentation. Under the experimental fermentation conditions, one strain showed the ability to tolerate a high lignin concentration (2.5g/L) but lacked the capacity for sufficient pentose uptake. The lactate yield of the strains that were able to consume all sugar fractions of glucose, xylose and arabinose was ∼83.4%. A photometric measurement at 280nm revealed a dynamic change in alkali-lignin concentrations during lactate producing fermentation. A test of decolourisation of vanillin, ferulic acid, and alkali-lignin samples also showed the decolourisation performance of the B. coagulans strains under study.

  10. Glutamic Acid - Amino Acid, Neurotransmitter, and Drug - Is Responsible for Protein Synthesis Rhythm in Hepatocyte Populations in vitro and in vivo.

    PubMed

    Brodsky, V Y; Malchenko, L A; Konchenko, D S; Zvezdina, N D; Dubovaya, T K

    2016-08-01

    Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell-cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.

  11. Acid Gradient across Plasma Membrane Can Drive Phosphate Bond Synthesis in Cancer Cells: Acidic Tumor Milieu as a Potential Energy Source

    PubMed Central

    Dhar, Gautam; Sen, Suvajit; Chaudhuri, Gautam

    2015-01-01

    Aggressive cancers exhibit an efficient conversion of high amounts of glucose to lactate accompanied by acid secretion, a phenomenon popularly known as the Warburg effect. The acidic microenvironment and the alkaline cytosol create a proton-gradient (acid gradient) across the plasma membrane that represents proton-motive energy. Increasing experimental data from physiological relevant models suggest that acid gradient stimulates tumor proliferation, and can also support its energy needs. However, direct biochemical evidence linking extracellular acid gradient to generation of intracellular ATP are missing. In this work, we demonstrate that cancer cells can synthesize significant amounts of phosphate-bonds from phosphate in response to acid gradient across plasma membrane. The noted phenomenon exists in absence of glycolysis and mitochondrial ATP synthesis, and is unique to cancer. Biochemical assays using viable cancer cells, and purified plasma membrane vesicles utilizing radioactive phosphate, confirmed phosphate-bond synthesis from free phosphate (Pi), and also localization of this activity to the plasma membrane. In addition to ATP, predominant formation of pyrophosphate (PPi) from Pi was also observed when plasma membrane vesicles from cancer cells were subjected to trans-membrane acid gradient. Cancer cytosols were found capable of converting PPi to ATP, and also stimulate ATP synthesis from Pi from the vesicles. Acid gradient created through glucose metabolism by cancer cells, as observed in tumors, also proved critical for phosphate-bond synthesis. In brief, these observations reveal a role of acidic tumor milieu as a potential energy source and may offer a novel therapeutic target. PMID:25874623

  12. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis

    PubMed Central

    Kerr, Thomas A.; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W.; Schwarz, Margrit

    2014-01-01

    Summary The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size. PMID:12062084

  13. Stimulation of skeletal muscle protein synthesis in neonatal pigs by long-term infusion of leucine is amino acid dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infusing leucine for 1 hr increases skeletal muscle protein synthesis in neonatal pigs, but this is not sustained for 2 h unless the leucine-induced fall in amino acids is prevented. We aimed to determine whether continuous leucine infusion can stimulate protein synthesis for a prolonged period whe...

  14. Synthesis of a Homologous Series of Side Chain Extended Orthogonally-Protected Aminooxy-Containing Amino Acids

    PubMed Central

    Liu, Fa; Thomas, Joshua; Burke, Terrence R.

    2008-01-01

    Practical methodology is reported for the synthesis of a homologous series of side chain extended amino acids containing aminooxy functionality bearing orthogonal protection suitable for Fmoc peptide synthesis. These reagents may be useful for the preparation of libraries containing fragments joined by peptide linkers. PMID:19122755

  15. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth.

    PubMed

    Mertz, J R; Wallman, J

    2000-04-01

    Research over the past two decades has shown that the growth of young eyes is guided by vision. If near- or far-sightedness is artificially imposed by spectacle lenses, eyes of primates and chicks compensate by changing their rate of elongation, thereby growing back to the pre-lens optical condition. Little is known about what chemical signals might mediate between visual effects on the retina and alterations of eye growth. We present five findings that point to choroidal retinoic acid possibly being such a mediator. First, the chick choroid can convert retinol into all-trans-retinoic acid at the rate of 11 +/- 3 pmoles mg protein(-1) hr(-1), compared to 1.3 +/- 0.3 for retina/RPE and no conversion for sclera. Second, those visual conditions that cause increased rates of ocular elongation (diffusers or negative lens wear) produce a sharp decrease in all-trans-retinoic acid synthesis to levels barely detectable with our assay. In contrast, visual conditions which result in decreased rates of ocular elongation (recovery from diffusers or positive lens wear) produce a four- to five-fold increase in the formation of all-trans-retinoic acid. Third, the choroidal retinoic acid is found bound to a 28-32 kD protein. Fourth, a large fraction of the choroidal retinoic acid synthesized in culture is found in a nucleus-enriched fraction of sclera. Finally, application of retinoic acid to cultured sclera at physiological concentrations produced an inhibition of proteoglycan production (as assessed by measuring sulfate incorporation) with a EC50 of 8 x 10(-7) M. These results show that the synthesis of choroidal retinoic acid is modulated by those visual manipulations that influence ocular elongation and that this retinoic acid may reach the sclera in concentrations adequate to modulate scleral proteoglycan formation.

  16. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase.

    PubMed

    Henin, N; Vincent, M F; Gruber, H E; Van den Berghe, G

    1995-04-01

    AMP-activated protein kinase is a multisubstrate protein kinase that, in liver, inactivates both acetyl-CoA carboxylase, the rate-limiting enzyme of fatty acid synthesis, and 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. AICAR (5-amino 4-imidazolecarboxamide ribotide, ZMP) was found to stimulate up to 10-fold rat liver AMP-activated protein kinase, with a half-maximal effect at approximately 5 mM. In accordance with previous observations, addition to suspensions of isolated rat hepatocytes of 50-500 microM AICAriboside, the nucleoside corresponding to ZMP, resulted in the accumulation of millimolar concentrations of the latter. This was accompanied by a dose-dependent inactivation of both acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. Addition of 50-500 microM AICAriboside to hepatocyte suspensions incubated in the presence of various substrates, including glucose and lactate/pyruvate, caused a parallel inhibition of both fatty acid and cholesterol synthesis. With lactate/pyruvate (10/1 mM), half-maximal inhibition was obtained at approximately 100 microM, and near-complete inhibition at 500 microM AICAriboside. These findings open new perspectives for the simultaneous control of triglyceride and cholesterol synthesis by pharmacological stimulators of AMP-activated protein kinase.

  17. In situ synthesis of peptide nucleic acids in porous silicon for drug delivery and biosensing.

    PubMed

    Beavers, Kelsey R; Mares, Jeremy W; Swartz, Caleb M; Zhao, Yiliang; Weiss, Sharon M; Duvall, Craig L

    2014-07-16

    Peptide nucleic acids (PNA) are a unique class of synthetic molecules that have a peptide backbone and can hybridize with nucleic acids. Here, a versatile method has been developed for the automated, in situ synthesis of PNA from a porous silicon (PSi) substrate for applications in gene therapy and biosensing. Nondestructive optical measurements were performed to monitor single base additions of PNA initiated from (3-aminopropyl)triethoxysilane attached to the surface of PSi films, and mass spectrometry was conducted to verify synthesis of the desired sequence. Comparison of in situ synthesis to postsynthesis surface conjugation of the full PNA molecules showed that surface mediated, in situ PNA synthesis increased loading 8-fold. For therapeutic proof-of-concept, controlled PNA release from PSi films was characterized in phosphate buffered saline, and PSi nanoparticles fabricated from PSi films containing in situ grown PNA complementary to micro-RNA (miR) 122 generated significant anti-miR activity in a Huh7 psiCHECK-miR122 cell line. The applicability of this platform for biosensing was also demonstrated using optical measurements that indicated selective hybridization of complementary DNA target molecules to PNA synthesized in situ on PSi films. These collective data confirm that we have established a novel PNA-PSi platform with broad utility in drug delivery and biosensing.

  18. Stimulation of phosphatidic acid of calcium influx and cyclic GMP synthesis in neuroblastoma cells.

    PubMed

    Ohsako, S; Deguchi, T

    1981-11-10

    Phosphatidic acid added to the medium markedly elevated intracellular cyclic GMP content in cultured neuroblastoma N1E 115 cells. There was a significant elevation of cyclic GMP with 1 micrograms/ml and a maximum (70-fold) elevation with 100 micrograms/ml of phosphatidic acid. Other natural phospholipids did not increase, or increased only slightly, the cyclic GMP content in the cells. The elevation of cyclic GMP content by phosphatidic acid was absolutely dependent on extracellular calcium. Phosphatidic acid stimulated the influx of calcium into neuroblastoma cells 2- to 5-fold. The pattern of the calcium influx induced by phosphatidic acid was comparable to that of cyclic GMP elevation. The stimulation of calcium influx by phosphatidic acid was also observed in cultured heart cells, indicating that phosphatidic acid acts as a calcium ionophore or opens a specific calcium-gate in a variety of cell membranes. Treatment of neuroblastoma cells with phospholipase C increased 32Pi labeling of phosphatidic acid, stimulated the influx of calcium, and elevated the cyclic GMP content in the cells. Thus exogenous as well as endogenous phosphatidic acid stimulates the translocation of calcium across cell membranes and, as a consequence, induces the synthesis of cyclic GMP in the neuroblastoma cells.

  19. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  20. Fatty Acid Synthesis and Control of Caspase 2 in Prostate Cancer

    DTIC Science & Technology

    2013-05-01

    July 2011- 30 June 2012 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fatty Acid Synthesis and control of Caspase 2 in Prostate Cancer 5b. GRANT...Introduction…………………………………………………………….………..….. 4 Body………………………………………………………………………………….. 4 -6 Key Research Accomplishments...combination  with  inhibitors  of  NADPH  production   ( DHEA ),  fatty  acid  synthesis,  (C75,  C93,  cerulenin)  and  CaMKII

  1. Synthesis and in vitro Evaluation of Polymeric Prodrug of Ibuprofen with Amino Acid Spacer.

    PubMed

    Redasani, Vivekkumar K; Bari, Sanjay B

    2015-01-01

    The present work is an agreement with simple and efficient method of improving the therapeutic efficacy of ibuprofen by masking its acidic moiety. It aims to reduce gastrointestinal side effects by controlling the rate, duration and site of release. This is achieved by synthesis and evaluation of polymeric prodrug of ibuprofen with natural polymer sodium alginate. The synthesis was supported by N-protected serine as spacer due to chemical incompatibility of drug and polymer. Synthesized prodrug was characterized for confirmation of said structures. The in-vitro dissolution profile of ibuprofen-alginate prodrug showed that the release of the drug is significantly higher in case of pH 7.2 buffer as compared to ibuprofen, which might be due to ester group adjacent to drug get hydrolyzed. The hydrolysis was found to be with faster rate in alkaline media than that of in acidic media.

  2. Synthesis, biological activity, and bioavailability of moschamine, a safflomide-type phenylpropenoic acid amide found in Centaurea cyanus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Moschamine is a safflomide-type phenylpropenoic acid amide originally isolated from Centaurea cyanus. This paper describes the synthesis, detection of serotoninergic and COX inhibitory activities, and bioavailability of moschamine. Moschamine was chemically synthesized and identified using NMR spect...

  3. Ribonucleic Acid and Protein Synthesis During Germination of Myxococcus xanthus Myxospores

    PubMed Central

    Juengst, Fredrick W.; Dworkin, Martin

    1973-01-01

    Ribonucleic acid (RNA) and protein synthesis during myxospore germination were examined. When RNA synthesis was inhibited more than 90% by either actinomycin D (Act D) or rifampin, germination was prevented. The data were consistent with the interpretation that rifampin did not interfere with protein synthesis in any way other than by inhibition of messenger RNA formation. Act D concentrations as high as 20 μg/ml did not totally inhibit RNA synthesis. In the presence of 8 μg of Act D/ml, germinating myxospores synthesized transfer RNA, 16S RNA, and 23S RNA. Evidence was presented which indicated that messenger RNA was also synthesized early in the germination period both in the presence and absence of 8 μg of Act D/ml. One explanation for the escape synthesis of RNA in germinating myxospores is that Act D exerts a differential effect on the transcription of larger versus smaller cistrons, the latter having a lower probability of binding Act D. We have found that in the presence of 8 μg of Act D/ml, escape RNA synthesis in myxospores was 25% for 23S RNA, 55% for 16S RNA, and more than 90% for 4S RNA. We have shown that germination of myxospores requires both RNA and protein synthesis during the first 25 to 35 min in germination medium. This finding does not support the earlier suggestion by Ramsey and Dworkin that a stable germination messenger RNA is required for germination of the myxospores of Myxococcus xanthus. PMID:4690965

  4. Synthesis, Preliminary Bioevaluation and Computational Analysis of Caffeic Acid Analogues

    PubMed Central

    Liu, Zhiqian; Fu, Jianjun; Shan, Lei; Sun, Qingyan; Zhang, Weidong

    2014-01-01

    A series of caffeic acid amides were designed, synthesized and evaluated for anti-inflammatory activity. Most of them exhibited promising anti-inflammatory activity against nitric oxide (NO) generation in murine macrophage RAW264.7 cells. A 3D pharmacophore model was created based on the biological results for further structural optimization. Moreover, predication of the potential targets was also carried out by the PharmMapper server. These amide analogues represent a promising class of anti-inflammatory scaffold for further exploration and target identification. PMID:24857914

  5. Total synthesis of gracilioether F. Development and application of Lewis acid promoted ketene–alkene [2+2] cycloadditions and late-stage C—H oxidation

    SciTech Connect

    Rasik, Christopher M.; Brown, M. Kevin

    2014-12-22

    The first synthesis of gracilioether F, a polyketide natural product with an unusual tricyclic core and five contiguous stereocenters, is described. Key steps of the synthesis include a Lewis acid promoted ketene–alkene [2+2] cycloaddition and a late-stage carboxylic acid directed C(sp³)—H oxidation. The synthesis requires only eight steps from norbornadiene.

  6. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding

    PubMed Central

    Kirillova, Yuliya; Boyarskaya, Nataliya; Dezhenkov, Andrey; Tankevich, Mariya; Prokhorov, Ivan; Varizhuk, Anna; Eremin, Sergei; Esipov, Dmitry; Smirnov, Igor; Pozmogova, Galina

    2015-01-01

    New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA. PMID:26469337

  7. Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid.

    PubMed

    Santoro, Federica; Mariani, Matteo; Zaccheria, Federica; Psaro, Rinaldo; Ravasio, Nicoletta

    2016-01-01

    The synthesis of thioethers starting from alcohols and thiols in the presence of amorphous solid acid catalysts is reported. A silica alumina catalyst with a very low content in alumina gave excellent results in terms of both activity and selectivity also under solvent-free conditions. The reaction rate follows the electron density of the carbinol atom in the substrate alcohol and yields up to 99% and can be obtained for a wide range of substrates under mild reaction conditions.

  8. Aminochlorination in water: first Brønsted acid-promoted synthesis of vicinal chloramines.

    PubMed

    Wu, Xue-Liang; Wang, Guan-Wu

    2007-11-23

    A practical and scaleable route for the regio- and diastereoselective synthesis of vicinal chloramines from electron-deficient olefins and Chloramine-T promoted by Brønsted acids in water has been realized for the first time. This novel protocol is efficient, mild, ecofriendly, and broadly applicable for the aminochlorination of various electron-deficient olefins including alpha,beta-unsaturated ketones, cinnamate, and cinnamide. Water represents as a privileged solvent for the aminochlorination reaction in our system.

  9. Synthesis of 2-(hetero)aryl-5-(trimethylsilylethynyl)oxazoles from (hetero)arylacrylic acids.

    PubMed

    Pankova, Alena S; Stukalov, Alexander Yu; Kuznetsov, Mikhail A

    2015-04-17

    A three-step method for the synthesis of 2-(hetero)aryl-5-(trimethylsilylethynyl)oxazoles is described. Easily accessible bis(trimethylsilyl)acetylene and acrylic acid derivatives are used as starting materials for the preparation of mono- and disubstituted 5-(trimethylsilyl)pent-1-en-4-yn-3-ones. Oxidative phthalimidoaziridination of these enynones provides the key 2-acyl-1-phthalimidoaziridines that are further utilized in the thermal expansion of the three-membered ring to furnish the target functionalizable oxazoles.

  10. Synthesis and biological evaluation of new salvinorin A analogues incorporating natural amino acids.

    PubMed

    Fichna, Jakub; Lewellyn, Kevin; Yan, Feng; Roth, Bryan L; Zjawiony, Jordan K

    2011-01-01

    The synthesis and in vitro evaluation of a new series of salvinorin A analogues substituted at the C(2) position with natural amino acids is reported. Compound 12, containing Val, displayed high affinity and full agonist activity at the kappa-opioid receptor. Analogues with bulky and/or aromatic residues were inactive, showing the importance of size and electronegativity of C(2)-substituents for binding affinity of salvinorin A derivatives.

  11. One-step synthesis of 1-chloro-3-arylacetone derivatives from arylacetic acids.

    PubMed

    Zacuto, Michael J; Dunn, Robert F; Figus, Margaret

    2014-09-19

    A practical one-step method has been developed to prepare α-chloroketones from readily available, inexpensive phenylacetic acid derivatives. The method utilizes the unique reactivity of an intermediate Mg-enolate dianion, which displays selectivity for the carbonyl carbon of chloromethyl carbonyl electrophiles. Decarboxylation of the intermediate occurs spontaneously during the reaction quench. The utility of the reaction products has been demonstrated through the total synthesis of the natural product cimiracemate B.

  12. Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid

    PubMed Central

    Santoro, Federica; Mariani, Matteo; Zaccheria, Federica; Psaro, Rinaldo

    2016-01-01

    The synthesis of thioethers starting from alcohols and thiols in the presence of amorphous solid acid catalysts is reported. A silica alumina catalyst with a very low content in alumina gave excellent results in terms of both activity and selectivity also under solvent-free conditions. The reaction rate follows the electron density of the carbinol atom in the substrate alcohol and yields up to 99% and can be obtained for a wide range of substrates under mild reaction conditions. PMID:28144333

  13. Synthesis and cytotoxicity of A-homo-lactam derivatives of cholic acid and 7-deoxycholic acid.

    PubMed

    Huang, Yanmin; Chen, Sijing; Cui, Jianguo; Gan, Chunfang; Liu, Zhiping; Wei, Yingliang; Song, Huachan

    2011-06-01

    Using cholic acid and deoxycholic acid as starting materials, a series of 3-aza-A-homo-4-one bile acid and 7-deoxycholic acid derivatives were synthesized by the esterification, oxidation, reduction, oximation and Beckman rearrangement etc. The cytotoxicity of the synthesized compounds against MGC 7901 (human ventriculi carcinoma cell line), hela (human cervical carcinoma cell line), SMMC 7404 (human liver carcinoma cell line) were investigated. The results showed that bile acid and 7-deoxycholic-acid derivatives with 3-aza-A-homo-4-one configuration bearing a 6-hydroximino or 12-hydroximino group displayed a distinct cytotoxicity to Hela tumor cell line. In particular, the IC(50) values of the compounds 6 and 13 were 14.3 and 24.3 μmol/L against Hela human tumor cell line respectively. The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs.

  14. Oleic acid coated magnetic nano-particles: Synthesis and characterizations

    SciTech Connect

    Panda, Biswajit Goyal, P. S.

    2015-06-24

    Magnetic nano particles of Fe{sub 3}O{sub 4} coated with oleic acid were synthesized using wet chemical route, which involved co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions. The nano particles were characterized using XRD, TEM, FTIR, TGA and VSM. X-ray diffraction studies showed that nano particles consist of single phase Fe{sub 3}O{sub 4} having inverse spinel structure. The particle size obtained from width of Bragg peak is about 12.6 nm. TEM analysis showed that sizes of nano particles are in range of 6 to 17 nm with a dominant population at 12 - 14 nm. FTIR and TGA analysis showed that -COOH group of oleic acid is bound to the surface of Fe{sub 3}O{sub 4} particles and one has to heat the sample to 278° C to remove the attached molecule from the surface. Further it was seen that Fe{sub 3}O{sub 4} particles exhibit super paramagnetism with a magnetization of about 53 emu/ gm.

  15. Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid

    PubMed Central

    Rabe, Patrick; Klapschinski, Tim A; Brock, Nelson L; Citron, Christian A; D’Alvise, Paul; Gram, Lone

    2014-01-01

    Summary Tropodithietic acid (TDA) is a structurally unique sulfur-containing antibiotic from the Roseobacter clade bacterium Phaeobacter inhibens DSM 17395 and a few other related species. We have synthesised several structural analogues of TDA and used them in bioactivity tests against Staphylococcus aureus and Vibrio anguillarum for a structure–activity relationship (SAR) study, revealing that the sulfur-free analogue of TDA, tropone-2-carboxylic acid, has an antibiotic activity that is even stronger than the bioactivity of the natural product. The synthesis of this compound and of several analogues is presented and the bioactivity of the synthetic compounds is discussed. PMID:25161739

  16. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOEpatents

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  17. Oxidation-resistant acidic resins prepared by partial carbonization as cocatalysts in synthesis of adipic acid.

    PubMed

    Wei, Huijuan; Li, Hongbian; Liu, Yangqing; Jin, Peng; Wang, Xiangyu; Li, Baojun

    2012-08-01

    The oxidation-resistant acidic resins are of great importance for the catalytic oxidation systems. In this paper, the oxidatively stable acidic resins are obtained from the cation ion exchange resins (CIERs) through the thermal treatment in N(2) atmosphere. The structure and properties of the thermally treated CIERs were characterized by chemical analysis, Fourier transform infrared (FT-IR) spectra, acid capacity measurement and scanning electron microscope (SEM). The thermally treated CIERs possess high acid capacity up to 4.09 mmol g(-1). A partial carbonization is observed in the thermal treatment process of CIERs, but the morphology of resin spheres maintains well. The as-prepared CIERs are used as solid acids to assist the hydrogen peroxide oxidation of cyclohexene to adipic acid (ADA) with tungstic acid as the catalyst precursor. The improved yields of ADA in the recycling reaction are obtained in the presence of acidic CIERs. Meanwhile, the unproductive decomposition of H(2)O(2) is effectively suppressed. The high yields of ADA (about 81%) are kept by the thermally treated CIERs even after the fifth cycle. The thermally treated CIERs exhibit excellent acid-catalytic performance and possess remarkable oxidation-resistant capability.

  18. A novel and highly regioselective synthesis of new carbamoylcarboxylic acids from dianhydrides.

    PubMed

    Ochoa-Terán, Adrián; Estrada-Manjarrez, Jesús; Martínez-Quiroz, Marisela; Landey-Álvarez, Marco A; Alcántar Zavala, Eleazar; Pina-Luis, Georgina; Santacruz Ortega, Hisila; Gómez-Pineda, Luis Enrique; Ramírez, José-Zeferino; Chávez, Daniel; Montes Ávila, Julio; Labastida-Galván, Victoria; Ordoñez, Mario

    2014-01-01

    A regioselective synthesis has been developed for the preparation of a series of N,N'-disubstituted 4,4'-carbonylbis(carbamoylbenzoic) acids and N,N'-disubstituted bis(carbamoyl) terephthalic acids by treatment of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (1) and 1,2,4,5-benzenetetracarboxylic dianhydride (2) with arylalkyl primary amines (A-N). The carbamoylcarboxylic acid derivatives were synthesized with good yield and high purity. The specific reaction conditions were established to obtain carbamoyl and carboxylic acid functionalities over the thermodynamically most favored imide group. Products derived from both anhydrides 1 and 2 were isolated as pure regioisomeric compounds under innovative experimental conditions. The chemo- and regioselectivity of products derived from dianhydrides were determined by NMR spectroscopy and confirmed by density functional theory (DFT). All products were characterized by NMR, FTIR, and MS.

  19. A Novel and Highly Regioselective Synthesis of New Carbamoylcarboxylic Acids from Dianhydrides

    PubMed Central

    Ochoa-Terán, Adrián; Estrada-Manjarrez, Jesús; Martínez-Quiroz, Marisela; Landey-Álvarez, Marco A.; Alcántar Zavala, Eleazar; Pina-Luis, Georgina; Santacruz Ortega, Hisila; Gómez-Pineda, Luis Enrique; Ramírez, José-Zeferino; Chávez, Daniel; Montes Ávila, Julio; Labastida-Galván, Victoria; Ordoñez, Mario

    2014-01-01

    A regioselective synthesis has been developed for the preparation of a series of N,N′-disubstituted 4,4′-carbonylbis(carbamoylbenzoic) acids and N,N′-disubstituted bis(carbamoyl) terephthalic acids by treatment of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (1) and 1,2,4,5-benzenetetracarboxylic dianhydride (2) with arylalkyl primary amines (A-N). The carbamoylcarboxylic acid derivatives were synthesized with good yield and high purity. The specific reaction conditions were established to obtain carbamoyl and carboxylic acid functionalities over the thermodynamically most favored imide group. Products derived from both anhydrides 1 and 2 were isolated as pure regioisomeric compounds under innovative experimental conditions. The chemo- and regioselectivity of products derived from dianhydrides were determined by NMR spectroscopy and confirmed by density functional theory (DFT). All products were characterized by NMR, FTIR, and MS. PMID:24511299

  20. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy

    PubMed Central

    Munger, Joshua; Bennett, Bryson D; Parikh, Anuraag; Feng, Xiao-Jiang; McArdle, Jessica; Rabitz, Herschel A; Shenk, Thomas; Rabinowitz, Joshua D

    2010-01-01

    Viruses rely on the metabolic network of their cellular hosts to provide energy and building blocks for viral replication. We developed a flux measurement approach based on liquid chromatography–tandem mass spectrometry to quantify changes in metabolic activity induced by human cytomegalovirus (HCMV). This approach reliably elucidated fluxes in cultured mammalian cells by monitoring metabolome labeling kinetics after feeding cells 13C-labeled forms of glucose and glutamine. Infection with HCMV markedly upregulated flux through much of the central carbon metabolism, including glycolysis. Particularly notable increases occurred in flux through the tricarboxylic acid cycle and its efflux to the fatty acid biosynthesis pathway. Pharmacological inhibition of fatty acid biosynthesis suppressed the replication of both HCMV and influenza A, another enveloped virus. These results show that fatty acid synthesis is essential for the replication of two divergent enveloped viruses and that systems-level metabolic flux profiling can identify metabolic targets for antiviral therapy. PMID:18820684

  1. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.

    PubMed

    Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij

    2016-08-01

    The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).

  2. Acid synthesis of luminescent amine-functionalized or erbium-doped silica spheres for biological applications.

    PubMed

    Enrichi, Francesco; Trave, Enrico; Bersani, Marco

    2008-03-01

    In this work we discuss and investigate the morphological and optical properties of luminescent silica spheres which can have interesting applications in bioimaging and biosensing. The spheres are synthesized following an acid route by the hydrolysis and condensation of tetraethylortosilicate (TEOS) and can be functionalized by incorporation of aminopropyl-triethoxysilane (APTES) during the synthesis, inducing a significant luminescence that can be attributed to a recombination mechanism from localized organic defects related to -NH(2) groups. It is shown that the acid synthesis route produces very regular spherical particles, but their diameter vary in the range of 200-4,000 nm. The luminescence properties have been investigated and optimized by variation of the annealing temperature for the functionalized spheres, obtaining the most efficient PL emission after a thermal treatment of 1 h at 600 degrees C in air. Moreover, the possibility to introduce rare earths like erbium in the spheres was also studied and the corresponding Er(3) luminescence emission at 1.53 microm is reported in terms of intensity and lifetime, pointing out that erbium can be easily and efficiently incorporated during the acid synthesis giving high PL intensity with a good lifetime of 3.9 ms.

  3. In vitro synthesis of the unit that links teichoic acid to peptidoglycan.

    PubMed

    Hancock, I; Baddiley, J

    1976-03-01

    The role of cytidine diphosphate (CDP)-glycerol in gram-positive bacteria whose walls lack poly(glycerol phosphate) was investigated. Membrane preparations from Staphylococcus aureus H, Bacillus subtilis W23, and Micrococcus sp. 2102 catalyzed the incorporation of glycerol phosphate residues from radioactive CDP-glycerol into a water-soluble polymer. In toluenized cells of Micrococcus sp. 2102, some of this product became linked to the wall. In each case, maximum incorporation of glycerol phosphate residues required the presence of the nucleotide precursors of wall teichoic acid and of uridine diphosphate-N-acetylglucosamine. In membrane preparations capable of synthesizing peptidoglycan, vancomycin caused a decrease in the incorporation of isotope from CDP-glycerol into polymer. Synthesis of the poly (glycerol phosphate) unit thus depended at an early stage on the concomitant synthesis of wall teichoic acid and later on the synthesis of peptidoglycan. It is concluded that CDP-glycerol is the biosynthetic precursor of the tri(glycerol phosphate) linkage unit between teichoic acid and peptidoglycan that has recently been characterized in S. aureus H.

  4. Δ(9)-Tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannabinoids.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2015-10-10

    Δ(9)-Tetrahydrocannabinol (THC) is of increasing interest as a pharmaceutical and bioactive compound. Chemical synthesis of THC uses a laborious procedure and does not satisfy the market demand. The implementation of biocatalysts for specific synthesis steps might be beneficial for making natural product availability independent from the plant. Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from C. sativa L. catalyzes the cyclization of cannabigerolic acid (CBGA) to Δ(9)-tetrahydrocannabinolic acid (THCA), which is non-enzymatically decarboxylated to THC. We report the preparation of THCAS in amounts sufficient for the biocatalytic production of THC(A). Active THCAS was most efficiently obtained from Pichia pastoris. THCAS was produced on a 2L bioreactor scale and the enzyme was isolated by single-step chromatography with a specific activity of 73Ug(-1)total protein. An organic/aqueous two-liquid phase setup for continuous substrate delivery facilitated in situ product removal. In addition, THCAS activity in aqueous environments lasted for only 20min whereas the presence of hexane stabilized the activity over 3h. In conclusion, production of THCAS in P. pastoris Mut(S) KM71 KE1, subsequent isolation, and its application in a two-liquid phase setup enables the synthesis of THCA on a mg scale.

  5. Novel sol-gel synthesis of acidic MgF(2-x)(OH)(x) materials.

    PubMed

    Wuttke, Stefan; Coman, Simona M; Scholz, Gudrun; Kirmse, Holm; Vimont, Alexandré; Daturi, Maro; Schroeder, Sven L M; Kemnitz, Erhard

    2008-01-01

    Novel magnesium fluorides have been prepared by a new fluorolytic sol-gel synthesis for fluoride materials based on aqueous HF. By changing the amount of water at constant stoichiometric amount of HF, it is possible to tune the surface acidity of the resulting partly hydroxylated magnesium fluorides. These materials possess medium-strength Lewis acid sites and, by increasing the amount of water, Brønsted acid sites as well. Magnesium hydroxyl groups normally have a basic nature and only with this new synthetic route is it possible to create Brønsted acidic magnesium hydroxyl groups. XRD, MAS NMR, TEM, thermal analysis, and elemental analysis have been applied to study the structure, composition, and thermal behaviour of the bulk materials. XPS measurements, FTIR with probe molecules, and the determination of N(2)/Ar adsorption-desorption isotherms have been carried out to investigate the surface properties. Furthermore, activity data have indicated that the tuning of the acidic properties makes these materials versatile catalysts for different classes of reactions, such as the synthesis of (all-rac)-[alpha]-tocopherol through the condensation of 2,3,6-trimethylhydroquinone (TMHQ) with isophytol (IP).

  6. Ionic liquids as novel solvents for the synthesis of sugar fatty acid ester.

    PubMed

    Mai, Ngoc Lan; Ahn, Kihun; Bae, Sang Woo; Shin, Dong Woo; Morya, Vivek Kumar; Koo, Yoon-Mo

    2014-12-01

    Sugar fatty acid esters are bio-surfactants known for their non-toxic, non-ionic, and high biodegradability . With great emulsifying and conditioning effects, sugar fatty acids are widely used in the food, pharmaceutical, and cosmetic industries. Biosynthesis of sugar fatty acid esters has attracted growing attention in recent decades. In this study, the enzymatic synthesis of sugar fatty acid esters in ionic liquids was developed, optimized, and scaled up. Reaction parameters affecting the conversion yield of lipase-catalyzed synthesis of glucose laurate from glucose and vinyl laurate (i.e. temperature, vinyl laurate/glucose molar ratio, and enzyme loads) were optimized by response surface methodology (RSM). In addition, production was scaled up to 2.5 L, and recycling of enzyme and ionic liquids was investigated. The results showed that under optimal reaction conditions (66.86 °C, vinyl laurate/glucose molar ratio of 7.63, enzyme load of 73.33 g/L), an experimental conversion yield of 96.4% was obtained which is close to the optimal value predicted by RSM (97.16%). A similar conversion yield was maintained when the reaction was carried out at 2.5 L. Moreover, the enzymes and ionic liquids could be recycled and reused effectively for up to 10 cycles. The results indicate the feasibility of ionic liquids as novel solvents for the biosynthesis of sugar fatty acid esters.

  7. Relationships between pyruvate decarboxylation and branched-chain volatile acid synthesis in Ascaris mitochondria.

    PubMed

    Komuniecki, R; Komuniecki, P R; Saz, H J

    1981-10-01

    The rate of 14CO2 evolution from 1-[14C]pyruvate by intact Ascaris mitochondria was very slow, but increased with increasing concentrations of pyruvate. At all concentrations of pyruvate, in an aerobic environment, pyruvate decarboxylation was stimulated greatly by the addition of fumarate, malate, or succinate. However, under anaerobic conditions, only malate and fumarate stimulated pyruvate decarboxylation; succinate had no effect. This implies that the aerobic metabolism of succinate, presumably to other dicarboxylic acids, may be required for the stimulation. Incubation of sonicated mitochondria with pyruvate plus fumarate, under rate-limiting concentrations of NAD+, resulted in approximately equal quantities of pyruvate utilized and succinate formed, suggesting that pyruvate oxidation and fumarate reduction may be linked. Branched-chain, volatile fatty acids were not formed during incubations with either malate or succinate, or succinate plus acetate. However, incubations of intact Ascaris mitochondria with pyruvate plus succinate yielded 2-methylbutyrate and 2-methylvalerate, whereas incubations with pyruvate plus propionate yielded almost exclusively 2-methylvalerate. Oxygen dramatically inhibited the synthesis of the branched-chain acids from succinate plus pyruvate, attesting to the apparent anaerobic nature of Ascaris mitochondrial metabolism. Significantly, the addition of glucose plus ADP stimulated the formation of all volatile fatty acids. Therefore, the synthesis of branched-chain acids may be related directly to increased energy generation. Alternatively, they may function in the regulatory role of maintaining the mitochondrial redox balance.

  8. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M. S. A.

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20-30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications.

  9. Synthesis of side chain N,N'-diaminoalkylated derivatives of basic amino acids for application in solid-phase peptide synthesis.

    PubMed

    Pitteloud, Jean-Philippe; Bionda, Nina; Cudic, Predrag

    2013-01-01

    Despite the enormous therapeutic potential, the clinical use of peptides has been limited by their poor bioavailability and low stability under physiological conditions. Hence, efforts have been undertaken to alter peptide structure in ways to improve their pharmacological properties. Inspired by the importance of basic amino acids in biological systems and the remarkable versatility displayed by lysine during the synthesis of complex peptide scaffolds, this chapter describes a simple procedure that enables rapid access to protected N,N'-diaminoalkylated basic amino acid building blocks suitable for standard solid-phase peptide synthesis. This procedure allows preparation of symmetrical, as well as unsymmetrical, dialkylated amino acid derivatives that can be further modified, enhancing their synthetic utility. The suitability of the synthesized branched basic amino acid building blocks for use in standard solid-phase peptide synthesis has been demonstrated by synthesis of an indolicidin analog in which the lysine residue was substituted with its synthetic polyamino derivate. The substitution provided indolicidin analog with increase net positive charge, more ordered secondary structure in biological membranes mimicking conditions, and enhanced antibacterial activity without altering hemolytic activity. Taking into consideration the increasing interest for peptides with unusual structural features due to their improved biological properties, the described synthesis of polyfunctional amino acid building blocks is of particular practical value.

  10. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  11. Synthesis and characterization of agricultural controllable humic acid superabsorbent.

    PubMed

    Gao, Lijuan; Wang, Shiqiang; Zhao, Xuefei

    2013-12-01

    Humic acid superabsorbent polymer (P(AA/AM-HA)) and superabsorbent polymer (P(AA/AM)) were synthesized by aqueous solution polymerization method using acrylic acid (AA), acrylamide (AM) and humic acid (HA) as raw material. The effects of N,N'-methylenebisacrylamide (MBA) crosslinking agent, potassium peroxydisulfate (KPS) initiator, reaction temperature, HA content, ratio of AA to AM, concentration of monomer and neutralization of AA on water absorption were investigated. Absorption and desorption ratios of nitrogen fertilizer and phosphate fertilizer were also investigated by determination of absorption and desorption ratio of NH4(+), PO4(3-) on P(AA/AM-HA) and P(AA/AM). The P(AA/AM-HA) and P(AA/AM) were characterized by Fourier translation infrared spectroscopy, biological photomicroscope and scanning electron microscopy (SEM). The optimal conditions obtained were as follows: the weight ratio of MBA to AA and AM was 0.003; the weight ratio of KPS to AA and AM was 0.008; the weight ratio of HA to AA was 0.1; the mole ratio of AM to AA is 0.1; the mole ratio of NaOH to AA is 0.9; the reaction temperature was 60°C. P(AA/AM-HA) synthesized under optimal conditions, has a good saline tolerance, its water absorbency in distilled water and 0.9 wt.% saline solution is 1180 g/g and 110 g/g, respectively. P(AA/AM-HA) achieves half saturation in 6.5 min. P(AA/AM-HA) is superior to P(AA/AM) on absorption of NH4(+), PO4(3-). The SEM micrograph of P(AA/AM-HA) shows a fine alveolate structure. The biological optical microscope micrograph of P(AA/AM-HA) shows a network structure. Graft polymerization between P(AA/AM) and HA was demonstrated by infrared spectrum. The P(AA/AM-HA) superabsorbent has better absorbing ability of water and fertilizer, electrolytic tolerance and fewer cost than P(AA/AM) superabsorbent.

  12. Effects of Abscisic Acid and Ethylene on the Gibberellic Acid-Induced Synthesis of α-Amylase by Isolated Wheat Aleurone Layers 1

    PubMed Central

    Varty, Keith; Arreguín, Barbarín L.; Gómez, Miguel T.; López, Pablo Jaime T.; Gómez, Miguel Angel L.

    1983-01-01

    Gibberellic acid-induced α-amylase synthesis in wheat aleurone layers (Triticum aestivum L. var Potam S-70) escaped from transcriptional control 30 h after addition of the hormone, as evidenced by the tissue's loss of susceptibility to cordycepin. Abscisic acid inhibited the accumulation of α-amylase activity when added to the tissue during this cordycepin-insensitive phase of enzyme induction. α-Amylase synthesis was not restored by the addition of cordycepin, indicating that the response to abscisic acid was not dependent upon the continuous synthesis of a short lived RNA. When ethylene was added simultaneously or some time after abscisic acid, the accumulation of α-amylase activity was sustained or quickly restored. The loss of susceptibility to cordycepin was completely prevented when aleurone layers were incubated with a combination of gibberellic and abscisic acids from the start of the induction period. This effect of abscisic acid was not reversed by ethylene. On the basis of these observations, it is suggested that abscisic acid inhibits both the transcription and translation of α-amylase mRNA, and that only the latter site of action is susceptible to reversal by ethylene. The rate of incorporation of [methyl-14C]choline into phospholipids was also inhibited by abscisic acid. Ethylene reversed this effect. The effects of abscisic acid and ethylene on phospholipid synthesis were not dependent upon the presence of gibberellic acid. No direct relationship was found between the control of α-amylase synthesis and membrane formation by abscisic acid and ethylene. PMID:16663284

  13. The Synthesis and Isolation of N-Tert-Butyl-2-Phenylsuccinamic Acid and N-Tert-Butyl-3-Phenylsuccinamic Acid: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Cesare, Victor; Sadarangani, Ishwar; Rollins, Janet; Costello, Dennis

    2004-01-01

    The facile, high yielding synthesis of phenylsuccinamic acids is described and one of these syntheses, the reaction of phenylsuccinic anhydride with tert-butylamine, is successfully modified and adapted for use in the second-semester organic chemistry laboratory at St. John's University. Succinamic acids are compounds that contain both the amide…

  14. Differential modulation of citrate synthesis and release by fatty acids in perfused working rat hearts.

    PubMed

    Vincent, Genevieve; Bouchard, Bertrand; Khairallah, Maya; Des Rosiers, Christine

    2004-01-01

    The objective of this study was to test the effect of increasing fatty acid concentrations on substrate fluxes through pathways leading to citrate synthesis and release in the heart. This was accomplished using semirecirculating work-performing rat hearts perfused with substrate mixtures mimicking the in situ milieu (5.5 mM glucose, 8 nM insulin, 1 mM lactate, 0.2 mM pyruvate, and 0.4 mM oleate-albumin) and 13C methods. Raising the fatty acid concentration from 0.4 to 1 mM with long-chain oleate or medium-chain octanoate resulted in a lowering ( approximately 20%) of cardiac output and efficiency with unaltered O2 consumption. At the metabolic level, beyond the expected effects of high fatty acid levels on the contribution of pyruvate decarboxylation (reduced >3-fold) and beta-oxidation (enhanced approximately 3-fold) to citrate synthesis, there was also a 2.4-fold lowering of anaplerotic pyruvate carboxylation. Despite the dual inhibitory effect of high fatty acids on pyruvate decarboxylation and carboxylation, tissue citrate levels were twofold higher, but citrate release rates remained unchanged at 11-14 nmol/min, representing <0.5% of citric acid cycle flux. A similar trend was observed for most metabolic parameters after oleate or octanoate addition. Together, these results emphasize a differential modulation of anaplerotic pyruvate carboxylation and citrate release in the heart by fatty acids. We interpret the lack of effects of high fatty acid concentrations on citrate release rates as suggesting that, under physiological conditions, this process is maximal, probably limited by the activity of its mitochondrial or plasma membrane transporter. Limited citrate release at high fatty acid concentrations may have important consequences for the heart's fuel metabolism and function.

  15. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  16. Synthesis and biological activity of hydroxylated derivatives of linoleic acid and conjugated linoleic acids.

    PubMed

    Li, Zhen; Tran, Van H; Duke, Rujee K; Ng, Michelle C H; Yang, Depo; Duke, Colin C

    2009-03-01

    Allylic hydroxylated derivatives of the C18 unsaturated fatty acids were prepared from linoleic acid (LA) and conjugated linoleic acids (CLAs). The reaction of LA methyl ester with selenium dioxide (SeO(2)) gave mono-hydroxylated derivatives, 13-hydroxy-9Z,11E-octadecadienoic acid, 13-hydroxy-9E,11E-octadecadienoic acid, 9-hydroxy-10E,12Z-octadecadienoic acid and 9-hydroxy-10E,12E-octadecadienoic acid methyl esters. In contrast, the reaction of CLA methyl ester with SeO(2) gave di-hydroxylated derivatives as novel products including, erythro-12,13-dihydroxy-10E-octadecenoic acid, erythro-11,12-dihydroxy-9E-octadecenoic acid, erythro-10,11-dihydroxy-12E-octadecenoic acid and erythro-9,10-dihydroxy-11E-octadecenoic acid methyl esters. These products were purified by normal-phase short column vacuum chromatography followed by high-performance liquid chromatography (HPLC). Their chemical structures were characterized by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR). The allylic hydroxylated derivatives of LA and CLA exhibited moderate in vitro cytotoxicity against a panel of human cancer cell lines including chronic myelogenous leukemia K562, myeloma RPMI8226, hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cells (IC(50) 10-75 microM). The allylic hydroxylated derivatives of LA and CLA also showed toxicity to brine shrimp with LD(50) values in the range of 2.30-13.8 microM. However these compounds showed insignificant toxicity to honeybee at doses up to 100 microg/bee.

  17. Synthesis of 11-Thialinoleic Acid and 14-Thialinoleic Acid, Inhibitors of Soybean and Human Lipoxygenases

    PubMed Central

    Jacquot, Cyril; McGinley, Chris M.; Plata, Erik; Holman, Theodore R.

    2010-01-01

    Lipoxygenases catalyse the oxidation of polyunsaturated fatty acids and have been invoked in many diseases including cancer, atherosclerosis and Alzheimer’s disease. Currently, no X-ray structures are available with substrate or substrate analogues bound in a productive conformation. Such structures would be very useful for examining interactions between substrate and active site residues. Reported here are the syntheses of linoleic acid analogues containing a sulphur atom at the 11 or 14 positions. The key steps in the syntheses were the incorporation of sulphur using nucleophilic attack of metallated alkynes on electrophilic sulphur compounds and the subsequent stereospecific tantalum-mediated reduction of the alkynylsulphide to the cis-alkenylsulphide. Kinetic assays performed with soybean lipoxygenase-1 showed that both 11-thialinoleic acid and 14-thialinoleic acid were competitive inhibitors with respect to linoleic acid with Ki values of 22 and 35 µM, respectively. On the other hand, 11-thialinoleic acid was a noncompetitive inhibitor with respect to arachidonic acid with Kis and Kii values of 48 and 36 µM, respectively. 11-Thialinoleic acid was also a noncompetitive inhibitor of human 15-lipoxygenase-1 with arachidonic acid (Kis = 11.4 µM, Kii = 18.1 µM) or linoleic acid as substrate (Kis = 20.1 µM, Kii = 20.0 µM), and a competitive inhibitor of human 12-lipoxygenase with arachidonic acid as substrate (Ki = 2.5 µM). The presence of inhibitor did not change the regioselectivity of soybean lipoxygenase-1, human 12- or 15-lipoxygenase-1. PMID:18972057

  18. Control of the Synthesis of Macromolecules During Amino Acid and Thymine Starvation in Bacillus subtilis

    PubMed Central

    Anraku, Naoyo; Landman, Otto E.

    1968-01-01

    Studies of Maaløe, Lark, and others with amino acid- and thymine-starved cultures revealed successive steps in the biosynthesis of Escherichia coli chromosomes. In this study, the corresponding mechanisms in Bacillus subtilis 168 were examined. Using a strain requiring both thymine and tryptophan, we found that, 3 hr after the start of amino acid starvation, when the deoxyribonucleic acid (DNA) content of the culture had increased 40 to 50%, DNA synthesis ceased. After 4 to 5 hr, 100% of the cells were immune to thymineless death; their chromosomes had presumably been completed. Immune cultures slowly incorporated 3H-thymine. Thymine incorporation increased 20-fold 30 min after readdition of amino acids, indicating reinitiation of chromosome synthesis. Simultaneous presence of amino acids and thymine was required for reinitiation. If 5-bromouracil (5-BU) was added instead of thymine, newly replicated DNA segments could be separated by centrifugation in CsCl. Analysis of the CsCl fractions by a transformation assay showed that the order in which the markers were synthesized was ade-16, thr-5, leu-8, metB5. Less than half the chromosomes started resynthesis synchronously in 5-BU. Nevertheless, chromosome alignment in the amino acid-starved culture is probably very good: marker frequency analysis of its DNA gives the same normalized frequencies as DNA from “perfectly” aligned spores. Full viability is maintained in the chromosome-arrested culture for 10 hr in thymine-free medium in the absence or presence of amino acids. In the latter condition, protein synthesis proceeds, and the cells filament and become more lysozyme-sensitive. Such cells must be incubated and plated on hypertonic or on slow-growth media; otherwise, they undergo “quasiosmotic” thymineless death. This death is thus apparently not directly attributable to any damage of chromosomal DNA. Further, weakening of the teichoic acid portion of the cell wall is not involved, since 32P incorporation

  19. Synthesis and cytotoxic evaluation of novel paraconic acid analogs.

    PubMed

    Le Floch, Camille; Le Gall, Erwan; Léonel, Eric; Martens, Thierry; Cresteil, Thierry

    2011-12-01

    A novel class of 2,3-tri- and tetrasubstituted γ-butyrolactones analogous to paraconic acids has been synthesized in one step using a straightforward three-component reaction among aryl bromides, dimethyl itaconate and carbonyl compounds. The in vitro cytotoxic activity of representative compounds has been evaluated against a panel of human cancer cell lines (KB, HCT116, MCF7, HL60). While most molecules exhibit a low to moderate background activity on both KB and HL60 cancer cell lines, one compound shows increased antiproliferative activities against both cell lines with IC(50) values in the 10(-7)-10(-6)mol/L range. An extended evaluation indicated that this compound also inhibits PC3, SK-OV3, MCF7R and HL60R cell growth in the same fashion.

  20. Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Gautam, Deepti; Anjum, Sadiya; Saxena, Shalini; Kapil, Arti

    2013-11-01

    Nanosilver nanohydrogels (nSnH) of poly(methacrylic acid) were synthesized and stabilized using gamma irradiation. The main objective of this study was to develop silver nanoparticles and to evaluate the antimicrobial activity. Radiation helps in the polymerization, crosslinking and reduction of silver nitrate as well. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel network by water in oil nanoemulsion polymerization and were evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) respectively. TEM showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network. The mean size of silver nanoparticles ranging is 10-50 nm. The nanohydrogels showed good swelling in water. Antibacterial studies of nSnH suggest that it can be a good candidate as coating material in biomedical applications.

  1. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.

  2. Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes

    NASA Astrophysics Data System (ADS)

    Iwane, Yoshihiko; Hitomi, Azusa; Murakami, Hiroshi; Katoh, Takayuki; Goto, Yuki; Suga, Hiroaki

    2016-04-01

    In ribosomal polypeptide synthesis the library of amino acid building blocks is limited by the manner in which codons are used. Of the proteinogenic amino acids, 18 are coded for by multiple codons and therefore many of the 61 sense codons can be considered redundant. Here we report a method to reduce the redundancy of codons by artificially dividing codon boxes to create vacant codons that can then be reassigned to non-proteinogenic amino acids and thereby expand the library of genetically encoded amino acids. To achieve this, we reconstituted a cell-free translation system with 32 in vitro transcripts of transfer RNASNN (tRNASNN) (S = G or C), assigning the initiator and 20 elongator amino acids. Reassignment of three redundant codons was achieved by replacing redundant tRNASNNs with tRNASNNs pre-charged with non-proteinogenic amino acids. As a demonstration, we expressed a 32-mer linear peptide that consists of 20 proteinogenic and three non-proteinogenic amino acids, and a 14-mer macrocyclic peptide that contains more than four non-proteinogenic amino acids.

  3. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  4. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    SciTech Connect

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  5. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  6. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  7. Synthesis and Physical Properties of Estolide Ester Using Saturated Fatty Acid and Ricinoleic Acid

    PubMed Central

    Salimon, Jumat; Nallathamby, Neeranjini; Salih, Nadia; Abdullah, Bashar Mudhaffar

    2011-01-01

    A study was conveyed to produce estolide ester using ricinoleic acid as the backbone. The ricinoleic acid reacted with saturated fatty acid from C8–C18. These reactions were conducted under vacuum at 60°C for 24 h without solvent. The reaction used acid catalyst, sulphuric acid. The new saturate ricinoleic estolide esters show superior low-temperature properties (−52 ± 0.08°C) and high flash point (>300°C). The yield of the neat estolide esters ranged from 52% to 96%. The viscosity range was 51 ± 0.08 to 86 ± 0.01 cp. These new saturated estolide esters were also compared with saturated branched estolide esters. PMID:22007150

  8. Synthesis and anticarcinogenic activity of 5-fluorouracil-1-acetic acid complexes with rare earths

    SciTech Connect

    Wang Liu-Fang; Yang Zheng-Yin; Peng Zhou-Ren ); Cheng Guo-Quan; Guo Hong-Ying; Sun Al-Li ); Wang QI; He Feng Ying )

    1993-01-01

    Thirteen new solid complexes of 5-fluorouracilacetic acid (FAA) with rare earth metals (RE) have been synthesized. Elemental analysis, IR, UV spectra, TG-DTA, conductance measurements and [sup 1]H NMR spectra have been used to characterise them. The general formula of the complexes is Ln(FAA)[sub 3][center dot]2H[sub 2]O (Ln = La [yields] Yb, Pm not included). The anticarcinogenic activity of La(FAA)[sub 3][center dot]2H[sub 2]O was tested. The results obtained showed that the survival period of mice which had been transplanted with ascites carcinoma (HepA) and then treated with the La complex can be prolonged to 235% of the control but the ligand alone showed little anticarcinogenic activity. Some 42% of EC cancer cell growth can be inhibited by the La complex. the LD[sub 50] is 500 mg kg[sup [minus

  9. Enantiopure synthesis of dihydrobenzo[1,4]-oxazine-3-carboxylic acids and a route to benzoxazinyl oxazolidinones.

    PubMed

    Malhotra, Rajesh; Dey, Tushar K; Basu, Sourav; Hajra, Saumen

    2015-03-21

    A two step protocol is developed for the efficient synthesis of enantiopure N-Boc-dihydrobenzo[b]-1,4-oxazine-3-carboxylic acids 4 from serine derived cyclic sulfamidate via intramolecular arylamination. The RuPhos Palladacycle along with additional RuPhos ligand is found to be an efficient catalyst for the arylamination of β-(2-bromoaryloxy)amino acids 3 to provide easy and direct access to a variety of dihydrobenzo[b]-1,4-oxazine-3-carboxylic acids 4 with complete retention of enantiopurity in moderate to high yields. Dihydrobenzo[b]-1,4-oxazine-3-carboxylic acids are not only important unnatural amino acids, but are key precursors for the synthesis of important compounds such as benzoxazinyl oxazolidinones. A general approach for the synthesis of benzoxazinyl oxazolidinone is presented.

  10. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-10-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application

  11. Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels

    PubMed Central

    Camci-Unal, Gulden; Cuttica, Davide; Annabi, Nasim; Demarchi, Danilo; Khademhosseini, Ali

    2013-01-01

    Biomimetic hybrid hydrogels have generated broad interest in tissue engineering and regenerative medicine. Hyaluronic acid (HA) and gelatin (hydrolyzed collagen) are naturally derived polymers and biodegradable under physiological conditions. Moreover, collagen and HA are major components of the extracellular matrix (ECM) in most of the tissues (e.g. cardiovascular, cartilage, neural). When used as a hybrid material, HA-gelatin hydrogels may enable mimicking the ECM of native tissues. Although HA-gelatin hybrid hydrogels are promising biomimetic substrates, their material properties have not been thoroughly characterized in the literature. Herein, we generated hybrid hydrogels with tunable physical and biological properties by using different concentrations of HA and gelatin. The physical properties of the fabricated hydrogels including swelling ratio, degradation, and mechanical properties were investigated. In addition, in vitro cellular responses in both two and three dimensional (2D and 3D) culture conditions were assessed. It was found that the addition of gelatin methacrylate (GelMA) into HA methacrylate (HAMA) promoted cell spreading in the hybrid hydogels. Moreover, the hybrid hydrogels showed significantly improved mechanical properties compared to their single component analogs. The HAMA-GelMA hydrogels exhibited remarkable tunability behavior and may be useful for cardiovascular tissue engineering applications. PMID:23419055

  12. Template-directed synthesis of oligoguanylic acids - Metal ion catalysis

    NASA Technical Reports Server (NTRS)

    Bridson, P. K.; Fakhrai, H.; Lohrmann, R.; Orgel, L. E.; Van Roode, M.

    1981-01-01

    The effects of Zn(2+), Pb(2+) and other metal ions on the efficiency and stereo-selectivity of the template-directed oligomerization of guanosine 5'-phosphorimidazolide are investigated. Reactions were run in the presence of a polyC template in a 2,6-lutidine buffer, and products analyzed by high-performance liquid chromatography on an RPC-5 column. The presence of the Pb(2+) ion is found to lead to the formation of 2'-5' linked oligomers up to the 40-mer, while Zn(2+) favors the formation of predominantly 3'-5' linked oligomers up to the 35-mer. When amounts of uracil, cytidine or adenosine 5'-phosphorimidazole equal to those of the guanosine derivative are included in the reaction mixture, the incorrect base is incorporated into the oligomer about 10% of the time with a Pb(2+) catalyst, but less than 0.5% of the time with Zn(2+). The Sn(2+), Sb(3+) and Bi(3+) ions are also found to promote the formation of 2'-5' oligomers, although not as effectively as Pb(2+), while no metal ions other than Zn(2+) promote the formation of the 3'-5' oligomers. The results may be important for the understanding of the evolution of nucleic acid replication in the absence of enzymes.

  13. The effects of retinoic acid on immunoglobulin synthesis: Role of interleukin 6

    SciTech Connect

    Ballow, M.; Xiang, Shunan; Wang, Weiping; Brodsky, L. |

    1996-05-01

    Retinoic acid (RA) and its parent compound, retinol (ROH, vitamin A), have been recognized as important immunopotentiating agents. Previous studies from our laboratory have demonstrated that PA can augment formalin-treated Staphylococcus aureus (SAC) stimulated immunoglobulin (Ig) synthesis of cord blood mononuclear cells (CBMC). To determine the mechanism(s) by which RA modulates Ig synthesis, we studied the effects of RA on B cells and cytokine production. The addition of RA (10{sup -5} to 10{sup -10} M) to Epstein-Barr virus (EBV)-transformed B-cell clones derived from either adult or cord blood B cells augmented Ig secretion twofold. In contrast, cell proliferation was inhibited as measured by {sup 3}H-thymidine incorporation. We evaluated two cytokines known to be constitutively produced by EBV cell lines, IL-1 and IL-6. While RA had no effect on IL-1 production, IL-6 synthesis was greatly enhanced (20- to 45-fold), which was also reflected by an increase in steady-state mRNA levels for IL-6 but not TNF-{alpha} or TGF-{beta} on Northern blot analysis. Polyclonal rabbit anti-IL-6 antibodies were used to block the augmenting effects of RA on Ig synthesis of adenoidal B cells. RA-induced augmentation in IgG and IgA synthesis was blocked 58 and 29%, respectively, by anti-IL-6 antibodies. These studies suggest that the enhancing effects of RA on Ig synthesis are mediated, at least in part, by the autocrine or paracrine effects of IL-6 on B-cell differentiation. 37 refs., 5 figs.

  14. Synthesis of tricyclic indole-2-carboxylic [correction of caboxylic] acids as potent NMDA-glycine antagonists.

    PubMed

    Katayama, S; Ae, N; Nagata, R

    2001-05-18

    The practical synthesis of a series of tricyclic indole-2-carboxylic acids, 7-chloro-3-arylaminocarbonylmethyl-1,3,4,5-tetrahydrobenz[cd]indole-2-carboxylic acids, as a new class of potent NMDA-glycine antagonists is described. The synthetic route to the key intermediate 12a comprises a regioselective iodination of 4-chloro-2-nitrotoluene, modified Reissert indole synthesis, Jeffery's Heck-type reaction with allyl alcohol, Wittig-Horner-Emmons reaction, and iodination at the indole C-3 position. The key step in the route is an intramolecular cyclization of 12a to give the tricyclic indole structure. Two methods of cyclization, (1) an intramolecular radical cyclization of 12a and (2) a sequence of intramolecular Heck reaction of 12a followed by a 1,4-reduction, were performed. The resulting tricyclic indole diester 13a was selectively hydrolyzed to afford the desired tricyclic indole monocarboxylic acid 16 on a multihundred gram scale without any chromatographic purifications. Optical resolution of 16 to (-)-isomer 17 and (+)-isomer 18 was carried out, and the resulting isomers were derivatized, respectively. Evaluation of the optically active derivatives for affinity to the NMDA-glycine binding site using the radio ligand binding assay with [(3)H]-5,7-dichlorokynurenic acid revealed that the derivatives of (-)-isomer 17 were more potent than the others and that especially substituted anilide (-)-isomer 24 (K(i) = 0.8 nM) showed high affinity.

  15. Downregulation of de Novo Fatty Acid Synthesis in Subcutaneous Adipose Tissue of Moderately Obese Women.

    PubMed

    Guiu-Jurado, Esther; Auguet, Teresa; Berlanga, Alba; Aragonès, Gemma; Aguilar, Carmen; Sabench, Fàtima; Armengol, Sandra; Porras, José Antonio; Martí, Andreu; Jorba, Rosa; Hernández, Mercè; del Castillo, Daniel; Richart, Cristóbal

    2015-12-16

    The purpose of this work was to evaluate the expression of fatty acid metabolism-related genes in human adipose tissue from moderately obese women. We used qRT-PCR and Western Blot to analyze visceral (VAT) and subcutaneous (SAT) adipose tissue mRNA expression involved in de novo fatty acid synthesis (ACC1, FAS), fatty acid oxidation (PPARα, PPARδ) and inflammation (IL6, TNFα), in normal weight control women (BMI < 25 kg/m², n = 35) and moderately obese women (BMI 30-38 kg/m², n = 55). In SAT, ACC1, FAS and PPARα mRNA expression were significantly decreased in moderately obese women compared to controls. The downregulation reported in SAT was more pronounced when BMI increased. In VAT, lipogenic-related genes and PPARα were similar in both groups. Only PPARδ gene expression was significantly increased in moderately obese women. As far as inflammation is concerned, TNFα and IL6 were significantly increased in moderate obesity in both tissues. Our results indicate that there is a progressive downregulation in lipogenesis in SAT as BMI increases, which suggests that SAT decreases the synthesis of fatty acid de novo during the development of obesity, whereas in VAT lipogenesis remains active regardless of the degree of obesity.

  16. Steroselective synthesis and application of L-( sup 15 N) amino acids

    SciTech Connect

    Unkefer, C.J. ); Lodwig, S.N. . Div. of Science)

    1991-01-01

    We have developed two general approaches to the stereoselective synthesis of {sup 15}N- and {sup 13}C-labeled amino acids. First, labeled serine, biosynthesized using the methylotrophic bacterium M. extorquens AM1, serves as a chiral precursor for the synthesis of other amino acids. For example, pyridoxal phosphate enzymes can be used for the conversion of L-({alpha}-{sup 15}N)serine to L-({alpha}-{sup 15}N)tyrosine, L-({alpha}-{sup 15}N)tryptophan, and L-({alpha}-{sup 15}N)cysteine. In the second approach, developed by Oppolzer and Tamura, an electrophilic amination'' reagent, 1-chloro-1-nitrosocyclohexane, was used to convert chiral enolates into L-{alpha}-amino acids. We prepared 1-chloro-1-({sup 15}N) nitrosocyclohexane and used it to aminate chiral enolates to produce L-({alpha}-{sup 15}N)amino acids. The stereoselectivity of this scheme using the Oppolzer sultam chiral auxiliary is remarkable, producing enantiomer ratios of 200 to 1. 22 refs., 4 figs.

  17. Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper

    PubMed Central

    Fang, Xianping; Fu, Hong-Fei; Gong, Zhen-Hui; Chai, Wei-Guo

    2016-01-01

    To explore the mechanisms of pepper (Capsicum annuum L.) cytoplasmic male sterility (CMS), we studied the different maturation processes of sterile and fertile pepper anthers. A paraffin section analysis of the sterile anthers indicated an abnormality of the tapetal layer and an over-vacuolization of the cells. The quantitative proteomics results showed that the expression of histidinol dehydrogenase (HDH), dihydroxy-acid dehydratase (DAD), aspartate aminotransferase (ATAAT), cysteine synthase (CS), delta-1-pyrroline-5-carboxylate synthase (P5CS), and glutamate synthetase (GS) in the amino acid synthesis pathway decreased by more than 1.5-fold. Furthermore, the mRNA and protein expression levels of DAD, ATAAT, CS and P5CS showed a 2- to 16-fold increase in the maintainer line anthers. We also found that most of the amino acid content levels decreased to varying degrees during the anther tapetum period of the sterile line, whereas these levels increased in the maintainer line. The results of our study indicate that during pepper anther development, changes in amino acid synthesis are significant and accompany abnormal tapetum maturity, which is most likely an important cause of male sterility in pepper. PMID:26987793

  18. Synthesis of fluorescent D-amino acids (FDAAs) and their use for probing peptidoglycan synthesis and bacterial growth in situ

    PubMed Central

    Kuru, Erkin; Tekkam, Srinivas; Hall, Edward

    2015-01-01

    Fluorescent D-amino acids (FDAAs) are efficiently incorporated into the peptidoglycan of diverse bacterial species at the sites of active peptidoglycan biosynthesis, allowing specific and covalent probing of bacterial growth with minimal perturbation. Here, we provide a protocol for the synthesis of four FDAAs emitting light in blue, green or red and for their use in peptidoglycan labeling of live bacteria. Our modular synthesis protocol gives easy access to a library of different FDAAs made with commercially available fluorophores. FDAAs can be synthesized in a typical chemistry laboratory in 2–3 days. The simple labeling procedure involves addition of the FDAAs to the bacterial sample for the desired labeling duration and stopping further label incorporation by fixation or by washing away excess dye. We discuss several scenarios for the use of these labels including short or long labeling durations, and the combination of different labels in pure culture or complex environmental samples. Depending on the experiment, FDAA labeling can take as little as 30 s for a rapidly growing species such as Escherichia coli. PMID:25474031

  19. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes

    PubMed Central

    Stoney, Patrick N.; Helfer, Gisela; Rodrigues, Diana; Morgan, Peter J.

    2015-01-01

    Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)‐synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA‐responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1‐expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus. GLIA 2016;64:425–439 PMID:26527258

  20. Synthesis and anticancer activity of novel fluorinated asiatic acid derivatives.

    PubMed

    Gonçalves, Bruno M F; Salvador, Jorge A R; Marín, Silvia; Cascante, Marta

    2016-05-23

    A series of novel fluorinated Asiatic Acid (AA) derivatives were successfully synthesized, tested for their antiproliferative activity against HeLa and HT-29 cell lines, and their structure activity relationships were evaluated. The great majority of fluorinated derivatives showed stronger antiproliferative activity than AA in a concentration dependent manner. The most active compounds have a pentameric A-ring containing an α,β-unsaturated carbonyl group. The compounds with better cytotoxic activity were then evaluated against MCF-7, Jurkat, PC-3, A375, MIA PaCa-2 and BJ cell lines. Derivative 14 proved to be the most active compound among all tested derivatives and its mechanism of action was further investigated in HeLa cell line. The results showed that compound 14 induced cell cycle arrest in G0/G1 stage as a consequence of up-regulation of p21(cip1/waf1) and p27(kip1) and down-regulation of cyclin D3 and Cyclin E. Furthermore, compound 14 was found to induce caspase driven-apoptosis with activation of caspases-8 and caspase-3 and the cleavage of PARP. The cleavage of Bid into t-Bid, the up-regulation of Bax and the down-regulation of Bcl-2 were also observed after treatment of HeLa cells with compound 14. Taken together, these mechanistic studies revealed the involvement of extrinsic and intrinsic pathways in the apoptotic process induced by compound 14. Importantly, the antiproliferative activity of this compound on the non-tumor BJ human fibroblast cell line is weaker than in the tested cancer cell lines. The enhanced potency (between 45 and 90-fold more active than AA in a panel of cancer cell lines) and selectivity of this new AA derivative warrant further preclinical evaluation.