Science.gov

Sample records for acid synthetase fas

  1. A downstream regulatory element located within the coding sequence mediates autoregulated expression of the yeast fatty acid synthase gene FAS2 by the FAS1 gene product.

    PubMed

    Wenz, P; Schwank, S; Hoja, U; Schüller, H J

    2001-11-15

    The fatty acid synthase genes FAS1 and FAS2 of the yeast Saccharomyces cerevisiae are transcriptionally co-regulated by general transcription factors (such as Reb1, Rap1 and Abf1) and by the phospholipid-specific heterodimeric activator Ino2/Ino4, acting via their corresponding upstream binding sites. Here we provide evidence for a positive autoregulatory influence of FAS1 on FAS2 expression. Even with a constant FAS2 copy number, a 10-fold increase of FAS2 transcript amount was observed in the presence of FAS1 in multi-copy, compared to a fas1 null mutant. Surprisingly, the first 66 nt of the FAS2 coding region turned out as necessary and sufficient for FAS1-dependent gene expression. FAS2-lacZ fusion constructs deleted for this region showed high reporter gene expression even in the absence of FAS1, arguing for a negatively-acting downstream repression site (DRS) responsible for FAS1-dependent expression of FAS2. Our data suggest that the FAS1 gene product, in addition to its catalytic function, is also required for the coordinate biosynthetic control of the yeast FAS complex. An excess of uncomplexed Fas1 may be responsible for the deactivation of an FAS2-specific repressor, acting via the DRS. PMID:11713312

  2. Bisphosphonic acids as effective inhibitors of Mycobacterium tuberculosis glutamine synthetase.

    PubMed

    Kosikowska, Paulina; Bochno, Marta; Macegoniuk, Katarzyna; Forlani, Giuseppe; Kafarski, Paweł; Berlicki, Łukasz

    2016-12-01

    Inhibition of glutamine synthetase (GS) is one of the most promising strategies for the discovery of novel drugs against tuberculosis. Forty-three bisphosphonic and bis-H-phosphinic acids of various scaffolds, bearing aromatic substituents, were screened against recombinant GS from Mycobacterium tuberculosis. Most of the studied compounds exhibited activities in micromolar range, with N-(3,5-dichlorophenyl)-2-aminoethylidenebisphoshonic acid, N-(3,5-difluorophenyl)-2-aminoethylidene-bisphoshonic acid and N-(3,4-dichlorophenyl)-1-hydroxy-1,1-ethanebisphosphonic acid showing the highest potency with kinetic parameters similar to the reference compound - L-methionine-S-sulfoximine. Moreover, these inhibitors were found to be much more effective against pathogen enzyme than against the human ortholog. Thus, with the bone-targeting properties of the bisphosphonate compounds in mind, this activity/selectivity profile makes these compounds attractive agents for the treatment of bone tuberculosis.

  3. Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum.

    PubMed

    Irzik, Kristina; van Ooyen, Jan; Gätgens, Jochem; Krumbach, Karin; Bott, Michael; Eggeling, Lothar

    2014-12-20

    Corynebacterium glutamicum, like Mycobacterium tuberculosis, is a member of the Corynebacteriales, which have linear fatty acids and as branched fatty acids the mycolic acids. We identified accD1 and fasA as key genes of fatty acid synthesis, encoding the β-subunit of the acetyl-CoA carboxylase and a type-I fatty acid synthase, respectively, and observed their repression during growth on minimal medium with acetate. We also identified the transcriptional regulator FasR and its binding sites in the 5′ upstream regions of accD1 and fasA. In the present work we establish by co-isolation and gel-mobility shifts oleoyl-CoA and palmitoyl-CoA as effectors of FasR, and show by DNA microarray analysis that in presence of exogeneous fatty acids accD1 and fasA are repressed. These results are evidence that acyl-CoA derivatives derived from extracellular fatty acids interact with FasR to repress the genes of fatty acid synthesis. This model also explains the observed repression of accD1 and fasA during growth on acetate, where apparently the known high intracellular acetyl-CoA concentration during growth on this substrate requires reduced accD1 and fasA expression for fine control of de novo fatty acid synthesis. Consequently, this mechanism ensures that membrane lipid homeostasis is maintained when specific nutrients are available resulting in increased acetyl-CoA concentration, as is the case with acetate, or when fatty acids are directly available from the extracellular environment. However, the genes specific to mycolic acid synthesis, which are in part shared with linear fatty acid synthesis, are not controlled by FasR, which is in agreement with the fact that they can not be supplied from the extracellular environment but that their synthesis fully depends on a constant supply of linear fatty acid chains. PMID:25449109

  4. SOLUBLE HEPATIC δ-AMINOLEVULINIC ACID SYNTHETASE: END-PRODUCT INHIBITION OF THE PARTIALLY PURIFIED ENZYME*

    PubMed Central

    Scholnick, Perry L.; Hammaker, Lydia E.; Marver, Harvey S.

    1969-01-01

    The present study confirms the existence of hepatic δ-aminolevulinic acid synthetase in the cytosol of the liver, suggests that this enzyme may be in transit to the mitochondria, and defines some of the characteristics of the partially purified enzyme. The substrate and cofactor requirements are similar to those of mitochondrial δ-aminolevulinic acid synthetase. Heme strongly inhibits the partially purified enzyme. A number of proteins that bind heme block this inhibition, which explains previous failures to demonstrate heme inhibition in crude systems. End-product inhibition of δ-aminolevulinic acid synthetase in the mitochondria may play an important role in the regulation of heme biosynthesis in eukaryotic cells. PMID:5257968

  5. Leucyl-tRNA synthetase: double duty in amino acid sensing.

    PubMed

    Durán, Raúl V; Hall, Michael N

    2012-08-01

    The cellular response to amino acids is controlled at the molecular level by TORC1. While many of the elements that participate in TORC1 signaling are known, we still have no clear idea how cells sense amino acids. Two recent studies found that leucyl-tRNA synthetase (LRS) is a leucine sensor for TORC1, in both yeast and mammalian cells.

  6. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Small organic ligands.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The usefulness of affinity chromatography for the purification of aminoacyl-tRNA synthetases was explored by using column ligands derived from the corresponding amino acid and aminoalkyladenylate, a non-labile analogue of the aminoacyladenylate reaction intermediate. Four modes of attachment of the aminoalkyladenylate to Sepharose were studied. The interaction between amino acid derivatives and the corresponding aminoacyl-tRNA synthetases is too weak to allow their use as ligands for affinity chromatography. Attachment of the aminoalkyladenylate via the alpha-nitrogen atom of the amino acid or via C-8 of the nucleotide abolishes synthetase binding, and immobilization via the oxidized ribose ring is only marginally useful. However, attachment of the aminoalkyladenylate to the matrix via N-6 of the nucleotide allows strong and specific synthetase binding, and the use of such columns permits the isolation of homogeneous synthetase from crude mixtures. The effect of non-specific adsorption and the utility of pre-columns and of specific substrate elution are investigated and discussed. Images Fig. 4. Fig. 7. PMID:597251

  7. Novel Type II Fatty Acid Biosynthesis (FAS II) Inhibitors as Multistage Antimalarial Agents

    PubMed Central

    Schrader, Florian C.; Glinca, Serghei; Sattler, Julia M.; Dahse, Hans-Martin; Afanador, Gustavo A.; Prigge, Sean T.; Lanzer, Michael; Mueller, Ann-Kristin; Klebe, Gerhard; Schlitzer, Martin

    2013-01-01

    Malaria is a potentially fatal disease caused by Plasmodium parasites and poses a major medical risk in large parts of the world. The development of new, affordable antimalarial drugs is of vital importance as there are increasing reports of resistance to the currently available therapeutics. In addition, most of the current drugs used for chemoprophylaxis merely act on parasites already replicating in the blood. At this point, a patient might already be suffering from the symptoms associated with the disease and could additionally be infectious to an Anopheles mosquito. These insects act as a vector, subsequently spreading the disease to other humans. In order to cure not only malaria but prevent transmission as well, a drug must target both the blood- and pre-erythrocytic liver stages of the parasite. P. falciparum (Pf) enoyl acyl carrier protein (ACP) reductase (ENR) is a key enzyme of plasmodial type II fatty acid biosynthesis (FAS II). It has been shown to be essential for liver-stage development of Plasmodium berghei and is therefore qualified as a target for true causal chemoprophylaxis. Using virtual screening based on two crystal structures of PfENR, we identified a structurally novel class of FAS inhibitors. Subsequent chemical optimization yielded two compounds that are effective against multiple stages of the malaria parasite. These two most promising derivatives were found to inhibit blood-stage parasite growth with IC50 values of 1.7 and 3.0 µm and lead to a more prominent developmental attenuation of liver-stage parasites than the gold-standard drug, primaquine. PMID:23341167

  8. Biosynthesis of Branched-Chain Amino Acids in Schizosaccharomyces pombe: Properties of Acetohydroxy Acid Synthetase1

    PubMed Central

    McDonald, Roderick A.; Satyanarayana, T.; Kaplan, J. G.

    1973-01-01

    The regulatory properties of acetohydroxy acid synthetase (AHAS), the first enzyme in the biosynthetic pathway to valine and the second in the isoleucine pathway, were investigated in the fission yeast Schizosaccharomyces pombe. The enzyme was partially purified from crude extracts by protamine sulfate treatment, ammonium sulfate fractionation, and gel filtration through Sephadex G-25. AHAS from S. pombe is unique in that its activity shows a single peak around pH 6.5; high sensitivity to feedback inhibition by valine at this pH (Ki = 0.1 mM) indicates that the enzyme is involved in valine biosynthesis. Pyruvate saturation kinetics of AHAS extracted from cells grown on glycerol as sole carbon and energy source were normal and hyperbolic. In contrast, the enzyme from glucose-grown cells exhibited sigmoidal saturation kinetics, an effect which disappeared when the synthetase from such cells was partially purified. This phenomenon was shown to be due to competition for pyruvate between AHAS and pyruvate decarboxylase; the latter enzyme is present in large amounts in cells fermenting glucose. Valine inhibition is noncompetitive in nature, and this effector exhibits homotropic cooperative effects; isoleucine is a less-potent inhibitor of AHAS activity. Mercurial treatment reversibly desensitized the enzyme to valine inhibition. On the basis of these data, the S. pombe AHAS appears to be an allosteric regulatory enzyme with the properties of a negative V system. PMID:4698210

  9. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  10. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  11. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  12. [Inhibition of glutamine synthetase activity by biologically active derivatives of glutamic acid].

    PubMed

    Firsova, N A; Selivanova, K M; Alekseeva, L V; Evstigneeva, Z G

    1986-05-01

    The inhibition of activity of glutamine synthetase from Chlorella and porcine brain by 4-hydroxy-D-4-fluoro-D,L- and 4-amino-D,L-glutamic acids diastereoisomers was studied. Each compound was shown to exert the same inhibiting effect on glutamine synthetase from both sources. In case of threo-4-hydroxy-D-glutamic acid the inhibition of the Chlorella enzyme was of a competitive and of a completely mixed type. The enzyme inhibition by 4-fluoro-D, L-glutamic acids seemed to be of a completely non-competitive type. The Ki values for all inhibition reactions were determined. A comparison of biochemical parameters and biological activity revealed that the most effective inhibitors of the enzyme exert a most potent antitumour and antiviral action.

  13. Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-[gamma]-linolenic acid

    SciTech Connect

    Zhang, Wei; Chakravarty, Bornali; Zheng, Fei; Gu, Ziwei; Wu, Hongmei; Mao, Jianqiang; Wakil, Salih J.; Quiocho, Florante A.

    2012-05-29

    Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the crystal structure of the hFAS TE domain covalently modified and inactivated by methyl {gamma}-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated {gamma}-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an {alpha} helix (the 'helix flap'). We then found inhibition of the TE domain activity by the PUFA dihomo-{gamma}-linolenic acid; {gamma}- and {alpha}-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-{gamma}-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.

  14. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation.

    PubMed

    Mayr, Johannes A; Zimmermann, Franz A; Fauth, Christine; Bergheim, Christa; Meierhofer, David; Radmayr, Doris; Zschocke, Johannes; Koch, Johannes; Sperl, Wolfgang

    2011-12-01

    Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins.

  15. Mechanisms of cancer chemoprevention by hop bitter acids (beer aroma) through induction of apoptosis mediated by Fas and caspase cascades.

    PubMed

    Chen, Wei-Jen; Lin, Jen-Kun

    2004-01-14

    The bitter acids of hops (Humulus lupulus L.) mainly consist of alpha-acids, beta-acids, and their oxidation products that contribute the unique aroma of the beer beverage. Hop bitter acids displayed a strong growth inhibitory effect against human leukemia HL-60 cells, with an estimated IC(50) value of 8.67 microg/mL, but were less effective against human histolytic lymphoma U937 cells. Induction of apoptosis was confirmed in HL-60 cells by DNA fragmentation and the appearance of a sub-G1 DNA peak, which were preceded by dissipation of mitochondrial membrane potential, cytochrome c release, and subsequent induction of pro-caspase-9 and -3 processing. Cleavages of PARP and DFF-45 were accompanied with activation of caspase-9 and -3 triggered by hop bitter acids in HL-60 cells. The change in the expression of Bcl-2, Bcl-X(L), and Bax in response to hop bitter acids was studied, and the Bcl-2 protein level slightly decreased; however, the Bcl-X(L) protein level was obviously decreased, whereas the Bax protein level was dramatically increased, indicating that the control of Bcl-2 family proteins by hop bitter acids might participate in the disruption of mitochondrial integrity. In addition, the results showed that hop bitter acids promoted the up-regulation of Fas and FasL prior to the processing and activation of pro-caspase-8 and cleavage of Bid, suggesting the involvement of a Fas-mediated pathway in hop bitter acids-induced cells. Taken together, these findings suggest that a certain intimate link might exist between receptor- and mitochondria-mediated death signalings that committed to cell death induced by hop bitter acids. The induction of apoptosis by hop bitter acids may offer a pivotal mechanism for their chemopreventive action.

  16. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  17. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice.

    PubMed

    Keller, Benjamin; García-Sevilla, Jesús A

    2015-12-01

    Kainic acid (KA)-induced brain neuronal cell death (especially in the hippocampus) was shown to be mainly mediated by the intrinsic (mitochondrial) apoptotic pathway. This study investigated the regulation of the extrinsic apoptotic pathway mediated by Fas ligand/Fas receptor and components of the indispensable death-inducing signaling complex (DISC) in the hippocampus (marked changes) and cerebral cortex (modest changes) of KA-treated mice. KA (45mg/kg) induced a severe behavioral syndrome with recurrent motor seizures (scores; maximal at 60-90min; minimal at 72h) with activation of hippocampal pro-apoptotic JNK (+2.5 fold) and increased GFAP (+57%) and nuclear PARP-1 fragmentation (+114%) 72h post-treatment (delayed neurotoxicity). In the extrinsic apoptotic pathway (hippocampus), KA (72h) reduced Fas ligand (-92%) and Fas receptor aggregates (-24%). KA (72h) also altered the contents of major DISC components: decreased FADD adaptor (-44%), reduced activation of initiator caspase-8 (-47%) and increased survival FLIP-S (+220%). Notably, KA (72h) upregulated the content of anti-apoptotic p-Ser191 FADD (+41%) and consequently the expression of p-FADD/FADD ratio (+1.9-fold), a neuroplastic index. Moreover, the p-FADD dependent transcription factor NF-κB was also increased (+61%) in the hippocampus after KA (72h). The convergent adaptation of the extrinsic apoptotic machinery 72h after KA in mice (with otherwise normal gross behavior) is a novel finding which suggests the induction of survival mechanisms to partly counteract the delayed neuronal death in the hippocampus.

  18. Regulation of hippocampal Fas receptor and death-inducing signaling complex after kainic acid treatment in mice.

    PubMed

    Keller, Benjamin; García-Sevilla, Jesús A

    2015-12-01

    Kainic acid (KA)-induced brain neuronal cell death (especially in the hippocampus) was shown to be mainly mediated by the intrinsic (mitochondrial) apoptotic pathway. This study investigated the regulation of the extrinsic apoptotic pathway mediated by Fas ligand/Fas receptor and components of the indispensable death-inducing signaling complex (DISC) in the hippocampus (marked changes) and cerebral cortex (modest changes) of KA-treated mice. KA (45mg/kg) induced a severe behavioral syndrome with recurrent motor seizures (scores; maximal at 60-90min; minimal at 72h) with activation of hippocampal pro-apoptotic JNK (+2.5 fold) and increased GFAP (+57%) and nuclear PARP-1 fragmentation (+114%) 72h post-treatment (delayed neurotoxicity). In the extrinsic apoptotic pathway (hippocampus), KA (72h) reduced Fas ligand (-92%) and Fas receptor aggregates (-24%). KA (72h) also altered the contents of major DISC components: decreased FADD adaptor (-44%), reduced activation of initiator caspase-8 (-47%) and increased survival FLIP-S (+220%). Notably, KA (72h) upregulated the content of anti-apoptotic p-Ser191 FADD (+41%) and consequently the expression of p-FADD/FADD ratio (+1.9-fold), a neuroplastic index. Moreover, the p-FADD dependent transcription factor NF-κB was also increased (+61%) in the hippocampus after KA (72h). The convergent adaptation of the extrinsic apoptotic machinery 72h after KA in mice (with otherwise normal gross behavior) is a novel finding which suggests the induction of survival mechanisms to partly counteract the delayed neuronal death in the hippocampus. PMID:26044520

  19. CMP-Sialic Acid Synthetase: The Point of Constriction in the Sialylation Pathway.

    PubMed

    Sellmeier, Melanie; Weinhold, Birgit; Münster-Kühnel, Anja

    2015-01-01

    Sialoglycoconjugates form the outermost layer of animal cells and play a crucial role in cellular communication processes. An essential step in the biosynthesis of sialylated glycoconjugates is the activation of sialic acid to the monophosphate diester CMP-sialic acid. Only the activated sugar is transported into the Golgi apparatus and serves as a substrate for the linkage-specific sialyltransferases. Interference with sugar activation abolishes sialylation and is embryonic lethal in mammals. In this chapter we focus on the enzyme catalyzing the activation of sialic acid, the CMP-sialic acid synthetase (CMAS), and compare the enzymatic properties of CMASs isolated from different species. Information concerning the reaction mechanism and active site architecture is included. Moreover, the unusual nuclear localization of vertebrate CMASs as well as the biotechnological application of bacterial CMAS enzymes is addressed.

  20. Codon usage, amino acid usage, transfer RNA and amino-acyl-tRNA synthetases in Mimiviruses.

    PubMed

    Colson, Philippe; Fournous, Ghislain; Diene, Seydina M; Raoult, Didier

    2013-01-01

    Mimiviruses are giant viruses that infect phagocytic protists, including Acanthamoebae spp., which were discovered during the past decade. They are the current record holder among viruses for their large particle and genome sizes. One group is composed of three lineages, referred to as A, B and C, which include the vast majority of the Mimiviridae members. Cafeteria roenbergensis virus represents a second group, though the Mimiviridae family is still expanding. We analyzed the codon and amino acid usages in mimiviruses, as well as both the transfer RNA (tRNA) and amino acyl-tRNA synthetases. We confirmed that the codon and amino acid usages of these giant viruses are highly dissimilar to those in their amoebal host Acanthamoeba castellanii and are instead correlated with the high adenine and thymine (AT) content of Mimivirus genomes. We further describe that the set of tRNAs and amino acyl-tRNA synthetases in mimiviruses is globally not adapted to the codon and amino acid usages of these viruses. Notwithstanding, Leu(TAA)tRNA, present in several Mimivirus genomes and in multiple copies in some viral genomes, may complement the amoebal tRNA pool and may contribute to accommodate the viral AT-rich codons. In addition, we found that the genes most highly expressed at the beginning of the Mimivirus replicative cycle have a nucleotide content more adapted to the codon usage in A.castellanii.

  1. Affinity chromatography of aminoacyl-transfer ribonucleic acid synthetases. Cognate transfer ribonucleic acid as a ligand.

    PubMed Central

    Clarke, C M; Knowles, J R

    1977-01-01

    The use of tRNA affinity columns for the purification of aminoacyl-tRNA synthetases was investigated. A purification method for valyl-tRNA synthetase from Bacillus stearothermophilus is described that uses two affinity columns, one containing the pure cognate tRNA, and the other containing all tRNA species except the cognate tRNA. A method for the rapid preparation of the two columns was developed, which does not require prior isolation of cognate tRNA but makes use of the ability of the target synthetase to select its cognate tRNA. The usefulness of tRNA columns is compared with that of affinity columns derived from the aminoalkyladenylate reported in the preceding paper [Clarke & Knowles (1977) Biochem J. 167, 405-417]. PMID:23108

  2. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.

    PubMed

    Bhatt, Apoorva; Molle, Virginie; Besra, Gurdyal S; Jacobs, William R; Kremer, Laurent

    2007-06-01

    Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development. PMID:17555433

  3. Cloning and biochemical characterization of indole-3-acetic acid-amino acid synthetase PsGH3 from pea.

    PubMed

    Ostrowski, Maciej; Mierek-Adamska, Agnieszka; Porowińska, Dorota; Goc, Anna; Jakubowska, Anna

    2016-10-01

    Phytohormone conjugation is one of the mechanisms that maintains a proper hormonal homeostasis and that is necessary for the realization of physiological responses. Gretchen Hagen 3 (GH3) acyl acid amido synthetases convert indole-3-acetic acid (IAA) to IAA-amino acid conjugates by ATP-dependent reactions. IAA-aspartate (IAA-Asp) exists as a predominant amide conjugate of auxin in pea tissues and acts as an intermediate during IAA catabolism. Here we report a novel recombinant indole-3-acetic acid-amido synthetase in Pisum sativum. In silico analysis shows that amino acid sequence of PsGH3 has the highest homology to Medicago truncatula GH3.3. The recombinant His-tag-PsGH3 fusion protein has been obtained in E. coli cells and is a soluble monomeric polypeptide with molecular mass of 69.18 kDa. The PsGH3 was purified using Ni(2+)-affinity chromatography and native PAGE. Kinetic analysis indicates that the enzyme strongly prefers IAA and L-aspartate as substrates for conjugation revealing Km(ATP) = 0.49 mM, Km(L-Asp) = 2.2 mM, and Km(IAA) = 0.28 mM. Diadenosine pentaphosphate (Ap5A) competes with ATP for catalytic site and diminishes the PsGH3 affinity toward ATP approximately 1.11-fold indicating Ki = 8.5 μM. L-Tryptophan acts as an inhibitor of IAA-amido synthesizing activity by competition with L-aspartate. Inorganic pyrophosphatase (PPase) hydrolyzing pyrophosphate to two phosphate ions, potentiates IAA-Asp synthetase activity of PsGH3. Our results demonstrate that PsGH3 is a novel enzyme that is involved in auxin metabolism in pea seeds.

  4. Regulation of Synthesis of the Branched-Chain Amino Acids and Cognate Aminoacyl-Transfer Ribonucleic Acid Synthetases of Escherichia coli: a Common Regulatory Element

    PubMed Central

    Jackson, Julius; Williams, L. S.; Umbarger, H. E.

    1974-01-01

    Regulation of isoleucine, valine, and leucine biosynthesis and isoleucyl-, valyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined in two mutant strains of Escherichia coli. One mutant was selected for growth resistance to the isoleucine analogue, ketomycin, and the other was selected for growth resistance to both trifluoroleucine and valine. Control of the synthesis of the branched-chain amino acids by repression was altered in both of these mutants. They also exhibited altered control of formation of isoleucyl-tRNA synthetase (EC 6.1.15, isoleucine:sRNA ligase, AMP), valyl-tRNA synthetase (EC 6.1.1.9, valine:sRNA ligase, AMP), and leucyl-tRNA synthetase (EC 6.1.1.4, leucine:sRNA ligase, AMP). These results suggest the existence of a common element for the control of these two classes of enzymes in Escherichia coli. PMID:4612020

  5. Inhibition of Long Chain Acyl Coenzyme A Synthetases during Fatty Acid Loading Induces Lipotoxicity in Macrophages

    PubMed Central

    Saraswathi, Viswanathan; Hasty, Alyssa H.

    2009-01-01

    OBJECTIVES Obesity is often associated with hypertriglyceridemia and elevated free fatty acids (FFAs) which are independent risk factors for cardiovascular disease and diabetes. While impairment of cholesterol homeostasis is known to induce toxicity in macrophages, the consequence of altered fatty acid homeostasis is not clear. METHODS AND RESULTS Long chain acyl CoA synthetases (ACSLs) play a critical role in fatty acid homeostasis by channeling fatty acids to diverse metabolic pools. We treated mouse peritoneal macrophages (MPMs) with VLDL or FFAs in the presence of triacsin C, an inhibitor of the three ACSL isoforms present in macrophages. Treatment of macrophages with VLDL and triacsin C resulted in reduced TG accumulation but increased intracellular FFA levels which induced lipotoxicity characterized by induction of apoptosis. Treatment of MPMs with the saturated fatty acid stearic acid in the presence of triacsin C increased intracellular stearic acid and induced apoptosis. Stromal vascular cells collected from high fat diet-fed mice displayed foam cell morphology and exhibited increased mRNA levels of macrophage markers and ACSL1. Importantly, all of these changes were associated with increased FFA level in AT. CONCLUSIONS Inhibition of ACSLs during fatty acid loading results in apoptosis via accumulation of FFAs. Our data have implications in understanding the consequences of dysregulated fatty acid metabolism in macrophages. PMID:19679826

  6. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  7. Valproic acid cooperates with hydralazine to augment the susceptibility of human osteosarcoma cells to Fas- and NK cell-mediated cell death.

    PubMed

    Yamanegi, Koji; Yamane, Junko; Kobayashi, Kenta; Kato-Kogoe, Nahoko; Ohyama, Hideki; Nakasho, Keiji; Yamada, Naoko; Hata, Masaki; Fukunaga, Satoru; Futani, Hiroyuki; Okamura, Haruki; Terada, Nobuyuki

    2012-07-01

    We investigated the effects of valproic acid (VPA), a histone deacetylase inhibitor, in combination with hydralazine, a DNA methylation inhibitor, on the expression of cell-surface Fas and MHC-class I-related chain molecules A and B (MICA and B), the ligands of NKG2D which is an activating receptor of NK cells, and on production of their soluble forms in HOS, U-2 OS and SaOS-2 human osteosarcoma cell lines. We also examined the susceptibility of these cells to Fas- and NK cell-mediated cell death. VPA did not increase the expression of Fas on the surface of osteosarcoma cells, while hydralazine did, and the combination of VPA with hydralazine increased the expression of cell-surface Fas. In contrast, the combination of VPA with hydralazine did not increase the production of soluble Fas by osteosarcoma cells. Both VPA and hydralazine increased the expression of cell-surface MICA and B in osteosarcoma cells, and their combination induced a greater increase in their expression. VPA inhibited the production of both soluble MICA and MICB by osteosarcoma cells while hydralazine produced no effect. Both VPA and hydralazine enhanced the susceptibility of osteosarcoma cells to Fas- and NK cell-mediated cell death and the combination of VPA with hydralazine further enhanced the effects. The present results suggest that combined administration of VPA and hydrazine is valuable for enhancing the therapeutic effects of immunotherapy for osteosarcomas.

  8. Mutation affecting regulation of synthesis of acetohydroxy acid synthetase in Escherichia coli K-12.

    PubMed Central

    Jackson, J H; Henderson, E K

    1975-01-01

    Altered regulation of synthesis of acetohydroxy acid synthetase (AHAS) was previously reported in a mutant of Escherichia coli strain K-12. The mutant strain, growing in minimal medium, exhibits a partial growth limiatation and derepression of AHAS, owing to deficient synthesis of isoleucine. The genetic lesion (ilvE503) causing the isoleucine limitation was shown to cause derepression of a valine-sensitive AHAS activity. The derepression effect of the ilvE503 mutation upon synthesis of AHAS was conclusively demonstrated by introducing both the ilvE503 allele and an altered AHAS (ilv-521) into the same cell. Evidence is presented that suggests the presence of multiple genetic regions for synthesis and control of the valine-sensitive AHAS activity. PMID:1089632

  9. Sub-unit structure and specificity of methionyl-transfer-ribonucleic acid synthetase from Escherichia coli

    PubMed Central

    Bruton, C. J.; Hartley, B. S.

    1968-01-01

    1. The purification of methionyl-transfer-RNA synthetase from Escherichia coli by a modified technique gives a 16% yield of a protein that appears homogeneous by the criteria of disc gel electrophoresis, ultracentrifugation and end-group analysis. 2. The molecular weight is 96000 and the protein consists of two sub-units of 48000, which appear to be identical. The amino acid composition and thiol content are reported. 3. Kinetic data are reported for analogues of methionine and for pure t-RNAF and t-RNAM, which are respectively the methionine transfer RNA that can exist in the formylmethionyl form and the one that can exist only in the methionyl form. The enzyme binds and acylates both species of transfer RNA identically. PMID:4874971

  10. Glutamic acid gamma-monohydroxamate and hydroxylamine are alternate substrates for Escherichia coli asparagine synthetase B.

    PubMed

    Boehlein, S K; Schuster, S M; Richards, N G

    1996-03-01

    Escherichia coli asparagine synthetase B (AS-B) catalyzes the synthesis of asparagine from aspartic acid and glutamine in an ATP-dependent reaction. The ability of this enzyme to employ hydroxylamine and L-glutamic acid gamma-monohydroxamate (LGH) as alternative substrates in place of ammonia and L-glutamine, respectively, has been investigated. The enzyme is able to function as an amidohydrolase, liberating hydroxylamine from LGH with high catalytic efficiency, as measured by k(cat)/K(M). In addition, the kinetic parameters determined for hydroxylamine in AS-B synthetase activity are very similar to those of ammonia. Nitrogen transfer from LGH to yield aspartic acid beta-monohydroxamate is also catalyzed by AS-B. While such an observation has been made for a few members of the trpG amidotransferase family, our results appear to be the first demonstration that nitrogen transfer can occur from glutamine analogs in a purF amidotransferase. However, k(cat)/K(M) for the ATP-dependent transfer of hydroxylamine from LGH to aspartic acid is reduced 3-fold relative to that for glutamine-dependent asparagine synthesis. Further, the AS-B mutant in which asparagine is replaced by alanine (N74A) can also use hydroxylamine as an alternate substrate to ammonia and catalyze the hydrolysis of LGH. The catalytic efficiencies (k(cat)/K(M)) of nitrogen transfer from LGH and L-glutamine to beta-aspartyl-AMP are almost identical for the N74A AS-B mutant. These observations support the proposal that Asn-74 plays a role in catalyzing glutamine-dependent nitrogen transfer. We interpret our kinetic data as further evidence against ammonia-mediated nitrogen transfer from glutamine in the purF amidotransferase AS-B. These results are consistent with two alternate chemical mechanisms that have been proposed for this reaction [Boehlein, S. K., Richards, N. G. J., Walworth, E. S., & Schuster, S. M. (1994) J. Biol. Chem. 269, 26789-26795].

  11. Characterization of the Suillus grevillei quinone synthetase GreA supports a nonribosomal code for aromatic α-keto acids.

    PubMed

    Wackler, Barbara; Lackner, Gerald; Chooi, Yit Heng; Hoffmeister, Dirk

    2012-08-13

    The gene greA was cloned from the genome of the basidiomycete Suillus grevillei. It encodes a monomodular natural product biosynthesis protein composed of three domains for adenylation, thiolation, and thioesterase and, hence, is reminiscent of a nonribosomal peptide synthetase (NRPS). GreA was biochemically characterized in vitro. It was identified as atromentin synthetase and therefore represents one of only a limited number of biochemically characterized NRPS-like enzymes which accept an aromatic α-keto acid. Specificity-conferring amino acid residues--collectively referred to as the nonribosomal code--were predicted for the primary sequence of the GreA adenylation domain and were an unprecedented combination for aromatic α-keto acids. Plausible support for this new code came from in silico simulation of the adenylation domain structure. According to the model, the predicted residues line the active site and, therefore, very likely contribute to substrate specificity.

  12. Induction of fatty acid synthetase and acetyl-CoA carboxylase by isolated rat liver cells.

    PubMed

    Porter, J W; Swenson, T L

    1983-01-01

    Current studies on the synthesis of long-chain fatty acids by isolated rat liver cells are largely concerned with the regulation of the activity of previously existing acetyl-CoA carboxylase and fatty acid synthetase, and with the regulation of the quantity of these enzymes. These studies have required the development of methods for obtaining high yields of viable hepatocytes that respond to hormonal treatment. Such methods have been developed over the past 10-15 years through the efforts of several laboratories. These studies have also required the development of a method to determine whether a change in the activity of an enzyme is due to a modification of preexisting enzyme or to a change in quantity of that enzyme. The most satisfactory method to use for such studies is immunotitration of enzyme activity. In recent years studies on the regulation of acetyl-CoA carboxylase have largely centered upon the effect of phosphorylation-dephosphorylation on the activity of this enzyme and whether glucagon inhibits the activity of this enzyme through this process. Much data from a number of laboratories have suggested that glucagon regulates the activity of this enzyme through phosphorylation-dephosphorylation. However, several of these studies involved the use of crude systems in which competing enzymes and substrates that can significantly interfere with acetyl-CoA carboxylase activity measurements were still present. Hence, a confirmation of these studies needs to be carried out under conditions in which the effects of competing enzymes and substrates are eliminated. Studies on changes in quantity of acetyl-CoA carboxylase and fatty acid synthetase have shown that these enzymes are induced by the fasting and refeeding of animals. They have also shown that insulin stimulates (10- to 30-fold) the induction of these enzymes. This induction appears to be due to a change in the quantity of translatable mRNA which may, in turn, be due to a change in the rate of

  13. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  14. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.

    PubMed

    Yao, Jiangwei; Dodson, V Joshua; Frank, Matthew W; Rock, Charles O

    2015-09-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  15. Identification and biochemical characterization of two functional CMP-sialic acid synthetases in Danio rerio.

    PubMed

    Schaper, Wiebke; Bentrop, Joachim; Ustinova, Jana; Blume, Linda; Kats, Elina; Tiralongo, Joe; Weinhold, Birgit; Bastmeyer, Martin; Münster-Kühnel, Anja-K

    2012-04-13

    Sialic acids (Sia) form the nonreducing end of the bulk of cell surface-expressed glycoconjugates. They are, therefore, major elements in intercellular communication processes. The addition of Sia to glycoconjugates requires metabolic activation to CMP-Sia, catalyzed by CMP-Sia synthetase (CMAS). This highly conserved enzyme is located in the cell nucleus in all vertebrates investigated to date, but its nuclear function remains elusive. Here, we describe the identification and characterization of two Cmas enzymes in Danio rerio (dreCmas), one of which is exclusively localized in the cytosol. We show that the two cmas genes most likely originated from the third whole genome duplication, which occurred at the base of teleost radiation. cmas paralogues were maintained in fishes of the Otocephala clade, whereas one copy got subsequently lost in Euteleostei (e.g. rainbow trout). In zebrafish, the two genes exhibited a distinct spatial expression pattern. The products of these genes (dreCmas1 and dreCmas2) diverged not only with respect to subcellular localization but also in substrate specificity. Nuclear dreCmas1 favored N-acetylneuraminic acid, whereas the cytosolic dreCmas2 showed highest affinity for 5-deamino-neuraminic acid. The subcellular localization was confirmed for the endogenous enzymes in fractionated zebrafish lysates. Nuclear entry of dreCmas1 was mediated by a bipartite nuclear localization signal, which seemed irrelevant for other enzymatic functions. With the current demonstration that in zebrafish two subfunctionalized cmas paralogues co-exist, we introduce a novel and unique model to detail the roles that CMAS has in the nucleus and in the sialylation pathways of animal cells.

  16. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind.

    PubMed

    Klaus, Christina; Jeon, Min Kyung; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-14

    The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5). It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development. PMID:24259967

  17. CMP-N-acetylneuraminic acid synthetase interacts with fragile X related protein 1

    PubMed Central

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-01-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P-interacting proteins and determine the biological effect of the interaction. The current study identified CMP-N-acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two-hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β-galactosidase assay and growth studies with selective media. Furthermore, co-immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue-specific regulator of GM1 levels in SH-SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS. PMID:27357083

  18. The role of Drosophila cytidine monophosphate-sialic acid synthetase in the nervous system.

    PubMed

    Islam, Rafique; Nakamura, Michiko; Scott, Hilary; Repnikova, Elena; Carnahan, Mindy; Pandey, Dheeraj; Caster, Courtney; Khan, Saba; Zimmermann, Tina; Zoran, Mark J; Panin, Vladislav M

    2013-07-24

    While sialylation plays important functions in the nervous system, the complexity of glycosylation pathways and limitations of genetic approaches preclude the efficient analysis of these functions in mammalian organisms. Drosophila has recently emerged as a promising model for studying neural sialylation. Drosophila sialyltransferase, DSiaT, was shown to be involved in the regulation of neural transmission. However, the sialylation pathway was not investigated in Drosophila beyond the DSiaT-mediated step. Here we focused on the function of Drosophila cytidine monophosphate-sialic acid synthetase (CSAS), the enzyme providing a sugar donor for DSiaT. Our results revealed that the expression of CSAS is tightly regulated and restricted to the CNS throughout development and in adult flies. We generated CSAS mutants and analyzed their phenotypes using behavioral and physiological approaches. Our experiments demonstrated that mutant phenotypes of CSAS are similar to those of DSiaT, including decreased longevity, temperature-induced paralysis, locomotor abnormalities, and defects of neural transmission at neuromuscular junctions. Genetic interactions between CSAS, DSiaT, and voltage-gated channel genes paralytic and seizure were consistent with the hypothesis that CSAS and DSiaT function within the same pathway regulating neural excitability. Intriguingly, these interactions also suggested that CSAS and DSiaT have some additional, independent functions. Moreover, unlike its mammalian counterparts that work in the nucleus, Drosophila CSAS was found to be a glycoprotein-bearing N-glycans and predominantly localized in vivo to the Golgi compartment. Our work provides the first systematic analysis of in vivo functions of a eukaryotic CSAS gene and sheds light on evolutionary relationships among metazoan CSAS proteins.

  19. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase

    PubMed Central

    Donnelly, M. Lauren; Fimlaid, Kelly A.

    2016-01-01

    ABSTRACT The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes. IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized

  20. CMP‑N‑acetylneuraminic acid synthetase interacts with fragile X related protein 1.

    PubMed

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-08-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P‑interacting proteins and determine the biological effect of the interaction. The current study identified CMP‑N‑acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two‑hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β‑galactosidase assay and growth studies with selective media. Furthermore, co‑immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue‑specific regulator of GM1 levels in SH‑SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.

  1. Identification of the nuclear export signals that regulate the intracellular localization of the mouse CMP-sialic acid synthetase

    SciTech Connect

    Fujita, Akiko; Sato, Chihiro; Kitajima, Ken. E-mail: kitajima@agr.nagoya-u.ac.jp

    2007-03-30

    The CMP-sialic acid synthetase (CSS) catalyzes the activation of sialic acid (Sia) to CMP-Sia which is a donor substrate of sialyltransferases. The vertebrate CSSs are usually localized in nucleus due to the nuclear localization signal (NLS) on the molecule. In this study, we first point out that a small, but significant population of the mouse CMP-sialic acid synthetase (mCSS) is also present in cytoplasm, though mostly in nucleus. As a mechanism for the localization in cytoplasm, we first identified two nuclear export signals (NESs) in mCSS, based on the localization studies of the potential NES-deleted mCSS mutants as well as the potential NES-tagged eGFP proteins. These two NESs are conserved among mammalian and fish CSSs, but not present in the bacterial or insect CSS. These results suggest that the intracellular localization of vertebrate CSSs is regulated by not only the NLS, but also the NES sequences.

  2. Incorporation of hydrogen atoms from deuterated water and stereospecifically deuterium-labeled nicotin amide nucleotides into fatty acids with the Escherichia coli fatty acid synthetase system.

    PubMed

    Saito, K; Kawaguchi, A; Okuda, S; Seyama, Y; Yamakawa, T

    1980-05-28

    The mechanism of hydrogen incorporation into fatty acids was investigated with intact Escherichia coli cells, a crude enzyme preparation and purified reductases of fatty acid synthetase system. The distributions of deuterium atoms incorporated into fatty acids from 2H2O and stereospecifically deuterium-labeled NADPH or NADH were determined by mass spectrometry. When E. coli was grown in 2H2O, almost every hydrogen atom of cellular fatty acids was incorporated from the medium. When fatty acids were synthesized from acetyl-CoA, malonyl-CoA and NADPH in the presence of a crude enzyme preparation of either E. coli or Bacillus subtilis, almost every hydrogen atom was also incorporated from the medium. In contrast to these results, purified beta-ketoacyl acyl carrier reductase directly transferred the HB hydrogen of NADPH to beta-ketoacyl acyl carrier protein, and purified enoyl acyl carrier protein reductase also transferred the HB hydrogen of NADPH and NADH directly to enoyl acyl carrier protein. In the crude enzyme preparation of E. coli, we found high activities which exchanged the HB hydrogen of NADPH with the deuterium of 2h2o. the conflicting results of the origin of hydrogen atoms of fatty acids mentioned above are explained by the presence of enzymes, which catalyzed the rapid exchange of NADPH with the deterium of 2H2O prior to the reaction of fatty acid synthetase. PMID:6990992

  3. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.

    PubMed Central

    Burbaum, J. J.; Schimmel, P.

    1992-01-01

    Although partial or complete three-dimensional structures are known for three Class I aminoacyl-tRNA synthetases, the amino acid-binding sites in these proteins remain poorly characterized. To explore the methionine binding site of Escherichia coli methionyl-tRNA synthetase, we chose to study a specific, randomly generated methionine auxotroph that contains a mutant methionyl-tRNA synthetase whose defect is manifested in an elevated Km for methionine (Barker, D.G., Ebel, J.-P., Jakes, R.C., & Bruton, C.J., 1982, Eur. J. Biochem. 127, 449-457), and employed the polymerase chain reaction to sequence this mutant synthetase directly. We identified a Pro 14 to Ser replacement (P14S), which accounts for a greater than 300-fold elevation in Km for methionine and has little effect on either the Km for ATP or the kcat of the amino acid activation reaction. This mutation destabilizes the protein in vivo, which may partly account for the observed auxotrophy. The altered proline is found in the "signature sequence" of the Class I synthetases and is conserved. This sequence motif is 1 of 2 found in the 10 Class I aminoacyl-tRNA synthetases and, in the known structures, it is in the nucleotide-binding fold as part of a loop between the end of a beta-strand and the start of an alpha-helix. The phenotype of the mutant and the stability and affinity for methionine of the wild-type and mutant enzymes are influenced by the amino acid that is 25 residues beyond the C-terminus of the signature sequence.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304356

  4. Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling

    PubMed Central

    Yoon, Mee-Sup; Son, Kook; Arauz, Edwin; Han, Jung Min; Kim, Sunghoon; Chen, Jie

    2016-01-01

    SUMMARY Amino acid availability activates signaling by the mammalian target of rapamycin (mTOR) complex 1, mTORC1, a master regulator of cell growth. The class III PI-3-kinase Vps34 mediates amino acid signaling to mTORC1 by regulating lysosomal translocation and activation of the phospholipase PLD1. Here we identify leucyl-tRNA synthetase (LRS) as a leucine sensor for the activation of Vps34-PLD1 upstream of mTORC1. LRS is necessary for amino acid-induced Vps34 activation, cellular PI(3)P level increase, PLD1 activation, and PLD1 lysosomal translocation. Leucine binding but not tRNA charging activity of LRS is required for this regulation. Moreover, LRS physically interacts with Vps34 in amino acid-stimulatable non-autophagic complexes. Finally, purified LRS protein activates Vps34 kinase in vitro in a leucine-dependent manner. Collectively, our findings provide compelling evidence for a direct role of LRS in amino acid activation of Vps34 via a non-canonical mechanism, and fill a gap in the amino acid-sensing mTORC1 signaling network. PMID:27477288

  5. Study of the Binding Energies between Unnatural Amino Acids and Engineered Orthogonal Tyrosyl-tRNA Synthetases

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Truong, Tan M.; Ai, Hui-Wang

    2015-07-01

    We utilized several computational approaches to evaluate the binding energies of tyrosine (Tyr) and several unnatural Tyr analogs, to several orthogonal aaRSes derived from Methanocaldococcus jannaschii and Escherichia coli tyrosyl-tRNA synthetases. The present study reveals the following: (1) AutoDock Vina and ROSETTA were able to distinguish binding energy differences for individual pairs of favorable and unfavorable aaRS-amino acid complexes, but were unable to cluster together all experimentally verified favorable complexes from unfavorable aaRS-Tyr complexes; (2) MD-MM/PBSA provided the best prediction accuracy in terms of clustering favorable and unfavorable enzyme-substrate complexes, but also required the highest computational cost; and (3) MM/PBSA based on single energy-minimized structures has a significantly lower computational cost compared to MD-MM/PBSA, but still produced sufficiently accurate predictions to cluster aaRS-amino acid interactions. Although amino acid-aaRS binding is just the first step in a complex series of processes to acylate a tRNA with its corresponding amino acid, the difference in binding energy, as shown by MD-MM/PBSA, is important for a mutant orthogonal aaRS to distinguish between a favorable unnatural amino acid (unAA) substrate from unfavorable natural amino acid substrates. Our computational study should assist further designing and engineering of orthogonal aaRSes for the genetic encoding of novel unAAs.

  6. Crystal Structure of an Indole-3-Acetic Acid Amido Synthetase from Grapevine Involved in Auxin Homeostasis[W

    PubMed Central

    Peat, Thomas S.; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-01-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5′-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins. PMID:23136372

  7. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21.

    PubMed

    Barrientos, Álvaro; Merino, Estefanía; Casabon, Israël; Rodríguez, Joaquín; Crowe, Adam M; Holert, Johannes; Philipp, Bodo; Eltis, Lindsay D; Olivera, Elías R; Luengo, José M

    2015-01-01

    Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.

  8. Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis.

    PubMed

    Padanad, Mahesh S; Konstantinidou, Georgia; Venkateswaran, Niranjan; Melegari, Margherita; Rindhe, Smita; Mitsche, Matthew; Yang, Chendong; Batten, Kimberly; Huffman, Kenneth E; Liu, Jingwen; Tang, Ximing; Rodriguez-Canales, Jaime; Kalhor, Neda; Shay, Jerry W; Minna, John D; McDonald, Jeffrey; Wistuba, Ignacio I; DeBerardinis, Ralph J; Scaglioni, Pier Paolo

    2016-08-01

    KRAS is one of the most commonly mutated oncogenes in human cancer. Mutant KRAS aberrantly regulates metabolic networks. However, the contribution of cellular metabolism to mutant KRAS tumorigenesis is not completely understood. We report that mutant KRAS regulates intracellular fatty acid metabolism through Acyl-coenzyme A (CoA) synthetase long-chain family member 3 (ACSL3), which converts fatty acids into fatty Acyl-CoA esters, the substrates for lipid synthesis and β-oxidation. ACSL3 suppression is associated with depletion of cellular ATP and causes the death of lung cancer cells. Furthermore, mutant KRAS promotes the cellular uptake, retention, accumulation, and β-oxidation of fatty acids in lung cancer cells in an ACSL3-dependent manner. Finally, ACSL3 is essential for mutant KRAS lung cancer tumorigenesis in vivo and is highly expressed in human lung cancer. Our data demonstrate that mutant KRAS reprograms lipid homeostasis, establishing a metabolic requirement that could be exploited for therapeutic gain. PMID:27477280

  9. [Cephalosporin-Acid Synthetase of Escherichia coli Strain VKPM B-10182: Genomic Context, Gene Identification, Producer Strain Production].

    PubMed

    Eldarov M, A; Sklyarenko, A V; Mardanov, A V; Beletsky, A V; Zhgun, A A; Dumina, M V; Medvedeva, N V; Satarova, D E; Ravin, N V; Yarockii, S V

    2015-01-01

    An enzyme of cephalosporin-acid synthetase produced by the E. coli strain VKPM B-10182 has specificity for the synthesis of β-lactam antibiotics of the cephalosporin acids class (cefazolin, cefalotin, cefezole etc.). A comparison of the previously determined genomic sequence of E. coli VKPM B-10182 with a genome of the parent E. coli strain ATCC 9637 was performed. Multiple mutations indicating the long selection history of the strain were detected, including mutations in the genes of RNase and β-lactamases that could enhance the level of enzyme synthesis and reduce the degree of degradation of the synthesized cephalosporin acids. The CASA gene--a direct homolog of the penicillin G-acylase gene--was identified by bioinformatics methods. The homology of the gene was confirmed by gene cloning and the expression and determination of its enzymatic activity in the reaction of cefazolin synthesis. The CASA gene was isolated and cloned into the original expression vector, resulting in an effective E. coli BL2l(DE3) pMD0107 strain producing CASA. PMID:26596082

  10. Effect of some D-amino acids on the steady-state level of glutamine synthetase in Escherichia coli.

    PubMed

    Berberich, M A

    1985-09-01

    D-Glutamate can elicit an increase in the specific activity of glutamine synthetase (GS) when added to cells growing in the presence of high ammonia nitrogen. This effect is independent of glutamate dehydrogenase or glutamate synthase activities and could not be provoked by the addition of the various metabolites which participate in the regulation of GS in the covalent modification system. Neither could an increase in GS level be elicited by addition of any of the D-amino acids which function as allosteric effectors or inhibitors of GS activity. The increase in GS level could also be provoked by addition of D-lysine, D-threonine, or glycine to cells growing in an ammonia-rich medium. The increase in GS level generated by a mixture of D-glutamate, D-lysine, D-threonine, and glycine approximates the increase in GS level observed during step-down of a wild-type Escherichia coli culture from ammonia-sufficient to ammonia-limited growth conditions. Studies with mutants exhibiting alterations in GS regulation indicated that the increase elicited by the addition of D-amino acids depends on the presence of the wild-type glnD allele, although no direct correlation between a positive response and the state of adenylylation of GS can be made. PMID:2863253

  11. Fat Metabolism in Higher Plants. XXXIV. Development of Fatty Acid Synthetase as a Function of Protein Synthesis in Aging Potato Tuber Slices

    PubMed Central

    Willemot, Claude; Stumpf, P. K.

    1967-01-01

    Experiments with inhibitors of protein synthesis (actinomycin D, puromycin, actidione) showed that the increase and the change in fatty acid synthetase activity, observed during the aging of potato disks, were accompanied by and related to a temporary rise in the rate of protein and RNA synthesis. These results concur with the earlier suggestion by Click and Hackett that the aging process involves a type of derepression. A possible course of events during aging, and possible derepression mechanisms are suggested and discussed. PMID:6045298

  12. Roles of Fas and Fas ligand during mammary gland remodeling

    PubMed Central

    Song, Joon; Sapi, Eva; Brown, Wendi; Nilsen, Jon; Tartaro, Karrie; Kacinski, Barry M.; Craft, Joseph; Naftolin, Frederick; Mor, Gil

    2000-01-01

    Mammary involution is associated with degeneration of the alveolar structure and programmed cell death of mammary epithelial cells. In this study, we evaluated the expression of Fas and Fas ligand (FasL) in the mammary gland tissue and their possible role in the induction of apoptosis of mammary cells. FasL-positive cells were observed in normal mammary epithelium from pregnant and lactating mice, but not in nonpregnant/virgin mouse mammary tissue. Fas expression was observed in epithelial and stromal cells in nonpregnant mice but was absent during pregnancy. At day 1 after weaning, high levels of both Fas and FasL proteins and caspase 3 were observed and coincided with the appearance of apoptotic cells in ducts and glands. During the same period, no apoptotic cells were found in the Fas-deficient (MRL/lpr) and FasL-deficient (C3H/gld) mice. Increase in Fas and FasL protein was demonstrated in human (MCF10A) and mouse (HC-11) mammary epithelial cells after incubation in hormone-deprived media, before apoptosis was detected. These results suggest that the Fas-FasL interaction plays an important role in the normal remodeling of mammary tissue. Furthermore, this autocrine induction of apoptosis may prevent accumulation of cells with mutations and subsequent neoplastic development. Failure of the Fas/FasL signal could contribute to tumor development. PMID:11086022

  13. The hydroxymethyldihydropterin pyrophosphokinase domain of the multifunctional folic acid synthesis Fas protein of Pneumocystis carinii expressed as an independent enzyme in Escherichia coli: refolding and characterization of the recombinant enzyme.

    PubMed

    Ballantine, S P; Volpe, F; Delves, C J

    1994-08-01

    The folic acid synthesis (Fas) protein of Pneumocystis carinii is a multifunctional enzyme containing dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (PPPK), and dihydropteroate synthase activities. Isolation of the stretch of fas cDNA shown by amino acid similarity to the bacterial counterparts to code for PPPK activity (fasC domain) is described. FasC was expressed to high levels in Escherichia coli inclusion bodies using an inducible tac promoter expression system. Solubilization of the inclusion bodies in 6 M guanidine hydrochloride and refolding of the recombinant protein yielded enzymatically active PPPK which was purified to homogeneity by anion-exchange and gel-filtration chromatography. Sequence analysis showed that the first 13 amino acids of the purified protein were in agreement with those predicted from the DNA sequence and, furthermore, that the amino-terminal methionine had been removed. The enzyme is active in the monomeric form, exhibiting maximum activity at around pH 8.0. Isoelectric focusing gave a pI of 9.1. The Km value for 6-hydroxymethyl-7,8-dihydropterin was 3.6 microM in 50 mM Tris buffer, pH 8.2. The production of independently folded, active P. carinii PPPK will allow detailed biochemical and structural studies, increasing our understanding of this enzyme domain.

  14. Thioesterification of 2-arylpropionic acids by recombinant acyl-coenzyme A synthetases (ACS1 and ACS2).

    PubMed

    Sevoz, C; Benoit, E; Buronfosse, T

    2000-04-01

    2-Arylpropionic acids are a class of frequently used nonsteroidal anti-inflammatory drugs exhibiting a potent inhibition of cyclooxygenase isoforms supported by the (+)S-enantiomer alone. Nevertheless, some of these compounds in the (-)R configuration may undergo extensive inversion of configuration to their antipode. The key molecular basis for this mechanism invokes the stereoselective formation of the coenzyme A (CoA) thioester of the 2-arylpropionic acid by long-chain acyl-CoA synthetases (ACSs). In this report, rat recombinant ACS1 and ACS2 enzymes, constitutively highly expressed in adult rat liver and brain, respectively, have been overproduced in Escherichia coli strains and purified to homogeneity to investigate the involvement of these enzymes in the thioesterification of fenoprofen and ibuprofen. Recombinant ACS1 efficiently catalyzed both nonsteroidal anti-inflammatory drugs with Michaelis-Menten parameters of K(M) = 1686 +/- 93 microM, V(max) = 353 +/- 45 nmol/min/mg protein for (-)R-ibuprofen and K(M) = 103 +/- 12 microM, V(max) = 267 +/- 10 nmol/min/mg protein for (-)R-fenoprofen, and exhibited a marked stereoselectivity in favor of the (-)R-enantiomer. Recombinant ACS2, a closely related sequence with ACS1, exhibited a lower enzymatic efficacy from 7- to 130-fold for (-)R-ibuprofen and (-)R-fenoprofen, respectively. On the basis of these findings and considering the level of tissue expression of the different long-chain ACSs, ACS1 appears to be the major enzyme involved in the first step of the chiral inversion of 2-arylpropionic acids. Nevertheless, the participation of other ACS isoforms of minor quantitative importance could not be excluded in the thioesterification of xenobiotics.

  15. A core of three amino acids at the carboxyl-terminal region of glutamine synthetase defines its regulation in cyanobacteria.

    PubMed

    Saelices, Lorena; Robles-Rengel, Rocío; Florencio, Francisco J; Muro-Pastor, M Isabel

    2015-05-01

    Glutamine synthetase (GS) type I is a key enzyme in nitrogen metabolism, and its activity is finely controlled by cellular carbon/nitrogen balance. In cyanobacteria, a reversible process that involves protein-protein interaction with two proteins, the inactivating factors IF7 and IF17, regulates GS. Previously, we showed that three arginine residues of IFs are critical for binding and inhibition of GS. In this work, taking advantage of the specificity of GS/IFs interaction in the model cyanobacteria Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, we have constructed a different chimeric GSs from these two cyanobacteria. Analysis of these proteins, together with a site-directed mutagenesis approach, indicates that a core of three residues (E419, N456 and R459) is essential for the inactivation process. The three residues belong to the last 56 amino acids of the C-terminus of Synechocystis GS. A protein-protein docking modeling of Synechocystis GS in complex with IF7 supports the role of the identified core for GS/IF interaction. PMID:25626767

  16. A core of three amino acids at the carboxyl-terminal region of glutamine synthetase defines its regulation in cyanobacteria.

    PubMed

    Saelices, Lorena; Robles-Rengel, Rocío; Florencio, Francisco J; Muro-Pastor, M Isabel

    2015-05-01

    Glutamine synthetase (GS) type I is a key enzyme in nitrogen metabolism, and its activity is finely controlled by cellular carbon/nitrogen balance. In cyanobacteria, a reversible process that involves protein-protein interaction with two proteins, the inactivating factors IF7 and IF17, regulates GS. Previously, we showed that three arginine residues of IFs are critical for binding and inhibition of GS. In this work, taking advantage of the specificity of GS/IFs interaction in the model cyanobacteria Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, we have constructed a different chimeric GSs from these two cyanobacteria. Analysis of these proteins, together with a site-directed mutagenesis approach, indicates that a core of three residues (E419, N456 and R459) is essential for the inactivation process. The three residues belong to the last 56 amino acids of the C-terminus of Synechocystis GS. A protein-protein docking modeling of Synechocystis GS in complex with IF7 supports the role of the identified core for GS/IF interaction.

  17. Role of intramitochondrial arachidonic acid and acyl-CoA synthetase 4 in angiotensin II-regulated aldosterone synthesis in NCI-H295R adrenocortical cell line.

    PubMed

    Mele, Pablo G; Duarte, Alejandra; Paz, Cristina; Capponi, Alessandro; Podestá, Ernesto J

    2012-07-01

    Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.

  18. Amino acid discrimination by the nuclear encoded mitochondrial arginyl-tRNA synthetase of the larva of a bruchid beetle (Caryedes brasiliensis) from northwestern Costa Rica.

    PubMed

    Leisinger, Anne-Katrin; Janzen, Daniel H; Hallwachs, Winnie; Igloi, Gabor L

    2013-12-01

    L-canavanine, the toxic guanidinooxy analogue of L-arginine, is the product of plant secondary metabolism. The need for a detoxifying mechanism for the producer plant is self-evident but the larvae of the bruchid beetle Caryedes brasiliensis, that is itself a non-producer, have specialized in feeding on the Lcanavanine-containing seeds of Dioclea megacarpa. The evolution of a seed predator that can imitate the enzymatic abilities of the host permits us to address the question of whether the same problem of amino acid recognition in two different kingdoms has been solved by the same mechanism. A discriminating arginyl-tRNA synthetase, detected in a crude C. brasiliensis larval extract, was proposed to be responsible for insect's ability to survive the diet of L-canavanine (Rosenthal, G. A., Dahlman, D. L., and Janzen, D. H. (1976) A novel means for dealing with L-canavanine, a toxic metabolite. Science 192, 256e258). Since the arginyl-tRNA synthetase of at least three genetic compartments (insect cytoplasmic, insect mitochondrial and insect gut microflora) may participate in conferring L-canavanine resistance, we investigated whether the nuclear-encoded C. brasiliensis mitochondrial arginyl-tRNA synthetase plays a role in this discrimination. Steady state kinetics of the cloned, recombinant enzyme have revealed and quantified an amino acid discriminating potential of the mitochondrial enzyme that is sufficient to account for the overall L-canavanine misincorporation rate observed in vivo. As in the cytoplasmic enzyme of the L-canavanine producer plant, the mitochondrial arginyl-tRNA synthetases from a specialist seed predator relies on a kinetic discrimination that prevents L-canavanine misincorporation into proteins. PMID:24446543

  19. Cholangiocarcinomas express Fas ligand and disable the Fas receptor.

    PubMed

    Que, F G; Phan, V A; Phan, V H; Celli, A; Batts, K; LaRusso, N F; Gores, G J

    1999-12-01

    Cholangiocarcinoma is a highly-malignant adenocarcinoma originating from cholangiocytes. Current concepts support escape from immune surveillance using aberrant expression of Fas ligand (FasL) and dysregulation of receptor (FasR) signaling as a potential mechanism for tumor progression. Our aims were to determine if altered expression of FasR and FasL or changes in expression of FLICE inhibitor (I-FLICE) allow cholangiocarcinoma cells to escape immune surveillance. Human cholangiocarcinoma cell lines were evaluated for the functional expression of FasR and FasL by (1) quantitating apoptosis after incubation of cells with agonistic antibodies and (2) an in vitro cell death assay involving coculture of cholangiocarcinoma cells with Fas-sensitive thymocytes. I-FLICE antisense treatment was performed by stable transfection with complementary DNA (cDNA) for I-FLICE in the reverse orientation. We found that normal cholangiocytes in vivo express FasL. Human cholangiocarcinoma cell lines express both FasL and FasR and I-FLICE. FasL expressed by cholangiocarcinomas in vitro induced lymphocyte cell death (70% after 24 hours). Despite the expression of FasR, exposure of the cells to agonistic antibodies (500 ng/mL) induced only minimal apoptosis in the Jurkat cells. Antisense treatment of cholangiocarcinomas in vitro with I-FLICE reduced protein expression of I-FLICE by 90% to 95% and increased Fas-mediated apoptosis 2-fold. We concluded that cholangiocarcinomas escape immune surveillance either by disabling FasR signaling through the expression of I-FLICE and/or increased FasL expression to induce apoptosis of invading T cells. Reduction of I-FLICE expression in cholangiocarcinoma cells restored Fas-mediated apoptosis. Therapeutic maneuvers to inhibit expression of I-FLICE may aid in the treatment of cholangiocarcinoma.

  20. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  1. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs).

    PubMed

    Recuero-Checa, Maria A; Sharma, Manu; Lau, Constance; Watkins, Paul A; Gaydos, Charlotte A; Dean, Deborah

    2016-03-18

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.

  2. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs)

    PubMed Central

    Recuero-Checa, Maria A.; Sharma, Manu; Lau, Constance; Watkins, Paul A.; Gaydos, Charlotte A.; Dean, Deborah

    2016-01-01

    The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3–6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs. PMID:26988341

  3. RGD-FasL Induces Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Liu, Zhongchen; Wang, Juan; Yin, Ping; Qiu, Jinhua; Liu, Ruizhen; Li, Wenzhu; Fan, Xin; Cheng, Xiaofeng; Chen, Caixia; Zhang, Jiakai; Zhuang, Guohong

    2009-01-01

    Despite impressive results obtained in animal models, the clinical use of Fas ligand (FasL) as an anticancer drug is limited by severe toxicity. Systemic toxicity of death ligands may be prevented by using genes encoding membrane-bound death ligands and by targeted transgene expression through either targeted transduction or targeted transcription. Selective induction of tumor cell death is a promising anticancer strategy. A fusion protein is created by fusing the extracellular domain of Fas ligand (FasL) to the peptide arginine-glycine-aspartic acid (RGD) that selectively targets avβ3-integrins on tumor endothelial cells. The purpose of this study is to evaluate the effects of RGD-FasL on tumor growth and survival in a murine hepatocellular carcinoma (HCC) tumor model. Treatment with RGD-FasL displaying an obvious suppressive effect on the HCC tumor model as compared to that with FasL (p < 0.05) and resulted in a more additive effect on tumor growth delay in this model. RGD-FasL treatment significantly enhanced mouse survival and caused no toxic effect, such as weight loss, organ failure, or other treatment-related toxicities. Apoptosis was detected by flow cytometric analysis and TUNEL assays; those results also showed that RGD-FasL is a more potent inducer of cell apoptosis for H22 and H9101 cell lines than FasL (p < 0.05). In conclusion, RGD-FasL appears to be a low-toxicity selective inducer of tumor cell death, which merits further investigation in preclinical and clinical studies. Furthermore, this approach offers a versatile technology for complexing target ligands with therapeutic recombinant proteins. To distinguish the anti-tumor effects of FasL in vivo, tumor and liver tissues were harvested to examine for evidence of necrotic cells, tumor cells, or apoptotic cells by Hematoxylin and eosin (H&E) staining. PMID:19728930

  4. Role of Fas/Fas-L in vascular cell apoptosis.

    PubMed

    Stoneman, Victoria E A; Bennett, Martin R

    2009-02-01

    Apoptosis of vascular cells is observed in vivo in normal vessel development and a variety of vascular pathologies. Apoptosis occurs in all cell types within the vessel wall, the consequences of which depend on both cell type and the pathology under study. The death receptor Fas is expressed throughout the vessel wall, and increasingly Fas-Fas-L-induced killing has been recognized in the vasculature. This review outlines the current developments in understanding the role, regulation, and consequences of Fas-Fas-L-induced apoptosis in vascular cells.

  5. Molecular cloning and sequence analysis of complementary DNA encoding rat mammary gland medium-chain S-acyl fatty acid synthetase thio ester hydrolase

    SciTech Connect

    Safford, R.; de Silva, J.; Lucas, C.; Windust, J.H.C.; Shedden, J.; James, C.M.; Sidebottom, C.M.; Slabas, A.R.; Tombs, M.P.; Hughes, S.G.

    1987-03-10

    Poly(A) + RNA from pregnant rat mammary glands was size-fractionated by sucrose gradient centrifugation, and fractions enriched in medium-chain S-acyl fatty acid synthetase thio ester hydrolase (MCH) were identified by in vitro translation and immunoprecipitation. A cDNA library was constructed, in pBR322, from enriched poly(A) + RNA and screened with two oligonucleotide probes deduced from rat MCH amino acid sequence data. Cross-hybridizing clones were isolated and found to contain cDNA inserts ranging from approx. 1100 to 1550 base pairs (bp). A 1550-bp cDNA insert, from clone 43H09, was confirmed to encode MCH by hybrid-select translation/immunoprecipitation studies and by comparison of the amino acid sequence deduced from the DNA sequence of the clone to the amino acid sequence of the MCH peptides. Northern blot analysis revealed the size of the MCH mRNA to be 1500 nucleotides, and it is therefore concluded that the 1550-bp insert (including G x C tails) of clone 43H09 represents a full- or near-full-length copy of the MCH gene. The rat MCH sequence is the first reported sequence of a thioesterase from a mammalian source, but comparison of the deduced amino acid sequences of MCH and the recently published mallard duck medium-chain S-acyl fatty acid synthetase thioesterase reveals significant homology. In particular, a seven amino acid sequence containing the proposed active serine of the duck thioesterase is found to be perfectly conserved in rat MCH.

  6. Protein tyrosine phosphatases regulate arachidonic acid release, StAR induction and steroidogenesis acting on a hormone-dependent arachidonic acid-preferring acyl-CoA synthetase.

    PubMed

    Cano, Florencia; Poderoso, Cecilia; Cornejo Maciel, Fabiana; Castilla, Rocío; Maloberti, Paula; Castillo, Fernanda; Neuman, Isabel; Paz, Cristina; Podestá, Ernesto J

    2006-06-01

    The activation of the rate-limiting step in steroid biosynthesis, that is the transport of cholesterol into the mitochondria, is dependent on PKA-mediated events triggered by hormones like ACTH and LH. Two of such events are the protein tyrosine dephosphorylation mediated by protein tyrosine phosphatases (PTPs) and the release of arachidonic acid (AA) mediated by two enzymes, ACS4 (acyl-CoA synthetase 4) and Acot2 (mitochondrial thioesterase). ACTH and LH regulate the activity of PTPs and Acot2 and promote the induction of ACS4. Here we analyzed the involvement of PTPs on the expression of ACS4. We found that two PTP inhibitors, acting through different mechanisms, are both able to abrogate the hormonal effect on ACS4 induction. PTP inhibitors also reduce the effect of cAMP on steroidogenesis and on the level of StAR protein, which facilitates the access of cholesterol into the mitochondria. Moreover, our results indicate that exogenous AA is able to overcome the inhibition produced by PTP inhibitors on StAR protein level and steroidogenesis. Then, here we describe a link between PTP activity and AA release, since ACS4 induction is under the control of PTP activity, being a key event for AA release, StAR induction and steroidogenesis.

  7. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay.

    PubMed

    Kugimiya, Akimitsu; Konishi, Hidenori; Fukada, Rie

    2016-03-01

    Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0).

  8. Flow Analysis of Amino Acids by Using a Newly Developed Aminoacyl-tRNA Synthetase-Immobilized, Small Reactor Column-Based Assay.

    PubMed

    Kugimiya, Akimitsu; Konishi, Hidenori; Fukada, Rie

    2016-03-01

    Abnormal concentrations of amino acids in blood and urine can be indicative of several diseases, including cancer and diabetes. Therefore, analyses that examine amino acid concentrations are useful for the diagnosis of such diseases. In this study, we developed an enzyme-immobilized, small reactor column for flow analysis of amino acid concentrations. For the recognition of asparagine and lysine, asparaginyl-tRNA synthetase and lysyl-tRNA synthase were immobilized onto microparticles, respectively, and coupled with coloration reagents for spectrophotometric detection. This assay has some advantages in the analytical field, such as the ability to detect small amounts of analyte, allowing for the use of a small reaction volume, and ensuring a rapid and efficient reaction rate. This approach provided selective quantitation of up to 480 μM of asparagine and lysine in 200 mM Tris-HCl buffer (pH 8.0). PMID:26554858

  9. Fas/Fas Ligand Interaction in Human Colorectal Hepatic Metastases

    PubMed Central

    Yoong, Khong F.; Afford, Simon C.; Randhawa, Satinder; Hubscher, Stefan G.; Adams, David H.

    1999-01-01

    This study demonstrates a novel role for the Fas pathway in the promotion of local tumor growth by inducing apoptotic cell death in normal hepatocytes at the tumor margin in colorectal hepatic metastases. Our results show that >85% of lymphocytes infiltrating colorectal liver cancer express high levels of Fas-ligand (Fas-L) by flow cytometry. Using immunohistochemistry of tumor tissue we showed strong Fas expression in noninvolved hepatocytes, whereas Fas-L expression was restricted to tumor cells and infiltrating lymphocytes at the tumor margin. Apoptosis was observed in 45 ± 13% of the Fashigh hepatocytes at the tumor margin whereas only 7 ± 3% tumor cells were apoptotic (n = 10). In vitro, primary human hepatocytes expressed Fas receptor and crosslinking with anti-Fas antibody induced apoptosis in 44 ± 5% of the cells compared with 4.6 ± 1.0% in untreated controls (P = 0.004). Both tumor-infiltrating lymphocytes (TIL) and human metastatic colon cancer cells cells are able to induce Fas-mediated apoptosis of primary human hepatocytes in coculture cytotoxic assays. TIL induced apoptosis in 47 ± 9% hepatocytes compared with control 4.3 ± 1.0% (P = 0.009) and this effect was reduced by anti-human Fas-L mAb (18.7 ± 1.3%, P = 0.009). SW620 cells induced apoptosis in 26 ± 2% hepatocytes compared with control 5.6 ± 1.7% (P = 0.004) and this was reduced to 11.2 ± 1.8% (P = 0.004) in the presence of anti-human Fas-L mAb. These data suggest that the inflammatory response at the margin of colorectal liver metastases induces Fas expression in surrounding hepatocytes, allowing them to be killed by Fas-L-bearing TIL or tumor cells and facilitating the invasion of the tumor into surrounding liver tissue. PMID:10079247

  10. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus.

    PubMed

    Tian, Juan; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Liu, Wei; Wen, Hua

    2015-02-01

    The objective of this study was to assess the effects of dietary lipids on growth performance, body composition, serum parameters, and expression of genes involved in lipid metabolism in adult genetically improved farmed tilapia (GIFT strain) of Nile tilapia, Oreochromis niloticus. We randomly assigned adult male Nile tilapia (average initial body weight = 220.00 ± 9.54 g) into six groups consisting of four replicates (20 fish per replicate). Fish in each group were hand-fed a semi-purified diets containing different lipid levels [3.3 (the control group), 28.4, 51.4, 75.4, 101.9, and 124.1 g kg(-1)] for 8 weeks. The results indicated that there was no obvious effect in feeding rate among all groups (P > 0.05). The highest weight gain, specific growth rate, and protein efficiency ratio in 75.4 g kg(-1) diet group were increased by 23.31, 16.17, and 22.02 % than that of fish in the control group (P < 0.05). Protein retention ratio was highest in 51.4 g kg(-1) diet group. The results revealed that the optimum dietary lipid level for maximum growth performance is 76.6-87.9 g kg(-1). Increasing dietary lipid levels contributed to increased tissue and whole body lipid levels. Saturated and monounsaturated fatty acids (MUFAs) decreased, and polyunsaturated fatty acids increased with increasing dietary lipid levels. With the exception of MUFAs, the fatty acid profiles of liver and muscle were similar. Dietary lipid levels were negatively correlated with low-density lipoprotein- cholesterol content and positively with triacylglycerol and glucose contents. In the lipid-fed groups, there was a significant down-regulation of fatty acid synthase (FAS) mRNA in liver, muscle, and visceral adipose tissues. There was a rapid up-regulation of lipoprotein lipase (LPL) mRNA in muscle and liver with increasing dietary lipid levels. In visceral adipose tissue, LPL mRNA was significantly down-regulated in the lipid-fed groups. Dietary lipids increased hormone-sensitive lipase (HSL) m

  11. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen

    1987-01-01

    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  12. Capsaicin, nonivamide and trans-pellitorine decrease free fatty acid uptake without TRPV1 activation and increase acetyl-coenzyme A synthetase activity in Caco-2 cells.

    PubMed

    Rohm, Barbara; Riedel, Annett; Ley, Jakob P; Widder, Sabine; Krammer, Gerhard E; Somoza, Veronika

    2015-01-01

    Red pepper and its major pungent component, capsaicin, have been associated with hypolipidemic effects in rats, although mechanistic studies on the effects of capsaicin and/or structurally related compounds on lipid metabolism are scarce. In this work, the effects of capsaicin and its structural analog nonivamide, the aliphatic alkamide trans-pellitorine and vanillin as the basic structural element of all vanilloids on the mechanisms of intestinal fatty acid uptake in differentiated intestinal Caco-2 cells were studied. Capsaicin and nonivamide were found to reduce fatty acid uptake, with IC₅₀ values of 0.49 μM and 1.08 μM, respectively. trans-Pellitorine was shown to reduce fatty acid uptake by 14.0±2.14% at 100 μM, whereas vanillin was not effective, indicating a pivotal role of the alkyl chain with the acid amide group in fatty acid uptake by Caco-2 cells. This effect was associated neither with the activation of the transient receptor potential cation channel subfamily V member 1 (TRPV1) or the epithelial sodium channel (ENaC) nor with effects on paracellular transport or glucose uptake. However, acetyl-coenzyme A synthetase activity increased (p<0.05) in the presence of 10 μM capsaicin, nonivamide or trans-pellitorine, pointing to an increased fatty acid biosynthesis that might counteract the decreased fatty acid uptake.

  13. Radioimmune assay of human platelet prostaglandin synthetase

    SciTech Connect

    Roth, G.J.; Machuga, E.T.

    1982-02-01

    Normal platelet function depends, in part, on platelet PG synthesis. PG synthetase (cyclo-oxygenase) catalyzes the first step in PG synthesis, the formation of PGH/sub 2/ from arachidonic acid. Inhibition of the enzyme by ASA results in an abnormality in the platelet release reaction. Patients with pparent congenital abnormalities in the enzyme have been described, and the effects have been referred to as ''aspirin-like'' defects of the platelet function. These patients lack platelet PG synthetase activity, but the actual content of PG synthetase protein in these individuals' platelets is unknown. Therefore an RIA for human platelet PG synthetase would provide new information, useful in assessing the aspirin-like defects of platelet function. An RIA for human platelet PG synthetase is described. The assay utilizes a rabbit antibody directed against the enzyme and (/sup 125/I)-labelled sheep PG synthetase as antigen. The human platelet enzyme is assayed by its ability to inhibit precipitation of the (/sup 125/I)antigen. The assay is sensitive to 1 ng of enzyme. By the immune assay, human platelets contain approximately 1200 ng of PG synethetase protein per 1.5 mg of platelet protein (approximately 10/sup 9/ platelets). This content corresponds to 10,000 enzyme molecules per platelet. The assay provides a rapid and convenient assay for the human platelet enzyme, and it can be applied to the assessment of patients with apparent platelet PG synthetase (cyclo-oxygenase) deficiency.

  14. Platelets induce apoptosis via membrane-bound FasL

    PubMed Central

    Schleicher, Rebecca I.; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O’Reilly, Lorraine; Meuth, Sven G.; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank

    2015-01-01

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL△m/△m) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre+ FasLfl/fl mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis. PMID:26232171

  15. Platelets induce apoptosis via membrane-bound FasL.

    PubMed

    Schleicher, Rebecca I; Reichenbach, Frank; Kraft, Peter; Kumar, Anil; Lescan, Mario; Todt, Franziska; Göbel, Kerstin; Hilgendorf, Ingo; Geisler, Tobias; Bauer, Axel; Olbrich, Marcus; Schaller, Martin; Wesselborg, Sebastian; O'Reilly, Lorraine; Meuth, Sven G; Schulze-Osthoff, Klaus; Gawaz, Meinrad; Li, Xuri; Kleinschnitz, Christoph; Edlich, Frank; Langer, Harald F

    2015-09-17

    After tissue injury, both wound sealing and apoptosis contribute to restoration of tissue integrity and functionality. Although the role of platelets (PLTs) for wound closure and induction of regenerative processes is well established, the knowledge about their contribution to apoptosis is incomplete. Here, we show that PLTs present the death receptor Fas ligand (FasL) on their surface after activation. Activated PLTs as well as the isolated membrane fraction of activated PLTs but not of resting PLTs induced apoptosis in a dose-dependent manner in primary murine neuronal cells, human neuroblastoma cells, and mouse embryonic fibroblasts. Membrane protein from PLTs lacking membrane-bound FasL (FasL(△m/△m)) failed to induce apoptosis. Bax/Bak-mediated mitochondrial apoptosis signaling in target cells was not required for PLT-induced cell death, but increased the apoptotic response to PLT-induced Fas signaling. In vivo, PLT depletion significantly reduced apoptosis in a stroke model and an inflammation-independent model of N-methyl-d-aspartic acid-induced retinal apoptosis. Furthermore, experiments using PLT-specific PF4Cre(+) FasL(fl/fl) mice demonstrated a role of PLT-derived FasL for tissue apoptosis. Because apoptosis secondary to injury prevents inflammation, our findings describe a novel mechanism on how PLTs contribute to tissue homeostasis.

  16. [Allosteric regulation of glucosamine synthetase activity by naphthoquinone derivatives and ethyl ester of di-(4-oxycumarinyl-3)-acetic acid].

    PubMed

    Sharaev, P N; Bogdanov, N G; Sarycheva, I K; Zhukova, E E

    1981-02-01

    The effects of derivatives of naphthoquinone, e.g. 2-methyl-3-phytyl-1,4-naphthoquinone (vitamin K1), 2-methyl-1,4-naphthoquinone (vitamin K3), 3-dihydro-2-methyl-1,4-naphthoquinone-2-sodium sulfonate (vicasol), derivatives of naphthohydroxyquinone, e.g. 2-methyl-1,4-naphthohydroxyquinone 1-monoacetate, 2-methyl-1,4-naphthohydroxyquinone 1,4-diacetate and the oxycumarine derivative di-(4-oxycumarinyl-3)-acetate ethyl ester (pelentan) on the activity of purified glutamine synthetase (EC 5.3.1.19) from rat liver were studied. The enzyme activity was increased under effects of vitamins K1 and K3 and was inhibited by pelentan. The data obtained are indicative of the allosteric effect of these compounds on the enzyme. PMID:7195738

  17. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; Klett, Eric L; De Paula, Iron F; Ramos, Isabela B; Coleman, Rosalind A; Gondim, Katia C

    2016-07-01

    Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction. PMID:27091636

  18. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis.

    PubMed

    Takayama, Kuni; Wang, Cindy; Besra, Gurdyal S

    2005-01-01

    Mycobacterium tuberculosis is known to synthesize alpha-, methoxy-, and keto-mycolic acids. We propose a detailed pathway to the biosynthesis of all mycolic acids in M. tuberculosis. Fatty acid synthetase I provides C(20)-S-coenzyme A to the fatty acid synthetase II system (FAS-IIA). Modules of FAS-IIA and FAS-IIB introduce cis unsaturation at two locations on a growing meroacid chain to yield three different forms of cis,cis-diunsaturated fatty acids (intermediates to alpha-, methoxy-, and keto-meroacids). These are methylated, and the mature meroacids and carboxylated C(26)-S-acyl carrier protein enter into the final Claisen-type condensation with polyketide synthase-13 (Pks13) to yield mycolyl-S-Pks13. We list candidate genes in the genome encoding the proposed dehydrase and isomerase in the FAS-IIA and FAS-IIB modules. We propose that the processing of mycolic acids begins by transfer of mycolic acids from mycolyl-S-Pks13 to d-mannopyranosyl-1-phosphoheptaprenol to yield 6-O-mycolyl-beta-d-mannopyranosyl-1-phosphoheptaprenol and then to trehalose 6-phosphate to yield phosphorylated trehalose monomycolate (TMM-P). Phosphatase releases the phosphate group to yield TMM, which is immediately transported outside the cell by the ABC transporter. Antigen 85 then catalyzes the transfer of a mycolyl group from TMM to the cell wall arabinogalactan and to other TMMs to produce arabinogalactan-mycolate and trehalose dimycolate, respectively. We list candidate genes in the genome that encode the proposed mycolyltransferases I and II, phosphatase, and ABC transporter. The enzymes within this total pathway are targets for new drug discovery.

  19. Characterization of Cereulide Synthetase, a Toxin-Producing Macromolecular Machine

    PubMed Central

    Alonzo, Diego A.; Magarvey, Nathan A.; Schmeing, T. Martin

    2015-01-01

    Cereulide synthetase is a two-protein nonribosomal peptide synthetase system that produces a potent emetic toxin in virulent strains of Bacillus cereus. The toxin cereulide is a depsipeptide, as it consists of alternating aminoacyl and hydroxyacyl residues. The hydroxyacyl residues are derived from keto acid substrates, which cereulide synthetase selects and stereospecifically reduces with imbedded ketoreductase domains before incorporating them into the growing depsipeptide chain. We present an in vitro biochemical characterization of cereulide synthetase. We investigate the kinetics and side chain specificity of α-keto acid selection, evaluate the requirement of an MbtH-like protein for adenylation domain activity, assay the effectiveness of vinylsulfonamide inhibitors on ester-adding modules, perform NADPH turnover experiments and evaluate in vitro depsipeptide biosynthesis. This work also provides biochemical insight into depsipeptide-synthesizing nonribosomal peptide synthetases responsible for other bioactive molecules such as valinomycin, antimycin and kutzneride. PMID:26042597

  20. Site-directed substitution of Ser1406 of hamster CAD with glutamic acid alters allosteric regulation of carbamyl phosphate synthetase II.

    PubMed

    Banerjei, L C; Davidson, J N

    1997-01-01

    Ser1406 of the allosteric region of the hamster CAD enzyme, carbamyl phosphate synthetase II (CPSase), is known to be phosphorylated in vitro by cAMP-dependent protein kinase (PKA). Metabolic labeling experiments described here demonstrate that CAD is phosphorylated in somatic cells in culture. Phosphorylation is stimulated by treating cells with 8-bromo-cAMP, a PKA activator. The stimulation is essentially prevented by pretreatment with H-89, a PKA specific inhibitor. Substitution of Ser1406 with alanine results in an enzyme with kinetics and allosteric regulation indistinguishable from unsubstituted CAD. However, substitution to glutamic acid increases CPSase activity by reducing the apparent Km (ATP). The UTP concentration required to give 50% inhibition is increased rendering this altered enzyme significantly less sensitive to feedback inhibition, but allosteric activation by PRPP is unaffected. While these data do not prove that Ser1406 is phosphorylated in vivo, they do indicate that a specific alteration at this residue can affect allosteric regulation. PMID:9218000

  1. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  2. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  3. Involvement of Fas/FasL system in the pathogenesis of autoimmune diseases and Wilson's disease.

    PubMed

    Stassi, G; Di Felice, V; Todaro, M; Cappello, F; Zummo, G; Farina, F; Trucco, M; De Maria, R

    1999-01-01

    The interaction of Fas with FasL has been demonstrated to be implicated in the pathogenesis of several autoimmune and liver diseases. Recently, attention has been focused on the hypothesis that thyrocytes and beta cells undergo massive Fas/FasL-mediated apoptosis during autoimmune response. Similarly, hepatocyte cell death occurring following copper accumulation points towards the same mechanism.

  4. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of

  5. Identity between palmitoyl-CoA synthetase and arachidonoyl-CoA synthetase in human platelet?

    PubMed Central

    Bakken, A M; Farstad, M; Holmsen, H

    1991-01-01

    Apparent Km values have been determined for the substrates ATP, CoA and fatty acids for the long-chain acyl-CoA synthetase (EC 6.2.1.3) reaction in lysates of human blood platelets. The apparent Km for ATP was higher for saturated fatty acids (C12:0 to C18:0) than for unsaturated acids (C18:1 to C22:6). Other apparent Km values were very similar for all long-chain fatty acids tested. Palmitic acid inhibited the formation of [14C]arachidonoyl-CoA, and arachidonic acid inhibited the formation of [14C]palmitoyl-CoA, with [14C]arachidonate or [14C]palmitate respectively as substrate. After chromatography of Triton X-100-extracted platelet protein in several systems (hydroxyapatite, DEAE-Sepharose, Sephacryl S-200 HR, CoA-Sepharose, Sephadex G-100 and AcA 34), both arachidonoyl-CoA synthetase and palmitoyl-CoA synthetase activities were eluted together in the various protein peaks, and with approximately the same ratio of activities in all peaks. After some purification steps (DEAE-Sepharose and Sephacryl S-200 HR), the acyl-CoA synthetase activity was up to 37 nmol/min per mg of protein with [14C]palmitate as substrate, and up to 116 nmol/min per mg of protein with [14C]arachidonate as substrate. The purification was respectively about 8- and 10-fold. The results indicate that palmitoyl-CoA (or unspecific) synthetase and arachidonoyl-CoA (or specific) synthetase are in fact the same enzyme, in agreement with previously reported results from this laboratory. PMID:1848073

  6. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA.

    PubMed

    Cao, Mingfeng; Geng, Weitao; Zhang, Wei; Sun, Jibin; Wang, Shufang; Feng, Jun; Zheng, Ping; Jiang, Anna; Song, Cunjiang

    2013-11-01

    Poly-γ-glutamic acid (γ-PGA) is a promising environmental-friendly material with outstanding water solubility, biocompatibility and degradability. However, it is tough to determine the relationship between functional synthetic enzyme and the strains' yield or substrate dependency. We cloned γ-PGA synthetase genes pgsBCA and glutamate racemase gene racE from both L-glutamate-dependent γ-PGA-producing Bacillus licheniformis NK-03 and L-glutamate-independent B. amyloliquefaciens LL3 strains. The deduced RacE and PgsA from the two strains shared the identity of 84.5% and 78.53%, while PgsB and PgsC possessed greater similarity with 93.13% and 93.96%. The induced co-expression of pgsBCA and racE showed that the engineered Escherichia coli strains had the capacity of synthesizing γ-PGA, and LL3 derived PgsBCA had higher catalytic activity and enhanced productivity than NK-03 in Luria-Bertani medium containing glucose or L-glutamate. However, the differential effect was weakened when providing sufficient immediateness L-glutamate substrate, that is, the supply of substrate could be served as the ascendance upon γ-PGA production. Furthermore, RacE integration could enhance γ-PGA yield through improving the preferred d-glutamate content. This is the first report about co-expression of pgsBCA and racE from the two Bacillus strains, which will be of great value for the determination of the biosynthetic mechanism of γ-PGA.

  7. A Hybrid Non-Ribosomal Peptide/Polyketide Synthetase Containing Fatty-Acyl Ligase (FAAL) Synthesizes the β-Amino Fatty Acid Lipopeptides Puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum

    PubMed Central

    Mareš, Jan; Hájek, Jan; Urajová, Petra; Kopecký, Jiří; Hrouzek, Pavel

    2014-01-01

    A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa) or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea). Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln) show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides. PMID:25369527

  8. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    SciTech Connect

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  9. Intestinal expression of Fas and Fas ligand is upregulated by bacterial signaling through TLR4 and TLR5, with activation of Fas modulating intestinal TLR-mediated inflammation.

    PubMed

    Fernandes, Philana; O'Donnell, Charlotte; Lyons, Caitriona; Keane, Jonathan; Regan, Tim; O'Brien, Stephen; Fallon, Padraic; Brint, Elizabeth; Houston, Aileen

    2014-12-15

    TLRs play an important role in mediating intestinal inflammation and homeostasis. Fas is best studied in terms of its function in apoptosis, but recent studies demonstrate that Fas signaling may mediate additional functions such as inflammation. The role of Fas, and the Fas ligand (FasL), in the intestine is poorly understood. The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal epithelial cells (IECs). IECs were stimulated with TLR ligands, and expression of Fas and FasL was investigated. Treatment with TLR4 and TLR5 ligands, but not TLR2 and 9 ligands, increased expression of Fas and FasL in IECs in vitro. Consistent with this finding, expression of intestinal Fas and FasL was reduced in vivo in the epithelium of TLR4 knockout (KO), 5KO, and germ-free mice, but not in TLR2KO mice. Modulating Fas signaling using agonistic anti-Fas augmented TLR4- and TLR5-mediated TNF-α and IL-8 production by IECs. In addition, suppression of Fas in IECs reduced the ability of TLR4 and TLR5 ligands and the intestinal pathogens Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8. In conclusion, this study demonstrates that extensive cross-talk in IECs occurs between the Fas and TLR signaling pathways, with the FasL/Fas system playing a role in TLR-mediated inflammatory responses in the intestine.

  10. Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid.

    PubMed

    Liang, Shuhang; Sun, Kuo; Wang, Yue; Dong, Shuying; Wang, Cheng; Liu, LianXin; Wu, YongHui

    2016-10-25

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products used in daily life. However, their impact on human health has not been completely elucidated. This study was designed to investigate the cytotoxicity associated with ZnO NPs, the role of dissolution in the toxicity of ZnO NPs, the molecular mechanisms and mode of cell death induced by ZnO NPs in human aortic endothelial cells (HAECs), and the protective effects of the antioxidant alpha-lipoic acid (LA). ZnO NPs significantly reduced cell viability in a dose- and time-dependent manner, resulted in intracellular oxidative stress and cell membrane leakage when treated with doses of 8-50 μg/mL for 12 and 24 h in HAECs. The toxicity was produced by undissolved ZnO NPs but not dissolved Zn(2+) and metal impurities. Exposure to ZnO NPs was found to induce apoptosis at 12 h and necrosis after 24 h. Apoptosis was confirmed using reactive oxygen species that triggered a decrease in mitochondria membrane potential, increase in Cyt-C release, activation of caspases 3 and caspases9 and increase in the ratio of Bax/Bcl-2. Futhermore, ZnO NPs could activate the Fas death receptor pathway. In addition, the antioxidant LA was able to protect HAECs from apoptosis induced by ZnO NPs. PMID:27544635

  11. Role of Cyt-C/caspases-9,3, Bax/Bcl-2 and the FAS death receptor pathway in apoptosis induced by zinc oxide nanoparticles in human aortic endothelial cells and the protective effect by alpha-lipoic acid.

    PubMed

    Liang, Shuhang; Sun, Kuo; Wang, Yue; Dong, Shuying; Wang, Cheng; Liu, LianXin; Wu, YongHui

    2016-10-25

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products used in daily life. However, their impact on human health has not been completely elucidated. This study was designed to investigate the cytotoxicity associated with ZnO NPs, the role of dissolution in the toxicity of ZnO NPs, the molecular mechanisms and mode of cell death induced by ZnO NPs in human aortic endothelial cells (HAECs), and the protective effects of the antioxidant alpha-lipoic acid (LA). ZnO NPs significantly reduced cell viability in a dose- and time-dependent manner, resulted in intracellular oxidative stress and cell membrane leakage when treated with doses of 8-50 μg/mL for 12 and 24 h in HAECs. The toxicity was produced by undissolved ZnO NPs but not dissolved Zn(2+) and metal impurities. Exposure to ZnO NPs was found to induce apoptosis at 12 h and necrosis after 24 h. Apoptosis was confirmed using reactive oxygen species that triggered a decrease in mitochondria membrane potential, increase in Cyt-C release, activation of caspases 3 and caspases9 and increase in the ratio of Bax/Bcl-2. Futhermore, ZnO NPs could activate the Fas death receptor pathway. In addition, the antioxidant LA was able to protect HAECs from apoptosis induced by ZnO NPs.

  12. An arachidonic acid-preferring acyl-CoA synthetase is a hormone-dependent and obligatory protein in the signal transduction pathway of steroidogenic hormones.

    PubMed

    Cornejo Maciel, Fabiana; Maloberti, Paula; Neuman, Isabel; Cano, Florencia; Castilla, Rocío; Castillo, Fernanda; Paz, Cristina; Podestá, Ernesto J

    2005-06-01

    We have described that, in adrenal and Leydig cells, the hormonal regulation of free arachidonic acid (AA) concentration is mediated by the concerted action of two enzymes: an acyl-CoA thioesterase (MTE-I or ARTISt) and an acyl-CoA synthetase (ACS4). In this study we analyzed the potential regulation of these proteins by hormonal action in steroidogenic cells. We demonstrated that ACS4 is rapidly induced by adrenocorticotropin (ACTH) and cAMP in Y1 adrenocortical cells. The hormone and its second messenger increased ACS4 protein levels in a time and concentration dependent way. Maximal concentration of ACTH (10 mIU/ml) produced a significant effect after 15 min of treatment and exerted the highest increase (3-fold) after 30 min. Moreover, (35)S-methionine incorporation showed that the increase in ACS4 protein levels is due to an increase in the de novo synthesis of the protein. On the contrary MTE-I protein levels in Y1 and MA-10 cells did not change after steroidogenic stimuli. In contrast with the effect observed on protein levels, stimulation of both cell lines did not change ACS4 RNA levels during the first hour of treatment, indicating that the effect of both stimuli is exerted at the level of ACS4 protein synthesis.StAR protein induction has a key role on the activation of steroidogenesis since this protein increases the rate of the limiting step of the whole process. In agreement with the fact that the inhibition of ACS4 activity by triacsin C blocks cAMP-stimulated progesterone production by MA-10 Leydig cells, here we demonstrated that ACS4 inhibition also reduces StAR protein levels. Moreover, exogenous AA was able to overcome the effect of triacsin C on both events, StAR induction and steroidogenesis. These results were confirmed by experiments using ACS4-targeted siRNA which result in a reduction in both ACS4 and StAR protein levels. The concomitant decrease in steroid production was overcome by the addition of AA to the knocked-out cells. In summary

  13. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain.

    PubMed

    Kasuya, Fumiyo; Kazuhiro, Misumi; Tatsuya, Hasegawa; Nakamoto, Kazuo; Tokuyama, Shogo; Masuyama, Teiichi

    2013-02-01

    Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC(50) = 78.7 and 64.7 µM) and but also for palmitic acid (IC(50) = 236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC(50) = 411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC(50) = 57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver.

  14. Expression of Fas ligand in murine ovary.

    PubMed

    Guo, M W; Xu, J P; Mori, E; Sato, E; Saito, S; Mori, T

    1997-05-01

    Corresponding to the expression of Fas in the ovarian oocytes as previously reported (Guo et al., Biochem Biophys Res Commun 1994; 203:1438-1446; Mori et al., JSIR 1995; 9:49-50), the expression of Fas ligand (FasL) in the ovarian follicle was found to be restricted in the area of granulosa cells by the indirect immunofluorescence (IIF) test. Reverse transcriptase/polymerase chain reaction (RT/PCR) technique coupled with Southern blot hybridization analysis showed that the highest level of FasL mRNA was demonstrated in murine ovaries and granulosa cells 1 day after the administration of pregnant mare's serum gonadotropin (PMSG), while the level of FasL mRNA became very weak on the day 5, respectively. The observed gradual decrease in FasL mRNA could not be attributed to a generalized degradation of cellular RNA during atresia, as evidenced by the presence of constitutive expression of elongation factor 1 alpha (EF-1 alpha) mRNA in murine ovaries and granulosa cells treated with PMSG. Furthermore, in situ hybridization analysis with a FasL-specific probe confirmed that FasL was specifically localized in the granulosa cells of most follicles and its expression was regulated by PMSG administration. FasL localized in granulosa cells might possibly play an important role in the formation of the ovarian atretic follicles, most likely depending on PMSG administration. PMID:9196798

  15. Characterization of inhibitors acting at the synthetase site of Escherichia coli asparagine synthetase B.

    PubMed

    Boehlein, S K; Nakatsu, T; Hiratake, J; Thirumoorthy, R; Stewart, J D; Richards, N G; Schuster, S M

    2001-09-18

    Asparagine synthetase catalyzes the ATP-dependent formation of L-asparagine from L-aspartate and L-glutamine, via a beta-aspartyl-AMP intermediate. Since interfering with this enzyme activity might be useful for treating leukemia and solid tumors, we have sought small-molecule inhibitors of Escherichia coli asparagine synthetase B (AS-B) as a model system for the human enzyme. Prior work showed that L-cysteine sulfinic acid competitively inhibits this enzyme by interfering with L-aspartate binding. Here, we demonstrate that cysteine sulfinic acid is also a partial substrate for E. coli asparagine synthetase, acting as a nucleophile to form the sulfur analogue of beta-aspartyl-AMP, which is subsequently hydrolyzed back to cysteine sulfinic acid and AMP in a futile cycle. While cysteine sulfinic acid did not itself constitute a clinically useful inhibitor of asparagine synthetase B, these results suggested that replacing this linkage by a more stable analogue might lead to a more potent inhibitor. A sulfoximine reported recently by Koizumi et al. as a competitive inhibitor of the ammonia-dependent E. coli asparagine synthetase A (AS-A) [Koizumi, M., Hiratake, J., Nakatsu, T., Kato, H., and Oda, J. (1999) J. Am. Chem. Soc. 121, 5799-5800] can be regarded as such a species. We found that this sulfoximine also inhibited AS-B, effectively irreversibly. Unlike either the cysteine sulfinic acid interaction with AS-B or the sulfoximine interaction with AS-A, only AS-B productively engaged in asparagine synthesis could be inactivated by the sulfoximine; free enzyme was unaffected even after extended incubation with the sulfoximine. Taken together, these results support the notion that sulfur-containing analogues of aspartate can serve as platforms for developing useful inhibitors of AS-B. PMID:11551215

  16. Soluble Fas and the −670 Polymorphism of Fas in Lupus Nephritis

    PubMed Central

    Bollain-y-Goytia, Juan José; Arellano-Rodríguez, Mariela; Torres-Del-Muro, Felipe de Jesús; Daza-Benítez, Leonel; Francisco Muñoz-Valle, José; Avalos-Díaz, Esperanza; Herrera-Esparza, Rafael

    2014-01-01

    This study was performed to clarify the role of soluble Fas (sFas) in lupus nephritis (LN) and establish a potential relationship between LN and the −670 polymorphism of Fas in 67 patients with systemic lupus erythematosus (SLE), including a subset of 24 LN patients with proteinuria. Additionally, a group of 54 healthy subjects (HS) was included. The allelic frequency of the −670 polymorphism of Fas was determined using PCR-RFLP analysis, and sFas levels were assessed by ELISA. Additionally, the WT-1 protein level in urine was measured. The Fas receptor was determined in biopsies by immunohistochemistry (IHC) and in situ hybridization (FISH) and apoptotic features by TUNEL. Results. The −670 Fas polymorphism showed that the G allele was associated with increased SLE susceptibility, with an odds ratio (OR) of 1.86. The sFas was significantly higher in LN patients with the G/G genotype, and this subgroup exhibited correlations between the sFas level and proteinuria and increased urinary WT-1 levels. LN group shows increased expression of Fas and apoptotic features. In conclusion, our results indicate that the G allele of the −670 polymorphism of Fas is associated with genetic susceptibility in SLE patients with elevated levels of sFas in LN with proteinuria. PMID:25505993

  17. Evolution of lanthipeptide synthetases

    PubMed Central

    Zhang, Qi; Yu, Yi; Vélasquez, Juan E.; van der Donk, Wilfred A.

    2012-01-01

    Lanthionine-containing peptides (lanthipeptides) are a family of ribosomally synthesized and posttranslationally modified peptides containing (methyl)lanthionine residues. Here we present a phylogenomic study of the four currently known classes of lanthipeptide synthetases (LanB and LanC for class I, LanM for class II, LanKC for class III, and LanL for class IV). Although they possess very similar cyclase domains, class II–IV synthetases have evolved independently, and LanB and LanC enzymes appear to not always have coevolved. LanM enzymes from various phyla that have three cysteines ligated to a zinc ion (as opposed to the more common Cys-Cys-His ligand set) cluster together. Most importantly, the phylogenomic data suggest that for some scaffolds, the ring topology of the final lanthipeptides may be determined in part by the sequence of the precursor peptides and not just by the biosynthetic enzymes. This notion was supported by studies with two chimeric peptides, suggesting that the nisin and prochlorosin biosynthetic enzymes can produce the correct ring topologies of epilancin 15X and lacticin 481, respectively. These results highlight the potential of lanthipeptide synthetases for bioengineering and combinatorial biosynthesis. Our study also demonstrates unexplored areas of sequence space that may be fruitful for genome mining. PMID:23071302

  18. Purification of isopenicillin N synthetase.

    PubMed Central

    Pang, C P; Chakravarti, B; Adlington, R M; Ting, H H; White, R L; Jayatilake, G S; Baldwin, J E; Abraham, E P

    1984-01-01

    Isopenicillin N synthetase was extracted from Cephalosporium acremonium and purified about 200-fold. The product showed one major protein band, coinciding with synthetase activity, when subjected to electrophoresis in polyacrylamide gel. An isopenicillin N synthetase from Penicillium chrysogenum was purified about 70-fold by similar procedures. The two enzymes resemble each other closely in their Mr, in their mobility on electrophoresis in polyacrylamide gel and in their requirement for Fe2+ and ascorbate for maximum activity. Preliminary experiments have shown that a similar isopenicillin N synthetase can be extracted from Streptomyces clavuligerus. PMID:6435606

  19. Molecular cloning and characterisation of the rock bream, Oplegnathus fasciatus, Fas (CD95/APO-1), and its expression analysis in response to bacterial or viral infection

    PubMed Central

    Jeong, Ji-Min; Kim, Ju-Won; Park, Hyoung-Jun; Song, Jeong-Hun; Kim, Do-Hyung; Park, Chan-Il

    2011-01-01

    Fas belongs to the tumour necrosis factor (TNF) receptor superfamily and can transmit a death signal leading to apoptosis. In the present study, we isolated the full-length cDNA for rock bream (Oplegnathus fasciatus) Fas (RbFas). The full-length RbFas cDNA was 1770 bp long and contained an open reading frame of 957 bp that encoded 319 amino acid residues with a predicted molecular mass of 35.1 kDa. The 319 amino-acid predicted RbFas sequence is homologous to other Fas sequences, contains three cysteine-rich domains and a death domain (DD) and two potential N-glycosylation sites. Expression of RbFas mRNA was detected in nine different tissues from healthy rock bream and was the highest in red blood cells. In analyses of mitogen-stimulated RbFas expression in peripheral blood leucocytes, expression of RbFas mRNA was observed between 1 and 36 h after stimulation with LPS, and 1 and 3 h stimulation with poly I:C. In the case of bacterial injection, the RbFas transcript peaked 6 h after injection in both the kidney and the spleen. Otherwise, the RbFas transcript peaked after 1 h in spleen and 6 h in kidney following injection with RSIV. PMID:24371547

  20. Phosphorylation of five aminoacyl-tRNA synthetases in reticulocytes and identification of the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver

    SciTech Connect

    Pendergast, A.M.; Traugh, J.A.

    1986-05-01

    Five aminoacyl-tRNA synthetases in the high molecular weight complex were phosphorylated in rabbit reticulocytes following labeling with /sup 32/P. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, aspartyl- and methionyl-tRNA synthetases. In addition, a 37,000 dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with /sup 32/P in the presence of 8-bromo-cAMP and o, the 3-isobutyl-1-methylxanthine resulted in a six-fold increase in phosphorylation of the glutaminyl-tRNA synthetase, a two-fold increase in phosphorylation of the aspartyl-tRNA synthetase, and a 50 to 60% decrease in phosphorylation of the glutamyl-, methionyl- and lysyl-tRNA synthetases and the M/sub r/ 37,000 protein. When the site(s) on the glutaminyl-tRNA synthetase phosphorylated in response to 8-bromo-cAMP was analyzed by two-dimensional tryptic phosphopeptide mapping, a single phosphopeptide was observed which was identical to that obtained in vitro upon phosphorylation with the cAMP-dependent protein kinase. Also, the authors identify here, the protein kinases phosphorylating threonyl-tRNA synthetase from rat liver. They are protease activated kinase I, the cAMP-dependent protein kinase and protein kinase C.

  1. Peptide synthetase gene in Trichoderma virens.

    PubMed

    Wilhite, S E; Lumsden, R D; Straney, D C

    2001-11-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated N(delta)-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used.

  2. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  3. Engagement of Fas on Macrophages Modulates Poly I:C Induced Cytokine Production with Specific Enhancement of IP-10

    PubMed Central

    Lyons, Caitriona; Fernandes, Philana; Fanning, Liam J.

    2015-01-01

    Viral double-stranded RNA (dsRNA) is recognised by pathogen recognition receptors such as Toll-Like Receptor 3 (TLR3) and retinoic acid inducible gene-I (RIG-I), and results in cytokine and interferon production. Fas, a well characterised death receptor, has recently been shown to play a role in the inflammatory response. In this study we investigated the role of Fas in the anti-viral immune response. Stimulation of Fas on macrophages did not induce significant cytokine production. However, activation of Fas modified the response of macrophages to the viral dsRNA analogue poly I:C. In particular, poly I:C-induced IP-10 production was significantly enhanced. A similar augmentation of IP-10 by Fas was observed following stimulation with both poly A:U and Sendai virus. Fas activation suppressed poly I:C-induced phosphorylation of the MAP kinases p38 and JNK, while overexpression of the Fas adaptor protein, Fas-associated protein with death domain (FADD), activated AP-1 and inhibited poly I:C-induced IP-10 production. Consistent with an inhibitory role for AP-1 in IP-10 production, mutation of the AP-1 binding site on the IP-10 promoter resulted in augmented poly I:C-induced IP-10. These results demonstrate that engagement of the Fas receptor plays a role in modifying the innate immune response to viral RNA. PMID:25849666

  4. Functional expansion of human tRNA synthetases achieved by structural inventions.

    PubMed

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-21

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.

  5. Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.

    PubMed

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli

    2005-10-24

    Previously, we found that safrole oxide could trigger vascular endothelial cell (VEC) apoptosis. In this study, to investigate its mechanism to induce apoptosis in VECs, the activities of nitric oxide synthetase and phosphatidylcholine specific phospholipase C, the level of reactive oxygen species and the expressions of Fas, integrin beta4 and P53 were analyzed. The data showed that safrole oxide induced apoptosis by increasing the expressions of Fas, integrin beta4 and P53, and depressing the activity of Ca(2+)-independent phosphatidylcholine-specific phospholipase C and intracellular reactive oxygen species levels in VECs.

  6. Rosiglitazone Inhibits Acyl-CoA Synthetase Activity and Fatty Acid Partitioning to Diacylglycerol and Triacylglycerol via a Peroxisome Proliferator–Activated Receptor-γ–Independent Mechanism in Human Arterial Smooth Muscle Cells and Macrophages

    PubMed Central

    Askari, Bardia; Kanter, Jenny E.; Sherrid, Ashley M.; Golej, Deidre L.; Bender, Andrew T.; Liu, Joey; Hsueh, Willa A.; Beavo, Joseph A.; Coleman, Rosalind A.; Bornfeldt, Karin E.

    2010-01-01

    Rosiglitazone is an insulin-sensitizing agent that has recently been shown to exert beneficial effects on atherosclerosis. In addition to peroxisome proliferator–activated receptor (PPAR)-γ, rosiglitazone can affect other targets, such as directly inhibiting recombinant long-chain acyl-CoA synthetase (ACSL)-4 activity. Because it is unknown if ACSL4 is expressed in vascular cells involved in atherosclerosis, we investigated the ability of rosiglitazone to inhibit ACSL activity and fatty acid partitioning in human and murine arterial smooth muscle cells (SMCs) and macrophages. Human and murine SMCs and human macrophages expressed Acsl4, and rosiglitazone inhibited Acsl activity in these cells. Furthermore, rosiglitazone acutely inhibited partitioning of fatty acids into phospholipids in human SMCs and inhibited fatty acid partitioning into diacylglycerol and triacylglycerol in human SMCs and macrophages through a PPAR-γ–independent mechanism. Conversely, murine macrophages did not express ACSL4, and rosiglitazone did not inhibit ACSL activity in these cells, nor did it affect acute fatty acid partitioning into cellular lipids. Thus, rosiglitazone inhibits ACSL activity and fatty acid partitioning in human and murine SMCs and in human macrophages through a PPAR-γ–independent mechanism likely to be mediated by ACSL4 inhibition. Therefore, rosiglitazone might alter the biological effects of fatty acids in these cells and in atherosclerosis. PMID:17259370

  7. Cytotoxicity Mediated by the Fas Ligand (FasL)-activated Apoptotic Pathway in Stem Cells*

    PubMed Central

    Mazar, Julia; Thomas, Molly; Bezrukov, Ludmila; Chanturia, Alexander; Pekkurnaz, Gulcin; Yin, Shurong; Kuznetsov, Sergei A.; Robey, Pamela G.; Zimmerberg, Joshua

    2009-01-01

    Whereas it is now clear that human bone marrow stromal cells (BMSCs) can be immunosuppressive and escape cytotoxic lymphocytes (CTLs) in vitro and in vivo, the mechanisms of this phenomenon remain controversial. Here, we test the hypothesis that BMSCs suppress immune responses by Fas-mediated apoptosis of activated lymphocytes and find both Fas and FasL expression by primary BMSCs. Jurkat cells or activated lymphocytes were each killed by BMSCs after 72 h of co-incubation. In comparison, the cytotoxic effect of BMSCs on non-activated lymphocytes and on caspase-8(−/−) Jurkat cells was extremely low. Fas/Fc fusion protein strongly inhibited BMSC-induced lymphocyte apoptosis. Although we detected a high level of Fas expression in BMSCs, stimulation of Fas with anti-Fas antibody did not result in the expected BMSC apoptosis, regardless of concentration, suggesting a disruption of the Fas activation pathway. Thus BMSCs may have an endogenous mechanism to evade Fas-mediated apoptosis. Cumulatively, these data provide a parallel between adult stem/progenitor cells and cancer cells, consistent with the idea that stem/progenitor cells can use FasL to prevent lymphocyte attack by inducing lymphocyte apoptosis during the regeneration of injured tissues. PMID:19531476

  8. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  9. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  10. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  11. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2010-05-11

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  12. Novel Reaction of Succinyl Coenzyme A (Succinyl-CoA) Synthetase: Activation of 3-Sulfinopropionate to 3-Sulfinopropionyl-CoA in Advenella mimigardefordensis Strain DPN7T during Degradation of 3,3′-Dithiodipropionic Acid ▿ †

    PubMed Central

    Schürmann, Marc; Wübbeler, Jan Hendrik; Grote, Jessica; Steinbüchel, Alexander

    2011-01-01

    The sucCD gene of Advenella mimigardefordensis strain DPN7T encodes a succinyl coenzyme A (succinyl-CoA) synthetase homologue (EC 6.2.1.4 or EC 6.2.1.5) that recognizes, in addition to succinate, the structural analogues 3-sulfinopropionate (3SP) and itaconate as substrates. Accumulation of 3SP during 3,3′-dithiodipropionic acid (DTDP) degradation was observed in Tn5::mob-induced mutants of A. mimigardefordensis strain DPN7T disrupted in sucCD and in the defined deletion mutant A. mimigardefordensis ΔsucCD. These mutants were impaired in growth with DTDP and 3SP as the sole carbon source. Hence, it was proposed that the succinyl-CoA synthetase homologue in A. mimigardefordensis strain DPN7T activates 3SP to the corresponding CoA-thioester (3SP-CoA). The putative genes coding for A. mimigardefordensis succinyl-CoA synthetase (SucCDAm) were cloned and heterologously expressed in Escherichia coli BL21(DE3)/pLysS. Purification and characterization of the enzyme confirmed its involvement during degradation of DTDP. 3SP, the cleavage product of DTDP, was converted into 3SP-CoA by the purified enzyme, as demonstrated by in vitro enzyme assays. The structure of 3SP-CoA was verified by using liquid chromatography-electrospray ionization-mass spectrometry. SucCDAm is Mg2+ or Mn2+ dependent and unspecific regarding ATP or GTP. In kinetic studies the enzyme showed highest enzyme activity and substrate affinity with succinate (Vmax = 9.85 ± 0.14 μmol min−1 mg−1, Km = 0.143 ± 0.001 mM). In comparison to succinate, activity with 3SP was only ca. 1.2% (Vmax = 0.12 ± 0.01 μmol min−1 mg−1) and the affinity was 6-fold lower (Km = 0.818 ± 0.046 mM). Based on the present results, we conclude that SucCDAm is physiologically associated with the citric acid cycle but is mandatory for the catabolic pathway of DTDP and its degradation intermediate 3SP. PMID:21515777

  13. Lipopolysaccharides (LPS), up-regulate the IL-1-mRNA and down-regulate the glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS)-mRNAs in astroglial primary cultures.

    PubMed

    Letournel-Boulland, M L; Fages, C; Rolland, B; Tardy, M

    1994-01-01

    The effect of lipopolysaccharides (LPS), a component of gram-negative bacteria, has been studied in both exponentially growing and confluent morphologically differentiated astroglial cells in primary cultures. The expression of glial fibrillary acidic protein (GFAP) and Glutamine Synthetase (GS) were investigated in parallel with proliferation and expression of IL-1 beta-mRNA. During the exponential growth, proliferation was severely inhibited by LPS. The effect was time- and dose-dependent. On confluent differentiated cells LPS induced an inhibition of cell proliferation which was associated with a down-regulation of GFAP-mRNA, GS-mRNA and GS expressions and with a transitory increase in IL-1 beta mRNA expression. The observed effects might interact with the astroglial developmental program and with the astroglial function.

  14. Butachlor impact on protein, free amino acid and glutamine contents, and on activity levels of aminotransferases, glutamate dehydrogenase and glutamine synthetase in the fresh water snail, Pila globosa (Swainson).

    PubMed

    Rajyalakshmi, T; Srinivas, T; Swamy, K V; Mohan, P M

    1996-08-01

    Biochemical changes followed in the freshwater snail Pila globosa (Swainson) during exposure to sublethal concentrations of the herbicide butachlor (26.6 ppm) in the ambient medium, at 3,6,12,24 and 48 h intervals, were marked by a significant decrease in total and soluble proteins, and an increase in free amino acids in foot and hepatopancreas up to 12 h before gradually recovering. Aminotransferase activities and glutamine content decreased during the early periods of exposure, while glutamate dehydrogenase activity increased. After an initial elevation, glutamate synthetase activity decreased at later intervals. Maximum effect of butachlor on the enzymes was seen after 12 h exposure. The extent of increase or decrease in different parameters examined varied between the two tissues studied. These changes are discussed in relation to the toxic stress of butachlor.

  15. Fas/FasL pathway-mediated alveolar macrophage apoptosis involved in human silicosis

    PubMed Central

    Yao, San-qiao; Rojanasakul, Liying Wang; Chen, Zhi-yuan; Xu, Ying-jun; Bai, Yu-ping; Chen, Gang; Zhang, Xi-ying; Zhang, Chun-min; Yu, Yan-qin; Shen, Fu-hai; Yuan, Ju-xiang; Chen, Jie

    2016-01-01

    In vitro and in vivo studies have demonstrated that lung cell apoptosis is associated with lung fibrosis; however the relationship between apoptosis of alveolar macrophages (AMs) and human silicosis has not been addressed. In the present study, AM apoptosis was determined in whole-lung lavage fluid from 48 male silicosis patients, 13 male observers, and 13 male healthy volunteers. The relationships between apoptosis index (AI) and silica exposure history, soluble Fas (sFas)/membrane-bound Fas (mFas), and caspase-3/caspase-8 were analyzed. AI, mFas, and caspase-3 were significantly higher in lung lavage fluids from silicosis patients than those of observers or healthy volunteers, but the level of sFas demonstrated a decreasing trend. AI was related to silica exposure, upregulation of mFas, and activation of caspase-3 and -8, as well as influenced by smoking status after adjusting for confounding factors. These results indicate that AM apoptosis could be used as a potential biomarker for human silicosis, and the Fas/FasL pathway may regulate this process. The present data from human lung lavage samples may help to understand the mechanism of silicosis and in turn lead to strategies for preventing or treating this disease. PMID:21910009

  16. Osteoprotegerin Induces Apoptosis of Osteoclasts and Osteoclast Precursor Cells via the Fas/Fas Ligand Pathway.

    PubMed

    Liu, Wei; Xu, Chao; Zhao, Hongyan; Xia, Pengpeng; Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Bian, Jianchun; Yuan, Yan; Liu, Zongping

    2015-01-01

    Osteoprotegerin (OPG) is known to inhibit differentiation and activation of osteoclasts (OCs) by functioning as a decoy receptor blocking interactions between RANK and RANKL. However, the exact role of OPG in the survival/apoptosis of OCs remains unclear. OPG caused increased rates of apoptosis of both OCs and osteoclast precursor cells (OPCs). The expression of Fas and activated caspase-8 was increased by both 20 ng/mL and 40 ng/mL of OPG, but was markedly decreased at 80 ng/mL. Interestingly, we noted that while levels of Fas ligand (FasL) increased with increasing doses of OPG, the soluble form of FasL in the supernatant decreased. The results of a co-immunoprecipitation assay suggested that the decrease of sFasL might be caused by the binding of OPG. This would block the inhibition of the apoptosis of OCs and OPCs. Furthermore, changes in expression levels of Bax/Bcl-2, cleaved-caspase-9, cleaved-caspased-3 and the translocation of cytochrome c, illustrated that OPG induced apoptosis of OCs and OPCs via the classic Fas/FasL apoptosis pathway, and was mediated by mitochondria. Altogether, our results demonstrate that OPG induces OCs and OPCs apoptosis partly by the Fas/FasL signaling pathway.

  17. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells

    PubMed Central

    Golej, Deidre L.; Askari, Bardia; Kramer, Farah; Barnhart, Shelley; Vivekanandan-Giri, Anuradha; Pennathur, Subramaniam; Bornfeldt, Karin E.

    2011-01-01

    Long-chain acyl-CoA synthetases (ACSLs) catalyze the thioesterification of long-chain FAs into their acyl-CoA derivatives. Purified ACSL4 is an arachidonic acid (20:4)-preferring ACSL isoform, and ACSL4 is therefore a probable regulator of lipid mediator production in intact cells. Eicosanoids play important roles in vascular homeostasis and disease, yet the role of ACSL4 in vascular cells is largely unknown. In the present study, the ACSL4 splice variant expressed in human arterial smooth muscle cells (SMCs) was identified as variant 1. To investigate the function of ACSL4 in SMCs, ACSL4 variant 1 was overexpressed, knocked-down by small interfering RNA, or its enzymatic activity acutely inhibited in these cells. Overexpression of ACSL4 resulted in a markedly increased synthesis of arachidonoyl-CoA, increased 20:4 incorporation into phosphatidylethanolamine, phosphatidylinositol, and triacylglycerol, and reduced cellular levels of unesterified 20:4. Accordingly, secretion of prostaglandin E2 (PGE2) was blunted in ACSL4-overexpressing SMCs compared with controls. Conversely, acute pharmacological inhibition of ACSL4 activity resulted in increased release of PGE2. However, long-term downregulation of ACSL4 resulted in markedly reduced PGE2 secretion. Thus, ACSL4 modulates PGE2 release from human SMCs. ACSL4 may regulate a number of processes dependent on the release of arachidonic acid-derived lipid mediators in the arterial wall. PMID:21242590

  18. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    SciTech Connect

    Husain, Zaheed; Almeciga, Ingrid; Delgado, Julio C.; Clavijo, Olga P.; Castro, Januario E.; Belalcazar, Viviana; Pinto, Clara; Zuniga, Joaquin; Romero, Viviana; Yunis, Edmond J. . E-mail: edmond_yunis@dfci.harvard.edu

    2006-08-01

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60 cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.

  19. Fas and FasL expression in the spinal cord following cord hemisection in the monkey.

    PubMed

    Jia, Liu; Yu, Zou; Hui, Li; Yu-Guang, Guan; Xin-Fu, Zhou; Chao, You; Yanbin, Xiyang; Xi, Zhan; Jun, Wang; Xin-Hua, Heng; Xin-Hua, Hen; Ting-Hua, Wang

    2011-03-01

    The changes of endogenous Fas/FasL in injured spinal cord, mostly in primates, are not well known. In this study, we investigated the temporal changes in the expression of Fas and FasL and explored their possible roles in the ventral horn of the spinal cord and associated precentral gyrus following T(11) spinal cord hemisection in the adult rhesus monkey. A significant functional improvement was seen with the time going on in monkeys subjected to cord hemisection. Apoptotic cells were also seen in the ventral horn of injured spinal cord with TUNEL staining, and a marked increase presents at 7 days post operation (dpo). Simultaneously, the number of Fas and FasL immunoreactive neurons in the spinal cords caudal and rostral to injury site and their intracellular optical density (OD) in the ipsilateral side of injury site at 7 dpo increased significantly more than that of control group and contralateral sides. This was followed by a decrease and returned to normal level at 60 dpo. No positive neurons were observed in precentral gyrus. The present results may provide some insights to understand the role of Fas/FasL in the spinal cord but not motor cortex with neuronal apoptosis and neuroplasticity in monkeys subjected to hemisection spinal cord injury. PMID:21181266

  20. FAS and FAS-L Genotype and Expression in Patients With Recurrent Pregnancy Loss

    PubMed Central

    Banzato, Priscilla Chamelete Andrade; Daher, Silvia; Traina, Évelyn; Torloni, Maria Regina; Gueuvoghlanian-Silva, Bárbara Yasmin; Puccini, Renata Fiorini; Pendeloski, Karen Priscilla Tezotto

    2013-01-01

    We assessed FAS and FAS-L gene polymorphisms and messenger RNA (mRNA) levels in patients with recurrent pregnancy loss (RPL). This case–control study compared 129 women with RPL with 235 healthy multiparous women (control group). Genomic DNA and total mRNA were extracted from whole blood, and polymorphisms genotyping was performed by polymerase chain reaction (PCR). Messenger RNA expression levels were analyzed by real-time PCR. Data were analyzed by chi-square and Fisher exact tests; P < .05 was considered significant. There were no significant differences in the FAS (670 A/G) genotype or allelic frequencies between the RPL and control groups. We found significant differences in the FAS-L (844 C/T) genotype and allelic frequencies between women with RPL and controls. Patients with RPL had significantly higher FAS-L expression. Our data suggest that FAS-L gene polymorphism is associated with increased susceptibility to RPL. Moreover, women with RPL seem to abnormally express FAS-FAS-L molecules. PMID:23420824

  1. Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes.

    PubMed

    Fulks, R M; Stadtman, E R

    1985-12-13

    When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but

  2. The Role of Fas/Fas Ligand System in the Pathogenesis of Liver Cirrhosis and Hepatocellular Carcinoma

    PubMed Central

    Hammam, Olfat; Mahmoud, Ola; Zahran, Manal; Aly, Sohair; Hosny, Karim; Helmy, Amira; Anas, Amgad

    2012-01-01

    Background The Fas receptor/ligand system including soluble forms is the most important apoptotic initiator in the liver. Dysregulation of this pathway may contribute to abnormal cell proliferation and cell death and is regarded as one of the mechanisms preventing the immune system from rejecting the tumor cells. Objectives To analyze the role of Fas system Fas/ Fas ligand (Fas/ FasL) in the multi-step process of hepatic fibrosis/carcinogenesis, and to use of the serum markers as possible candidate biomarkers for early detection of hepatocellular carcinoma (HCC). Patients and Methods Ninety patients were enrolled: 30 cases of chronic hepatitis C (CHC) without cirrhosis, 30 cases of CHC with liver cirrhosis, and 30 cases of HCC and hepatitis V virus (HCV) infection. Ten wedge liver biopsies, taken during laparoscopic cholecystectomy, were served as normal controls. Serum soluble Fas (sFas) levels were measured using ELISA technique; Fas and FasL proteins were detected in hepatic tissue by indirect Immuno-histochemical technique (IHC); electron microscopic (EM) and immune electron microscopic examinations were performed for detection of Fas expression on lymphocytes. Results Hepatic expression of both Fas and FasL as well as expression of Fas on separated lymphocytes were significantly increased in the diseased groups (P < 0. 01) compared to the control specimens. The highest expression was noticed in CHC specimens, particularly with the necro-inflammatory activity and advancement of the fibrosis. The sFas in cirrhotic patients and HCC were significantly higher than that in normal controls and CHC without cirrhosis group (P < 0.01). Conclusions Apoptosis and the Fas system were significantly involved in the process of converting liver cirrhosis into hepatocellular carcinoma. Down-regulation of Fas expression, up regulation of FasL expression in hepatocytes, and elevation of serum sFas levels were important in tumor evasion from immune surveillance, and in hepatic

  3. The evolution of Class II Aminoacyl-tRNA synthetases and the first code.

    PubMed

    Smith, Temple F; Hartman, Hyman

    2015-11-30

    Class II Aminoacyl-tRNA synthetases are a set of very ancient multi domain proteins. The evolution of the catalytic domain of Class II synthetases can be reconstructed from three peptidyl-hairpins. Further evolution from this primordial catalytic core leads to a split of the Class II synthetases into two divisions potentially associated with the operational code. The earliest form of this code likely coded predominantly Glycine (Gly), Proline (Pro), Alanine (Ala) and "Lysine"/Aspartic acid (Lys/Asp). There is a paradox in these synthetases beginning with a hairpin structure before the Genetic Code existed. A resolution is found in the suggestion that the primordial Aminoacyl synthetases formed in a transition from a Thioester world to a Phosphate ester world. PMID:26472323

  4. Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery.

    PubMed

    Ma, Chi-Jiao; Liu, Xu; Che, Lu; Liu, Zhi-Heng; Samartzis, Dino; Wang, Hai-Qiang

    2015-01-01

    As a main contributing factor to low back pain, intervertebral disc degeneration (IDD) is the fundamental basis for various debilitating spinal diseases. The pros and cons of current treatment modalities necessitate biological treatment strategies targeting for reversing or altering the degeneration process in terms of molecules or genes. The advances in stem cell research facilitate the studies aiming for possible clinical application of stem cell therapies for IDD. Human NP cells are versatile with cell morphology full of variety, capable of synthesizing extracellular matrix components, engulfing substances by autophagy and phagocytosis, mitochondrial vacuolization indicating dysfunction, expressing Fas and FasL as significant omens of immune privileged sites. Human discs belong to immune privilege organs with functional FasL expression, which can interact with invasive immune cells by Fas-FasL regulatory machinery. IDD is characterized by decreased expression level of FasL with dysfunctional FasL, which in turn unbalances the interaction between NP cells and immune cells. Certain modulation factors might play a role in the process, such as miR-155. Accumulating evidence indicates that Fas-FasL network expresses in a variety of stem cells. Given the expression of functional FasL and insensitive Fas in stem cells (we term as FasL privilege), transplantation of stem cells into the disc may regenerate the degenerative disc by not only differentiating into NP-like cells, increasing extracellular matrix, but also reinforce immune privilege via interaction with immune cells by Fas-FasL network.

  5. The signaling pathways by which the Fas/FasL system accelerates oocyte aging

    PubMed Central

    Zhu, Jiang; Lin, Fei-Hu; Zhang, Jie; Lin, Juan; Li, Hong; Li, You-Wei; Tan, Xiu-Wen; Tan, Jing-He

    2016-01-01

    In spite of great efforts, the mechanisms for postovulatory oocyte aging are not fully understood. Although our previous work showed that the FasL/Fas signaling facilitated oocyte aging, the intra-oocyte signaling pathways are unknown. Furthermore, the mechanisms by which oxidative stress facilitates oocyte aging and the causal relationship between Ca2+ rises and caspase-3 activation and between the cell cycle and apoptosis during oocyte aging need detailed investigations. Our aim was to address these issues by studying the intra-oocyte signaling pathways for Fas/FasL to accelerate oocyte aging. The results indicated that sFasL released by cumulus cells activated Fas on the oocyte by increasing reactive oxygen species via activating NADPH oxidase. The activated Fas triggered Ca2+ release from the endoplasmic reticulum by activating phospholipase C-γ pathway and cytochrome c pathway. The cytoplasmic Ca2+ rises activated calcium/calmodulin-dependent protein kinase II (CaMKII) and caspase-3. While activated CaMKII increased oocyte susceptibility to activation by inactivating maturation-promoting factor (MPF) through cyclin B degradation, the activated caspase-3 facilitated further Ca2+ releasing that activates more caspase-3 leading to oocyte fragmentation. Furthermore, caspase-3 activation and fragmentation were prevented in oocytes with a high MPF activity, suggesting that an oocyte must be in interphase to undergo apoptosis. PMID:26869336

  6. In vivo analysis of Fas/FasL interactions in HIV-infected patients.

    PubMed Central

    Badley, A D; Dockrell, D H; Algeciras, A; Ziesmer, S; Landay, A; Lederman, M M; Connick, E; Kessler, H; Kuritzkes, D; Lynch, D H; Roche, P; Yagita, H; Paya, C V

    1998-01-01

    Recent insights into the pharmacological control of HIV replication and the molecular mechanisms of peripheral T cells homeostasis allowed us to investigate in vivo the mechanisms mediating T cell depletion in HIV-infected patients. Before the initiation of highly active antiretroviral therapy (HAART), a high degree of lymphoid tissue apoptosis is present, which is reduced upon HAART initiation (P < 0.001) and directly correlates with reduction of viral load and increases of peripheral T lymphocytes (P < 0.01). Because Fas/FasL interactions play a key role in peripheral T lymphocyte homeostasis, we investigated the susceptibility to Fas-mediated apoptosis in peripheral T lymphocytes and of FasL expression in lymphoid tissue before and during HAART. High levels of Fas-susceptibility found in peripheral CD4 T lymphocytes before HAART were significantly reduced after HAART, coinciding with decreases in viral load (P = 0.018) and increases in peripheral CD4 T lymphocyte counts (P < 0.01). However, the increased FasL expression in the lymphoid tissue of HIV-infected individuals was not reduced after HAART. These results demonstrate that lymphoid tissue apoptosis directly correlates with viral load and peripheral T lymphocyte numbers, and suggest that HIV-induced susceptibility to Fas-dependent apoptosis may play a key role in the regulation of T cell homeostasis in HIV-infected individuals. PMID:9649560

  7. A lack of Fas/FasL signalling leads to disturbances in the antiviral response during ectromelia virus infection.

    PubMed

    Bień, K; Sobańska, Z; Sokołowska, J; Bąska, P; Nowak, Z; Winnicka, A; Krzyzowska, M

    2016-04-01

    Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4(+) and CD8(+) T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4(+) and CD8(+) T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4(+) T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response. PMID:26780774

  8. Involvement of the Fas/FasL pathway in the pathogenesis of germ cell tumours of the adult testis.

    PubMed

    Kersemaekers, Anne-Marie F; van Weeren, Pascale C; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2002-04-01

    Induction of apoptosis by Fas ligand (FasL) of Fas-containing cells is a known mechanism involved in the eradication of inappropriate cells during normal development. Alterations of the Fas/FasL pathway have been found in various types of cancer, leading to circumvention of attack of the tumour by the immune system. An alternative way to circumvent eradication by induction of apoptosis is through changes in the downstream inhibitors. For example, Fas-associating phosphatase-1 (Fap-1) binds directly to the Fas receptor and results in a block of the downstream signalling. To shed more light on the role of the Fas/FasL pathway in the development of human testicular germ cell tumours of the adult testis, this study investigated the presence of Fas, FasL, Fap-1, HLA class I and II molecules, CD45 (lymphocyte marker), and CD57 [natural killer (NK) cell marker] by immunohistochemistry on frozen sections of 41 cases of seminomas, non-seminomas, and spermatocytic seminomas. Every germ cell tumour was positive for Fap-1 and negative for HLA classes I and II, like their non-malignant cells of origin. The infiltrating lymphocytes, predominantly present in seminomas, showed consistently positive staining for Fas and CD45, but not for Fap-1. No Fas was found on NK cells. All seminomas and non-seminomas (except teratomas), including their precursor stages, carcinoma in situ, intratubular seminoma and intratubular non-seminoma, showed positive staining for FasL, but not for Fas. Teratoma showed no staining for FasL and was positive for Fas. In contrast, both Fas and FasL were detectable on spermatocytic seminoma. These data indicate a different regulation of the Fas/FasL system in seminoma and spermatocytic seminoma, supporting a separate pathogenesis for these germ cell-derived tumours. The presence of Fap-1 in all histological variants of germ cell tumours might be related to the consistently positive staining in cells of the germ lineage. This study indicates that production of

  9. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.

  10. Recurrent Isolated Neonatal Hemolytic Anemia: Think About Glutathione Synthetase Deficiency.

    PubMed

    Signolet, Isabelle; Chenouard, Rachel; Oca, Florine; Barth, Magalie; Reynier, Pascal; Denis, Marie-Christine; Simard, Gilles

    2016-09-01

    Hemolytic anemia (HA) of the newborn should be considered in cases of rapidly developing, severe, or persistent hyperbilirubinemia. Several causes of corpuscular hemolysis have been described, among which red blood cell enzyme defects are of particular concern. We report a rare case of red blood cell enzyme defect in a male infant, who presented during his first months of life with recurrent and isolated neonatal hemolysis. All main causes were ruled out. At 6.5 months of age, the patient presented with gastroenteritis requiring hospitalization; fortuitously, urine organic acid chromatography revealed a large peak of 5-oxoproline. Before the association between HA and 5-oxoprolinuria was noted, glutathione synthetase deficiency was suspected and confirmed by a low glutathione synthetase concentration and a collapse of glutathione synthetase activity in erythrocytes. Moreover, molecular diagnosis revealed 2 mutations in the glutathione synthetase gene: a previously reported missense mutation (c.[656A>G]; p.[Asp219Gly]) and a mutation not yet described in the binding site of the enzyme (c.[902T>C]; p.[Leu301Pro]). However, 15 days later, a control sample revealed no signs of 5-oxoprolinuria and the clinical history discovered administration of acetaminophen in the 48 hours before hospitalization. Thus, in this patient, acetaminophen exposure allowed the diagnosis of a mild form of glutathione synthetase deficiency, characterized by isolated HA. Early diagnosis is important because treatment with bicarbonate, vitamins C and E, and elimination of trigger factors are recommended to improve long-term outcomes. Glutathione synthetase deficiency should be screened for in cases of unexplained newborn HA. PMID:27581854

  11. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  12. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  13. Fas/FasL in the immune pathogenesis of severe aplastic anemia.

    PubMed

    Liu, C Y; Fu, R; Wang, H Q; Li, L J; Liu, H; Guan, J; Wang, T; Qi, W W; Ruan, E B; Qu, W; Wang, G J; Liu, H; Wu, Y H; Song, J; Xing, L M; Shao, Z H

    2014-05-30

    Fas/FasL protein expression of bone marrow hematopoietic cells was investigated in severe aplastic anemia (SAA) patients. Fas expression was evaluated in CD34(+), GlycoA(+), CD33(+), and CD14(+) cells labeled with monoclonal antibodies in newly diagnosed and remission SAA patients along with normal controls. FasL expression was evaluated in CD8(+) cells in the same manner. In CD34(+) cells, Fas expression was significantly higher in the newly diagnosed SAA group (46.59 ± 27.60%) than the remission (6.12 ± 3.35%; P < 0.01) and control (8.89 ± 7.28%; P < 0.01) groups. In CD14(+), CD33(+), and GlycoA(+) cells, Fas levels were significantly lower in the newly diagnosed SAA group (29.29 ± 9.23, 46.88 ± 14.30, and 15.15 ± 9.26%, respectively) than in the remission (47.23 ± 31.56, 67.22 ± 34.68, and 43.56 ± 26.85%, respectively; P < 0.05) and normal control (51.25 ± 38.36, 72.06 ± 39.88, 50.38 ± 39.88%, respectively; P < 0.05) groups. FasL expression of CD8(+) cells was significantly higher in the newly diagnosed SAA group (89.53 ± 45.68%) than the remission (56.39 ± 27.94%; P < 0.01) and control (48.63 ± 27.38%; P <0.01) groups. No significant differences were observed between the remission and control groups. FasL expression in CD8(+) T cells was significantly higher in newly diagnosed patients, and CD34(+), CD33(+), CD14(+), and GlycoA(+) cells all showed Fas antigen expression. The Fas/FasL pathway might play an important role in excessive hematopoietic cell apoptosis in SAA bone marrow. Furthermore, CD34(+) cells are likely the main targets of SAA immune injury.

  14. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  15. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  16. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    SciTech Connect

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  17. Trifluoperazine regulation of calmodulin binding to Fas: a computational study.

    PubMed

    Pan, Di; Yan, Qi; Chen, Yabing; McDonald, Jay M; Song, Yuhua

    2011-08-01

    Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner.

  18. 7 CFR 1484.70 - Must Cooperators report to FAS?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS PROGRAMS TO HELP DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Reporting, Evaluation, and Compliance § 1484.70 Must Cooperators report to FAS? (a) End-of-year... is available on the FAS home page (http://www.fas.usda.gov/mos/programs/fnotice.html) on the...

  19. 7 CFR 1484.70 - Must Cooperators report to FAS?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS PROGRAMS TO HELP DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Reporting, Evaluation, and Compliance § 1484.70 Must Cooperators report to FAS? (a) End-of-year... is available on the FAS home page (http://www.fas.usda.gov/mos/programs/fnotice.html) on the...

  20. 7 CFR 1484.70 - Must Cooperators report to FAS?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., DEPARTMENT OF AGRICULTURE EXPORT PROGRAMS PROGRAMS TO HELP DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Reporting, Evaluation, and Compliance § 1484.70 Must Cooperators report to FAS? (a) End-of-year... is available on the FAS home page (http://www.fas.usda.gov/mos/programs/fnotice.html) on the...

  1. A Rationally Engineered Misacylating Aminoacyl-Trna Synthetase

    SciTech Connect

    Bullock, T.L.; Rodriguez-Hernandez, A.; Corigliano, E.M.; Perona, J.J.

    2009-05-12

    Information transfer from nucleic acid to protein is mediated by aminoacyl-tRNA synthetases, which catalyze the specific pairings of amino acids with transfer RNAs. Despite copious sequence and structural information on the 22 tRNA synthetase families, little is known of the enzyme signatures that specify amino acid selectivities. Here, we show that transplanting a conserved arginine residue from glutamyl-tRNA synthetase (GluRS) to glutaminyl-tRNA synthetase (GlnRS) improves the K{sub M} of GlnRS for noncognate glutamate. Two crystal structures of this C229R GlnRS mutant reveal that a conserved twin-arginine GluRS amino acid identity signature cannot be incorporated into GlnRS without disrupting surrounding protein structural elements that interact with the tRNA. Consistent with these findings, we show that cumulative replacement of other primary binding site residues in GlnRS, with those of GluRS, only slightly improves the ability of the GlnRS active site to accommodate glutamate. However, introduction of 22 amino acid replacements and one deletion, including substitution of the entire primary binding site and two surface loops adjacent to the region disrupted in C229R, improves the capacity of Escherichia coli GlnRS to synthesize misacylated Glu-tRNA{sup Gln} by 16,000-fold. This hybrid enzyme recapitulates the function of misacylating GluRS enzymes found in organisms that synthesize Gln-tRNA{sup Gln} by an alternative pathway. These findings implicate the RNA component of the contemporary GlnRS-tRNA{sup Gln} complex in mediating amino acid specificity. This role for tRNA may persist as a relic of primordial cells in which the evolution of the genetic code was driven by RNA-catalyzed amino acid-RNA pairing.

  2. Variant human phosphoribosylpyrophosphate synthetase altered in regulatory and catalytic functions.

    PubMed Central

    Becker, M A; Raivio, K O; Bakay, B; Adams, W B; Nyhan, W L

    1980-01-01

    An inherited, structurally abnormal and superactive form of the enzyme 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P) synthetase (EC 2.7.6.1) has been characterized in fibroblasts cultured from a 14-yr-old male (S.M.) with clinical manifestations of uric acid overproduction present since infancy. PP-ribose-P synthetase from the cells of this child showed four- to fivefold greater than normal resistance to purine nucleotide (ADP and GDP) feedback inhibition of enzyme activity and hyperbolic rather than sigmoidal inorganic phosphate (Pi) activation in incompletely dialyzed extracts. Excessive maximal velocity of the enzyme reaction catalyzed by the mutant enzyme was indicated by: enzyme activities twice those of normal at all concentrations of Pi in chromatographed fibroblast extracts; normal affinity constants for substrates and for the activator, Mg2+; and twofold greater than normal activity per immunoreactive enzyme molecule. The mutant enzyme thus possessed deficient regulatory and superactive catalytic properties, two mechanisms previously demonstrated individually to underlie the excessive PPRribose-P and uric acid synthesis of affected members of families with superactive PP-ribose-P synthetases. Increased PP-ribose-P concentration (4-fold) and generation (2.7-fold) and enhanced rates of PP-ribose-P dependent purine synthetic reactions, including purine synthesis de novo, in S.M. fibroblasts confirmed the functional significance of this patient's mutant enzyme. Diminished stability of the variant PP-ribose-P synthetase was manifested in vitro by increased thermal lability and in vivo by deficiency of enzyme activity at Pi concentrations greater than 0.3 mM in hemolysates and by an accelerated, age-related decrement in enzyme activity in lysates of erythrocytes separated by specific density. Despite the diminished amount of PP-ribose-P synthetase in the S.M. erythrocyte population, S.M. erythrocytes had increased PP-ribose-P concentration and increased rates

  3. Inducible resistance to Fas-mediated apoptosis in B cells.

    PubMed

    Rothstein, T L

    2000-12-01

    Apoptosis produced in B cells through Fas (APO-1, CD95) triggering is regulated by signals derived from other surface receptors: CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death, whereas antigen receptor engagement, or IL-4R engagement, inhibits Fas killing and in so doing induces a state of Fas-resistance, even in otherwise sensitive, CD40-stimulated targets. Surface immunoglobulin and IL-4R utilize at least partially distinct pathways to produce Fas-resistance that differentially depend on PKC and STAT6, respectively. Further, surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk, requires NF-kappaB, and entails new macromolecular synthesis. Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products, Bcl-xL and FLIP, and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule). faim was identified by differential display and exists in two alternatively spliced forms; faim-S is broadly expressed, but faim-L expression is tissue-specific. The FAIM sequence is highly evolu- tionarily conserved, suggesting an important role for this molecule throughout phylogeny. Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells, whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity. Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion, and malignant lymphocytes to impede anti-tumor immunity.

  4. A novel gene coding for a Fas apoptosis inhibitory molecule (FAIM) isolated from inducibly Fas-resistant B lymphocytes.

    PubMed

    Schneider, T J; Fischer, G M; Donohoe, T J; Colarusso, T P; Rothstein, T L

    1999-03-15

    The sensitivity of primary splenic B cells to Fas-mediated apoptosis is modulated in a receptor-specific fashion. Here we used a differential display strategy to detect cDNAs present in B cells rendered Fas resistant but absent in those rendered Fas sensitive. This led to the cloning and characterization of a novel 1.2-kb gene that encodes a Fas apoptosis inhibitory molecule (FAIM). faim-transfected BAL-17 B lymphoma cells were less sensitive by half or more to Fas-mediated apoptosis than were vector-transfected controls, using Fas ligand-bearing T cells or a cytotoxic anti-Fas antibody to trigger Fas, and this was associated with inhibition of Fas- induced poly-ADP ribose polymerase (PARP) cleavage. In primary B cells, the time course of faim mRNA and FAIM protein expression correlated with the induction of Fas resistance by surface (s)Ig engagement. Thus, FAIM is an inducible effector molecule that mediates Fas resistance produced by sIg engagement in B cells. However, faim is broadly expressed in various tissues and the faim sequence is highly conserved evolutionarily, suggesting that its role extends beyond lymphocyte homeostasis. As FAIM has no significant regions of homology to other gene products that modulate Fas killing, it appears to represent a distinct, new class of antiapoptotic protein.

  5. A novel interaction linking the FAS-II and phthiocerol dimycocerosate (PDIM) biosynthetic pathways.

    PubMed

    Kruh, Nicole A; Borgaro, Janine G; Ruzsicska, Béla P; Xu, Hua; Tonge, Peter J

    2008-11-14

    The fatty acid biosynthesis (FAS-II) pathway in Mycobacterium tuberculosis generates long chain fatty acids that serve as the precursors to mycolic acids, essential components of the mycobacterial cell wall. Enzymes in the FAS-II pathway are thought to form one or more noncovalent multi-enzyme complexes within the cell, and a bacterial two-hybrid screen was used to search for missing components of the pathway and to furnish additional data on interactions involving these enzymes in vivo. Using the FAS-II beta-ketoacyl synthase, KasA, as bait, an extensive bacterial two-hybrid screen of a M. tuberculosis genome fragment library unexpectedly revealed a novel interaction between KasA and PpsB as well as PpsD, two polyketide modules involved in the biosynthesis of the virulence lipid phthiocerol dimycocerosate (PDIM). Sequence analysis revealed that KasA interacts with PpsB and PpsD in the region of the acyl carrier domain of each protein, raising the possibility that lipids could be transferred between the FAS-II and PDIM biosynthetic pathways. Subsequent studies utilizing purified proteins and radiolabeled lipids revealed that fatty acids loaded onto PpsB were transferred to KasA and also incorporated into long chain fatty acids synthesized using a Mycobacterium smegmatis lysate. These data suggest that in addition to producing PDIMs, the growing phthiocerol product can also be shuttled into the FAS-II pathway via KasA as an entry point for further elongation. Interactions between these biosynthetic pathways may exist as a simple means to increase mycobacterial lipid diversity, enhancing functionality and the overall complexity of the cell wall. PMID:18703500

  6. Expression of glutamine synthetase in the mouse kidney: localization in multiple epithelial cell types and differential regulation by hypokalemia.

    PubMed

    Verlander, Jill W; Chu, Diana; Lee, Hyun-Wook; Handlogten, Mary E; Weiner, I David

    2013-09-01

    Renal glutamine synthetase catalyzes the reaction of NH4+ with glutamate, forming glutamine and decreasing the ammonia available for net acid excretion. The purpose of the present study was to determine glutamine synthetase's specific cellular expression in the mouse kidney and its regulation by hypokalemia, a common cause of altered renal ammonia metabolism. Glutamine synthetase mRNA and protein were present in the renal cortex and in both the outer and inner stripes of the outer medulla. Immunohistochemistry showed glutamine synthetase expression throughout the entire proximal tubule and in nonproximal tubule cells. Double immunolabel with cell-specific markers demonstrated glutamine synthetase expression in type A intercalated cells, non-A, non-B intercalated cells, and distal convoluted tubule cells, but not in principal cells, type B intercalated cells, or connecting segment cells. Hypokalemia induced by feeding a nominally K+ -free diet for 12 days decreased glutamine synthetase expression throughout the entire proximal tubule and in the distal convoluted tubule and simultaneously increased glutamine synthetase expression in type A intercalated cells in both the cortical and outer medullary collecting duct. We conclude that glutamine synthetase is widely and specifically expressed in renal epithelial cells and that the regulation of expression differs in specific cell populations. Glutamine synthetase is likely to mediate an important role in renal ammonia metabolism.

  7. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.

    PubMed

    Richardson, Charles J; First, Eric A

    2016-03-15

    Translation of mRNAs by the ribosome is stereospecific, with only l-amino acids being incorporated into the nascent polypeptide chain. This stereospecificity results from the exclusion of d-amino acids at three steps during protein synthesis: (1) the aminoacylation of tRNA by aminoacyl-tRNA synthetases, (2) binding of aminoacyl-tRNAs to EF-Tu, and (3) recognition of aminoacyl-tRNAs by the ribosome. As a first step toward incorporating d-amino acids during protein synthesis, we have altered the enantioselectivity of tyrosyl-tRNA synthetase. This enzyme is unusual among aminoacyl-tRNA synthetases, as it can aminoacylate tRNA with d-tyrosine (albeit at a reduced rate compared to l-tyrosine). To change the enantioselectivity of tyrosyl-tRNA synthetase, we introduced the post-transfer editing domain from Pyrococcus horikoshii phenylalanyl-tRNA synthetase into the connective polypeptide 1 (CP1) domain of Geobacillus stearothermophilus tyrosyl-tRNA synthetase (henceforth designated TyrRS-FRSed). We show that the phenylalanyl-tRNA synthetase editing domain is stereospecific, hydrolyzing l-Tyr-tRNA(Tyr), but not d-Tyr-tRNA(Tyr). We further show that inserting the phenylalanyl-tRNA synthetase editing domain into the CP1 domain of tyrosyl-tRNA synthetase decreases the activity of the synthetic site in tyrosyl-tRNA synthetase. This decrease in activity is critical, as it prevents the rate of synthesis from overwhelming the ability of the editing domain to hydrolyze the l-Tyr-tRNA(Tyr) product. Overall, inserting the phenylalanyl-tRNA synthetase editing domain results in a 2-fold shift in the enantioselectivity of tyrosyl-tRNA synthetase toward the d-Tyr-tRNA(Tyr) product. When a 4-fold excess of d-tyrosine is used, approximately 40% of the tRNA(Tyr) is aminoacylated with d-tyrosine. PMID:26890980

  8. Intracellular Triggering of Fas Aggregation and Recruitment of Apoptotic Molecules into Fas-enriched Rafts in Selective Tumor Cell Apoptosis

    PubMed Central

    Gajate, Consuelo; del Canto-Jañez, Esther; Acuña, A. Ulises; Amat-Guerri, Francisco; Geijo, Emilio; Santos-Beneit, Antonio M.; Veldman, Robert J.; Mollinedo, Faustino

    2004-01-01

    We have discovered a new and specific cell-killing mechanism mediated by the selective uptake of the antitumor drug 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3, Edelfosine) into lipid rafts of tumor cells, followed by its coaggregation with Fas death receptor (also known as APO-1 or CD95) and recruitment of apoptotic molecules into Fas-enriched rafts. Drug sensitivity was dependent on drug uptake and Fas expression, regardless of the presence of other major death receptors, such as tumor necrosis factor (TNF) receptor 1 or TNF-related apoptosis-inducing ligand R2/DR5 in the target cell. Drug microinjection experiments in Fas-deficient and Fas-transfected cells unable to incorporate exogenous ET-18-OCH3 demonstrated that Fas was intracellularly activated. Partial deletion of the Fas intracellular domain prevented apoptosis. Unlike normal lymphocytes, leukemic T cells incorporated ET-18-OCH3 into rafts coaggregating with Fas and underwent apoptosis. Fas-associated death domain protein, procaspase-8, procaspase-10, c-Jun amino-terminal kinase, and Bid were recruited into rafts, linking Fas and mitochondrial signaling routes. Clustering of rafts was necessary but not sufficient for ET-18-OCH3–mediated cell death, with Fas being required as the apoptosis trigger. ET-18-OCH3–mediated apoptosis did not require sphingomyelinase activation. Normal cells, including human and rat hepatocytes, did not incorporate ET-18-OCH3 and were spared. This mechanism represents the first selective activation of Fas in tumor cells. Our data set a framework for the development of more targeted therapies leading to intracellular Fas activation and recruitment of downstream signaling molecules into Fas-enriched rafts. PMID:15289504

  9. Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase.

    PubMed

    Wang, Dezheng; Wang, Cheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-01-01

    Glutathione (GSH) is an important bioactive substance applied widely in pharmaceutical and food industries. Due to the strong product inhibition in the GSH biosynthetic pathway, high levels of intracellular content, yield and productivity of GSH are difficult to achieve. Recently, a novel bifunctional GSH synthetase was identified to be less sensitive to GSH. A recombinant Escherichia coli strain expressing gshF encoding the bifunctional glutathione synthetase of Streptococcus thermophilus was constructed for GSH production. In this study, efficient GSH production using this engineered strain was investigated. The cultivation process was optimized by controlling dissolved oxygen (DO), amino acid addition and glucose feeding. 36.8 mM (11.3 g/L) GSH were formed at a productivity of 2.06 mM/h when the amino acid precursors (75 mM each) were added and glucose was supplied as the sole carbon and energy source. PMID:26586402

  10. Lysyl-tRNA synthetase from Bacillus stearothermophilus: the Trp314 residue is shielded in a non-polar environment and is responsible for the fluorescence changes observed in the amino acid activation reaction.

    PubMed

    Takita, Teisuke; Nakagoshi, Makoto; Inouye, Kuniyo; Tonomura, Ben'ichiro

    2003-01-24

    Three Trp variants of lysyl-tRNA synthetase from Bacillus stearothermophilus, in which either one or both of the two Trp residues within the enzyme (Trp314 and Trp332) were substituted by a Phe residue, were produced by site-directed mutagenesis without appreciable loss of catalytic activity. The following two phenomena were observed with W332F and with the wild-type enzyme, but not with W314F: (1) the addition of L-lysine alone decreased the protein fluorescence of the enzyme, but the addition of ATP alone did not; (2) the subsequent addition of ATP after the addition of excess L-lysine restored the fluorescence to its original level. Fluorometry under various conditions and UV-absorption spectroscopy revealed that Trp314, which was about 20A away from the lysine binding site and was shielded in a non-polar environment, was solely responsible for the fluorescence changes of the enzyme in the L-lysine activation reaction. Furthermore, the microenvironmental conditions around the residue were made more polar upon the binding of L-lysine, though its contact with the solvent was still restricted. It was suggested that Trp314 was located in a less polar environment than was Trp332, after comparison of the wavelengths at the peaks of fluorescence emission and of the relative fluorescence quantum yields. Trp332 was thought, based on the fluorescence quenching by some perturbants and the chemical modification with N-bromosuccinimide, to be on the surface of the enzyme, whereas Trp314 was buried inside. The UV absorption difference spectra induced by the L-lysine binding indicated that the state of Trp314, including its electrostatic environment, changed during the process, but Trp332 did not change. The increased fluorescence from Trp314 at acidic pH compared with that at neutral pH suggests that carboxylate(s) are in close proximity to the Trp314 residue. PMID:12507472

  11. Post-transcriptional regulation of S-adenosylmethionine synthetase from its stored mRNA in germinated wheat embryos.

    PubMed

    Mathur, M; Saluja, D; Sachar, R C

    1991-06-24

    About 2-3-fold stimulation of S-adenosylmethionine synthetase was witnessed in germinated wheat embryos (48 h). The enhancement of enzyme activity was significantly inhibited by cycloheximide and amino acid analogues. Simultaneous addition of corresponding amino acids alleviated the inhibitory effect of amino acid analogues. Conclusive proof for the de novo synthesis of S-adenosylmethionine synthetase was obtained by labelling this enzyme with [35SO4]2- in vivo. Thus de novo enzyme synthesis seemed necessary for the rise in activity of AdoMet synthetase in wheat embryos. Curiously, blocking of transcription with cordycepin failed to repress the de novo synthesis of AdoMet synthetase in germinated wheat embryos. We envisage the presence of stored mRNA for AdoMet synthetase in wheat embryos. Thus the regulation of this enzyme occurs at the post-transcriptional level. L-Methionine, which is one of the substrates of AdoMet synthetase, stimulated the enzyme activity (2-2.4-fold) over that observed in control germinated embryos. L-Methionine promotes increased de novo synthesis of AdoMet synthetase. Preincubation of enzyme fraction with L-Methionine failed to activate or stabilize the activity of AdoMet synthetase. Three isozymes of AdoMet synthetase were physically separated by DE-52 ion-exchange chromatography. One of the isozymes of AdoMet synthetase has been purified (1529-fold) to electrophoretic homogeneity by resorting to phenyl Sepharose and ATP Sepharose affinity chromatography. The purified enzyme catalyzed the synthesis of S-adenosylmethionine and also exhibited tripolyphosphatase activity. The reaction product of the purified enzyme was chemically and enzymatically characterized as S-adenosylmethionine. The molecular weight of the native enzyme is 174,000 and that of its subunit is 84,000 as determined on SDS-PAGE. Thus the native enzyme seems to be dimeric in nature. PMID:1648405

  12. Adoptive Transfer of Dendritic Cells Expressing Fas Ligand Modulates Intestinal Inflammation in a Model of Inflammatory Bowel Disease

    PubMed Central

    de Jesus, Edelmarie Rivera; Isidro, Raymond A; Cruz, Myrella L; Marty, Harry; Appleyard, Caroline B

    2016-01-01

    Background Inflammatory bowel diseases (IBD) are chronic relapsing inflammatory conditions of unknown cause and likely result from the loss of immunological tolerance, which leads to over-activation of the gut immune system. Gut macrophages and dendritic cells (DCs) are essential for maintaining tolerance, but can also contribute to the inflammatory response in conditions such as IBD. Current therapies for IBD are limited by high costs and unwanted toxicities and side effects. The possibility of reducing intestinal inflammation with DCs genetically engineered to over-express the apoptosis-inducing FasL (FasL-DCs) has not yet been explored. Objective Investigate the immunomodulatory effect of administering FasL-DCs in the rat trinitrobenzene sulfonic acid (TNBS) model of acute colitis. Methods Expression of FasL on DCs isolated from the mesenteric lymph nodes (MLNs) of normal and TNBS-colitis rats was determined by flow cytometry. Primary rat bone marrow DCs were transfected with rat FasL plasmid (FasL-DCs) or empty vector (EV-DCs). The effect of these DCs on T cell IFNγ secretion and apoptosis was determined by ELISPOT and flow cytometry for Annexin V, respectively. Rats received FasL-DCs or EV-DCs intraperitoneally 96 and 48 hours prior to colitis induction with TNBS. Colonic T cell and neutrophil infiltration was determined by immunohistochemistry for CD3 and myeloperoxidase activity assay, respectively. Macrophage number and phenotype was measured by double immunofluorescence for CD68 and inducible Nitric Oxide Synthase. Results MLN dendritic cells from normal rats expressed more FasL than those from colitic rats. Compared to EV-DCs, FasL-DCs reduced T cell IFNγ secretion and increased T cell apoptosis in vitro. Adoptive transfer of FasL-DCs decreased macroscopic and microscopic damage scores and reduced colonic T cells, neutrophils, and proinflammatory macrophages when compared to EV-DC adoptive transfer. Conclusion FasL-DCs are effective at treating colonic

  13. Molecular definition of bovine argininosuccinate synthetase deficiency.

    PubMed Central

    Dennis, J A; Healy, P J; Beaudet, A L; O'Brien, W E

    1989-01-01

    Citrullinemia is an inborn error of metabolism due to deficiency of the urea cycle enzyme, argininosuccinate synthetase [L-citrulline:L-aspartate ligase (AMP-forming), EC 6.3.4.5]. The disease was first described in humans but was recently reported in dairy cattle in Australia. Here we report the nucleotide sequence of the normal bovine cDNA for argininosuccinate synthetase and the mutation present in animals with citrullinemia. Analysis of DNA from affected animals by Southern blotting did not readily identify the mutation in the bovine gene. RNA (Northern) blotting revealed a major reduction in the steady-state amount of mRNA in the liver of affected animals to less than 5% of controls. The bovine cDNA was cloned and sequenced and revealed 96% identity with the deduced human sequence at the amino acid level. Starting with mutant bovine liver, the mRNA was reverse-transcribed; the cDNA product was amplified with the polymerase chain reaction, cloned, and sequenced. The sequence revealed a C----T transition converting arginine-86 (CGA) to a nonsense codon (TGA). A second C----T transition represented a polymorphism in proline-175 (CCC----CCT). The mutation and the polymorphism were confirmed by amplification of genomic DNA and demonstration with restriction endonuclease enzymes of both the loss of an Ava II site in DNA from mutant animals at codon 86 and the presence or absence of a Dde I site at codon 175. The loss of the Ava II site can be used for rapid, economical, nonradioactive detection of heterozygotes for bovine citrullinemia. Images PMID:2813370

  14. Kinetics profiling of gramicidin S synthetase A, a member of nonribosomal peptide synthetases.

    PubMed

    Sun, Xun; Li, Hao; Alfermann, Jonas; Mootz, Henning D; Yang, Haw

    2014-12-23

    Nonribosomal peptide synthetases (NRPS) incorporate assorted amino acid substrates into complex natural products. The substrate is activated via the formation of a reactive aminoacyl adenylate and is subsequently attached to the protein template via a thioester bond. The reactive nature of such intermediates, however, leads to side reactions that also break down the high-energy anhydride bond. The off-pathway kinetics or their relative weights compared to that of the on-pathway counterpart remains generally elusive. Here, we introduce multiplatform kinetics profiling to quantify the relative weights of on- and off-pathway reactions. Using the well-defined stoichiometry of thioester formation, we integrate a mass spectrometry (MS) kinetics assay, a high-performance liquid chromatography (HPLC) assay, and an ATP-pyrophosphate (PPi) exchange assay to map out a highly efficient on-pathway kinetics profile of the substrate activation and intermediate uploading (>98% relative weight) for wide-type gramicidin S synthetase A (GrsA) and a 87% rate profile for a cysteine-free GrsA mutant. Our kinetics profiling approach complements the existing enzyme-coupled byproduct-release assays, unraveling new mechanistic insights of substrate activation/channeling in NRPS enzymes.

  15. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-08-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia.

  16. Aminoacyl-tRNA Synthetase Complexes in Evolution

    PubMed Central

    Havrylenko, Svitlana; Mirande, Marc

    2015-01-01

    Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis. PMID:25807264

  17. FAS and FAS ligand polymorphisms in the promoter regions and risk of gastric cancer in Southern China.

    PubMed

    Wang, Meilin; Wu, Dongmei; Tan, Ming; Gong, Weida; Xue, Hengchuan; Shen, Hongbin; Zhang, Zhengdong

    2009-08-01

    The FAS and FAS ligand (FASLG) system plays a key role in regulating apoptotic cell death, and corruption of this signaling pathway has been shown to participate in tumorigenesis. Functional promoter polymorphisms of the FAS and FASLG genes can alter transcriptional activities and thus alter risk of cancer. We hypothesized that the FAS -1377G>A, FAS -670A>G, and FASLG -844T>C polymorphisms in the promoter regions are associated with risk of gastric cancer. In a population-based case-control study of 332 gastric cancer cases and 324 controls, we genotyped these three polymorphisms and evaluated their association with risk of gastric cancer. We found that the FAS and FASL genotypes and the FAS haplotypes had no significant associations with risk of gastric cancer. In addition, there was no significant interaction between the FAS and FASL polymorphisms in the development of gastric cancer. The FAS and FASLG polymorphisms may not contribute to risk of gastric cancer in the southern Chinese population.

  18. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.

    PubMed

    Wan, Wei; Tharp, Jeffery M; Liu, Wenshe R

    2014-06-01

    The genetic incorporation of the 22nd proteinogenic amino acid, pyrrolysine (Pyl) at amber codon is achieved by the action of pyrrolysyl-tRNA synthetase (PylRS) together with its cognate tRNA(Pyl). Unlike most aminoacyl-tRNA synthetases, PylRS displays high substrate side chain promiscuity, low selectivity toward its substrate α-amine, and low selectivity toward the anticodon of tRNA(Pyl). These unique but ordinary features of PylRS as an aminoacyl-tRNA synthetase allow the Pyl incorporation machinery to be easily engineered for the genetic incorporation of more than 100 non-canonical amino acids (NCAAs) or α-hydroxy acids into proteins at amber codon and the reassignment of other codons such as ochre UAA, opal UGA, and four-base AGGA codons to code NCAAs. PMID:24631543

  19. Relationship between expression of gastrin, somatostatin, Fas/FasL and caspases in large intestinal carcinoma

    PubMed Central

    Mao, Jia-Ding; Wu, Pei; Yang, Ying-Lin; Wu, Jian; Huang, He

    2008-01-01

    AIM: To explore the correlation between the mRNAs and protein expression of gastrin (GAS), somatostatin (SS) and apoptosis index (AI), apoptosis regulation gene Fas/FasL and caspases in large intestinal carcinoma (LIC). METHODS: Expression of GAS and SS mRNAs were detected by nested RT-PCR in 79 cases of LIC. Cell apoptosis was detected by molecular biology in situ apoptosis detecting methods (TUNEL). Immunohistochemical staining for GAS, SS, Fas/FasL, caspase-3 and caspase-8 was performed according to the standard streptavidin-biotin-peroxidase (S-P) method. RESULTS: There was a significant positive correlation between mRNA and protein expression of GAS and SS (GASrs=0.99, P < 0.01; SSrs = 0.98, P < 0.01). There was significant difference in positive expression rates of GAS, SS mRNAs and protein among different histological differentiation, histological types and Dukes’ stage of LIC. The AI in GAS high and moderate expression groups was significantly lower than that in low expression groups (3.75 ± 2.38 vs 7.82 ± 2.38, P < 0.01; 5.51 ± 2.66 vs 7.82 ± 2.38, P < 0.01), and the AI in SS high and moderate expression groups was significantly higher than that in low expression groups (9.03 ± 1.76 vs 5.35 ± 3.00, P < 0.01; 7.44 ± 2.67 vs 5.35 ± 3.00, P < 0.01). There was a significant negative correlation between the integral ratio of GAS to SS and the AI (rs = -0.41, P < 0.01). The positive expression rate of FasL in GAS high and moderate expression groups was higher than that in low expression group (90.9% and 81.0% vs 53.2%, P < 0.05). The positive expression rates of Fas, caspase-8 and caspase-3 in SS high (90.0%, 90.0% and 100%) and moderate (80.0%, 70.0%, 75.0%) expression groups were higher than that in low expression group (53.1%, 42.9%, 49.0%) (90.0% and 80.0% vs 53.1%, P < 0.05; 90.0% and 70.0% vs 42.9%, P < 0.05; 100.0% and 75.0% vs 49.0%, P < 0.05). There was a significant positive correlation between the integral ratio of GAS to SS and the

  20. In vivo incorporation of unnatural amino acids to probe structure, dynamics and ligand binding in a large protein by Nuclear Magnetic Resonance spectroscopy

    PubMed Central

    Cellitti, Susan E.; Jones, David H.; Lagpacan, Leanna; Hao, Xueshi; Zhang, Qiong; Hu, Huiyong; Brittain, Scott M.; Brinker, Achim; Caldwell, Jeremy; Bursulaya, Badry; Spraggon, Glen; Brock, Ansgar; Ryu, Youngha; Uno, Tetsuo; Schultz, Peter G.; Geierstanger, Bernhard H.

    2008-01-01

    In vivo incorporation of isotopically labeled unnatural amino acids into large proteins drastically reduces the complexity of nuclear magnetic resonance (NMR) spectra. Incorporation is accomplished by co-expressing an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid added to the media and the protein of interest with a TAG amber codon at the desired incorporation site. To demonstrate the utility of this approach for NMR studies, 2-amino-3-(4-(trifluoromethoxy) phenyl) propanoic acid (OCF3Phe), 13C/15N-labeled p-methoxyphenylalanine (OMePhe), and 15N-labeled o-nitrobenzyl-tyrosine (oNBTyr) were incorporated individually into 11 positions around the active site of the 33 kDa thioesterase domain of human fatty acid synthase (FAS-TE). In the process, a novel tRNA synthetase was evolved for OCF3Phe. Incorporation efficiencies and FAS-TE yields were improved by including an inducible copy of the respective aminoacyl-tRNA synthetase gene on each incorporation plasmid. Using only between 8 and 25 mg of unnatural amino acid, typically 2 mg of FAS-TE, sufficient for one 0.1 mM NMR sample, were produced from 50 mL of E. coli culture grown in rich media. Singly labeled protein samples were then used to study the binding of a tool compound. Chemical shift changes in 1H-15N, 1H-13C HSQC and 19F NMR spectra of the different single site mutants consistently identified the binding site and the effect of ligand binding on conformational exchange of some of the residues. OMePhe or OCF3Phe mutants of an active site tyrosine inhibited binding; incorporating 15N-Tyr at this site through UV-cleavage of the nitrobenzyl-photocage from oNBTyr re-established binding. These data suggest not only robust methods for using unnatural amino acids to study large proteins by NMR but also establish a new avenue for the site-specific labeling of proteins at individual residues without altering the protein sequence, a feat that can currently not be accomplished with

  1. Mammalian long-chain acyl-CoA synthetases.

    PubMed

    Soupene, Eric; Kuypers, Frans A

    2008-05-01

    Acyl-CoA synthetase enzymes are essential for de novo lipid synthesis, fatty acid catabolism, and remodeling of membranes. Activation of fatty acids requires a two-step reaction catalyzed by these enzymes. In the first step, an acyl-AMP intermediate is formed from ATP. AMP is then exchanged with CoA to produce the activated acyl-CoA. The release of AMP in this reaction defines the superfamily of AMP-forming enzymes. The length of the carbon chain of the fatty acid species defines the substrate specificity for the different acyl-CoA synthetases (ACS). On this basis, five sub-families of ACS have been characterized. The purpose of this review is to report on the large family of mammalian long-chain acyl-CoA synthetases (ACSL), which activate fatty acids with chain lengths of 12 to 20 carbon atoms. Five genes and several isoforms generated by alternative splicing have been identified and limited information is available on their localization. The structure of these membrane proteins has not been solved for the mammalian ACSLs but homology to a bacterial form, whose structure has been determined, points at specific structural features that are important for these enzymes across species. The bacterial form acts as a dimer and has a conserved short motif, called the fatty acid Gate domain, that seems to determine substrate specificity. We will discuss the characterization and identification of the different spliced isoforms, draw attention to the inconsistencies and errors in their annotations, and their cellular localizations. These membrane proteins act on membrane-bound substrates probably as homo- and as heterodimer complexes but have often been expressed as single recombinant isoforms, apparently purified as monomers and tested in Triton X-100 micelles. We will argue that such studies have failed to provide an accurate assessment of the activity and of the distinct function of these enzymes in mammalian cells.

  2. CEACAM1 regulates Fas-mediated apoptosis in Jurkat T-cells via its interaction with β-catenin.

    PubMed

    Li, Yun; Shively, John E

    2013-05-01

    CEACAM1 (Carcinoembryonic Antigen Cell Adhesion molecule 1), an activation induced cell surface marker of T-cells, modulates the T-cell immune response by inhibition of the T-cell and IL-2 receptors. Since T-cells undergo activation induced cell death via Fas activation, it was of interest to determine if this pathway was also affected by CEACAM1. Previously, we identified a novel biochemical interaction between CEACAM1 and the armadillo repeats of β-catenin in Jurkat cells, in which two critical residues, H469 and K470 of the cytoplasmic domain of CEACAM1-4L played an essential role; while in other studies, β-catenin was shown to regulate Fas-mediated apoptosis in Jurkat cells. CEACAM1 expression in Jurkat cells leads to the re-distribution of β-catenin to the actin cytoskeleton as well as inhibition of β-catenin tyrosine phosphorylation and its degradation after Fas stimulation. As a result, Fas-mediated apoptosis in these cells was inhibited. The K470A mutation of CEACAM1 partially rescued the inhibitory effect, in agreement with the prediction that a CEACAM1-β-catenin interaction pathway is involved. Although CEACAM1 has two ITIMs, they were not tyrosine-phosphorylated upon Fas ligation, indicating an ITIM independent mechanism; however, mutation of the critical residue S508, located between the ITIMs, to aspartic acid and a prerequisite for ITIM activation, abrogates the inhibitory activity of CEACAM1 to Fas-mediated apoptosis. Since Fas-mediated apoptosis is a major form of activation-induced cell death, our finding supports the idea that CEACAM1 is a general inhibitory molecule for T-cell activation utilizing a variety of pathways.

  3. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation

    PubMed Central

    de Oliveira, G L V; Malmegrim, K C R; Ferreira, A F; Tognon, R; Kashima, S; Couri, C E B; Covas, D T; Voltarelli, J C; de Castro, F A

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic β cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy. PMID:22519592

  4. Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense.

    PubMed

    Van Dommelen, Anne; Spaepen, Stijn; Vanderleyden, Jozef

    2009-04-01

    Glutamine synthetase, a key enzyme in nitrogen metabolism of both prokaryotes and eukaryotes, is strictly regulated. One means of regulation is the modulation of activity through adenylylation catalyzed by adenylyltransferases. Using PCR primers based on conserved sequences in glutamine synthetase adenylyltransferases, we amplified part of the glnE gene of Azospirillum brasilense Sp7. The complete glnE sequence of A. brasilense Sp245 was retrieved from the draft genome sequence of this organism (http://genomics.ornl.gov/research/azo/). Adenylyltransferase is a bifunctional enzyme consisting of an N-terminal domain responsible for deadenylylation activity and a C-terminal domain responsible for adenylylation activity. Both domains are partially homologous to each other. Residues important for catalytic activity were present in the deduced amino acid sequence of the A. brasilense Sp245 glnE sequence. A glnE mutant was constructed in A. brasilense Sp7 by inserting a kanamycin resistance cassette between the two active domains of the enzyme. The resulting mutant was unable to adenylylate the glutamine synthetase enzyme and was impaired in growth when shifted from nitrogen-poor to nitrogen-rich medium.

  5. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-04-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover.

  6. Turnover of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis.

    PubMed Central

    Levine, R L; Oliver, C N; Fulks, R M; Stadtman, E R

    1981-01-01

    We partially purified a preparation from Escherichia coli that proteolytically degrades the enzyme glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2]. The degradation is at least a two-step process. First, the glutamine synthetase undergoes an oxidative modification. This modification leads to loss of catalytic activity and also renders the protein susceptible to proteolytic attack in the second step. The oxidative step displays characteristics of a mixed-function oxidation, requiring both molecular oxygen and a reduced nucleotide. This step can also be catalyzed by a purified, mammalian cytochrome P-450 system, as well as by a model system consisting of ascorbic acid and oxygen. Catalase blocks this oxidative modification step. Thus, the overall process of proteolytic degradation can be observed only if care is taken to remove catalase activity from the extracts. The inactivation reaction is dependent on the state of adenylylation of the glutamine synthetase, suggesting that this a physiologically important reaction. If so, then mixed-function oxidases are now implicated in the process of intracellular protein turnover. Images PMID:6113590

  7. Human B Cell-Derived Lymphoblastoid Cell Lines Constitutively Produce Fas Ligand and Secrete MHCII+FasL+ Killer Exosomes

    PubMed Central

    Klinker, Matthew W.; Lizzio, Vincent; Reed, Tamra J.; Fox, David A.; Lundy, Steven K.

    2013-01-01

    Immune suppression mediated by exosomes is an emerging concept with potentially immense utility for immunotherapy in a variety of inflammatory contexts, including allogeneic transplantation. Exosomes containing the apoptosis-inducing molecule Fas ligand (FasL) have demonstrated efficacy in inhibiting antigen-specific immune responses upon adoptive transfer in animal models. We report here that a very high frequency of human B cell-derived lymphoblastoid cell lines (LCL) constitutively produce MHCII+FasL+ exosomes that can induce apoptosis in CD4+ T cells. All LCL tested for this study (>20 independent cell lines) showed robust expression of FasL, but had no detectable FasL on the cell surface. Given this intracellular sequestration, we hypothesized that FasL in LCL was retained in the secretory lysosome and secreted via exosomes. Indeed, we found both MHCII and FasL proteins present in LCL-derived exosomes, and using a bead-based exosome capture assay demonstrated the presence of MHCII+FasL+ exosomes among those secreted by LCL. Using two independent experimental approaches, we demonstrated that LCL-derived exosomes were capable of inducing antigen-specific apoptosis in autologous CD4+ T cells. These results suggest that LCL-derived exosomes may present a realistic source of immunosuppressive exosomes that could reduce or eliminate T cell-mediated responses against donor-derived antigens in transplant recipients. PMID:24765093

  8. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    PubMed Central

    Fewer, David P; Rouhiainen, Leo; Jokela, Jouni; Wahlsten, Matti; Laakso, Kati; Wang, Hao; Sivonen, Kaarina

    2007-01-01

    Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1) and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains. PMID:17908306

  9. The immunohistochemical localization of Fas and Fas ligand in jaw bone and tooth germ of human fetuses.

    PubMed

    Hatakeyama, S; Tomichi, N; Ohara-Nemoto, Y; Satoh, M

    2000-05-01

    The cellular localization and roles of bone morphogenetic protein (BMP)-2 and apoptosis-associating factors in human orofacial development remain unclear. In this study, BMP-2, osteocalcin, and TGF-beta, which are bone-differentiating markers, apoptosis-associating factors (i.e., Bcl-2, Bax, Fas, and Fas ligand), apoptotic cells detected by the in situ 3'-end labeling method (TUNEL), and proliferating cell nuclear antigen (PCNA) were immunohistochemically examined in the heads (in particular, the jaw bone and tooth germs) of human fetuses of 11-week pregnancy. BMP-2 was positive in osteoblasts and newly formed osteoid of the incisive and palatal bone of the maxilla and the mandible, which indicated that BMP-2 was exclusively involved in intramembranous ossification in the human fetal head. Fas was positive in the cytoplasm of osteocytes and a few osteoblasts. In contrast, Fas ligand was positive in the cytoplasm of osteoblasts and abundant in the stroma of the osteoblastic layer, periosteum, and perichondrium. The Fas ligand in the stroma was recognized as the soluble form, which was possibly produced by osteoblasts. TUNEL-positive apoptotic cells were found in a few osteocytes and a few osteoblastic cells in new bone, and in monocytes of degenerate Meckel's cartilage. The induction of apoptosis observed in monocytes seems to be caused via a Fas-Fas ligand cell death system, because some of these monocytes were Fas-positive, and most of them were Fas ligand-positive. Interestingly, the abundant soluble Fas ligand observed in the periosteum probably protects the bone-formative zone from the invasion of the activated lymphocytes by binding to Fas expressing in these lymphocytes and killing these cells. Fas and Fas ligand were focally positive in the dental lamina and inner enamel epithelium and cusps of the enamel organ, nevertheless, the presence of TUNEL-positive cells was very rare. Bcl-2 was clearly and Bax was weakly positive in the cells throughout the dental

  10. Sequence and Phylogenetic Analysis of FAD Synthetase

    NASA Astrophysics Data System (ADS)

    Schubert, Luisa; Frago, Susana; Martínez-Júlvez, Marta; Medina, Milagros

    2006-08-01

    An evolutionary analysis of the sequences available till now for FAD synthetases has been carried out. Several identical conserved residues have been observed along the sequences of all the FAD synthetases analyzed, which might correlate with role for these residues in the catalytic activity of the enzyme. Phylogenetic analysis shows that FAD synthetase sequences can be organized in two main clusters. One of them mainly contains temperature, pressure or pH resistant organisms, whereas in the other one organisms with pathogenic character can be found.

  11. Neurospora crassa mutants deficient in asparagine synthetase.

    PubMed Central

    MacPhee, K G; Nelson, R E; Schuster, S M

    1983-01-01

    Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase. PMID:6137480

  12. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1991-01-01

    The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close agreement with that observed for the purified protein, which behaves as a monomer. The sequence of CysRS bears the canonical His-Ile- Gly -His (HIGH) and Lys-Met-Ser-Lys-Ser (KMSKS) motifs characteristic of the group of enzymes containing a Rossmann fold; furthermore, it shows striking homologies with MetRS (an homodimer of 677 residues) and to a lesser extent with Ile-, Leu-, and ValRS (monomers of 939, 860, and 951 residues respectively). With its monomeric state and smaller size, CysRS is probably more closely related to the primordial aminoacyl-tRNA synthetase from which all have diverged. Images PMID:2014166

  13. Production of Multiple Brain-Like Ganglioside Species Is Dispensable for Fas-Induced Apoptosis of Lymphoid Cells

    PubMed Central

    Carpentier, Stéphane; Levade, Thierry; Cuvillier, Olivier; Portoukalian, Jacques

    2011-01-01

    Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells. PMID:21629700

  14. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  15. Disruption of Fas Receptor Signaling by Nitric Oxide in Eosinophils

    PubMed Central

    Hebestreit, Holger; Dibbert, Birgit; Balatti, Ivo; Braun, Doris; Schapowal, Andreas; Blaser, Kurt; Simon, Hans-Uwe

    1998-01-01

    It has been suggested that Fas ligand–Fas receptor interactions are involved in the regulation of eosinophil apoptosis and that dysfunctions in this system could contribute to the accumulation of these cells in allergic and asthmatic diseases. Here, we demonstrate that nitric oxide (NO) specifically prevents Fas receptor–mediated apoptosis in freshly isolated human eosinophils. In contrast, rapid acceleration of eosinophil apoptosis by activation of the Fas receptor occurs in the presence of eosinophil hematopoietins. Analysis of the intracellular mechanisms revealed that NO disrupts Fas receptor–mediated signaling events at the level of, or proximal to, Jun kinase (JNK), but distal to sphingomyelinase (SMase) activation and ceramide generation. In addition, activation of SMase occurs downstream of an interleukin 1 converting enzyme–like (ICE-like) protease(s) that is not blocked by NO. However, NO prevents activation of a protease that targets lamin B1. These findings suggest a role for an additional NO-sensitive apoptotic signaling pathway that amplifies the proteolytic cascade initialized by activation of the Fas receptor. Therefore, NO concentrations within allergic inflammatory sites may be important in determining whether an eosinophil survives or undergoes apoptosis upon Fas ligand stimulation. PMID:9449721

  16. Characterization of bifunctional L-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis.

    PubMed

    Yang, Jianhua; Li, Wei; Wang, Dezheng; Wu, Hui; Li, Zhimin; Ye, Qin

    2016-07-01

    Glutathione (GSH), an important bioactive substance, is widely applied in pharmaceutical and food industries. In this work, two bifunctional L-glutathione synthetases (GshF) from Actinobacillus pleuropneumoniae (GshFAp) and Actinobacillus succinogenes (GshFAs) were successfully expressed in Escherichia coli BL-21(DE3). Similar to the GshF from Streptococcus thermophilus (GshFSt), GshFAp and GshFAs can be applied for high titer GSH production because they are less sensitive to end-product inhibition (Ki values 33 and 43 mM, respectively). The active catalytic forms of GshFAs and GshFAp are dimers, consistent with those of GshFPm (GshF from Pasteurella multocida) and GshFSa (GshF from Streptococcus agalactiae), but are different from GshFSt (GshF from S. thermophilus) which is an active monomer. The analysis of the protein sequences and three dimensional structures of GshFs suggested that the binding sites of GshFs for substrates, L-cysteine, L-glutamate, γ-glutamylcysteine, adenosine-triphosphate, and glycine are highly conserved with only very few differences. With sufficient supply of the precursors, the recombinant strains BL-21(DE3)/pET28a-gshFas and BL-21(DE3)/pET28a-gshFap were able to produce 36.6 and 34.1 mM GSH, with the molar yield of 0.92 and 0.85 mol/mol, respectively, based on the added L-cysteine. The results showed that GshFAp and GshFAs are potentially good candidates for industrial GSH production. PMID:26996628

  17. Frequent loss of Fas expression and function in human lung tumours with overexpression of FasL in small cell lung carcinoma.

    PubMed

    Viard-Leveugle, Isabelle; Veyrenc, Sylvie; French, Lars E; Brambilla, Christian; Brambilla, Elisabeth

    2003-10-01

    Fas (CD95) and its ligand FasL signal apoptosis and are involved in tissue homeostasis and the elimination of target cells by cytotoxic T cells. Corruption of this signalling pathway in tumour cells, for example by reduced Fas expression or increased FasL expression, can participate in tumour development and immune escape. The present study has analysed Fas/FasL expression and Fas death signalling function in vivo in lung tumour tissues [57 non-small cell lung carcinomas and 64 neuroendocrine lung tumours including small cell lung carcinoma (SCLC)] in comparison with normal lung tissue, and in vitro in neuroendocrine tumour cell lines in comparison with normal human bronchial epithelial cells. The Fas expression score was markedly decreased compared with normal lung tissue in 90% of the 121 lung tumours and was completely lost in 24%. The Fas staining pattern suggested cytoplasmic Fas expression in tumours, whereas membrane expression was observed in normal lung tissue. Loss of Fas at the cell surface was also shown in vitro by FACS analysis of neuroendocrine tumour cell lines and was concomitant with the resistance of tumour cells to FasL-mediated apoptosis according to in vitro cell viability. The lack of cell surface Fas expression in tumour cell lines resulted from the lack of intracellular Fas protein due to impaired Fas gene transcription. The FasL expression score was also decreased in most non-small cell lung carcinomas compared with normal bronchial cells, whereas 91% of SCLCs had higher expression than normal cells. FasL overexpression was related to advanced tumour stage as well as to a Fas/FasL ratio less than 1. It is concluded that a marked decrease in Fas expression may be part of lung tumourigenesis allowing tumour cells to escape from apoptosis. FasL overexpression in the context of Fas down-regulation in SCLC predicts the ability of SCLC cells to induce paracrine killing of Fas-expressing cytotoxic T cells. In lung tumours, Fas restoration may

  18. Phosphorylation of Human CTP Synthetase 1 by Protein Kinase A: IDENTIFICATION OF Thr455 AS A MAJOR SITE OF PHOSPHORYLATION*

    PubMed Central

    Choi, Mal-Gi; Carman, George M.

    2007-01-01

    CTP synthetase is an essential enzyme that generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work, we examined the phosphorylation of the human CTPS1-encoded CTP synthetase 1 by protein kinase A. CTP synthetase 1 was expressed and purified from a Saccharomyces cerevisiae ura7Δ ura8Δ double mutant that lacks CTP synthetase activity. Using purified CTP synthetase 1 as a substrate, protein kinase A activity was time- and dose-dependent. The phosphorylation, which primarily occurred on a threonine residue, was accompanied by a 50% decrease in CTP synthetase 1 activity. The synthetic peptide LGKRRTLFQT that contains the protein kinase A motif for Thr455 was a substrate for protein kinase A. A Thr455 to Ala (T455A) mutation in CTP synthetase 1 was constructed by site-directed mutagenesis and was expressed and purified from the S. cerevisiae ura7Δ ura8Δ mutant. The T455A mutation caused a 78% decrease in protein kinase A phosphorylation, and the loss of the phosphothreonine residue and a major phosphopeptide that were present in the purified wild type enzyme phosphorylated by protein kinase A. The CTP synthetase 1 activity of the T455A mutant enzyme was 2-fold higher than the wild type enzyme. In addition, the T455A mutation caused a 44% decrease in the amount of human CTP synthetase 1 that was phosphorylated in S. cerevisiae cells, and this was accompanied by a 2.5-fold increase in the cellular concentration of CTP and a 1.5-fold increase in the choline-dependent synthesis of phosphatidylcholine. PMID:17189248

  19. 7 CFR 1484.30 - How does FAS formalize its working relationship with approved Cooperators?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false How does FAS formalize its working relationship with... FAS formalize its working relationship with approved Cooperators? FAS will notify each applicant in writing of the final disposition of its application. FAS will send a program agreement,...

  20. Functional characterization of a chimeric soluble Fas ligand polymer with in vivo anti-tumor activity.

    PubMed

    Daburon, Sophie; Devaud, Christel; Costet, Pierre; Morello, Aurore; Garrigue-Antar, Laure; Maillasson, Mike; Hargous, Nathalie; Lapaillerie, Delphine; Bonneu, Marc; Dechanet-Merville, Julie; Legembre, Patrick; Capone, Myriam; Moreau, Jean-François; Taupin, Jean-Luc

    2013-01-01

    Binding of ligand FasL to its receptor Fas triggers apoptosis via the caspase cascade. FasL itself is homotrimeric, and a productive apoptotic signal requires that FasL be oligomerized beyond the homotrimeric state. We generated a series of FasL chimeras by fusing FasL to domains of the Leukemia Inhibitory Factor receptor gp190 which confer homotypic oligomerization, and analyzed the capacity of these soluble chimeras to trigger cell death. We observed that the most efficient FasL chimera, called pFasL, was also the most polymeric, as it reached the size of a dodecamer. Using a cellular model, we investigated the structure-function relationships of the FasL/Fas interactions for our chimeras, and we demonstrated that the Fas-mediated apoptotic signal did not solely rely on ligand-mediated receptor aggregation, but also required a conformational adaptation of the Fas receptor. When injected into mice, pFasL did not trigger liver injury at a dose which displayed anti-tumor activity in a model of human tumor transplanted to immunodeficient animals, suggesting a potential therapeutic use. Therefore, the optimization of the FasL conformation has to be considered for the development of efficient FasL-derived anti-cancer drugs targeting Fas. PMID:23326557

  1. Mistranslation and its control by tRNA synthetases

    PubMed Central

    Schimmel, Paul

    2011-01-01

    Aminoacyl tRNA synthetases are ancient proteins that interpret the genetic material in all life forms. They are thought to have appeared during the transition from the RNA world to the theatre of proteins. During translation, they establish the rules of the genetic code, whereby each amino acid is attached to a tRNA that is cognate to the amino acid. Mistranslation occurs when an amino acid is attached to the wrong tRNA and subsequently is misplaced in a nascent protein. Mistranslation can be toxic to bacteria and mammalian cells, and can lead to heritable mutations. The great challenge for nature appears to be serine-for-alanine mistranslation, where even small amounts of this mistranslation cause severe neuropathologies in the mouse. To minimize serine-for-alanine mistranslation, powerful selective pressures developed to prevent mistranslation through a special editing activity imbedded within alanyl-tRNA synthetases (AlaRSs). However, serine-for-alanine mistranslation is so challenging that a separate, genome-encoded fragment of the editing domain of AlaRS is distributed throughout the Tree of Life to redundantly prevent serine-to-alanine mistranslation. Detailed X-ray structural and functional analysis shed light on why serine-for-alanine mistranslation is a universal problem, and on the selective pressures that engendered the appearance of AlaXps at the base of the Tree of Life. PMID:21930589

  2. Identification and molecular characterization of acyl-CoA synthetase in human erythrocytes and erythroid precursors.

    PubMed

    Malhotra, K T; Malhotra, K; Lubin, B H; Kuypers, F A

    1999-11-15

    Full-length cDNA species encoding two forms of acyl-CoA synthetase from a K-562 human erythroleukaemic cell line were cloned, sequenced and expressed. The first form, named long-chain acyl-CoA synthetase 5 (LACS5), was found to be a novel, unreported, human acyl-CoA synthetase with high similarity to rat brain ACS2 (91% identical). The second form (66% identical with LACS5) was 97% identical with human liver LACS1. The LACS5 gene encodes a highly expressed 2.9 kb mRNA transcript in human haemopoietic stem cells from cord blood, bone marrow, reticulocytes and fetal blood cells derived from fetal liver. An additional 6.3 kb transcript is also found in these erythrocyte precursors; 2.9 and 9.6 kb transcripts of LACS5 are found in human brain, but transcripts are virtually absent from human heart, kidney, liver, lung, pancreas, spleen and skeletal muscle. The 78 kDa expressed LACS5 protein used the long-chain fatty acids palmitic acid, oleic acid and arachidonic acid as substrates. Antibodies directed against LACS5 cross-reacted with erythrocyte membranes. We conclude that early erythrocyte precursors express at least two different forms of acyl-CoA synthetase and that LACS5 is present in mature erythrocyte plasma membranes.

  3. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    SciTech Connect

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  4. Effects of experimental hypo- and hyperthyroidism on hepatic long-chain fatty acyl-CoA synthetase and hydrolase.

    PubMed

    Dang, A Q; Faas, F H; Carter, W J

    1989-07-01

    The effects of T3 treatment and thyroidectomy on rat liver microsomal long-chain fatty acyl-CoA (LCFA-CoA) synthetase and LCFA-CoA hydrolase activities were determined. Hyperthyroid rats had a 36-42% decrease in LCFA-CoA synthetase with no change in hydrolase activity. This may contribute to the redirection of fatty acids from esterification to oxidation reactions in hyperthyroidism. Thyroidectomized rats had a 40-44% decrease in synthetase and a 27-42% decrease in LCFA-CoA hydrolase activity. The decrease in both LCFA-CoA synthetase and hydrolase activities in hypothyroidism may indicate that the LCFA-CoA turnover in this futile cycle is decreased in the liver.

  5. Nineteen-year follow-up of a patient with severe glutathione synthetase deficiency.

    PubMed

    Atwal, Paldeep S; Medina, Casey R; Burrage, Lindsay C; Sutton, V Reid

    2016-07-01

    Glutathione synthetase deficiency is a rare autosomal recessive disorder resulting in low levels of glutathione and an increased susceptibility to oxidative stress. Patients with glutathione synthetase deficiency typically present in the neonatal period with hemolytic anemia, metabolic acidosis and neurological impairment. Lifelong treatment with antioxidants has been recommended in an attempt to prevent morbidity and mortality associated with the disorder. Here, we present a 19-year-old female who was diagnosed with glutathione synthetase deficiency shortly after birth and who has been closely followed in our metabolic clinic. Despite an initial severe presentation, she has had normal intellectual development and few complications of her disorder with a treatment regimen that includes polycitra (citric acid, potassium citrate and sodium citrate), vitamin C, vitamin E and selenium.

  6. Inhibition of Dihydropteroate Synthetase from Escherichia coli by Sulfones and Sulfonamides

    PubMed Central

    McCullough, Jerry L.; Maren, Thomas H.

    1973-01-01

    The inhibitory action of various diphenylsulfones and sulfonamides on dihydropteroate synthetase partially purified from Escherichia coli was examined. 4,4′-Diaminodiphenylsulfone (DDS; I50 = 2 × 10−5 M) and the monosubstituted derivatives 4-amino-4′-formamidodiphenylsulfone (I50 = 5.8 × 10−5 M) and 4-amino-4′-acetamidodiphenylsulfone (I50 = 5.2 × 10−5 M) were effective inhibitors of dihydropteroate synthetase activity. Disubstitution of the arylamine groups of DDS (4,4′-diformamidodiphenylsulfone and 4,4′-diacetamidodiphenylsulfone) resulted in complete loss of inhibitory activity. Both DDS (KI = 5.9 × 10−6 M) and sulfadiazine (KI = 2.5 × 10−6 M) were found to be competitive inhibitors of dihydropteroate synthetase. These findings are discussed in regard to the Bell and Roblin theory of structure-activity relationships for p-aminobenzoic acid antagonists. PMID:4597736

  7. 19-Year Follow-up of A Patient With Severe Glutathione Synthetase Deficiency

    PubMed Central

    Atwal, Paldeep S.; Medina, Casey R.; Burrage, Lindsay C.; Sutton, V. Reid

    2016-01-01

    Glutathione synthetase deficiency is a rare autosomal recessive disorder resulting in low levels of glutathione and an increased susceptibility to oxidative stress. Patients with glutathione synthetase deficiency typically present in the neonatal period with hemolytic anemia, metabolic acidosis and neurological impairment. Lifelong treatment with antioxidants has been recommended in an attempt to prevent morbidity and mortality associated with the disorder. Here we present a 19-year-old female who was diagnosed with glutathione synthetase deficiency shortly after birth and who has been closely followed in our metabolic clinic. Despite an initial severe presentation, she has had normal intellectual development and few complications of her disorder with a treatment regimen that includes polycitra (citric acid, potassium citrate and sodium citrate), vitamin C, vitamin E and selenium. PMID:26984560

  8. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells.

    PubMed

    Zimmerman, Mary A; Singh, Nagendra; Martin, Pamela M; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L; Shi, Huidong; Robertson, Keith D; Munn, David H; Liu, Kebin

    2012-06-15

    Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated colorectal cancer. Recent studies have shown that chronic IFN-γ signaling plays an essential role in inflammation-mediated colorectal cancer development in vivo, whereas genome-wide association studies have linked human UC risk loci to IFNG, the gene that encodes IFN-γ. However, the molecular mechanisms underlying the butyrate-IFN-γ-colonic inflammation axis are not well defined. Here we showed that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration. Butyrate treatment-induced apoptosis of wild-type T cells but not Fas-deficient (Fas(lpr)) or FasL-deficient (Fas(gld)) T cells, revealing a potential role of Fas-mediated apoptosis of T cells as a mechanism of butyrate function. Histone deacetylase 1 (HDAC1) was found to bind to the Fas promoter in T cells, and butyrate inhibits HDAC1 activity to induce Fas promoter hyperacetylation and Fas upregulation in T cells. Knocking down gpr109a or slc5a8, the genes that encode for receptor and transporter of butyrate, respectively, resulted in altered expression of genes related to multiple inflammatory signaling pathways, including inducible nitric oxide synthase (iNOS), in mouse colonic epithelial cells in vivo. Butyrate effectively inhibited IFN-γ-induced STAT1 activation, resulting in inhibition of iNOS upregulation in human colon epithelial and carcinoma cells in vitro. Our data thus suggest that butyrate delivers a double-hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation.

  9. Activation of the Fas/Fas ligand pathway in hypertensive renal disease in Dahl/Rapp rats

    PubMed Central

    Sanders, Paul W; Wang, Pei-Xuan

    2002-01-01

    Background Hypertensive nephrosclerosis is the second most common cause of end-stage renal failure in the United States. The mechanism by which hypertension produces renal failure is incompletely understood. Recent evidence demonstrated that an unscheduled and inappropriate increase in apoptosis occurred in the Dahl/Rapp rat, an inbred strain of rat that uniformly develops hypertension and hypertensive nephrosclerosis; early correction of the hypertension prevents the renal injury. The present study examined the role of the Fas/FasL pathway in this process. Methods Young male Dahl/Rapp salt-sensitive (S) and Sprague-Dawley rats were fed diets that contained 0.3% or 8.0% NaCl diets. Kidneys were examined at days 7 and 21 of the study. Results An increase in Fas and FasL expression was observed in glomerular and tubular compartments of kidneys of hypertensive S rats, whereas dietary salt did not change expression of either of these molecules in normotensive Sprague-Dawley rats. Associated with this increase was cleavage of Bid and activation of caspase-8, the initiator caspase in this apoptotic pathway, by day 21 of the study. Conclusions Augmented expression of apoptotic signaling by the Fas/FasL pathway occurred during development of end-stage renal failure in this model of hypertensive nephrosclerosis. PMID:11818026

  10. [Studies on regulation of glutamine synthetase activity from Streptomyces lincolnensis].

    PubMed

    Jin, Z; Jiao, R; Mao, Y

    2001-08-01

    Glutamine synthetase in crude extracts from Streptomyces lincolnensis growing under different nitrogen sources were studied. The results showed that NH4+ in high concentration repressed the biosynthesis of the enzyme. To determine whether Streptomyces lincolnensis has undergone covalent modification, a comparison of the glutamine synthetase isolated from cells grown on different nitrogen sources was made. No significant difference was observed in specific activity, pH optima, divalent cation response, and ultraviolet absorption spectra. Glutamine synthetase activity was not influenced by ammonia shock or snake venom phosphodiesterase treatment. Under these conditions, the activity of glutamine synthetase from K. aerogenes was markedly changed. There was therefore no evidence for enzymatic adenylylation of glutamine synthetase from Streptomyces lincolnensis. Glutamine synthetase was subject to feedback inhibition by end products of glutamine metabolism. Cumulative feedback inhibition of the Mn(2+)-dependent glutamine synthetase activity was demonstrated. These results suggest that glutamine synthetase from Streptomyces lincolnensis is an allosteric enzyme. PMID:12552916

  11. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis.

  12. Novel insights into regulation of asparagine synthetase in conifers.

    PubMed

    Canales, Javier; Rueda-López, Marina; Craven-Bartle, Blanca; Avila, Concepción; Cánovas, Francisco M

    2012-01-01

    Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid sequences revealed that both genes are class II AS, suggesting an ancient origin of these genes in plants. A comparative study of PpAS1 and PpAS2 gene expression profiles showed that PpAS1 gene is highly regulated by developmental and environmental factors, while PpAS2 is expressed constitutively. To determine the molecular mechanisms underpinning the differential expression of PpAS1, the promoter region of the gene was isolated and putative binding sites for MYB transcription factors were identified. Gel mobility shift assays showed that a MYB protein from Pinus taeda (PtMYB1) was able to interact with the promoter region of PpAS1. Furthermore, transient expression analyses in pine cells revealed a negative effect of PtMYB1 on PpAS1 expression. The potential role of MYB factors in the transcriptional regulation of PpAS1 in vascular cells is discussed.

  13. Holocarboxylase synthetase deficiency pre and post newborn screening.

    PubMed

    Donti, Taraka R; Blackburn, Patrick R; Atwal, Paldeep S

    2016-06-01

    Holocarboxylase synthetase deficiency is an autosomal recessive disorder of biotin metabolism resulting in multiple carboxylase deficiency. The typical presentation described in the medical literature is of neonatal onset within hours to weeks of birth with emesis, hypotonia, lethargy, seizures, metabolic ketolactic acidosis, hyperammonemia, developmental delay, skin rash and alopecia. The condition is screened for by newborn screening (NBS) tandem mass spectroscopy by elevated hydroxypentanoylcarnitine on dried blood spots. Urine organic acid profile may demonstrate elevated lactic, 3-OH isovaleric, 3-OH propionic, 3-MCC, methylcitric acids, and tiglylglycine consistent with loss of function of the above carboxylases. Here we describe a cohort of patients, 2 diagnosed pre-NBS and 3 post-NBS with broad differences in initial presentation and phenotype. In addition, prior to the advent of NBS, there are isolated reports of late-onset holocarboxylase synthetase deficiency in the medical literature, which describe patients diagnosed between 1 and 8 years of life, however to our knowledge there are no reports of late-onset HCLS being missed by NBS. Also we report two cases, each with novel pathogenic variants HCLS, diagnosed at age 3 years and 21 months respectively. The first patient had a normal newborn screen whilst the second had an abnormal newborn screen but was misdiagnosed as 3-methylcrotonylcarboxylase (3-MCC) deficiency and subsequently lost to follow-up until they presented again with severe metabolic acidosis. PMID:27114915

  14. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  15. Unnatural reactive amino acid genetic code additions

    DOEpatents

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  16. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-02-15

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells

    SciTech Connect

    Feng Gong; Li Ying; Bai Yansheng

    2011-03-15

    Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularin induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.

  18. Fast neutrons-induced apoptosis is Fas-independent in lymphoblastoid cells

    SciTech Connect

    Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre; Dufour, Patrick; Bergerat, Jean-Pierre; Denis, Jean-Marc; Gueulette, John; Bischoff, Pierre L. . E-mail: Pierre.Bischoff@ircad.u-strasbg.fr

    2005-08-26

    We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to the stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.

  19. FAS Haploinsufficiency Caused by Extracellular Missense Mutations Underlying Autoimmune Lymphoproliferative Syndrome.

    PubMed

    de Bielke, María Gabriela Simesen; Perez, Laura; Yancoski, Judith; Oliveira, João Bosco; Danielian, Silvia

    2015-11-01

    Mutations in the FAS gene are the most common cause of Autoimmune Lymphoproliferative Syndrome (ALPS), and the majority of them affect the intracellular domain of FAS protein, particularly the region termed death domain. However, approximately one third of these mutations affect the extracellular region of FAS and most are stop codons, with very few missense changes having been described to date. We previously described 7 patients with a FAS missense extracellular mutation, C107Y, two in homozygozity and 5 in heterozygosity. We investigated here the mechanistic effects of this mutation and observed that the homozygous patients did not show any FAS surface expression, while the heterozygous patients had diminished receptor expression. Aiming to understand why a missense mutation was abolishing receptor expression, we analyzed intracellular FAS protein trafficking using fluorescent fusion proteins of wild type FAS, two missense extracellular mutants (FAS-C107Y and FAS-C104Y) and one missense change localized in the intracellular region, FAS-D260E. The FAS-C107Y and FAS-C104Y mutants failed to reach the cell surface, being retained at the endoplasmic reticulum, unlike the WT or the FAS-D260E which were clearly expressed at the plasma membrane. These results support haploinsufficiency as the underlying mechanism involved in the pathogenesis of ALPS caused by extracellular FAS missense mutations. PMID:26563159

  20. Mutational analysis of the N-methyltransferase domain of the multifunctional enzyme enniatin synthetase.

    PubMed

    Hacker, C; Glinski, M; Hornbogen, T; Doller, A; Zocher, R

    2000-10-01

    N-Methylcyclopeptides like cyclosporins and enniatins are synthesized by multifunctional enzymes representing hybrid systems of peptide synthetases and S-adenosyl-l-methionine (AdoMet)-dependent N-methyltransferases. The latter constitute a new family of N-methyltransferases sharing high homology within procaryotes and eucaryotes. Here we describe the mutational analysis of the N-methyltransferase domain of enniatin synthetase from Fusarium scirpi to gain insight into the assembly of the AdoMet-binding site. The role of four conserved motifs (I, (2085)VLEIGTGSGMIL; II/Y, (2105)SYVGLDPS; IV, (2152)DLVVFNSVVQYFTPPEYL; and V, (2194)ATNGHFLAARA) in cofactor binding as measured by photolabeling was studied. Deletion of the first 21 N-terminal amino acid residues of the N-methyltransferase domain did not affect AdoMet binding. Further shortening close to motif I resulted in loss of binding activity. Truncation of 38 amino acids from the C terminus and also internal deletions containing motif V led to complete loss of AdoMet-binding activity. Point mutations converting the conserved Tyr(223) (corresponding to position 2106 in enniatin synthetase) in motif II/Y (close to motif I) into Val, Ala, and Ser, respectively, strongly diminished AdoMet binding, whereas conversion of this residue to Phe restored AdoMet-binding activity to approximately 70%, indicating that Tyr(223) is important for AdoMet binding and that the aromatic Tyr(223) may be crucial for AdoMet binding in N-methylpeptide synthetases.

  1. Asparagine Synthesis in Pea Leaves, and the Occurrence of an Asparagine Synthetase Inhibitor 1

    PubMed Central

    Joy, Kenneth W.; Ireland, Robert J.; Lea, Peter J.

    1983-01-01

    Asparagine is present in the mature leaves of young pea (Pisum sativum cv Little Marvel) seedlings, and is synthesized in detached shoots. This accumulation and synthesis is greatly enhanced by darkening. In detached control shoots, [14C]aspartate was metabolized predominantly to organic acids and, as other workers have shown, there was little labeling of asparagine (after 5 hours, 3.1% of metabolized label). Addition of the aminotransferase inhibitor aminooxyacetate decreased the flow of aspartate carbon to organic acids and enhanced (about 3-fold) the labeling of asparagine. The same treatment applied to darkened shoots resulted in a substantial conversion of [14C]aspartate to asparagine, over 10-fold greater than in control shoots (66% of metabolized label), suggesting that aspartate is the normal precursor of asparagine. Only traces of glutamine-dependent asparagine synthetase activity could be detected in pea leaf or root extracts; activity was not enhanced by sulfhydryl reagents, oxidizing conditions, or protease inhibitors. Asparagine synthetase is readily extracted from lupin cotyledons, but yield was greatly reduced by extraction in the presence of pea leaf tissue; pea leaf homogenates contained an inhibitor which produced over 95% inhibition of an asparagine synthetase preparation from lupin cotyledons. The inhibitor was heat stable, with a low molecular weight. Presence of an inhibitor may prevent detection of asparagine synthetase in pea extracts and in Asparagus, where a cyanide-dependent pathway has been proposed to account for asparagine synthesis: an inhibitor with similar properties was present in Asparagus shoot tissue. PMID:16663168

  2. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  3. Genetically encoded fluorescent coumarin amino acids

    DOEpatents

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  4. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    PubMed

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  5. The Role of Fas-FasL Signaling Pathway in Induction of Apoptosis in Patients with Sulfur Mustard-Induced Chronic Bronchiolitis

    PubMed Central

    Pirzad, Gila; Jafari, Mahvash; Tavana, Sasan; Sadrayee, Homayoon; Ghavami, Saeid; Shajiei, Arezoo; Ghanei, Mostafa

    2010-01-01

    Sulfur mustard (SM) is an alkylating agent that induces apoptosis and necrosis in cells. Fas-Fas ligand (FasL) interaction could induce apoptosis as well. In this study, it was hypothesized that apoptosis might play an important role in the pathogenesis of SM-induced lung injury via Fas-FasL signaling pathway. In a case-control study, Fas and FasL levels, caspase-3 activity and percent of apoptotic cells were measured in bronchoalveolar lavage (BAL) fluid of patients 20 years after exposure to sulfur mustard and compared with the control group. Results show that Fas and FasL levels were significantly higher in BAL fluid cells in patients group compared with the control (P = .001). No significant differences were observed between mild and moderate-severe groups. BAL fluid cells caspase-3 activity was not significantly different among the mild, moderate-severe, and control groups. The data suggest that Fas-FasL-induced apoptosis was impaired in BAL fluid cells of SM-exposed patients which might be one of the initiators of pathogenesis in SM-induced lung injury in these patients. PMID:21317984

  6. Safrole oxide induces apoptosis by up-regulating Fas and FasL instead of integrin beta4 in A549 human lung cancer cells.

    PubMed

    Du, AiYing; Zhao, BaoXiang; Miao, JunYing; Yin, DeLing; Zhang, ShangLi

    2006-04-01

    Previously, we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells by activating caspase-3, -8, and -9. In this study, we further investigated which upstream pathways were activated by safrole oxide during the apoptosis. Immunofluorescence assay combined with laser scanning confocal microscopy revealed that both Fas and Fas ligand (FasL) were up-regulated by the small molecule. In addition, Fas protein distribution was altered, showing a clustering distribution instead of a homogeneous one. Subsequently, Western blot analysis confirmed the up-regulations of Fas and its membrane-binding form of FasL (m-FasL), as well as P53 protein. Conversely, safrole oxide hardly affected integrin beta4 subunit expression or distribution, which was reflected from the data obtained by immunofluorescence assay combined with laser scanning confocal microscopy. The results suggested that Fas/FasL pathway might be involved in safrole oxide-induced apoptosis of A549 cells, while integrin beta4 might be irrelevant to the apoptosis. Nevertheless, we first found the strong expression of integrin beta4 in A549 cells. The study first suggested that safrole oxide might be used as a small molecular promoter of Fas/FasL pathway to elicit apoptosis in A549 cells, which would lay the foundation for us to insight into the new strategies for lung cancer therapy.

  7. Transfer of Fas (CD95) protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11.

    PubMed

    Sawai, Hirofumi; Domae, Naochika

    2010-02-04

    Mouse monoclonal anti-Fas (CD95) antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.

  8. Phosphorylation of eukaryotic aminoacyl-tRNA synthetases

    SciTech Connect

    Pendergast, A.M.

    1986-01-01

    The phosphorylation of the highly purified aminoacyl-tRNA synthetase complex from rabbit reticulocytes was examined. The synthetase complex contained, in addition to eight aminoacyl-tRNA synthetases, three unidentified proteins and was free of endogenous protein kinase activity. Incubation of the complex with casein kinase I in the presence of ATP resulted in the phosphorylation of four synthetases, the glutamyl-, isoleucyl-, methionyl-, and lysyl-tRNA synthetases. Phosphorylation by casein kinase I altered binding to tRNA-Sepharose such that the phosphorylated complex eluted at 190 mM NaCl instead of the 275 mM salt observed for the nonphosphorylated form. Phosphorylation by casein kinase I resulted in a significant inhibition of aminoacylation with the four synthetases; the activities of the nonphosphorylated synthetases were unchanged. One of the unidentified proteins in the complex (M/sub r/ 37,000) was also an excellent substrate for casein kinase I. A comparison of the properties and two-dimensional phosphopeptide pattern of this protein with that of casein kinase I suggest that the 37,000 dalton protein in the synthetase complex is an inactive form of casein kinase I. Two other protein kinases were shown to phosphorylate aminoacyl-tRNA synthetases in the complex. The phosphorylation of threonyl-tRNA synthetase was also investigated. Five aminoacyl-tRNA synthetases in the high molecular weight complex were shown to be phosphorylated in rabbit reticulocytes following labeling with (/sup 32/P)orthophosphate.

  9. Prostaglandin endoperoxide synthetase and the activation of benzo(a)pyrene to reactive metabolites in vivo in guinea pigs

    SciTech Connect

    Garattini, E.; Coccia, P.; Romano, M.; Jiritano, L.; Noseda, A.; Salmona, M.

    1984-11-01

    The role of prostaglandin endoperoxide synthetase in the in vivo activation of benzo(a)pyrene to reactive metabolites capable of interacting irreversibly with cellular macromolecules was studied in guinea pig liver, lung, kidney, spleen, small intestine, colon, and brain. DNA and protein covalent binding experiments were made after systemic administration of acetylsalicylic acid (200 mg/kg) followed by radiolabeled benzo(a)pyrene (4 microgram/kg). Results are compared with a control situation in which the prostaglandin endoperoxide synthetase inhibitor (acetylsalicylic acid) was not administered. No decrease in the level of DNA or protein benzo(a)pyrene-derived covalent binding was observed in any of the tissues studied.

  10. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-01-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia. PMID:7486915

  11. Receptor-specific regulation of B-cell susceptibility to Fas-mediated apoptosis and a novel Fas apoptosis inhibitory molecule.

    PubMed

    Rothstein, T L; Zhong, X; Schram, B R; Negm, R S; Donohoe, T J; Cabral, D S; Foote, L C; Schneider, T J

    2000-08-01

    The susceptibility of primary B cells to Fas (APO-1, CD95)-mediated apoptosis is modulated by signals derived from additional surface receptors: CD40 engagement produces upregulation of Fas expression and marked sensitivity to Fas-induced cell death, whereas antigen receptor engagement, or interleukin-4 receptor (IL-4R) engagement, inhibits Fas killing and thereby produces Fas resistance, even in otherwise susceptible, CD40-stimulated targets. Surface immunoglobulin (sIg) and IL-4R utilize distinct signaling pathways to produce Fas resistance that rely on protein kinase C and signal transducer and activator of transcription 6, respectively sIg signaling for inducible Fas resistance requires nuclear factor-kappaB and depends on new macromolecular synthesis. Proximate mediators for Fas resistance include the known anti-apoptotic gene products Bcl-xL and FLIP (but not Btk), and a novel anti-apoptotic gene that encodes Fas apoptosis inhibitory molecule (FAIM). FAIM was identified by differential display and was cloned as two alternatively spliced forms: FAIM-S is broadly expressed, whereas faim-L expression is tissue specific. faim is highly evolutionarily conserved, suggesting an important function throughout phylogeny. Inducible resistance to Fas-mediated apoptosis is speculated to protect antigen-specific B cells during potentially dangerous interactions with FasL-bearing T cells; the elevated sIg-signaling threshold for inducible Fas resistance in autoreactive, tolerant B cells would insure against autoimmunity. However, aberrant acquisition of Fas resistance may allow autoreactive B cells to escape Fas deletion and malignant lymphocytes to thwart antitumor immunity.

  12. Expression of Fas and Fas Ligand on Mouse Renal Tubular Epithelial Cells in the Generalized Shwartzman Reaction and Its Relationship to Apoptosis

    PubMed Central

    Koide, Naoki; Narita, Kayo; Kato, Yutaka; Sugiyama, Tsuyoshi; Chakravortty, Dipshikha; Morikawa, Akiko; Yoshida, Tomoaki; Yokochi, Takashi

    1999-01-01

    Previously we reported that the consecutive injection of lipopolysaccharide (LPS) into LPS-sensitized mice for the generalized Shwartzman reaction (GSR) appeared to induce the injury of renal tubular epithelial cells via apoptosis. The aim of this study was to characterize the mechanism of renal tubular epithelial cell injury in GSR. The expression of Fas and Fas ligand was immunohistochemically detected on renal tubular epithelial cells from GSR-induced mice, although neither Fas nor Fas ligand was found in cells from untreated control mice or in cells from mice receiving a single injection of LPS. GSR-induced renal tubular epithelial cell injury was produced in neither Fas-negative MRL-lpr/lpr mice nor Fas ligand-negative MRL-gld/gld mice. The administration of anti-gamma interferon antibody together with a preparative injection of LPS prevented the expression of Fas and Fas ligand and the apoptosis of renal tubular epithelial cells. A provocative injection of tumor necrosis factor alpha into LPS-sensitized mice augmented Fas and Fas ligand expression and the apoptosis of renal tubular epithelial cells. The administration of tumor necrosis factor alpha to interleukin-12-sensitized mice resulted in Fas and Fas ligand expression and the apoptosis. Sensitization with interleukin-12 together with anti-gamma interferon antibody did not cause the apoptosis of renal tubular epithelial cells. It was suggested that the Fas/Fas ligand system probably plays a critical role in the development of renal tubular epithelial cell injury through apoptotic cell death. PMID:10417181

  13. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... important for the effective use of biotin, a B vitamin found in foods such as liver, egg yolks, and milk. Holocarboxylase synthetase attaches biotin to certain enzymes that are essential for the normal production and breakdown of proteins, fats, and carbohydrates in ...

  14. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... PubMed Njålsson R. Glutathione synthetase deficiency. Cell Mol Life Sci. 2005 Sep;62(17):1938-45. Review. Citation on PubMed Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007 Mar 30;2:16. Review. Citation on PubMed or ...

  15. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.

    PubMed

    Hadd, Andrew; Perona, John J

    2014-12-19

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl-tRNA pairing specificities of bacterial glutaminyl-tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNA(Gln) by over 10(5)-fold compared to the wild-type enzyme. Better optimized designs of the protein-RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl-tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology. PMID:25310879

  16. sFas levels increase in response to cisplatin-based chemotherapy in lung cancer patients.

    PubMed

    Ulukaya, Engin; Acilan, Ceyda; Yilmaz, Meryem; Yilmaztepe-Oral, Arzu; Ari, Ferda; Zik, Berrin; Ursavas, Ahmet; Tokullugil, Asuman H

    2010-10-01

    The Fas/Fas Ligand (FasL) system and survivin have counteracting roles in cell survival. Therefore, we explored the role of circulating soluble Fas (sFas) and the tissue levels of Fas and survivin with regard to response to chemotherapy in lung cancer patients. Serum samples from 52 lung cancer patients and 54 control subjects (19 benign lung disease and 35 healthy control subjects) were collected prior to and 24 and 48 h after chemotherapy. sFas was statistically significantly higher in the cancer group than that in the control groups (p < 0.001). Baseline (before chemotherapy) sFas values showed a statistically significant inverse correlation with overall survival (r = -0.599, p < 0.001). There was a significant increase in serum sFas levels 24 h after treatment (p < 0.05). Contrarily, tissue levels of Fas and survivin were not changed following the chemotherapy (p > 0,05). In conclusion, increased sFas may be an indicator of poor outcome in lung cancer patients. However, cisplatin-based chemotherapy may not be effective via neither the Fas/FasL system nor survivin pathway. Indeed, larger sample size is required for further evaluation.

  17. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells

    PubMed Central

    Zimmerman, Mary A.; Singh, Nagendra; Martin, Pamela M.; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L.; Shi, Huidong; Robertson, Keith D.; Munn, David H.

    2012-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit protective effects toward inflammatory diseases such as ulcerative colitis (UC) and inflammation-mediated colorectal cancer. Recent studies have shown that chronic IFN-γ signaling plays an essential role in inflammation-mediated colorectal cancer development in vivo, whereas genome-wide association studies have linked human UC risk loci to IFNG, the gene that encodes IFN-γ. However, the molecular mechanisms underlying the butyrate-IFN-γ-colonic inflammation axis are not well defined. Here we showed that colonic mucosa from patients with UC exhibit increased signal transducer and activator of transcription 1 (STAT1) activation, and this STAT1 hyperactivation is correlated with increased T cell infiltration. Butyrate treatment-induced apoptosis of wild-type T cells but not Fas-deficient (Faslpr) or FasL-deficient (Fasgld) T cells, revealing a potential role of Fas-mediated apoptosis of T cells as a mechanism of butyrate function. Histone deacetylase 1 (HDAC1) was found to bind to the Fas promoter in T cells, and butyrate inhibits HDAC1 activity to induce Fas promoter hyperacetylation and Fas upregulation in T cells. Knocking down gpr109a or slc5a8, the genes that encode for receptor and transporter of butyrate, respectively, resulted in altered expression of genes related to multiple inflammatory signaling pathways, including inducible nitric oxide synthase (iNOS), in mouse colonic epithelial cells in vivo. Butyrate effectively inhibited IFN-γ-induced STAT1 activation, resulting in inhibition of iNOS upregulation in human colon epithelial and carcinoma cells in vitro. Our data thus suggest that butyrate delivers a double-hit: induction of T cell apoptosis to eliminate the source of inflammation and suppression of IFN-γ-mediated inflammation in colonic epithelial cells, to suppress colonic inflammation. PMID:22517765

  18. Characterization of calmodulin-Fas death domain interaction: an integrated experimental and computational study.

    PubMed

    Fancy, Romone M; Wang, Lingyun; Napier, Tiara; Lin, Jiabei; Jing, Gu; Lucius, Aaron L; McDonald, Jay M; Zhou, Tong; Song, Yuhua

    2014-04-29

    The Fas death receptor-activated death-inducing signaling complex (DISC) regulates apoptosis in many normal and cancer cells. Qualitative biochemical experiments demonstrate that calmodulin (CaM) binds to the death domain of Fas. The interaction between CaM and Fas regulates Fas-mediated DISC formation. A quantitative understanding of the interaction between CaM and Fas is important for the optimal design of antagonists for CaM or Fas to regulate the CaM-Fas interaction, thus modulating Fas-mediated DISC formation and apoptosis. The V254N mutation of the Fas death domain (Fas DD) is analogous to an identified mutant allele of Fas in lpr-cg mice that have a deficiency in Fas-mediated apoptosis. In this study, the interactions of CaM with the Fas DD wild type (Fas DD WT) and with the Fas DD V254N mutant were characterized using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and molecular dynamics (MD) simulations. ITC results reveal an endothermic binding characteristic and an entropy-driven interaction of CaM with Fas DD WT or with Fas DD V254N. The Fas DD V254N mutation decreased the association constant (Ka) for CaM-Fas DD binding from (1.79 ± 0.20) × 10(6) to (0.88 ± 0.14) × 10(6) M(-1) and slightly increased a standard state Gibbs free energy (ΔG°) for CaM-Fas DD binding from -8.87 ± 0.07 to -8.43 ± 0.10 kcal/mol. CD secondary structure analysis and MD simulation results did not show significant secondary structural changes of the Fas DD caused by the V254N mutation. The conformational and dynamical motion analyses, the analyses of hydrogen bond formation within the CaM binding region, the contact numbers of each residue, and the electrostatic potential for the CaM binding region based on MD simulations demonstrated changes caused by the Fas DD V254N mutation. These changes caused by the Fas DD V254N mutation could affect the van der Waals interactions and electrostatic interactions between CaM and Fas DD, thereby affecting

  19. Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes

    PubMed Central

    Coe, Genevieve L.; Redd, Priscilla S.; Paschall, Amy V.; Lu, Chunwan; Gu, Lilly; Cai, Houjian; Albers, Thomas; Lebedyeva, Iryna O.; Liu, Kebin

    2016-01-01

    FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy. PMID:27487939

  20. Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways.

    PubMed

    Zhuang, Shougang; Kochevar, Irene E

    2003-07-01

    Endogenous cellular chromophores absorb ultraviolet A radiation (UVA, 290-320 nm), the major UV component of terrestrial solar radiation, leading to the formation of reactive oxidizing species that initiate apoptosis, gene expression and mutagenesis. UVA-induced apoptosis of T helper cells is believed to underlie the UVA phototherapy for atopic dermatitis and other T cell-mediated inflammatory skin diseases. We have evaluated the involvement of the Fas-Fas ligand (FasL) pathway in rapid UVA-induced apoptosis in human leukemia HL-60 cells. UVA-induced apoptosis was not inhibited by pretreatment with a neutralizing anti-Fas antibody, although the same UVA treatment initiated cleavage of caspase-8 and subsequent processing of Bid and caspase-3-like proteases. Inhibition of caspase-8 by Lle-Glu (OMe)-Thr-Asp(OMe)-fluoromethyl ketone completely blocked caspase-3 cleavage and apoptosis in UVA-treated cells, suggesting that apoptosis was initiated by the Fas pathway. This inference was supported by demonstrating that immunoprecipitates obtained from UVA-treated cells using anti-Fas antibody contained caspase-8 and Fas-associating protein with death domain (FADD). In addition, Fas clustering in response to UVA treatment was observed by immunofluorescence microscopy. These data support a mechanism for rapid, UVA-induced apoptosis in HL-60 cells involving initial formation of the Fas-FADD-caspase-8 death complex in an FasL-independent manner.

  1. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  2. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity.

    PubMed Central

    Hanabuchi, S; Koyanagi, M; Kawasaki, A; Shinohara, N; Matsuzawa, A; Nishimura, Y; Kobayashi, Y; Yonehara, S; Yagita, H; Okumura, K

    1994-01-01

    To investigate the mechanisms of T-cell-mediated cytotoxicity, we estimated the involvement of apoptosis-inducing Fas molecule on the target cells and its ligand on the effector cells. When redirected by ConA or anti-CD3 monoclonal antibody, a CD4+ T-cell clone, BK1, could lyse the target cells expressing wild-type Fas molecule but not those expressing death signaling-deficient mutants. This indicates the involvement of Fas-mediated signal transduction in the target cell lysis by BK1. Anti-CD3-activated but not resting BK1 expressed Fas ligand as detected by binding of a soluble Fas-Ig fusion protein, and the BK1-mediated cytotoxicity was blocked by the addition of Fas-Ig, implicating the inducible Fas ligand in the BK1 cytotoxicity. Ability to exert the Fas-mediated cytotoxicity was not confined to BK1, but splenic CD4+ T cells and, to a lesser extent, CD8+ T cells could also exert the Fas-dependent target cell lysis. This indicates that the Fas-mediated target cell lytic pathway can be generally involved in the T-cell-mediated cytotoxicity. Interestingly, CD4+ T cells prepared from gld/gld mice did not mediate the Fas-mediated cytotoxicity, indicating defective expression of functional Fas ligand in gld mice. PMID:7515183

  3. 48 CFR 47.303-8 - F.a.s. vessel, port of shipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false F.a.s. vessel, port of... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.303-8 F.a.s. vessel, port of shipment. (a) Explanation of delivery term. F.a.s. vessel, port of shipment means free of expense to...

  4. Increased cerebrospinal fluid concentrations of soluble Fas (CD95/Apo-1) in hydrocephalus

    PubMed Central

    Felderhoff-Mueser, U; Herold, R; Hochhaus, F; Koehne, P; Ring-Mrozik, E; Obladen, M; Buhrer, C

    2001-01-01

    BACKGROUND AND AIMS—The ventricular enlargement observed in children with chronically raised intracranial pressure (ICP) causes a secondary loss of brain tissue. In animal studies of hydrocephalus, programmed cell death (apoptosis) has been found as a major mechanism of neuronal injury. One of the regulators of the apoptotic cell death programme is the receptor mediated Fas/Fas ligand interaction.
METHODS—The apoptosis regulating cytokines soluble Fas (sFas) and soluble Fas ligand (sFasL) were studied in the cerebrospinal fluid (CSF) of 31 hydrocephalic children undergoing shunt surgery for symptomatic hydrocephalus and 18controls.
RESULTS—High concentrations of sFas were observed in children with hydrocephalus (median 252 ng/ml); in controls sFas was below the detection limit (0.5 ng/ml). sFasL was undetectable in all but one sample.
CONCLUSION—High concentrations of sFas in the CSF of children with hydrocephalus suggest intrinsic sFas production, potentially antagonising pressure mediated Fas activation.

 PMID:11259245

  5. Purification and characterization of the Fas-ligand that induces apoptosis

    PubMed Central

    1994-01-01

    Fas is a 45-kD cell surface protein belonging to the tumor necrosis factor/nerve growth factor receptor family, and transduces the signal for apoptosis. The cytotoxic T lymphocyte (CTL) hybridoma, PC60-d10S requires the presence of Fas on target cells to induce cytolysis in target cells. This CTL cell line was weakly but specifically stained by a chimeric protein that consisted of the extracellular domain of mouse Fas and the Fc portion of human immunoglobulin G1 (mFas-Fc). Moreover, mFas-Fc inhibited the cytotoxic activity of PC60-d10S. Sublines of d10S that were stained intensively by mFas-Fc were isolated by repetitive fluorescence-activated cell sorter sorting. A cell-surface protein of about 40 kD was specifically precipitated by mFas-Fc from the lysates of these sublines. This protein was homogeneously purified by sequential affinity chromatographies using mFas-Fc and concanavalin A beads. The purified protein exhibited cytotoxic activity against cells expressing Fas but not to the cells which do not express Fas. These results indicated that the 40-kD membrane glycoprotein expressed on PC60-d10S cells is the Fas-ligand that induces the apoptotic signal by binding to Fas. PMID:7509364

  6. Properties of Kaurene Synthetase from Marah macrocarpus1

    PubMed Central

    Frost, Russell G.; West, Charles A.

    1977-01-01

    synthetase activity A. Acetylcholine chloride and 2-chloroethyl-trimethylammonium chloride were effective inhibitors of activity A only at concentrations of 5 mm or greater. Abscisic acid, indole-3-acetate, gibberellin A1, gibberellin A3, a mixture of gibberellins A4 and A7, gibberellin A13, and N,N-dimethylaminosuccinamic acid (B995) were not inhibitory at any of the levels tested. None of these compounds was an effective inhibitor of activity B at concentrations less than 0.5 mm. PMID:16659781

  7. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation.

    PubMed

    Bott, Alex J; Peng, I-Chen; Fan, Yongjun; Faubert, Brandon; Zhao, Lu; Li, Jinyu; Neidler, Sarah; Sun, Yu; Jaber, Nadia; Krokowski, Dawid; Lu, Wenyun; Pan, Ji-An; Powers, Scott; Rabinowitz, Joshua; Hatzoglou, Maria; Murphy, Daniel J; Jones, Russell; Wu, Song; Girnun, Geoffrey; Zong, Wei-Xing

    2015-12-01

    c-Myc is known to promote glutamine usage by upregulating glutaminase (GLS), which converts glutamine to glutamate that is catabolized in the TCA cycle. Here we report that in a number of human and murine cells and cancers, Myc induces elevated expression of glutamate-ammonia ligase (GLUL), also termed glutamine synthetase (GS), which catalyzes the de novo synthesis of glutamine from glutamate and ammonia. This is through upregulation of a Myc transcriptional target thymine DNA glycosylase (TDG), which promotes active demethylation of the GS promoter and its increased expression. Elevated expression of GS promotes cell survival under glutamine limitation, while silencing of GS decreases cell proliferation and xenograft tumor growth. Upon GS overexpression, increased glutamine enhances nucleotide synthesis and amino acid transport. These results demonstrate an unexpected role of Myc in inducing glutamine synthesis and suggest a molecular connection between DNA demethylation and glutamine metabolism in Myc-driven cancers.

  8. Aminoacyl-tRNA synthetases in medicine and disease

    PubMed Central

    Yao, Peng; Fox, Paul L

    2013-01-01

    Aminoacyl-tRNA synthetases (ARSs) are essential and ubiquitous ‘house-keeping’ enzymes responsible for charging amino acids to their cognate tRNAs and providing the substrates for global protein synthesis. Recent studies have revealed a role of multiple ARSs in pathology, and their potential use as pharmacological targets and therapeutic reagents. The ongoing discovery of genetic mutations in human ARSs is increasing exponentially and can be considered an important determinant of disease etiology. Several chemical compounds target bacterial, fungal and human ARSs as antibiotics or disease-targeting medicines. Remarkably, ongoing exploration of noncanonical functions of ARSs has shown important contributions to control of angiogenesis, inflammation, tumourigenesis and other important physiopathological processes. Here, we summarize the roles of ARSs in human diseases and medicine, focusing on the most recent and exciting discoveries. PMID:23427196

  9. Versatility of acyl-acyl carrier protein synthetases.

    PubMed

    Beld, Joris; Finzel, Kara; Burkart, Michael D

    2014-10-23

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. We show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E. coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. In vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms. PMID:25308274

  10. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  11. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells.

  12. Effects of Shenqi Fuzheng injection on Fas/FasL protein expression levels in the cardiomyocytes of a mouse model of viral myocarditis

    PubMed Central

    WU, TIANMIN; CHEN, JINSHUI; FAN, LIUFANG; XIE, WENYAN; XU, CHANGSHENG; WANG, HUAJUN

    2016-01-01

    The aim of the present study was to examine the effects of Shenqi Fuzheng injection (SFI) on Fas and FasL protein expression levels in the cardiomyocytes of mice with viral myocarditis (VMC) and to explore the underlying anti-apoptotic mechanisms. A total of 120 male BALB/c mice were randomly divided into five groups as follows: Blank control group, model group, ribavirin group, low-dose SFI group and high-dose SFI group. The VMC model was established by the injection of coxsackievirus group B type 3 and saline, ribavirin or SFI was administered 30 min later. Cardiac samples were harvested from mice in each group on days 3, 10 and 30. Apoptosis of cardiac cells was examined using terminal deoxynucleotidyl transferase dUTP nick-end labeling, and Fas and FasL protein expression levels were detected using immunohistochemistry. Myocardial apoptosis and Fas/FasL protein expression levels were significantly increased in the model group, as compared with the blank group (P<0.01), whereas the apoptotic index (AI) and Fas/FasL protein expression levels of cardiac cells in the high-dose SFI group were significantly decreased compared with those in the model group on day 10 (acute phase; P<0.01). The AI and Fas/FasL protein expression levels of cardiac cells in the low- and high-dose SFI groups were also significantly decreased on day 30 (chronic phase; P<0.01); however, no differences between the high- and low-dose groups were detected. In conclusion, SFI relieves VMC via the downregulation of Fas and FasL protein expression and the inhibition of cell apoptosis. PMID:27168814

  13. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. PMID:22806078

  14. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    SciTech Connect

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa; Chang, Andrew; Gerratana, Barbara

    2012-08-31

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.

  15. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer

    PubMed Central

    Zhang, Guodong; Kodani, Sean; Hammock, Bruce D.

    2014-01-01

    Epoxygenated fatty acids (EpFAs), which are lipid mediators produced by cytochrome P450 epoxygenases from polyunsaturated fatty acids, are important signaling molecules known to regulate various biological processes including inflammation, pain and angiogenesis. The EpFAs are further metabolized by soluble epoxide hydrolase (sEH) to form fatty acid diols which are usually less-active. Pharmacological inhibitors of sEH that stabilize endogenous EpFAs are being considered for human clinical uses. Here we review the biology of ω-3 and ω-6 EpFAs on inflammation, pain, angiogenesis and tumorigenesis. PMID:24345640

  16. 'FAS't inhibition of malaria.

    PubMed

    Surolia, Avadhesha; Ramya, T N C; Ramya, V; Surolia, Namita

    2004-11-01

    Malaria, a tropical disease caused by Plasmodium sp., has been haunting mankind for ages. Unsuccessful attempts to develop a vaccine, the emergence of resistance against the existing drugs and the increasing mortality rate all call for immediate strategies to treat it. Intense attempts are underway to develop potent analogues of the current antimalarials, as well as a search for novel drug targets in the parasite. The indispensability of apicoplast (plastid) to the survival of the parasite has attracted a lot of attention in the recent past. The present review describes the origin and the essentiality of this relict organelle to the parasite. We also show that among the apicoplast specific pathways, the fatty acid biosynthesis system is an attractive target, because its inhibition decimates the parasite swiftly unlike the 'delayed death' phenotype exhibited by the inhibition of the other apicoplast processes. As the enzymes of the fatty acid biosynthesis system are present as discrete entities, unlike those of the host, they are amenable to inhibition without impairing the operation of the host-specific pathway. The present review describes the role of these enzymes, the status of their molecular characterization and the current advancements in the area of developing inhibitors against each of the enzymes of the pathway. PMID:15315475

  17. Application of a Fas Ligand Encoding a Recombinant Adenovirus Vector for Prolongation of Transgene Expression

    PubMed Central

    Zhang, Huang-Ge; Bilbao, Guadalupe; Zhou, Tong; Contreras, Juan Luis; Gómez-Navarro, Jesús; Feng, Meizhen; Saito, Izumu; Mountz, John D.; Curiel, David T.

    1998-01-01

    An adenovirus vector encoding murine Fas ligand (mFasL) under an inducible control was derived. In vivo ectopic expression of mFasL in murine livers induced an inflammatory cellular infiltration. Furthermore, ectopic expression of mFasL by myocytes did not allow prolonged vector-mediated transgene expression. Thus, ectopic expression of functional mFasL in vector-transduced cells does not appear to confer, by itself, an immunoprivileged site sufficient to mitigate adenovirus vector immunogenicity. PMID:9499110

  18. Identification of the Calmodulin-Binding Domains of Fas Death Receptor

    PubMed Central

    Chang, Bliss J.; Samal, Alexandra B.; Vlach, Jiri; Fernandez, Timothy F.; Brooke, Dewey; Prevelige, Peter E.; Saad, Jamil S.

    2016-01-01

    The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas–mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209–239 (Fas-Pep1) and 251–288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD–CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling

  19. LFG: an anti-apoptotic gene that provides protection from Fas-mediated cell death.

    PubMed

    Somia, N V; Schmitt, M J; Vetter, D E; Van Antwerp, D; Heinemann, S F; Verma, I M

    1999-10-26

    Programmed cell death regulates a number of biological phenomena, and the apoptotic signal must itself be tightly controlled to avoid inappropriate cell death. We established a genetic screen to search for molecules that inhibit the apoptotic signal from the Fas receptor. Here we report the isolation of a gene, LFG, that protects cells uniquely from Fas but not from the mechanistically related tumor necrosis factor alpha death signal. LFG is widely distributed, but remarkably is highly expressed in the hippocampus. LFG can bind to the Fas receptor, but does not regulate Fas expression or interfere with binding of an agonist antibody. Furthermore LFG does not inhibit binding of FADD to Fas.

  20. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate.

  1. Structural basis for the binding of succinate to succinyl-CoA synthetase.

    PubMed

    Huang, Ji; Fraser, Marie E

    2016-08-01

    Succinyl-CoA synthetase catalyzes the only step in the citric acid cycle that provides substrate-level phosphorylation. Although the binding sites for the substrates CoA, phosphate, and the nucleotides ADP and ATP or GDP and GTP have been identified, the binding site for succinate has not. To determine this binding site, pig GTP-specific succinyl-CoA synthetase was crystallized in the presence of succinate, magnesium ions and CoA, and the structure of the complex was determined by X-ray crystallography to 2.2 Å resolution. Succinate binds in the carboxy-terminal domain of the β-subunit. The succinate-binding site is near both the active-site histidine residue that is phosphorylated in the reaction and the free thiol of CoA. The carboxy-terminal domain rearranges when succinate binds, burying this active site. However, succinate is not in position for transfer of the phosphoryl group from phosphohistidine. Here, it is proposed that when the active-site histidine residue has been phosphorylated by GTP, the phosphohistidine displaces phosphate and triggers the movement of the carboxylate of succinate into position to be phosphorylated. The structure shows why succinyl-CoA synthetase is specific for succinate and does not react appreciably with citrate nor with the other C4-dicarboxylic acids of the citric acid cycle, fumarate and oxaloacetate, but shows some activity with L-malate. PMID:27487822

  2. Substrate Specificity of the Nonribosomal Peptide Synthetase PvdD from Pseudomonas aeruginosa

    PubMed Central

    Ackerley, David F.; Caradoc-Davies, Tom T.; Lamont, Iain L.

    2003-01-01

    Pseudomonas aeruginosa PAO1 secretes a siderophore, pyoverdinePAO, which contains a short peptide attached to a dihydroxyquinoline moiety. Synthesis of this peptide is thought to be catalyzed by nonribosomal peptide synthetases, one of which is encoded by the pvdD gene. The first module of pvdD was overexpressed in Escherichia coli, and the protein product was purified. l-Threonine, one of the amino acid residues in pyoverdinePAO, was an effective substrate for the recombinant protein in ATP-PPi exchange assays, showing that PvdD has peptide synthetase activity. Other amino acids, including d-threonine, l-serine, and l-allo-threonine, were not effective substrates, indicating that PvdD has a high degree of substrate specificity. A three-dimensional modeling approach enabled us to identify amino acids that are likely to be critical in determining the substrate specificity of PvdD and to explore the likely basis of the high substrate selectivity. The approach described here may be useful for analysis of other peptide synthetases. PMID:12700264

  3. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  4. The Fas-FADD Death Domain Complex Structure Unravels Signalling by Receptor Clustering

    SciTech Connect

    Scott, F.; Stec, B; Pop, C; Dobaczewska, M; Lee, J; Monosov, E; Robinson, H; Salvesen, G; Schwarzenbacher, R; Riedl, S

    2009-01-01

    The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis1, 2, 3. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation4, 5. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.

  5. Camptothecin sensitizes androgen-independent prostate cancer cells to anti-Fas-induced apoptosis

    PubMed Central

    Costa-Pereira, A P; Cotter, T G

    1999-01-01

    Despite expressing both Fas and Fas ligand, DU145 and LNCaP prostate cancer cells were resistant to anti-Fas-induced cell death. Resistance to Fas-mediated cytotoxicity could be overcome in DU145, but not in LNCaP, cells by pretreating cells with sublethal doses of cytotoxic drugs, such as camptothecin. Activated caspases were shown to be required for this cytotoxicity. Indeed, poly(ADP-Ribose) polymerase was shown to be proteolytically cleaved in cells treated with camptothecin plus anti-Fas, but not in cells treated with anti-Fas only. Moreover, pretreatment of cells with ZVAD completely blocked camptothecin-mediated Fas-induced apoptosis. Sensitization of cells to Fas-induced cell death did not involve up-regulation of Fas or FasL, and it was independent of alterations in the cell cycle. Reactive oxygen intermediates (ROI) have been shown to be important mediators of drug-induced apoptosis. Here, we demonstrate that treatment of DU145 cells with camptothecin, anti-Fas, or both, did not alter the intracellular levels of peroxide or superoxide anion. © 1999 Cancer Research Campaign PMID:10408840

  6. [Enhancement of Fas-mediated apoptosis in leukemic cell line HL-60 by Bay 11 - 7082].

    PubMed

    Wang, Li; Liu, Ling-Bo; Li, Lei; Zou, Ping

    2007-10-01

    The aim of study was to explore the effects of NF-kappaB inhibitor Bay 11 - 7082 on Fas/FasL system and Fas-mediated apoptosis in HL-60 cells. The mRNA and protein expression levels of Fas, FasL and XIAP after treatment with Bay 11 - 7082 were detected by RT-PCR and FCM respectively. The level of sFasL was detected by ELISA before and after treatment with Bay 11 - 7082; apoptosis was detected by FCM before and after treatment with Bay 11 - 7082. The results showed that after treating HL-60 cells with Bay 11 - 7082, the mRNA and protein levels of FasL and XIAP were lower than that of controls, the difference was significant by statistic analysis (p < 0.05). Neither the mRNA and protein levels of Fas, nor the level of sFasL changed significantly (p > 0.05). Apoptotic rate of HL-60 cells treated with Bay 11 - 7082 was significantly higher as compared with controls (p < 0.05). It is concluded that Bay 11 - 7082 can enhance Fas-mediated apoptosis in HL-60 cells by down-regulation of FasL and XIAP levels.

  7. Fas-induced programmed cell death is mediated by a Ras-regulated O2- synthesis.

    PubMed Central

    Gulbins, E; Brenner, B; Schlottmann, K; Welsch, J; Heinle, H; Koppenhoefer, U; Linderkamp, O; Coggeshall, K M; Lang, F

    1996-01-01

    Fas induces apoptosis in lymphocytes via a poorly defined intracellular signalling cascade. Previously, we have demonstrated the involvement and significance of a signalling cascade from the Fas receptor via sphingomyelinases and ceramide to Ras in Fas-induced apoptosis. Here we demonstrate rapid and transient synthesis of reactive oxygen intermediates (ROI) via activation of Ras after Fas. Genetic inhibition of Ras by transfection of transdominant inhibitory N17Ras blocked Fas-mediated ROI synthesis and programmed cell death. Likewise, the antioxidants N-acetyl-cysteine and N-t-butyl-phenylnitrone abolished Fas-induced cell death, pointing to an important role for Ras-triggered ROI synthesis in Fas-mediated programmed cell death. Images Figure 1 Figure 3 PMID:8943716

  8. [A role of the Fas system in the pathogenesis of ischemic stroke].

    PubMed

    Sergeeva, S P; Savin, A A; Litvitsky, P F

    2016-01-01

    The Fas system can promote several biological effects due to their activation after ischemic stroke: apoptosis, inflammation, proliferation, differentiation. Fas interacts with adapter proteins activating a number of signaling pathways, including MAPK, NFKB, JNK, ERK, phosphorylation of cytoskeletal proteins, and caspase-dependent apoptosis. Fas expressed by neuronal progenitor cells from the subventricular zone does not induce apoptosis in healthy adult humans. During motion and differentiation of these cells, Fas regulates their morphological structure by the phosphorylation/dephosphorylation of cytoskeletal elements. An increase in the Fas and Fas ligand expression is observed in response to stroke injury. Fas responsible not only for cell death and inflammation but also for neuronal plasticity which occupies a central place in the processes of sanogenesis.

  9. Epigenetic control of NF-κB-dependent FAS gene transcription during progression of myelodysplastic syndromes.

    PubMed

    Ettou, Sandrine; Humbrecht, Catherine; Benet, Blandine; Billot, Katy; d'Allard, Diane; Mariot, Virginie; Goodhardt, Michele; Kosmider, Olivier; Mayeux, Patrick; Solary, Eric; Fontenay, Michaela

    2013-07-01

    The death domain containing TNF receptor 6 (CD95/Fas) is a direct target for the NF-κB transcription factor and is repressed in solid tumors such as colon carcinomas. Previously, we reported that the Fas death receptor, while overexpressed in low-risk myelodysplastic syndromes (MDS), becomes undetectable on CD34(+) progenitors when the disease progresses to secondary acute myeloid leukemia (AML). This study determined the interplay between NF-κB and Fas during MDS progression. We first observed that Fas was induced by TNF-α in the HL60 cell line. In these cells, p65 (RELA) was associated with the FAS promoter, and inhibition of the NF-κB pathway by an IKKα inhibitor (BAY11-7082) or lentiviral expression of a nondegradable mutant of IκBα (IκSR) blocked Fas expression. In contrast, TNF-α failed to induce Fas expression in the colon carcinoma cell line SW480, due to hypermethylation of the FAS promoter. Azacitidine rescued p65 binding on FAS promoter in vitro, and subsequently Fas expression in SW480 cells. Furthermore, inhibition of the NF-κB pathway decreased the expression of Fas in MDS CD45(lo)CD34(+) bone marrow cells. However, despite the nuclear expression of p65, Fas was often low on CD45(lo)CD34(+) AML cells. TNF-α failed to stimulate its expression, while azacitidine efficiently rescued p65 binding and Fas reexpression. Overall, these data suggest that DNA methylation at NF-κB sites is responsible for FAS gene silencing. PMID:23604035

  10. A membrane-bound Fas decoy receptor expressed by human thymocytes.

    PubMed

    Jenkins, M; Keir, M; McCune, J M

    2000-03-17

    Human thymocytes at several stages of maturation express Fas, yet resist apoptosis induction through its ligation. A proximal step in apoptotic signaling through Fas is implicated in this resistance, as these cells undergo normal levels of apoptosis induction after exposure to tumor necrosis factor-alpha. We studied the Fas receptors expressed in human thymocytes to search for mechanisms of receptor-mediated inhibition of Fas signaling in these cells. We describe here a unique, membrane-bound form of Fas receptor that contained a complete extracellular domain of Fas but that lacked a death domain due to alternative splicing of exon 7. This Fas decoy receptor (FDR) was shown to have nearly wild-type ability to bind native human Fas ligand and was expressed predominantly at the plasma membrane. Unlike soluble forms of Fas receptor, FDR dominantly inhibited apoptosis induction by Fas ligand in transfected human embryonic kidney cells. Titration of FDR in Fas-expressing cells suggests that FDR may operate through the formation of mixed receptor complexes. FDR also dominantly inhibited Fas-induced apoptosis in Jurkat T cells. In mixing experiments with wild-type Fas, FDR was capable of inhibiting death signaling at molar ratios less than 0.5, and this relative level of FDR:wild type message was observed in at least some thymocytes tested. The data suggest that Fas signal pathways in primary human cells may be regulated by expression of a membrane-bound decoy receptor, analogous to the regulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis by decoy receptors.

  11. Epigenetic control of NF-κB-dependent FAS gene transcription during progression of myelodysplastic syndromes.

    PubMed

    Ettou, Sandrine; Humbrecht, Catherine; Benet, Blandine; Billot, Katy; d'Allard, Diane; Mariot, Virginie; Goodhardt, Michele; Kosmider, Olivier; Mayeux, Patrick; Solary, Eric; Fontenay, Michaela

    2013-07-01

    The death domain containing TNF receptor 6 (CD95/Fas) is a direct target for the NF-κB transcription factor and is repressed in solid tumors such as colon carcinomas. Previously, we reported that the Fas death receptor, while overexpressed in low-risk myelodysplastic syndromes (MDS), becomes undetectable on CD34(+) progenitors when the disease progresses to secondary acute myeloid leukemia (AML). This study determined the interplay between NF-κB and Fas during MDS progression. We first observed that Fas was induced by TNF-α in the HL60 cell line. In these cells, p65 (RELA) was associated with the FAS promoter, and inhibition of the NF-κB pathway by an IKKα inhibitor (BAY11-7082) or lentiviral expression of a nondegradable mutant of IκBα (IκSR) blocked Fas expression. In contrast, TNF-α failed to induce Fas expression in the colon carcinoma cell line SW480, due to hypermethylation of the FAS promoter. Azacitidine rescued p65 binding on FAS promoter in vitro, and subsequently Fas expression in SW480 cells. Furthermore, inhibition of the NF-κB pathway decreased the expression of Fas in MDS CD45(lo)CD34(+) bone marrow cells. However, despite the nuclear expression of p65, Fas was often low on CD45(lo)CD34(+) AML cells. TNF-α failed to stimulate its expression, while azacitidine efficiently rescued p65 binding and Fas reexpression. Overall, these data suggest that DNA methylation at NF-κB sites is responsible for FAS gene silencing.

  12. Molecular cloning, functional identification and expressional analyses of FasL in Tilapia, Oreochromis niloticus.

    PubMed

    Ma, Tai-yang; Wu, Jin-ying; Gao, Xiao-ke; Wang, Jing-yuan; Zhan, Xu-liang; Li, Wen-sheng

    2014-10-01

    FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level (The Genbank accession number of the FasL mRNA sequence we cloned is KM008610). Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V/Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA. PMID:24950416

  13. A study of promoter and intronic markers of ApoI/Fas gene and the interaction with Fas ligand in relapsing multiple sclerosis.

    PubMed

    Lucas, Miguel; Zayas, María D; De Costa, Alzenira F; Solano, Francisca; Chadli, Amal; Dinca, Luminita; Izquierdo, Guillermo

    2004-01-01

    We studied the association between multiple sclerosis (MS) and a novel single nucleotide polymorphism (SNP), A/T(735)G/C, localized in intron IV of the ApoI/Fas gene, which is recognized by the restrictase MaeI. Fas-MaeI genotypes were screened in chromosomes of 215 healthy individuals and 312 relapsing MS patients of Spanish extraction. We also analyzed the interaction of this new intragenic marker with others previously associated with MS: class II HLA-DRB1*1501, Fas-MvaI and Fas ligand. The distribution of Fas-MaeI genotypes was in equilibrium in the control cohort, while a significant disequilibrium was observed in the patient group (chi(2) = 16; p = 0.0003). Fas-MaeI genotypes were statistically different in the MS and control groups, but the allele frequencies were not. Sharing of MvaI/MaeI genotypes of the promoter/intron IV region did not differ between patients and controls. We failed to find different frequencies of ApoI/Fas genotypes in the population of MS carriers of the class II HLA-DRB1*1501 allele. The case/control comparative study showed a relative risk (OR close to 1.6) of MS in individuals harboring the T and A alleles of Fas- MaeI and Fas ligand, respectively. In conclusion, our findings suggest a weak association between the intronic marker Fas-MaeI and MS and a relative interaction with Fas ligand in an MS cohort of South Spanish extraction.

  14. Prostaglandin synthetase and prostacyclin synthetase in mature rat skeletal muscles: immunohistochemical localisation to arterioles, tendons and connective tissues.

    PubMed Central

    McLennan, I S; Macdonald, R E

    1991-01-01

    Mature skeletal muscles produce appreciable quantities of prostacyclin (PGI2) and smaller amounts of PGF2 alpha and PGE2, but the sources of these prostaglandins within skeletal muscle are unknown. Monoclonal antibodies to prostaglandin synthetase and prostacyclin synthetase were used to determine which muscle cells produce prostaglandins. The antibody to prostacyclin synthetase stained the tendon, fascia, epimysium and the arteries leading to the muscles. The endothelia of arterioles were also stained in the tibialis anterior and cremaster but not in the soleus muscles. Only trace levels of immunoreactivity were observed with the antibody to prostaglandin synthetase in normal muscles. However, immunoreactivity was observed in the muscles of rats that had been pretreated with aspirin, a drug that inhibits and stabilises prostaglandin synthetase. In muscles of the aspirin-treated rats, all cell types that were stained by the antiprostacyclin synthetase also reacted weakly with the antibody to prostaglandin synthetase. In addition, some cells in the endomysium were strongly stained with the antiprostaglandin synthetase but not with the antiprostacyclin synthetase. We conclude that (1) at least one aspect of the regulation of blood flow in the microcirculation of slow muscles is different from that of fast muscles, (2) that the tendon and connective tissue is the major source of PGI2 in mature skeletal muscles, and (3) that the prostaglandin-dependent effects of insulin and some other stimuli on skeletal muscle may be mediated by the muscle's arterioles or connective tissue. Images Fig. 1 Fig. 2 Fig. 3 PMID:1810931

  15. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  16. Fas death receptor signalling: roles of Bid and XIAP

    PubMed Central

    Kaufmann, T; Strasser, A; Jost, P J

    2012-01-01

    Fas (also called CD95 or APO-1), a member of a subgroup of the tumour necrosis factor receptor superfamily that contain an intracellular death domain, can initiate apoptosis signalling and has a critical role in the regulation of the immune system. Fas-induced apoptosis requires recruitment and activation of the initiator caspase, caspase-8 (in humans also caspase-10), within the death-inducing signalling complex. In so-called type 1 cells, proteolytic activation of effector caspases (-3 and -7) by caspase-8 suffices for efficient apoptosis induction. In so-called type 2 cells, however, killing requires amplification of the caspase cascade. This can be achieved through caspase-8-mediated proteolytic activation of the pro-apoptotic Bcl-2 homology domain (BH)3-only protein BH3-interacting domain death agonist (Bid), which then causes mitochondrial outer membrane permeabilisation. This in turn leads to mitochondrial release of apoptogenic proteins, such as cytochrome c and, pertinent for Fas death receptor (DR)-induced apoptosis, Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP binding protein with low Pi), an antagonist of X-linked inhibitor of apoptosis (XIAP), which imposes a brake on effector caspases. In this review, written in honour of Juerg Tschopp who contributed so much to research on cell death and immunology, we discuss the functions of Bid and XIAP in the control of Fas DR-induced apoptosis signalling, and we speculate on how this knowledge could be exploited to develop novel regimes for treatment of cancer. PMID:21959933

  17. Potential of lichen secondary metabolites against Plasmodium liver stage parasites with FAS-II as the potential target.

    PubMed

    Lauinger, Ina L; Vivas, Livia; Perozzo, Remo; Stairiker, Christopher; Tarun, Alice; Zloh, Mire; Zhang, Xujie; Xu, Hua; Tonge, Peter J; Franzblau, Scott G; Pham, Duc-Hung; Esguerra, Camila V; Crawford, Alexander D; Maes, Louis; Tasdemir, Deniz

    2013-06-28

    Chemicals targeting the liver stage (LS) of the malaria parasite are useful for causal prophylaxis of malaria. In this study, four lichen metabolites, evernic acid (1), vulpic acid (2), psoromic acid (3), and (+)-usnic acid (4), were evaluated against LS parasites of Plasmodium berghei. Inhibition of P. falciparum blood stage (BS) parasites was also assessed to determine stage specificity. Compound 4 displayed the highest LS activity and stage specificity (LS IC50 value 2.3 μM, BS IC50 value 47.3 μM). The compounds 1-3 inhibited one or more enzymes (PfFabI, PfFabG, and PfFabZ) from the plasmodial fatty acid biosynthesis (FAS-II) pathway, a potential drug target for LS activity. To determine species specificity and to clarify the mechanism of reported antibacterial effects, 1-4 were also evaluated against FabI homologues and whole cells of various pathogens (S. aureus, E. coli, M. tuberculosis). Molecular modeling studies suggest that lichen acids act indirectly via binding to allosteric sites on the protein surface of the FAS-II enzymes. Potential toxicity of compounds was assessed in human hepatocyte and cancer cells (in vitro) as well as in a zebrafish model (in vivo). This study indicates the therapeutic and prophylactic potential of lichen metabolites as antibacterial and antiplasmodial agents.

  18. Developmental changes of the FAS and HSL mRNA expression and their effects on the content of intramuscular fat in Kazak and Xinjiang sheep.

    PubMed

    Qiao, Yong; Huang, Zhiguo; Li, Qifa; Liu, Zhenshan; Hao, Chengli; Shi, Guoqing; Dai, Rong; Xie, Zhuang

    2007-10-01

    Twenty-four male Kazak sheep and 30 Xinjiang fine wool sheep at different ages were selected to investigate the development-dependent expression levels of fatty acid synthase (FAS) gene and hormone-sensitive lipase (HSL) gene in muscle and their effects on the contents of intramuscular fat (IMF). Longissimus dorsal muscle was sampled to measure IMF and total RNA was extracted to determine FAS and HSL mRNA expression levels by real-time PCR. The results showed that: 1) The IMF content increased continuously with growth and showed significant differences (P < 0.05) between different age groups in male Kazak sheep, but in Xinjiang fine wool sheep there was no such difference observed. Furthermore, the IMF contents in Kazak were much higher (P < 0.01) than that of the other breed from day 30 to 90. 2) FAS mRNA expression level was the highest (P < 0.05) on day 0 in Kazak sheep and then declined with growth, in the other breed the gene showed a 'decline-rise-decline-rise' expression manner as the animals grew. HSL mRNA expression level had a similar model in two breeds, in Kazak sheep it was the highest on day 0 (P < 0.05) and in Xinjiang fine wool sheep on day 30 (P < 0.01), then both decreased after this term. 3) In male Kazak sheep, FAS and HSL mRNA expression level were both negatively related to IMF content (r = -0.485 (P = 0.02), r = -0.423 (P = 0.05)), and the ratio of FAS/HSL expression exhibited significantly negatively related IMF contents. In male Xinjiang sheep, there were no obvious relationship between FAS and HSL expression and IMF content (P > 0.05).

  19. Cutting edge: FasL(+) immune cells promote resolution of fibrosis.

    PubMed

    Wallach-Dayan, Shulamit B; Elkayam, Liron; Golan-Gerstl, Regina; Konikov, Jenya; Zisman, Philip; Dayan, Mark Richter; Arish, Nissim; Breuer, Raphael

    2015-05-01

    Immune cells, particularly those expressing the ligand of the Fas-death receptor (FasL), e.g. cytotoxic T cells, induce apoptosis in 'undesirable' self- and non-self-cells, including lung fibroblasts, thus providing a means of immune surveillance. We aimed to validate this mechanism in resolution of lung fibrosis. In particular, we elucidated whether FasL(+) immune cells possess antifibrotic capabilities by induction of FasL-dependent myofibroblast apoptosis and whether antagonists of membrane (m) and soluble (s) FasL can inhibit these capabilities. Myofibroblast interaction with immune cells and its FasL-dependency, were investigated in vitro in coculture with T cells and in vivo, following transplantation into lungs of immune-deficient syngeneic Rag-/- as well as allogeneic SCID mice, and into lungs and air pouches of FasL-deficient (gld) mice, before and after reconstitution of the mice with wild-type (wt), FasL(+) immune cells. We found that myofibroblasts from lungs resolving fibrosis undergo FasL-dependent T cell-induced apoptosis in vitro and demonstrate susceptibility to in vivo immune surveillance in lungs of reconstituted, immune- and FasL-deficient, mice. However, immune-deficient Rag-/- and SCID mice, and gld-mice with FasL-deficiency, endure the accumulation of transplanted myofibroblasts in their lungs with subsequent development of fibrosis. Concomitantly, gld mice, in contrast to chimeric FasL-deficient mice with wt immune cells, accumulated transplanted myofibroblasts in the air pouch model. In humans we found that myofibroblasts from fibrotic lungs secrete sFasL and resist T cell-induced apoptosis, whereas normal lung myofibroblasts are susceptible to apoptosis but acquire resistance upon addition of anti-s/mFasL to the coculture. Immune surveillance, particularly functional FasL(+) immune cells, may represent an important extrinsic component in myofibroblast apoptosis and serve as a barrier to fibrosis. Factors interfering with Fas/Fas

  20. Fas-mediated apoptosis of melanoma cells and infiltrating lymphocytes in human malignant melanomas.

    PubMed

    Shukuwa, Tetsuo; Katayama, Ichiro; Koji, Takehiko

    2002-04-01

    In a rodent system, melanoma cells expressing Fas ligand (FasL) could kill Fas-positive lymphocytes, suggesting that FasL expression was an essential factor for melanoma cell survival in vivo. These findings led us to investigate apoptosis, and to histochemically analyze involvement of Fas and FasL in the induction of apoptosis, in human malignant melanoma tissues. The percentages of terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick end-labeling (TUNEL)-positive melanoma cells and of proliferating cell nuclear antigen (PCNA)-positive melanoma cells in melanoma tissues (n = 22) were greater than those in melanocytes in uninvolved skin (n = 6) and nevus cells in nevi tissues (n = 9). The infiltrating lymphocytes around melanomas were also TUNEL positive. Immunohistochemistry revealed expression of Fas and FasL in melanoma cells and lymphocytes, whereas no Fas or FasL expression was detected in normal skin melanocytes and nevus cells. There was significant correlation between Fas-positive indices and TUNEL indices in melanoma tissues. Moreover, TUNEL-, Fas-, and FasL-positive indices of melanoma cells from patients with Stage 3 melanomas were significantly lower than those with Stage 2 melanomas. The PCNA index of Stage 1 melanoma was significantly lower than that of the other stages, although the difference of PCNA index was insignificant among Stages 2 to 4. Among Stages 1 to 4, there was no difference in the PCNA, TUNEL-, and Fas-positive indices of lymphocytes, although the FasL-positive index of lymphocytes from Stage 3 melanomas was significantly lower than in that from Stage 2. These data reveal that melanoma cells and infiltrating lymphocytes have the potential to induce their own apoptosis regulated by Fas and FasL in an autocrine and/or paracrine fashion and that the decline of Fas-mediated apoptosis of melanoma cells, rather than the apoptosis of infiltrating lymphocytes, may affect the prognosis of melanoma patients, possibly through the

  1. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    PubMed

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  2. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor

    PubMed Central

    Mirando, Adam C.; Fang, Pengfei; Williams, Tamara F.; Baldor, Linda C.; Howe, Alan K.; Ebert, Alicia M.; Wilkinson, Barrie; Lounsbury, Karen M.; Guo, Min; Francklyn, Christopher S.

    2015-01-01

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans. PMID:26271225

  3. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs.

    PubMed Central

    Zhang, Y; Meshnick, S R

    1991-01-01

    The Michaelis-Menten inhibitory constants (Kis) and the concentrations required for 50% inhibition of the Plasmodium falciparum dihydropteroate synthetase were determined for six sulfa drugs. These drugs inhibited the in vitro growth of P. falciparum (50% lethal concentration) at concentrations of 30 to 500 nM; these concentrations were 100 to 1,000 times lower than the concentrations required for 50% inhibition and Kis (6 to 500 microM). The uptake of p-aminobenzoic acid was not inhibited by the sulfa drugs. However, infected erythrocytes took up more labeled sulfamethoxazole than did uninfected erythrocytes. Thus, the concentration of sulfa drugs by malaria parasites may explain how sulfa drugs inhibit in vitro growth of parasites through the inhibition of dihydropteroate synthetase. PMID:2024960

  4. Regulation of maternal phospholipid composition and IP3-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in C. elegans

    PubMed Central

    Kniazeva, Marina; Shen, Huali; Euler, Tetyana; Wang, Chen; Han, Min

    2012-01-01

    Natural fatty acids (FAs) exhibit vast structural diversity, but the functional importance of FA variations and the mechanism by which they contribute to a healthy lipid composition in animals remain largely unexplored. A large family of acyl-CoA synthetases (ACSs) regulates FA metabolism by esterifying FA to coenyzme A. However, little is known about how particular FA–ACS combinations affect lipid composition and specific cellular functions. We analyzed how the activity of ACS-1 on branched chain FA C17ISO impacts maternal lipid content, signal transduction, and development in Caenorhabditis elegans embryos. We show that expression of ACS-1 in the somatic gonad guides the incorporation of C17ISO into certain phospholipids and thus regulates the phospholipid composition in the zygote. Disrupting this ACS-1 function causes striking defects in complex membrane dynamics, including exocytosis and cytokinesis, leading to early embryonic lethality. These defects are suppressed by hyperactive IP3 signaling, suggesting that C17ISO and ACS-1 functions are necessary for optimal IP3 signaling essential for early embryogenesis. This study shows a novel role of branched chain FAs whose functions in humans and animals are unknown and uncovers a novel intercellular regulatory pathway linking a specific FA–ACS interaction to specific developmental events. PMID:22426533

  5. Fatty acid metabolism meets organelle dynamics.

    PubMed

    Walch, Laurence; Čopič, Alenka; Jackson, Catherine L

    2015-03-23

    Upon nutrient deprivation, cells metabolize fatty acids (FAs) in mitochondria to supply energy, but how FAs, stored as triacylglycerols in lipid droplets, reach mitochondria has been mysterious. Rambold et al. (2015) now show that FA mobilization depends on triacylglycerol lipolysis, whereas autophagy feeds the lipid droplet pool for continued fueling of mitochondria.

  6. Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-bearing Microvesicles

    PubMed Central

    Andreola, Giovanna; Rivoltini, Licia; Castelli, Chiara; Huber, Veronica; Perego, Paola; Deho, Paola; Squarcina, Paola; Accornero, Paola; Lozupone, Francesco; Lugini, Luana; Stringaro, Annarita; Molinari, Agnese; Arancia, Giuseppe; Gentile, Massimo; Parmiani, Giorgio; Fais, Stefano

    2002-01-01

    The hypothesis that FasL expression by tumor cells may impair the in vivo efficacy of antitumor immune responses, through a mechanism known as ‘Fas tumor counterattack,’ has been recently questioned, becoming the object of an intense debate based on conflicting results. Here we definitely show that FasL is indeed detectable in the cytoplasm of melanoma cells and its expression is confined to multivesicular bodies that contain melanosomes. In these structures FasL colocalizes with both melanosomal (i.e., gp100) and lysosomal (i.e., CD63) antigens. Isolated melanosomes express FasL, as detected by Western blot and cytofluorimetry, and they can exert Fas-mediated apoptosis in Jurkat cells. We additionally show that melanosome-containing multivesicular bodies degranulate extracellularly and release FasL-bearing microvesicles, that coexpress both gp100 and CD63 and retain their functional activity in triggering Fas-dependent apoptosis of lymphoid cells. Hence our data provide evidence for a novel mechanism potentially operating in Fas tumor counterattack through the secretion of subcellular particles expressing functional FasL. Such vesicles may form a sort of front line hindering lymphocytes and other immunocompetent cells from entering neoplastic lesions and exert their antitumor activity. PMID:12021310

  7. Fas ligand- mediated killing by intestinal intraepithelial lymphocytes. Participation in intestinal graft-versus-host disease.

    PubMed Central

    Lin, T; Brunner, T; Tietz, B; Madsen, J; Bonfoco, E; Reaves, M; Huflejt, M; Green, D R

    1998-01-01

    In vitro studies have demonstrated that intestinal intraepithelial lymphocytes (IEL) are constitutively cytotoxic; however, the mechanism and target of their cytotoxicity are unknown. Apoptosis of intestinal epithelial cells (IEC) and an increase in IEL numbers are classical signs of intestinal graft-versus-host disease (GVHD), although whether IEL can mediate IEC apoptosis directly in GVHD is unclear. Recent evidence suggests that target epithelial organ injury observed in GVHD is predominantly Fas-mediated; therefore, we investigated the possibility that IEL induce apoptosis of IEC through a Fas-mediated mechanism. Here, we demonstrate that the IEL isolated from normal mice readily display potent Fas ligand (FasL)-mediated killing activity after CD3 stimulation, and that IEC express Fas, suggesting that IEC are potential targets for FasL-mediated killing by IEL. In vitro, IEL isolated from GVHD mice have markedly increased FasL-mediated killing potential and are spontaneously cytolytic toward host-derived tumor cells predominantly through a Fas-mediated pathway. In vivo transfer of IEL isolated from GVHD mice induced significantly more IEC apoptosis in F1 wild-type mice than in Fas-defective F1lpr mice. Thus, these results demonstrate that FasL-mediated death of IEC by IEL is a major mechanism of IEC apoptosis seen in GVHD. PMID:9449689

  8. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.].

  9. Retinal Vasculitis in Anti-Synthetase Syndrome.

    PubMed

    Donovan, Christopher P; Pecen, Paula E; Baynes, Kimberly; Ehlers, Justis P; Srivastava, Sunil K

    2016-09-01

    A 31-year-old woman with a history of anti-synthetase syndrome-related myositis and interstitial lung disease presented with acute-onset blurry vision and rash on her hands and feet. Visual acuity was hand motion in her right eye and 20/40 in her left eye. Dilated fundus exam showed extensive retinal vasculitis, diffuse intraretinal hemorrhages, and subretinal fluid. Optical coherence tomography revealed significant macular thickening, and fluorescein angiography revealed vascular leakage with peripheral nonperfusion. Aggressive systemic immunosuppression was initiated, with gradual resolution of her disease during 8 months of follow-up. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:874-879.]. PMID:27631486

  10. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    PubMed

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis. PMID:26869716

  11. Glutamine synthetase gene expression during the regeneration of the annelid Enchytraeus japonensis.

    PubMed

    Niva, Cintia Carla; Lee, Jae Min; Myohara, Maroko

    2008-01-01

    Enchytraeus japonensis is a highly regenerative oligochaete annelid that can regenerate a complete individual from a small body fragment in 4-5 days. In our previous study, we performed complementary deoxyribonucleic acid subtraction cloning to isolate genes that are upregulated during E. japonensis regeneration and identified glutamine synthetase (gs) as one of the most abundantly expressed genes during this process. In the present study, we show that the full-length sequence of E. japonensis glutamine synthetase (EjGS), which is the first reported annelid glutamine synthetase, is highly similar to other known class II glutamine synthetases. EjGS shows a 61-71% overall amino acid sequence identity with its counterparts in various other animal species, including Drosophila and mouse. We performed detailed expression analysis by in situ hybridization and reveal that strong gs expression occurs in the blastemal regions of regenerating E. japonensis soon after amputation. gs expression was detectable at the cell layer covering the wound and was found to persist in the epidermal cells during the formation and elongation of the blastema. Furthermore, in the elongated blastema, gs expression was detectable also in the presumptive regions of the brain, ventral nerve cord, and stomodeum. In the fully formed intact head, gs expression was also evident in the prostomium, brain, the anterior end of the ventral nerve cord, the epithelium of buccal and pharyngeal cavities, the pharyngeal pad, and in the esophageal appendages. In intact E. japonensis tails, gs expression was found in the growth zone in actively growing worms but not in full-grown individuals. In the nonblastemal regions of regenerating fragments and in intact worms, gs expression was also detected in the nephridia, chloragocytes, gut epithelium, epidermis, spermatids, and oocytes. These results suggest that EjGS may play roles in regeneration, nerve function, cell proliferation, nitrogenous waste excretion

  12. Synthesis of Glu-tRNA(Gln) by engineered and natural aminoacyl-tRNA synthetases.

    PubMed

    Rodríguez-Hernández, Annia; Bhaskaran, Hari; Hadd, Andrew; Perona, John J

    2010-08-10

    A protein engineering approach to delineating which distinct elements of homologous tRNA synthetase architectures are responsible for divergent RNA-amino acid pairing specificities is described. Previously, we constructed a hybrid enzyme in which 23 amino acids from the catalytic domain of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) were replaced with the corresponding residues of human glutamyl-tRNA synthetase (GluRS). The engineered hybrid (GlnRS S1/L1/L2) synthesizes Glu-tRNA(Gln) more than 10(4)-fold more efficiently than GlnRS. Detailed comparison of kinetic parameters between GlnRS S1/L1/L2 and the naturally occurring Methanothermobacter thermautotrophicus GluRS(ND), which is also capable of Glu-tRNA(Gln) synthesis, now shows that both k(cat) and K(m) for glutamate are recapitulated in the engineered enzyme, but that K(m) for tRNA is 200-fold higher. Thus, the simultaneous optimization of paired amino acid and tRNA binding sites found in a naturally occurring enzyme is not recapitulated in a hybrid that is successfully engineered for amino acid complementarity. We infer that the GlnRS architecture has differentiated to match only cognate amino acid-RNA pairs, and that the substrate selection functions do not operate independently of each other. Design and characterization of four additional hybrids identify further residues involved in improving complementarity for glutamate and in communicating between amino acid and tRNA binding sites. The robust catalytic function demonstrated in this engineered system offers a novel platform for exploring the stereochemical origins of coding as a property of the ancient Rossmann fold.

  13. Discovery of amide (peptide) bond synthetic activity in Acyl-CoA synthetase.

    PubMed

    Abe, Tomoko; Hashimoto, Yoshiteru; Hosaka, Hideaki; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2008-04-25

    Acyl-CoA synthetase, which is one of the acid-thiol ligases (EC 6.2.1), plays key roles in metabolic and regulatory processes. This enzyme forms a carbon-sulfur bond in the presence of ATP and Mg(2+), yielding acyl-CoA thioesters from the corresponding free acids and CoA. This enzyme belongs to the superfamily of adenylate-forming enzymes, whose three-dimensional structures are analogous to one another. We here discovered a new reaction while studying the short-chain acyl-CoA synthetase that we recently reported (Hashimoto, Y., Hosaka, H., Oinuma, K., Goda, M., Higashibata, H., and Kobayashi, M. (2005) J. Biol. Chem. 280, 8660-8667). When l-cysteine was used as a substrate instead of CoA, N-acyl-l-cysteine was surprisingly detected as a reaction product. This finding demonstrated that the enzyme formed a carbon-nitrogen bond (EC 6.3.1 acid-ammonia (or amide) ligase (amide synthase); EC 6.3.2 acid-amino acid ligase (peptide synthase)) comprising the amino group of the cysteine and the carboxyl group of the acid. N-Acyl-d-cysteine, N-acyl-dl-homocysteine, and N-acyl-l-cysteine methyl ester were also synthesized from the corresponding cysteine analog substrates by the enzyme. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, indicating the generality of the new reaction in the superfamily of adenylate-forming enzymes.

  14. Characterization of the humoral immune response in alpacas (Lama pacos) experimentally infected with Fasciola hepatica against cysteine proteinases Fas1 and Fas2 and histopathological findings.

    PubMed

    Timoteo, O; Maco, V; Maco, V; Neyra, V; Yi, P J; Leguía, G; Espinoza, J R

    2005-06-15

    A characterization of the humoral immune response of alpacas to Fasciola hepatica Fas1 and Fas2 antigens, two abundant cysteine proteinases in the excretory/secretory (E/S) products, was performed over the course of 6 months of experimental infection. Six adult alpacas aged 1-2 years old received a single dose of 200 F. hepatica metacercariae; two non-infected alpacas were kept as control group. All infected animals shed eggs 8 weeks post-infection (PI) and the number of flukes recovered at necropsy averaged 41+/-4. The livers of infected animals showed regions with chronic inflammation, granuloma containing parasite eggs, necrosis and cirrhosis. Peripheral eosinophilia in infected animals was greatly enhanced 6 weeks post-infection and later. A single peak of serum glutamic piruvic transaminase (SGPT) was observed 4 weeks PI and serum glutamic oxalacetic transaminase (SGOT) elevated 3 weeks PI and later. Circulating IgG Abs against Fas1 and Fas2 were measured by enzyme-linked immunosorbent assay (ELISA). Fas2-ELISA detected the infection 10 days PI reaching to highest titer on 7-8 weeks PI and kept elevated, until the end of infection. Fas1-ELISA detected the infection 2 weeks PI and followed the same pattern as Fas2-ELISA. Anti Fas2 IgG Abs were in higher titers and showed stronger avidity than anti Fas1 IgG Abs. In addition, rabbit IgG antibodies raised against cysteine proteinase Fas2 showed infiltration of this parasite antigen associated to the degradation of bile ducts and liver parenchyma of infected alpacas. In the present study we have established a F. hepatica experimental infection of alpacas, Fas2 appears to have a role in the pathogenesis of the liver damage in alpacas caused by the liver fluke. Infected alpacas elicited a strong humoral immune response against fluke cysteine proteinases Fas1 and Fas2, which might be considered as candidates for immunodiagnosis and vaccine development against fasciolosis in alpacas.

  15. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27465074

  16. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Site specific incorporation of keto amino acids into proteins

    SciTech Connect

    Schultz, Peter G.; Wang, Lei

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  1. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  2. The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis.

    PubMed Central

    Shisler, J; Yang, C; Walter, B; Ware, C F; Gooding, L R

    1997-01-01

    Cytotoxic T cells use Fas (CD95), a member of the tumor necrosis factor (TNF) receptor superfamily, to eliminate virus-infected cells by activation of the apoptotic pathway for cell death. The adenovirus E3 region encodes several proteins that modify immune defenses, including TNF-dependent cell death, which may allow this virus to establish a persistent infection. Here we show that, as an early event during infection, the adenovirus E3-10.4K/14.5K complex selectively induces loss of Fas surface expression and blocks Fas-induced apoptosis of virus-infected cells. Loss of surface Fas occurs within the first 4 h postinfection and is not due to decreased production of Fas protein. The decrease in surface Fas is distinct from the 10.4K/14.5K-mediated loss of the epidermal growth factor receptor on the same cells, because intracellular stores of Fas are not affected. Further, 10.4K/14.5K, which was previously shown to protect against TNF cytolysis, does not induce a loss of TNF receptor, indicating that this complex mediates more than one function to block host defense mechanisms. These results suggest yet another mechanism by which adenovirus modulates host cytotoxic responses that may contribute to persistent infection by human adenoviruses. PMID:9343182

  3. Abnormal structural luteolysis in ovaries of the senescence accelerated mouse (SAM): expression of Fas ligand/Fas-mediated apoptosis signaling molecules in luteal cells.

    PubMed

    Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime

    2003-12-01

    Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice. PMID:14967896

  4. A shear stress responsive gene product PP1201 protects against Fas-mediated apoptosis by reducing Fas expression on the cell surface.

    PubMed

    Shukla, Sudhanshu; Fujita, Ken-ichi; Xiao, Qi; Liao, Zhiyong; Garfield, Susan; Srinivasula, Srinivasa M

    2011-02-01

    Cells that form vascular system employ different mechanisms to offset deleterious consequences of exposure to cytokines and cells present in blood. Vascular homeostasis is sustained in part by genes, whose expression increases in response to hemodynamic forces in these cells. PP1201 (also known as RECS1) is one such gene whose expression level increases in response to laminar shear stress. Aged mice deficient in PP1201 are prone to develop cystic medial degeneration (CMD), a form of aortic aneurism manifested with loss of smooth muscle cells and accumulation of basophilic substances. Here we found that higher levels of PP1201 can protect against Fas ligand (FasL)-induced apoptosis. PP1201 interacted with the Fas receptor (CD95/Apo1) and colocalized with it in the Golgi compartment. Unlike its homolog lifeguard (LFG), PP1201 overexpression in several types of cells including primary human aortic smooth muscle cells (AoSMC) decreased the expression of Fas on the plasma membrane without changing the total Fas levels. Only high but not constitutive level of PP1201 controls Fas signaling. Our data suggest that PP1201 functions as an anti-apoptotic protein and its increased expression in vascular cells can contribute to homeostasis by reducing Fas trafficking to the cell membrane.

  5. Calreticulin Binds to Fas Ligand and Inhibits Neuronal Cell Apoptosis Induced by Ischemia-Reperfusion Injury

    PubMed Central

    Chen, Beilei; Wu, Zhengzheng; Xu, Jun; Xu, Yun

    2015-01-01

    Background. Calreticulin (CRT) can bind to Fas ligand (FasL) and inhibit Fas/FasL-mediated apoptosis of Jurkat T cells. However, its effect on neuronal cell apoptosis has not been investigated. Purpose. We aimed to evaluate the neuroprotective effect of CRT following ischemia-reperfusion injury (IRI). Methods. Mice underwent middle cerebral artery occlusion (MCAO) and SH-SY5Y cells subjected to oxygen glucose deprivation (OGD) were used as models for IRI. The CRT protein level was detected by Western blotting, and mRNA expression of CRT, caspase-3, and caspase-8 was measured by real-time PCR. Immunofluorescence was used to assess the localization of CRT and FasL. The interaction of CRT with FasL was verified by coimmunoprecipitation. SH-SY5Y cell viability was determined by MTT assay, and cell apoptosis was assessed by flow cytometry. The measurement of caspase-8 and caspase-3 activity was carried out using caspase activity assay kits. Results. After IRI, CRT was upregulated on the neuron surface and bound to FasL, leading to increased viability of OGD-exposed SH-SY5Y cells and decreased activity of caspase-8 and caspase-3. Conclusions. This study for the first time revealed that increased CRT inhibited Fas/FasL-mediated neuronal cell apoptosis during the early stage of ischemic stroke, suggesting it to be a potential protector activated soon after IRI. PMID:26583143

  6. Therapeutic effect of the anti-Fas antibody on arthritis in HTLV-1 tax transgenic mice.

    PubMed

    Fujisawa, K; Asahara, H; Okamoto, K; Aono, H; Hasunuma, T; Kobata, T; Iwakura, Y; Yonehara, S; Sumida, T; Nishioka, K

    1996-07-15

    We have recently demonstrated Fas-mediated apoptosis in the synovium, of patients with rheumatoid arthritis (RA) and suggested that it may be one factor responsible for the regression of RA. To examine whether the induction of apoptosis caused by anti-Fas mAb may play a potential role as a new therapeutic strategy for RA, we investigated the effect of anti-Fas mAb (RK-8) on synovitis in an animal model of RA, the human T cell leukemia virus type I (HTLV-1) tax transgenic mice. We report here that administration of anti-Fas mAb into mice intra-articularly improved the paw swelling and arthritis within 48 h. Immunohistochemical study and in vitro culture studies showed that 35% of synovial fibroblasts, 75% of mononuclear cells, and some of polymorphonuclear leukocytes infiltrating in synovium underwent apoptosis by anti-Fas mAb. In situ nick end labeling analysis and electron microscope analysis clearly showed that many cells in synovium were induced apoptosis by anti-Fas mAb administration. However, local administration of anti-Fas mAb did not produce systemic side effects. Results demonstrated that administration of anti-Fas mAb in arthritic joints of the HTLV-1 tax transgenic mice produced improvement of arthritis. These findings suggest that local administration of anti-Fas mAb may represent a useful therapeutic strategy for proliferative synovitis such as RA.

  7. Amelioration of lymphoid hyperplasia and hypergammaglobulinemia in lupus-prone mice (gld) by Fas-ligand gene transfer.

    PubMed

    Hong, N M; Masuko-Hongo, K; Sasakawa, H; Kato, T; Shirai, T; Okumura, K; Nishioka, K; Kobata, T

    1998-08-01

    We recently demonstrated that the transplantation of wild-type bone marrow cells into lupus-prone mice (gld), resulted in the normalization of autoimmune syndromes due to induction of direct elimination of pathogenic cells by apoptosis via Fas/Fas ligand (L) interactions. This finding supports the beneficial therapeutic effect of Fas-mediated apoptosis on autoimmunity in gld mice. To further establish the therapeutic effect of Fas-mediated apoptosis on autoimmunity, we investigated the effect of cells transfected with the FasL gene on autoimmune symptoms in gld mice. The FasL transfectants exhibited cytotoxic activity against gld splenocytes via the Fas/FasL system in vitro. In vivo administration of irradiated-FasL transfectants induced a reduction in hypergammaglobulinemia, the disappearance of lymphoid hyperplasia and of the accumulation of gld cells (B220+ T-cells). Furthermore, in situ nick end labelling analysis revealed that cells in the spleen and lymph nodes frequently underwent apoptosis. These results clearly indicate that FasL transfectants induce the apoptosis of the pathogenic cells responsible for hypergammaglobulinemia and lymphoid hyperplasia in gld mice by cell/cell interaction via the Fas/FasL system. Thus, ex vivo gene transfer of FasL may represent a new therapeutic strategy for autoimmunity caused by the FasL dysfunction.

  8. Comparative Biochemical and Immunological Studies of Bacterial Glutamine Synthetases

    PubMed Central

    Tronick, Steven R.; Ciardi, Joseph E.; Stadtman, E. R.

    1973-01-01

    Antisera prepared against adenylylated and unadenylylated Escherichia coli glutamine synthetase cross-reacted with the glutamine synthetases from a number of gram-negative bacteria and one gram-variable species as demonstrated by immunodiffusion and inhibition of enzyme activity. In contrast, the antisera did not cross-react with the glutamine synthetases from gram-positive bacteria (with one exception) nor with the synthetases of higher organisms. Modification of the various glutamine synthetases by covalent attachment of adenosine 5′-monophosphate (or other nucleotides) was tested for by determining whether or not snake venom phosphodiesterase altered catalytic activity in a manner similar to its effect on adenylylated E. coli glutamine synthetase. Only the activity of the glutamine synthetases from gram-negative bacteria grown with specific levels of nitrogen sources could be altered by snake venom phosphodiesterase. In addition, a relative order of antigenic homology between cross-reacting enzymes was suggested based on the patterns of spur formation in the immunodiffusion assay. Images PMID:4125585

  9. Periportal zonation of the cytosolic acetyl-CoA synthetase of male rat liver.

    PubMed

    Knudsen, C T; Immerdal, L; Grunnet, N; Quistorff, B

    1992-02-15

    Several important metabolic functions of the mammalian liver have been shown to be located in zones with respect to the complex microcirculation of the organ. The zonal distribution of the cytosolic component of the acetyl-CoA synthetase activity has been investigated using the dual-digitonin-pulse-perfusion technique, which allows highly zone-selective sampling of cytosol from the periportal and perivenous zone of rat liver. Approximately 80% of the cytosolic enzymes are eluted from the hepatocytes in the periportal and perivenous sub-zones affected by digitonin, while less than 1% of the glutamate dehydrogenase activity (a marker enzyme of the mitochondrial compartment) is eluted. A twofold higher activity of the cytosolic form of acetyl-CoA synthetase is found in the periportal zone compared to the perivenous zone in fed male rats. Following a fasting/refeeding transition, this activity gradient is abolished in a manner similar to that observed for the enzyme acetyl-CoA carboxylase. Since the latter enzyme is utilizing the product of acetyl-CoA synthetase, acetyl-CoA, the similarity in the observed regulation suggests a functional coupling between cytosolic acetate activation and fatty-acid synthesis.

  10. Beneficial consequences of a selective glutamine synthetase inhibitor in oats and legumes

    SciTech Connect

    Langston-Unkefer, P.J.; Knight, T.J.; Sengupta-Gopalan, C.

    1988-01-01

    We report on the effects of administering a unique glutamine synthetase inhibitor to cereals and N/sub 2/-fixing legumes. A bacterium (Pseudomonas syringae pv. tabaci) delivers this inhibitor to provide extended treatment periods; we inoculated the root systems of oat and legume plants with pv. tabaci to provide for delivery of this inhibitor to their root or root/nodule systems. Inoculation of legumes is accompanied by increased plant growth, total plant nitrogen, nodulation, and nitrogen fixation activity. Inoculation of the oats is accompanied by either of two results depending upon the genotype of the oat plant. One result is inhibition of plant growth followed by plant death as consequences of the loss of all of the glutamine synthetase activities in the plant and the subsequent accumulation of ammonia and cessation of nitrate uptake. The second and opposite result is observed in a small population of oats screened from a commercial cultivar and includes increased plant growth and leaf protein. The effects of this inhibitor can be beneficial when applied to appropriate plant material. In an attempt to effectively communicate these findings to the reader, we first introduce the inhibitor (a novel amino acid) and its bacterial delivery systems, the target of the inhibitor (glutamine synthetase-catalyzed ammonia assimilation), and the two different nitrogen economics in the legume and cereal plants used experimentally. The physiological, biochemical, and molecular genetic consequences of the inhibitor action in cereals and legumes, as we presently understand them, are then presented. 18 refs., 4 figs., 3 tabs.,

  11. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    PubMed

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  12. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size - implication for FasR-associated apoptosis.

    PubMed

    Gilbert, Stéphane; Loranger, Anne; Omary, M Bishr; Marceau, Normand

    2016-09-01

    Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases.

  13. Identification of the reactive cysteinyl residue and ATP binding site in Bacillus cereus glutamine synthetase by chemical modification.

    PubMed

    Nakano, Y; Itoh, M; Tanaka, E; Kimura, K

    1990-02-01

    Bacillus cereus glutamine synthetase was modified by reaction with a fluorescent SH reagent, N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonic acid (IAEDANS), or an ATP analog, 5'-p-fluorosulfonylbenzoyladenosine (FSBA). The locations of the specific binding sites of these reagents were identified. IAEDANS inactivated Mg2(+)-dependent activity and activated Mn2(+)-dependent activity. FSBA inactivated only Mn2(+)-dependent activity. Mg2+ plus Mn2(+)-dependent activity was inactivated by IAEDANS or FSBA. Amino acid sequence analysis of the single AEDANS-labeled proteolytic fragment showed the cysteinyl residue at position 306 to be the site of modification. Cys 306 is one of three cysteines that are unique to Bacillus glutamine synthetase. The result suggested that the cysteine has a role in the active site of the enzyme. We also report that the amino acid residue modified by FSBA was the lysyl residue at position 43.

  14. Functional Characterization of PyrG, an Unusual Nonribosomal Peptide Synthetase Module from the Pyridomycin Biosynthetic Pathway.

    PubMed

    Huang, Tingting; Li, Lili; Brock, Nelson L; Deng, Zixin; Lin, Shuangjun

    2016-08-01

    Pyridomycin is an antimycobacterial cyclodepsipeptide assembled by a nonribosomal peptide synthetase/polyketide synthase hybrid system. Analysis of its cluster revealed a nonribosomal peptide synthetase (NRPS) module, PyrG, that contains two tandem adenylation domains and a PKS-type ketoreductase domain. In this study, we biochemically validated that the second A domain recognizes and activates α-keto-β-methylvaleric acid (2-KVC) as the native substrate; the first A domain was not functional but might play a structural role. The KR domain catalyzed the reduction of the 2-KVC tethered to the peptidyl carrier protein of PyrG in the presence of the MbtH family protein, PyrH. PyrG was demonstrated to recognize many amino acids. This substrate promiscuity provides the potential to generate pyridomycin analogues with various enolic acids moiety; this is important for binding InhA, a critical enzyme for cell-wall biosynthesis in Mycobacterium tuberculosis.

  15. Fas Ligand Is Present in Tumors of the Ewing’s Sarcoma Family and Is Cleaved into a Soluble Form by a Metalloproteinase

    PubMed Central

    Mitsiades, Nicholas; Poulaki, Vassiliki; Kotoula, Vassiliki; Leone, Alvaro; Tsokos, Maria

    1998-01-01

    Fas ligand (FasL) exists in transmembrane and soluble forms and induces apoptosis on cross-linking with the Fas receptor. We evaluated the biological significance of FasL and Fas in 61 tumor tissues and 9 cell lines of the Ewing’s sarcoma family of tumors (ESFT). FasL was present in 62.5% and Fas in 79.4% of primary ESFT. Metastatic tumors had higher expression of FasL (95%), suggesting association with a metastatic phenotype. FasL was detected in the cytoplasm and membrane of ESFT cells by immunofluorescence. Western blotting revealed transmembrane and soluble FasL in cytosolic extracts and soluble FasL in conditioned media. Both transmembrane and soluble FasL induced apoptosis of Fas-sensitive Jurkat cells in co-culture experiments with ESFT cells or their media. Treatment with phenanthroline and the synthetic metalloproteinase inhibitor BB-3103 reduced the levels of soluble FasL in the media, suggesting that in ESFT, FasL is processed by a metalloproteinase and released in the extracellular milieu. The released soluble FasL may serve to attack cells of the immune system and/or interfere with the binding of transmembrane FasL with Fas, and results in down-regulation of transmembrane FasL. Synthetic metalloproteinase inhibitors may modify the ratio of transmembrane to soluble FasL. PMID:9846984

  16. Development of the SoFAS (solid fats and added sugars) concept: the 2010 Dietary Guidelines for Americans.

    PubMed

    Nicklas, Theresa A; O'Neil, Carol E

    2015-05-01

    The diets of most US children and adults are poor, as reflected by low diet quality scores, when compared with the recommendations of the Dietary Guidelines for Americans (DGAs). Contributing to these low scores is that most Americans overconsume solid fats, which may contain saturated fatty acids and added sugars; although alcohol consumption was generally modest, it provided few nutrients. Thus, the 2005 DGAs generated a new recommendation: to reduce intakes of solid fats, alcohol, and added sugars (SoFAAS). What precipitated the emergence of the new SoFAAS terminology was the concept of discretionary calories (a "calorie" is defined as the amount of energy needed to increase the temperature of 1 kg of water by 1°C), which were defined as calories consumed after an individual had met his or her recommended nutrient intakes while consuming fewer calories than the daily recommendation. A limitation with this concept was that additional amounts of nutrient-dense foods consumed beyond the recommended amount were also considered discretionary calories. The rationale for this was that if nutrient-dense foods were consumed beyond recommended amounts, after total energy intake was met then this constituted excess energy intake. In the 2010 DGAs, the terminology was changed to solid fats and added sugars (SoFAS); thus, alcohol was excluded because it made a minor contribution to overall intake and did not apply to children. The SoFAS terminology also negated nutrient-dense foods that were consumed in amounts above the recommendations for the specific food groups in the food patterns. The ambiguous SoFAS terminology was later changed to "empty calories" to reflect only those calories from solid fats and added sugars (and alcohol if consumed beyond moderate amounts). The purpose of this review is to provide an historical perspective on how the dietary recommendations went from SoFAAS to SoFAS and how discretionary calories went to empty calories between the 2005 and 2010

  17. Development of the SoFAS (Solid Fats and Added Sugars) Concept: The 2010 Dietary Guidelines for Americans123

    PubMed Central

    Nicklas, Theresa A; O’Neil, Carol E

    2015-01-01

    The diets of most US children and adults are poor, as reflected by low diet quality scores, when compared with the recommendations of the Dietary Guidelines for Americans (DGAs). Contributing to these low scores is that most Americans overconsume solid fats, which may contain saturated fatty acids and added sugars; although alcohol consumption was generally modest, it provided few nutrients. Thus, the 2005 DGAs generated a new recommendation: to reduce intakes of solid fats, alcohol, and added sugars (SoFAAS). What precipitated the emergence of the new SoFAAS terminology was the concept of discretionary calories (a “calorie” is defined as the amount of energy needed to increase the temperature of 1 kg of water by 1°C), which were defined as calories consumed after an individual had met his or her recommended nutrient intakes while consuming fewer calories than the daily recommendation. A limitation with this concept was that additional amounts of nutrient-dense foods consumed beyond the recommended amount were also considered discretionary calories. The rationale for this was that if nutrient-dense foods were consumed beyond recommended amounts, after total energy intake was met then this constituted excess energy intake. In the 2010 DGAs, the terminology was changed to solid fats and added sugars (SoFAS); thus, alcohol was excluded because it made a minor contribution to overall intake and did not apply to children. The SoFAS terminology also negated nutrient-dense foods that were consumed in amounts above the recommendations for the specific food groups in the food patterns. The ambiguous SoFAS terminology was later changed to “empty calories” to reflect only those calories from solid fats and added sugars (and alcohol if consumed beyond moderate amounts). The purpose of this review is to provide an historical perspective on how the dietary recommendations went from SoFAAS to SoFAS and how discretionary calories went to empty calories between the 2005

  18. Fatty acid biosynthesis in actinomycetes

    PubMed Central

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  19. The apoptosis-1/Fas protein in human systemic lupus erythematosus.

    PubMed Central

    Mysler, E; Bini, P; Drappa, J; Ramos, P; Friedman, S M; Krammer, P H; Elkon, K B

    1994-01-01

    Three independent mutations involving the apoptosis-1 (APO-1)/Fas receptor or its putative ligand have led to lupuslike diseases associated with lymphadenopathy in different strains of mice. To determine whether humans with SLE also have a defect in this apotosis pathway, we analyzed the expression of APO-1 on freshly isolated blood mononuclear cells and on lymphocytes activated in vitro using flow cytometry and the monoclonal antibody anti-APO-1. Significantly higher level of APO-1 expression were detected on freshly isolated peripheral B cells and both CD4+ and CD8+ T lymphocyte populations obtained from lupus patients when compared with normal controls (P < 0.001). Almost 90% of the cells that stained positive for APO-1 also expressed the CD29 antigen, suggesting that APO-1 was upregulated after lymphocyte activation in vivo. No defect in APO-1 regulation was detected after activation of SLE T (with anti-CD3) or B (with Staphylococcus aureus Cowan 1) lymphocytes in the presence of IL-2 in vitro. Similarly, the anti-APO-1 antibody induced apoptosis in 74 +/- 5% of activated SLE T cells in vitro compared with 79 +/- 6% of the normal controls (P > 0.05). These results reveal that, while APO-1/Fas may play an important role in the regulation of lymphocyte survival in SLE, no consistent defect in the expression or function of the receptor could be detected in these studies. Images PMID:7510716

  20. Polymorphisms of death pathway genes FAS and FASL and risk of nasopharyngeal carcinoma.

    PubMed

    Cao, Yun; Miao, Xiao-Ping; Huang, Ma-Yan; Deng, Ling; Lin, Dong-Xin; Zeng, Yi-Xin; Shao, Jian-Yong

    2010-11-01

    The FAS receptor/ligand system is a key regulator of apoptotic cell death and corruption of this signaling pathway has been shown to participate in carcinogenesis. Functional polymorphisms in the FAS (FAS -1377G/A) and FASL (FASL -844T/C) genes alter their transcriptional activity. Therefore, we examined the association between these polymorphisms and the risk of developing nasopharyngeal carcinoma (NPC). FAS -1377G/A and FASL -844T/C genotypes were determined by PCR-based RFLP analysis in 582 patients with NPC and 613 frequency-matched controls. We observed a significantly increased risk of NPC associated with the FAS -1377AA genotype [odds ratio (OR) = 1.69, 95% confidence interval (CI) = 1.21-2.35] compared with the FAS -1377 GG genotype. In addition, elevated NPC risk was also found among subjects carrying both FAS -1377AA and FASL -844CC genotypes compared with both FAS -1377GG and FASL -844CT or -844TT, the OR was 2.39 (95% CI = 1.50-3.79). After stratification by smoking status, heavy smokers (≥15 pack-years) carrying FAS -1377AA genotype had an increased risk of NPC compared with FAS -1377GG genotype (OR = 3.48, 95% CI = 1.66-7.30). Furthermore, we observed a statistically significant interaction between the two polymorphisms and heavy smoking status (OR = 5.92, 95% CI = 1.91-18.3). Our study provides the first evidence that functional FAS -1377 G/A and FASL -844 T/C polymorphisms are associated with the risk of NPC, and this association is especially noteworthy in tobacco smokers.

  1. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation

    PubMed Central

    Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W.; Chinnery, Patrick F.; Schara, Ulrike; Thorburn, David R.; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna

    2015-01-01

    The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes. PMID:25705216

  2. Sequence comparisons in the aminoacyl-tRNA synthetases with emphasis on regions of likely homology with sequences in the Rossmann fold in the methionyl and tyrosyl enzymes.

    PubMed

    Walker, E J; Jeffrey, P D

    1988-02-01

    Amino acid sequences of aminoacyl-tRNA synthetases specific for 12 different amino acids have now been published. Differences in origin at the species and organelle level result in 20 distinct sequences being available for comparison. Some of these were compared in small groups as they were determined and, although some homologies were detected, it was generally concluded that there was surprisingly little sequence homology in this functionally related group of enzymes. We have made comparisons of all of the available sequences by using a combination of computer and manual alignment methods and knowledge of the sequences in the Rossmann fold region of methionyl-tRNA synthetase from E. coli and tyrosyl-tRNA synthetase from B. stearothermophilus, enzymes whose three-dimensional structures have been described. It emerges that all of the aminoacyl-tRNA synthetase sequences thus examined show considerable homology with each other over at least parts of this region, some over virtually all of it. We conclude that a great deal more similarity than had previously been suspected exists in these proteins. In particular, the alignments we have made strongly imply the existence of a mononucleotide binding site of the Rossmann fold configuration in all of the synthetases compared. PMID:3283733

  3. Energetics of S-adenosylmethionine synthetase catalysis.

    PubMed

    McQueney, M S; Anderson, K S; Markham, G D

    2000-04-18

    S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) catalyzes the only known route of biosynthesis of the primary biological alkylating agent. The internal thermodynamics of the Escherichia coli S-adenosylmethionine (AdoMet) synthetase catalyzed formation of AdoMet, pyrophosphate (PP(i)), and phosphate (P(i)) from ATP, methionine, and water have been determined by a combination of pre-steady-state kinetics, solvent isotope incorporation, and equilibrium binding measurements in conjunction with computer modeling. These studies provided the rate constants for substrate binding, the two chemical interconversion steps [AdoMet formation and subsequent tripolyphosphate (PPP(i)) hydrolysis], and product release. The data demonstrate the presence of a kinetically significant isomerization of the E.AdoMet.PP(i).P(i) complex before product release. The free energy profile for the enzyme-catalyzed reaction under physiological conditions has been constructed using these experimental values and in vivo concentrations of substrates and products. The free energy profile reveals that the AdoMet formation reaction, which has an equilibrium constant of 10(4), does not have well-balanced transition state and ground state energies. In contrast, the subsequent PPP(i) hydrolytic reaction is energetically better balanced. The thermodynamic profile indicates the use of binding energies for catalysis of AdoMet formation and the necessity for subsequent PPP(i) hydrolysis to allow enzyme turnover. Crystallographic studies have shown that a mobile protein loop gates access to the active site. The present kinetic studies indicate that this loop movement is rapid with respect to k(cat) and with respect to substrate binding at physiological concentrations. The uniformly slow binding rates of 10(4)-10(5) M(-)(1) s(-)(1) for ligands with different structures suggest that loop movement may be an intrinsic property of the protein rather than being ligand induced. PMID:10757994

  4. p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish.

    PubMed

    Song, Youngzee; Shi, Yi; Carland, Tristan M; Lian, Shanshan; Sasaki, Tomoyuki; Schork, Nicholas J; Head, Steven R; Kishi, Shuji; Schimmel, Paul

    2016-07-26

    Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small amounts of mistranslation of components of the replication apparatus, we investigated the sensitivity to editing of the vertebrate genome. We show here that in zebrafish embryos, transient overexpression of editing-defective valyl-tRNA synthetase (ValRS(ED)) activated DNA break-responsive H2AX and p53-responsive downstream proteins, such as cyclin-dependent kinase (CDK) inhibitor p21, which promotes cell-cycle arrest at DNA damage checkpoints, and Gadd45 and p53R2, with pivotal roles in DNA repair. In contrast, the response of these proteins to expression of ValRS(ED) was abolished in p53-deficient fish. The p53-activated downstream signaling events correlated with suppression of abnormal morphological changes caused by the editing defect and, in adults, reversed a shortened life span (followed for 2 y). Conversely, with normal editing activities, p53-deficient fish have a normal life span and few morphological changes. Whole-fish deep sequencing showed genomic mutations associated with the editing defect. We suggest that the sensitivity of p53 to expression of an editing-defective tRNA synthetase has a critical role in promoting genome integrity and organismal homeostasis.

  5. Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum.

    PubMed

    Khan, Sameena; Sharma, Arvind; Jamwal, Abhishek; Sharma, Vinay; Pole, Anil Kumar; Thakur, Kamal Kishor; Sharma, Amit

    2011-01-01

    Accuracy of aminoacylation is dependent on maintaining fidelity during attachment of amino acids to cognate tRNAs. Cis- and trans-editing protein factors impose quality control during protein translation, and 8 of 36 Plasmodium falciparum aminoacyl-tRNA synthetase (aaRS) assemblies contain canonical putative editing modules. Based on expression and localization profiles of these 8 aaRSs, we propose an asymmetric distribution between the parasite cytoplasm and its apicoplast of putative editing-domain containing aaRSs. We also show that the single copy alanyl- and threonyl-tRNA synthetases are dually targeted to parasite cytoplasm and apicoplast. This bipolar presence of two unique synthetases presents opportunity for inhibitor targeting their aminoacylation and editing activities in twin parasite compartments. We used this approach to identify specific inhibitors against the alanyl- and threonyl-tRNA synthetases. Further development of such inhibitors may lead to anti-parasitics which simultaneously block protein translation in two key parasite organelles, a strategy of wider applicability for pathogen control.

  6. Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)-transfected neuroblastoma neuro-2a cells.

    PubMed

    Shimizu, M; Fontana, A; Takeda, Y; Yagita, H; Yoshimoto, T; Matsuzawa, A

    1999-06-15

    Fas/Apo-1 (CD95)-Fas ligand (FasL) system has been implicated in the suppression and stimulation of immune responses. We examined the induction of antitumor immunity with neuroblastoma Neuro-2a cells transfected with FasL cDNA (Neuro-2a+FasL). Neuro-2a+FasL cells expressed FasL on the cell surface and secreted soluble FasL. Histologic and flow cytometric analyses revealed that Neuro-2a+FasL cells caused neutrophils to infiltrate into the injected site, resulting in strong inflammation. Neutrophil infiltration was inhibited by treatment with anti-FasL mAb and did not occur in Fas-deficient lpr mice. Normal syngeneic mice rejected Neuro-2a+FasL cells after the inflammation and acquired tumor-specific protective immunity. CD8+ T cells were responsible for the antitumor immunity. Neuro-2a+FasL cells formed tumors after far longer latency compared with mock-transfected Neuro-2a+Neo cells in nude mice, and immune competent mice rejected Neuro-2a cells but not sarcoma S713a cells when they were injected with Neuro-2a+FasL cells in a mixture. These results suggest that neutrophils attracted through the Fas-FasL system may impair tumor cells by inflammation at the initial step, followed by development of CD8+ T cell-dependent tumor-specific antitumor immunity, leading to complete eradication of tumor cells. Importantly, the treatment with Neuro-2a+FasL cells exhibited therapeutic efficacy against growing tumors.

  7. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    Skip to main content Your Guide to Understanding Genetic Conditions Enable Javascript for addthis links to activate. ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions carbamoyl phosphate synthetase I deficiency ...

  8. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter G.; Xie, Jianming; Zeng, Huaqiang

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate unnatural amino acids into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  9. Orthogonal translation components for the in vivo incorporation of unnatural amino acids

    DOEpatents

    Schultz, Peter G.; Alfonta, Lital; Chittuluru, Johnathan R.; Deiters, Alexander; Groff, Dan; Summerer, Daniel; Tsao, Meng -Lin; Wang, Jiangyun; Wu, Ning; Xie, Jianming; Zeng, Huaqiang; Seyedsayamdost, Mohammad; Turner, James

    2015-08-11

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetase that can incorporate unnatural amino acid into proteins produced in eubacterial host cells such as E. coli, or in a eukaryotic host such as a yeast cell. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing unnatural amino acids, and translation systems.

  10. Inorganic mercury dissociates preassembled Fas/CD95 receptor oligomers in T lymphocytes

    SciTech Connect

    Ziemba, Stamatina E.; McCabe, Michael J.; Rosenspire, Allen J. . E-mail: arosensp@sun.science.wayne.edu

    2005-08-15

    Genetically susceptible rodents exposed to low burdens of inorganic mercury (Hg{sup 2+}) develop autoimmune disease. Previous studies have shown that low, noncytotoxic levels of Hg{sup 2+} inhibit Fas-mediated apoptosis in T cells. These results suggest that inhibition of the Fas death receptor pathway potentially contributes to autoimmune disease after Hg{sup 2+} exposure, as a consequence of disruption of peripheral tolerance. The formation of active death inducing signaling complexes (DISC) following CD95/Fas receptor oligomerization is a primary step in the Fas-mediated apoptotic pathway. Other recent studies have shown that Hg{sup 2+} at concentrations that inhibit apoptosis also inhibit formation of active DISC, suggesting that inhibition of DISC is the mechanism responsible for Hg{sup 2+}-mediated inhibition of apotosis. Preassociated Fas receptors have been implicated as key elements necessary for the production of functional DISC. We present evidence in this study showing that low and nontoxic concentrations of Hg{sup 2+} induce the dissociation of preassembled Fas receptor complexes in Jurkat T cells. Thus, this Hg{sup 2+}-induced event should subsequently decrease the amount of preassembled Fas available for DISC formation, potentially resulting in the attenuation of Fas-mediated apoptosis in T lymphocytes.

  11. Hematopoietic Fas deficiency does not affect experimental atherosclerotic lesion formation despite inducing a proatherogenic state.

    PubMed

    de Claro, R Angelo; Zhu, Xiaodong; Tang, Jingjing; Morgan-Stevenson, Vicki; Schwartz, Barbara R; Iwata, Akiko; Liles, W Conrad; Raines, Elaine W; Harlan, John M

    2011-06-01

    The Fas death receptor (CD95) is expressed on macrophages, smooth muscle cells, and T cells within atherosclerotic lesions. Given the dual roles of Fas in both apoptotic and nonapoptotic signaling, the aim of the present study was to test the effect of hematopoietic Fas deficiency on experimental atherosclerosis in low-density lipoprotein receptor-null mice (Ldlr(-/-)). Bone marrow from Fas(-/-) mice was used to reconstitute irradiated Ldlr(-/-) mice as a model for atherosclerosis. After 16 weeks on an 0.5% cholesterol diet, no differences were noted in brachiocephalic artery lesion size, cellularity, or vessel wall apoptosis. However, Ldlr(-/-) mice reconstituted with Fas(-/-) hematopoietic cells had elevated hyperlipidemia [80% increase, relative to wild-type (WT) controls; P < 0.001] and showed marked elevation of plasma levels of CXCL1/KC, CCL2/MCP-1, IL-6, IL-10, IL-12 subunit p70, and soluble Fas ligand (P < 0.01), as well as systemic microvascular inflammation. It was not possible to assess later stages of atherosclerosis because of increased mortality in Fas(-/-) bone marrow recipients. Our data indicate that hematopoietic Fas deficiency does not affect early atherosclerotic lesion development in Ldlr(-/-) mice.

  12. Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis

    PubMed Central

    Volpe, Elisabetta; Sambucci, Manolo; Battistini, Luca; Borsellino, Giovanna

    2016-01-01

    Fas and Fas Ligand (FasL) are two molecules involved in the regulation of cell death. Their interaction leads to apoptosis of thymocytes that fail to rearrange correctly their T cell receptor (TCR) genes and of those that recognize self-antigens, a process called negative selection; moreover, Fas–FasL interaction leads to activation-induced cell death, a form of apoptosis induced by repeated TCR stimulation, responsible for the peripheral deletion of activated T cells. Both control mechanisms are particularly relevant in the context of autoimmune diseases, such as multiple sclerosis (MS), where T cells exert an immune response against self-antigens. This concept is well demonstrated by the development of autoimmune diseases in mice and humans with defects in Fas or FasL. In recent years, several new aspects of T cell functions in MS have been elucidated, such as the pathogenic role of T helper (Th) 17 cells and the protective role of T regulatory (Treg) cells. Thus, in this review, we summarize the role of the Fas–FasL pathway, with particular focus on its involvement in MS. We then discuss recent advances concerning the role of Fas–FasL in regulating Th17 and Treg cells’ functions, in the context of MS. PMID:27729910

  13. Fas gene polymorphisms in systemic lupus erythematosus and serum levels of some apoptosis-related molecules.

    PubMed

    Arasteh, Julia Maryam; Araste, Julia Maryam; Sarvestani, Eskandar Kamali; Aflaki, Elham; Amirghofran, Zahra

    2010-01-01

    The frequency of the Fas gene polymorphism at positions-1377 G/A and -670 A/G in 249 patients with systemic lupus erythematosus (SLE) and 212 healthy controls were investigated using the allele-specific polymerase chain reaction. On evaluation of genotype and allelic distributions at position -670, no significant difference was observed between patients and controls. At position -1377, the GG genotype and G allele was higher in the patient group than in the control group (p < 0.036). The haplotype frequencies showed a significant difference between patients and controls (p = 0.045). The association of these polymorphisms and Fas and Fas ligand serum levels and also anti-SSA/Ro and anti-SSB/La antibodies were studied in a second cohort of SLE patients. Soluble Fas and Fas ligand levels were both significantly higher in the patient group compared with controls (p = 0.001), but they showed no significant association with the studied polymorphisms. Anti-SSA/Ro and anti-SSB/La were not correlated with soluble Fas and Fas lignad levels, but patients with the -670GG genotype showed lower amounts of anti-SSB/La in their serum. In conclusion, results of this study imply that Fas promoter polymorphisms might contribute to individual susceptibility to SLE and influence the anti-SSB/La autoantibody response in patients. PMID:20064083

  14. The aminoacyl-tRNA synthetases of Drosophila melanogaster.

    PubMed

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  15. The aminoacyl-tRNA synthetases of Drosophila melanogaster

    PubMed Central

    Lu, Jiongming; Marygold, Steven J; Gharib, Walid H; Suter, Beat

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field. PMID:26761199

  16. Expression, purification, and characterization of recombinant human glutamine synthetase.

    PubMed Central

    Listrom, C D; Morizono, H; Rajagopal, B S; McCann, M T; Tuchman, M; Allewell, N M

    1997-01-01

    A bacterial expression system has been engineered for human glutamine synthetase (EC 6.3.1.2) that produces approximately 60 mg of enzyme (20% of the bacterial soluble protein) and yields approx. 8 mg of purified enzyme per litre of culture. The recombinant enzyme was purified 5-fold to apparent homogeneity and characterized. It has a subunit molecular mass of approx. 45000 Da. The Vmax value obtained using a radioactive assay with ammonia and l-[G-3H]glutamic acid as substrates was 15.9 micromol/min per mg, 40% higher than that obtained in the colorimetric assay (9.9 micromol/min per mg) with hydroxylamine replacing ammonia as a substrate. Km values for glutamate were 3.0 mM and 3.5 mM, and for ATP they were 2.0 mM and 2. 9 mM for the radioactive and spectrophotometric assays respectively. The Km for ammonia in the radioactive assay was 0.15 mM. The midpoint of thermal inactivation was 49.7 degrees C. Hydroxylamine, Mg(II) and Mg(II)-ATP stabilized the enzyme against thermal inactivation, whereas ATP promoted inactivation. The pure enzyme is stable for several months in storage and provides a source for additional studies, including X-ray crystallography. PMID:9359847

  17. Aminoacyl-tRNA Synthetases in the Bacterial World.

    PubMed

    Giegé, Richard; Springer, Mathias

    2016-05-01

    Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and

  18. Development of Fatty Acid-Producing Corynebacterium glutamicum Strains

    PubMed Central

    Takeno, Seiki; Takasaki, Manami; Urabayashi, Akinobu; Mimura, Akinori; Muramatsu, Tetsuhiro; Mitsuhashi, Satoshi

    2013-01-01

    To date, no information has been made available on the genetic traits that lead to increased carbon flow into the fatty acid biosynthetic pathway of Corynebacterium glutamicum. To develop basic technologies for engineering, we employed an approach that begins by isolating a fatty acid-secreting mutant without depending on mutagenic treatment. This was followed by genome analysis to characterize its genetic background. The selection of spontaneous mutants resistant to the palmitic acid ester surfactant Tween 40 resulted in the isolation of a desired mutant that produced oleic acid, suggesting that a single mutation would cause increased carbon flow down the pathway and subsequent excretion of the oversupplied fatty acid into the medium. Two additional rounds of selection of spontaneous cerulenin-resistant mutants led to increased production of the fatty acid in a stepwise manner. Whole-genome sequencing of the resulting best strain identified three specific mutations (fasR20, fasA63up, and fasA2623). Allele-specific PCR analysis showed that the mutations arose in that order. Reconstitution experiments with these mutations revealed that only fasR20 gave rise to oleic acid production in the wild-type strain. The other two mutations contributed to an increase in oleic acid production. Deletion of fasR from the wild-type strain led to oleic acid production as well. Reverse transcription-quantitative PCR analysis revealed that the fasR20 mutation brought about upregulation of the fasA and fasB genes encoding fatty acid synthases IA and IB, respectively, by 1.31-fold ± 0.11-fold and 1.29-fold ± 0.12-fold, respectively, and of the accD1 gene encoding the β-subunit of acetyl-CoA carboxylase by 3.56-fold ± 0.97-fold. On the other hand, the fasA63up mutation upregulated the fasA gene by 2.67-fold ± 0.16-fold. In flask cultivation with 1% glucose, the fasR20 fasA63up fasA2623 triple mutant produced approximately 280 mg of fatty acids/liter, which consisted mainly of oleic

  19. [Regulation of glucosamine synthetase activity by cholesterol and hydrocortisone].

    PubMed

    Sharaev, P N; Ivanov, V G; Bogdanov, N G

    1988-09-01

    The effects of cholesterol and hydrocortisone (cortisol) on the activity of purified glucosamine synthetase from rat liver was studied in vitro. It was found that the enzyme activity is increased by cholesterol and inhibited by hydrocortisone. These steroids block the allosteric effect of vitamin K1 on the enzyme. There is evidence testifying to the allosteric type of cholesterol and hydrocortisone effects on glucosamine synthetase. PMID:3203113

  20. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells.

    PubMed

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-01-01

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis. PMID:26678950

  1. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells.

    PubMed

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-12-18

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis.

  2. Novel mechanism of harmaline on inducing G2/M cell cycle arrest and apoptosis by up-regulating Fas/FasL in SGC-7901 cells

    PubMed Central

    Wang, Yihai; Wang, Chunhua; Jiang, Chenguang; Zeng, Hong; He, Xiangjiu

    2015-01-01

    Harmaline (HAR), a natural occurrence β-carboline alkaloid, was isolated from the seeds of Peganum harmala and exhibited potent antitumor effect. In this study, the anti-gastric tumor effects of HAR were firstly investigated in vitro and in vivo. The results strongly showed that HAR could inhibit tumor cell proliferation and induce G2/M cell cycle arrest accompanied by an increase in apoptotic cell death in SGC-7901 cancer cells. HAR could up-regulate the expressions of cell cycle-related proteins of p-Cdc2, p21, p-p53, Cyclin B and down-regulate the expression of p-Cdc25C. In addition, HAR could up-regulate the expressions of Fas/FasL, activated Caspase-8 and Caspase-3. Moreover, blocking Fas/FasL signaling could markedly inhibit the apoptosis caused by HAR, suggesting that Fas/FasL mediated pathways were involved in HAR-induced apoptosis. Interestingly, HAR could also exert on antitumor activity with a dose of 15 mg/kg/day in vivo, which was also related with cell cycle arrest. These new findings provided a framework for further exploration of HAR which possess the potential antitumor activity by inducing cell cycle arrest and apoptosis. PMID:26678950

  3. Seasonal changes of proapoptotic soluble Fas ligand level in allergic rhinitis combined with asthma.

    PubMed

    Mezei, Györgyi; Lévay, Magdolna; Sepler, Zsuzsanna; Héninger, Erika; Kozma, Gergely Tibor; Cserháti, Endre

    2006-09-01

    The function of apoptosis is to eliminate unnecessary or dangerous cells. The balance between production and death is important in the control of cell numbers within physiological ranges. Cells involved in allergic reactions may have altered apoptosis. The aim of this study was to examine the seasonal changes of programmed cell death in children with pollen allergy. We measured serum levels of soluble Fas (sFas) and soluble Fas ligand (sFasL), and examined whether there was any correlation between soluble apoptosis markers and development of asthma and or rhinitis in children with pollen allergy. We examined two groups of patients with ragweed pollen allergy. The first group consisted of 17 children with 'rhinitis only'. The second group consisted of 16 children with 'asthma + rhinitis'. For seasonal analysis we pooled the two groups and termed this the 'ragweed sensitive' group (n = 33, 5-18 yr, 25 boys, eight girls). Measurements (sFas and sFasL) were taken during the ragweed pollen allergy season, while control measurements were performed during the symptom-free period. There was no difference in sFas levels measured during and after [1941 +/- 68, 1963 +/- 83 pg/ml (mean+/-s.e.m, respectively)] the pollen season in the 'ragweed sensitive' group. The sFasL level showed seasonal change, which was significantly higher (p = 0.0086) in the symptomatic period compared to the symptom-free state (99 +/- 13 and 53 +/- 16 pg/ml, respectively). There was a difference between the 'rhinitis only' and the 'asthma + rhinitis' groups in the measured parameters of apoptosis. Children having allergic rhinitis combined with asthma had a significantly (p = 0.03) higher sFas level in the symptom-free state than the 'rhinitis only' group did (2115 +/- 156 and 1820 +/- 52 pg/ml, respectively). During the allergic symptom state the sFasL level of the 'asthma + rhinitis' group was significantly higher (p = 0.025) than that of the 'rhinitis only' group (125 +/- 20 and 75 +/- 14 pg

  4. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.

    PubMed

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Mertens, Haydyn; Svergun, Dmitri; Brieba, Luis G; Grøtli, Morten; Torres-Larios, Alfredo

    2016-07-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.

  5. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  6. Zinc Induces Apoptosis of Human Melanoma Cells, Increasing Reactive Oxygen Species, p53 and FAS Ligand.

    PubMed

    Provinciali, Mauro; Pierpaoli, Elisa; Bartozzi, Beatrice; Bernardini, Giovanni

    2015-10-01

    The aim of this study was to examine the in vitro effect of zinc on the apoptosis of human melanoma cells, by studying the zinc-dependent modulation of intracellular levels of reactive oxygen species (ROS) and of p53 and FAS ligand proteins. We showed that zinc concentrations ranging from 33.7 μM to 75 μM Zn(2+) induced apoptosis in the human melanoma cell line WM 266-4. This apoptosis was associated with an increased production of intracellular ROS, and of p53 and FAS ligand protein. Treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and FAS ligand protein induced by zinc. Zinc induces apoptosis in melanoma cells by increasing ROS and this effect may be mediated by the ROS-dependent induction of p53 and FAS/FAS ligand.

  7. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    SciTech Connect

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-10-23

    Bacterial and fungal type I fatty-acid synthases (FAS I) are evolutionarily connected, as bacterial FAS I is considered to be the ancestor of fungal FAS I. In this work, the production, crystallization and X-ray diffraction data analysis of a bacterial FAS I are reported. While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  8. Circulating and Hepatic Fas Expression in HCV-Induced Chronic Liver Disease and Hepatocellular Carcinoma

    PubMed Central

    El Bassiouny, Azza E. I.; El-Bassiouni, Nora E. I.; Nosseir, Mona M. F.; Zoheiry, Mona M.K.; El-Ahwany, Eman G.; Salah, Faten; Omran, Zeinab S.O.; Ibrahim, Raafat A.

    2008-01-01

    Apoptosis is central for control and elimination of viral infections. In chronic hepatitis C virus (HCV) infection, enhanced hepatocyte apoptosis and upregulation of the death-inducing ligands CD95/Fas occur. This study aimed to study the role of serum soluble Fas and hepatic Fas expression as early predictors of advancement of chronic hepatitis C disease. The current study included 50 cases of chronic hepatitis C (CHC) (and negative hepatitis B virus infection), 30 cases of liver cirrhosis (LC) and HCV, and 20 cases of hepatocellular carcinoma (HCC) and HCV admitted to Theodor Bilharz Research Institute, Giza, Egypt. Fifteen wedge liver biopsies, taken during laparoscopic cholecystectomy, were included in the study as normal controls. Assessment of serum soluble Fas level (sFas) and other laboratory investigations, including liver function tests, serologic markers for viral hepatitis, and serum alpha-fetoprotein level (alpha-FP), were determined for all cases. Histopathologic study and immunohistochemistry using monoclonal antibody for CD95 were also done. The sFas was significantly increased in CHC, LC, and HCC cases compared with normal controls (P < .01). The increase of sFas in HCC was also significantly higher than that of CHC (P < .01). However, positive hepatic expression of Fas antigen was higher in CHC than LC with no significant difference; meanwhile, it was significantly lower in HCC (P < .01) compared with CHC. In conclusion, circulating and hepatic Fas expression in chronic hepatitis C infection illustrate the mechanism of liver injury caused by death receptors throughout the multistep process of fibrosis/carcinogenesis. Not only the higher degree of hepatic fibrosis, but also the lower expression of Fas protein, are correlated with the increased incidence of HCC. PMID:18679533

  9. Expression of apoptotic regulatory molecules in renal cell carcinoma: elevated expression of Fas ligand.

    PubMed

    Olive, C; Cheung, C; Nicol, D; Falk, M C

    1999-02-01

    Renal cell carcinoma (RCC) is the most common renal neoplasm. Despite being infiltrated by tumour infiltrating lymphocytes (TIL), these TIL are unable to control tumour growth in vivo, suggesting that the cytotoxic capacity of TIL against RCC is impaired, or that the tumour cells are resistant to killing and therefore escape detection by the immune system. It is postulated that the expression of apoptotic regulatory molecules in RCC favours tumour cell survival. The present study has therefore determined the expression of Fas (APO-1/CD95), Fas ligand (Fas L) and bcl-2 in these tumours. The expression of Fas, Fas L and bcl-2 mRNA transcripts was determined in RCC, normal kidney and peripheral blood by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), following RNA extraction and cDNA synthesis from tissues and cell samples. Transcript levels were measured by densitometry after Southern blot hybridization of PCR products with internal radio-labelled oligonucleotide probes; a densitometry score was assigned to each hybridizing DNA band and expressed as a ratio of the glyceraldehyde-3-phosphate dehydrogenase content. In peripheral blood, the expression of Fas L and bcl-2 transcripts was similar between patients and normal healthy individuals; however, Fas transcript expression was significantly down-regulated in the patients' versus normal peripheral blood (P = 0.026). Most interestingly, significantly up-regulated Fas L expression was observed in RCC compared to normal kidney (P = 0.041). In contrast, bcl-2 transcripts were well represented in normal kidney but markedly decreased in RCC (P = 0.021). The expression of Fas transcripts in normal kidney and RCC was variable. These data demonstrate elevated expression of Fas L transcripts in RCC, but the functional relevance of this remains to be investigated. PMID:10101681

  10. MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases.

    PubMed

    Felnagle, Elizabeth A; Barkei, John J; Park, Hyunjun; Podevels, Angela M; McMahon, Matthew D; Drott, Donald W; Thomas, Michael G

    2010-10-19

    The biosynthesis of many natural products of clinical interest involves large, multidomain enzymes called nonribosomal peptide synthetases (NRPSs). In bacteria, many of the gene clusters coding for NRPSs also code for a member of the MbtH-like protein superfamily, which are small proteins of unknown function. Using MbtH-like proteins from three separate NRPS systems, we show that these proteins copurify with the NRPSs and influence amino acid activation. As a consequence, MbtH-like proteins are integral components of NRPSs.

  11. Distinct role of the Fas rs1800682 and FasL rs763110 polymorphisms in determining the risk of breast cancer among Han Chinese females

    PubMed Central

    Wang, Meng; Wang, Zheng; Wang, Xi-Jing; Jin, Tian-Bo; Dai, Zhi-Ming; Kang, Hua-Feng; Guan, Hai-Tao; Ma, Xiao-Bin; Liu, Xing-Han; Dai, Zhi-Jun

    2016-01-01

    Background In recent years, studies have demonstrated that polymorphisms in the promoters of Fas and FasL are significantly associated with breast cancer risk. However, the results of these studies were inconsistent. This case–control study was performed to explore the associations between Fas rs1800682 and FasL rs763110 polymorphisms and breast cancer. Materials and methods A hospital-based case–control study of 560 Han Chinese females with breast cancer (583 controls) was conducted. The MassARRAY system was used to search for a possible association between the disease risk and the two single nucleotide polymorphisms, Fas rs1800682 and FasL rs763110. Statistical analyses were performed using SNPStats software to conduct Pearson’s chi-square tests in five different genetic models. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated after adjustment to age and body mass index. PHASE v2.1 software was used to reconstruct all common haplotypes. Results A statistically significant association was found between Fas rs1800682 and increased breast cancer risk (AG vs AA: OR =1.37, 95% CI =1.06–1.78; AA+AG vs GG: OR =1.32, 95% CI =1.04–1.66), and also it was found that the FasL rs763110 polymorphism may decrease the risk. Stratified analyses demonstrated that the rs763110 polymorphism was associated with lower breast cancer risk among postmenopausal females (heterozygote model: OR =0.69, 95% CI =0.49–0.97; dominant model: OR =0.70, 95% CI =0.51–0.96). The T allele of rs763110 was also associated with a decreased risk of lymph node metastasis (allele model: OR =0.75, 95% CI =0.57–0.97) and an increased risk of the breast cancer being human epidermal growth factor receptor 2 positive (allele model: OR =1.37, 95% CI =1.03–1.18). Moreover, haplotype analysis showed that Ars1800682Trs763110 was associated to a statistically significant degree with lower risk of breast cancer (OR =0.70, 95% CI =0.53–0.91). Conclusion These data suggest that

  12. Correlation of insulin resistance, beta cell function and insulin sensitivity with serum sFas and sFasL in newly diagnosed type 2 diabetes.

    PubMed

    Kumar, Hemant; Mishra, Manish; Bajpai, Surabhi; Pokhria, Deepa; Arya, Awadhesh Kumar; Singh, Rakesh Kumar; Tripathi, Kamlakar

    2013-08-01

    Pancreatic beta cell dysfunction and reduced insulin sensitivity are fundamental factors associated with glucotoxicity, lipotoxicity and oxidative stress in type 2 diabetic patients (T2DM). Diabetic milieu can induce apoptosis in several types of cells. The aim of present study was to compare circulating soluble apoptotic markers (sFas and sFas-L) with HOMA-IR, HOMA-%S, HOMA-%B in the serum of newly diagnosed T2DM and healthy subjects. For this study, 94 T2DM and 60 healthy subjects were enroled and evaluated for various parameters. Biochemical quantifications were performed with Syncron CX5 auto-analyzer. The levels of serum sFas-L, TNF-α and IL-6 were estimated by flowcytometry. The fasting serum insulin and sFas quantified by ELISA. HOMA-IR, HOMA-%S and HOMA-%B were calculated with HOMA calculator v2.2.2. The levels of TC, TG, LDL-C, VLDL-C were augmented and HDL declined significantly (P < 0.001) in diabetics. The levels of serum insulin, TNF-α, IL-6, sFas, HOMA-IR were raised (P < 0.001) and sFas-L, HOMA-%S and HOMA-%B were decreased significantly (P < 0.001) in T2DM subjects than healthy. In diabetics, serum sFas was positively correlated with HOMA-IR (r = 0.720, P < 0.001) and negatively with HOMA-%B (r = -0.642, P < 0.001) significantly while serum sFasL was negatively correlated with HOMA-IR (r = -0.483, P < 0.001) and positively with HOMA-%B (r = 0.466, P < 0.001) significantly. Further, the multivariate stepwise regression analysis shows that HOMA-IR contributes significantly to the variance of sFas and sFasL. Our findings suggest that the pancreatic beta cell dysfunction along with increased insulin resistance appears to be associated with apoptotic markers. PMID:21695404

  13. Synthesis and physical properties of isostearic acids and their esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated branched-chain fatty acids (sbc-FAs) are found as minor constituents in several natural fats and oils. Sbc-FAs are of interest since they have lower melting points than their linear counterparts and exhibit good oxidative stability; properties that make them ideally suited in a number of ...

  14. Function of the major synthetase subdomains of carbamyl-phosphate synthetase.

    PubMed

    Guy, H I; Evans, D R

    1996-06-01

    The amidotransferase domain (GLNase) of mammalian carbamyl-phosphate synthetase II hydrolyzes glutamine and transfers ammonia to the synthetase domain where carbamyl phosphate is formed in a three-step reaction sequence. The synthetase domain consists of two homologous subdomains, CPS.A and CPS.B. Recent studies suggest that CPS.A catalyzes the initial ATP dependent-activation of bicarbonate, whereas CPS.B uses a second ATP to form carbamyl phosphate. To establish the function of these substructural elements, we have cloned and expressed the mammalian protein and its subdomains in Escherichia coli. Recombinant CPSase (GLNase-CPS.A-CPS.B) was found to be fully functional. Two other proteins were made; the first consisted of only GLNase and CPS.A, whereas the second lacked CPS.A and had the GLNase domain fused directly to CPS.B. Remarkably, both proteins catalyzed the entire series of reactions involved in glutamine-dependent carbamyl phosphate synthesis. The stoichiometry, like that of the native enzyme, was 2 mol of ATP utilized per mol of carbamyl phosphate formed. GLN-CPS.B is allosterically regulated, whereas GLN-CPS.A was insensitive to effectors, a result consistent with evidence showing that allosteric effectors bind to CPS.B. These properties are not peculiar to the mammalian protein, because the separately cloned CPS.A subdomain of the E. coli enzyme was also found to catalyze carbamyl phosphate synthesis. Gel filtration chromatography and chemical cross-linking studies showed that these molecules are dimers, a structural organization that may be a prerequisite for the overall reaction. Thus, the homologous CPS.A and CPS.B subdomains are functionally equivalent, although in the native enzyme they may have different functions resulting from their juxtaposition relative to the other components in the complex. PMID:8662713

  15. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  16. 41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provided by any eFAS-approved SC. If the agency decides that there are more effective sales solutions than... this part as if it were an SC. (d) An executive agency must comply with all eFAS milestones approved by... agency do to implement the eFAS program? 102-38.360 Section 102-38.360 Public Contracts and...

  17. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ...

  18. Selective microbial degradation of saturated methyl branched chain fatty acid isomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of Pseudomonas bacteria were screened for their capabilities of degrading chemically synthesized saturated branched-chain fatty acids (sbc-FAs). Mixtures of sbc-FAs with the methyl-branch located at various locales along the fatty acid were used as a carbon feedstock in shake-flask cu...

  19. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I

    PubMed Central

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-01-01

    While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution. PMID:26527268

  20. Crystallization and X-ray diffraction studies of a complete bacterial fatty-acid synthase type I.

    PubMed

    Enderle, Mathias; McCarthy, Andrew; Paithankar, Karthik Shivaji; Grininger, Martin

    2015-11-01

    While a deep understanding of the fungal and mammalian multi-enzyme type I fatty-acid synthases (FAS I) has been achieved in recent years, the bacterial FAS I family, which is narrowly distributed within the Actinomycetales genera Mycobacterium, Corynebacterium and Nocardia, is still poorly understood. This is of particular relevance for two reasons: (i) although homologous to fungal FAS I, cryo-electron microscopic studies have shown that bacterial FAS I has unique structural and functional properties, and (ii) M. tuberculosis FAS I is a drug target for the therapeutic treatment of tuberculosis (TB) and therefore is of extraordinary importance as a drug target. Crystals of FAS I from C. efficiens, a homologue of M. tuberculosis FAS I, were produced and diffracted X-rays to about 4.5 Å resolution.

  1. Affinity chromatography and affinity labeling of rat liver succinyl-CoA synthetase.

    PubMed

    Ball, D J; Nishimura, J S

    1980-11-25

    Succinyl-CoA synthetase has been purified to apparent homogeneity from rat liver. The key step in the purification procedure involved adsorption on a GDP dialdehyde (dial-GDP)-adipic dihydrazide-Sepharose 4B column and elution by GDP-Mg2+. Like the pig heart enzyme (Brownie, E. R., and Bridger, W. A. (1972) Can. J. Biochem. 50, 719--724), the rat liver enzyme was an alpha beta heterodimer and only the alpha subunit was phosphorylated by [gamma-32P]GTP. The A 280(0.1%) of the enzyme was determined to be 0.5. Amino acid analyses revealed significant similarities in 50% of the amino acid residues of rat liver and Escherichia coli succinyl-CoA synthetases. However, immunodiffusion analysis failed to reveal any antigenic identity between the two enzymes. Incubation with the affinity label, dial-GDP, in the presence of Mg2+ resulted in a biphasic inactivation of the enzyme. The extent of the rapid phase of inactivation appeared to be related to the extent of dephosphorylation of the enzyme and was prevented by preincubation of the enzyme with GTP-Mg2+. The presence of GDP-Mg2+ in the incubation medium prevented the slow phase of the inactivation and retarded the rapid phase. Dephosphorylated enzyme was approximately 2 orders of magnitude more susceptible to inactivation by dial-GDP than phosphorylated enzyme. Labeling of succinyl-CoA synthetase with [3H]dial-GDP gave a linear relationship between inactivation and incorporation of radioactivity with an extrapolated value of less than 1.2 mol of analog/mol of enzyme at 100% inactivation. The distribution of the label in enzyme that was inactivated 40% was approximately 60% in the alpha subunit and 40% in the beta subunit. Thus, while phosphorylation of the enzyme occurs exclusively in the alpha subunit, the nucleotide binding site appears to include components from both alpha and beta subunits. PMID:7430155

  2. Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus).

    PubMed

    Dalessandro, G; Northcote, D H

    1981-01-01

    Particulate enzymic preparations obtained from homogenates of differentiated xylem cells isolated from sycamore trees, catalyzed the formation of a radioactive xylan in the presence of UDP-D-[U-(14)C]xylose as substrate. The synthesized xylan was not dialyzable through Visking cellophane tubing. Successive extraction with cold water, hot water and 5% NaOH dissolved respectively 15, 5 and 80% of the radioactive polymer. Complete acid hydrolysis of the water-insoluble polysaccharide synthesized from UDP-D-[U-(14)C]xylose released all the radioactivity as xylose. β-1,4-Xylodextrins, degree of polymerization 2, 3, 4, 5 and 6, were obtained by partial acid hydrolysis (fuming HCl or 0.1 M HCl) of radioactive xylan. The polymer was hydrolysed to xylose, xylobiose and xylotriose by Driselase which contains 1,4-β xylanase activities. Methylation and then hydrolysis of the xylan released two methylated sugars which were identified as di-O-methyl[(14)C]xylose and tri-O-methyl-[(14)C]xylose, suggesting a 1→4-linked polymer. The linkage was confirmed by periodate oxidation studies. The apparent Km value of the synthetase for UDP-D-xylose was 0.4 mM. Xylan synthetase activity was not potentiated in the presence of a detergent. The enzymic activity was stimulated by Mg(2+) and Mn(2+) ions, although EDTA in the range of concentrations between 0.01 and 1 mM did not affect the reaction rate. It appears that the xylan synthetase system associated with membranes obtained from differentiated xylem cells of sycamore trees may serve for catalyzing the in vivo synthesis of the xylan main chain during the biogenesis of the plant cell wall.

  3. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase.

    PubMed

    Haese, A; Pieper, R; von Ostrowski, T; Zocher, R

    1994-10-14

    Enniatin synthetase catalyzes the biosynthesis of N-methylated cyclohexadepsipeptides. The 347 kDa enzyme is encoded by the esyn1 gene of Fusarium scirpi and contains two domains (EA and EB) homologous to each other and to regions of other microbial peptide synthetases. Parts of the esyn1 gene were subcloned in frame to a small lacZ gene portion of Escherichia coli expression vectors. Overproduced recombinant proteins showed a high tendency towards inclusion body formation and could be only partially dissolved in 8 M urea or 6 M guanidine hydrochloride. After renaturation, a 121 kDa recombinant protein representing the N-terminal conserved domain EA of enniatin synthetase was shown to activate D-hydroxyisolvaleric acid via adenylation. Similarly, a 158 kDa recombinant protein comprising the C-terminal conserved domain EB catalyzed the activation of the substrate amino acid (e.g. L-valine). Moreover, this protein could be photolabeled with S-[methyl-14C]adenosyl-L-methionine, (AdoMet) indicating the presence of the methyltransferase. Both functions, L-valine activation and AdoMet binding, could be assigned to a 108 kDa recombinant protein encompassing the A and the M segment of domain EB. The fact that a 65 kDa recombinant protein representing the M portion could be photolabeled, indicated the localization of the methyltransferase in this region. Three deletion mutants of the 65 kDa protein were shown to be inactive with respect to UV-induced AdoMet labeling. PMID:7932733

  4. Allosteric dominance in carbamoyl phosphate synthetase.

    PubMed

    Braxton, B L; Mullins, L S; Raushel, F M; Reinhart, G D

    1999-02-01

    A linked-function analysis of the allosteric responsiveness of carbamoyl phosphate synthetase (CPS) from E. coli was performed by following the ATP synthesis reaction at low carbamoyl phosphate concentration. All three allosteric ligands, ornithine, UMP, and IMP, act by modifying the affinity of CPS for the substrate MgADP. Individually ornithine strongly promotes, and UMP strongly antagonizes, the binding of MgADP. IMP causes only a slight inhibition at 25 degreesC. When both ornithine and UMP were varied, models which presume a mutually exclusive binding relationship between these ligands do not fit the data as well as does one which allows both ligands (and substrate) to bind simultaneously. The same result was obtained with ornithine and IMP. By contrast, the actions of UMP and IMP together must be explained with a competitive model, consistent with previous reports that UMP and IMP bind to the same site. When ornithine is bound to the enzyme, its activation dominates the effects when either UMP or IMP is also bound. The relationship of this observation to the structure of CPS is discussed. PMID:9931004

  5. Glutamine Synthetase of Nicotiana plumbaginifolia1

    PubMed Central

    Tingey, Scott V.; Coruzzi, Gloria M.

    1987-01-01

    We have characterized the distinct forms of glutamine synthetase (GS) which are present in leaves and roots of Nicotiana plumbaginifolia. Mature leaves contain a single GS polypeptide (44 kilodaltons in size) which is localized to the stroma of intact chloroplasts. In contrast, the GS polypeptide in roots is distinct in size (38 kilodaltons) and charge. A lectin stain of leaf soluble protein indicates that the size difference of these mature GS polypeptides is not the result of posttranslational glycosylation. cDNA clones encoding a GS mRNA of N. plumbaginifolia were characterized and used as molecular probes to examine GS transcripts in leaves and roots. GS mRNA hybrid-selected from leaves or roots translated in vitro into distinct GS primary translation products (49 or 38 kilodaltons). The 49 kilodalton GS primary translation product, specific to leaf poly(A)RNA is proposed to be a precursor to the mature 44 kilodalton chloroplast stromal GS polypeptide. The 38 kilodalton GS primary translation product encoded by root GS mRNA, corresponds in size to the polypeptide encoded by the GS cDNA clones characterized. Southern blot analysis of nuclear DNA indicates that there are several different genomic fragments encoding GS in N. plumbaginifolia. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:16665445

  6. Citric acid cycle and the origin of MARS.

    PubMed

    Eswarappa, Sandeepa M; Fox, Paul L

    2013-05-01

    The vertebrate multiaminoacyl tRNA synthetase complex (MARS) is an assemblage of nine aminoacyl tRNA synthetases (ARSs) and three non-synthetase scaffold proteins, aminoacyl tRNA synthetase complex-interacting multifunctional protein (AIMP)1, AIMP2, and AIMP3. The evolutionary origin of the MARS is unclear, as is the significance of the inclusion of only nine of 20 tRNA synthetases. Eight of the nine amino acids corresponding to ARSs of the MARS are derived from two citric acid cycle intermediates, α-ketoglutatrate and oxaloacetate. We propose that the metabolic link with the citric acid cycle, the appearance of scaffolding proteins AIMP2 and AIMP3, and the subsequent disappearance of the glyoxylate cycle, together facilitated the origin of the MARS in a common ancestor of metazoans and choanoflagellates.

  7. Fas/APO-1 protein is increased in spaceflown lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Cubano, L. A.; Lewis, M. L.

    2000-01-01

    Human lymphocytes flown on the Space Shuttle respond poorly to mitogen stimulation and populations of the lymphoblastoid T cell line, Jurkat, manifest growth arrest, increase in apoptosis and time- and microgravity-dependent increases in the soluble form of the cell death factor, Fas/APO-1 (sFas). The potential role of apoptosis in population dynamics of space-flown lymphocytes has not been investigated previously. We flew Jurkat cells on Space Transportation System (STS)-80 and STS-95 to determine whether apoptosis and the apparent microgravity-related release of sFas are characteristic of lymphocytes in microgravity. The effects of spaceflight and ground-based tests simulating spaceflight experimental conditions, including high cell density and low serum concentration, were assessed. Immunofluorescence microscopy showed increased cell associated Fas in flown cells. Results of STS-80 and STS-95 confirmed increase in apoptosis during spaceflight and the release of sFas as a repeatable, time-dependent and microgravity-related response. Ground-based tests showed that holding cells at 1.5 million/ml in medium containing 2% serum before launch did not increase sFas. Reports of increased Fas in cells of the elderly and the increases in spaceflown cells suggest possible similarities between aging and spaceflight effects on lymphocytes.

  8. MicroRNA 196B regulates FAS-mediated apoptosis in colorectal cancer cells

    PubMed Central

    Kang, In-Hong; Park, Won Cheol; Seo, Geom-Seog; Choi, Suck-Chei; Kim, Hun-Soo; Moon, Hyung-Bae; Yun, Ki-Jung; Chae, Soo-Cheon

    2015-01-01

    Using miRNA microarray analysis, we identified 31 miRNAs that were significantly up-regulated or down-regulated in colon cancer tissues. We chose MIR196B, which was specifically up-regulated in colon cancer, for further study. We identified 18 putative MIR196B target genes by comparing between the mRNAs down-regulated in MIR196B-overexpressed cells and the assumed MIR196B target genes predicted by public bioinformatics tools. The association between MIR196B and FAS was verified in this study. FAS expression was constitutively elevated in normal human colorectal tissues. However, its expression was often reduced in human colorectal cancer. The decrease in FAS expression could be responsible for the reduction of apoptosis in colorectal cancer cells. In colorectal cancer tissue, we showed that MIR196B up-regulation was mutually followed by down regulation of FAS expression. We also showed that MIR196B directly repressed FAS expression in colorectal cells. Furthermore, anti-MIR196B up-regulated FAS expression and increased apoptosis in colorectal cancer cell lines. Our results suggest that the up-regulation of MIR196B modulates apoptosis in colorectal cancer cells by partially repressing FAS expression and that anti-MIR196B could be a potential candidate as an anti-cancer drug in colorectal cancer therapy. PMID:25605245

  9. The many roles of FAS receptor signaling in the immune system

    PubMed Central

    Strasser, Andreas; Jost, Philipp J; Nagata, Shigekazu

    2010-01-01

    Summary FAS (also known as APO-1 or CD95) belongs to the subgroup of the tumor necrosis factor receptor (TNF-R) family that contain an intra-cellular ‘death domain’ and can trigger apoptosis. Its physiological ligand, FASL (CD95L), is a member of the corresponding TNF cytokine family. Studies with spontaneous mutant mice, gene-targeted mice and cells from human patients have shown that FAS and FASL play critical roles in the immune system, in particular in the killing of pathogen infected target cells and the death of no longer needed, potentially deleterious as well as autoreactive lymphocytes. This ligand-receptor pair thereby functions as a guardian against autoimmunity and tumor development. FASL-FAS signaling triggers apoptosis through FADD (Fas-associated protein with death domain, also called MORT1) adaptor protein-mediated recruitment and activation of the aspartate-specific cysteine protease, caspase-8. In certain cells such as hepatocytes, albeit not in lymphocytes, FAS-induced apoptosis signaling requires amplification through proteolytic activation of the pro-apoptotic BCL-2 family member BID. Curiously, several components of the FAS signaling machinery have been implicated in non-apoptotic processes, including cellular activation, differentiation and proliferation. Here we describe current knowledge of the roles of FASL and FAS in the immune system, discuss important unresolved issues and propose experimental approaches to address them. PMID:19239902

  10. MCT1 promotes the cisplatin-resistance by antagonizing Fas in epithelial ovarian cancer

    PubMed Central

    Yan, Chunxiao; Yang, Fan; Zhou, Chunxia; Chen, Xuejun; Han, Xuechuan; Liu, Xueqin; Ma, Hongyun; Zheng, Wei

    2015-01-01

    This study was designed to investigate the role of MCT1 in the development of cisplatin-resistant ovarian cancer and its possible relationship with Fas. We found the expression of MCT1 was obviously increased both in cisplatin-resistant ovarian cancer tissue and A2780/CP cells compared with sensitive ovarian cancer tissue and cell lines A2780. And in A2780 cells treated with Cisplatin, the expression of MCT1 increased in a concentration-dependent manner, MCT1 knockdown attenuates cisplatin-induced cell viability. In A2780 and A2780/CP cells transfected with MCT1 siRNA, the activation of several downstream targets of Fas, including FasL and FAP-1 were largely prevented, whereas the expression of Caspase-3 was increased, accompanying with increased abundance of Fas. Coimmunoprecipitation and immunofluorescence showed that there is interaction between endogenous MCT1 with Fas in vivo and in vitro. In vivo, depletion of MCT1 by shRNA reverses cisplatin-resistance and the expression of Fas. This study showed that down regulation of MCT1 promote the sensibility to Cisplatin in ovarian cancer cell line. And this effect appeared to be mediated via antagonizing the effect of Fas. PMID:26045776

  11. Fatty acid-induced changes in vascular reactivity in healthy adult rats.

    PubMed

    Christon, Raymond; Marette, André; Badeau, Mylène; Bourgoin, Frédéric; Mélançon, Sébastien; Bachelard, Hélène

    2005-12-01

    Dietary fatty acids (FAs) are known to modulate endothelial dysfunction, which is the first stage of atherosclerosis. However, their exact role in this initial phase is still unclear. The effects of isolated or combined (by 2) purified FAs from the main FA families were studied on the vascular response of isolated thoracic aorta in healthy rats to get a better understanding of the mechanisms of action of dietary FAs in regulating vascular endothelial function. Cumulative contraction curves to phenylephrine and relaxation curves to carbachol and then to sodium nitroprusside were obtained in the absence or presence of the FAs studied allowing endothelium-dependent and endothelium-independent ability of the smooth muscle to relax to be assessed in each experimental group. The endothelium-dependent vasodilator response to carbachol was lowered by eicosapentaenoic acid, whereas it was not altered either by docosahexaenoic acid alone or by combined eicosapentaenoic acid-docosahexaenoic acid, oleic acid, or stearic acid, and it was increased by linoleic acid (LA). A decreased phenylephrine-induced contraction was observed after incubation with arachidonic acid and with stearic acid. On the other hand, the endothelium-dependent relaxation was reduced by the addition of combined LA-arachidonic acid and LA-oleic acid. In conclusion, these data point out the differential effects of different types of FAs and of FAs alone vs combined on vascular reactivity. The complex nature of these effects could be partially linked to metabolic specificities of endothelial cells and to interactions between some FAs.

  12. Dihydrofolate synthetase and folylpolyglutamate synthetase: direct evidence for intervention of acyl phosphate intermediates

    SciTech Connect

    Banerjee, R.V.; Shane, B.; McGuire, J.J.; Coward, J.K.

    1988-12-13

    The transfer of /sup 17/O and/or /sup 18/O from (COOH-/sup 17/O or -/sup 18/O) enriched substrates to inorganic phosphate (P/sub i/) has been demonstrated for two enzyme-catalyzed reactions involved in folate biosynthesis and glutamylation. COOH-/sup 18/O-labeled folate, methotrexate, and dihydropteroate, in addition to (/sup 17/O)-glutamate, were synthesized and used as substrates for folylpolyglutamate synthetase (FPGS) isolated from Escherichia coli, hog liver, and rat liver and for dihydrofolate synthetase (DHFS) isolated from E. coli. P/sub i/ was purified from the reaction mixtures and converted to trimethyl phosphate (TMP), which was then analyzed for /sup 17/O and /sup 18/O enrichment by nuclear magnetic resonance (NMR) spectroscopy and/or mass spectroscopy. In the reactions catalyzed by the E. coli enzymes, both NMR and quantitative mass spectral analyses established that transfer of the oxygen isotope from the substrate /sup 18/O-enriched carboxyl group to P/sub i/ occurred, thereby providing strong evidence for an acyl phosphate intermediate in both the FPGS- and DHFS-catalyzed reactions. Similar oxygen-transfer experiments were carried out by use of two mammalian enzymes. The small amounts of P/sub i/ obtained from reactions catalyzed by these less abundant FPGS proteins precluded the use of NMR techniques. However, mass spectral analysis of the TMP derived from the mammalian FPGS-catalyzed reactions showed clearly that /sup 18/O transfer had occurred.

  13. TRPC6 channel activation promotes neonatal glomerular mesangial cell apoptosis via calcineurin/NFAT and FasL/Fas signaling pathways

    PubMed Central

    Soni, Hitesh; Adebiyi, Adebowale

    2016-01-01

    Glomerular mesangial cell (GMC) proliferation and death are involved in the pathogenesis of glomerular disorders. The mechanisms that control GMC survival are poorly understood, but may include signal transduction pathways that are modulated by changes in intracellular Ca2+ ([Ca2+]i) concentration. In this study, we investigated whether activation of the canonical transient receptor potential (TRPC) 6 channels and successive [Ca2+]i elevation alter neonatal GMC survival. Hyperforin (HF)-induced TRPC6 channel activation increased [Ca2+]i concentration, inhibited proliferation, and triggered apoptotic cell death in primary neonatal pig GMCs. HF-induced neonatal GMC apoptosis was not associated with oxidative stress. However, HF-induced TRPC6 channel activation stimulated nuclear translocation of the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). HF also increased cell death surface receptor Fas ligand (FasL) level and caspase-8 activity in the cells; effects mitigated by [Ca2+]i chelator BAPTA, calcineurin/NFAT inhibitor VIVIT, and TRPC6 channel knockdown. Accordingly, HF-induced neonatal GMC apoptosis was attenuated by BAPTA, VIVIT, Fas blocking antibody, and a caspase-3/7 inhibitor. These findings suggest that TRPC6 channel-dependent [Ca2+]i elevation and the ensuing induction of the calcineurin/NFAT, FasL/Fas, and caspase signaling cascades promote neonatal pig GMC apoptosis. PMID:27383564

  14. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  15. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  16. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  17. Site-specific incorporation of redox active amino acids into proteins

    SciTech Connect

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  18. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2010-09-07

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  19. Genetically programmed expression of proteins containing the unnatural amino acid phenylselenocysteine

    DOEpatents

    Wang, Jiangyun; Schultz, Peter G.

    2012-07-10

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the unnatural amino acid phenylselenocysteine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal aminoacyl-tRNA synthetases, polynucleotides encoding the novel synthetase molecules, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid phenylselenocysteine and translation systems. The invention further provides methods for producing modified proteins (e.g., lipidated proteins) through targeted modification of the phenylselenocysteine residue in a protein.

  20. Membrane-bound and soluble Fas ligands have opposite functions in photoreceptor cell death following separation from the retinal pigment epithelium

    PubMed Central

    Matsumoto, H; Murakami, Y; Kataoka, K; Notomi, S; Mantopoulos, D; Trichonas, G; Miller, J W; Gregory, M S; Ksander, B R; Marshak-Rothstein, A; Vavvas, D G

    2015-01-01

    Fas ligand (FasL) triggers apoptosis of Fas-positive cells, and previous reports described FasL-induced cell death of Fas-positive photoreceptors following a retinal detachment. However, as FasL exists in membrane-bound (mFasL) and soluble (sFasL) forms, and is expressed on resident microglia and infiltrating monocyte/macrophages, the current study examined the relative contribution of mFasL and sFasL to photoreceptor cell death after induction of experimental retinal detachment in wild-type, knockout (FasL−/−), and mFasL-only knock-in (ΔCS) mice. Retinal detachment in FasL−/− mice resulted in a significant reduction of photoreceptor cell death. In contrast, ΔCS mice displayed significantly more apoptotic photoreceptor cell death. Photoreceptor loss in ΔCS mice was inhibited by a subretinal injection of recombinant sFasL. Thus, Fas/FasL-triggered cell death accounts for a significant amount of photoreceptor cell loss following the retinal detachment. The function of FasL was dependent upon the form of FasL expressed: mFasL triggered photoreceptor cell death, whereas sFasL protected the retina, indicating that enzyme-mediated cleavage of FasL determines, in part, the extent of vision loss following the retinal detachment. Moreover, it also indicates that treatment with sFasL could significantly reduce photoreceptor cell loss in patients with retinal detachment. PMID:26583327

  1. Glutamine synthetase in liver of the American alligator, Alligator mississippiensis.

    PubMed

    Smith, D D; Campbell, J W

    1987-01-01

    Glutamine synthetase was shown to be localized in liver mitochondria of the American alligator, Alligator mississippiensis, by immunofluorescent staining of frozen liver sections and by the detection of enzymatic activity and immunoreactive protein in the mitochondrial fraction following subcellular fractionation of liver tissue by differential centrifugation. The primary translation product of alligator liver glutamine synthetase mRNA was shown to have an Mr = 45,000 which is similar if not identical in size to that of the mature subunit. This mRNA was found to be heterogeneous in size with a major form corresponding to 2.8-3.0 kb and a lesser form corresponding to around 2 kb. Both are in excess of the size required to code for the glutamine synthetase subunit. The synthesis and presumably the mitochondrial import of glutamine synthetase in alligator liver are thus very similar to the same processes in avian liver. Despite the excretion of a high percentage of nitrogen as ammonia, the demonstration of a mitochondrial glutamine synthetase indicates the alligator has the typical avian-type uricotelic ammonia-detoxification system in liver. This suggests that the transition to uricotelism occurred in the sauropsid line of evolution and has persisted through both the lepidosaurian (snakes, lizards) and archosaurian (dinosaurs, crocodilians, birds) lines.

  2. Inhibition of NF-kappa B can enhance Fas-mediated apoptosis in leukemia cell line HL-60.

    PubMed

    Wang, Li; Zhao, Shi; Wang, Hong-Xiang; Zou, Ping

    2010-09-01

    This study explored the effects of nuclear factor-kappa B (NF-κB) inhibitor Bay 11-7082 on Fas/FasL system and Fas-mediated apoptosis in cell line HL-60 cells. The mRNA and protein levels of Fas, FasL, and X-linked inhibitor of apoptosis protein (XIAP) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM); the level of sFasL was evaluated by enzyme-linked immunosorbent assay (ELISA); and apoptosis was determined by FCM. After treatment with Bay 11-7082, the mRNA and protein levels of FasL and XIAP in HL-60 cells were significantly lower than in the controls (P<0.05), but the mRNA and protein levels of Fas and sFasL did not change significantly (P>0.05). Apoptotic rate of HL-60 cells treated with Bay 11-7082 was significantly higher than in the controls (P<0.05). Therefore, we conclude that Bay 11-7082 can enhance Fas-mediated apoptosis in HL-60 cells by downregulating FasL and XIAP levels.

  3. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    NASA Technical Reports Server (NTRS)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  4. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase.

    PubMed

    Roy, Hervé; Ling, Jiqiang; Alfonzo, Juan; Ibba, Michael

    2005-11-18

    Accurate selection of amino acids is essential for faithful translation of the genetic code. Errors during amino acid selection are usually corrected by the editing activity of aminoacyl-tRNA synthetases such as phenylalanyl-tRNA synthetases (PheRS), which edit misactivated tyrosine. Comparison of cytosolic and mitochondrial PheRS from the yeast Saccharomyces cerevisiae suggested that the organellar protein might lack the editing activity. Yeast cytosolic PheRS was found to contain an editing site, which upon disruption abolished both cis and trans editing of Tyr-tRNA(Phe). Wild-type mitochondrial PheRS lacked cis and trans editing and could synthesize Tyr-tRNA(Phe), an activity enhanced in active site variants with improved tyrosine recognition. Possible trans editing was investigated in isolated mitochondrial extracts, but no such activity was detected. These data indicate that the mitochondrial protein synthesis machinery lacks the tyrosine proofreading activity characteristic of cytosolic translation. This difference between the mitochondria and the cytosol suggests that either organellar protein synthesis quality control is focused on another step or that translation in this compartment is inherently less accurate than in the cytosol. PMID:16162501

  5. Fas Versatile Signaling and Beyond: Pivotal Role of Tyrosine Phosphorylation in Context-Dependent Signaling and Diseases

    PubMed Central

    Chakrabandhu, Krittalak; Hueber, Anne-Odile

    2016-01-01

    The Fas/FasL system is known, first and foremost, as a potent apoptosis activator. While its proapoptotic features have been studied extensively, evidence that the Fas/FasL system can elicit non-death signals has also accumulated. These non-death signals can promote survival, proliferation, migration, and invasion of cells. The key molecular mechanism that determines the shift from cell death to non-death signals had remained unclear until the recent identification of the tyrosine phosphorylation in the death domain of Fas as the reversible signaling switch. In this review, we present the connection between the recent findings regarding the control of Fas multi-signals and the context-dependent signaling choices. This information can help explain variable roles of Fas signaling pathway in different pathologies. PMID:27799932

  6. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress

    NASA Astrophysics Data System (ADS)

    Vats, P.; Mukherjee, A. K.; Kumria, M. M. L.; Singh, S. N.; Patil, S. K. B.; Rangnathan, S.; Sridharan, K.

    Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28-30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76+/-0.78 mg.g-1 wet tissue in normal unexposed rats; 15.82+/-2.30 mg.g-1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure

  7. Neurodegenerative disease-associated mutants of a human mitochondrial aminoacyl-tRNA synthetase present individual molecular signatures.

    PubMed

    Sauter, Claude; Lorber, Bernard; Gaudry, Agnès; Karim, Loukmane; Schwenzer, Hagen; Wien, Frank; Roblin, Pierre; Florentz, Catherine; Sissler, Marie

    2015-01-01

    Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation.

  8. Neurodegenerative disease-associated mutants of a human mitochondrial aminoacyl-tRNA synthetase present individual molecular signatures

    PubMed Central

    Sauter, Claude; Lorber, Bernard; Gaudry, Agnès; Karim, Loukmane; Schwenzer, Hagen; Wien, Frank; Roblin, Pierre; Florentz, Catherine; Sissler, Marie

    2015-01-01

    Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation. PMID:26620921

  9. Synthesis and in vitro/in vivo Evaluation of the Antitrypanosomal Activity of 3-Bromoacivicin, a Potent CTP Synthetase Inhibitor

    PubMed Central

    Conti, Paola; Pinto, Andrea; Wong, Pui E; Major, Louise L; Tamborini, Lucia; Iannuzzi, Maria C; De Micheli, Carlo; Barrett, Michael P; Smith, Terry K

    2011-01-01

    Abstract The first convenient synthesis of enantiomerically pure (αS,5S)-α-amino-3-bromo-4,5-dihydroisoxazol-5-yl acetic acid (3-bromoacivicin) is described. We demonstrate that 3-bromoacivicin is a CTP synthetase inhibitor three times as potent as its 3-chloro analogue, the natural antibiotic acivicin. Because CTP synthetase was suggested to be a potential drug target in African trypanosomes, the in vitro/in vivo antitrypanosomal activity of 3-bromoacivicin was assessed in comparison with acivicin. Beyond expectation, we observed a 12-fold enhancement in the in vitro antitrypanosomal activity, while toxicity against mammalian cells remained unaffected. Despite its good in vitro activity and selectivity, 3-bromoacivicin proved to be trypanostatic and failed to completely eradicate the infection when tested in vivo at its maximum tolerable dose. PMID:21275056

  10. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  11. Further characterization of Escherichia coli alanyl-tRNA synthetase.

    PubMed

    Sood, S M; Slattery, C W; Filley, S J; Wu, M X; Hill, K A

    1996-04-15

    Selected physical and thermodynamic parameters for Escherichia coli alanyl-tRNA synthetase (AlaRS) have been determined primarily to assess the quaternary structure of this enzyme. The extinction coefficient (epsilon) at 280 nm was determined experimentally to be 0.71 ml mg-1 cm-1, and the partial specific volume (nu) was calculated from the amino acid composition to be 0.73 ml g-1. From viscosity experiments the intrinsic viscosity (eta) of AlaRS was extrapolated to be 3.4 ml g-1 and the degree of hydration (delta 1) estimated to be 0.67 gH2O g(-1)(AlaRS). Laser light-scattering studies indicated some heterogeneity; a radius of 6.3 nm was calculated for the major fraction with a diffusion coefficient (D20,W) of 3.89 x 10(-7) cm2 s-1. In 50 mM Hepes, pH 7.5, 20 mM KCl, 2 mM 2-mercaptoethanol and at a protein concentration of 4.2 mg ml-1 the sedimentation coefficient (S20,W) was 6.36 S; this value increased slightly when the protein concentration was decreased. The combination of S20,W and D20,W under these conditions yielded a molecular weight of approximately 186,000 Da, corresponding to a dimer. The S20,W was virtually independent of temperature in the range of 10-37 degrees C, while an Arrhenius plot of aminoacylation activity was biphasic. The isoelectric point was determined experimentally to be 4.9. Sedimentation equilibrium data were best fit to a decamer association complex in which dimeric AlaRS is the predominant species at 25 degrees C. PMID:8645007

  12. Antimalarial Benzoxaboroles Target Plasmodium falciparum Leucyl-tRNA Synthetase.

    PubMed

    Sonoiki, Ebere; Palencia, Andres; Guo, Denghui; Ahyong, Vida; Dong, Chen; Li, Xianfeng; Hernandez, Vincent S; Zhang, Yong-Kang; Choi, Wai; Gut, Jiri; Legac, Jennifer; Cooper, Roland; Alley, M R K; Freund, Yvonne R; DeRisi, Joseph; Cusack, Stephen; Rosenthal, Philip J

    2016-08-01

    There is a need for new antimalarials, ideally with novel mechanisms of action. Benzoxaboroles have been shown to be active against bacteria, fungi, and trypanosomes. Therefore, we investigated the antimalarial activity and mechanism of action of 3-aminomethyl benzoxaboroles against Plasmodium falciparum Two 3-aminomethyl compounds, AN6426 and AN8432, demonstrated good potency against cultured multidrug-resistant (W2 strain) P. falciparum (50% inhibitory concentration [IC50] of 310 nM and 490 nM, respectively) and efficacy against murine Plasmodium berghei infection when administered orally once daily for 4 days (90% effective dose [ED90], 7.4 and 16.2 mg/kg of body weight, respectively). To characterize mechanisms of action, we selected parasites with decreased drug sensitivity by culturing with stepwise increases in concentration of AN6426. Resistant clones were characterized by whole-genome sequencing. Three generations of resistant parasites had polymorphisms in the predicted editing domain of the gene encoding a P. falciparum leucyl-tRNA synthetase (LeuRS; PF3D7_0622800) and in another gene (PF3D7_1218100), which encodes a protein of unknown function. Solution of the structure of the P. falciparum LeuRS editing domain suggested key roles for mutated residues in LeuRS editing. Short incubations with AN6426 and AN8432, unlike artemisinin, caused dose-dependent inhibition of [(14)C]leucine incorporation by cultured wild-type, but not resistant, parasites. The growth of resistant, but not wild-type, parasites was impaired in the presence of the unnatural amino acid norvaline, consistent with a loss of LeuRS editing activity in resistant parasites. In summary, the benzoxaboroles AN6426 and AN8432 offer effective antimalarial activity and act, at least in part, against a novel target, the editing domain of P. falciparum LeuRS.

  13. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  14. 7 CFR 1484.57 - Will FAS make advance payments to a Cooperator?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... where a special advance is outstanding from a prior marketing plan year. Cooperators shall deposit and... reimbursement claim. All checks shall be mailed to the Director, Marketing Operations Staff, FAS, USDA....

  15. L-arginine recognition by yeast arginyl-tRNA synthetase.

    PubMed Central

    Cavarelli, J; Delagoutte, B; Eriani, G; Gangloff, J; Moras, D

    1998-01-01

    The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including the class I-specific active site. The N-terminal domain shows striking similarity to some completely unrelated proteins and defines a module which should participate in specific tRNA recognition. The C-terminal domain, which is the putative anticodon-binding module, displays an all-alpha-helix fold highly similar to that of Escherichia coli methionyl-tRNA synthetase. While ArgRS requires tRNAArg for the first step of the aminoacylation reaction, the results show that its presence is not a prerequisite for L-arginine binding. All H-bond-forming capability of L-arginine is used by the protein for the specific recognition. The guanidinium group forms two salt bridge interactions with two acidic residues, and one H-bond with a tyrosine residue; these three residues are strictly conserved in all ArgRS sequences. This tyrosine is also conserved in other class I aaRS active sites but plays several functional roles. The ArgRS structure allows the definition of a new framework for sequence alignments and subclass definition in class I aaRSs. PMID:9736621

  16. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana.

    PubMed

    Ding, Chenchen; Chen, Tao; Yang, Yu; Liu, Sha; Yan, Kan; Yue, Xiule; Zhang, Hua; Xiang, Yun; An, Lizhe; Chen, Shuyan

    2015-11-10

    S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) which is a molecule essential for polyamines and ethylene biosynthesis, methylation modifications of protein, DNA and lipids. SAMS also plays an important role in abiotic stress response. Chorispora bungeana (C. bungeana) is an alpine subnival plant species which possesses strong tolerance to cold stress. Here, we cloned and characterized an S-adenosylmethionine synthetase gene, CbSAMS (C. bungeana S-adenosylmethionine synthetase), from C. bungeana, which encodes a protein of 393 amino acids containing a methionine binding motif GHPDK, an ATP binding motif GAGDQG and a phosphate binding motif GGGAFSGDK. Furthermore, an NES (nuclear export signal) peptide was identified through bioinformatics analysis. To explore the CbSAMS gene expression regulation, we isolated the promoter region of CbSAMS gene 1919bp upstream the ATG start codon, CbSAMSp, and analyzed its cis-acting elements by bioinformatics method. It was revealed that a transcription start site located at 320 bp upstream the ATG start codon and cis-acting elements related to light, ABA, auxin, ethylene, MeJA, low temperature and drought had been found in the CbSAMSp sequence. The gene expression pattern of CbSAMS was then analyzed by TR-qPCR and GUS assay method. The result showed that CbSAMS is expressed in all examined tissues including callus, roots, petioles, leaves, and flowers with a significant higher expression level in roots and flowers. Furthermore, the expression level of CbSAMS was induced by low temperature, ethylene and NaCl. Subcellular localization revealed that CbSAMS was located in the cytoplasm and nucleus but has a significant higher level in the nucleus. These results indicated a potential role of CbSAMS in abiotic stresses and plant growth in C. bungeana.

  17. The McbB component of microcin B17 synthetase is a zinc metalloprotein.

    PubMed

    Zamble, D B; McClure, C P; Penner-Hahn, J E; Walsh, C T

    2000-12-26

    The microcin B17 synthetase converts glycine, serine, and cysteine residues in a polypeptide precursor into oxazoles and thiazoles during the maturation of the Escherichia coli antibiotic Microcin B17. This multimeric enzyme is composed of three subunits (McbB, McbC, and McbD), and it employs both ATP and FMN as cofactors. The McbB subunit was purified as a fusion with the maltose-binding protein (MBP), and metal analysis revealed that this protein binds 0.91+/-0.17 zinc atoms. Upon incubation of MBP-McbB with excess zinc, the stoichiometry increased to two atoms of zinc bound, but metal binding to the second site resulted in a decrease in the heterocyclization activity when MBP-McbB was reconstituted with the other components of the synthetase. Apo-protein was prepared by using p-hydroxymercuriphenylsulfonic acid (PMPS), and loss of the metal caused a severe reduction in enzymatic activity. However, if dithiothreitol was added to the PMPS reactions within a few minutes, enzymatic activity was retained and MBP-McbB could be reconstituted with zinc. Spectroscopic analysis of the cobalt-containing protein and extended X-ray absorption fine structure analysis of the zinc-containing protein both provide evidence for a tetrathiolate coordination sphere. Site-directed mutants of MBP-McbB as well as the synthetase tagged with the calmodulin-binding peptide were constructed. Activity assays and metal analysis were used to determine which of the six cysteines in McbB are metal ligands. These results suggest that the zinc cofactor in McbB plays a structural role.

  18. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana.

    PubMed

    Ding, Chenchen; Chen, Tao; Yang, Yu; Liu, Sha; Yan, Kan; Yue, Xiule; Zhang, Hua; Xiang, Yun; An, Lizhe; Chen, Shuyan

    2015-11-10

    S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) which is a molecule essential for polyamines and ethylene biosynthesis, methylation modifications of protein, DNA and lipids. SAMS also plays an important role in abiotic stress response. Chorispora bungeana (C. bungeana) is an alpine subnival plant species which possesses strong tolerance to cold stress. Here, we cloned and characterized an S-adenosylmethionine synthetase gene, CbSAMS (C. bungeana S-adenosylmethionine synthetase), from C. bungeana, which encodes a protein of 393 amino acids containing a methionine binding motif GHPDK, an ATP binding motif GAGDQG and a phosphate binding motif GGGAFSGDK. Furthermore, an NES (nuclear export signal) peptide was identified through bioinformatics analysis. To explore the CbSAMS gene expression regulation, we isolated the promoter region of CbSAMS gene 1919bp upstream the ATG start codon, CbSAMSp, and analyzed its cis-acting elements by bioinformatics method. It was revealed that a transcription start site located at 320 bp upstream the ATG start codon and cis-acting elements related to light, ABA, auxin, ethylene, MeJA, low temperature and drought had been found in the CbSAMSp sequence. The gene expression pattern of CbSAMS was then analyzed by TR-qPCR and GUS assay method. The result showed that CbSAMS is expressed in all examined tissues including callus, roots, petioles, leaves, and flowers with a significant higher expression level in roots and flowers. Furthermore, the expression level of CbSAMS was induced by low temperature, ethylene and NaCl. Subcellular localization revealed that CbSAMS was located in the cytoplasm and nucleus but has a significant higher level in the nucleus. These results indicated a potential role of CbSAMS in abiotic stresses and plant growth in C. bungeana. PMID:26205258

  19. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: A fluorine-19 NMR study

    SciTech Connect

    Chu, Wenchy; Horowitz, J. )

    1991-02-12

    Interactions of 5-fluorouracil-substituted Escherichia coli tRNA{sup Val} with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene. Apparent K{sub M} and V{sub max} values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNA{sup Val}. Binding of VRS to (FUra)tRNA{sup Val} induces structural perturbations that are reflected in selective changes in the {sup 19}F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNA{sup Val} along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNA{sup Val}, suggesting conformational changes in this part of the molecule. No {sup 19}F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNA{sup Val} that has been proposed as a common intermediate in the aminoacylation reaction.

  20. Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure.

    PubMed

    Linkermann, Andreas; Himmerkus, Nina; Rölver, Lars; Keyser, Kirsten A; Steen, Philip; Bräsen, Jan-Hinrich; Bleich, Markus; Kunzendorf, Ulrich; Krautwald, Stefan

    2011-01-01

    Cisplatin, a standard chemotherapeutic agent for many tumors, has an unfortunately common toxicity where almost a third of patients develop renal dysfunction after a single dose. Acute kidney injury caused by cisplatin depends on Fas-mediated apoptosis driven by Fas ligand (FasL) expressed on tubular epithelial and infiltrating immune cells. Since the role of FasL in T cells is known, we investigated whether its presence in primary kidney cells is needed for its toxic effect. We found that all cisplatin-treated wild-type (wt) mice died within 6 days; however, severe combined immunodeficiency (SCID)/beige mice (B-, T-, and natural killer-cell-deficient) displayed a significant survival benefit, with only 55% mortality while exhibiting significant renal failure. Treating SCID/beige mice with MFL3, a FasL-blocking monoclonal antibody, completely restored survival after an otherwise lethal cisplatin dose, suggesting another source of FasL besides immune cells. Freshly isolated primary tubule segments from wt mice were co-incubated with thick ascending limb (TAL) segments freshly isolated from mice expressing the green fluorescent protein (GFP) transgene (same genetic background) to determine whether FasL-mediated killing of tubular cells is an autocrine or paracrine mechanism. Cisplatin-stimulated primary segments induced apoptosis in the GFP-tagged TAL cells, an effect blocked by MFL3. Thus, our study shows that cisplatin-induced nephropathy is mediated through FasL, functionally expressed on tubular cells that are capable of inducing death of cells of adjacent tubules. PMID:20811331

  1. Urea synthesis in the African lungfish Protopterus dolloi--hepatic carbamoyl phosphate synthetase III and glutamine synthetase are upregulated by 6 days of aerial exposure.

    PubMed

    Chew, Shit F; Ong, Tan F; Ho, Lilian; Tam, Wai L; Loong, Ai M; Hiong, Kum C; Wong, Wai P; Ip, Yuen K

    2003-10-01

    Like the marine ray Taeniura lymma, the African lungfish Protopterus dolloi possesses carbamoyl phosphate III (CPS III) in the liver and not carbamoyl phosphate I (CPS I), as in the mouse Mus musculus or as in other African lungfish reported elsewhere. However, similar to other African lungfish and tetrapods, hepatic arginase of P. dolloi is present mainly in the cytosol. Glutamine synthetase activity is present in both the mitochondrial and cytosolic fractions of the liver of P. dolloi. Therefore, we conclude that P. dolloi is a more primitive extant lungfish, which is intermediate between aquatic fish and terrestrial tetrapods, and represents a link in the fish-tetrapod continuum. During 6 days of aerial exposure, the ammonia excretion rate in P. dolloi decreased significantly to 8-16% of the submerged control. However, there were no significant increases in ammonia contents in the muscle, liver or plasma of specimens exposed to air for 6 days. These results suggest that (1). endogenous ammonia production was drastically reduced and (2). endogenous ammonia was detoxified effectively into urea. Indeed, there were significant decreases in glutamate, glutamine and lysine levels in the livers of fish exposed to air, which led to a decrease in the total free amino acid content. This indirectly confirms that the specimen had reduced its rates of proteolysis and/or amino acid catabolism to suppress endogenous ammonia production. Simultaneously, there were significant increases in urea levels in the muscle (8-fold), liver (10.5-fold) and plasma (12.6-fold) of specimens exposed to air for 6 days. Furthermore, there was an increase in the hepatic ornithine-urea cycle (OUC) capacity, with significant increases in the activities of CPS III (3.8-fold), argininosuccinate synthetase + lyase (1.8-fold) and, more importantly, glutamine synthetase (2.2-fold). This is the first report on the upregulation of OUC capacity and urea synthesis rate in an African lungfish exposed to air

  2. A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D-alanine:d-alanine ligase of Escherichia coli.

    PubMed Central

    Fan, C; Moews, P C; Shi, Y; Walsh, C T; Knox, J R

    1995-01-01

    Examination of x-ray crystallographic structures shows the tertiary structure of D-alanine:D-alanine ligase (EC 6.3.2.4). a bacterial cell wall synthesizing enzyme, is similar to that of glutathione synthetase (EC 6.32.3) despite low sequence homology. Both Escherichia coli enzymes, which convert ATP to ADP during ligation to produce peptide products, are made of three domains, each folded around a 4-to 6-stranded beta-sheet core. Sandwiched between the beta-sheets of the C-terminal and central domains of each enzyme is a nonclassical ATP-binding site that contains a common set of spatially equivalent amino acids. In each enzyme, two loops are proposed to exhibit a required flexibility that allows entry of ATP and substrates, provides protection of the acylphosphate intermediate and tetrahedral adduct from hydrolysis during catalysis, and then permits release of products. PMID:7862655

  3. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations

    PubMed Central

    Price, Susan; Shaw, Pamela A.; Seitz, Amy; Joshi, Gyan; Davis, Joie; Niemela, Julie E.; Perkins, Katie; Hornung, Ronald L.; Folio, Les; Rosenberg, Philip S.; Puck, Jennifer M.; Hsu, Amy P.; Lo, Bernice; Pittaluga, Stefania; Jaffe, Elaine S.; Fleisher, Thomas A.; Lenardo, Michael J.

    2014-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) presents in childhood with nonmalignant lymphadenopathy and splenomegaly associated with a characteristic expansion of mature CD4 and CD8 negative or double negative T-cell receptor αβ+ T lymphocytes. Patients often present with chronic multilineage cytopenias due to autoimmune peripheral destruction and/or splenic sequestration of blood cells and have an increased risk of B-cell lymphoma. Deleterious heterozygous mutations in the FAS gene are the most common cause of this condition, which is termed ALPS-FAS. We report the natural history and pathophysiology of 150 ALPS-FAS patients and 63 healthy mutation-positive relatives evaluated in our institution over the last 2 decades. Our principal findings are that FAS mutations have a clinical penetrance of <60%, elevated serum vitamin B12 is a reliable and accurate biomarker of ALPS-FAS, and the major causes of morbidity and mortality in these patients are the overwhelming postsplenectomy sepsis and development of lymphoma. With longer follow-up, we observed a significantly greater relative risk of lymphoma than previously reported. Avoiding splenectomy while controlling hypersplenism by using corticosteroid-sparing treatments improves the outcome in ALPS-FAS patients. This trial was registered at www.clinicaltrials.gov as #NCT00001350. PMID:24398331

  4. Chronic methamphetamine exposure induces cardiac fas-dependent and mitochondria-dependent apoptosis.

    PubMed

    Liou, Cher-Ming; Tsai, Shiow-Chwen; Kuo, Chia-Hua; Williams, Timothy; Ting, Hua; Lee, Shin-Da

    2014-06-01

    Very limited information regarding the influence of chronic methamphetamine exposure on cardiac apoptosis is available. In this study, we evaluate whether chronic methamphetamine exposure will increase cardiac Fas-dependent (type I) and mitochondria-dependent (type II) apoptotic pathways. Thirty-two male Wistar rats at 3-4 months of age were randomly divided into a vehicle-treated group [phosphate-buffered saline (PBS) 0.5 ml SQ per day] and a methamphetamine-treated group (MA 10 mg/kg SQ per day) for 3 months. We report that after 3 months of exposure, abnormal myocardial architecture, more minor cardiac fibrosis and cardiac TUNEL-positive apoptotic cells were observed at greater frequency in the MA group than in the PBS group. Protein levels of TNF-α, Fas ligand, Fas receptor, Fas-associated death domain, activated caspase-8, and activated caspase-3 (Fas-dependent apoptosis) extracted from excised hearts were significantly increased in the MA group, compared to the PBS group. Protein levels of cardiac Bak, t-Bid, Bak to Bcl-xL ratio, activated caspase-9, and activated caspase-3 (mitochondria-dependent apoptosis) were significantly increased in the MA group, compared with the PBS group. The results from this study reveal that chronic methamphetamine exposure will activate cardiac Fas-dependent and mitochondria-dependent apoptotic pathways, which may indicate a possible mechanism for developing cardiac abnormalities in humans with chronic methamphetamine abuse.

  5. Expression of fas protein on CD4+T cells irradiated by low level He-Ne

    NASA Astrophysics Data System (ADS)

    Nie, Fan; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Objective: To investigate the influence on the Expression of Fas protein on CD4+ T cells irradiated by low level He-Ne laser in the cases of psoriasis. Methods:the expression of CD4+ T Fas protein was determined in the casee of psoriasis(n=5) pre and post-low level laser irradiation(30 min、60min and 120min)by flow cytometry as compared withthe control(n=5). Results:In the cases of psoriasis,the expression of CD4+T FAS protein 21.4+/-3.1% was increased significantly than that of control group 16.8+/-2.1% pre-irradiation, p<0.05in the control,there is no difference between pre and post- irradiation,p>0.05in the cases , the expression of CD4+T Fas protein wae positively corelated to the irradiation times, when the energy density arrived to 22.92J/cm2(60 minutes)and 45.84J/cm2(120minutes), the expression of CD4+ T Fas protein was increased significantly as compared with pre-irradiation,p<0.05.Conclusion: The expression of CD4+T Fas protein may be increased by low level He-Ne laser irradiation ,the uncontrolled status of apoptosis could be corrected.

  6. Invasive Trophoblasts Stimulate Vascular Smooth Muscle Cell Apoptosis by a Fas Ligand-Dependent Mechanism

    PubMed Central

    Harris, Lynda K.; Keogh, Rosemary J.; Wareing, Mark; Baker, Philip N.; Cartwright, Judith E.; Aplin, John D.; Whitley, Guy St J.

    2006-01-01

    During pregnancy, trophoblasts migrate from the placenta into uterine spiral arteries, transforming them into wide channels that lack vasoconstrictive properties. In pathological pregnancies, this process is incomplete. To define the fundamental events involved in spiral artery remodeling, we have studied the effect of trophoblasts on vascular smooth muscle cells (SMCs). Here we demonstrate for the first time that apoptosis of SMCs can be initiated by invading trophoblasts. When trophoblasts isolated from normal placenta (primary trophoblasts) or conditioned medium was perfused into spiral or umbilical artery segments, apoptosis of SMCs resulted. Culture of human aortic SMCs (HASMCs) with primary trophoblasts, primary trophoblast-conditioned medium, or a trophoblast-derived cell line (SGHPL-4) also significantly increased SMC apoptosis. Fas is expressed by spiral artery SMCs, and a Fas-activating antibody triggered HASMC apoptosis. Furthermore, a Fas ligand (FasL)-blocking antibody significantly inhibited HASMC apoptosis induced by primary trophoblasts, SGHPL-4, or trophoblast-conditioned medium. Depleting primary trophoblast-conditioned medium of FasL also abrogated SMC apoptosis in vessels in situ. These results suggest that apoptosis triggered by the release of soluble FasL from invading trophoblasts contributes to the loss of smooth muscle from the walls of spiral arteries during pregnancy. PMID:17071607

  7. Fas (CD95) expression in myeloid cells promotes obesity-induced muscle insulin resistance

    PubMed Central

    Wueest, Stephan; Mueller, Rouven; Blüher, Matthias; Item, Flurin; Chin, Annie S H; Wiedemann, Michael S F; Takizawa, Hitoshi; Kovtonyuk, Larisa; Chervonsky, Alexander V; Schoenle, Eugen J; Manz, Markus G; Konrad, Daniel

    2014-01-01

    Low-grade inflammation in adipose tissue and liver has been implicated in obesity-associated insulin resistance and type 2 diabetes. Yet, the contribution of inflammatory cells to the pathogenesis of skeletal muscle insulin resistance remains elusive. In a large cohort of obese human individuals, blood monocyte Fas (CD95) expression correlated with systemic and skeletal muscle insulin resistance. To test a causal role for myeloid cell Fas expression in the development of skeletal muscle insulin resistance, we generated myeloid/haematopoietic cell-specific Fas-depleted mice. Myeloid/haematopoietic Fas deficiency prevented the development of glucose intolerance in high fat-fed mice, in ob/ob mice, and in mice acutely challenged by LPS. In vivo, ex vivo and in vitro studies demonstrated preservation of muscle insulin responsiveness with no effect on adipose tissue or liver. Studies using neutralizing antibodies demonstrated a role for TNFα as mediator between myeloid Fas and skeletal muscle insulin resistance, supported by significant correlations between monocyte Fas expression and circulating TNFα in humans. In conclusion, our results demonstrate an unanticipated crosstalk between myeloid cells and skeletal muscle in the development of obesity-associated insulin resistance. PMID:24203314

  8. Glucocorticoids impair oocyte developmental potential by triggering apoptosis of ovarian cells via activating the Fas system

    PubMed Central

    Yuan, Hong-Jie; Han, Xiao; He, Nan; Wang, Guo-Liang; Gong, Shuai; Lin, Juan; Gao, Min; Tan, Jing-He

    2016-01-01

    Previous studies indicate that stress damages oocytes with increased secretion of glucorticoids. However, although injection of female mice with cortisol decreased oocyte competence, exposure of mouse oocytes directly to physiological or stress-induced concentrations of glucorticoids did not affect oocyte maturation and embryo development. This study has explored the mechanisms by which glucocorticoids impair oocyte competence. Female mice were injected with cortisol and the effects of cortisol-injection on oocyte competence, ovarian cell apoptosis and Fas/FasL activation were observed. The results showed that cortisol-injection decreased (a) oocyte developmental potential, (b) the E2/P4 ratio in serum and ovaries, and (c) expression of insulin-like growth factor 1, brain-derived neurotrophic factor and glucocorticoid receptor in mural granulosa cells (MGCs), while increasing levels of (a) cortisol in serum and ovaries, (b) apoptosis in MGCs and cumulus cells (CCs), (c) FasL secretion in ovaries and during oocyte maturation in vitro, and (d) Fas in MGCs, CCs and oocytes. The detrimental effects of cortisol-injection on oocyte competence and apoptosis of MGCs and CCs were significantly relieved when the gld (generalized lymphoproliferative disorder) mice harboring FasL mutations were observed. Together, the results suggested that glucocorticoids impair oocyte competence by triggering apoptosis of ovarian cells via activating the Fas system. PMID:27040909

  9. A role for Fas II in the stabilization of motor neuron branches during pruning in Drosophila.

    PubMed

    Hebbar, Sarita; Fernandes, Joyce J

    2005-09-01

    During insect metamorphosis, the nervous system is extensively remodeled resulting in the development of new circuits that will execute adult-specific behaviors. The peripheral remodeling seen during development of innervation to the Dorsal Longitudinal (flight) Muscle (DLM) in Drosophila involves an initial retraction of larval neuromuscular junctions followed by adult-specific branch outgrowth. Subsequently, a phase of pruning occurs during which motor neuron branches are pruned back to reveal the stereotypic pattern of multiple contact points (or arbors) along the length of each DLM fiber. In this study, we show that the cell adhesion molecule, Fasciclin II (Fas II), is important for generating the stereotypic pattern. In Fas II hypomorphs, the number of contact points is increased, and the phenotype is rescued by targeted expression of Fas II in either synaptic partner. Arbor development has three distinct phases: outgrowth and elaboration, pruning and stabilization, and expansion of stabilized arbors. Fas II is expressed during the first two phases. A subset of branches is labeled during the elaboration phase, which is likely to initiate a stabilization pathway allowing branches to survive the pruning phase. However, since not all Fas II positive branches are retained, we propose that it primes branches for stabilization. Our data suggest that Fas II functions to restrict branch length and arbor expanse.

  10. Vascular endothelial cells express a functional fas-receptor due to lack of hemodynamic forces.

    PubMed

    Freyberg, M A; Kaiser, D; Graf, R; Friedl, P

    2001-10-01

    The fas system is present in atherosclerotic lesions. However, its role in the initiation and progression is still unclear. Here we show that in endothelial cells (EC) the expression of the fas receptor is regulated by flow conditions. The EC of the vascular system are regularly exposed to a range of hemodynamic forces with great impact on cellular structures and functions. Recently it was reported that in endothelial cells the lack of hemodynamic forces as well as irregular flow conditions trigger apoptosis by induction of a mechanosensitive autocrine loop of thrombospondin-1 and the alpha(V)beta(3) integrin/integrin-associated protein complex. Here we show that EC cultivated under regular laminar flow conditions are devoid of the fas-receptor whereas cultivation under static conditions as well as under turbulence leads to its expression. Stimulation of the fas-receptor by its ligand increases the amount of apoptotic cells by twofold; the increase can be prevented by blocking the fas-receptor. The availability of the expressed fas receptor for stimulation by its ligand hints at a role as a tool for progression of atherosclerosis. PMID:11483857

  11. Dephosphorylation of autoantigenic ribosomal P proteins during Fas-L induced apoptosis: a possible trigger for the development of the autoimmune response in patients with systemic lupus erythematosus

    PubMed Central

    Zampieri, S; Degen, W; Ghiradello, A; Doria, A; van Venrooij, W J

    2001-01-01

    OBJECTIVES—Autoimmune diseases are characterised by the production of autoantibodies against various autoantigens. In the past few years data have been published on a possible role of apoptosis in the development of autoimmunity. These include the finding that several autoantigens become modified (for example, by cleavage) during apoptosis, and the observation that these modified antigens are translocated to the cell surface. When the normal clearance of apoptotic cells somehow is disturbed, such modified antigens might become exposed to the immune system. Because acidic ribosomal P (phospho-) proteins targeted by autoantibodies in systemic lupus erythematosus (SLE) are also concentrated at the surface of apoptotic cells, this study aimed at investigating what modifications occur on these antigens during apoptosis.
METHODS—Apoptosis in Jurkat cells was induced by Fas ligand (Fas-L), and the fate of autoantigenic P proteins was analysed in both normal and apoptotic total cell extracts.
RESULTS—The autoantigenic P proteins were not cleaved but dephosphorylated during Fas-L induced apoptosis. This dephosphorylation was prevented when caspase activity was inhibited.
CONCLUSIONS—As has been shown for other autoantigens targeted by autoantibodies in SLE, P proteins also are modified during apoptosis. P1 and P2 are completely dephosphorylated while P0 is partly dephosphorylated. Because the epitope targeted by autoantibodies normally is phosphorylated, it is possible that the apoptotic dephosphorylation of the antigen might be the trigger for the development of the autoimmune response against P proteins.

 PMID:11114288

  12. The ins and outs of maternal-fetal fatty acid metabolism.

    PubMed

    Bobiński, Rafał; Mikulska, Monika

    2015-01-01

    Fatty acids (FAs) are one the most essential substances in intrauterine human growth. They are involved in a number of energetic and metabolic processes, including the growth of cell membranes, the retina and the nervous system. Fatty acid deficiency and disruptions in the maternal-placental fetal metabolism of FAs lead to malnutrition of the fetus, hypotrophy and preterm birth. What is more, metabolic diseases and cardiovascular conditions may appear later in life. Meeting a fetus' need for FAs is dependent on maternal diet and on the efficiency of the placenta in transporting FAs to fetal circulation. "Essential fatty acids" are among the most important FAs during the intrauterine growth period. These are α-linolenic acid, which is a precursor of the n-3 series, linoleic acid, which is a precursor of the n-6 series and their derivatives, represented by docosahexaenoic acid and arachidonic acid. The latest studies have shown that medium-chain fatty acids also play a significant role in maternal-fetal metabolism. These FAs have significant effect on the transformation of the precursors into DHA, which may contribute to a relatively stable supply of DHA - even in pregnant women whose diet is low in FAs. The review discusses the problem of fatty acid metabolism at the intersection between a pregnant woman and her child with reference to physiological pregnancy, giving birth to a healthy child, intrauterine growth restriction, preterm birth and giving birth to a small for gestational age child. PMID:26345097

  13. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  14. Improved isolation and purification of functional human Fas receptor extracellular domain using baculovirus-silkworm expression system.

    PubMed

    Muraki, Michiro; Honda, Shinya

    2011-11-01

    To achieve an efficient isolation of human Fas receptor extracellular domain (hFasRECD), a fusion protein of hFasRECD with human IgG1 heavy chain Fc domain containing thrombin cleavage sequence at the junction site was overexpressed using baculovirus-silkworm larvae expression system. The hFasRECD part was separated from the fusion protein by the effective cleavage of the recognition site with bovine thrombin. Protein G column treatment of the reaction mixture and the subsequent cation-exchange chromatography provided purified hFasRECD with a final yield of 13.5mg from 25.0 ml silkworm hemolymph. The functional activity of the product was examined by size-exclusion chromatography analysis. The isolated hFasRECD less strongly interacted with human Fas ligand extracellular domain (hFasLECD) than the Fc domain-bridged counterpart, showing the contribution of antibody-like avidity in the latter case. The purified glycosylated hFasRECD presented several discrete bands in the disulphide-bridge non-reducing SDS-PAGE analysis, and virtually all of the components were considered to participate in the binding to hFasLECD. The attached glycans were susceptible to PNGase F digestion, but mostly resistant to Endo Hf digestion under denaturing conditions. One of the components exhibited a higher susceptibility to PNGase F digestion under non-denaturing conditions.

  15. A radiochemical assay for argininosuccinate synthetase with [U-14C]aspartate.

    PubMed

    Ratner, S

    1983-12-01

    A simple and sensitive radiochemical procedure to assay argininosuccinate synthetase activity in crude tissue homogenates and lysates of cultured cells is described. The new method depends on the location of 14C, uniformly, in the four carbons of aspartate. On incubation in the presence of excess of L-[U-14C]aspartate, L-citrulline, ATP, and an ATP-generating system, argininosuccinase and arginase, the [14C]fumarate formed is measured as the sum of malate and fumarate. After acidification the latter two acids are separated from [14C]aspartate on a small Dowex-50 column by elution with a few milliliters of water; the unutilized amino acid substrates remain on the column. With a specific radioactivity of 9 X 10(4) cpm, 1 to 2 nmol of product can be accurately measured under kinetically optimum conditions. PMID:6660522

  16. Inhibition of Long Chain Fatty Acyl-CoA Synthetase (ACSL) and Ischemia Reperfusion Injury

    PubMed Central

    Prior, Allan M.; Zhang, Man; Blakeman, Nina; Datta, Palika; Pham, Hung; Young, Lindon H.; Weis, Margaret T.; Hua, Duy H.

    2014-01-01

    Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [14C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion. PMID:24480468

  17. Fatty Acid Ethyl Esters Are Less Toxic Than Their Parent Fatty Acids Generated during Acute Pancreatitis.

    PubMed

    Patel, Krutika; Durgampudi, Chandra; Noel, Pawan; Trivedi, Ram N; de Oliveira, Cristiane; Singh, Vijay P

    2016-04-01

    Although ethanol causes acute pancreatitis (AP) and lipolytic fatty acid (FA) generation worsens AP, the contribution of ethanol metabolites of FAs, ie, FA ethyl esters (FAEEs), to AP outcomes is unclear. Previously, pancreata of dying alcoholics and pancreatic necrosis in severe AP, respectively, showed high FAEEs and FAs, with oleic acid (OA) and its ethyl esters being the most abundant. We thus compared the toxicities of FAEEs and their parent FAs in severe AP. Pancreatic acini and peripheral blood mononuclear cells were exposed to FAs or FAEEs in vitro. The triglyceride of OA (i.e., glyceryl tri-oleate) or OAEE was injected into the pancreatic ducts of rats, and local and systemic severities were studied. Unsaturated FAs at equimolar concentrations to FAEEs induced a larger increase in cytosolic calcium, mitochondrial depolarization, and necro-apoptotic cell death. Glyceryl tri-oleate but not OAEE resulted in 70% mortality with increased serum OA, a severe inflammatory response, worse pancreatic necrosis, and multisystem organ failure. Our data show that FAs are more likely to worsen AP than FAEEs. Our observations correlate well with the high pancreatic FAEE concentrations in alcoholics without pancreatitis and high FA concentrations in pancreatic necrosis. Thus, conversion of FAs to FAEE may ameliorate AP in alcoholics.

  18. Shape-Memory Polymers Based on Fatty Acid-Filled Elastomeric Ionomers

    NASA Astrophysics Data System (ADS)

    Izzo, Elise; Weiss, Robert

    2009-03-01

    Shape memory polymers (SMPs) have applications as medical devices, actuators, sensors, artificial muscles, switches, smart textiles, and self-deployable structures. All previous design of SMPs has involved synthesizing new polymers or modifying existing polymers. This paper describes a new type of SMP based on blends of an elastomeric ionomer and low molar mass fatty acids or their salts (FAS). Shape memory elastomers were prepared from mixtures of a sulfonated EPDM ionomer and various amounts of a FAS (e.g., zinc stearate, zinc oleate, and various aliphalic acids). Nanophase separation of the metal sulfonate groups provided the ``permanent'' crosslinks, while sub-microscopic crystals of the low molecular weight FAS provided a physical crosslink needed for the temporary shape. The material was deformed above the melting point of the FAS and the new shape was fixed by cooling the material while under stress to below the melting point of the FAS. Polar interactions between the ionomer and the FAS stabilized the dispersion of the FAS in the polymer and provided the continuity between the phases that allowed the crystals of the FAS to provide a second network of physical crosslinks. The temporary shape was erased and the material returned to the primary shape by heating above the melting point of the FAS.

  19. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway

    PubMed Central

    Liu, Yang; Wang, Yue-ru; Ding, Guang-hui; Yang, Ting-song; Yao, Le; Hua, Jie; He, Zhi-gang; Qian, Ming-ping

    2016-01-01

    Objective Combination therapy for cancer is more effective than using only standard chemo- or radiotherapy. Our previous results showed that dendritic cell-activated α-fetoprotein (AFP)-specific T-cells inhibit tumor in vitro and in vivo. In this study, we focused on antitumor function of CD8+ T-cells combined with or without JAK2 inhibitor. Methods Proliferation and cell cycle were analyzed by CCK-8 and flow cytometry. Western blot was used to analyze the expression level of related protein and signaling pathway. Results We demonstrated reduced viability and induction of apoptosis of tumor cells with combination treatment. Intriguingly, cell cycle was blocked at the G1 phase by using AFP-specific CD8+ T-cells combined with JAK2 inhibitor (AG490). Furthermore, an enhanced expression of BAX but no influence on Fas/FasL was detected from the tumor cells. Conclusion These results indicate a Fas/FasL-independent pathway for cellular apoptosis in cancer therapies with the treatment of AFP-specific CD8+ T-cells combined with JAK2 inhibitor. PMID:27499636

  20. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress.

    PubMed

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio

    2015-11-16

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.

  1. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress

    PubMed Central

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A. G.; Santamaría-Gómez, Javier; Patterson, Carl J.; Foster, Andrew W.; Bru-Martínez, Roque; Robinson, Nigel J.; Luque, Ignacio

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNAThr synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNAThr. Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  2. The Enterococcal Cytolysin Synthetase Coevolves with Substrate for Stereoselective Lanthionine Synthesis.

    PubMed

    Tang, Weixin; Thibodeaux, Gabrielle N; van der Donk, Wilfred A

    2016-09-16

    Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Nonenzymatic cyclization of the small subunit of a virulence lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence. These results support previous computational studies that a Dhx-Dhx-Xxx-Xxx-Cys motif (Dhx = Dha or Dhb; Xxx = any amino acid except Dha, Dhb, and Cys) preferentially cyclizes by attack on the Re face of Dha or Dhb. Characterization of the stereochemistry of the products formed enzymatically with substrate mutants revealed that the lanthionine synthetase actively reinforces Re face attack. These findings support the hypothesis of substrate-controlled selectivity in lanthionine synthesis but also reveal likely coevolution of substrates and lanthionine synthetases to ensure the stereoselective synthesis of lanthipeptides with defined biological activities. PMID:27348535

  3. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs.

    PubMed

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-04-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes.

  4. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress.

    PubMed

    Rubio, Miguel Ángel; Napolitano, Mauro; Ochoa de Alda, Jesús A G; Santamaría-Gómez, Javier; Patterson, Carl J; Foster, Andrew W; Bru-Martínez, Roque; Robinson, Nigel J; Luque, Ignacio

    2015-11-16

    Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs. PMID:26464444

  5. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis

    PubMed Central

    Gaudelli, Nicole M.; Long, Darcie H.; Townsend, Craig A.

    2014-01-01

    Non-ribosomal peptide synthetases (NRPSs) are giant enzymes comprised of modules that house repeated sets of functional domains, which select, activate and couple amino acids drawn from a pool of nearly 500 potential building blocks.1 The structurally and stereochemically diverse peptides generated in this manner underlie the biosynthesis of a large sector of natural products. Many of their derived metabolites are bioactive such as the antibiotics vancomycin, bacitracin, daptomycin and the β-lactam-containing penicillins, cephalosporins and nocardicins. Although penicillins and cephalosporins are synthesised from a classically derived NRPS tripeptide (from ACVS, δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine synthetase)2, we now report an unprecedented NRPS activity to both assemble a serine-containing peptide and mediate its cyclisation to the critical β-lactam ring of the nocardicin family of antibiotics. A histidine-rich condensation (C) domain, which typically carries out peptide bond formation during product assembly, was found to also synthesise the embedded 4-membered ring. Here, a mechanism is proposed and supporting experiments are described, which is distinct from the pathways that have evolved to the three other β-lactam antibiotic families: penicillin/cephalosporins, clavams and carbapenems. These findings raise the possibility that β-lactam rings can be regio- and stereospecifically integrated into engineered peptides for application as, for example, targeted protease inactivators.3,4 PMID:25624104

  6. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs

    PubMed Central

    Godinic-Mikulcic, Vlatka; Jaric, Jelena; Greber, Basil J.; Franke, Vedran; Hodnik, Vesna; Anderluh, Gregor; Ban, Nenad; Weygand-Durasevic, Ivana

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes. PMID:24569352

  7. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  8. Cocrystal Structures of Glycyl-tRNA Synthetase in Complex with tRNA Suggest Multiple Conformational States in Glycylation*

    PubMed Central

    Qin, Xiangjing; Hao, Zhitai; Tian, Qingnan; Zhang, Zhemin; Zhou, Chun; Xie, Wei

    2014-01-01

    Aminoacyl-tRNA synthetases are an ancient enzyme family that specifically charges tRNA molecules with cognate amino acids for protein synthesis. Glycyl-tRNA synthetase (GlyRS) is one of the most intriguing aminoacyl-tRNA synthetases due to its divergent quaternary structure and abnormal charging properties. In the past decade, mutations of human GlyRS (hGlyRS) were also found to be associated with Charcot-Marie-Tooth disease. However, the mechanisms of traditional and alternative functions of hGlyRS are poorly understood due to a lack of studies at the molecular basis. In this study we report crystal structures of wild type and mutant hGlyRS in complex with tRNA and with small substrates and describe the molecular details of enzymatic recognition of the key tRNA identity elements in the acceptor stem and the anticodon loop. The cocrystal structures suggest that insertions 1 and 3 work together with the active site in a cooperative manner to facilitate efficient substrate binding. Both the enzyme and tRNA molecules undergo significant conformational changes during glycylation. A working model of multiple conformations for hGlyRS catalysis is proposed based on the crystallographic and biochemical studies. This study provides insights into the catalytic pathway of hGlyRS and may also contribute to our understanding of Charcot-Marie-Tooth disease. PMID:24898252

  9. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation.

    PubMed

    Qin, Xiangjing; Hao, Zhitai; Tian, Qingnan; Zhang, Zhemin; Zhou, Chun; Xie, Wei

    2014-07-18

    Aminoacyl-tRNA synthetases are an ancient enzyme family that specifically charges tRNA molecules with cognate amino acids for protein synthesis. Glycyl-tRNA synthetase (GlyRS) is one of the most intriguing aminoacyl-tRNA synthetases due to its divergent quaternary structure and abnormal charging properties. In the past decade, mutations of human GlyRS (hGlyRS) were also found to be associated with Charcot-Marie-Tooth disease. However, the mechanisms of traditional and alternative functions of hGlyRS are poorly understood due to a lack of studies at the molecular basis. In this study we report crystal structures of wild type and mutant hGlyRS in complex with tRNA and with small substrates and describe the molecular details of enzymatic recognition of the key tRNA identity elements in the acceptor stem and the anticodon loop. The cocrystal structures suggest that insertions 1 and 3 work together with the active site in a cooperative manner to facilitate efficient substrate binding. Both the enzyme and tRNA molecules undergo significant conformational changes during glycylation. A working model of multiple conformations for hGlyRS catalysis is proposed based on the crystallographic and biochemical studies. This study provides insights into the catalytic pathway of hGlyRS and may also contribute to our understanding of Charcot-Marie-Tooth disease.

  10. Regulation of an Auxiliary, Antibiotic-Resistant Tryptophanyl-tRNA Synthetase Gene via Ribosome-Mediated Transcriptional Attenuation ▿

    PubMed Central

    Vecchione, James J.; Sello, Jason K.

    2010-01-01

    cis-Acting RNA elements in the leaders of bacterial mRNA often regulate gene transcription, especially in the context of amino acid metabolism. We determined that the transcription of the auxiliary, antibiotic-resistant tryptophanyl-tRNA synthetase gene (trpRS1) in Streptomyces coelicolor is regulated by a ribosome-mediated attenuator in the 5′ leader of its mRNA region. This regulatory element controls gene transcription in response to the physiological effects of indolmycin and chuangxinmycin, two antibiotics that inhibit bacterial tryptophanyl-tRNA synthetases. By mining streptomycete genome sequences, we found several orthologs of trpRS1 that share this regulatory element; we predict that they are regulated in a similar fashion. The validity of this prediction was established through the analysis of a trpRS1 ortholog (SAV4725) in Streptomyces avermitilis. We conclude that the trpRS1 locus is a widely distributed and self-regulating antibiotic resistance cassette. This study provides insights into how auxiliary aminoacyl-tRNA synthetase genes are regulated in bacteria. PMID:20453096

  11. Species-specific immune responses generated by histidyl-tRNA synthetase immunization are associated with muscle and lung inflammation

    PubMed Central

    Katsumata, Yasuhiro; Ridgway, William M.; Oriss, Timothy; Gu, Xinyan; Chin, David; Wu, Yuehong; Fertig, Noreen; Oury, Tim; Vandersteen, Daniel; Clemens, Paula; Camacho, Carlos J.; Weinberg, Andrew; Ascherman, Dana P.

    2009-01-01

    Evidence implicating histidyl-tRNA synthetase (Jo-1) in the pathogenesis of the anti-synthetase syndrome includes established genetic associations linking the reproducible phenotype of muscle inflammation and interstitial lung disease with autoantibodies recognizing Jo-1. To better address the role of Jo-1-directed B and T cell responses in the context of different genetic backgrounds, we employed Jo-1 protein immunization of C57BL/6 and NOD congenic mice. Detailed analysis of early antibody responses following inoculation with human or murine Jo-1 demonstrates remarkable species-specifity, with limited cross recognition of Jo-1 from the opposite species. Complementing these results, immunization with purified peptides derived from murine Jo-1 generates B and T cells targeting species-specific epitopes contained within the amino terminal 120 amino acids of murine Jo-1. The eventual spreading of B cell epitopes that uniformly occurs 8 weeks post immunization with murine Jo-1 provides additional evidence of an immune response mediated by autoreactive, Jo-1-specific T cells. Corresponding to this self-reactivity, mice immunized with murine Jo-1 develop a striking combination of muscle and lung inflammation that replicates features of the human anti-synthetase syndrome. PMID:17826948

  12. p53-Dependent DNA damage response sensitive to editing-defective tRNA synthetase in zebrafish.

    PubMed

    Song, Youngzee; Shi, Yi; Carland, Tristan M; Lian, Shanshan; Sasaki, Tomoyuki; Schork, Nicholas J; Head, Steven R; Kishi, Shuji; Schimmel, Paul

    2016-07-26

    Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small amounts of mistranslation of components of the replication apparatus, we investigated the sensitivity to editing of the vertebrate genome. We show here that in zebrafish embryos, transient overexpression of editing-defective valyl-tRNA synthetase (ValRS(ED)) activated DNA break-responsive H2AX and p53-responsive downstream proteins, such as cyclin-dependent kinase (CDK) inhibitor p21, which promotes cell-cycle arrest at DNA damage checkpoints, and Gadd45 and p53R2, with pivotal roles in DNA repair. In contrast, the response of these proteins to expression of ValRS(ED) was abolished in p53-deficient fish. The p53-activated downstream signaling events correlated with suppression of abnormal morphological changes caused by the editing defect and, in adults, reversed a shortened life span (followed for 2 y). Conversely, with normal editing activities, p53-deficient fish have a normal life span and few morphological changes. Whole-fish deep sequencing showed genomic mutations associated with the editing defect. We suggest that the sensitivity of p53 to expression of an editing-defective tRNA synthetase has a critical role in promoting genome integrity and organismal homeostasis. PMID:27402763

  13. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule.

    PubMed

    Kreikemeyer, B; Boyle, M D; Buttaro, B A; Heinemann, M; Podbielski, A

    2001-01-01

    A novel growth phase-associated two-component-type regulator, Fas (fibronectin/fibrinogen binding/haemolytic activity/streptokinase regulator), of Streptococcus pyogenes was identified in the M1 genome sequence, based on homologies to the histidine protein kinase (HPK) and response regulator (RR) part of the Staphylococcus aureus Agr and Streptococcus pneumoniae Com quorum-sensing systems. The fas operon, present in all 12 tested M serotypes, was transcribed as polycystronic message (fasBCA) and contained genes encoding two potential HPKs (FasB and FasC) and one RR (FasA). Downstream of fasBCA, we identified a small 300 nucleotide monocistronic transcript, designated fasX, that did not appear to encode true peptide sequences. Measurements of luciferase promoter fusions revealed a growth phase-associated transcription of fasBCA and fasX, with peak activities during the late exponential phase. Insertional mutagenesis disrupting fasBCA and fasA led to a phenotype similar to agr-null mutations in S. aureus, with prolonged expression of extracellular matrix protein-binding adhesins and reduced expression of secreted virulence factors such as streptokinase and streptolysin S. In addition, fasX transcription was dependent on the RR FasA; however, deletion mutagenesis of fasX resulted in a similar phenotype to that of the fasBCA or fasA mutants. Complementation of the fasX deletion mutant, with the fasX gene expressed in trans from a plasmid, restored the wild-type fasBCA regulation pattern. This strongly suggested that fasX, a putative non-translated RNA, is the main effector molecule of the fas regulon. However, using spent culture supernatants from wild-type and fas mutant strains, we were not able to show an influence on the logarithmic growth phase expression of fas and dependent genes. Thus, despite structural and functional similarities between fas and agr, to date the fas operon appears not to be involved in group A streptococcal (GAS) quorum-sensing regulation

  14. Deregulation of Fas ligand expression as a novel cause of autoimmune lymphoproliferative syndrome-like disease

    PubMed Central

    Nabhani, Schafiq; Ginzel, Sebastian; Miskin, Hagit; Revel-Vilk, Shoshana; Harlev, Dan; Fleckenstein, Bernhard; Hönscheid, Andrea; Oommen, Prasad T.; Kuhlen, Michaela; Thiele, Ralf; Laws, Hans-Jürgen; Borkhardt, Arndt; Stepensky, Polina; Fischer, Ute

    2015-01-01

    Autoimmune lymphoproliferative syndrome is frequently caused by mutations in genes involved in the Fas death receptor pathway, but for 20–30% of patients the genetic defect is unknown. We observed that treatment of healthy T cells with interleukin-12 induces upregulation of Fas ligand and Fas ligand-dependent apoptosis. Consistently, interleukin-12 could not induce apoptosis in Fas ligand-deficient T cells from patients with autoimmune lymphoproliferative syndrome. We hypothesized that defects in the interleukin-12 signaling pathway may cause a similar phenotype as that caused by mutations of the Fas ligand gene. To test this, we analyzed 20 patients with autoimmune lymphoproliferative syndrome of unknown cause by whole-exome sequencing. We identified a homozygous nonsense mutation (c.698G>A, p.R212*) in the interleukin-12/interleukin-23 receptor-component IL12RB1 in one of these patients. The mutation led to IL12RB1 protein truncation and loss of cell surface expression. Interleukin-12 and -23 signaling was completely abrogated as demonstrated by deficient STAT4 phosphorylation and interferon γ production. Interleukin-12-mediated expression of membrane-bound and soluble Fas ligand was lacking and basal expression was much lower than in healthy controls. The patient presented with the classical symptoms of autoimmune lymphoproliferative syndrome: chronic non-malignant, non-infectious lymphadenopathy, splenomegaly, hepatomegaly, elevated numbers of double-negative T cells, autoimmune cytopenias, and increased levels of vitamin B12 and interleukin-10. Sanger sequencing and whole-exome sequencing excluded the presence of germline or somatic mutations in genes known to be associated with the autoimmune lymphoproliferative syndrome. Our data suggest that deficient regulation of Fas ligand expression by regulators such as the interleukin-12 signaling pathway may be an alternative cause of autoimmune lymphoproliferative syndrome-like disease. PMID:26113417

  15. In vivo Effects in Melanoma of ROCK Inhibition-Induced FasL Overexpression

    PubMed Central

    Teiti, Iotefa; Florie, Bertrand; Pich, Christine; Gence, Rémi; Lajoie-Mazenc, Isabelle; Rochaix, Philippe; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2015-01-01

    Ectopic Fas-ligand (FasL) expression in tumor cells is responsible for both tumor escape through tumor counterattack of Fas-positive infiltrating lymphocytes and tumor rejection though inflammatory and immune responses. We have previously shown that RhoA GTPase and its effector ROCK negatively control FasL membrane expression in murine melanoma B16F10 cells. In this study, we found that B16F10 treatment with the ROCK inhibitor H1152 reduced melanoma development in vivo through FasL membrane overexpression. Although H1152 treatment did not reduce tumor growth in vitro, pretreatment of tumor cells with this inhibitor delayed tumor appearance, and slowed tumor growth in C57BL/6 immunocompetent mice. Thanks to the use of mice-bearing mutated Fas receptors (B6/lpr), we found that reduced tumor growth, observed in immunocompetent mice, was linked to FasL overexpression induced by H1152 treatment. Tumor growth analysis in immunosuppressed NUDE and IFN-γ-KO mice highlighted major roles for T lymphocytes and IFN-γ in the H1152-induced tumor growth reduction. Histological analyses of subcutaneous tumors, obtained from untreated versus H1152-treated B16F10 cells, showed that H1152 pretreatment induced a strong intratumoral infiltration of leukocytes. Cytofluorometric analysis showed that among these leukocytes, the number of activated CD8 lymphocytes was increased. Moreover, their antibody-induced depletion highlighted their main responsibility in tumor growth reduction. Subcutaneous tumor growth was also reduced by repeated intravenous injections of a clinical ROCK inhibitor, Fasudil. Finally, H1152-induced ROCK inhibition also reduced pulmonary metastasis implantation independently of T cell-mediated immune response. Altogether, our data suggest that ROCK inhibitors could become interesting pharmacological molecules for melanoma immunotherapy. PMID:26236689

  16. In vivo Effects in Melanoma of ROCK Inhibition-Induced FasL Overexpression.

    PubMed

    Teiti, Iotefa; Florie, Bertrand; Pich, Christine; Gence, Rémi; Lajoie-Mazenc, Isabelle; Rochaix, Philippe; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2015-01-01

    Ectopic Fas-ligand (FasL) expression in tumor cells is responsible for both tumor escape through tumor counterattack of Fas-positive infiltrating lymphocytes and tumor rejection though inflammatory and immune responses. We have previously shown that RhoA GTPase and its effector ROCK negatively control FasL membrane expression in murine melanoma B16F10 cells. In this study, we found that B16F10 treatment with the ROCK inhibitor H1152 reduced melanoma development in vivo through FasL membrane overexpression. Although H1152 treatment did not reduce tumor growth in vitro, pretreatment of tumor cells with this inhibitor delayed tumor appearance, and slowed tumor growth in C57BL/6 immunocompetent mice. Thanks to the use of mice-bearing mutated Fas receptors (B6/lpr), we found that reduced tumor growth, observed in immunocompetent mice, was linked to FasL overexpression induced by H1152 treatment. Tumor growth analysis in immunosuppressed NUDE and IFN-γ-KO mice highlighted major roles for T lymphocytes and IFN-γ in the H1152-induced tumor growth reduction. Histological analyses of subcutaneous tumors, obtained from untreated versus H1152-treated B16F10 cells, showed that H1152 pretreatment induced a strong intratumoral infiltration of leukocytes. Cytofluorometric analysis showed that among these leukocytes, the number of activated CD8 lymphocytes was increased. Moreover, their antibody-induced depletion highlighted their main responsibility in tumor growth reduction. Subcutaneous tumor growth was also reduced by repeated intravenous injections of a clinical ROCK inhibitor, Fasudil. Finally, H1152-induced ROCK inhibition also reduced pulmonary metastasis implantation independently of T cell-mediated immune response. Altogether, our data suggest that ROCK inhibitors could become interesting pharmacological molecules for melanoma immunotherapy. PMID:26236689

  17. Genetic analysis of 987P adhesion and fimbriation of Escherichia coli: the fas genes link both phenotypes.

    PubMed Central

    Schifferli, D M; Beachey, E H; Taylor, R K

    1991-01-01

    The 987P fimbrial gene cluster has recently been shown to contain eight genes (fasA to fasH) clustered on large plasmids of enterotoxigenic Escherichia coli and adjacent to a Tn1681-like transposon encoding the heat-stable enterotoxin STIa. Different genetic approaches were used to study the relationship between 987P fimbriation and adhesion. TnphoA mutagenesis, complementation assays, and T7 RNA polymerase-promoted gene expression indicated that all of the fas genes were involved in fimbrial expression and adhesion. In contrast to other fimbrial systems, the lack of expression of any single fas gene never resulted in the dissociation of fimbriation and adhesion, indicating that the adhesin is required for fimbrial expression and suggesting that FasA, the fimbrial structural subunit itself, is the adhesin. In addition, fimbrial length was shown to be modulated by the levels of expression of different fas genes. Images PMID:1671386

  18. Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expressi...

  19. On the 28-gon symmetry inherent in the genetic code intertwined with aminoacyl-tRNA synthetases--the Lucas series.

    PubMed

    Yang, Chi Ming

    2004-09-01

    Despite considerable efforts it has remained unclear what principle governs the selection of the 20 canonical amino acids in the genetic code. Based on a previous study of the 28-gonal and rotational symmetric arrangement of the 20 amino acids in the genetic code, new analyses of the organization of the genetic code system together with their intrinsic relation to the two classes of aminoacyl-tRNA synthetases are reported in this work. A close inspection revealed how the enzymes and the 20 gene-encoded amino acids are intertwined on the polyhedron model. Complementary and cooperative symmetries between class I and class II aminoacyl-tRNA synthetases displayed by a 28-gon organization are discussed, and we found that the two previously suggested evolutionary axes within the genetic code overlap the symmetry axes within the two classes of aminoacyl-tRNA synthetases. Moreover, it has been shown that the side-chain carbon-atom numbers (2, 1, 3, 4 and 7) in the overwhelming majority of the amino acids recognized by each of the two classes of aminoacyl-tRNA synthetases are determined by a mathematical relationship, the Lucas series. A stepwise co-evolutionary selection logic of the amino acids is manifested by the amino acid side-chain carbon-atom number balance at '17', when grouping the genetic code doublets in the 28-gon organization. The number '17' equals the sum of the initial five numbers in the Lucas series, which are 2, 1, 3, 4 and 7. PMID:15294424

  20. Plasma fatty acids in chronic kidney disease: nervonic acid predicts mortality.

    PubMed

    Shearer, Gregory C; Carrero, Juan J; Heimbürger, Olof; Barany, Peter; Stenvinkel, Peter

    2012-03-01

    Although the value of red blood cell fatty acids (FAs) in estimating risk for acute coronary syndrome in the general population is evident, the value of FAs in chronic kidney disease (CKD) is unknown. Here, we provide a pilot analysis in a spectrum of CKD patients. Plasma samples were obtained from 20 incident dialysis patients (CKD stage 5), matched with samples from 10 CKD stage 3-4 patients, and 10 control subjects. Whole plasma FAs were measured using gas chromatography. Whereas neither linoleic acid nor arachidonate acid were altered in CKD, metabolic intermediates of arachidonate synthesis (γ-linolenate and dihomo γ-linolenate) were reduced in CKD. Demming (orthogonal) correlation of FA abundance with estimated GFR identified several saturated and unsaturated FAs in addition to the intermediates; again, neither linoleate nor arachidonate were related. Follow-up data within the CKD stage 5 patients revealed that nervonic acid, a component of membrane sphingolipids and phosphatidylethanolamines, was a significant predictor of all-cause mortality; the age-adjusted relative risk for a 0.15% change is 2.1 (1.4, 3.7; 95% CI; P = .0008). These findings support the exploration of FAs in larger studies for validation of the role FAs in cardiovascular risk and mortality in CKD.

  1. Isolation of an acetyl-CoA synthetase gene (ZbACS2) from Zygosaccharomyces bailii.

    PubMed

    Rodrigues, Fernando; Zeeman, Anne-Marie; Cardoso, Helena; Sousa, Maria João; Steensma, H Yde; Côrte-Real, Manuela; Leão, Cecília

    2004-03-01

    A gene homologous to Saccharomyces cerevisiae ACS genes, coding for acetyl-CoA synthetase, has been cloned from the yeast Zygosaccharomyces bailii ISA 1307, by using reverse genetic approaches. A probe obtained by PCR amplification from Z. bailii DNA, using primers derived from two conserved regions of yeast ACS proteins, RIGAIHSVVF (ScAcs1p; 210-219) and RVDDVVNVSG (ScAcs1p; 574-583), was used for screening a Z. bailii genomic library. Nine clones with partially overlapping inserts were isolated. The sequenced DNA fragment contains a complete ORF of 2027 bp (ZbACS2) and the deduced polypeptide shares significant homologies with the products of ACS2 genes from S. cerevisiae and Kluyveromyces lactis (81% and 82% identity and 84% and 89% similarity, respectively). Phylogenetic analysis shows that the sequence of Zbacs2 is more closely related to the sequences from Acs2 than to those from Acs1 proteins. Moreover, this analysis revealed that the gene duplication producing Acs1 and Acs2 proteins has occurred in the common ancestor of S. cerevisiae, K. lactis, Candida albicans, C. glabrata and Debaryomyces hansenii lineages. Additionally, the cloned gene allowed growth of S. cerevisiae Scacs2 null mutant, in medium containing glucose as the only carbon and energy source, indicating that it encodes a functional acetyl-CoA synthetase. Also, S. cerevisiae cells expressing ZbACS2 have a shorter lag time, in medium containing glucose (2%, w/v) plus acetic acid (0.1-0.35%, v/v). No differences in cell response to acetic acid stress were detected both by specific growth and death rates. The mode of regulation of ZbACS2 appears to be different from ScACS2 and KlACS2, being subject to repression by a glucose pulse in acetic acid-grown cells. PMID:15042592

  2. NaCS-PDMDAAC immobilized cultivation of recombinant Dictyostelium discoideum for soluble human Fas ligand production.

    PubMed

    Zheng, Chao; Zeng, Xianhai; Danquah, Michael K; Lu, Yinghua

    2015-01-01

    Dictyostelium discoideum is a promising eukaryotic host for the expression of heterologous proteins requiring post-translational modifications. However, the dilute nature of D. discoideum cell culture limits applications for high value proteins production. D. discoideum cells, entrapped in sodium cellulose sulfate/poly-dimethyl-diallyl-ammonium chloride (NaCS-PDMDAAC) capsules were used for biosynthesis of the heterologous protein, soluble human Fas ligand (hFasL). Semi-continuous cultivations with capsules recycling were carried out in shake flasks. Also, a scaled-up cultivation of immobilized D. discoideum for hFasL production in a customized vitreous airlift bioreactor was conducted. The results show that NaCS-PDMDAAC capsules have desirable biophysical properties including biocompatibility with the D. discoideum cells and good mechanical stability throughout the duration of cultivation. A maximum cell density of 2.02 × 10(7) cells mL(-1) (equivalent to a maximum cell density of 2.22 × 10(8) cells mL(-1) in capsules) and a hFasL concentration of 130.40 μg L(-1) (equivalent to a hFasL concentration of 1434.40 μg L(-1) in capsules) were obtained in shake flask cultivation with capsules recycling. Also, a maximum cell density of 1.72 × 10(7) cells mL(-1) (equivalent to a maximum cell density of 1.89 × 10(8) cells mL(-1) in capsules) and a hFasL concentration of 106.10 μg L(-1) (equivalent to a hFasL concentration of 1167.10 μg L(-1) in capsules) were obtained after ∼170 h cultivation in the airlift bioreactor (with a working volume of 200 mL in a 315 mL bioreactor). As the article presents a premier work in the application of NaCS-PDMDAAC immobilized D. discoideum cells for the production of hFasL, more work is required to further optimize the system to generate higher cell densities and hFasL titers for large-scale applications. PMID:25504805

  3. Fas apoptosis inhibitory molecules: more than death-receptor antagonists in the nervous system.

    PubMed

    Planells-Ferrer, Laura; Urresti, Jorge; Coccia, Elena; Galenkamp, Koen M O; Calleja-Yagüe, Isabel; López-Soriano, Joaquín; Carriba, Paulina; Barneda-Zahonero, Bruna; Segura, Miguel F; Comella, Joan X

    2016-10-01

    The importance of death receptor (DR) signaling in embryonic development and physiological homeostasis is well established, as is the existence of several molecules that modulate DRs function, among them Fas Apoptotis Inhibitory Molecules. Although FAIM1, FAIM2, and FAIM3 inhibit Fas-induced cell death, they are not structurally related, nor do they share expression patterns. Moreover, they inhibit apoptosis through completely different mechanisms. FAIM1 and FAIM2 protect neurons from DR-induced apoptosis and are involved in neurite outgrowth and neuronal plasticity. FAIM1 inhibits Fas ligand- and tumor necrosis factor alpha-induced apoptosis by direct interaction with Fas receptor and through the stabilization of levels of X-linked inhibitor of apoptosis protein, a potent anti-apoptotic protein that inhibits caspases. Low FAIM1 levels are found in Alzheimer's disease, thus sensitizing neurons to tumor necrosis factor alpha and prompting neuronal loss. FAIM2 protects from Fas by direct interaction with Fas receptor, as well as by modulating calcium release at the endoplasmic reticulum through interaction with Bcl-xL. Several studies prove the role of FAIM2 in diseases of the nervous system, such as ischemia, bacterial meningitis, and neuroblastoma. The less characterized member of the FAIM family is FAIM3, which is expressed in tissues of the digestive and urinary tracts, bone marrow and testes, and restricted to the cerebellum in the nervous system. FAIM3 protects against DR-induced apoptosis by inducing the expression of other DR-antagonists such as CFLAR or through the interaction with the DR-adaptor protein Fas-associated via death domain. FAIM3 null mouse models reveal this protein as an important mediator of inflammatory autoimmune responses such as those triggered in autoimmune encephalomyelitis. Given the differences between FAIMs and the variety of processes in which they are involved, here we sought to provide a concise review about these molecules and

  4. Fatty acids linked to cardiovascular mortality are associated with risk factors

    PubMed Central

    Ebbesson, Sven O. E.; Voruganti, Venkata S.; Higgins, Paul B.; Fabsitz, Richard R.; Ebbesson, Lars O.; Laston, Sandra; Harris, William S.; Kennish, John; Umans, Benjamin D.; Wang, Hong; Devereux, Richard B.; Okin, Peter M.; Weissman, Neil J.; MacCluer, Jean W.; Umans, Jason G.; Howard, Barbara V.

    2015-01-01

    Background Although saturated fatty acids (FAs) have been linked to cardiovascular mortality, it is not clear whether this outcome is attributable solely to their effects on low-density lipoprotein cholesterol (LDL-C) or whether other risk factors are also associated with FAs. The Western Alaskan Native population, with its rapidly changing lifestyles, shift in diet from unsaturated to saturated fatty acids and dramatic increase in cardiovascular disease (CVD), presents an opportunity to elucidate any associations between specific FAs and known CVD risk factors. Objective We tested the hypothesis that the specific FAs previously identified as related to CVD mortality are also associated with individual CVD risk factors. Methods In this community-based, cross-sectional study, relative proportions of FAs in plasma and red blood cell membranes were compared with CVD risk factors in a sample of 758 men and women aged ≥35 years. Linear regression analyses were used to analyze relations between specific FAs and CVD risk factors (LDL-C, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, systolic blood pressure, diastolic blood pressure, heart rate, body mass index, fasting glucose and fasting insulin, 2-hour glucose and 2-hour insulin). Results The specific saturated FAs previously identified as related to CVD mortality, the palmitic and myristic acids, were adversely associated with most CVD risk factors, whereas unsaturated linoleic acid (18:2n-6) and the marine n-3 FAs were not associated or were beneficially associated with CVD risk factors. Conclusions The results suggest that CVD risk factors are more extensively affected by individual FAs than hitherto recognized, and that risk for CVD, MI and stroke can be reduced by reducing the intake of palmitate, myristic acid and simple carbohydrates and improved by greater intake of linoleic acid and marine n-3 FAs. PMID:26274054

  5. Determination of the mechanism of action of anti-FasL antibody by epitope mapping and homology modeling.

    PubMed

    Obungu, Victor H; Gelfanova, Valentina; Rathnachalam, Radhakrishnan; Bailey, Anna; Sloan-Lancaster, Joanne; Huang, Lihua

    2009-08-01

    Fas ligand (FasL) is a 40-kDa type II transmembrane protein belonging to the tumor necrosis factor (TNF) family of proteins and binds to its specific receptor, Fas, a member of the TNF receptor family. Membrane-bound FasL can be processed into a soluble form by a metalloprotease similar to that which cleaves TNFalpha. Elevated levels of FasL have been implicated in a wide variety of diseases ranging from cancer to inflammatory abnormalities, which could be targeted by antibody therapy. We generated a fully human high-affinity antibody against FasL that binds to and neutralizes the activity of both soluble and membrane-associated human FasL. In order to elucidate the mechanism of function of this antibody, we have mapped the region and critical residues involved in the recognition of FasL using a combination of homology modeling, immunoprecipitation, hydrogen-deuterium exchange mass spectrometry (H/DXMS), and alanine scanning site-directed mutagenesis. These studies have revealed the antibody binding site on human FasL. Furthermore, through molecular homology modeling, we have proposed a mechanism for the neutralizing activity of this antibody that involves interference with the docking of the ligand to its receptor by the antibody. PMID:19588926

  6. Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment.

    PubMed

    Fernández, Miriam; Segura, Miguel F; Solé, Carme; Colino, Alicia; Comella, Joan X; Ceña, Valentín

    2007-10-01

    Fas ligand (FasL)-receptor system plays an essential role in regulating cell death in the developing nervous system, and it has been implicated in neurodegenerative and inflammatory responses in the CNS. Lifeguard (LFG) is a protein highly expressed in the hippocampus and the cerebellum, and it shows a particularly interesting regulation by being up-regulated during postnatal development and in the adult. We show that over-expression of LFG protected cortical neurons from FasL-induced apoptosis and decreased caspase-activation. Reduction of endogenous LFG expression by small interfering RNA sensitized cerebellar granular neurons to FasL-induced cell death and caspase-8 activation, and also increased sensitivity of cortical neurons. In differentiated cerebellar granular neurons, protection from FasL-induced cell death could be attributed exclusively to LFG and appears to be independent of FLICE inhibitor protein. Thus, LFG is an endogenous inhibitor of FasL-mediated neuronal death and it mediates the FasL resistance of CNS differentiated neurons. Finally, we also demonstrate that LFG is detected in lipid rafts microdomains, where it may interact with Fas receptor and regulate FasL-activated signaling pathways.

  7. Tumor Necrosis Factor Alpha and Interleukin 1β Up-Regulate Gastric Mucosal Fas Antigen Expression in Helicobacter pylori Infection

    PubMed Central

    Houghton, JeanMarie; Macera-Bloch, Lisa S.; Harrison, Lawrence; Kim, Kyung H.; Korah, Reju M.

    2000-01-01

    Fas-mediated gastric mucosal apoptosis is gaining attention as a cause of tissue damage due to Helicobacter pylori infection. We explored the effects of H. pylori directly, and the effects of the inflammatory environment established subsequent to H. pylori infection, on Fas-mediated apoptosis in a nontransformed gastric mucosal cell line (RGM-1). Exposure to H. pylori-activated peripheral blood mononuclear cells (PBMCs), but not H. pylori itself, induced Fas antigen (Fas Ag) expression, indicating a Fas-regulatory role for inflammatory cytokines in this system. Of various inflammatory cytokines tested, only interleukin 1β and tumor necrosis factor alpha induced Fas Ag expression, and removal of either of these from the conditioned medium abrogated the response. When exposed to Fas ligand, RGM-1 cells treated with PBMC-conditioned medium underwent massive and rapid cell death, interestingly, with a minimal effect on total cell numbers early on. Cell cycle analysis revealed a substantial increase in S phase cells among cells exposed to Fas ligand, suggesting an increase in their proliferative response. Taken together, these data indicate that the immune environment secondary to H. pylori infection plays a critical role in priming gastric mucosal cells to undergo apoptosis or to proliferate based upon their Fas Ag status. PMID:10678925

  8. FLIP switches Fas-mediated glucose signaling in human pancreatic cells from apoptosis to cell replication

    NASA Astrophysics Data System (ADS)

    Maedler, Kathrin; Fontana, Adriano; Ris, Frédéric; Sergeev, Pavel; Toso, Christian; Oberholzer, José; Lehmann, Roger; Bachmann, Felix; Tasinato, Andrea; Spinas, Giatgen A.; Halban, Philippe A.; Donath, Marc Y.

    2002-06-01

    Type 2 diabetes mellitus results from an inadequate adaptation of the functional pancreatic cell mass in the face of insulin resistance. Changes in the concentration of glucose play an essential role in the regulation of cell turnover. In human islets, elevated glucose concentrations impair cell proliferation and induce cell apoptosis via up-regulation of the Fas receptor. Recently, it has been shown that the caspase-8 inhibitor FLIP may divert Fas-mediated death signals into those for cell proliferation in lymphatic cells. We observed expression of FLIP in human pancreatic cells of nondiabetic individuals, which was decreased in tissue sections of type 2 diabetic patients. In vitro exposure of islets from nondiabetic organ donors to high glucose levels decreased FLIP expression and increased the percentage of apoptotic terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL)-positive cells; FLIP was no longer detectable in such TUNEL-positive cells. Up-regulation of FLIP, by incubation with transforming growth factor or by transfection with an expression vector coding for FLIP, protected cells from glucose-induced apoptosis, restored cell proliferation, and improved cell function. The beneficial effects of FLIP overexpression were blocked by an antagonistic anti-Fas antibody, indicating their dependence on Fas receptor activation. The present data provide evidence for expression of FLIP in the human cell and suggest a novel approach to prevent and treat diabetes by switching Fas signaling from apoptosis to proliferation.

  9. Identification of Fas antigen associated with apoptotic cell death in murine ovary.

    PubMed

    Guo, M W; Mori, E; Xu, J P; Mori, T

    1994-09-30

    The majority of ovarian follicles including oocytes undergo atresia through a mechanism involving apoptotic cell death. The mechanisms underlying atresia remain to be clarified. In the present study, we detected the expression of the Fas antigen (Fas), which is a cell-surface protein to modulate apoptosis, in murine ovarian oocytes and hyperovulated eggs as well as in several control tissues. Substantial decline in Fas mRNA was found in atretic follicles which were injected with pregnant mare's serum gonadotropin (PMSG) on day 3. The observed decreases in mRNA of Fas could not be attributed to a generalized degradation of cellular RNA during atresia, as evidenced by the presence of intact 18S and 28S ribosomal RNA as well as constitutive expression of EF-1 alpha mRNA in atretic follicles. The data obtained indicate that apoptotic cell death of oocytes seemed to be associated with internucleosomal DNA fragmentation regulated by Fas molecule expressed in atretic ovarian follicles. PMID:7524484

  10. Cardiac Fas-Dependent and Mitochondria-Dependent Apoptosis after Chronic Cocaine Abuse

    PubMed Central

    Liou, Cher-Ming; Tsai, Shiow-Chwen; Kuo, Chia-Hua; Ting, Hua; Lee, Shin-Da

    2014-01-01

    To evaluate whether chronic cocaine abuse will increase cardiac Fas-dependent and mitochondria-dependent apoptotic pathways, thirty-two male Wistar rats at 3–4 months of age were randomly divided into a vehicle-treated group (phosphate-buffered saline, PBS, 0.5 mL, SQ per day) and a cocaine-treated group (Cocaine, 10 mg/kg, SQ per day). After 3 months of treatment, the excised left ventricles were measured by H&E staining, Western blotting, DAPI staining and TUNEL assays. More cardiac TUNEL-positive apoptotic cells were observed in the Cocaine group than the PBS group. Protein levels of TNF-alpha, Fas ligand, Fas death receptor, FADD, activated caspase-8, and activated caspase-3 (Fas-dependent apoptosis) extracted from excised hearts in the Cocaine group were significantly increased, compared to the PBS group. Protein levels of cardiac Bax, cytosolic cytochrome c, t-Bid-to-Bid, Bak-to-Bcl-xL, Bax-to-Bcl-2 ratio, activated caspase-9, and activated caspase-3 (mitochondria-dependent apoptosis) were significantly increased in the Cocaine group, compared to the PBS group. Chronic cocaine exposure appeared to activate the cardiac Fas-dependent and mitochondria-dependent apoptosis, which may indicate a possible mechanism for the development of cardiac abnormalities in humans with chronic cocaine abuse. PMID:24722570

  11. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  12. Loss of Fas apoptosis inhibitory molecule leads to spontaneous obesity and hepatosteatosis

    PubMed Central

    Huo, J; Ma, Y; Liu, J-J; Ho, Y S; Liu, S; Soh, L Y; Chen, S; Xu, S; Han, W; Hong, A; Lim, S C; Lam, K-P

    2016-01-01

    Altered hepatic lipogenesis is associated with metabolic diseases such as obesity and hepatosteatosis. Insulin resistance and compensatory hyperinsulinaemia are key drivers of these metabolic imbalances. Fas apoptosis inhibitory molecule (FAIM), a ubiquitously expressed antiapoptotic protein, functions as a mediator of Akt signalling. Since Akt acts at a nodal point in insulin signalling, we hypothesize that FAIM may be involved in energy metabolism. In the current study, C57BL/6 wild-type (WT) and FAIM-knockout (FAIM-KO) male mice were fed with normal chow diet and body weight changes were monitored. Energy expenditure, substrate utilization and physical activities were analysed using a metabolic cage. Liver, pancreas and adipose tissue were subjected to histological examination. Serum glucose and insulin levels and lipid profiles were determined by biochemical assays. Changes in components of the insulin signalling pathway in FAIM-KO mice were examined by immunoblots. We found that FAIM-KO mice developed spontaneous non-hyperphagic obesity accompanied by hepatosteatosis, adipocyte hypertrophy, dyslipidaemia, hyperglycaemia and hyperinsulinaemia. In FAIM-KO liver, lipogenesis was elevated as indicated by increased fatty acid synthesis and SREBP-1 and SREBP-2 activation. Notably, protein expression of insulin receptor beta was markedly reduced in insulin target organs of FAIM-KO mice. Akt phosphorylation was also lower in FAIM-KO liver and adipose tissue as compared with WT controls. In addition, phosphorylation of insulin receptor substrate-1 and Akt2 in response to insulin treatment in isolated FAIM-KO hepatocytes was also markedly attenuated. Altogether, our data indicate that FAIM is a novel regulator of insulin signalling and plays an essential role in energy homoeostasis. These findings may shed light on the pathogenesis of obesity and hepatosteatosis. PMID:26866272

  13. Loss of Fas apoptosis inhibitory molecule leads to spontaneous obesity and hepatosteatosis.

    PubMed

    Huo, J; Ma, Y; Liu, J-J; Ho, Y S; Liu, S; Soh, L Y; Chen, S; Xu, S; Han, W; Hong, A; Lim, S C; Lam, K-P

    2016-02-11

    Altered hepatic lipogenesis is associated with metabolic diseases such as obesity and hepatosteatosis. Insulin resistance and compensatory hyperinsulinaemia are key drivers of these metabolic imbalances. Fas apoptosis inhibitory molecule (FAIM), a ubiquitously expressed antiapoptotic protein, functions as a mediator of Akt signalling. Since Akt acts at a nodal point in insulin signalling, we hypothesize that FAIM may be involved in energy metabolism. In the current study, C57BL/6 wild-type (WT) and FAIM-knockout (FAIM-KO) male mice were fed with normal chow diet and body weight changes were monitored. Energy expenditure, substrate utilization and physical activities were analysed using a metabolic cage. Liver, pancreas and adipose tissue were subjected to histological examination. Serum glucose and insulin levels and lipid profiles were determined by biochemical assays. Changes in components of the insulin signalling pathway in FAIM-KO mice were examined by immunoblots. We found that FAIM-KO mice developed spontaneous non-hyperphagic obesity accompanied by hepatosteatosis, adipocyte hypertrophy, dyslipidaemia, hyperglycaemia and hyperinsulinaemia. In FAIM-KO liver, lipogenesis was elevated as indicated by increased fatty acid synthesis and SREBP-1 and SREBP-2 activation. Notably, protein expression of insulin receptor beta was markedly reduced in insulin target organs of FAIM-KO mice. Akt phosphorylation was also lower in FAIM-KO liver and adipose tissue as compared with WT controls. In addition, phosphorylation of insulin receptor substrate-1 and Akt2 in response to insulin treatment in isolated FAIM-KO hepatocytes was also markedly attenuated. Altogether, our data indicate that FAIM is a novel regulator of insulin signalling and plays an essential role in energy homoeostasis. These findings may shed light on the pathogenesis of obesity and hepatosteatosis.

  14. Selective blubber fatty acid mobilization in lactating gray seals (Halichoerus grypus).

    PubMed

    Arriola, Aline; Biuw, Martin; Walton, Mike; Moss, Simon; Pomeroy, Patrick

    2013-01-01

    During negative energy balance periods, fatty acids (FAs) are mobilized to cover the metabolic demands of the body. FAs from adipose tissue are selectively mobilized according to their carbon length (CL) and number of double bonds (DBs); however, studies in vivo have focused only on fasting and nonlactating animals. During lactation, UK gray seals fast for 18 d, mobilizing a large amount of lipid from blubber to sustain their own metabolic demands and the nutritional requirements of pups. We investigated FA mobilization in individual gray seal mothers from two UK colonies sampled in 2005 and 2006. Linear mixed-effects models were used to examine to what extent the mobilization observed from FAs in blubber can be explained as a function of FAs' CL and number of DBs. FAs were mobilized according to their structure, such that for a given CL, mobilization increased with the number of DBs, and for a given number of DBs, mobilization decreased as CL increased. This pattern of selective mobilization was very similar between colonies, although the relative amounts of component FAs in blubber at early lactation were different between them. FAs, which are considered crucial to pup development, were mobilized more than predicted by the model. This suggests that selective mobilization of FAs is not related solely to the physicochemical characteristics of the FAs but also to the needs of a growing pup.

  15. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants.

    PubMed Central

    Crespi, M; Vereecke, D; Temmerman, W; Van Montagu, M; Desomer, J

    1994-01-01

    Three virulence loci (fas, att, and hyp) of Rhodococcus fascians D188 have been identified on a 200-kb conjugative linear plasmid (pFiD188). The fas locus was delimited to a 6.5-kb DNA fragment by insertion mutagenesis, single homologous disruptive recombination, and in trans complementation of different avirulent insertion mutants. The locus is arranged as a large operon containing six open reading frames whose expression is specifically induced during the interaction with host plants. One predicted protein is homologous to P-450 cytochromes from actinomycetes. The putative ferredoxin component is of a novel type containing additional domains homologous to transketolases from chemoautotrophic, photosynthetic, and methylotrophic microorganisms. Genetic analysis revealed that fas encodes, in addition to the previously identified ipt, at least two new genes that are involved in fasciation development, one of which is only required on older tobacco plants. PMID:8169198

  16. Structural basis for full-spectrum inhibition of translational functions on a tRNA synthetase

    PubMed Central

    Fang, Pengfei; Yu, Xue; Jeong, Seung Jae; Mirando, Adam; Chen, Kaige; Chen, Xin; Kim, Sunghoon; Francklyn, Christopher S.; Guo, Min

    2015-01-01

    The polyketide natural product borrelidin displays antibacterial, antifungal, antimalarial, anticancer, insecticidal and herbicidal activities through the selective inhibition of threonyl-tRNA synthetase (ThrRS). How borrelidin simultaneously attenuates bacterial growth and suppresses a variety of infections in plants and animals is not known. Here we show, using X-ray crystal structures and functional analyses, that a single molecule of borrelidin simultaneously occupies four distinct subsites within the catalytic domain of bacterial and human ThrRSs. These include the three substrate-binding sites for amino acid, ATP and tRNA associated with aminoacylation, and a fourth ‘orthogonal’ subsite created as a consequence of binding. Thus, borrelidin competes with all three aminoacylation substrates, providing a potent and redundant mechanism to inhibit ThrRS during protein synthesis. These results highlight a surprising natural design to achieve the quadrivalent inhibition of translation through a highly conserved family of enzymes. PMID:25824639

  17. Analysis of fatty acid composition of sea cucumber Apostichopus japonicus using multivariate statistics

    NASA Astrophysics Data System (ADS)

    Xu, Qinzeng; Gao, Fei; Xu, Qiang; Yang, Hongsheng

    2014-11-01

    Fatty acids (FAs) provide energy and also can be used to trace trophic relationships among organisms. Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months. We examined fatty acid profiles in aestivated and non-aestivated A. japonicus using multivariate analyses (PERMANOVA, MDS, ANOSIM, and SIMPER). The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly. The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers. Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation, and long chain FAs such as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) that produced from intestinal degradation, are digested during deep aestivation. Specific changes in the fatty acid composition of A. japonicus during aestivation needs more detailed study in the future.

  18. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system.

    PubMed

    Rubinchik, S; Ding, R; Qiu, A J; Zhang, F; Dong, J

    2000-05-01

    Fas ligand (FasL) is a member of the tumor necrosis family and when bound to its receptor, Fas, induces apoptosis. It plays important roles in immune response, degenerative and lymphoproliferative diseases, development and tumorigenesis. It is also involved in generation of immune privilege sites in the eye and testis. Harnessing the power of this molecule is expected to lead to a powerful chemotherapeutic. We describe the construction and characterization of replication-deficient adenoviral vectors that express a fusion of murine FasL and green fluorescent protein (GFP). FasL-GFP retains full activity of wild-type FasL, at the same time allowing for easy visualization and quantification in both living and fixed cells. The fusion protein is under the control of a tetracycline-regulated gene expression system. Tight control of expression is achieved by creating a novel 'double recombinant' Ad vector, in which the tet-responsive element and the transactivator element are built into the opposite ends of the same vector to avoid enhancer interference. Expression can be conveniently regulated by tetracycline or its derivatives in a dose-dependent manner. The vector was able to deliver FasL-GFP gene to cells in vitro efficiently, and the expression level and function of the fusion protein was modulated by the concentration of doxycycline. This regulation allows us to produce high titers of the vector by inhibiting FasL expression in an apoptosis-resistant cell line. Induction of apoptosis was demonstrated in all cell lines tested. These results indicate that our vector is a potentially valuable tool for FasL-based gene therapy of cancer and for the study of FasL/Fas-mediated apoptosis and immune privilege. PMID:10845726

  19. Astrocyte reactivity to Fas activation is attenuated in TIMP-1 deficient mice, an in vitro study

    PubMed Central

    Ogier, Crystel; Creidy, Rita; Boucraut, José; Soloway, Paul D; Khrestchatisky, Michel; Rivera, Santiago

    2005-01-01

    Background Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a multifunctional secreted protein with pleiotropic actions, including the inhibition of matrix metalloproteinases (MMPs), cell death/survival and growth promoting activities. After inflammatory challenge, the levels of TIMP-1 are highly and selectively upregulated in astrocytes among glial cells, but little is know about its role in these neural cells. We investigated the influence of TIMP-1 null mutation in the reactivity of cultured astrocytes to pro-inflammatory stimuli with TNF-α and anti-Fas antibody. Results When compared to WT, mutant astrocytes displayed an overall increased constitutive gelatinase expression and were less responsive to Fas-mediated upregulation of MMP-9, of monocyte chemoattractant protein-1 (MCP-1) and of intercellular cell adhesion molecule-1 (ICAM-1), all markers of astrocyte inflammatory response. In contrast, TNF-α treatment induced all these factors similarly regardless of the astrocyte genotype. The incorporation of 3H-thymidin, a marker of cell proliferation, increased in wild-type (WT) astrocytes after treatment with anti-Fas antibody or recombinant TIMP-1 but not in mutant astrocytes. Finally, lymphocyte chemotaxis was differentially regulated by TNF-α in WT and TIMP-1 deficient astrocytes. Conclusion We provide evidence that the alteration of the MMP/TIMP balance in astrocytes influences their reactivity to pro-inflammatory stimuli and that Fas activation modulates the expression of members of the MMP/TIMP axis. We hypothesise that the Fas/FasL transduction pathway and the MMP/TIMP system interact in astrocytes to modulate their inflammatory response to environmental stimuli. PMID:16316466

  20. Unnatural reactive amino acid genetic code additions

    SciTech Connect

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2011-08-09

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  1. Disruption of glutamate-glutamine-GABA cycle significantly impacts on suicidal behaviour: survey of the literature and own findings on glutamine synthetase.

    PubMed

    Bernstein, Hans-Gert; Tausch, Anne; Wagner, Rebecca; Steiner, Johann; Seeleke, Patrick; Walter, Martin; Dobrowolny, Henrik; Bogerts, Bernhard

    2013-11-01

    The aetiology of suicide is complex and still not completely understood. The present communication, which consists of two parts, aims to shed some light on the role of amino acidergic neurotransmission in suicide. In the first part we provide an overview of the literature showing that with the exception of certain gamma-aminobutyric acid transporters, virtually all components of the glutamate-glutamine- gamma-aminobutyric acid cycle are, in some way or other, abnormal in suicide victims, which indicates a prominent involvement of the glutamatergic and gammaaminobutyric acidergic neurotransmitter systems in suicidal behaviour. In the second part we present own immunohistochemical findings showing that densities of glutamine synthetase expressing glial cells in the mediodorsal thalamus as well as in the dorsolateral prefrontal and orbitofrontal cortex of schizophrenic suicide completers are significantly elevated compared with controls and non-suicide individuals with schizophrenia, thus calling into question the belief that cerebral glutamine synthetase deficit is indicative of suicidal behaviour.

  2. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency.

    PubMed

    Ben Ameur, Salma; Aloulou, Hajer; Nasrallah, Fehmi; Kamoun, Thouraya; Kaabachi, Naziha; Hachicha, Mongia

    2015-02-01

    Glutathione synthetase deficiency (GSSD) is a rare disorder of glutathione metabolism with varying clinical severity. Patients may present with hemolytic anemia alone or together with acidosis and central nervous system impairment. Diagnosis is made by clinical presentation and detection of elevated concentrations of 5-oxoproline in urine and low glutathione synthetase activity in erythrocytes or cultured skin fibroblasts. The prognosis seems to depend on early diagnosis and treatment. We report a 4 months old Tunisian male infant who presented with severe metabolic acidosis with high anion gap and hemolytic anemia. High level of 5-oxoproline was detected in her urine and diagnosis of GSSD was made. Treatment consists of the correction of acidosis, blood transfusion, and supplementation with antioxidants. He died of severe metabolic acidosis and sepsis at the age of 15 months.

  3. Glutamine synthetase gene evolution: A good molecular clock

    SciTech Connect

    Pesole, G.; Lanvave, C.; Saccone, C. ); Bozzetti, M.P. ); Preparata, G. )

    1991-01-15

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves.

  4. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  5. Fatty acids, mercury, and methylmercury bioaccessibility in salmon (Salmo salar) using an in vitro model: Effect of culinary treatment.

    PubMed

    Costa, Sara; Afonso, Cláudia; Cardoso, Carlos; Batista, Irineu; Chaveiro, Nádia; Nunes, Maria Leonor; Bandarra, Narcisa Maria

    2015-10-15

    The effect of culinary treatments on the fatty acid profile, mercury (Hg), and methylmercury (MeHg) levels of salmon was studied. The bioaccessibility of fatty acids, Hg, and MeHg in raw and grilled salmon was determined. The most intense thermal treatment (grilling) did not alter the relative fatty acid (FA) profile. There were bioaccessibility differences between FAs. To the authors' knowledge, for the first time, higher bioaccessibility of the long-chain FAs than the short- and medium-chain FAs was measured. Chemical interaction phenomena seemed to play a role. On the other hand, higher levels of unsaturation decreased bioaccessibility. Two main alternative hypotheses were put forward, either lower polarity led to higher incorporation of FAs with longer hydrophobic aliphatic chain and lower number of double bonds in the emulsion present in the bioaccessible fraction or enzymatic selectivity preferentially hydrolyzed some FAs on the basis of their structure or position in the triacylglycerol molecule.

  6. Repeated batch production of theanine by coupled fermentation with energy transfer using membrane-enclosed gamma-glutamylmethylamide synthetase and dried yeast cells.

    PubMed

    Yamamoto, Sachiko; Morihara, Yosuke; Wakayama, Mamoru; Tachiki, Takashi

    2009-12-01

    Gamma-glutamylmethylamide synthetase and dried baker's yeast cells were enclosed together in a dialysis membrane tube to produce theanine repeatedly by coupled fermentation with energy transfer. The membrane-enclosed enzyme preparation (M-EEP) formed approximately 600 mM theanine from glutamic acid and ethylamine at a 100% conversion rate. M-EEP maintained its productivity of theanine during six consecutive reactions in a mixture containing NAD(+).

  7. CMT-associated mutations in glycyl- and tyrosyl-tRNA synthetases exhibit similar pattern of toxicity and share common genetic modifiers in Drosophila

    PubMed Central

    Ermanoska, Biljana; Motley, William W.; Leitão-Gonçalves, Ricardo; Asselbergh, Bob; Lee, LaTasha H.; De Rijk, Peter; Sleegers, Kristel; Ooms, Tinne; Godenschwege, Tanja A.; Timmerman, Vincent; Fischbeck, Kenneth H.; Jordanova, Albena

    2014-01-01

    Aminoacyl-tRNA synthetases are ubiquitously expressed proteins that charge tRNAs with their cognate amino acids. By ensuring the fidelity of protein synthesis, these enzymes are essential for viability of every cell. Yet, mutations in six tRNA synthetases specifically affect the peripheral nerves and cause Charcot-Marie-Tooth disease (CMT). The CMT-causing mutations in tyrosyl- and glycyl-tRNA synthetases (YARS and GARS, respectively) alter the activity of the proteins in a range of ways (some mutations do not impact charging function, while others abrogate it), making a loss of function in tRNA charging unlikely to be the cause of disease pathology. It is currently unknown which cellular mechanisms are triggered by the mutant enzymes and how this leads to neurodegeneration. Here, by expressing two pathogenic mutations (G240R, P234KY) in Drosophila, we generated a model for GARS-associated neuropathy. We observed compromised viability, and behavioral, electrophysiological and morphological impairment in flies expressing the cytoplasmic isoform of mutant GARS. Their features recapitulated several hallmarks of CMT pathophysiology and were similar to the phenotypes identified in our previously described Drosophila model of YARS-associated neuropathy. Furthermore, CG8316 and CG15599 – genes identified in a retinal degeneration screen to modify mutant YARS, also modified the mutant GARS phenotypes. Our study presents genetic evidence for common mutant-specific interactions between two CMT-associated aminoacyl-tRNA synthetases, lending support for a shared mechanism responsible for the synthetase-induced peripheral neuropathies. PMID:24807208

  8. Expression of glutamine synthetase in balloon cells: a basis of their antiepileptic role?

    PubMed

    Buccoliero, Anna Maria; Barba, Carmen; Giordano, Flavio; Baroni, Gianna; Genitori, Lorenzo; Guerrini, Renzo; Taddei, Gian Luigi

    2015-01-01

    Glutamine synthetase is an enzyme involved in the clearance of glutamate, the most potent excitatory neurotransmitter. We studied the immunohistochemical expression of glutamine synthetase in neocortical samples from 5 children who underwent surgery for pharmacoresistant epilepsy and a histological diagnosis of focal cortical dysplasia IIb. In all cases, balloon cells, but not dysmorphic neurons, were immunopositive for glutamine synthetase. This finding suggests that balloon cells can be involved in the neutralization of glutamate and play a protective anti-seizure role.

  9. Expansion of cytokine-producing CD4-CD8- T cells associated with abnormal Fas expression and hypereosinophilia

    PubMed Central

    1996-01-01

    The mechanisms of sustained overproduction of eosinophils in the idiopathic hypereosinophilic syndrome and in some human immunodeficiency virus (HIV)-1-infected individuals are largely unknown. We hypothesized that T cells may release soluble products that regulate eosinophilia in these patients, as has been previously shown in bronchial asthma. We identified one patient with idiopathic hypereosinophilic syndrome and one HIV-1-infected individual with associated hypereosinophilia who demonstrated high numbers of CD4-CD8- T cells in peripheral blood. CD4-CD8- T cells from both patients, although highly activated, did not express functional Fas receptors. In one case, the lack of functional Fas receptors was associated with failure of Fas mRNA and protein expression, and in another, expression of a soluble form of the Fas molecule that may have antagonized normal signaling of Fas ligand. In contrast to the recently described lymphoproliferative/autoimmune syndrome, which is characterized by accumulation of CD4-CD8- T cells and mutations within the Fas gene, this study suggests somatic variations in Fas expression and function quite late in life. Both genetic and somatic abnormalities in regulation of the Fas gene are therefore associated with failures to undergo T cell apoptosis. Furthermore, the expanded population of CD4- CD8- T cells from both patients elaborated cytokines with antiapoptotic properties for eosinophils, indicating a major role of these T cells in the development of eosinophilia. Thus, this study demonstrates a sequential dysregulation of apoptosis in different cell types. PMID:8642249

  10. Roles of Fas/Fasl, Bcl-2/Bax, and Caspase-8 in rat nonalcoholic fatty liver disease pathogenesis.

    PubMed

    Li, C P; Li, J H; He, S Y; Li, P; Zhong, X L

    2014-05-23

    The aim of this study was to investigate the roles of Fas/FasL, Bcl-2/Bax, and Caspase-8 mRNA expressions in nonalcoholic fatty liver disease (NAFLD). The apoptosis percentage was measured by flow cytometry, the immunohistochemical assay was performed for the determination of Fas, FasL, Bcl-2, and Bax expressions, and a real-time polymerase chain reaction (PCR) assay was performed to detect Caspase-8 mRNA expression. Flow cytometry showed that the apoptosis percentage of the rat liver in the experimental group increased, which increased more obviously with the extension of modeling time. Immunohistochemistry showed that with increasing hepatic steatosis, Fas and FasL protein staining intensified and the number of positive cells increased; the number of positive cells for Bcl-2 and Bax gradually increased on the 4th, 8th, and 12th weeks in the experimental group, whereas the Bcl-2/Bax ratio decreased. The real-time PCR assay showed that Caspase-8 mRNA expression increased with increasing hepatic steatosis and inflammation, exhibiting a progressively rising trend. Hepatocyte apoptosis could promote NAFLD progression; Fas, FasL, and Caspase-8 mRNA activation were important contributing factors to NAFLD. The upregulation of Bax and Bcl-2 expression might be one important mechanism of the apoptosis in NAFLD.

  11. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus

    PubMed Central

    Hirata, Akiko; Kishino, Shigenobu; Park, Si-Bum; Takeuchi, Michiki; Kitamura, Nahoko; Ogawa, Jun

    2015-01-01

    Hydroxy FAs, one of the gut microbial metabolites of PUFAs, have attracted much attention because of their various bioactivities. The purpose of this study was to identify lactic acid bacteria with the ability to convert linoleic acid (LA) to hydroxy FAs. A screening process revealed that a gut bacterium, Lactobacillus acidophilus NTV001, converts LA mainly into 13-hydroxy-cis-9-octadecenoic acid and resulted in the identification of the hydratase responsible, fatty acid hydratase 1 (FA-HY1). Recombinant FA-HY1 was purified, and its enzymatic characteristics were investigated. FA-HY1 could convert not only C18 PUFAs but also C20 and C22 PUFAs. C18 PUFAs with a cis carbon-carbon double bond at the Δ12 position were converted into the corresponding 13-hydroxy FAs. Arachidonic acid and DHA were converted into the corresponding 15-hydroxy FA and 14-hydroxy FA, respectively. To the best of our knowledge, this is the first report of a bacterial FA hydratase that can convert C20 and C22 PUFAs into the corresponding hydroxy FAs. These novel hydroxy FAs produced by using FA-HY1 should contribute to elucidating the bioactivities of hydroxy FAs. PMID:25966711

  12. Double-sieving-defective aminoacyl-tRNA synthetase causes protein mistranslation and affects cellular physiology and development

    PubMed Central

    Lu, Jiongming; Bergert, Martin; Walther, Anita; Suter, Beat

    2014-01-01

    Aminoacyl-tRNA synthetases (aaRSs) constitute a family of ubiquitously expressed essential enzymes that ligate amino acids to their cognate tRNAs for protein synthesis. Recently, aaRS mutations have been linked to various human diseases; however, how these mutations lead to diseases has remained unclear. In order to address the importance of aminoacylation fidelity in multicellular organisms, we generated an amino-acid double-sieving model in Drosophila melanogaster using phenylalanyl-tRNA synthetase (PheRS). Double-sieving-defective mutations dramatically misacylate non-cognate Tyr, induce protein mistranslation and cause endoplasmic reticulum stress in flies. Mutant adults exhibit many defects, including loss of neuronal cells, impaired locomotive performance, shortened lifespan and smaller organ size. At the cellular level, the mutations reduce cell proliferation and promote cell death. Our results also reveal the particular importance of the first amino-acid recognition sieve. Overall, these findings provide new mechanistic insights into how malfunctioning of aaRSs can cause diseases. PMID:25427601

  13. Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase

    SciTech Connect

    Bonnefond, Luc; Frugier, Magali; Touzé, Elodie; Lorber, Bernard; Florentz, Catherine; Giegé, Richard Rudinger-Thirion, Joëlle; Sauter, Claude

    2007-04-01

    Crystals of human mitochondrial tyrosyl-tRNA synthetase lacking the C-terminal S4-like domain diffract to 2.7 Å resolution and are suitable for structure determination. Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA{sup Tyr} charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4{sub 3}2{sub 1}2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 Å resolution. Complete data sets could be collected and led to structure solution by molecular replacement.

  14. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells

    PubMed Central

    Köhrer, Caroline; Sullivan, Eric L.; RajBhandary, Uttam L.

    2004-01-01

    We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Activity of each suppressor tRNA is dependent upon the expression of E.coli glutaminyl-tRNA synthetase, indicating that none of the suppressor tRNAs are aminoacylated by any of the twenty aminoacyl-tRNA synthetases in the mammalian cytoplasm. Amber, ochre and opal suppressor tRNAs with a wide range of activities in suppression (increases of up to 36, 156 and 200-fold, respectively) have been generated by introducing further mutations into the suppressor tRNA genes. The most active suppressor tRNAs have been used in combination to concomitantly suppress two or three termination codons in an mRNA. We discuss the potential use of these 21st synthetase-suppressor tRNA pairs for the site-specific incorporation of two or, possibly, even three different unnatural amino acids into proteins and for the regulated suppression of amber, ochre and opal termination codons in mammalian cells. PMID:15576346

  15. MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating tBid Recruitment to Mitochondria.

    PubMed

    Tan, Chong Teik; Zhou, Qi-Ling; Su, Yu-Chin; Fu, Nai Yang; Chang, Hao-Chun; Tao, Ran N; Sukumaran, Sunil K; Baksh, Shairaz; Tan, Yee-Joo; Sabapathy, Kanaga; Yu, Chun-Dong; Yu, Victor C

    2016-06-28

    Fas apoptotic signaling regulates diverse physiological processes. Acute activation of Fas signaling triggers massive apoptosis in liver. Upon Fas receptor stimulation, the BH3-only protein Bid is cleaved into the active form, tBid. Subsequent tBid recruitment to mitochondria, which is facilitated by its receptor MTCH2 at the outer mitochondrial membrane (OMM), is a critical step for commitment to apoptosis via the effector proteins Bax or Bak. MOAP-1 is a Bax-binding protein enriched at the OMM. Here, we show that MOAP-1-deficient mice are resistant to Fas-induced hepatocellular apoptosis and lethality. In the absence of MOAP-1, mitochondrial accumulation of tBid is markedly impaired. MOAP-1 binds to MTCH2, and this interaction appears necessary for MTCH2 to engage tBid. These findings reveal a role for MOAP-1 in Fas signaling in the liver by promoting MTCH2-mediated tBid recruitment to mitochondria. PMID:27320914

  16. Adenine nucleotides as allosteric effectors of pea seed glutamine synthetase.

    PubMed

    Knight, T J; Langston-Unkefer, P J

    1988-08-15

    The effects of adenine nucleotides on pea seed glutamine synthetase (EC 6.3.1.2) activity were examined as a part of our investigation of the regulation of this octameric plant enzyme. Saturation curves for glutamine synthetase activity versus ATP with ADP as the changing fixed inhibitor were not hyperbolic; greater apparent Vmax values were observed in the presence of added ADP than the Vmax observed in the absence of ADP. Hill plots of data with ADP present curved upward and crossed the plot with no added ADP. The stoichiometry of adenine nucleotide binding to glutamine synthetase was examined. Two molecules of [gamma-32P]ATP were bound per subunit in the presence of methionine sulfoximine. These ATP molecules were bound at an allosteric site and at the active site. One molecule of either [gamma-32P]ATP or [14C]ADP bound per subunit in the absence of methionine sulfoximine; this nucleotide was bound at an allosteric site. ADP and ATP compete for binding at the allosteric site, although ADP was preferred. ADP binding to the allosteric site proceeded in two kinetic phases. A Vmax value of 1.55 units/mg was measured for glutamine synthetase with one ADP tightly bound per enzyme subunit; a Vmax value of 0.8 unit/mg was measured for enzyme with no adenine nucleotide bound at the allosteric site. The enzyme activation caused by the binding of ADP to the allosteric sites was preceded by a lag phase, the length of which was dependent on the ADP concentration. Enzyme incubated in 10 mM ADP bound approximately 4 mol of ADP/mol of native enzyme before activation was observed; the activation was complete when 7-8 mol of ADP were bound per mol of the octameric, native enzyme. The Km for ATP (2 mM) was not changed by ADP binding to the allosteric sites. ADP was a simple competitive inhibitor (Ki = 0.05 mM) of ATP for glutamine synthetase with eight molecules of ADP tightly bound to the allosteric sites of the octamer. Binding of ATP to the allosteric sites led to marked

  17. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant.

    PubMed

    Konishi, Masaaki; Nishi, Shinro; Fukuoka, Tokuma; Kitamoto, Dai; Watsuji, Tomo-O; Nagano, Yuriko; Yabuki, Akinori; Nakagawa, Satoshi; Hatada, Yuji; Horiuchi, Jun-Ichi

    2014-08-01

    Glycolipid biosurfactant-producing bacteria were isolated from deep-sea sediment collected from the Okinawa Trough. Isolate BS15 produced the largest amount of the glycolipid, generating up to 6.31 ± 1.15 g l(-1) after 4 days at 20 °C. Glucose was identified in the hydrolysate of the purified major component of the biosurfactant glycolipid. According to gas chromatography/mass spectrometry analysis, the hydrophobic moieties in the major component were hexadecanoate, octadecanoate, 3-hydroxyhexadecanoate, 2-hydroxyoctanoate, and succinate. The molecular weight of the purified major glycolipid was calculated to be 1,211, while (1)H and (13)C nuclear magnetic resonance spectra confirmed that the major component consisted of 2 mol of α-glucoside and 1 mol of β-glucoside. The molecular structure was assigned as novel trisaccharide-type glycolipid biosurfactant, glucotriose lipids. The critical micelle concentration of the purified major glycolipid was 2.3 × 10(-6) M, with a surface tension of 29.5 mN m(-1). Phylogenetic analysis showed isolate BS15 was closely related to a Rhodococcus strains isolated from Antarctica, and to Rhodococcus fascians, a phytopathogen. PCR analysis showed that the fasA, fasB, fasC, fasD, fasE, and fasF genes, which are involved in phytohormone-like cytokinin production, were not present in the genome of BS15; however, analysis of a draft genome sequence of BS15 (5.5 Mb) identified regions with 31 %, 53 %, 46 %, 30 %, and 31 % DNA sequence identity to the fasA, fasB, fasC, and fasD genes, respectively.

  18. Isolation and characterization of rat liver microsomal R-ibuprofenoyl-CoA synthetase.

    PubMed

    Brugger, R; García Alía, B; Reichel, C; Waibel, R; Menzel, S; Brune, K; Geisslinger, G

    1996-10-11

    Microsomal long-chain acyl-CoA synthetase (EC 6.1.2.3.) has been suggested to be involved in the stereoselective formation of the CoA thioester of ibuprofen. In this study, we demonstrated that the microsomal enzyme from rat liver responsible for palmitoyl-CoA synthesis also catalyzes the formation of R-ibuprofenoyl-CoA in a Mg(2+)- and ATP-dependent process. Long-chain acyl-CoA synthetase from rat liver microsomes was purified to homogeneity as evidenced by SDS-gel electrophoresis. Simultaneous measurements of palmitoyl-CoA and R-ibuprofenoyl-CoA formation with HPLC in various fractions and purification steps during protein isolation revealed a high correlation between both activities. The purification procedure included solubilization of the microsomes obtained from rat livers with Triton X-100 and subsequent chromatography of the 100,000 x g supernatant on blue-sepharose, hydroxyapatite, and phosphocellulose. The purified enzyme exhibited an apparent molecular weight of 72 kDa as estimated by SDS gel electrophoresis, with specific activities of 71 nmol.min-1.mg-1 protein and 901 nmol.min-1.mg-1 protein for formation of R-ibuprofenoyl-CoA and palmitoyl-CoA, respectively. Palmitoyl-CoA formation catalyzed by the purified enzyme exhibited biphasic kinetics indicative of two isoforms, a high-affinity (KM 0.13 +/- 0.11 microM), low-capacity form and a low-affinity (KM 81 +/- 11.5 microM), high-capacity form. In contrast, measurement of R-ibuprofenoyl-CoA synthesis over a concentration range from 5 to 3000 microM showed the participation of a single CoA ligase with a KM of 184 +/- 19 microM, corresponding to the low-affinity isoform of palmitoyl-CoA synthesis with a marked enantioselectivity towards the R-form of ibuprofen. R-ibuprofenoyl-CoA formation of the enzyme preparation was inhibited by palmitic acid (KI 13.5 +/- 0.5 microM) and S-ibuprofen (KI 405 +/- 10 microM). In summary, these data give strong evidence for the identity of R-ibuprofenoyl-CoA and long

  19. The Effectiveness of Peer-Led FAS/FAE Prevention Presentations in Middle and High Schools

    ERIC Educational Resources Information Center

    Boulter, Lyn

    2007-01-01

    Pregnant women and women who might become pregnant, including middle school- and high school-age adolescents, continue to consume alcohol, placing themselves at risk of having a child with the effects of prenatal alcohol exposure. However, most prevention programs that attempt to increase public awareness and knowledge of FAS and related disorders…

  20. Inactivation of hypothalamic FAS protects mice from diet-induced obesity and inflammation.

    PubMed

    Chakravarthy, Manu V; Zhu, Yimin; Yin, Li; Coleman, Trey; Pappan, Kirk L; Marshall, Connie A; McDaniel, Michael L; Semenkovich, Clay F

    2009-04-01

    Obesity promotes insulin resistance and chronic inflammation. Disrupting any of several distinct steps in lipid synthesis decreases adiposity, but it is unclear if this approach coordinately corrects the environment that propagates metabolic disease. We tested the hypothesis that inactivation of FAS in the hypothalamus prevents diet-induced obesity and systemic inflammation. Ten weeks of high-fat feeding to mice with inactivation of FAS (FASKO) limited to the hypothalamus and pancreatic beta cells protected them from diet-induced obesity. Though high-fat fed FASKO mice had no beta-cell phenotype, they were hypophagic and hypermetabolic, and they had increased insulin sensitivity at the liver but not the periphery as demonstrated by hyperinsulinemic-euglycemic clamps, and biochemically by increased phosphorylated Akt, glycogen synthase kinase-3beta, and FOXO1 compared with wild-type mice. High-fat fed FASKO mice had decreased excretion of urinary isoprostanes, suggesting less oxidative stress and blunted tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6) responses to endotoxin, suggesting less systemic inflammation. Pair-feeding studies demonstrated that these beneficial effects were dependent on central FAS disruption and not merely a consequence of decreased adiposity. Thus, inducing central FAS deficiency may be a valuable integrative strategy for treating several components of the metabolic syndrome, in part by correcting hepatic insulin resistance and suppressing inflammation.

  1. Activation of TIM1 induces colon cancer cell apoptosis via modulating Fas ligand expression.

    PubMed

    Wang, Hao; Zhang, Xueyan; Sun, Wenjing; Hu, Xiaocui; Li, Xiaolin; Fu, Songbin; Liu, Chen

    2016-04-29

    The pathogenesis of colon cancer is unclear. It is proposed that TIM1 has an association with human cancer. The present study aims to investigate the role of TIM1 activation in the inhibition of human colon cancer cells. In this study, human colon cancer cell line, HT29 and T84 cells were cultured. The expression of TIM1 was assessed by real time RT-PCR and Western blotting. The TIM1 on the cancer cells was activated in the culture by adding recombinant TIM4. The chromatin structure at the FasL promoter locus was assessed by chromatin immunoprecipitation. The apoptosis of the cancer cells was assessed by flow cytometry. The results showed that human colon cancer cell lines, HT29 cells and T84 cells, expressed TIM1. Activation of TIM1 by exposing the cells to TIM4 significantly increased the frequency of apoptotic colon cancer cells. The expression of FasL was increased in the cancer cells after treating by TIM4. Blocking Fas or FasL abolished the exposure to TIM4-induced T84 cell apoptosis. In conclusion, HT29 cells and T84 cells express TIM1; activation TIM1 can induce the cancer cell apoptosis. TIM1 may be a novel therapeutic target of colon cancer.

  2. The Role of Prosody in a Case of Foreign Accent Syndrome (FAS)

    ERIC Educational Resources Information Center

    Katz, William F.; Garst, Diane M.; Levitt, June

    2008-01-01

    Foreign accent syndrome (FAS) is a rare disorder characterized by the emergence of a perceived foreign accent following brain damage. The symptomotology, functional bases, and neural substrates of this disorder are still being elucidated. In this case study, acoustic analyses were performed on the speech of a 46-year old monolingual female who…

  3. 7 CFR 1580.203 - Determination of eligibility and certification by the Administrator (FAS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Determination of eligibility and certification by the Administrator (FAS). 1580.203 Section 1580.203 Agriculture Regulations of the Department of Agriculture (Continued) FOREIGN AGRICULTURAL SERVICE, DEPARTMENT OF AGRICULTURE TRADE ADJUSTMENT ASSISTANCE FOR...

  4. The Global Flood Awareness System (GloFAS) - Overview of Recent Developments

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Zajac, Z.; Revilla-Romero, B.; Ntegeka, V.; Salamon, P.; Thielen, J.; Burek, P.; Kalas, M.; Alfieri, L.; Beck, H.

    2014-12-01

    The Global Flood Awareness System (GloFAS) is an ensemble river discharge forecasting system developed and maintained jointly between the European Commission - Joint Research Centre (JRC) and the European Centre for Medium-range Weather Forecasts (ECMWF). The system consists of a cascade of two models, where the surface and sub-surface runoffs are computed by the Hydrology revised Tiled ECMWF Scheme for Surface Exchange over Land (HTESSEL) while the runoff routing and other hydrodynamic components are modeled by the LISFLOOD model. Since its set up in July 2011, GloFAS has been producing probabilistic discharge forecasts on daily basis at 0.1o spatial resolution with global coverage. The system is undergoing some updates that focus on the improvement of the hydrodynamic model, which include incorporation of an updated river network and river width maps, inclusion of lake and reservoir modules and a better representation of transmission losses. Additionally, a new web interface and web service for communication and visualization of the discharge forecast has been developed. Finally, the use of ECMWF re-forecasts as reference climatology to derive flood warning thresholds in comparison to those of ERA-Interim has also been assessed. In this work we present: 1) an overview of recent advances of GloFAS, 2) the results of an evaluation study which used ECMWF re-forecasts to derive global flood warning thresholds and 3) the role of the GloFAS in the recently launched Global Flood Partnership (GFP).

  5. Fetal Alcohol Syndrome (FAS), Fetal Alcohol Effects (FAE): Implications For Rural Classrooms.

    ERIC Educational Resources Information Center

    Schenck, Rosalie; And Others

    This report reviews literature on the effects of maternal alcohol consumption on the fetus and the resulting impact on the learning abilities and behavior of children born with fetal alcohol syndrome (FAS). Recent reports indicate that an estimated 73 percent of infants are exposed to alcohol before birth, resulting in varying degrees of learning…

  6. 7 CFR 1484.54 - What expenditures may FAS reimburse under the Cooperator program?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Cooperator program? 1484.54 Section 1484.54 Agriculture Regulations of the Department of Agriculture... PROGRAMS TO HELP DEVELOP FOREIGN MARKETS FOR AGRICULTURAL COMMODITIES Contributions and Reimbursements § 1484.54 What expenditures may FAS reimburse under the Cooperator program? (a) A Cooperator may...

  7. 75 FR 13329 - Implications of Financial Accounting System (FAS) 166 on SBA Guaranteed Loan Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... ADMINISTRATION Implications of Financial Accounting System (FAS) 166 on SBA Guaranteed Loan Programs AGENCY... Administration (SBA) is soliciting information and views from the public on: (1) The effect that the accounting changes mandated by the Financial Accounting Standards Board (FASB) in Financial Accounting Standard...

  8. XIAP acts as a switch between type I and type II FAS-induced apoptosis signalling

    PubMed Central

    Jost, Philipp J.; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D.; Nachbur, Ueli; Huang, David C.S.; Bouillet, Philippe; Thomas, Helen E.; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2010-01-01

    FAS (APO-1/CD95) and its physiological ligand, FASL, regulate apoptotic death of unwanted or dangerous cells in many tissues, functioning as a guardian against autoimmunity and cancer development1-4. Distinct cell types differ in the mechanisms by which the ‘death receptor’ FAS triggers their apoptosis1-4. In type I cells, such as lymphocytes, activation of ‘effector caspases’ by FAS-induced activation of caspase-8 suffices for cell killing whereas in type II cells, including hepatocytes and pancreatic β-cells, amplification of the caspase cascade through caspase-8 mediated activation of the pro-apoptotic BCL-2 family member BID5 is essential6-8. Here we show, that loss of X-chromosome linked inhibitor of apoptosis (XIAP)9,10 function by gene-targeting or treatment with a second mitochondria-derived activator of caspases (SMAC11, also called DIABLO12: direct IAP binding protein with low pI) mimetic drug rendered hepatocytes independent of BID for FAS-induced apoptosis signalling. These results show that XIAP is the critical discriminator between type I versus type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions. PMID:19626005

  9. XIAP discriminates between type I and type II FAS-induced apoptosis.

    PubMed

    Jost, Philipp J; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D; Nachbur, Ueli; Huang, David C S; Bouillet, Philippe; Thomas, Helen E; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2009-08-20

    FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions.

  10. An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers

    PubMed Central

    Chakrabandhu, Krittalak; Huault, Sébastien; Durivault, Jérôme; Lang, Kévin; Ta Ngoc, Ly; Bole, Angelique; Doma, Eszter; Dérijard, Benoit; Gérard, Jean-Pierre; Pierres, Michel; Hueber, Anne-Odile

    2016-01-01

    Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. PMID:26942442

  11. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.

    PubMed

    Dutta, Saheb; Choudhury, Kaberi; Banik, Sindrila Dutta; Nandi, Nilashis

    2014-03-01

    The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the

  12. The Fas death pathway controls coordinated expansions of type 1 CD8 and type 2 CD4 T cells in Trypanosoma cruzi infection.

    PubMed

    Guillermo, Landi V Costilla; Silva, Elisabeth M; Ribeiro-Gomes, Flávia L; De Meis, Juliana; Pereira, Wânia F; Yagita, Hideo; DosReis, George A; Lopes, Marcela F

    2007-04-01

    We investigated the role of the Fas ligand (FasL)/Fas death pathway on apoptosis and cytokine production by T cells in Trypanosoma cruzi infection. Anti-FasL, but not anti-TNF-alpha or anti-TRAIL, blocked activation-induced cell death of CD8 T cells and increased secretion of IL-10 and IL-4 by CD4 T cells from T. cruzi-infected mice. CD4 and CD8 T cells up-regulated Fas/FasL expression during T. cruzi infection. However, Fas expression increased earlier in CD8 T cells, and a higher proportion of CD8 T cells was activated and expressed IFN-gamma compared with CD4 T cells. Injection of anti-FasL in infected mice reduced parasitemia and CD8 T cell apoptosis and increased the ratio of CD8:CD4 T cells recovered from spleen and peritoneum. FasL blockade increased the number of activated T cells, enhanced NO production, and reduced parasite loads in peritoneal macrophages. Injection of anti-FasL increased IFN-gamma secretion by splenocytes responding to T. cruzi antigens but also exacerbated production of type 2 cytokines IL-10 and IL-4 at a late stage of acute infection. These results indicate that the FasL/Fas death pathway regulates apoptosis and coordinated cytokine responses by type 1 CD8 and type 2 CD4 T cells in T. cruzi infection.

  13. Mobilisation of blubber fatty acids of northern elephant seal pups (Mirounga angustirostris) during the post-weaning fast.

    PubMed

    Louis, Caroline; Perdaens, Laurent; Suciu, Stéphanie; Tavoni, Stephen K; Crocker, Daniel E; Debier, Cathy

    2015-05-01

    Northern elephant seal pups were longitudinally sampled at Año Nuevo State Reserve during the post-weaning fast, in order to evaluate the changes of fatty acid (FA) profiles in serum as well as in the inner and outer layers of blubber. The major FAs of inner and outer blubber layers were broadly similar to those found in NES maternal milk previously measured, suggesting a direct deposit of dietary FAs in the blubber during the suckling period. The outer blubber layer contained more medium-chain monounsaturated FAs that contribute in keeping the fluidity of this tissue at cold temperatures. It was compensated by higher proportions of saturated FAs in the inner blubber layer. The FA signature of inner blubber, the layer that is mainly mobilised during energy deprivation, slightly differed from the signature of serum. There were greater proportions of medium-chain saturated FAs and ω-6 polyunsaturated FAs, and lower proportions of long-chain saturated FAs, medium-chain monounsaturated FAs and long-chain monounsaturated FAs in serum as compared to inner blubber. We also demonstrated that lipophilicity is the main factor governing the mobilisation of FAs from blubber. The least lipophilic FAs were preferentially hydrolysed from blubber, leading to an enrichment of the more lipophilic FAs in this tissue with the progression of the fast. The expression levels of HSL and ATGL, which are two enzymes involved in the lipolytic process, remained stable during the post-weaning fast. This suggests that the pups have developed the enzymatic mechanisms for an efficient lipolysis as soon as the first week of fast.

  14. Mobilisation of blubber fatty acids of northern elephant seal pups (Mirounga angustirostris) during the post-weaning fast.

    PubMed

    Louis, Caroline; Perdaens, Laurent; Suciu, Stéphanie; Tavoni, Stephen K; Crocker, Daniel E; Debier, Cathy

    2015-05-01

    Northern elephant seal pups were longitudinally sampled at Año Nuevo State Reserve during the post-weaning fast, in order to evaluate the changes of fatty acid (FA) profiles in serum as well as in the inner and outer layers of blubber. The major FAs of inner and outer blubber layers were broadly similar to those found in NES maternal milk previously measured, suggesting a direct deposit of dietary FAs in the blubber during the suckling period. The outer blubber layer contained more medium-chain monounsaturated FAs that contribute in keeping the fluidity of this tissue at cold temperatures. It was compensated by higher proportions of saturated FAs in the inner blubber layer. The FA signature of inner blubber, the layer that is mainly mobilised during energy deprivation, slightly differed from the signature of serum. There were greater proportions of medium-chain saturated FAs and ω-6 polyunsaturated FAs, and lower proportions of long-chain saturated FAs, medium-chain monounsaturated FAs and long-chain monounsaturated FAs in serum as compared to inner blubber. We also demonstrated that lipophilicity is the main factor governing the mobilisation of FAs from blubber. The least lipophilic FAs were preferentially hydrolysed from blubber, leading to an enrichment of the more lipophilic FAs in this tissue with the progression of the fast. The expression levels of HSL and ATGL, which are two enzymes involved in the lipolytic process, remained stable during the post-weaning fast. This suggests that the pups have developed the enzymatic mechanisms for an efficient lipolysis as soon as the first week of fast. PMID:25622775

  15. Comparison of histidine recognition in human and trypanosomatid histidyl-tRNA synthetases

    PubMed Central

    Koh, Cho Yeow; Wetzel, Allan B; de van der Schueren, Will J.; Hol, Wim G. J.

    2014-01-01

    As part of a project aimed at obtaining selective inhibitors and drug-like compounds targeting tRNA synthetases from trypanosomatids, we have elucidated the crystal structure of human cytosolic histidyl-tRNA synthetase (Hs-cHisRS) in complex with histidine in order to be able to compare human and parasite enzymes. The resultant structure of Hs-cHisRS·His represents the substrate-bound state (H-state) of the enzyme. It provides an interesting opportunity to compare with ligand-free and imidazole-bound structures Hs-cHisRS published recently, both of which represent the ligand-free state (F-state) of the enzyme. The H-state Hs-cHisRS undergoes conformational changes in active site residues and several conserved motif of HisRS, compared to F-state structures. The histidine forms eight hydrogen bonds with HisRS of which six engage the amino and carboxylate groups of this amino acid. The availability of published imidazole-bound structure provides a unique opportunity to dissect the structural roles of individual chemical groups of histidine. Remarkably, the analysis revealed the importance of the amino and carboxylate groups, of the histidine in leading to these dramatic conformational changes of the H-state. Further, comparison with previously published trypanosomatid HisRS structures reveals a pocket in the F-state of the parasite enzyme that may provide opportunities for developing specific inhibitors of Trypanosoma brucei HisRS. PMID:25151410

  16. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase.

    PubMed Central

    Fraisl, Peter; Forss-Petter, Sonja; Zigman, Mihaela; Berger, Johannes

    2004-01-01

    It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely. PMID:14516277

  17. Succinyl-CoA Synthetase: New Antigen Candidate of Bartonella bacilliformis

    PubMed Central

    Gomes, Cláudia; Palma, Noemí; Pons, Maria J.; Magallón-Tejada, Ariel; Sandoval, Isabel; Tinco-Valdez, Carmen; Gutarra, Carlos; del Valle-Mendoza, Juana; Ruiz, Joaquim; Matsuoka, Mayumi

    2016-01-01

    Background Bartonella bacilliformis is the causative agent of Carrion’s disease, a neglected illness with mortality rates of 40–85% in the absence of treatment. The lack of a diagnostic technique to overcome misdiagnosis and treat asymptomatic carriers is of note. This study aimed to identify new B. bacilliformis antigenic candidates that could lead to a new diagnostic tool able to be implemented in endemic rural areas. Methodology/Principal Findings Blood (n = 198) and serum (n = 177) samples were collected in northern Peru. Clinical data were recorded. Specific 16S rRNA amplification by RT-PCR, IFA and ELISA for IgM/IgG with whole cells as antigens was done. Western blot analysis and N-terminal amino acid sequencing detected seroreactive proteins. ELISAs for IgM/IgG for the antigenic candidates were performed. Of the population 33.3% reported at least one symptom compatible with Carrion’s disease; 25.4% (IFA), 27.1% (ELISA-IgG), 33.9% (ELISA-IgM) and 38.9% (RT-PCR) of samples were positive. Four proteins were considered potential antigenic candidates, including two new antigenic candidates, succinyl-CoA synthetase subunit α (SCS-α) and succinyl-CoA synthetase subunit β (SCS-β). On Western blot both Pap31 and SCS-α interacted with IgM, while GroEL and SCS-β interacted with IgG. The presence of specific antibodies against the antigenic candidates varied from 34.5% (IgG against SCS-α) to 97.2% (IgM against Pap31). Conclusions/Significance RT-PCR and the high levels of positivity for specific ELISAs demonstrate high levels of B. bacilliformis exposure and asymptomatic carriers among inhabitants. The new antigens identified might be used as a new rapid diagnostic tool to diagnose acute Carrion’s disease and identify asymptomatic carriers. PMID:27627803

  18. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana.

    PubMed Central

    Lam, H M; Peng, S S; Coruzzi, G M

    1994-01-01

    Here, we characterize a cDNA encoding a glutamine-dependent asparagine synthetase (ASN1) from Arabidopsis thaliana and assess the effects of metabolic regulation on ASN1 mRNA levels. Sequence analysis shows that the predicted ASN1 peptide contains a purF-type glutamine-binding domain. Southern blot experiments and cDNA clone analysis suggest that ASN1 is the only gene encoding glutamine-dependent asparagine synthetase in A. thaliana. The ASN1 gene is expressed predominantly in shoot tissues, where light has a negative effect on its mRNA accumulation. This negative effect of light on ASN1 mRNA levels was shown to be mediated, at least in part, via the photoreceptor phytochrome. We also investigated whether light-induced changes in nitrogen to carbon ratios might exert a metabolic regulation of the ASN1 mRNA accumulation. These experiments demonstrated that the accumulation of ASN1 mRNA in dark-grown plants is strongly repressed by the presence of exogenous sucrose. Moreover, this sucrose repression of ASN1 expression can be partially rescued by supplementation with exogenous amino acids such as asparagine, glutamine, and glutamate. These findings suggest that the expression of the ASN1 gene is under the metabolic control of the nitrogen to carbon ratio in cells. This is consistent with the fact that asparagine, synthesized by the ASN1 gene product, is a favored compound for nitrogen storage and nitrogen transport in dark-grown plants. We have put forth a working model suggesting that when nitrogen to carbon ratios are high, the gene product of ASN1 functions to re-direct the flow of nitrogen into asparagine, which acts as a shunt for storage and/or long-distance transport of nitrogen. PMID:7846154

  19. Interleukin (IL)-12 and IL-12 gene transfer up-regulate Fas expression in human osteosarcoma and breast cancer cells.

    PubMed

    Lafleur, E A; Jia, S F; Worth, L L; Zhou, Z; Owen-Schaub, L B; Kleinerman, E S

    2001-05-15

    Expression of Fas (CD95, APO-1), a cell surface receptor capable of inducing ligand-mediated apoptosis, is involved in tissue homeostasis and elimination of targeted cells by natural killer and T cells. Corruption of this pathway, such as reduced Fas expression, can allow tumor cells to escape elimination and promote metastatic potential. In this study, the status of Fas expression has been examined in the parental SAOS human osteosarcoma cells that do not metastasize and in selected variants that cause lung metastases in 16 weeks (LM2) or 8 weeks (LM6) after i.v. injection into nude mice. Fas expression correlated with the metastatic potentials of the three cell lines. Northern and fluorescence-activated cell-sorting analyses indicated that LM6 cells expressed Fas at a lower level than seen in the parental cells. Infection of the LM6 cells with an adenoviral vector containing the murine interleukin (IL)-12 gene (AD:mIL-12) or treatment with recombinant murine IL-12 resulted in a dose-dependent up-regulation of FAS: The up-regulation of Fas by IL-12 was also demonstrated in human etoposide-resistant MDA-MB-231 breast cancer cells. [(3)H]Thymidine growth inhibition studies indicated that the cell surface Fas induced after IL-12 exposure was functional and able to mediate cell death on cross-linking with anti-FAS: We also demonstrate that this effect is independent of IFN-gamma. Whereas these cell lines are sensitive to IFN-gamma, incubation with IFN-gamma does not increase susceptibility to Fas-mediated cell death, nor do these cells produce IFN-gamma with or without IL-12 treatment. We hypothesize that expression of Fas may play a role in the elimination of metastatic tumor cells in the lung, an organ in which Fas ligand is expressed. The antitumor activity of IL-12 may be secondary in part to its ability to up-regulate Fas expression on tumor cells, which subsequently increases immune-mediated destruction of osteosarcoma cells.

  20. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli.

    PubMed

    Yu, Xingye; Liu, Tiangang; Zhu, Fayin; Khosla, Chaitan

    2011-11-15

    Microbial fatty acid derivatives are emerging as promising alternatives to fossil fuel derived transportation fuels. Among bacterial fatty acid synthases (FAS), the Escherichia coli FAS is perhaps the most well studied, but little is known about its steady-state kinetic behavior. Here we describe the reconstitution of E. coli FAS using purified protein components and r