Science.gov

Sample records for acid synthetic pathway

  1. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli.

    PubMed

    Yu, Jia-Le; Xia, Xiao-Xia; Zhong, Jian-Jiang; Qian, Zhi-Gang

    2014-12-01

    The C6 dicarboxylic acid, adipic acid, is an important platform chemical in industry. Biobased production of adipic acid is a promising alternative to the current petrochemical route. Here, we report biosynthesis of adipic acid using an artificial pathway inspired by the reversal of beta-oxidation of dicarboxylic acids. The biosynthetic pathway comprises condensation of acetyl-CoA and succinyl-CoA to form the C6 backbone and subsequent reduction, dehydration, hydrogenation, and release of adipic acid from its thioester. The pathway was first tested in vitro with reconstituted pathway enzymes and then functionally introduced into Escherichia coli for the biosynthesis and excretion of adipic acid into the culture medium. The production titer was increased by approximately 20-fold through the combination of recruiting enzymes that were more suitable to catalyze the synthetic reactions and increasing availability of the condensation substrates. This work demonstrates direct biosynthesis of adipic acid via non-natural synthetic pathway, which may enable its renewable production.

  2. Production of Glucaric Acid from a Synthetic Pathway in Recombinant Escherichia coli▿ †

    PubMed Central

    Moon, Tae Seok; Yoon, Sang-Hwal; Lanza, Amanda M.; Roy-Mayhew, Joseph D.; Prather, Kristala L. Jones

    2009-01-01

    A synthetic pathway has been constructed for the production of glucuronic and glucaric acids from glucose in Escherichia coli. Coexpression of the genes encoding myo-inositol-1-phosphate synthase (Ino1) from Saccharomyces cerevisiae and myo-inositol oxygenase (MIOX) from mice led to production of glucuronic acid through the intermediate myo-inositol. Glucuronic acid concentrations up to 0.3 g/liter were measured in the culture broth. The activity of MIOX was rate limiting, resulting in the accumulation of both myo-inositol and glucuronic acid as final products, in approximately equal concentrations. Inclusion of a third enzyme, uronate dehydrogenase (Udh) from Pseudomonas syringae, facilitated the conversion of glucuronic acid to glucaric acid. The activity of this recombinant enzyme was more than 2 orders of magnitude higher than that of Ino1 and MIOX and increased overall flux through the pathway such that glucaric acid concentrations in excess of 1 g/liter were observed. This represents a novel microbial system for the biological production of glucaric acid, a “top value-added chemical” from biomass. PMID:19060162

  3. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism.

    PubMed

    Kallscheuer, Nicolai; Vogt, Michael; Marienhagen, Jan

    2016-12-14

    Numerous plant polyphenols have potential applications as pharmaceuticals or nutraceuticals. Stilbenes and flavonoids as most abundant polyphenols are synthesized from phenylpropanoids, which are exclusively derived from aromatic amino acids in nature. Several microorganisms were engineered for the synthesis of biotechnologically interesting plant polyphenols; however, low activity of heterologous ammonia lyases, linking endogenous microbial aromatic amino acid biosynthesis to phenylpropanoid synthesis, turned out to be the limiting step during microbial synthesis. We here developed an alternative strategy for polyphenol production from cheap benzoic acids by reversal of a β-oxidative phenylpropanoid degradation pathway avoiding any ammonia lyase activity. The synthetic pathway running in the non-natural direction is feasible with respect to thermodynamics and involved reaction mechanisms. Instantly, product titers of 5 mg/L resveratrol could be achieved in recombinant Corynebacterium glutamicum strains indicating that phenylpropanoid synthesis from 4-hydroxybenzoic acid can in principle be implemented independently from aromatic amino acids and ammonia lyase activity.

  4. Redirection of Metabolic Flux into Novel Gamma-Aminobutyric Acid Production Pathway by Introduction of Synthetic Scaffolds Strategy in Escherichia Coli.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-04-01

    In general, gamma-aminobutyric acid (GABA) pathway involves the decarboxylation of glutamate, which is produced from sugar by Corynebacterium fermentation. GABA can be used for the production of pharmaceuticals and functional foods. Due to the increasing demand of GABA, it is essential to create an effective alternative pathway for the GABA production. In this study, Escherichia coli were engineered to produce GABA from glucose via GABA shunt, which consists of succinate dehydrogenase, succinate-semialdehyde dehydrogenase, and GABA aminotransferase. The three enzymes were physically attached to each other through a synthetic scaffold, and the Krebs cycle flux was redirected to the GABA pathway. By introduction of synthetic scaffold, 0.75 g/l of GABA was produced from 10 g/l of glucose at 30 °C and pH 6.5. The inactivation of competing metabolic pathways provided 15.4 % increase in the final GABA concentration.

  5. Engineering catechol 1, 2-dioxygenase by design for improving the performance of the cis, cis-muconic acid synthetic pathway in Escherichia coli

    PubMed Central

    Han, Li; Liu, Pi; Sun, Jixue; Wu, Yuanqing; Zhang, Yuanyuan; Chen, Wujiu; Lin, Jianping; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    Regulating and ameliorating enzyme expression and activity greatly affects the performance of a given synthetic pathway. In this study, a new synthetic pathway for cis, cis-muconic acid (ccMA) production was reconstructed without exogenous induction by regulating the constitutive expression of the important enzyme catechol 1,2-dioxygenase (CatA). Next, new CatAs with significantly improved activities were developed to enhance ccMA production using structure-assisted protein design. Nine mutations were designed, simulated and constructed based on the analysis of the CatA crystal structure. These results showed that mutations at Gly72, Leu73 and/or Pro76 in CatA could improve enzyme activity, and the activity of the most effective mutant was 10-fold greater than that of the wild-type CatA from Acinetobacter sp. ADP1. The most productive synthetic pathway with a mutated CatA increased the titer of ccMA by more than 25%. Molecular dynamic simulation results showed that enlarging the entrance of the substrate-binding pocket in the mutants contributed to their increased enzyme activities and thus improved the performance of the synthetic pathway. PMID:26306712

  6. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    PubMed

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  7. Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria.

    PubMed

    Tan, Gao-Yi; Liu, Tiangang

    2017-01-01

    Natural products (NPs) and their derivatives are widely used as frontline treatments for many diseases. Actinobacteria spp. are used to produce most of NP antibiotics and have also been intensively investigated for NP production, derivatization, and discovery. However, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in Actinobacteria, especially in the cases of genome mining and heterologous expression, it is often difficult to rationally and systematically engineer synthetic pathways to maximize biosynthetic efficiency. With the emergence of new tools and methods in metabolic engineering, the synthetic pathways of many chemicals, such as fatty acids and biofuels, in model organisms (e.g. Escherichia coli ), have been refactored to realize precise and flexible control of production. These studies also offer a promising approach for synthetic pathway refactoring in Actinobacteria. In this review, the great potential of Actinobacteria as a microbial cell factory for biosynthesis of NPs is discussed. To this end, recent progress in metabolic engineering of NP synthetic pathways in Actinobacteria are summarized and strategies and perspectives to rationally and systematically refactor synthetic pathways in Actinobacteria are highlighted.

  8. Synthetic Transformation on Shikimic Acid.

    DTIC Science & Technology

    1988-03-15

    position with manganese dioxide, producing 74 and 75 respectively. Ketoaldehyde 75 was reacted in a Lewis acid catalyzed Diels-Alder reaction with 3,5...epoxide that was produced under these conditions was the syn compound 21b. This observation suggests that the reaction proceeds by selective activation...sodium ethoxide nor quantitative deprotonation with a full equivalent of sodium hydride produced a reaction below 150 0 C. At 150 0 C in dimethylformamide

  9. Synthetic metabolism: engineering biology at the protein and pathway scales.

    PubMed

    Martin, Collin H; Nielsen, David R; Solomon, Kevin V; Prather, Kristala L Jones

    2009-03-27

    Biocatalysis has become a powerful tool for the synthesis of high-value compounds, particularly so in the case of highly functionalized and/or stereoactive products. Nature has supplied thousands of enzymes and assembled them into numerous metabolic pathways. Although these native pathways can be use to produce natural bioproducts, there are many valuable and useful compounds that have no known natural biochemical route. Consequently, there is a need for both unnatural metabolic pathways and novel enzymatic activities upon which these pathways can be built. Here, we review the theoretical and experimental strategies for engineering synthetic metabolic pathways at the protein and pathway scales, and highlight the challenges that this subfield of synthetic biology currently faces.

  10. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  11. Carnosic acid biosynthesis elucidated by a synthetic biology platform

    PubMed Central

    Ignea, Codruta; Athanasakoglou, Anastasia; Ioannou, Efstathia; Georgantea, Panagiota; Trikka, Fotini A.; Loupassaki, Sofia; Roussis, Vassilios; Makris, Antonios M.

    2016-01-01

    Synthetic biology approaches achieving the reconstruction of specific plant natural product biosynthetic pathways in dedicated microbial “chassis” have provided access to important industrial compounds (e.g., artemisinin, resveratrol, vanillin). However, the potential of such production systems to facilitate elucidation of plant biosynthetic pathways has been underexplored. Here we report on the application of a modular terpene production platform in the characterization of the biosynthetic pathway leading to the potent antioxidant carnosic acid and related diterpenes in Salvia pomifera and Rosmarinus officinalis. Four cytochrome P450 enzymes are identified (CYP76AH24, CYP71BE52, CYP76AK6, and CYP76AK8), the combined activities of which account for all of the oxidation events leading to the biosynthesis of the major diterpenes produced in these plants. This approach develops yeast as an efficient tool to harness the biotechnological potential of the numerous sequencing datasets that are increasingly becoming available through transcriptomic or genomic studies. PMID:26976595

  12. A recombinant lipoprotein containing an unsaturated fatty acid activates NF-kappaB through the TLR2 signaling pathway and induces a differential gene profile from a synthetic lipopeptide.

    PubMed

    Leng, Chih-Hsiang; Chen, Hsin-Wei; Chang, Li-Sheng; Liu, Hsueh-Hung; Liu, Hsin-Yu; Sher, Yuh-Pyng; Chang, Yu-Wen; Lien, Shu-Pei; Huang, Tzu-Yi; Chen, Mei-Yu; Chou, Ai-Hsiang; Chong, Pele; Liu, Shih-Jen

    2010-07-01

    The lipid moiety of a novel recombinant lipoprotein, which contains a dengue virus envelope protein domain 3, rlipo-D1E3, has been shown to activate antigen-presenting cells (APCs) as an intrinsic adjuvant. Because the lipid moiety of rlipo-D1E3 contains an unsaturated fatty acid, it is unclear if the receptor usage by bacterially derived lipoproteins is the same as that of the synthetic lipopeptide palmitoyl-3-Cys-Ser-(Lys)(4) (Pam3). In the present study, we show that the rlipo-D1E3 lipoprotein can induce the activation of spleen cells and bone marrow-derived dendritic cells (BM-DCs) in wild-type and TLR4-deficient mice, but not in TLR2(-/-) mice. After analyzing the co-receptor usage of TLR2 using TLR1(-/-) or TLR6(-/-) mice, the TLR2 signaling triggered by rlipo-D1E3 and Pam3 could use either TLR1 or TLR6 as a co-receptor. Analysis of the MAPK signaling pathway revealed that rlipo-D1E3 could initiate the phosphorylation of p38, ERK1/2 and JNK1/2 earlier than the synthetic lipopeptide. In addition, the expression levels of IL-23, IL-27 and MIP-1 alpha in BM-DCs stimulated by rlipo-D1E3 were higher than the expression levels in BM-DCs stimulated by Pam3. Taken together, these results demonstrate that different TLR2 ligands can promote various immune responses by inducing different levels of biological cytokines and chemokines.

  13. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  14. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  15. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  16. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  17. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  18. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy.

    PubMed

    Volpers, Michael; Claassens, Nico J; Noor, Elad; van der Oost, John; de Vos, Willem M; Kengen, Servé W M; Martins Dos Santos, Vitor A P

    2016-01-01

    The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force). The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase-pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly thermodynamic favorable

  19. Integrated In Silico Analysis of Pathway Designs for Synthetic Photo-Electro-Autotrophy

    PubMed Central

    Noor, Elad; van der Oost, John; de Vos, Willem M.; Kengen, Servé W. M.; Martins dos Santos, Vitor A. P.

    2016-01-01

    The strong advances in synthetic biology enable the engineering of novel functions and complex biological features in unprecedented ways, such as implementing synthetic autotrophic metabolism into heterotrophic hosts. A key challenge for the sustainable production of fuels and chemicals entails the engineering of synthetic autotrophic organisms that can effectively and efficiently fix carbon dioxide by using sustainable energy sources. This challenge involves the integration of carbon fixation and energy uptake systems. A variety of carbon fixation pathways and several types of photosystems and other energy uptake systems can be chosen and, potentially, modularly combined to design synthetic autotrophic metabolism. Prior to implementation, these designs can be evaluated by the combination of several computational pathway analysis techniques. Here we present a systematic, integrated in silico analysis of photo-electro-autotrophic pathway designs, consisting of natural and synthetic carbon fixation pathways, a proton-pumping rhodopsin photosystem for ATP regeneration and an electron uptake pathway. We integrated Flux Balance Analysis of the heterotrophic chassis Escherichia coli with kinetic pathway analysis and thermodynamic pathway analysis (Max-min Driving Force). The photo-electro-autotrophic designs are predicted to have a limited potential for anaerobic, autotrophic growth of E. coli, given the relatively low ATP regenerating capacity of the proton pumping rhodopsin photosystems and the high ATP maintenance of E. coli. If these factors can be tackled, our analysis indicates the highest growth potential for the natural reductive tricarboxylic acid cycle and the synthetic pyruvate synthase–pyruvate carboxylate -glyoxylate bicycle. Both carbon fixation cycles are very ATP efficient, while maintaining fast kinetics, which also results in relatively low estimated protein costs for these pathways. Furthermore, the synthetic bicycles are highly thermodynamic

  20. Pathway Concepts Experiment for Head-Down Synthetic Vision Displays

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.

    2004-01-01

    Eight 757 commercial airline captains flew 22 approaches using the Reno Sparks 16R Visual Arrival under simulated Category I conditions. Approaches were flown using a head-down synthetic vision display to evaluate four tunnel ("minimal", "box", "dynamic pathway", "dynamic crow s feet") and three guidance ("ball", "tadpole", "follow-me aircraft") concepts and compare their efficacy to a baseline condition (i.e., no tunnel, ball guidance). The results showed that the tunnel concepts significantly improved pilot performance and situation awareness and lowered workload compared to the baseline condition. The dynamic crow s feet tunnel and follow-me aircraft guidance concepts were found to be the best candidates for future synthetic vision head-down displays. These results are discussed with implications for synthetic vision display design and future research.

  1. Pathway concepts experiment for head-down synthetic vision displays

    NASA Astrophysics Data System (ADS)

    Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.

    2004-08-01

    Eight 757 commercial airline captains flew 22 approaches using the Reno Sparks 16R Visual Arrival under simulated Category I conditions. Approaches were flown using a head-down synthetic vision display to evaluate four tunnel ("minimal", "box", "dynamic pathway", "dynamic crow's feet") and three guidance ("ball", "tadpole", "follow-me aircraft") concepts and compare their efficacy to a baseline condition (i.e., no tunnel, ball guidance). The results showed that the tunnel concepts significantly improved pilot performance and situation awareness and lowered workload compared to the baseline condition. The dynamic crow's feet tunnel and follow-me aircraft guidance concepts were found to be the best candidates for future synthetic vision head-down displays. These results are discussed with implications for synthetic vision display design and future research.

  2. A novel synthetic Asiatic acid derivative induces apoptosis and inhibits proliferation and mobility of gastric cancer cells by suppressing STAT3 signaling pathway

    PubMed Central

    Wang, Gang; Jing, Yue; Cao, Lingsen; Gong, Changchang; Gong, Zhunan; Cao, Xiangrong

    2017-01-01

    Activation of the transcription factor, signal transducers and activators of transcription 3 (STAT3), has been linked to the proliferation and migration of a variety of human cancer cells. These actions occur via the upregulation or downregulation of cell survival and tumor suppressor genes, respectively. Importantly, agents that can suppress STAT3 activation have the potential for use in the prevention and treatment of various cancers. In this study, an Asiatic acid (AA) derivative, N-(2α,3β,23-acetoxyurs-12-en-28-oyl)-l-proline methyl ester (AA-PMe), is reported to dose dependently suppress constitutive STAT3 activation in gastric cancer cells. This inhibition was mediated by blockade of Janus-activated kinase 2. Additionally, AA-PMe regulated the expression of STAT3-modulated gene products, including cyclin D1, Bax, Bcl-2, c-Myc, and matrix metalloproteinase (MMP)-2 and MMP-9. Finally, transfection with both a STAT3 mimic and an inhibitor reversed the AA-PMe-driven modulation of STAT3 downstream gene products. Overall, these results suggest that AA-PMe is a novel blocker of STAT3 activation and has the potential for the prevention and treatment of gastric cancer. PMID:28053540

  3. Design and analysis of synthetic carbon fixation pathways

    PubMed Central

    Bar-Even, Arren; Noor, Elad; Lewis, Nathan E.; Milo, Ron

    2010-01-01

    Carbon fixation is the process by which CO2 is incorporated into organic compounds. In modern agriculture in which water, light, and nutrients can be abundant, carbon fixation could become a significant growth-limiting factor. Hence, increasing the fixation rate is of major importance in the road toward sustainability in food and energy production. There have been recent attempts to improve the rate and specificity of Rubisco, the carboxylating enzyme operating in the Calvin–Benson cycle; however, they have achieved only limited success. Nature employs several alternative carbon fixation pathways, which prompted us to ask whether more efficient novel synthetic cycles could be devised. Using the entire repertoire of approximately 5,000 metabolic enzymes known to occur in nature, we computationally identified alternative carbon fixation pathways that combine existing metabolic building blocks from various organisms. We compared the natural and synthetic pathways based on physicochemical criteria that include kinetics, energetics, and topology. Our study suggests that some of the proposed synthetic pathways could have significant quantitative advantages over their natural counterparts, such as the overall kinetic rate. One such cycle, which is predicted to be two to three times faster than the Calvin–Benson cycle, employs the most effective carboxylating enzyme, phosphoenolpyruvate carboxylase, using the core of the naturally evolved C4 cycle. Although implementing such alternative cycles presents daunting challenges related to expression levels, activity, stability, localization, and regulation, we believe our findings suggest exciting avenues of exploration in the grand challenge of enhancing food and renewable fuel production via metabolic engineering and synthetic biology. PMID:20410460

  4. Synthetic Routes to Methylerythritol Phosphate Pathway Intermediates and Downstream Isoprenoids

    PubMed Central

    Jarchow-Choy, Sarah K; Koppisch, Andrew T; Fox, David T

    2014-01-01

    Isoprenoids constitute the largest class of natural products with greater than 55,000 identified members. They play essential roles in maintaining proper cellular function leading to maintenance of human health, plant defense mechanisms against predators, and are often exploited for their beneficial properties in the pharmaceutical and nutraceutical industries. Most impressively, all known isoprenoids are derived from one of two C5-precursors, isopentenyl diphosphate (IPP) or dimethylallyl diphosphate (DMAPP). In order to study the enzyme transformations leading to the extensive structural diversity found within this class of compounds there must be access to the substrates. Sometimes, intermediates within a biological pathway can be isolated and used directly to study enzyme/pathway function. However, the primary route to most of the isoprenoid intermediates is through chemical catalysis. As such, this review provides the first exhaustive examination of synthetic routes to isoprenoid and isoprenoid precursors with particular emphasis on the syntheses of intermediates found as part of the 2C-methylerythritol 4-phosphate (MEP) pathway. In addition, representative syntheses are presented for the monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), triterpenes (C30) and tetraterpenes (C40). Finally, in some instances, the synthetic routes to substrate analogs found both within the MEP pathway and downstream isoprenoids are examined. PMID:25009443

  5. Formate Assimilation: The Metabolic Architecture of Natural and Synthetic Pathways.

    PubMed

    Bar-Even, Arren

    2016-07-19

    Formate may become an ideal mediator between the physicochemical and biological realms, as it can be produced efficiently from multiple available sources, such as electricity and biomass, and serve as one of the simplest organic compounds for providing both carbon and energy to living cells. However, limiting the realization of formate as a microbial feedstock is the low diversity of formate-fixing enzymes and thereby the small number of naturally occurring formate-assimilation pathways. Here, the natural enzymes and pathways supporting formate assimilation are presented and discussed together with proposed synthetic routes that could permit growth on formate via existing as well as novel formate-fixing reactions. By considering such synthetic routes, the diversity of metabolic solutions for formate assimilation can be expanded dramatically, such that different host organisms, cultivation conditions, and desired products could be matched with the most suitable pathway. Astute application of old and new formate-assimilation pathways may thus become a cornerstone in the development of sustainable strategies for microbial production of value-added chemicals.

  6. Organization of Enzymes in the Common Aromatic Synthetic Pathway: Evidence for Aggregation in Fungi

    PubMed Central

    Ahmed, S. I.; Giles, Norman H.

    1969-01-01

    Centrifugation in sucrose density gradients of partially purified extracts from six species of fungi, i.e., Rhizopus stolonifer, Phycomyces nitens, Absidia glauca (Phycomycetes), Aspergillus nidulans (Ascomycetes), Coprinus lagopus, and Ustilago maydis (Basidiomycetes), indicate that the five enzymes catalyzing steps two to six in the prechorismic acid part of the polyaromatic synthetic pathway sediment together. The sedimentation coefficients for these enzymes are very similar in the six species and are comparable to those previously observed for the multienzyme complexes (arom aggregates) of Neurospora crassa and Saccharomyces cerevisiae. These results are interpreted as indicating the presence in each of these fungi of arom aggregates, presumably encoded by arom gene clusters similar to those in N. crassa and S. cerevisiae. Evidence has also been obtained for the presence in two species (A. nidulans and U. maydis) and the absence in the other four species of a second dehydroquinase isozyme which is distinguishable from the synthetic activity on the basis of both thermostability tests and S values. This second dehydroquinase, which is apparently involved in the catabolism of quinic acid via a pathway similar to that in N. crassa, is inducible in A. nidulans (as it is in N. crassa), but constitutive in U. maydis. These comparative findings are discussed in relation to the organization, evolution, and possible functional relationships of synthetic and catabolic aromatic pathways in fungi. PMID:5802608

  7. Pathway Design Effects on Synthetic Vision Head-Up Displays

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.

    2004-01-01

    NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. This experiment evaluated the influence of different tunnel and guidance concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two tunnel formats (dynamic, minimal) were evaluated against a baseline condition (no tunnel) during simulated IMC approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence on the tunnel formats. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.

  8. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    PubMed

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids.

  9. Systems approaches for synthetic biology: a pathway toward mammalian design.

    PubMed

    Rekhi, Rahul; Qutub, Amina A

    2013-01-01

    We review methods of understanding cellular interactions through computation in order to guide the synthetic design of mammalian cells for translational applications, such as regenerative medicine and cancer therapies. In doing so, we argue that the challenges of engineering mammalian cells provide a prime opportunity to leverage advances in computational systems biology. We support this claim systematically, by addressing each of the principal challenges to existing synthetic bioengineering approaches-stochasticity, complexity, and scale-with specific methods and paradigms in systems biology. Moreover, we characterize a key set of diverse computational techniques, including agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations, with specific utility toward synthetic biology. Lastly, we examine the mammalian applications of synthetic biology for medicine and health, and how computational systems biology can aid in the continued development of these applications.

  10. Conservation of Bio synthetic pheromone pathways in honeybees Apis

    NASA Astrophysics Data System (ADS)

    Martin, Stephen J.; Jones, Graeme R.

    Social insects use complex chemical communication systems to govern many aspects of their life. We studied chemical changes in Dufour's gland secretions associated with ovary development in several genotypes of honeybees. We found that C28-C38 esters were associated only with cavity nesting honeybee queens, while the alcohol eicosenol was associated only with their non-laying workers. In contrast, both egg-laying anarchistic workers and all parasitic Cape workers from queenright colonies showed the typical queen pattern (i.e. esters present and eicosenol absent), while egg-laying wild-type and anarchistic workers in queenless colonies showed an intermediate pattern, producing both esters and eicosenol but at intermediate levels. Furthermore, neither esters nor eicosenol were found in aerial nesting honeybee species. Both esters and eicosenol are biosynthetically similar compounds since both are recognizable products of fatty acid biosynthesis. Therefore, we propose that in honeybees the biosynthesis of esters and eicosenol in the Dufour's gland is caste-regulated and this pathway has been conserved over evolutionary time.

  11. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.

  12. High-throughput evaluation of synthetic metabolic pathways

    PubMed Central

    Klesmith, Justin R.; Whitehead, Timothy A.

    2016-01-01

    A central challenge in the field of metabolic engineering is the efficient identification of a metabolic pathway genotype that maximizes specific productivity over a robust range of process conditions. Here we review current methods for optimizing specific productivity of metabolic pathways in living cells. New tools for library generation, computational analysis of pathway sequence-flux space, and high-throughput screening and selection techniques are discussed. PMID:27453919

  13. Amino Acid Biosynthesis Pathways in Diatoms

    PubMed Central

    Bromke, Mariusz A.

    2013-01-01

    Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity. PMID:24957993

  14. Synthetic adhesive oligopeptides with rigid polyhydroxylated amino acids.

    PubMed

    Deshmukh, Manjeet; Singh, Shashi; Geyer, Armin

    2013-05-01

    Synthetic oligopeptides containing polyhydroxylated bicyclic dipeptide (Glc=Tap) are investigated for their adhesion properties. The non-natural amino acid building block composed of Glc=Tap is derived from glucuronic acid and mimics the hydroxyl-amino acids of the natural proteins. Peptide oligomers of Glc=Tap flanked by the amino acids Tyr and Lys were synthesized and characterized. Solution structural studies performed by circular dichromism spectroscopy suggests that poly(Lys-Glc=Tap-Tyr) and poly(Glc=Tap-Tyr) adopts extended helical structures. Adhesion of these oligomers to the mica surface is shown by atomic force microscopy spectroscopy. Studies indicate that extended polyproline II polyhydroxylated peptide chains, which bear additional phenolic as well as cationic side chains, can mimic some of the adhesion properties of the natural protein models. Furthermore, obtained data suggest that poly(Glc=Tap-Tyr) and poly(Lys-Glc=Tap-Tyr) as outstanding adhesive compounds, which combine efficient synthetic accessibility with promising adhesive properties.

  15. Presidential Green Chemistry Challenge: 2009 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2009 award winner, Eastman Chemical Co., makes esters for emollients and emulsifiers in cosmetics with immobilized enzymes, saving energy and avoiding strong acids and organic solvents.

  16. Presidential Green Chemistry Challenge: 2006 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2006 award winner, Merck, discovered the asymmetric catalytic hydrogenation of unprotected enamines to make beta-amino acids. Merck applied this to synthesize sitagliptin (Januvia).

  17. Presidential Green Chemistry Challenge: 2016 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2016 award winners, Albemarle and CB&I, developed a safer technology to produce alkylate, a clean gasoline component by replacing liquid acid catalysts with a lower environmental impact catalyst

  18. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals.

    PubMed

    Tashiro, Yohei; Rodriguez, Gabriel M; Atsumi, Shota

    2015-03-01

    Global energy and environmental concerns have driven the development of biological chemical production from renewable sources. Biological processes using microorganisms are efficient and have been traditionally utilized to convert biomass (i.e., glucose) to useful chemicals such as amino acids. To produce desired fuels and chemicals with high yield and rate, metabolic pathways have been enhanced and expanded with metabolic engineering and synthetic biology approaches. 2-Keto acids, which are key intermediates in amino acid biosynthesis, can be converted to a wide range of chemicals. 2-Keto acid pathways were engineered in previous research efforts and these studies demonstrated that 2-keto acid pathways have high potential for novel metabolic routes with high productivity. In this review, we discuss recently developed 2-keto acid-based pathways.

  19. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition.

    PubMed

    Zhou, Yongjin J; Buijs, Nicolaas A; Zhu, Zhiwei; Gómez, Diego Orol; Boonsombuti, Akarin; Siewers, Verena; Nielsen, Jens

    2016-11-30

    Establishing efficient synthetic pathways for microbial production of biochemicals is often hampered by competing pathways and/or insufficient precursor supply. Compartmentalization in cellular organelles can isolate synthetic pathways from competing pathways, and provide a compact and suitable environment for biosynthesis. Peroxisomes are cellular organelles where fatty acids are degraded, a process that is inhibited under typical fermentation conditions making them an interesting workhouse for production of fatty-acid-derived molecules. Here, we show that targeting synthetic pathways to peroxisomes can increase the production of fatty-acid-derived fatty alcohols, alkanes and olefins up to 700%. In addition, we demonstrate that biosynthesis of these chemicals in the peroxisomes results in significantly decreased accumulation of byproducts formed by competing enzymes. We further demonstrate that production can be enhanced up to 3-fold by increasing the peroxisome population. The strategies described here could be used for production of other chemicals, especially acyl-CoA-derived molecules.

  20. A laboratory formulated sediment incorporating synthetic acid volatile sulfide

    SciTech Connect

    Gonzalez, A.M.

    1995-12-31

    The usefulness of laboratory formulated sediment (LFS) for sediment research applications might be expanded if sediment characteristics other than particle size distribution, organic carbon and pH could be artificially manipulated. This report describes the development of a LFS containing synthetic acid volatile sulfide (AVS). Several formulations were evaluated with respect to their toxicological effects on Hyalella azteca, and their chemical stability and oxidation dynamics in the H. azteca toxicity test system. Optimal amphipod survival was obtained in prepared LFS formulations where the molar cation-to-sulfide ratio was near unity. The synthetic AVS at the surface of the test system oxidized quickly, but was fairly stable for up to 28 days when isolated from air or oxygenated water. AVS analysis of core slices show a clear, dissolved oxygen-diffusion limited oxidation profile. A selected synthetic AVS formulation, as determined by (maximum) H. azteca survival, was evaluated with respect to complexation of copper and nickel, and the corresponding reduction in metal bioavailability. The toxicity of whole sediment and pore water from metal-spiked LFS containing synthetic AVS was evaluated by the 10-d H. azteca toxicity test and the Microtox{reg_sign} bioassay, respectively. As expected, test responses to amended LFS with metal-to-AVS molar ratios less than one were not significantly different than the unspiked, amended LFS. In contrast, amended LFS with metal-to AVS molar ratios greater than one had significant effects on the response of the two test species. Complexation of the metals was confirmed by sediment and pore water chemical analyses. This formulation may provide consistent and controlled substrates with which to investigate metal/sediment chemistry and toxicity, and to develop sediment quality criteria for metals.

  1. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway.

    PubMed

    Agapakis, Christina M; Silver, Pamela A

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production.

  2. Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity

    PubMed Central

    Hu, Xiao; Liu, Xikui; Moisan, Jacques; Wang, Yahong; Lesch, Charles A.; Spooner, Chauncey; Morgan, Rodney W.; Zawidzka, Elizabeth M.; Mertz, David; Bousley, Dick; Majchrzak, Kinga; Kryczek, Ilona; Taylor, Clarke; Van Huis, Chad; Skalitzky, Don; Hurd, Alexander; Aicher, Thomas D.; Toogood, Peter L.; Glick, Gary D.; Paulos, Chrystal M.; Zou, Weiping; Carter, Laura L.

    2016-01-01

    ABSTRACT RORγt is the key transcription factor controlling the development and function of CD4+ Th17 and CD8+ Tc17 cells. Across a range of human tumors, about 15% of the CD4+ T cell fraction in tumor-infiltrating lymphocytes are RORγ+ cells. To evaluate the role of RORγ in antitumor immunity, we have identified synthetic, small molecule agonists that selectively activate RORγ to a greater extent than the endogenous agonist desmosterol. These RORγ agonists enhance effector function of Type 17 cells by increasing the production of cytokines/chemokines such as IL-17A and GM-CSF, augmenting expression of co-stimulatory receptors like CD137, CD226, and improving survival and cytotoxic activity. RORγ agonists also attenuate immunosuppressive mechanisms by curtailing Treg formation, diminishing CD39 and CD73 expression, and decreasing levels of co-inhibitory receptors including PD-1 and TIGIT on tumor-reactive lymphocytes. The effects of RORγ agonists were not observed in RORγ−/− T cells, underscoring the selective on-target activity of the compounds. In vitro treatment of tumor-specific T cells with RORγ agonists, followed by adoptive transfer to tumor-bearing mice is highly effective at controlling tumor growth while improving T cell survival and maintaining enhanced IL-17A and reduced PD-1 in vivo. The in vitro effects of RORγ agonists translate into single agent, immune system-dependent, antitumor efficacy when compounds are administered orally in syngeneic tumor models. RORγ agonists integrate multiple antitumor mechanisms into a single therapeutic that both increases immune activation and decreases immune suppression resulting in robust inhibition of tumor growth. Thus, RORγ agonists represent a novel immunotherapy approach for cancer. PMID:28123897

  3. A Modular Synthetic Approach to Isosteric Sulfonic Acid Analogues of the Anticoagulant Pentasaccharide Idraparinux.

    PubMed

    Mező, Erika; Eszenyi, Dániel; Varga, Eszter; Herczeg, Mihály; Borbás, Anikó

    2016-11-11

    Heparin-based anticoagulants are drugs of choice in the therapy and prophylaxis of thromboembolic diseases. Idraparinux is a synthetic anticoagulant pentasaccharide based on the heparin antithrombin-binding domain. In the frame of our ongoing research aimed at the synthesis of sulfonic acid-containing heparinoid anticoagulants, we elaborated a modular pathway to obtain a series of idraparinux-analogue pentasaccharides bearing one or two primary sulfonic acid moieties. Five protected pentasaccharides with different C-sulfonation patterns were prepared by two subsequent glycosylation reactions, respectively, using two monosaccharide and four disaccharide building blocks. Transformation of the protected derivatives into the fully O-sulfated, O-methylated sulfonic acid end-products was also studied.

  4. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop

    PubMed Central

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. DOI: http://dx.doi.org/10.7554/eLife.13664.001 PMID:27296645

  5. Recoded organisms engineered to depend on synthetic amino acids.

    PubMed

    Rovner, Alexis J; Haimovich, Adrian D; Katz, Spencer R; Li, Zhe; Grome, Michael W; Gassaway, Brandon M; Amiram, Miriam; Patel, Jaymin R; Gallagher, Ryan R; Rinehart, Jesse; Isaacs, Farren J

    2015-02-05

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels and chemicals. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems, which include bioremediation and probiotics. Although safeguards have been designed to control cell growth by essential gene regulation, inducible toxin switches and engineered auxotrophies, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations. Here we describe the construction of a series of genomically recoded organisms (GROs) whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase pair into the chromosome of a GRO derived from Escherichia coli that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harbouring three TAG codons in conserved functional residues of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼10(11) cells on solid media for 7 days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternative genetic codes that

  6. Recoded organisms engineered to depend on synthetic amino acids

    PubMed Central

    Rovner, Alexis J.; Haimovich, Adrian D.; Katz, Spencer R.; Li, Zhe; Grome, Michael W.; Gassaway, Brandon M.; Amiram, Miriam; Patel, Jaymin R.; Gallagher, Ryan R.; Rinehart, Jesse; Isaacs, Farren J.

    2015-01-01

    Genetically modified organisms (GMOs) are increasingly used in research and industrial systems to produce high-value pharmaceuticals, fuels, and chemicals1. Genetic isolation and intrinsic biocontainment would provide essential biosafety measures to secure these closed systems and enable safe applications of GMOs in open systems2,3, which include bioremediation4 and probiotics5. Although safeguards have been designed to control cell growth by essential gene regulation6, inducible toxin switches7, and engineered auxotrophies8, these approaches are compromised by cross-feeding of essential metabolites, leaked expression of essential genes, or genetic mutations9,10. Here, we describe the construction of a series of genomically recoded organisms (GROs)11 whose growth is restricted by the expression of multiple essential genes that depend on exogenously supplied synthetic amino acids (sAAs). We introduced a Methanocaldococcus jannaschii tRNA:aminoacyl-tRNA synthetase (aaRS) pair into the chromosome of a GRO that lacks all TAG codons and release factor 1, endowing this organism with the orthogonal translational components to convert TAG into a dedicated sense codon for sAAs. Using multiplex automated genome engineering (MAGE)12, we introduced in-frame TAG codons into 22 essential genes, linking their expression to the incorporation of synthetic phenylalanine-derived amino acids. Of the 60 sAA-dependent variants isolated, a notable strain harboring 3 TAG codons in conserved functional residues13 of MurG, DnaA and SerS and containing targeted tRNA deletions maintained robust growth and exhibited undetectable escape frequencies upon culturing ∼1011 cells on solid media for seven days or in liquid media for 20 days. This is a significant improvement over existing biocontainment approaches2,3,6-10. We constructed synthetic auxotrophs dependent on sAAs that were not rescued by cross-feeding in environmental growth assays. These auxotrophic GROs possess alternate genetic

  7. The predictive power of synthetic nucleic acid technologies in RNA biology.

    PubMed

    Chakraborty, Saikat; Mehtab, Shabana; Krishnan, Yamuna

    2014-06-17

    CONSPECTUS: The impact of nucleic acid nanotechnology in terms of transforming motifs from biology in synthetic and translational ways is widely appreciated. But it is also emerging that the thinking and vision behind nucleic acids as construction material has broader implications, not just in nanotechnology or even synthetic biology, but can feed back into our understanding of biology itself. Physicists have treated nucleic acids as polymers and connected physical principles to biology by abstracting out the molecular interactions. In contrast, biologists delineate molecular players and pathways related to nucleic acids and how they may be networked. But in vitro nucleic acid nanotechnology has provided a valuable framework for nucleic acids by connecting its biomolecular interactions with its materials properties and thereby superarchitecture ultramanipulation that on multiple occasions has pre-empted the elucidation of how living cells themselves are exploiting these same structural concepts. This Account seeks to showcase the larger implications of certain architectural principles that have arisen from the field of structural DNA/RNA nanotechnology in biology. Here we draw connections between these principles and particular molecular phenomena within living systems that have fed in to our understanding of how the cell uses nucleic acids as construction material to achieve different functions. We illustrate this by considering a few exciting and emerging examples in biology in the context of both switchable systems and scaffolding type systems. Due to the scope of this Account, we will focus our discussion on examples of the RNA scaffold as summarized. In the context of switchable RNA architectures, the synthetic demonstration of small molecules blocking RNA translation preceded the discovery of riboswitches. In another example, it was after the description of aptazymes that the first allosteric ribozyme, glmS, was discovered. In the context of RNA architectures

  8. A synthetic pathway for an unsymmetrical N(5)O(2) heptadentate ligand and its heterodinuclear iron(III)zinc(II) complex: a biomimetic model for the purple acid phosphatases.

    PubMed

    Xavier, Fernando R; Bortoluzzi, Adailton J; Neves, Ademir

    2012-09-01

    One major field of interest in bioinorganic chemistry is the design and synthesis of inorganic compounds with low molecular mass, showing structural, spectroscopic, and reactivity properties that mimic enzymes, such as purple acid phosphatases (PAPs). In this study, the unsymmetrical heptadentate ligand 2-[(4,7-diisopropyl-1,4,7-triazacyclonon-1-yl)methyl]-6-{[(2-hydroxybenzyl)(pyridin-2-ylmethyl)-amino]methyl}-4-methylphenol (H(2)L) and its first mixed-valence complex [Fe(III)Zn(II)(L)(μ-OAc)(2)]ClO(4)(1) were synthesized. Physical and chemical measurements (crystal structure, conductometry, IR and UV/VIS spectroscopy, and electrochemistry) were performed for 1, and these properties are compared with those presented by the kbPAPs active sites. Potentiometric titration studies of 1 have confirmed its acid/base properties that are crucial for the understanding of the phosphodiester and DNA catalytic cleavage in future studies.

  9. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  10. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals.

    PubMed

    Cam, Yvan; Alkim, Ceren; Trichez, Debora; Trebosc, Vincent; Vax, Amélie; Bartolo, François; Besse, Philippe; François, Jean Marie; Walther, Thomas

    2016-07-15

    A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks.

  11. [Advanced biofuel-oriented engineering of fatty acid pathway: a review].

    PubMed

    Zhou, Yongjin J; Zhao, Zongbao K

    2011-09-01

    Biofuel is in high demand as an alternative energy source for petroleum and diesel. Fatty acid-based biofuel has higher energy density and better compatibility with existing infrastructures. Microbial fatty acid biosynthetic pathway is important to develop biofuel. In this article, recent progresses on the modification and reconstruction of fatty acid metabolism for the production of biofuel were reviewed, with a focus on micro-diesel, long chain fatty alcohol and alkane. Problems, solutions and directions for further development of fatty acid-based biofuel were also discussed in the respect of synthetic biology.

  12. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: Preclinical and clinical evidence

    PubMed Central

    Shanmugam, Muthu K.; Dai, Xiaoyun; Kumar, Alan Prem; Tan, Benny KH; Sethi, Gautam; Bishayee, Anupam

    2014-01-01

    Oleanolic acid (OA, 3β-hydroxyolean-12-en-28-oic acid) is a ubiquitous pentacyclic multifunctional triterpenoid, widely found in several dietary and medicinal plants. Natural and synthetic OA derivatives can modulate multiple signaling pathways including nuclear factor-κB, AKT, signal transducer and activator of transcription 3, mammalian target of rapamycin, caspases, intercellular adhesion molecule 1, vascular endothelial growth factor, and poly (ADP-ribose) polymerase in a variety of tumor cells. Importantly, synthetic derivative of OA, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), and its C-28 methyl ester (CDDO-Me) and C28 imidazole (CDDO-Im) have demonstrated potent antiangiogenic and antitumor activities in rodent cancer models. These agents are presently under evaluation in phase I studies in cancer patients. This review summarizes the diverse molecular targets of OA and its derivatives and also provides clear evidence on their promising potential in preclinical and clinical situations. PMID:24486850

  13. Synthetic promoters consisting of defined cis-acting elements link multiple signaling pathways to probenazole-inducible system * #

    PubMed Central

    Zhu, Zheng; Gao, Jiong; Yang, Jin-xiao; Wang, Xiao-yan; Ren, Guo-dong; Ding, Yu-long; Kuai, Ben-ke

    2015-01-01

    Probenazole (3-allyloxy-1,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the β-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ’s action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study. PMID:25845359

  14. Metabolic tinker: an online tool for guiding the design of synthetic metabolic pathways.

    PubMed

    McClymont, Kent; Soyer, Orkun S

    2013-06-01

    One of the primary aims of synthetic biology is to (re)design metabolic pathways towards the production of desired chemicals. The fast pace of developments in molecular biology increasingly makes it possible to experimentally redesign existing pathways and implement de novo ones in microbes or using in vitro platforms. For such experimental studies, the bottleneck is shifting from implementation of pathways towards their initial design. Here, we present an online tool called 'Metabolic Tinker', which aims to guide the design of synthetic metabolic pathways between any two desired compounds. Given two user-defined 'target' and 'source' compounds, Metabolic Tinker searches for thermodynamically feasible paths in the entire known metabolic universe using a tailored heuristic search strategy. Compared with similar graph-based search tools, Metabolic Tinker returns a larger number of possible paths owing to its broad search base and fast heuristic, and provides for the first time thermodynamic feasibility information for the discovered paths. Metabolic Tinker is available as a web service at http://osslab.ex.ac.uk/tinker.aspx. The same website also provides the source code for Metabolic Tinker, allowing it to be developed further or run on personal machines for specific applications.

  15. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    PubMed

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  16. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli.

    PubMed

    Xu, Peng; Vansiri, Amerin; Bhan, Namita; Koffas, Mattheos A G

    2012-07-20

    Harnessing cell factories for producing biofuel and pharmaceutical molecules has stimulated efforts to develop novel synthetic biology tools customized for modular pathway engineering and optimization. Here we report the development of a set of vectors compatible with BioBrick standards and its application in metabolic engineering. The engineered ePathBrick vectors comprise four compatible restriction enzyme sites allocated on strategic positions so that different regulatory control signals can be reused and manipulation of expression cassette can be streamlined. Specifically, these vectors allow for fine-tuning gene expression by integrating multiple transcriptional activation or repression signals into the operator region. At the same time, ePathBrick vectors support the modular assembly of pathway components and combinatorial generation of pathway diversities with three distinct configurations. We also demonstrated the functionality of a seven-gene pathway (~9 Kb) assembled on one single ePathBrick vector. The ePathBrick vectors presented here provide a versatile platform for rapid design and optimization of metabolic pathways in E. coli.

  17. Direct, two-step synthetic pathway to novel dibenzo[a,c]phenanthridines.

    PubMed

    Churruca, Fátima; SanMartin, Raul; Carril, Mónica; Urtiaga, Miren Karmele; Solans, Xavier; Tellitu, Imanol; Domínguez, Esther

    2005-04-15

    Novel dibenzo[a,c]phenanthridines are prepared regioselectively by the application of a straightforward synthetic pathway, starting from new 3,4-diaryl- and 3,4-dihydro-3,4-diarylisoquinolines prepared via Ritter-type heterocyclization and the more classical two-step reductive amination/Bischler-Napieralski cyclization of triarylethanones, respectively. A comparative study of nonphenolic oxidative coupling methodologies provides a highly efficient procedure, based on the hypervalent iodine reagent phenyliodine(III) bis(trifluoroacetate) (PIFA), to accomplish the final coupling step.

  18. Advanced Pathway Guidance Evaluations on a Synthetic Vision Head-Up Display

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to potentially eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced guidance for commercial and business aircraft. This experiment evaluated the influence of different pathway and guidance display concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two pathway formats (dynamic and minimal tunnel presentations) were evaluated against a baseline condition (no tunnel) during simulated instrument meteorological conditions approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.

  19. Unique Regulation of the Melatonin Synthetic Pathway in the Retina of Diurnal Female Arvicanthis ansorgei (Rodentia).

    PubMed

    Gianesini, Coralie; Clesse, Daniel; Tosini, Gianluca; Hicks, David; Laurent, Virginie

    2015-09-01

    Knowledge about melatonin synthesis and its potential roles within the retina remains fragmented, especially in mammals where studies have focused on the penultimate enzyme of melatonin synthesis arylalkylamine N-acetyltransferase (AA-NAT), whereas the final enzyme necessary for melatonin production is hydroxyindole-O-methytransferase (HIOMT). We explored multiple parameters of the melatonin synthetic pathway in the cone-rich retina of a diurnal rodent, Arvicanthis ansorgei, cones being previously implicated as probable reservoirs of melatonin production. We analyzed the temporal and spatial expression of Aa-nat mRNA and AA-NAT protein and enzymatic activity of AA-NAT, HIOMT, as well as the melatonin receptor type 1 and melatonin itself. We report that Aa-nat mRNA was localized principally to cones and ganglion cells (retinal ganglion cell [RGC]) with opposing cyclic expression, being maximal in cones during the night, and maximal in RGC in the daytime. AA-NAT protein was also immunolocalized to these same populations, and was present and active throughout the 24-hour period. HIOMT immunolocalization mirrored that of AA-NAT, but expression levels and activity were extremely low and remained uniform throughout the 24-hour period. MT1 showed a complementary expression pattern to the synthetic enzymes, present in rod photoreceptors, some inner retinal neurons and RGC. Surprisingly, melatonin levels were consistently low throughout the day/night cycle, in accordance with the low activity levels of HIOMT. These data demonstrate that the melatonin synthetic pathway in a diurnal rodent differs from that described for other tissues and species (nocturnal and diurnal), the contrasting phase expression in photoreceptors and RGC, suggesting distinct roles in these populations.

  20. Molecular Genetic Characterization of Terreic Acid Pathway in Aspergillus terreus

    DOE PAGES

    Guo, Chun-Jun; Sun, Wei-wen; Bruno, Kenneth S.; ...

    2014-09-29

    Terreic acid is a natural product derived from 6-methylsalicylic acid (6-MSA). A compact gene cluster for its biosynthesis was characterized. Isolation of the intermediates and shunt products from the mutant strains, in combined with bioinformatic analyses, allowed us to propose a biosynthetic pathway for terreic acid. Lastly, defining the pathway and the genes involved will facilitate the engineering of this molecule with interesting antimicrobial and antitumor bioactivities.

  1. Pathways for virus assembly around nucleic acids

    PubMed Central

    Perlmutter, Jason D; Perkett, Matthew R

    2014-01-01

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288

  2. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant.

    PubMed

    Kurumbang, Nagendra Prasad; Dvorak, Pavel; Bendl, Jaroslav; Brezovsky, Jan; Prokop, Zbynek; Damborsky, Jiri

    2014-03-21

    Anthropogenic halogenated compounds were unknown to nature until the industrial revolution, and microorganisms have not had sufficient time to evolve enzymes for their degradation. The lack of efficient enzymes and natural pathways can be addressed through a combination of protein and metabolic engineering. We have assembled a synthetic route for conversion of the highly toxic and recalcitrant 1,2,3-trichloropropane to glycerol in Escherichia coli, and used it for a systematic study of pathway bottlenecks. Optimal ratios of enzymes for the maximal production of glycerol, and minimal toxicity of metabolites were predicted using a mathematical model. The strains containing the expected optimal ratios of enzymes were constructed and characterized for their viability and degradation efficiency. Excellent agreement between predicted and experimental data was observed. The validated model was used to quantitatively describe the kinetic limitations of currently available enzyme variants and predict improvements required for further pathway optimization. This highlights the potential of forward engineering of microorganisms for the degradation of toxic anthropogenic compounds.

  3. Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways.

    PubMed

    Wang, Yiran; Huang, Weidong; Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2011-03-25

    Different from NAD(P)H regeneration approaches mediated by a single enzyme or a whole-cell microorganism, we demonstrate high-yield generation of NAD(P)H from a renewable biomass sugar--cellobiose through in vitro synthetic enzymatic pathways consisting of 12 purified enzymes and coenzymes. When the NAD(P)H generation system was coupled with its consumption reaction mediated by xylose reductase, the NADPH yield was as high as 11.4 mol NADPH per cellobiose (i.e., 95% of theoretical yield--12 NADPH per glucose unit) in a batch reaction. Consolidation of endothermic reactions and exothermic reactions in one pot results in a very high energy-retaining efficiency of 99.6% from xylose and cellobiose to xylitol. The combination of this high-yield and projected low-cost biohydrogenation and aqueous phase reforming may be important for the production of sulfur-free liquid jet fuel in the future.

  4. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway.

    PubMed

    Hirokawa, Yasutaka; Maki, Yuki; Tatsuke, Tsuneyuki; Hanai, Taizo

    2016-03-01

    Production of chemicals directly from carbon dioxide using light energy is an attractive option for a sustainable future. The 1,3-propanediol (1,3-PDO) production directly from carbon dioxide was achieved by engineered Synechococcus elongatus PCC 7942 with a synthetic metabolic pathway. Glycerol dehydratase catalyzing the conversion of glycerol to 3-hydroxypropionaldehyde in a coenzyme B12-dependent manner worked in S. elongatus PCC 7942 without addition of vitamin B12, suggesting that the intrinsic pseudovitamin B12 served as a substitute of coenzyme B12. The highest titers of 1,3-PDO (3.79±0.23 mM; 288±17.7 mg/L) and glycerol (12.62±1.55 mM; 1.16±0.14 g/L), precursor of 1,3-PDO, were reached after 14 days of culture under optimized conditions in this study.

  5. 1-(N-chloroacetylamino)-alkylphosphonic acids - synthetic precursors of phosphonopeptides.

    PubMed

    Kudzin, Z H; Depczyński, R; Kudzin, M H; Drabowicz, J

    2008-01-01

    General procedures of N-chloroacetylation of the representative 1-aminoalkylphosphonic acids (Gly(P), Ala(P), Val(P), Pgly(P) and Phe(P)) are described. These 1-(N-chloroacetylamino)-alkylphosphonic acids were converted into the corresponding glycylphosphonodipeptides (Gly-AA(P)) and/or related N-alkylglycylphosphonodipeptides (Me(n)Gly-AA(P)) in the course of ammonolysis/aminolysis. Physico-chemical properties of synthesized 1-(N-chloroacetylamino)-alkylphosphonic acids and phosphonodipeptides are characterized.

  6. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  7. Valproic acid, a molecular lead to multiple regulatory pathways.

    PubMed

    Kostrouchová, M; Kostrouch, Z; Kostrouchová, M

    2007-01-01

    Valproic acid (2-propyl pentanoic acid) is a drug used for the treatment of epilepsy and bipolar disorder. Although very rare, side effects such as spina bifida and other defects of neural tube closure indicate that valproic acid interferes with developmental regulatory pathways. Recently obtained data show that valproic acid affects cell growth, differentiation, apoptosis and immunogenicity of cultured cancer cells and tumours. Focused studies uncovered the potential of valproic acid to interfere with multiple regulatory mechanisms including histone deacetylases, GSK3 alpha and beta, Akt, the ERK pathway, the phosphoinositol pathway, the tricarboxylic acid cycle, GABA, and the OXPHOS system. Valproic acid is emerging as a potential anticancer drug and may also serve as a molecular lead that can help design drugs with more specific and more potent effects on the one side and drugs with wide additive but weaker effects on the other. Valproic acid is thus a powerful molecular tool for better understanding and therapeutic targeting of pathways that regulate the behaviour of cancer cells.

  8. Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life

    PubMed Central

    Wong, J. Tze-Fei; Ng, Siu-Kin; Mat, Wai-Kin; Hu, Taobo; Xue, Hong

    2016-01-01

    The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets. PMID:26999216

  9. Coevolution Theory of the Genetic Code at Age Forty: Pathway to Translation and Synthetic Life.

    PubMed

    Wong, J Tze-Fei; Ng, Siu-Kin; Mat, Wai-Kin; Hu, Taobo; Xue, Hong

    2016-03-16

    The origins of the components of genetic coding are examined in the present study. Genetic information arose from replicator induction by metabolite in accordance with the metabolic expansion law. Messenger RNA and transfer RNA stemmed from a template for binding the aminoacyl-RNA synthetase ribozymes employed to synthesize peptide prosthetic groups on RNAs in the Peptidated RNA World. Coevolution of the genetic code with amino acid biosynthesis generated tRNA paralogs that identify a last universal common ancestor (LUCA) of extant life close to Methanopyrus, which in turn points to archaeal tRNA introns as the most primitive introns and the anticodon usage of Methanopyrus as an ancient mode of wobble. The prediction of the coevolution theory of the genetic code that the code should be a mutable code has led to the isolation of optional and mandatory synthetic life forms with altered protein alphabets.

  10. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Tajima, Takahisa; Yakushi, Toshiharu; Matsushita, Kazunobu; Kato, Junichi

    2015-06-20

    1-Butanol is an important industrial platform chemical and an advanced biofuel. While various groups have attempted to construct synthetic pathways for 1-butanol production, efforts to construct a pathway that functions under aerobic conditions have met with limited success. Here, we constructed a CoA-dependent 1-butanol synthetic pathway that functions under aerobic conditions in Escherichia coli, by expanding the previously reported (R)-1,3-butanediol synthetic pathway. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, bld (butylraldehyde dehydrogenase) from Clostridium saccharoperbutylacetonicum, and inherent alcohol dehydrogenase(s) from E. coli. To evaluate the potential of this pathway for 1-butanol production, culture conditions, including volumetric oxygen transfer coefficient (kLa) and pH were optimized in a mini-jar fermenter. Under optimal conditions, 1-butanol was produced at a concentration of up to 8.60gL(-1) after 46h of fed-batch cultivation.

  11. [Reaction of bone tissue elements on synthetic bioresorbable materials based on lactic and glycolic acids].

    PubMed

    Kulakov, A A; Grigor'ian, A S

    2014-01-01

    The aim of the study was to evaluate the adverse effects of synthetic polymeric bioresorbable materials based on lactic and glycolic acids on the bone tissue. The study was carried-out on 40 Wister-line rats. Four types of bioresorbable polymeric materials were implanted: PolyLactide Glycolide Acid (PLGA), Poly-L-Lactide Acid (PLLA); Poly-96L/4D-Lactide Acid (96/4 PLDLA); Poly-70L/30D-Lactide Acid (70/30 PLDLA). The results showed connective tissue formation (fibrointegration) bordering bone adjacent to implanted materials. This proved the materials to cause pathogenic influence on the bone which mechanisms are described in the article.

  12. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  13. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  14. Internal exposure dynamics drive the Adverse Outcome Pathways of synthetic glucocorticoids in fish

    NASA Astrophysics Data System (ADS)

    Margiotta-Casaluci, Luigi; Owen, Stewart F.; Huerta, Belinda; Rodríguez-Mozaz, Sara; Kugathas, Subramanian; Barceló, Damià; Rand-Weaver, Mariann; Sumpter, John P.

    2016-02-01

    The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-species uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals.

  15. Internal exposure dynamics drive the Adverse Outcome Pathways of synthetic glucocorticoids in fish

    PubMed Central

    Margiotta-Casaluci, Luigi; Owen, Stewart F.; Huerta, Belinda; Rodríguez-Mozaz, Sara; Kugathas, Subramanian; Barceló, Damià; Rand-Weaver, Mariann; Sumpter, John P.

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework represents a valuable conceptual tool to systematically integrate existing toxicological knowledge from a mechanistic perspective to facilitate predictions of chemical-induced effects across species. However, its application for decision-making requires the transition from qualitative to quantitative AOP (qAOP). Here we used a fish model and the synthetic glucocorticoid beclomethasone dipropionate (BDP) to investigate the role of chemical-specific properties, pharmacokinetics, and internal exposure dynamics in the development of qAOPs. We generated a qAOP network based on drug plasma concentrations and focused on immunodepression, skin androgenisation, disruption of gluconeogenesis and reproductive performance. We showed that internal exposure dynamics and chemical-specific properties influence the development of qAOPs and their predictive power. Comparing the effects of two different glucocorticoids, we highlight how relatively similar in vitro hazard-based indicators can lead to different in vivo risk. This discrepancy can be predicted by their different uptake potential, pharmacokinetic (PK) and pharmacodynamic (PD) profiles. We recommend that the development phase of qAOPs should include the application of species-species uptake and physiologically-based PK/PD models. This integration will significantly enhance the predictive power, enabling a more accurate assessment of the risk and the reliable transferability of qAOPs across chemicals. PMID:26917256

  16. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway.

    PubMed

    Zhu, Zhiguang; Kin Tam, Tsz; Sun, Fangfang; You, Chun; Percival Zhang, Y-H

    2014-01-01

    High-energy-density, green, safe batteries are highly desirable for meeting the rapidly growing needs of portable electronics. The incomplete oxidation of sugars mediated by one or a few enzymes in enzymatic fuel cells suffers from low energy densities and slow reaction rates. Here we show that nearly 24 electrons per glucose unit of maltodextrin can be produced through a synthetic catabolic pathway that comprises 13 enzymes in an air-breathing enzymatic fuel cell. This enzymatic fuel cell is based on non-immobilized enzymes that exhibit a maximum power output of 0.8 mW cm(-2) and a maximum current density of 6 mA cm(-2), which are far higher than the values for systems based on immobilized enzymes. Enzymatic fuel cells containing a 15% (wt/v) maltodextrin solution have an energy-storage density of 596 Ah kg(-1), which is one order of magnitude higher than that of lithium-ion batteries. Sugar-powered biobatteries could serve as next-generation green power sources, particularly for portable electronics.

  17. Upregulation of the creatine synthetic pathway in skeletal muscles of mature mdx mice

    PubMed Central

    McClure, Warrren C.; Rabon, Rick; Ogawa, Hirofumi; Tseng, Brian S.

    2009-01-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular human disease caused by dystrophin deficiency. The mdx mouse lacks dystrophin protein, yet does not exhibit the debilitating DMD phenotype. Investigating compensatory mechanisms in the mdx mouse is important. This study targets two metabolic genes, guanidinoacetate methyltransferase (GAMT) and arginine:glycine amidinotransferase (AGAT) which are required for creatine synthesis. We show that GAMT and AGAT mRNA are up-regulated 5.4 and 1.9-fold respectively in adult mdx muscle compared to C57. In addition, GAMT protein expression is up-regulated at least 2.5-fold in five different muscles of mdx vs. control. Furthermore, we find GAMT immunoreactivity in 80% of mature mdx muscle fibers in addition to small regenerating fibers and rare revertants; while GAMT immunoreactivity is equal to background levels in all muscle fibers of mature C57 mice. The up-regulation of the creatine synthetic pathway may help maintain muscle creatine levels and limit cellular energy failure in leaky mdx skeletal muscles. These results may help better understand the mild phenotype of the mdx mouse and may offer new treatment horizons for DMD. PMID:17588756

  18. Upregulation of the creatine synthetic pathway in skeletal muscles of mature mdx mice.

    PubMed

    McClure, Warren C; Rabon, Rick E; Ogawa, Hirofumi; Tseng, Brian S

    2007-08-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular human disease caused by dystrophin deficiency. The mdx mouse lacks dystrophin protein, yet does not exhibit the debilitating DMD phenotype. Investigating compensatory mechanisms in the mdx mouse may shed new insights into modifying DMD pathogenesis. This study targets two metabolic genes, guanidinoacetate methyltransferase (GAMT) and arginine:glycine amidinotransferase (AGAT) which are required for creatine synthesis. We show that GAMT and AGAT mRNA are up-regulated 5.4- and 1.9-fold respectively in adult mdx muscle compared to C57. In addition, GAMT protein expression is up-regulated at least 2.5-fold in five different muscles of mdx vs. control. Furthermore, we find GAMT immunoreactivity in up to 80% of mature mdx muscle fibers in addition to small regenerating fibers and rare revertants; while GAMT immunoreactivity is equal to background levels in all muscle fibers of mature C57 mice. The up-regulation of the creatine synthetic pathway may help maintain muscle creatine levels and limit cellular energy failure in leaky mdx skeletal muscles. These results may help better understand the mild phenotype of the mdx mouse and may offer new treatment horizons for DMD.

  19. Rheological behavior of poly(lactic acid)/synthetic mica nanocomposites.

    PubMed

    Souza, D H S; Andrade, C T; Dias, M L

    2013-04-01

    Poly(lactic acid) nanocomposites were prepared with three synthetic fluoromicas in a twin-screw extruder. Sodium and two organomodified synthetic fluoromicas at different compositions were used. The effect of mica type and composition on the rheological behavior of the nanocomposites was evaluated. The sodium fluoromica did not have a significant effect on the poly(lactic acid) rheological properties, while addition of the organophilic micas to poly(lactic acid) has a strong effect on the rheology, showing a pronounced shear thinning behavior. The dynamic rheological studies revealed that the nanocomposites with organomica have a higher viscosity and more pronounced elastic properties than neat poly(lactic acid). Both storage and loss moduli increased with mica content.

  20. Glycan arrays containing synthetic Clostridium difficile lipoteichoic acid oligomers as tools toward a carbohydrate vaccine.

    PubMed

    Martin, Christopher E; Broecker, Felix; Eller, Steffen; Oberli, Matthias A; Anish, Chakkumkal; Pereira, Claney L; Seeberger, Peter H

    2013-08-18

    Clostridium difficile is a leading cause of severe nosocomial infections. Cell-surface carbohydrate antigens are promising vaccine candidates. Here we report the first total synthesis of oligomers of the lipoteichoic acid antigen repeating unit. Synthetic glycan microarrays revealed anti-glycan antibodies in the blood of patients that help to define epitopes for vaccine development.

  1. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid

    PubMed Central

    Bronze-Uhle, ES; Costa, BC; Ximenes, VF; Lisboa-Filho, PN

    2017-01-01

    Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of chemical morphology characterization and in vitro release studies indicated the potential use of these NPs as drug carriers in biological systems requiring a fast release of SA. PMID:28096662

  2. Proteomic analysis of Bacillus thuringiensis ΔphaC mutant BMB171/PHB(-1) reveals that the PHB synthetic pathway warrants normal carbon metabolism.

    PubMed

    Chen, Deju; Xu, Dong; Li, Mingshun; He, Jin; Gong, Yuhua; Wu, Dandan; Sun, Ming; Yu, Ziniu

    2012-09-18

    A phaC knockout mutant from Bacillus thuringiensis (Bt) strain BMB171, named BMB171/PHB(-1), was constructed. A physiological and metabolic investigation and a proteomic analysis were conducted for both ΔphaC mutant and its parent strain. Grown in peptone medium with 5 gram glucose per liter as sole carbon source, BMB171/PHB(-1) produced various organic acids. Here the excreted pyruvate, citrate, lactate, acetate and glutamate were quantitatively analyzed. Deletion of phaC gene from the BMB171 strain resulted in 1) growth delay; 2) higher consumption of dioxigen but lower cell yield; 3) stagnation of pH movement; 4) overproduction of organic acids; 5) rapid descent of cell density in the stationary phase; and 6) a sporulation-deficient phenotype. Our proteomic study with qPCR reconfirmation reveals that the absence of PhaC led to a metabolic turmoil which showed repressed glycolysis, and over-expressed TCA cycle, various futile pathways and amino acid synthesis during vegetative growth. It is thus thought that B. thuringiensis BMB171 effectively regulated its carbon metabolism upon the presence of the functional PHB synthetic pathway. The presence of this pathway warrants a PHB-producing bacterium better surviving under different environmental conditions.

  3. Structure–Activity Relationship Studies Using Natural and Synthetic Okadaic Acid/Dinophysistoxin Toxins

    PubMed Central

    Twiner, Michael J.; Doucette, Gregory J.; Pang, Yucheng; Fang, Chao; Forsyth, Craig J.; Miles, Christopher O.

    2016-01-01

    Okadaic acid (OA) and the closely related dinophysistoxins (DTXs) are algal toxins that accumulate in shellfish and are known serine/threonine protein phosphatase (ser/thr PP) inhibitors. Phosphatases are important modulators of enzyme activity and cell signaling pathways. However, the interactions between the OA/DTX toxins and phosphatases are not fully understood. This study sought to identify phosphatase targets and characterize their structure–activity relationships (SAR) with these algal toxins using a combination of phosphatase activity and cytotoxicity assays. Preliminary screening of 21 human and yeast phosphatases indicated that only three ser/thr PPs (PP2a, PP1, PP5) were inhibited by physiologically saturating concentrations of DTX2 (200 nM). SAR studies employed naturally-isolated OA, DTX1, and DTX2, which vary in degree and/or position of methylation, in addition to synthetic 2-epi-DTX2. OA/DTX analogs induced cytotoxicity and inhibited PP activity with a relatively conserved order of potency: OA = DTX1 ≥ DTX2 >> 2-epi-DTX. The PPs were also differentially inhibited with sensitivities of PP2a > PP5 > PP1. These findings demonstrate that small variations in OA/DTX toxin structures, particularly at the head region (i.e., C1/C2), result in significant changes in toxicological potency, whereas changes in methylation at C31 and C35 (tail region) only mildly affect potency. In addition to this being the first study to extensively test OA/DTX analogs’ activities towards PP5, these data will be helpful for accurately determining toxic equivalence factors (TEFs), facilitating molecular modeling efforts, and developing highly selective phosphatase inhibitors. PMID:27827901

  4. Production of Fatty Acid-derived valuable chemicals in synthetic microbes.

    PubMed

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.

  5. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  6. Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities.

    PubMed

    Zhang, Y-H Percival

    2010-03-01

    Cell-free synthetic (enzymatic) pathway biotransformation (SyPaB) is the assembly of a number of purified enzymes (usually more than 10) and coenzymes for the production of desired products through complicated biochemical reaction networks that a single enzyme cannot do. Cell-free SyPaB, as compared to microbial fermentation, has several distinctive advantages, such as high product yield, great engineering flexibility, high product titer, and fast reaction rate. Biocommodities (e.g., ethanol, hydrogen, and butanol) are low-value products where costs of feedstock carbohydrates often account for approximately 30-70% of the prices of the products. Therefore, yield of biocommodities is the most important cost factor, and the lowest yields of profitable biofuels are estimated to be ca. 70% of the theoretical yields of sugar-to-biofuels based on sugar prices of ca. US$ 0.18 per kg. The opinion that SyPaB is too costly for producing low-value biocommodities are mainly attributed to the lack of stable standardized building blocks (e.g., enzymes or their complexes), costly labile coenzymes, and replenishment of enzymes and coenzymes. In this perspective, I propose design principles for SyPaB, present several SyPaB examples for generating hydrogen, alcohols, and electricity, and analyze the advantages and limitations of SyPaB. The economical analyses clearly suggest that developments in stable enzymes or their complexes as standardized parts, efficient coenzyme recycling, and use of low-cost and more stable biomimetic coenzyme analogs, would result in much lower production costs than do microbial fermentations because the stabilized enzymes have more than 3 orders of magnitude higher weight-based total turn-over numbers than microbial biocatalysts, although extra costs for enzyme purification and stabilization are spent.

  7. Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway

    PubMed Central

    Smith, J. Jeff; Albrecht, Kirk D.; Bowen, Tessa A.; Zdunek, Jeffrey K.; Troupe, Jared F.; Cuneo, Matthew J.; Webb, Colleen T.; Hellinga, Homme W.; Medford, June I.

    2011-01-01

    Background There is an unmet need to monitor human and natural environments for substances that are intentionally or unintentionally introduced. A long-sought goal is to adapt plants to sense and respond to specific substances for use as environmental monitors. Computationally re-designed periplasmic binding proteins (PBPs) provide a means to design highly sensitive and specific ligand sensing capabilities in receptors. Input from these proteins can be linked to gene expression through histidine kinase (HK) mediated signaling. Components of HK signaling systems are evolutionarily conserved between bacteria and plants. We previously reported that in response to cytokinin-mediated HK activation in plants, the bacterial response regulator PhoB translocates to the nucleus and activates transcription. Also, we previously described a plant visual response system, the de-greening circuit, a threshold sensitive reporter system that produces a visual response which is remotely detectable and quantifiable. Methodology/Principal Findings We describe assembly and function of a complete synthetic signal transduction pathway in plants that links input from computationally re-designed PBPs to a visual response. To sense extracellular ligands, we targeted the computational re-designed PBPs to the apoplast. PBPs bind the ligand and develop affinity for the extracellular domain of a chemotactic protein, Trg. We experimentally developed Trg fusions proteins, which bind the ligand-PBP complex, and activate intracellular PhoR, the HK cognate of PhoB. We then adapted Trg-PhoR fusions for function in plants showing that in the presence of an external ligand PhoB translocates to the nucleus and activates transcription. We linked this input to the de-greening circuit creating a detector plant. Conclusions/Significance Our system is modular and PBPs can theoretically be designed to bind most small molecules. Hence our system, with improvements, may allow plants to serve as a simple and

  8. Analysis of the aspartic acid metabolic pathway using mutant genes.

    PubMed

    Azevedo, R A

    2002-01-01

    Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants.

  9. Synthetic Lipoteichoic Acid Glycans Are Potential Vaccine Candidates to Protect from Clostridium difficile Infections.

    PubMed

    Broecker, Felix; Martin, Christopher E; Wegner, Erik; Mattner, Jochen; Baek, Ju Yuel; Pereira, Claney L; Anish, Chakkumkal; Seeberger, Peter H

    2016-08-18

    Infections with Clostridium difficile increasingly cause morbidity and mortality worldwide. Bacterial surface glycans including lipoteichoic acid (LTA) were identified as auspicious vaccine antigens to prevent colonization. Here, we report on the potential of synthetic LTA glycans as vaccine candidates. We identified LTA-specific antibodies in the blood of C. difficile patients. Therefore, we evaluated the immunogenicity of a semi-synthetic LTA-CRM197 glycoconjugate. The conjugate elicited LTA-specific antibodies in mice that recognized natural LTA epitopes on the surface of C. difficile bacteria and inhibited intestinal colonization of C. difficile in mice in vivo. Our findings underscore the promise of synthetic LTA glycans as C. difficile vaccine candidates.

  10. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens.

    PubMed

    Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Gomes Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R

    2007-01-01

    Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.

  11. Influence of natural humic acids and synthetic phenolic polymers on fibrinolysis

    NASA Astrophysics Data System (ADS)

    Klöcking, Hans-Peter

    The influence of synthetic and natural phenolic polymers on the release of plasminogen activator was studied in an isolated, perfused, vascular preparation (pig ear). Of the tested synthetic phenolic polymers, the oxidation products of caffeic acid (KOP) and 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), at a concentration of 50 µg/ml perfusate, were able to increase the plasminogen activator activity by 70%. The oxidation products of chlorogenic acid (CHOP), hydrocaffeic acid (HYKOP), pyrogallol (PYROP) and gallic acid (GALOP), at the same concentration, exerted no influence on the release of plasminogen activator. Of the naturally occurring humic acids, the influence of sodium humate was within the same order of magnitude as KOP and 3,4-DHPOP. Ammonium humate was able to increase the plasminogen activator release only at a concentration of 100 µg/ml perfusate. In rats, the t-PA activity increased after i.v. application of 10 mg/kg of KOP, Na-HS or NH4-HS.

  12. Metabolic Engineering of a Novel Muconic Acid Biosynthesis Pathway via 4-Hydroxybenzoic Acid in Escherichia coli

    PubMed Central

    Sengupta, Sudeshna; Goonewardena, Lakshani; Juturu, Veeresh

    2015-01-01

    cis,cis-Muconic acid (MA) is a commercially important raw material used in pharmaceuticals, functional resins, and agrochemicals. MA is also a potential platform chemical for the production of adipic acid (AA), terephthalic acid, caprolactam, and 1,6-hexanediol. A strain of Escherichia coli K-12, BW25113, was genetically modified, and a novel nonnative metabolic pathway was introduced for the synthesis of MA from glucose. The proposed pathway converted chorismate from the aromatic amino acid pathway to MA via 4-hydroxybenzoic acid (PHB). Three nonnative genes, pobA, aroY, and catA, coding for 4-hydroxybenzoate hydrolyase, protocatechuate decarboxylase, and catechol 1,2-dioxygenase, respectively, were functionally expressed in E. coli to establish the MA biosynthetic pathway. E. coli native genes ubiC, aroFFBR, aroE, and aroL were overexpressed and the genes ptsH, ptsI, crr, and pykF were deleted from the E. coli genome in order to increase the precursors of the proposed MA pathway. The final engineered E. coli strain produced nearly 170 mg/liter of MA from simple carbon sources in shake flask experiments. The proposed pathway was proved to be functionally active, and the strategy can be used for future metabolic engineering efforts for production of MA from renewable sugars. PMID:26362984

  13. [Signaling pathway of meiosis induced by retinoic acid during spermatogenesis].

    PubMed

    Wang, Ke; Wu, Ying-Ji

    2013-02-01

    Retinoic acid (RA) is an oxidative metabolite of vitamin A (retinol, ROH) and plays an important role in the spermatogenesis (as in meiosis) of mammals. In mammalian testes, RA, in combination with its retinoic acid receptor (RAR), regulates the expressions of related target genes in various types of cells at different times. It activates meiosis by up-regulating the expressions of the genes that promote meiosis and down-regulate those that inhibit it during spermatogenesis in a specific stage. The results of researches on mammalian spermatogenesis have a great application value in reproductive biology, developmental biology, and reproductive engineering. Therefore, it is of considerable significance to study the signaling pathway of RA-induced meiosis during mammalian spermatogenesis. This article presents an introduction of the RA signal transduction system and its action mechanisms, as well as an overview on the signaling pathway of RA-activated meiosis during spermatogenesis.

  14. Amino acid sequence of homologous rat atrial peptides: natriuretic activity of native and synthetic forms.

    PubMed Central

    Seidah, N G; Lazure, C; Chrétien, M; Thibault, G; Garcia, R; Cantin, M; Genest, J; Nutt, R F; Brady, S F; Lyle, T A

    1984-01-01

    A substance called atrial natriuretic factor (ANF), localized in secretory granules of atrial cardiocytes, was isolated as four homologous natriuretic peptides from homogenates of rat atria. The complete sequence of the longest form showed that it is composed of 33 amino acids. The three other shorter forms (2-33, 3-33, and 8-33) represent amino-terminally truncated versions of the 33 amino acid parent molecule as shown by analysis of sequence, amino acid composition, or both. The proposed primary structure agrees entirely with the amino acid composition and reveals no significant sequence homology with any known protein or segment of protein. The short form ANF-(8-33) was synthesized by a multi-fragment condensation approach and the synthetic product was shown to exhibit specific activity comparable to that of the natural ANF-(3-33). PMID:6232612

  15. Screening of pi-basic naphthalene and anthracene amplifiers for pi-acidic synthetic pore sensors.

    PubMed

    Hagihara, Shinya; Gremaud, Ludovic; Bollot, Guillaume; Mareda, Jiri; Matile, Stefan

    2008-04-02

    Synthetic ion channels and pores attract current attention as multicomponent sensors in complex matrixes. This application requires the availability of reactive signal amplifiers that covalently capture analytes and drag them into the pore. pi-Basic 1,5-dialkoxynaphthalenes (1,5-DAN) are attractive amplifiers because aromatic electron donor-acceptor (AEDA) interactions account for their recognition within pi-acidic naphthalenediimide (NDI) rich synthetic pores. Focusing on amplifier design, we report here the synthesis of a complete collection of DAN and dialkoxyanthracene amplifiers, determine their oxidation potentials by cyclic voltammetry, and calculate their quadrupole moments. Blockage experiments reveal that subtle structural changes in regioisomeric DAN amplifiers can be registered within NDI pores. Frontier orbital overlap in AEDA complexes, oxidation potentials, and, to a lesser extent, quadrupole moments are shown to contribute to isomer recognition by synthetic pores. Particularly important with regard to practical applications of synthetic pores as multianalyte sensors, we further demonstrate that application of the lessons learned with DAN regioisomers to the expansion to dialkoxyanthracenes provides access to privileged amplifiers with submicromolar activity.

  16. Exceptional sensitivity to the synthetic approach and halogen substituent for Zn(II) coordination assemblies with 5-halonicotinic acids.

    PubMed

    Li, Cheng-Peng; Chen, Jing; Mu, Yu-Hai; Du, Miao

    2015-06-28

    Seven Zn(II) coordination complexes with 5-halonicotinic acids (HL-X, X = F, Cl, or Br) have been synthesized with different synthetic approaches, including layer diffusion or stirring method in an ambient environment and solvothermal synthesis at 100 °C. Assembly of HL-F with Zn(II) under different conditions will yield the same 2D network of [Zn(L-F)2]n (1). Interestingly, three distinct complexes, a 3D framework {[Zn2(L-Cl)4(H2O)](H2O)6}n (2) and two 2D pseudo-polymorphic isomers {[Zn(L-Cl)2](H2O)1.5}n (3) and {[Zn2(L-Cl)4](H2O)}n (4) can be obtained by reacting HL-Cl with Zn(II) under layer diffusion, stirring, and solvothermal conditions, respectively. Furthermore, replacing the -Cl substituent with -Br on the HL-X ligand will also afford three diverse coordination assemblies of 3D {[Zn2(L-Br)4(H2O)](CH3OH)2.5}n (5), mononuclear [Zn(HL-Br)2(H2O)4][L-Br]2 (6), and 2D {[Zn(L-Br)2](H2O)1.15}n (7) depending on the synthetic pathways. Beyond the significant influence of the synthetic approach, which will lead to the formation of various crystalline products, the halogen substitution effect of HL-X ligands on the coordination motifs has also been demonstrated. In addition, thermal stability and fluorescence for these crystalline materials will be presented.

  17. Dissecting Abscisic Acid Signaling Pathways Involved in Cuticle Formation.

    PubMed

    Cui, Fuqiang; Brosché, Mikael; Lehtonen, Mikko T; Amiryousefi, Ali; Xu, Enjun; Punkkinen, Matleena; Valkonen, Jari P T; Fujii, Hiroaki; Overmyer, Kirk

    2016-06-06

    The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2.2/SnRK2.3/SnRK2.6. Downstream of the SnRK2 kinases, cuticle formation was not regulated by the ABA-responsive element-binding transcription factors but rather by DEWAX, MYB16, MYB94, and MYB96. Additionally, low air humidity increased cuticle formation independent of the core ABA pathway and cell death/reactive oxygen species signaling attenuated expression of cuticle-biosynthesis genes. In Physcomitrella patens, exogenous ABA suppressed expression of cuticle-related genes, whose Arabidopsis orthologs were ABA-induced. Hence, the mechanisms regulating cuticle formation are conserved but sophisticated in land plants. Signaling specifically related to cuticle deficiency was identified to play a major role in the adaptation of ABA signaling pathway mutants to increased humidity and in modulating their immunity to Botrytis cinerea in Arabidopsis. These results define a cuticle-specific downstream branch in the ABA signaling pathway that regulates responses to the external environment.

  18. A synthetic amino acid residue containing a new oligopeptide-based photosensitive fluorescent organogel.

    PubMed

    Maiti, Dibakar Kumar; Banerjee, Arindam

    2013-01-01

    A synthetic amino acid (with a stilbene residue in the main chain) containing a tripeptide-based organogelator has been discovered. This peptide-based synthetic molecule 1 self-assembles in various organic solvents to form an organogel. The gel has been thoroughly characterized by using various microscopic techniques including field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), UV-visible and fluorescence spectroscopy, and rheology. Morphological investigations using FESEM and AFM show a nanofibrillar network structure. Interestingly, the organogel is photoresponsive and a gel-sol transition occurred by irradiating the gel with UV light of 365 nm for 2 h as shown by the UV and fluorescence study. This photoresponsive fluorescent gel holds promise for new peptide-based soft materials with interesting applications.

  19. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide.

    PubMed

    Zhou, Jie; Zhang, Haifeng; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2012-07-01

    Ketones are a class of important organic compounds. As the simplest ketone, acetone is widely used as solvents or precursors for industrial chemicals. Presently, million tonnes of acetone is produced worldwide annually, from petrochemical processes. Here we report a biotechnological process that can produce acetone from CO(2), by designing and creating a modularized synthetic pathway in engineered cyanobacterium Synechocystis sp. PCC 6803. The engineered Synechocystis cells are able to produce acetone (36.0 mgl(-1) culture medium) using CO(2) as the sole carbon source, thus opens the gateway for biosynthesis of ketones from CO(2).

  20. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    PubMed

    Song, Ji-Yoon; Park, Joon-Song; Kang, Chang Duk; Cho, Hwa-Young; Yang, Dongsik; Lee, Seunghyun; Cho, Kwang Myung

    2016-05-01

    Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.

  1. A New Pathway to Aspartic Acid from Urea and Maleic Acid Affected by Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Terasaki, Masanori; Nomoto, Shinya; Mita, Hajime; Shimoyama, Akira

    2002-04-01

    The photochemistry of a mixture of urea and maleic acid, which are thought to have been widely present on the primitive Earth, was studied in order to examine a possibility of the formation of amino acids. When an aqueous solution of urea and maleic acid was irradiated with an ultraviolet light of wavelength 172 nm, urea was revealed to be rather resistant to photochemical decomposition. In contrast, maleic acid was completely decomposed within 4 h, reflecting the reactivity of a C-C double bond in the molecule. In the reaction mixture, 2-isoureidosuccinic acid was detected. The acid was considered to be formed by addition of an isoureido radical which had been produced from urea by the action of a hydroxyl radical, to a C-C double bond of maleic acid. The isoureido group of the product was revealed to undergo thermal rearrangement to afford 2-ureidosuccinic acid (N-carbamoylaspartic acid). The result suggested a novel pathway leading to the formation of aspartic acid from non-amino acid precursors, possibly effected by UV-light on the primitive Earth. The formation of ureidocarboxylic acids is of another significance, since they are capable of undergoing thermal polymerization, resulting in formation of polyamino acids.

  2. Conformations, energies, and intramolecular hydrogen bonds in dicarboxylic acids: implications for the design of synthetic dicarboxylic acid receptors.

    PubMed

    Nguyen, Thanh Ha; Hibbs, David E; Howard, Siân T

    2005-09-01

    The various conformers of the dicarboxylic acids HO2C--(CH2)n--CO2H, n = 1-4, were obtained using density functional methods (DFT), both in the gas phase and in the aqueous phase using a polarized continuum model (PCM). Several new conformers were identified, particularly for the two larger molecules glutaric (n = 3) and adipic acid (n =4). The PCM results show that the stability of most conformers were affected, many becoming unstable in the aqueous phase; and the energy ordering of conformers is also different. The results suggest that conformational preferences could be important in determining the design and stability of appropriate synthetic receptors for glutaric and adipic acid. Geometry changes between gas and aqueous phases were most marked in those conformers containing an intramolecular hydrogen bond. Additional calculations have probed the strength of intramolecular hydrogen bonds in these dicarboxylic acids. In the cases of glutaric and adipic acid, the strength of the intramolecular hydrogen bond were estimated to be around 28-29 kJ/mol, without any vibrational energy correction. The intramolecular hydrogen bond energies in malonic and succinic acid were also estimated from the calculated H-bond distances using an empirical relationship. Intramolecular H-bond redshifts of 170-250 cm(-1) have been estimated from the results of the harmonic frequency analyses.

  3. MULTIFUNCTIONAL SYNTHETIC POLY(L-GLUTAMIC ACID)-BASED CANCER THERAPEUTIC AND IMAGING AGENTS

    PubMed Central

    Melancon, Marites P.

    2012-01-01

    Modern polymer chemistry has led to the generation of a number of biocompatible synthetic polymers have been increasingly studied as efficient carriers for drugs and imaging agents. Synthetic biocompatible polymers have been used to improve the efficacy of both small-molecular-weight therapeutics and imaging agents. Furthermore, multiple targeted anticancer agents and/or imaging reporters can be attached to a single polymer chain, allowing multifunctional and/or multimodality therapy and molecular imaging. Having both an anticancer drug and an imaging reporter in a single polymer chain allows noninvasive real-time visualization of the pharmacokinetics of polymeric drug delivery systems, which can uncover and explain the complicated mechanisms of in vivo drug delivery and their correlation to pharmacodynamics. This review examines use of the synthetic biocompatible polymer poly(L-glutamic acid) (PG) as an efficient carrier of cancer therapeutics and imaging agents. This review will summarize and update our recent research on use of PG as a platform for drug delivery and molecular imaging, including recent clinical findings with respect to PG-paclitaxel (PG-TXL); the combination of PG-TXL with radiotherapy; mechanisms of action of PG-TXL; and noninvasive visualization of in vivo delivery of polymeric conjugates with contrast-enhanced magnetic resonance imaging (MRI), optical imaging, and multimodality imaging. PMID:21303613

  4. A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol.

    SciTech Connect

    Donnelly, M. I.; Millard, C. S.; Clark, D. P.; Chen, M. J.; Rathke, J. W.; Southern Illinois Univ.

    1998-04-01

    Escherichia coli strain NZN111, which is unable to grow fermentatively because of insertional inactivation of the genes encoding pyruvate: formate lyase and the fermentative lactate dehydrogenase, gave rise spontaneously to a chromosomal mutation that restored its ability to ferment glucose. The mutant strain, named AFP111, fermented glucose more slowly than did its wild-type ancestor, strain W1485, and generated a very different spectrum of products. AFP111 produced succinic acid, acetic acid, and ethanol in proportions of approx 2:1:1. Calculations of carbon and electron balances accounted fully for the observed products; 1 mol of glucose was converted to 1 mol of succinic acid and 0.5 mol each of acetic acid and ethanol. The data support the emergence in E.coli of a novel succinic acid:acetic acid:ethanol fermentation pathway.

  5. A laboratory-formulated sediment incorporating synthetic acid-volatile sulfide

    SciTech Connect

    Gonzalez, A.M.

    1996-12-01

    The application of laboratory-formulated sediment (LFS) could be expanded if toxicologically significant characteristics of sediment other than particle-size distribution, organic carbon content, and pH could be manipulated. This report describes the preparation of a LFS containing synthetic acid-volatile sulfide (AVS) and shows its similarity to natural sediment AVS. Several formulations were evaluated with respect to toxicity to Hyalella azteca and chemical stability. Amphipod survival was highest (95%) in LFS formulations in which the molar iron(II)/sulfide ratio was near 1, although amphipod survival was > 80% in six of seven formulations with {le} 20% excess metal or sulfide. Synthetic AVS in the test system oxidized rapidly at the sediment surface, but AVS at depth was stable for > 30 d when isolated from air or aerated water. Oxidation-reduction potential measurements and AVS analysis of core slices revealed a vertical oxidation profile, apparently established and limited by oxygen diffusion. A formulation consisting of a 1:1 molar ratio of iron and sulfide (FeS) was evaluated with respect to complexation of copper, zinc, and nickel and to the corresponding reduction in toxicity using 10-d H. azteca toxicity texts. Amphipod mortality in metal-spiked LFS with metal/AVS molar ratios > 1 was high relative to controls. In contrast, amphipod survival in metal-spiked LFS with metal/AVS molar ratios < 1 was generally similar to amphipod survival in nonspiked LFS containing synthetic AVS. A few exceptions, where toxicity was noted when metal/AVS ratios were < 1, could be explained by high concentrations of dissolved iron, which was released by the metal + AVS displacement reaction. The LFS containing synthetic AVS appears to mimic natural sediment AVS and thus can provide consistent and controlled substrates suitable for investigating metal/sediment chemistry and toxicity and for developing realistic sediment quality criteria for metals.

  6. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  7. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose.

    PubMed

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2012-12-24

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  8. Manipulating catalytic pathways: deoxygenation of palmitic acid on multifunctional catalysts.

    PubMed

    Peng, Baoxiang; Zhao, Chen; Kasakov, Stanislav; Foraita, Sebastian; Lercher, Johannes A

    2013-04-08

    The mechanism of the catalytic reduction of palmitic acid to n-pentadecane at 260 °C in the presence of hydrogen over catalysts combining multiple functions has been explored. The reaction involves rate-determining reduction of the carboxylic group of palmitic acid to give hexadecanal, which is catalyzed either solely by Ni or synergistically by Ni and the ZrO2 support. The latter route involves adsorption of the carboxylic acid group at an oxygen vacancy of ZrO2 and abstraction of the α-H with elimination of O to produce the ketene, which is in turn hydrogenated to the aldehyde over Ni sites. The aldehyde is subsequently decarbonylated to n-pentadecane on Ni. The rate of deoxygenation of palmitic acid is higher on Ni/ZrO2 than that on Ni/SiO2 or Ni/Al2O3, but is slower than that on H-zeolite-supported Ni. As the partial pressure of H2 is decreased, the overall deoxygenation rate decreases. In the absence of H2, ketonization catalyzed by ZrO2 is the dominant reaction. Pd/C favors direct decarboxylation (-CO2), while Pt/C and Raney Ni catalyze the direct decarbonylation pathway (-CO). The rate of deoxygenation of palmitic acid (in units of mmol moltotal metal(-1) h(-1)) decreases in the sequence r(Pt black) ≈r(Pd black) >r(Raney Ni) in the absence of H2 . In situ IR spectroscopy unequivocally shows the presence of adsorbed ketene (C=C=O) on the surface of ZrO2 during the reaction with palmitic acid at 260 °C in the presence or absence of H2.

  9. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  10. Substrate specificity of the sialic acid biosynthetic pathway

    SciTech Connect

    Jacobs, Christina L.; Goon, Scarlett; Yarema, Kevin J.; Hinderlich, Stephan; Hang, Howard C.; Chai, Diana H.; Bertozzi, Carolyn R.

    2001-07-18

    Unnatural analogs of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogs bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell-surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogs with ketone-containing N-acyl groups that varied in the lengthor steric bulk was chemically synthesized and tested for metabolic conversion to cell-surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells.

  11. Reprint of "Inspired by flowers: synthetic routes to scalemic deltamethrinic acid" [Bioorg. Med. Chem. 17 (2009) 2555-2575].

    PubMed

    Krief, Alain; Jeanmart, Stephane; Kremer, Adrian

    2009-06-15

    This review reports different syntheses of deltamethrinic acid, especially those originating from our laboratory. Deltamethrinic acid is a synthetic compound whose structure is inspired from those present in the flower head of the plant Chrysanthemum cinerariifolium. Its ester 'deltamethrin' exhibits an extremely high insecticidal activity (DDTx35.000) and an extremely low toxicity to mammals.

  12. Azide-alkyne cycloaddition for universal post-synthetic modifications of nucleic acids and effective synthesis of bioactive nucleic acid conjugates.

    PubMed

    Su, Yu-Chih; Lo, Yu-Lun; Hwang, Chi-Ching; Wang, Li-Fang; Wu, Min Hui; Wang, Eng-Chi; Wang, Yun-Ming; Wang, Tzu-Pin

    2014-09-14

    The regioselective post-synthetic modifications of nucleic acids are essential to studies of these molecules for science and applications. Here we report a facile universal approach by harnessing versatile phosphoramidation reactions to regioselectively incorporate alkynyl/azido groups into post-synthetic nucleic acids primed with phosphate at the 5' termini. With and without the presence of copper, the modified nucleic acids were subjected to azide-alkyne cycloaddition to afford various nucleic acid conjugates including a peptide-oligonucleotide conjugate (POC) with high yield. The POC was inoculated with human A549 cells and demonstrated excellent cell-penetrating ability despite cell deformation caused by a small amount of residual copper chelated to the POC. The combination of phosphoramidation and azide-alkyne cycloaddition reactions thus provides a universal regioselective strategy to post-synthetically modify nucleic acids. This study also explicated the toxicity of residual copper in synthesized bioconjugates destined for biological systems.

  13. Multiomics in Grape Berry Skin Revealed Specific Induction of the Stilbene Synthetic Pathway by Ultraviolet-C Irradiation1

    PubMed Central

    Suzuki, Mami; Nakabayashi, Ryo; Ogata, Yoshiyuki; Sakurai, Nozomu; Tokimatsu, Toshiaki; Goto, Susumu; Suzuki, Makoto; Jasinski, Michal; Martinoia, Enrico; Otagaki, Shungo; Matsumoto, Shogo; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Grape (Vitis vinifera) accumulates various polyphenolic compounds, which protect against environmental stresses, including ultraviolet-C (UV-C) light and pathogens. In this study, we looked at the transcriptome and metabolome in grape berry skin after UV-C irradiation, which demonstrated the effectiveness of omics approaches to clarify important traits of grape. We performed transcriptome analysis using a genome-wide microarray, which revealed 238 genes up-regulated more than 5-fold by UV-C light. Enrichment analysis of Gene Ontology terms showed that genes encoding stilbene synthase, a key enzyme for resveratrol synthesis, were enriched in the up-regulated genes. We performed metabolome analysis using liquid chromatography-quadrupole time-of-flight mass spectrometry, and 2,012 metabolite peaks, including unidentified peaks, were detected. Principal component analysis using the peaks showed that only one metabolite peak, identified as resveratrol, was highly induced by UV-C light. We updated the metabolic pathway map of grape in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and in the KaPPA-View 4 KEGG system, then projected the transcriptome and metabolome data on a metabolic pathway map. The map showed specific induction of the resveratrol synthetic pathway by UV-C light. Our results showed that multiomics is a powerful tool to elucidate the accumulation mechanisms of secondary metabolites, and updated systems, such as KEGG and KaPPA-View 4 KEGG for grape, can support such studies. PMID:25761715

  14. Presidential Green Chemistry Challenge: 2005 Greener Synthetic Pathways Award (Archer Daniels Midland Company/Novozymes)

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2005 award winners, Archer Daniels Midland (ADM) and Novozymes, developed an enzymatic interesterification process to make edible fats and oils containing low trans fatty acids and oils.

  15. Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha.

    PubMed

    Martinot, Emmanuelle; Baptissart, Marine; Véga, Aurélie; Sèdes, Lauriane; Rouaisnel, Betty; Vaz, Fred; Saru, Jean-Paul; de Haze, Angélique; Baron, Silvère; Caira, Françoise; Beaudoin, Claude; Volle, David H

    2017-02-09

    Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXRα in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXRα have altered BA homeostasis in both liver and testis. In the absence of FXRα, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxrα-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxrα-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activity.

  16. Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha

    PubMed Central

    Martinot, Emmanuelle; Baptissart, Marine; Véga, Aurélie; Sèdes, Lauriane; Rouaisnel, Betty; Vaz, Fred; Saru, Jean-Paul; de Haze, Angélique; Baron, Silvère; Caira, Françoise; Beaudoin, Claude; Volle, David H.

    2017-01-01

    Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXRα in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXRα have altered BA homeostasis in both liver and testis. In the absence of FXRα, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxrα-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxrα-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activity. PMID:28181583

  17. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  18. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories

    PubMed Central

    Zhou, Yongjin J.; Buijs, Nicolaas A.; Zhu, Zhiwei; Qin, Jiufu; Siewers, Verena; Nielsen, Jens

    2016-01-01

    Sustainable production of oleochemicals requires establishment of cell factory platform strains. The yeast Saccharomyces cerevisiae is an attractive cell factory as new strains can be rapidly implemented into existing infrastructures such as bioethanol production plants. Here we show high-level production of free fatty acids (FFAs) in a yeast cell factory, and the production of alkanes and fatty alcohols from its descendants. The engineered strain produces up to 10.4 g l−1 of FFAs, which is the highest reported titre to date. Furthermore, through screening of specific pathway enzymes, endogenous alcohol dehydrogenases and aldehyde reductases, we reconstruct efficient pathways for conversion of fatty acids to alkanes (0.8 mg l−1) and fatty alcohols (1.5 g l−1), to our knowledge the highest titres reported in S. cerevisiae. This should facilitate the construction of yeast cell factories for production of fatty acids derived products and even aldehyde-derived chemicals of high value. PMID:27222209

  19. The mechanisms for desensitization effect of synthetic polymers on BCHMX: Physical models and decomposition pathways.

    PubMed

    Yan, Qi-Long; Zeman, Svatopluk; Zhang, Xiao-Hong; Málek, Jiří; Xie, Wu-Xi

    2015-08-30

    The project involves determination of the activation energies and physical models for thermolysis of BCHMX and its PBXs. The initial decomposition pathways were also proposed on the basis of molecular dynamic simulation. The goal is to find the mutual relationships among the physical models, decomposition pathways, and the impact sensitivities for BCHMX and its PBXs. It has been shown that the physical model of the first step of BCHMX thermolysis is close to first order and the second step is governed by a first order autocatalytic model, which turns to "2D or 3D Nucleation and Growth" models under the effect of polymeric binders probably due to their hindrances on topochemical reaction of BCHMX. Simulation results show that the scission of N-NO2 is the initial step for BCHMX pyrolysis, followed by HONO and HNO eliminations, where the latter is due to nitro-nitrite rearrangement. Under the effect of hydrocarbon polymers, the HONO/HON elimination and collapse of ring structure of BCHMX occur earlier without changing the time for N-NO2 scission, which might be the reason why those polymers have little effect on the thermal stability of BCHMX, while they could make it decompose almost in a single complex step.

  20. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  1. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  2. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH) and fumarase (RoFUM1) were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2) was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1) than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner. PMID:22335940

  3. Use of Synthetic Antibodies Targeted to the Jak/Stat Pathway in Breast Cancer

    DTIC Science & Technology

    2011-03-01

    drastic decrease in the viability of the gliobal- stoma cells was observed within hours following treatment with Fig. 2. Specific delivery of cargo to...plus 0.1% trifluoroacetic acid aqueous solution for lyophilization. The purity of the crude peptides was determined using an analytical C-18 reversed ...YJ, Ho WZ (2005) Real-time reverse transcription-PCR quan- titation of substance P receptor (NK-1R) mRNA. Clin Diagn Lab Immunol 12:537–541. 21

  4. Effect of NK-104, a new synthetic HMG-CoA reductase inhibitor, on triglyceride secretion and fatty acid oxidation in rat liver.

    PubMed

    Yamamoto, K; Todaka, N; Goto, H; Jayasooriya, A P; Sakono, M; Ogawa, Y; Fukuda, N

    1999-01-01

    For the investigation of the mechanism responsible for the hypotriglyceridemic effect of NK-104, a new synthetic inhibitor of HMG-CoA reductase, the rate-limiting enzyme for cholesterol synthesis, isolated rat liver was perfused with or without NK-104 in the presence of exogenous [1-(14)C]oleic acid substrate. Addition of NK-104 tended to increase the ketone body production while it caused a significant decrease in the secretion rate of triglyceride by the perfused liver without affecting uptake of exogenous [1-(14)C]oleic acid. The inhibitor also significantly decreased hepatic triglyceride concentration. The altered triglyceride secretion was accompanied by a concomitant decreased incorporation of exogenous [1-(14)C]oleate into triglyceride. The conversion of exogenous [1-(14)C]oleic acid substrate indicated an inverse relationship between the pathways of oxidation and esterification. No effect of NK-104 on hepatic secretion of cholesterol was observed. These results suggest that NK-104 exerts its hypotriglyceridemic action, primarily by diverting the exogenous free fatty acid to the pathways of oxidation at the expense of esterification.

  5. CHLORINATION OF AMINO ACIDS: REACTION PATHWAYS AND REACTION RATES.

    PubMed

    How, Zuo Tong; Linge, Kathryn; Busetti, Francesco; Joll, Cynthia A

    2017-03-15

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  6. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades.

    PubMed

    Minteer, Shelley D

    2016-05-01

    Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  7. Alcohol Selectivity in a Synthetic Thermophilic n-Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes

    PubMed Central

    Loder, Andrew J.; Zeldes, Benjamin M.; Garrison, G. Dale; Lipscomb, Gina L.; Adams, Michael W. W.

    2015-01-01

    n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. PMID:26253677

  8. Identification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mining

    PubMed Central

    Millán-Aguiñaga, Natalie; Zhang, Jia Jia; O'Neill, Ellis C.; Ugalde, Juan A.; Jensen, Paul R.; Mantovani, Simone M.; Moore, Bradley S.

    2016-01-01

    Recent genome sequencing efforts have led to the rapid accumulation of uncharacterized or “orphaned” secondary metabolic biosynthesis gene clusters (BGCs) in public databases. This increase in DNA-sequenced big data has given rise to significant challenges in the applied field of natural product genome mining, including (i) how to prioritize the characterization of orphan BGCs, and (ii) how to rapidly connect genes to biosynthesized small molecules. Here we show that by correlating putative antibiotic resistance genes that encode target-modified proteins with orphan BGCs, we predict the biological function of pathway specific small molecules before they have been revealed in a process we call target-directed genome mining. By querying the pan-genome of 86 Salinispora bacterial genomes for duplicated house-keeping genes co-localized with natural product BGCs, we prioritized an orphan polyketide synthase-nonribosomal peptide synthetase hybrid BGC (tlm) with a putative fatty acid synthase resistance gene. We employed a new synthetic double-stranded DNA-mediated cloning strategy based on transformation-associated recombination to efficiently capture tlm and the related ttm BGCs directly from genomic DNA and to heterologously express them in Streptomyces hosts. We show the production of a group of unusual thiotetronic acid natural products, including the well-known fatty acid synthase inhibitor thiolactomycin that was first described over 30 years ago, yet never at the genetic level in regards to biosynthesis and auto-resistance. This finding not only validates the target-directed genome mining strategy for the discovery of antibiotic producing gene clusters without a priori knowledge of the molecule synthesized, but also paves the way for the investigation of novel enzymology involved in thiotetronic acid natural product biosynthesis. PMID:26458099

  9. The GABA-synthetic enzyme GAD65 controls circadian activation of conditioned fear pathways.

    PubMed

    Bergado-Acosta, Jorge R; Müller, Iris; Richter-Levin, Gal; Stork, Oliver

    2014-03-01

    Circadian fluctuations of fear and anxiety symptoms are observable in persons with post-traumatic stress disorder, generalized anxiety, and panic disorder; however, the underlying neurobiological mechanisms are not sufficiently understood. In the present study, we investigated the putative role of inhibitory neurotransmission in the circadian fluctuation of fear symptoms, using mice with genetic ablation of the γ-amino butyric acid (GABA) synthesizing isoenzyme, glutamic acid decarboxylase GAD65. We observed in these mutant mice an altered expression of conditioned fear with a profound reduction of freezing, and an increase of hyperactivity bouts occurring only when both fear conditioning training and retrieval testing were done at the beginning of their active phase. Mutants further showed an increased arousal response at this time of the day, although, circadian rhythm of home cage activity was unaltered. Hyperactivity and reduced freezing during fear memory retrieval were accompanied by an increased induction of the immediate early gene cFos suggesting hyperactivation of the hippocampus, amygdala, and medial hypothalamus. Our data suggest a role of GAD65-mediated GABA synthesis in the encoding of circadian information to fear memory. GAD65 deficits in a state-dependent manner result in increased neural activation in fear circuits and elicit panic-like flight responses during fear memory retrieval.

  10. SYNTHETIC OIL,

    DTIC Science & Technology

    The patent concerns a dicarboxylate-base synthetic oil with antiwear and antioxidation additives. The oil is prepared from the esterification of 2- or 3-methylcyclohexanol and 2-ethylhexanol with adipic acid. (Author)

  11. Exceptionally High Rates of Biological Hydrogen Production by Biomimetic In Vitro Synthetic Enzymatic Pathways.

    PubMed

    Kim, Eui-Jin; Wu, Chang-Hao; Adams, Michael W W; Zhang, Y-H Percival

    2016-11-02

    Hydrogen production by water splitting energized by biomass sugars is one of the most promising technologies for distributed green H2 production. Direct H2 generation from NADPH, catalysed by an NADPH-dependent, soluble [NiFe]-hydrogenase (SH1) is thermodynamically unfavourable, resulting in slow volumetric productivity. We designed the biomimetic electron transport chain from NADPH to H2 by the introduction of an oxygen-insensitive electron mediator benzyl viologen (BV) and an enzyme (NADPH rubredoxin oxidoreductase, NROR), catalysing electron transport between NADPH and BV. The H2 generation rates using this biomimetic chain increased by approximately five-fold compared to those catalysed only by SH1. The peak volumetric H2 productivity via the in vitro enzymatic pathway comprised of hyperthermophilic glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase, and 6-phosphogluconate dehydrogenase, NROR, and SH1 was 310 mmol H2 /L h(-1) , the highest rate yet reported. The concept of biomimetic electron transport chains could be applied to both in vitro and in vivo H2 production biosystems and artificial photosynthesis.

  12. Synthetic pathways of gallbladder mucosal prostanoids: the role of cyclooxygenase-1 and 2.

    PubMed

    Longo, W E; Panesar, N; Mazuski, J E; Kaminski, D

    1999-02-01

    Acute cholecystitis is associated with increased gallbladder prostanoid formation and the inflammatory changes and prostanoid increases can be inhibited by nonsteroidal anti-inflammatory agents. Recent information indicates that prostanoids are produced by two cyclooxygenase (COX) enzymes, COX-1 and COX-2. The purpose of this study was to determine the COX enzymatic pathway in gallbladder mucosal cells involved in the production of prostanoids stimulated by inflammatory agents. Human gallbladder mucosal cells were isolated from cholecystectomy specimens and maintained in cell culture and studied in comparison with cells from a well differentiated gallbladder mucosal carcinoma cell line. COX enzymes were evaluated by Western immunoblotting and prostanoids were measured by ELISA. Unstimulated and stimulated cells were exposed to specific COX-1 and COX-2 inhibitors. In both normal and transformed cells constitutive COX-1 was evident and in gallbladder cancer cells lysophosphatidyl choline (LPC) induced the formation of constitutive COX-1 enzyme. While not detected in unstimulated normal mucosal cells and cancer cells, COX-2 protein was induced by both lipopolysaccharide (LPS) and LPC. Unstimulated gallbladder mucosal cells and cancer cells produced prostaglandin E2 (PGE2) and prostacyclin (6-keto prostaglandin F1alpha, 6-keto PGF1alpha) continuously. In freshly isolated normal gallbladder mucosal cells, continuously produced 6 keto PGF1alpha was inhibited by both COX-1 and COX-2 inhibitors while PGE2 levels were not affected. Both LPS and LPC stimulated PGE2 and 6 keto PGF1alpha formation were blocked by COX-2 inhibitors in freshly isolated, normal human gallbladder mucosal cells and in the gallbladder cancer cells. The prostanoid response of gallbladder cells stimulated by proinflammatory agents is inhibited by COX-2 inhibitors suggesting that these agents may be effective in treating the pain and inflammation of gallbladder disease.

  13. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction.

    PubMed

    Jiang, Chang-Jie; Shimono, Masaki; Sugano, Shoji; Kojima, Mikiko; Yazawa, Katsumi; Yoshida, Riichiro; Inoue, Haruhiko; Hayashi, Nagao; Sakakibara, Hitoshi; Takatsuji, Hiroshi

    2010-06-01

    Plant hormones play pivotal signaling roles in plant-pathogen interactions. Here, we report characterization of an antagonistic interaction of abscisic acid (ABA) with salicylic acid (SA) signaling pathways in the rice-Magnaporthe grisea interaction. Exogenous application of ABA drastically compromised the rice resistance to both compatible and incompatible M. grisea strains, indicating that ABA negatively regulates both basal and resistance gene-mediated blast resistance. ABA markedly suppressed the transcriptional upregulation of WRKY45 and OsNPR1, the two key components of the SA signaling pathway in rice, induced by SA or benzothiadiazole or by blast infection. Overexpression of OsNPR1 or WRKY45 largely negated the enhancement of blast susceptibility by ABA, suggesting that ABA acts upstream of WRKY45 and OsNPR1 in the rice SA pathway. ABA-responsive genes were induced during blast infection in a pattern reciprocal to those of WRKY45 and OsPR1b in the compatible rice-blast interaction but only marginally in the incompatible one. These results suggest that the balance of SA and ABA signaling is an important determinant for the outcome of the rice-M. grisea interaction. ABA was detected in hyphae and conidia of M. grisea as well as in culture media, implying that blast-fungus-derived ABA could play a role in triggering ABA signaling at host infection sites.

  14. Phase and extraction equilibria in water-polyethyleneglycol ethers of monoethanolamides of synthetic fatty acid-ammonium chloride systems

    NASA Astrophysics Data System (ADS)

    Lesnov, A. E.; Golovkina, A. V.; Kudryashova, O. S.; Denisova, S. A.

    2016-08-01

    Phase equilibria in layering systems of water, polyethyleneglycol ethers of monoethanolamides of synthetic fatty acids (SFAs) (synthamide-5), and ammonium chloride are studied. The possibility of using such systems for the liquid extraction of metal ions is evaluated. The effect the nature of salting-out agents has on the processes of segregation of the systems has been considered.

  15. Chemistry of natural fuel: Use of wastes of synthetic fatty acid production for obtaining water-bitumen emulsions

    SciTech Connect

    Syroezhko, A.M.; Antipova, E.I.; Paukku, A.N.

    1995-12-10

    The possibility of producing water-emulsion waterproofing mastic and waterproofing coating based on bitumen, rubber crumb, and bottoms from production of synthetic fatty acids was studied. The physicochemical properties (softening point, ductility, sorptive properties, and friability) of the waterproofing coating based on a water-emulsion mastic were measured.

  16. Effects of oil and natural or synthetic vitamin E on ruminal and milk fatty acid profiles in cows receiving a high-starch diet.

    PubMed

    Zened, A; Troegeler-Meynadier, A; Najar, T; Enjalbert, F

    2012-10-01

    Among trans fatty acids, trans-10,cis-12 CLA has negative effects on cow milk fat production and can affect human health. In high-yielding dairy cows, a shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of cows receiving high-concentrate diets, especially when the diet is supplemented with unsaturated fat sources. In some but not all experiments, vitamin E has been shown to control this shift. To ascertain the effects of vitamin E on this shift of BH pathway, 2 studies were conducted. The first study explored in vitro the effects of addition of natural (RRR-α-tocopherol acetate) and synthetic (dl-α-tocopherol acetate) vitamin E. Compared with control and synthetic vitamin E, the natural form resulted in a greater trans-10/trans-11 ratio; however, the effect was very low, suggesting that vitamin E was neither a limiting factor for rumen BH nor a modulator of the BH pathway. An in vivo study investigated the effect of natural vitamin E (RRR-α-tocopherol) on this shift and subsequent milk fat depression. Six rumen-fistulated lactating Holstein cows were assigned to a 2×2 crossover design. Cows received 20-kg DM of a control diet based on corn silage with 22% of wheat, and after 2 wk of adaptation, the diet was supplemented with 600 g of sunflower oil for 2 more weeks. During the last week of this 4-wk experimental period, cows were divided into 2 groups: an unsupplemented control group and a group receiving 11 g of RRR-α-tocopherol acetate per day. A trans-10 shift of ruminal BH associated with milk fat depression due to oil supplementation of a high-wheat diet was observed, but vitamin E supplementation of dairy cows did not result in a reversal toward a trans-11 BH pathway, and did not restore milk fat content.

  17. A preliminary study for removal of heavy metals from acidic synthetic wastewater by using pressmud-rice husk mixtures

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Ee, C. J.; Baharudin, N. S.

    2016-06-01

    The study was carried out to evaluate the effect of combining pressmud and rice husk in the removal efficiencies of heavy metals in acidic synthetic wastewater. The ratios of pressmud to rice husk were varied at different percentages of weight ratio (0%, 20%, 40%, 60% 80% and 100%) and removal of heavy metals concentrations was observed. The result showed that the removal efficiency was increased with the addition of pressmud by up to almost 100%. Pressmud alone was able to remove 95% to 100% of heavy metals while rice husk alone managed to remove only 10% to 20% of heavy metals. The study also demonstrated that pressmud behaved as a natural acid neutralizer. Hence, the initial pH of the synthetically prepared acidic wastewater which was below 2 also was increased to pH ranging from 6 to 8.

  18. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.

    PubMed

    Bekmezci, Ozan K; Ucar, Deniz; Kaksonen, Anna H; Sahinkaya, Erkan

    2011-05-30

    The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L(-1)) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32°C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and metal concentrations to study the robustness of the process. The last compartment of the reactor was aerated at different rates to study the bio-oxidation of sulfide to elemental sulfur. The highest sulfate reduction efficiency (88%) was obtained with a feed sulfate concentration of 3.5 g L(-1), COD/sulfate mass ratio of 0.737, feed pH of 3.0 and HRT of 2 days without aeration in the 4th compartment. The corresponding COD removal efficiency was about 92%. The alkalinity produced in the sulfidogenic ethanol oxidation neutralized the acidic mine water from pH 3.0-4.5 to pH 7.0-8.0. Effluent soluble and total heavy metal concentrations were substantially reduced with removal efficiencies generally higher than 99%, except for Mn (25-77%). Limited aeration in the 4th compartment of ABR promoted incomplete oxidation of sulfide to elemental sulfur rather than complete oxidation to sulfate. Depending on the aeration rate and HRT, 32-74% of produced sulfide was oxidized to elemental sulfur. This study demonstrates that by optimizing operating conditions, sulfate reduction, metal removal, alkalinity generation, and excess sulfide oxidation can be achieved in a single ABR treating AMD.

  19. Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage.

    PubMed

    Ramond, Jean-Baptiste; Welz, Pamela J; Le Roes-Hill, Marilize; Tuffin, Marla I; Burton, Stephanie G; Cowan, Don A

    2014-03-01

    In this study, three biological sand filter (BSF) were contaminated with a synthetic iron- [1500 mg L⁻¹ Fe(II), 500 mg L⁻¹ Fe(III)] and sulphate-rich (6000 mg L⁻¹ SO₄²⁻) acid mine drainage (AMD) (pH = 2), for 24 days, to assess the remediation capacity and the evolution of autochthonous bacterial communities (monitored by T-RFLP and 16S rRNA gene clone libraries). To stimulate BSF bioremediation involving sulphate-reducing bacteria, a readily degradable carbon source (glucose, 8000 mg L⁻¹) was incorporated into the influent AMD. Complete neutralization and average removal efficiencies of 81.5 (±5.6)%, 95.8 (±1.2)% and 32.8 (±14.0)% for Fe(II), Fe(III) and sulphate were observed, respectively. Our results suggest that microbial iron reduction and sulphate reduction associated with iron precipitation were the main processes contributing to AMD neutralization. The effect of AMD on BSF sediment bacterial communities was highly reproducible. There was a decrease in diversity, and notably a single dominant operational taxonomic unit (OTU), closely related to Clostridium beijerinckii, which represented up to 65% of the total community at the end of the study period.

  20. Magnetic microparticles post-synthetically coated by hyaluronic acid as an enhanced carrier for microfluidic bioanalysis.

    PubMed

    Holubova, Lucie; Knotek, Petr; Palarcik, Jiri; Cadkova, Michaela; Belina, Petr; Vlcek, Milan; Korecka, Lucie; Bilkova, Zuzana

    2014-11-01

    Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were -50 mV and 85 nm, respectively, and of HA-coated p(GMA-MOEAA)-NH2 were -38 mV and 140 nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed.

  1. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    PubMed

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-02-06

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  2. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.

    PubMed

    Hirokawa, Yasutaka; Maki, Yuki; Hanai, Taizo

    2017-01-01

    The introduction of a synthetic metabolic pathway consisting of multiple genes derived from various organisms enables cyanobacteria to directly produce valuable chemicals from carbon dioxide. We previously constructed a synthetic metabolic pathway composed of genes from Escherichia coli, Saccharomyces cerevisiae, and Klebsiella pneumoniae. This pathway enabled 1,3-propanediol (1,3-PDO) production from cellular DHAP via glycerol in the cyanobacterium, Synechococcus elongatus PCC 7942. The production of 1,3-PDO (3.79mM, 0.29g/l) directly from carbon dioxide by engineered S. elongatus PCC 7942 was successfully accomplished. However, the constructed strain accumulated a remarkable amount of glycerol (12.6mM, 1.16g/l), an intermediate metabolite in 1,3-PDO production. Notably, enhancement of latter reactions of synthetic metabolic pathway for conversion of glycerol to 1,3-PDO increases 1,3-PDO production. In this study, we aimed to increase the observed 1,3-PDO production titer. First, the weaker S. elongatus PCC 7942 promoter, PLlacO1, was replaced with a stronger promoter (Ptrc) to regulate genes involved in the conversion of glycerol to 1,3-PDO. Second, the induction timing for gene expression and medium composition were optimized. Promoter replacement resulted in higher 1,3-PDO production than glycerol accumulation, and the amount of products (1,3-PDO and glycerol) generated via the synthetic metabolic pathway increased with optimization of medium composition. Accordingly, we achieved the highest titer of 1,3-PDO (16.1mM, 1.22g/l) and this was higher than glycerol accumulation (9.46mM, 0.87g/l). The improved titer was over 4-fold higher than that of our previous study.

  3. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway

    PubMed Central

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold

    2009-01-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism. PMID:19657052

  4. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway.

    PubMed

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold; Davies, Kelvin Paul

    2009-10-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.

  5. Aerobic biotransformation of alkyl branched aromatic alkanoic naphthenic acids via two different pathways by a new isolate of Mycobacterium.

    PubMed

    Johnson, Richard J; West, Charles E; Swaih, Aisha M; Folwell, Ben D; Smith, Ben E; Rowland, Steven J; Whitby, Corinne

    2012-04-01

    Naphthenic acids (NAs) are complex mixtures of carboxylic acids found in weathered crude oils and oil sands, and are toxic, corrosive and persistent. However, little is known about the microorganisms and mechanisms involved in NA degradation. We isolated a sediment bacterium (designated strain IS2.3), with 100% 16S rRNA gene sequence identity to Mycobacterium aurum, which degraded synthetic NAs (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-t-butylphenyl)-4-butanoic acid (t-BPBA). n-BPBA was readily oxidized with almost complete degradation (96.8% ± 0.3) compared with t-BPBA (77.8% ± 3.7 degraded) by day 49. Cell counts increased fourfold by day 14 but decreased after day 14 for both n- and t-BPBA. At day 14, (4'-butylphenyl)ethanoic acid (BPEA) metabolites were detected. Additional metabolites produced during t-BPBA degradation were identified by mass spectrometry of derivatives as (4'-carboxy-t-butylphenyl)-4-butanoic acid and (4'-carboxy-t-butylphenyl)ethanoic acid; suggesting that strain IS2.3 used omega oxidation of t-BPEA to oxidize the tert-butyl side-chain to produce (4'-carboxy-t-butylphenyl)ethanoic acid, as the primary route for biodegradation. However, strain IS2.3 also produced this metabolite through initial omega oxidation of the tert-butyl side-chain of t-BPBA, followed by beta-oxidation of the alkanoic acid side-chain. In conclusion, an isolate belonging to the genus Mycobacterium degraded highly branched aromatic NAs via two different pathways.

  6. Spectral and biological evaluation of a synthetic antimicrobial peptide derived from 1-aminocyclohexane carboxylic acid.

    PubMed

    Abercrombie, J J; Leung, Kai P; Chai, Hanbo; Hicks, Rickey P

    2015-03-15

    Ac-GF(A6c)G(A6c)K(A6c)G(A6c)F(A6c)G(A6c)GK(A6c)KKKK-amide (A6c=1-aminocyclohexane carboxylic acid) is a synthetic antimicrobial peptide (AMP) that exhibits in vitro inhibitory activity against drug resistant strains of Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter aerogenes, and Enterococcus faecium at concentrations ranging from 10.9 to 43μM. Spectroscopic investigations were conducted to determine how this AMP interacts with simple membrane model systems in order to provide insight into possible mechanisms of action. CD and 2D-(1)H NMR experiments indicated this AMP on binding to SDS and DPC micelles adopts conformations with varying percentages of helical and random coil conformers. CD investigations in the presence of three phospholipid SUVs consisting of POPC, 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC revealed: (1) The interactions occurring with POPC SUVs have minimal effect on the conformational diversity of the AMP yielding conformations similar to those observed in buffer. (2) The interactions with 4:1 POPC/POPG, and 60% POPE/21%POPG/19%POPC SUVs exhibited a greater influence on the percentage of different conformers contributing to the CD spectra. (3) The presence of a high of percentage of helical conformers was not observed in the presence of SUVs as was the case with micelles. This data indicates that the diversity of surface bound conformations adopted by this AMP are very different from the diversity of conformations adopted by this AMP on insertion into the lipid bilayer. CD spectra of this AMP in the presence of SUVs consisting of LPS isolated from P. aeruginosa, K. pneumoniae and Escherichia coli exhibited characteristics associated with various helical conformations.

  7. [Effect of synthetic cyclopentane beta,beta'-triketones on amino acid metabolism in roots of buckwheat (Fagopyrum esculentum Moench.) seedlings].

    PubMed

    Demina, E A; Tishchenko, L Ia; Shestak, O P; Novikov, V L; Anisimov, M M

    2009-01-01

    Germination of buckwheat seeds in solutions of synthetic mono- and tricyclic cyclopentane-containing beta,beta'-triketones of various concentrations was accompanied by inhibition of seedling root growth and changes in the contents of glutamate, gamma-aminobutyric acid, proline, glutamine, and alanine. The monocyclic triketone also affected the amount of isoleucine. It is likely that the increase in proline content is a nonspecific response significant for enhancing stress tolerance in seedlings.

  8. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K

    NASA Astrophysics Data System (ADS)

    Dickson, Andrew G.

    1990-05-01

    E.m.f. measurements have been made using the cell: Pt | H 2(g,101.325 kPa) | borax in synthetic seawater | AgCl; Ag over the temperature range 273.15-318.15 K, and at five salinities from 5 to 45. The results have been used to calculate the stoichiometric (ionic medium) dissociation constant for boric acid in seawater media on the "total" hydrogen ion scale.

  9. SYNTHETIC LUBRICANTS

    DTIC Science & Technology

    of synthetic lubricants for use at low and high temperatures. The diesters of straight-chain dibasic acids lead the field of esters mutable as...lubricants for use at both low and high temperatures, because of their desirable combinations of properties and potentially good availability. Adipic ...azelaic, and sebacic acids are the most readily available dibasic acids suitable for ester lubricant production, while the petroleum derived Oxo alcohols

  10. Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands.

    PubMed

    Elmazar, M M A; Nau, H

    2004-11-01

    Previous studies in our laboratory identified retinoid-induced defects that are mediated by RAR-RXR heterodimerization using interaction of synthetic ligands selective for the retinoid receptors RAR and RXR in mice (Elmazar et al. 1997, Toxicol Appl Pharmacol 146:21-28; Elmazar et al. 2001, Toxicol Appl Pharmacol 170:2-9; Nau and Elmazar 1999, Handbook of experimental pharmacology, vol 139, Retinoids, Springer-Verlag, pp 465-487). The present study was designed to investigate whether these RAR-RXR heterodimer-mediated defects can be also induced by interactions of natural and synthetic ligands for retinoid receptors. A non-teratogenic dose of the natural RXR agonist phytanic acid (100 mg/kg orally) or its precursor phytol (500 mg/kg orally) was coadministered with a synthetic RARalpha-agonist (Am580; 5 mg/kg orally) to NMRI mice on day 8.25 of gestation (GD8.25). Furthermore, a non-teratogenic dose of the synthetic RXR agonist LGD1069 (20 mg/kg orally) was also coadministered with the natural RAR agonist, all- trans-retinoic acid (atRA, 20 mg/kg orally) or its precursor retinol (ROH, 50 mg/kg orally) to NMRI mice on GD8.25. The teratogenic outcome was scored in day-18 fetuses. The incidence of Am580-induced resorptions, spina bifida aperta, micrognathia, anotia, kidney hypoplasia, dilated bladder, undescended testis, atresia ani, short and absent tail, fused ribs and fetal weight retardation were potentiated by coadministration of phytanic acid or its precursor phytol. Am580-induced exencephaly and cleft palate, which were not potentiated by coadministration with the synthetic RXR agonists, were also not potentiated by coadministration with either phytanic acid or its precursor phytol. LGD1069 potentiated atRA- and ROH-induced resorption, exencephaly, spina bifida, aperta, ear anotia and microtia, macroglossia, kidney hypoplasia, undescended testis, atresia ani, tail defects and fetal weight retardation, but not cleft palate. These results suggest that synergistic

  11. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A.

    PubMed

    Tang, Yuting; Zhou, Lubing; Gunnet, Joseph W; Wines, Pamela G; Cryan, Ellen V; Demarest, Keith T

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  12. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    SciTech Connect

    Tang, Yuting . E-mail: ytang@prdus.jnj.com; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  13. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    PubMed Central

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  14. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.

    PubMed

    Chen, Xiulai; Wang, Yuancai; Dong, Xiaoxiang; Hu, Guipeng; Liu, Liming

    2017-02-22

    L-Malic acid is an important component of a vast array of food additives, antioxidants, disincrustants, pharmaceuticals, and cosmetics. Here, we presented a pathway optimization strategy and a transporter modification approach to reconstruct the L-malic acid biosynthesis pathway and transport system, respectively. First, pyruvate carboxylase (pyc) and malate dehydrogenase (mdh) from Aspergillus flavus and Rhizopus oryzae were combinatorially overexpressed to construct the reductive tricarboxylic acid (rTCA) pathway for L-malic acid biosynthesis. Second, the L-malic acid transporter (Spmae) from Schizosaccharomyces pombe was engineered by removing the ubiquitination motification to enhance the L-malic acid efflux system. Finally, the L-malic acid pathway was optimized by controlling gene expression levels, and the final L-malic acid concentration, yield, and productivity were up to 30.25 g L(-1), 0.30 g g(-1), and 0.32 g L(-1) h(-1) in the resulting strain W4209 with CaCO3 as a neutralizing agent, respectively. In addition, these corresponding parameters of pyruvic acid remained at 30.75 g L(-1), 0.31 g g(-1), and 0.32 g L(-1) h(-1), respectively. The metabolic engineering strategy used here will be useful for efficient production of L-malic acid and other chemicals.

  15. Sorbic acid stress activates the Candida glabrata high osmolarity glycerol MAP kinase pathway

    PubMed Central

    Jandric, Zeljkica; Gregori, Christa; Klopf, Eva; Radolf, Martin; Schüller, Christoph

    2013-01-01

    Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway. PMID:24324463

  16. Open questions in origin of life: experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach.

    PubMed

    Adamala, Katarzyna; Anella, Fabrizio; Wieczorek, Rafal; Stano, Pasquale; Chiarabelli, Cristiano; Luisi, Pier Luigi

    2014-01-01

    In this mini-review we present some experimental approaches to the important issue in the origin of life, namely the origin of nucleic acids and proteins with specific and functional sequences. The formation of macromolecules on prebiotic Earth faces practical and conceptual difficulties. From the chemical viewpoint, macromolecules are formed by chemical pathways leading to the condensation of building blocks (amino acids, or nucleotides) in long-chain copolymers (proteins and nucleic acids, respectively). The second difficulty deals with a conceptual problem, namely with the emergence of specific sequences among a vast array of possible ones, the huge "sequence space", leading to the question "why these macromolecules, and not the others?" We have recently addressed these questions by using a chemical synthetic biology approach. In particular, we have tested the catalytic activity of small peptides, like Ser-His, with respect to peptide- and nucleotides-condensation, as a realistic model of primitive organocatalysis. We have also set up a strategy for exploring the sequence space of random proteins and RNAs (the so-called "never born biopolymer" project) with respect to the production of folded structures. Being still far from solved, the main aspects of these "open questions" are discussed here, by commenting on recent results obtained in our groups and by providing a unifying view on the problem and possible solutions. In particular, we propose a general scenario for macromolecule formation via fragment-condensation, as a scheme for the emergence of specific sequences based on molecular growth and selection.

  17. Antihypertensive action of 2-hydroxyoleic acid in SHRs via modulation of the protein kinase A pathway and Rho kinase.

    PubMed

    Alemany, Regina; Vögler, Oliver; Terés, Silvia; Egea, Carolina; Baamonde, Carmela; Barceló, Francisca; Delgado, Carlos; Jakobs, Karl H; Escribá, Pablo V

    2006-08-01

    Olive oil consumption leads to high monounsaturated fatty acid intake, especially oleic acid, and has been associated with a reduced risk of hypertension. However, the molecular mechanisms and contribution of its different components to lower blood pressure (BP) require further evaluation. Here, we examined whether a synthetic, non-beta-oxidation-metabolizable derivative of oleic acid, 2-hydroxyoleic acid (2-OHOA), can normalize BP in adult spontaneously hypertensive rats (SHRs) and whether its antihypertensive action involves cAMP-dependent protein kinase A (PKA) and Rho kinase, two major regulators of vascular smooth muscle contraction. Oral administration of 2-OHOA to SHRs induced sustained systolic BP decreases in a time-dependent (1-7 days) and dose-dependent (100-900 mg/kg every 12 h) manner. After 7 days of treatment with 2-OHOA (600 mg/kg), the systolic BP of SHRs was similar to that of normotensive Wistar Kyoto rats, returning to its initial hypertensive level after withdrawal of 2-OHOA. This treatment strongly increased the protein expression of the catalytic and regulatory RIalpha and RIIalpha PKA subunits as well as PKA activity in aortas from SHRs. Consistently, administration of the PKA inhibitor 8-bromo adenosine-3',5'-cyclic monophosphorothioate, Rp isomer, to 2-OHOA-treated SHRs induced a pronounced reversal (up to 59%) of the antihypertensive effect of 2-OHOA. Additionally, 2-OHOA completely reversed the pathological overexpression of aortic Rho kinase found in SHRs, suppressing the vasoconstrictory Rho kinase pathway.

  18. Arginine-dependent acid-resistance pathway in Shigella boydii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ability to survive the low pH of the human stomach is considered be an important virulent determinant. Acid tolerance of Shigella boydii 18 CDPH, the strain implicated in an outbreak may have played an important role in surviving the acidic food (bean salad). The strain was capable of inducing arg...

  19. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].

    PubMed

    Yan, Daojiang; Wang, Caixia; Zhou, Jiemin; Liu, Yilan; Yang, Maohua; Xing, Jianmin

    2013-10-01

    Malic acid is widely used in food, and chemical industries. Through overexpressing pyruvate carboxylase and malate dehydrogenase in pdc1-deficient Saccharomyces cerevisiae, malic acid was successfully produced through the reductive TCA pathway. No malic acid was detected in wild type Saccharomyces cerevisiae, however, 45 mmol/L malic acid was produced in engineered strain, and the concentration of byproduct ethanol also reduced by 18%. The production of malic acid enhanced 6% by increasing the concentration of Ca2+. In addition, the final concentration reached 52.5 mmol/L malic acid by addition of biotin. The increasing is almost 16% higher than that of the original strain.

  20. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    PubMed

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  1. Hyaluronic acid reverses the abnormal synthetic activity of human osteoarthritic subchondral bone osteoblasts.

    PubMed

    Lajeunesse, Daniel; Delalandre, Aline; Martel-Pelletier, Johanne; Pelletier, Jean Pierre

    2003-10-01

    The underlying mechanisms responsible for both cartilage loss and subchondral bone changes in osteoarthritis (OA) remain unknown. It is becoming recognized that the extracellular matrix influences the metabolism of cells both in vivo and in vitro and can modify their responses to external stimuli. Indeed, the glycosaminoglycan/proteoglycan matrix is of major importance for the proliferation and/or differentiation of a number of cells. Here, we determined the potential role of hyaluronic acid (HA) of increasing molecular weight (MW) to alter the expression of metabolic markers and cytokine production by human osteoarthritic (OA) subchondral osteoblasts (Ob). Both 1,25(OH)(2)D(3)-induced alkaline phosphatase activity (ALPase) and osteocalcin release were increased in OA Ob when compared to normal. HA reduced osteocalcin release in OA Ob at MW of 300 and above, whereas HA failed to significantly modify ALPase. Parathyroid hormone (PTH) stimulated cyclic AMP (cAMP) formation by OA Ob. HA had a biphasic effect on this PTH-dependent activity, totally inhibiting cAMP formation at MW of 300 and 800. HA of increasing MW progressively reduced the levels of Prostaglandin E(2) (PGE(2)) and interleukin-6 (IL-6) produced by OA Ob. Interestingly, urokinase plasminogen activator (uPA) and and PA inhibitor-1 (PAI-1) levels were not significantly affected by HA of increasing MW; however, the PAI-1 to uPA ratio showed a slight, yet nonsignificant increase. Surprisingly, uPA activity was increased in OA Ob under the same conditions. Last, HA had no effect on the production of insulin-like growth factor-1 by these cells. Our data suggest that high MW HA can modify cellular parameters in OA Ob that are increased when compared to normal. The effect of HA on inflammatory mediators, such as PGE(2) and IL-6, and on uPA activity is more striking at higher MW as well. Taken together, these results could suggest that HA of increasing MW has positive effects on OA Ob by modifying their

  2. Behavioral Responses of Plum Curculio (Coleoptera: Curculionidae) to Different Enantiomer Concentrations and Blends of the Synthetic Aggregation Pheromone Grandisoic Acid.

    PubMed

    Hock, Virginia; Chouinard, Gérald; Lucas, Éric; Cormier, Daniel; Leskey, Tracy C; Wright, Starker E; Zhang, Aijun; Pichette, André

    2015-04-01

    The plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), is an important pest of fruit in North America. Males produce an aggregation pheromone (grandisoic acid) that attracts both sexes of the northern univoltine and the southern multivoltine strains. Grandisoic acid ((1R,2S)-1-methyl-2-(1-methylethenyl)-cyclobutaneacetic acid) is a chiral molecule containing one chiral center. A synthetic racemic mixture will contain two optical isomers that are mirror images of each other with equal amounts of (+)- and (-)-enantiomeric isomers. Male plum curculio only produce the (+) enantiomer. Some enantiomers can have antagonistic effects on the attraction of weevils to pheromones. An understanding of the effect of both enantiomers on the behaviour of plum curculio is needed to develop more efficient trap baits. Behavioural bioassays were conducted in a dual-choice still-air vertical olfactometer using a quantity of 1.5 ml of both (+) and (-) synthetic enantiomers and the racemic mixture of grandisoic acid with live female responders to determine which concentration and enantiomeric purity is the most attractive and if there is an antagonistic effect of the unnatural (-) enantiomer. Results indicated that plum curculio were attracted to low concentrations of the (+) enantiomer at 72% enantiomeric excess, but that strains were attracted to different concentrations of the (+) enantiomer (2×10(-7) mg/ml for univoltine, 2×10(-9) mg/ml for multivoltine).

  3. Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells.

    PubMed

    Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V

    2016-09-01

    Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.

  4. Viability, infectivity and fatty acid synthetic activity of Perkinsus marinus meront cells incubated in estuarine and artificial seawater.

    PubMed

    Chu, Fu-Lin E; Lund, Eric D

    2006-07-25

    We investigated the viability and fatty acid synthetic activity of in vitro cultured Perkinsus marinus (Dermo) in lipid-free medium and estuarine water, and the infectivity of P. marinus maintained in artificial seawater (ASW). Viability and fatty acid synthetic activity in 7 d old P. marinus meronts maintained in lipid-free medium and estuarine water were tested. The infectivity of meronts incubated in ASW was examined by first incubating P. marinus meronts in ASW for 2, 3 or 7 d, and then inoculating viable ASW-incubated meronts into the shell cavity of individual oysters Crassostrea virginica. P. marinus infection prevalence and intensity in oysters were determined 9 wk post-inoculation. Heavy mortality occurred in meronts maintained in estuarine water, a drop from an initial value of 100% viable to 7.8 and 6.1% after 3 and 14 d incubation, respectively. Viability was 85 and 67% in meronts maintained in lipid-free medium for 3 and 24 d, respectively. Meronts kept in lipid-free medium for 14 d retained their ability to synthesize fatty acids. Viable meronts incubated in ASW remained infective for up to 7 d. The infection prevalences were 85, 48 and 100%, in the treatments inoculated with viable meronts that were incubated in ASW for 2, 3 and 7 d, respectively. Infection prevalence in the group inoculated with viable meronts immediately after they were transferred to ASW ranged from 61 to 85%. Our results suggest that in nature meronts can survive for at least 14 d outside the host. Viable meronts are not only infective, but are also able to replicate and retain their fatty acid synthetic ability for 7 d.

  5. Pinolenic Acid Downregulates Lipid Anabolic Pathway in HepG2 Cells.

    PubMed

    Lee, Ah Ron; Han, Sung Nim

    2016-07-01

    Pine nut oil (PNO) was reported to reduce lipid accumulation in the liver. However, the specific effect of pinolenic acid (18:3, all-cis-Δ5,9,12), a unique component of PNO, on lipid metabolism has not been studied. We hypothesized that pinolenic acid downregulates the lipid anabolic pathway in HepG2 cells. HepG2 cells were incubated in serum-free medium supplemented with 50 μM bovine serum albumin (BSA), palmitic acid, oleic acid, γ-linolenic acid, pinolenic acid, eicosapentaenoic acid (EPA), or α-linolenic acid for 24 h. Lipid accumulation was determined by Oil Red O (ORO) staining. The mRNA levels of genes related to fatty acid biosynthesis (SREBP1c, FAS, SCD1, and ACC1), fatty acid oxidation (ACC2, PPARα, CPT1A, and ACADL), cholesterol synthesis (SREBP2 and HMGCR), and lipoprotein uptake (LDLr) and of genes that may be involved in the downregulation of the lipogenic pathway (ACSL3, ACSL4, and ACSL5) were determined by qPCR. LDLR protein levels were measured by Western blot analysis. The mRNA levels of SREBP1c, FAS, and SCD1 were significantly downregulated by pinolenic acid treatment compared to BSA control (53, 54, and 38 % lower, respectively). In addition, the mRNA levels of HMGCR, ACSL3, and LDLr were significantly lower (30, 30, and 43 % lower, respectively), and ACSL4 tended to be lower in the pinolenic acid group (20 % lower, P = 0.082) relative to the control group. In conclusion, pinolenic acid downregulated the lipid anabolic pathway in HepG2 cells by reducing expression of genes related to lipid synthesis, lipoprotein uptake, and the regulation of the lipogenic pathway.

  6. A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum

    PubMed Central

    Waller, Ross F.; Ralph, Stuart A.; Reed, Michael B.; Su, Vanessa; Douglas, James D.; Minnikin, David E.; Cowman, Alan F.; Besra, Gurdyal S.; McFadden, Geoffrey I.

    2003-01-01

    It has long been held that the malaria parasite, Plasmodium sp., is incapable of de novo fatty acid synthesis. This view has recently been overturned with the emergence of data for the presence of a fatty acid biosynthetic pathway in the relict plastid of P. falciparum (known as the apicoplast). This pathway represents the type II pathway common to plant chloroplasts and bacteria but distinct from the type I pathway of animals including humans. Specific inhibitors of the type II pathway, thiolactomycin and triclosan, have been reported to target this Plasmodium pathway. Here we report further inhibitors of the plastid-based pathway that inhibit Plasmodium parasites. These include several analogues of thiolactomycin, two with sixfold-greater efficacy than thiolactomycin. We also report that parasites respond very rapidly to such inhibitors and that the greatest sensitivity is seen in ring-stage parasites. This study substantiates the importance of fatty acid synthesis for blood-stage parasite survival and shows that this pathway provides scope for the development of novel antimalarial drugs. PMID:12499205

  7. Effect of casein-based semi-synthetic food on renal acid excretion and acid-base state of blood in dogs.

    PubMed

    Zijlstra, W G; Langbroek, A J; Kraan, J; Rispens, P; Nijmeijer, A

    1995-01-01

    Urinary acid excretion and blood acid-base state were determined in dogs fed a casein-based semi-synthetic food (SSF), to which different amounts of salts had been added, in comparison with feeding normal dog food. Net acid excretion (NAE) and inorganic acid excretion (IAE) increased during SSF feeding. IAE was higher than the acid load calculated from the sulphur and phosphorus content of the casein. This higher IAE appeared to be due to the presence of calcium and magnesium phosphate in the diet, because calcium and magnesium may be in part precipitated as carbonate, leaving phosphate to be absorbed as phosphoric acid. Acid excretion decreased by addition of CaO. When no neutral Na+ and K+ salts were added, the increase in NAE was accompanied by a metabolic acidosis. K+ was more effective in attenuating the acidosis than Na+. On the basis of these findings a diet can be made which imposes a known acid load, and provides stable baseline values. Hence, any additions that influence the acid-base balance can be properly studied. The data obtained in these and future studies utilising this diet may be of help in optimising the composition of nutrient solutions to be used in the care of critically ill patients.

  8. Comparative study of the cytotoxicity and genotoxicity of kaurenoic acid and its semi-synthetic derivatives methoxy kaurenoic acid and kaurenol in CHO-K1 cells.

    PubMed

    Cano, Bruno Limonti; Moreira, Monique Rodrigues; Goulart, Mirian Oliveira; Dos Santos Gonçalves, Natália; Veneziani, Rodrigo Cassio Sola; Bastos, Jairo Kenupp; Ambrósio, Sérgio Ricardo; Dos Santos, Raquel Alves

    2017-04-01

    The diterpene kaurenoic acid (KA) has vasorelaxant, antimicrobial, anti-tumoural and anti-leishmanial effects. Semi-synthetic derivatives were obtained to achieve more satisfactory responses. The assessment of genotoxicity is part of the toxicological evaluation of therapeutic compound candidates. The present study investigated the cytotoxicity and genotoxicity of KA and its semi-synthetic derivatives methoxy kaurenoic acid (MKA) and kaurenol (KRN) using the CHO-K1 cell line. The cytotoxicity evaluation demonstrated that treatments with 200 and 400 μM KA reduced cellular proliferation to 36.5 and 4.43%, respectively, and that 100 and 200 μM KA reduced the survival fraction (SF) to 48.1 and 5.5%, respectively. MKA and KRN at concentrations of 400 μM reduced proliferation to 81 and 86.8%, respectively, while 100 and 200 μM KRN reduced the SF to 50%, and 200 μM MKA reduced the SF to 74%. No genotoxicity was observed for KA or MKA. However, 100 μM KRN increased the DNA damage index, as detected by comet assay, although a micronucleus assay did not confirm these data. The results demonstrated that KA and its semi-synthetic derivative MKA were not genotoxic when tested at noncytotoxic concentrations, but KRN was genotoxic at the highest concentration that was tested, as demonstrated by the comet assay.

  9. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways.

    PubMed

    Huang, Shurong; Rutkowsky, Jennifer M; Snodgrass, Ryan G; Ono-Moore, Kikumi D; Schneider, Dina A; Newman, John W; Adams, Sean H; Hwang, Daniel H

    2012-09-01

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for solubilizing fatty acids. This report raised doubt about proinflammatory effects of SFAs. Our studies herein demonstrate that sodium palmitate (C16:0) or laurate (C12:0) without BSA solubilization induced phosphorylation of inhibitor of nuclear factor-κB α, c-Jun N-terminal kinase (JNK), p44/42 mitogen-activated-kinase (ERK), and nuclear factor-κB subunit p65, and TLR target gene expression in THP1 monocytes or RAW264.7 macrophages, respectively, when cultured in low FBS (0.25%) medium. C12:0 induced NFκB activation through TLR2 dimerized with TLR1 or TLR6, and through TLR4. Because BSA was not used in these experiments, contaminants in BSA have no relevance. Unlike in suspension cells (THP-1), BSA-solubilized C16:0 instead of sodium C16:0 is required to induce TLR target gene expression in adherent cells (RAW264.7). C16:0-BSA transactivated TLR2 dimerized with TLR1 or TLR6 and through TLR4 as seen with C12:0. These results and additional studies with the LPS sequester polymixin B and in MyD88(-/-) macrophages indicated that SFA-induced activation of TLR2 or TLR4 is a fatty acid-specific effect, but not due to contaminants in BSA or fatty acid preparations.

  10. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil.

    PubMed

    Soleimani, Mohsen; Hajabbasi, Mohammad A; Afyuni, Majid; Akbar, Samira; Jensen, Julie K; Holm, Peter E; Borggaard, Ole K

    2010-01-01

    Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and other synthetic polycarboxylic acids have been shown to possess substantial capacity as washing agents of heavy metal-polluted soils, but they are environmentally problematic. Therefore, a sample of natural soluble humic substances (HS) was tested as a possible substitute. The efficiency of HS to extract cadmium (Cd), copper (Cu), and lead (Pb) from a strongly polluted calcareous urban soil was compared with that of EDTA and NTA. The influence of extractant concentration (25-100 mmol L(-1) C), solution/soil ratio (5-100 L kg(-1)), and single-step vs. multistep extraction on heavy metal removal from the soil was investigated. The extracted pools were assessed by sequential extraction. Ethylenediaminetetraacetic acid and NTA extracted up to 86, 77, and 30% of total soil Cd, Cu, and Pb, respectively, whereas HS extracted 44, 53, and 4%. Extracted amounts of Cd, Cu, and Pb increased with increasing extractant concentration and solution/soil ratio in the range 5 to 100 L kg(-1). Single-step extraction removed about the same amounts of the three metals as multiple-step extraction. The metal-extracted pools of the soil depended on the metal and on the extractant. The overall conclusion is that soluble HS can replace synthetic EDTA and NTA as washing agents for Cd- and Cu-polluted soils, whereas HS is not a promising substitute of EDTA or NTA for cleaning Pb-polluted, calcareous soils.

  11. Structure and kinetics of formation of interphase layers of synthetic fatty acid aluminum soap at the water/oil interface

    SciTech Connect

    Chalykh, A.E.; Matveev, V.V.; Mityuk, D.Y.; Shal't, S.Y.; Tarasevich, B.N.

    1986-02-01

    The authors investigate the kinetics of formation of interphase layers (IL) at the interface between the phases: a 0.15% solution of aluminum soap of synthetic fatty acids (SFA) (fraction C/sub 17/-C/sub 21/) in n-decane/distilled water. The structure and the morphological properties of IL were investigated by transmission electron spectroscopy. The electron micrographs of the interphase layer of the soap at different stages of its formation show that the formation of a new phase starts with the appearance of small dispersed particles with spherical and fibrillar shapes. The results obtained supplement the authors' concepts about the mechanism of spontaneous microemulsification.

  12. A short synthetic route to biologically active (+/-)-daurichromenic acid as highly potent anti-HIV agent.

    PubMed

    Lee, Yong Rok; Wang, Xue

    2005-11-07

    The efficient total synthesis of biologically interesting (+/-)-daurichromenic acid is accomplished starting from 2,4-dihydroxy-6-methylbenzoic acid or 2,4-dihydroxy-6-methylbenzaldehyde in one or two steps.

  13. Polyunsaturated fatty acids trigger apoptosis of colon cancer cells through a mitochondrial pathway

    PubMed Central

    Zhang, Chengcheng; Yu, Haining; Shen, Yuzhen; Ni, Xiaofeng; Das, Undurti N.

    2015-01-01

    Introduction Colorectal cancer is common in developed countries. Polyunsaturated fatty acids (PUFAs) have been reported to possess tumoricidal action, but the exact mechanism of their action is not clear. Material and methods In the present study, we studied the effect of various n-6 and n-3 fatty acids on the survival of the colon cancer cells LoVo and RKO and evaluated the possible involvement of a mitochondrial pathway in their ability to induce apoptosis. Results It was observed that n-3 α-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid (ALA, EPA and DHA respectively) and n-6 linoleic acid, gamma-linolenic acid and arachidonic acid (LA, GLA and AA respectively) induced apoptosis of the colon cancer cells LoVo and RKO at concentrations above 120 μM (p < 0.01 compared to control). The semi-differentiated colon cancer cell line RKO was more sensitive to the cytotoxic action of PUFAs compared to the undifferentiated colon cancer cell line LoVo. PUFA-treated cells showed an increased number of lipid droplets in their cytoplasm. PUFA-induced apoptosis of LoVo and RKO cells is mediated through a mitochondria-mediated pathway as evidenced by loss of mitochondrial membrane potential, generation of ROS, accumulation of intracellular Ca2+, activation of caspase-9 and caspase-3, decreased ATP level and increase in the Bax/Bcl2 expression ratio. Conclusions PUFAs induced apoptosis of colon cancer cells through a mitochondrial dependent pathway. PMID:26528354

  14. Molecular pathways: current role and future directions of the retinoic acid pathway in cancer prevention and treatment.

    PubMed

    Connolly, Roisin M; Nguyen, Nguyen K; Sukumar, Saraswati

    2013-04-01

    Retinoids and their naturally metabolized and synthetic products (e.g., all-trans retinoic acid, 13-cis retinoic acid, bexarotene) induce differentiation in various cell types. Retinoids exert their actions mainly through binding to the nuclear retinoic acid receptors (α, β, γ), which are transcriptional and homeostatic regulators with functions that are often compromised early in neoplastic transformation. The retinoids have been investigated extensively for their use in cancer prevention and treatment. Success has been achieved with their use in the treatment of subtypes of leukemia harboring chromosomal translocations. Promising results have been observed in the breast cancer prevention setting, where fenretinide prevention trials have provided a strong rationale for further investigation in young women at high risk for breast cancer. Ongoing phase III randomized trials investigating retinoids in combination with chemotherapy in non-small cell lung cancer aim to definitively characterize the role of retinoids in this tumor type. The limited treatment success observed to date in the prevention and treatment of solid tumors may relate to the frequent epigenetic silencing of RARβ. Robust evaluation of RARβ and downstream genes may permit optimized use of retinoids in the solid tumor arena.

  15. Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1991-01-01

    The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

  16. Permanganate oxidation of α-amino acids: kinetic correlations for the nonautocatalytic and autocatalytic reaction pathways.

    PubMed

    Perez-Benito, Joaquin F

    2011-09-08

    The reactions of permanganate ion with seven α-amino acids in aqueous KH(2)PO(4)/K(2)HPO(4) buffers have been followed spectrophotometrically at two different wavelengths: 526 nm (decay of MnO(4)(-)) and 418 nm (formation of colloidal MnO(2)). All of the reactions studied were autocatalyzed by colloidal MnO(2), with the contribution of the autocatalytic reaction pathway decreasing in the order glycine > l-threonine > l-alanine > l-glutamic acid > l-leucine > l-isoleucine > l-valine. The rate constants corresponding to the nonautocatalytic and autocatalytic pathways were obtained by means of either a differential rate law or an integrated one, the latter requiring the use of an iterative method for its implementation. The activation parameters for the two pathways were determined and analyzed to obtain statistically significant correlations for the series of reactions studied. The activation enthalpy of the nonautocatalytic pathway showed a strong, positive dependence on the standard Gibbs energy for the dissociation of the protonated amino group of the α-amino acid. Linear enthalpy-entropy correlations were found for both pathways, leading to isokinetic temperatures of 370 ± 21 K (nonautocatalytic) and 364 ± 28 K (autocatalytic). Mechanisms in agreement with the experimental data are proposed for the two reaction pathways.

  17. New Approaches to Target the Mycolic Acid Biosynthesis Pathway for the Development of Tuberculosis Therapeutics

    PubMed Central

    North, E. Jeffrey; Jackson, Mary; Lee, Richard E.

    2015-01-01

    Mycolic acids are the major lipid component of the unique mycobacterial cell wall responsible for the protection of the tuberculosis bacilli from many outside threats. Mycolic acids are synthesized in the cytoplasm and transported to the outer membrane as trehalose-containing glycolipids before being esterified to the arabinogalactan portion of the cell wall and outer membrane glycolipids. The large size of these unique fatty acids is a result of a huge metabolic investment that has been evolutionarily conserved, indicating the importance of these lipids to the mycobacterial cellular survival. There are many key enzymes involved in the mycolic acid biosynthetic pathway, including fatty acid synthesis (KasA, KasB, MabA, InhA, HadABC), mycolic acid modifying enzymes (SAM-dependent methyltransferases, aNAT), fatty acid activating and condensing enzymes (FadD32, Acc, Pks13), transporters (MmpL3) and tranferases (Antigen 85A-C) all of which are excellent potential drug targets. Not surprisingly, in recent years many new compounds have been reported to inhibit specific portions of this pathway, discovered through both phenotypic screening and target enzyme screening. In this review, we analyze the new and emerging inhibitors of this pathway discovered in the post-genomic era of tuberculosis drug discovery, several of which show great promise as selective tuberculosis therapeutics. PMID:24245756

  18. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.

    PubMed

    Yoon, Mee-Sup; Chen, Jie

    2013-12-01

    Signaling through the mammalian target of rapamycin (mTOR) in response to amino acid availability controls many cellular and developmental processes. mTOR is a master regulator of myogenic differentiation, but the pathways mediating amino acid signals in this process are not known. Here we examine the Rag GTPases and the class III phosphoinositide 3-kinase (PI3K) Vps34, two mediators of amino acid signals upstream of mTOR complex 1 (mTORC1) in cell growth regulation, for their potential involvement in myogenesis. We find that, although both Rag and Vps34 mediate amino acid activation of mTORC1 in C2C12 myoblasts, they have opposing functions in myogenic differentiation. Knockdown of RagA/B enhances, whereas overexpression of active RagB/C mutants impairs, differentiation, and this inhibitory function of Rag is mediated by mTORC1 suppression of the IRS1-PI3K-Akt pathway. On the other hand, Vps34 is required for myogenic differentiation. Amino acids activate a Vps34-phospholipase D1 (PLD1) pathway that controls the production of insulin-like growth factor II, an autocrine inducer of differentiation, through the Igf2 muscle enhancer. The product of PLD, phosphatidic acid, activates the enhancer in a rapamycin-sensitive but mTOR kinase-independent manner. Our results uncover amino acid-sensing mechanisms controlling the homeostasis of myogenesis and underline the versatility and context dependence of mTOR signaling.

  19. Precipitation pathways for ferrihydrite formation in acidic solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Mengqiang; Frandsen, Cathrine; Wallace, Adam F.; Legg, Benjamin; Khalid, Syed; Zhang, Hengzhong; Mørup, Steen; Banfield, Jillian F.; Waychunas, Glenn A.

    2016-01-01

    Iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV-vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the other two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.

  20. Precipitation pathways for ferrihydrite formation in acidic solutions

    SciTech Connect

    Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; Wallace, Adam F.; Legg, Benjamin; Zhang, Hengzhong; Morup, Steen; Banfield, Jillian F.; Waychunas, Glenn A.

    2015-10-03

    In this study, iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the other two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.

  1. Precipitation pathways for ferrihydrite formation in acidic solutions

    DOE PAGES

    Zhu, Mengqiang; Khalid, Syed; Frandsen, Cathrine; ...

    2015-10-03

    In this study, iron oxides and oxyhydroxides form via Fe3+ hydrolysis and polymerization in many aqueous environments, but the pathway from Fe3+ monomers to oligomers and then to solid phase nuclei is unknown. In this work, using combined X-ray, UV–vis, and Mössbauer spectroscopic approaches, we were able to identify and quantify the long-time sought ferric speciation over time during ferric oxyhydroxide formation in partially-neutralized ferric nitrate solutions ([Fe3+] = 0.2 M, 1.8 < pH < 3). Results demonstrate that Fe exists mainly as Fe(H2O)63+, μ-oxo aquo dimers and ferrihydrite, and that with time, the μ-oxo dimer decreases while the othermore » two species increase in their concentrations. No larger Fe oligomers were detected. Given that the structure of the μ-oxo dimer is incompatible with those of all Fe oxides and oxyhydroxides, our results suggest that reconfiguration of the μ-oxo dimer structure occurs prior to further condensation leading up to the nucleation of ferrihydrite. The structural reconfiguration is likely the rate-limiting step involved in the nucleation process.« less

  2. Role of bile acids in the regulation of the metabolic pathways

    PubMed Central

    Taoka, Hiroki; Yokoyama, Yoko; Morimoto, Kohkichi; Kitamura, Naho; Tanigaki, Tatsuya; Takashina, Yoko; Tsubota, Kazuo; Watanabe, Mitsuhiro

    2016-01-01

    Recent studies have revealed that bile acids (BAs) are not only facilitators of dietary lipid absorption but also important signaling molecules exerting multiple physiological functions. Some major signaling pathways involving the nuclear BAs receptor farnesoid X receptor and the G protein-coupled BAs receptor TGR5/M-BAR have been identified to be the targets of BAs. BAs regulate their own homeostasis via signaling pathways. BAs also affect diverse metabolic pathways including glucose metabolism, lipid metabolism and energy expenditure. This paper suggests the mechanism of controlling metabolism via BA signaling and demonstrates that BA signaling is an attractive therapeutic target of the metabolic syndrome. PMID:27433295

  3. [Genetic code: codon bases--the symbols of amino acid synthesis and catabolism pathways].

    PubMed

    Konyshev, V A

    1983-01-01

    The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.

  4. Interaction of diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids.

    PubMed Central

    Manzini, G; Barcellona, M L; Avitabile, M; Quadrifoglio, F

    1983-01-01

    The interaction of DAPI with natural and synthetic polydeoxynucleotides of different base content and sequences was studied with circular dichroism, ultracentrifugation, viscosity and calorimetry. All the polymers show two types of binding. The strength of the interaction and its resistance to ionic strength are related to the content of AT clusters in the chain. On the other hand, sedimentation measurements rule out an intercalation mechanism. A model of DAPI interaction with DNA, similar to that displayed by distamycin and netropsin, is proposed. PMID:6672773

  5. Structural Conservation of Ligand Binding Reveals a Bile Acid-like Signaling Pathway in Nematodes*

    PubMed Central

    Zhi, Xiaoyong; Zhou, X. Edward; Melcher, Karsten; Motola, Daniel L.; Gelmedin, Verena; Hawdon, John; Kliewer, Steven A.; Mangelsdorf, David J.; Xu, H. Eric

    2012-01-01

    Bile acid-like molecules named dafachronic acids (DAs) control the dauer formation program in Caenorhabditis elegans through the nuclear receptor DAF-12. This mechanism is conserved in parasitic nematodes to regulate their dauer-like infective larval stage, and as such, the DAF-12 ligand binding domain has been identified as an important therapeutic target in human parasitic hookworm species that infect more than 600 million people worldwide. Here, we report two x-ray crystal structures of the hookworm Ancylostoma ceylanicum DAF-12 ligand binding domain in complex with DA and cholestenoic acid (a bile acid-like metabolite), respectively. Structure analysis and functional studies reveal key residues responsible for species-specific ligand responses of DAF-12. Furthermore, DA binds to DAF-12 mechanistically and is structurally similar to bile acids binding to the mammalian bile acid receptor farnesoid X receptor. Activation of DAF-12 by cholestenoic acid and the cholestenoic acid complex structure suggest that bile acid-like signaling pathways have been conserved in nematodes and mammals. Together, these results reveal the molecular mechanism for the interplay between parasite and host, provide a structural framework for DAF-12 as a promising target in treating nematode parasitism, and provide insight into the evolution of gut parasite hormone-signaling pathways. PMID:22170062

  6. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  7. Synthetic amphibian peptides and short amino-acids derivatives against planktonic cells and mature biofilm of Providencia stuartii clinical strains.

    PubMed

    Ostrowska, Kinga; Kamysz, Wojciech; Dawgul, Małgorzata; Różalski, Antoni

    2014-01-01

    Over the last decade, the growing number of multidrug resistant strains limits the use of many of the currently available chemotherapeutic agents. Furthermore, bacterial biofilm, due to its complex structure, constitutes an effective barrier to conventional antibiotics. The in vitro activities of naturally occurring peptide (Citropin 1.1), chemically engineered analogue (Pexiganan), newly-designed, short amino-acid derivatives (Pal-KK-NH2, Pal-KKK-NH2, Pal-RRR-NH2) and six clinically used antimicrobial agents (Gatifloxacin, Ampicilin, Cefotaxime, Ceftriaxone, Cefuroxime and Cefalexin) were investigated against planktonic cells and mature biofilm of multidrug-resistant Providencia stuartii strains, isolated from urological catheters. The MICs, MBCs values were determined by broth microdilution technique. Inhibition of biofilm formation by antimicrobial agents as well as biofilm susceptibility assay were tested using a surrogate model based on the Crystal Violet method. The antimicrobial activity of amino-acids derivatives and synthetic peptides was compared to that of clinically used antibiotics. For planktonic cells, MICs of peptides and antibiotics ranged between 1 and 256 μg/ml and 256 and ≥ 2048 μg/ml, respectively. The MBCs values of Pexiganan, Citropin 1.1 and amino-acids derivatives were between 16 and 256 μg/ml, 64 and 256 μg/ml and 16 and 512 μg/ml, respectively. For clinically used antibiotics the MBCs values were above 2048 μg/ml. All of the tested peptides and amino-acids derivatives, showed inhibitory activity against P. stuartii biofilm formation, in relation to their concentrations. Pexiganan and Citropin 1.1 in concentration range 32 and 256 μg/ml caused both strong and complete suppression of biofilm formation. None of the antibiotics caused complete inhibition of biofilm formation process. The biofilm susceptibility assay verified the extremely poor antibiofilm activity of conventional antibiotics compared to synthetic peptides. The

  8. EIMS Fragmentation Pathways and MRM Quantification of 7α/β-Hydroxy-Dehydroabietic Acid TMS Derivatives.

    PubMed

    Rontani, Jean-François; Aubert, Claude; Belt, Simon T

    2015-09-01

    EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH(4)-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.

  9. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-05-01

    cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites.

  10. Open questions in origin of life: experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach

    PubMed Central

    Adamala, Katarzyna; Anella, Fabrizio; Wieczorek, Rafal; Stano, Pasquale; Chiarabelli, Cristiano; Luisi, Pier Luigi

    2014-01-01

    In this mini-review we present some experimental approaches to the important issue in the origin of life, namely the origin of nucleic acids and proteins with specific and functional sequences. The formation of macromolecules on prebiotic Earth faces practical and conceptual difficulties. From the chemical viewpoint, macromolecules are formed by chemical pathways leading to the condensation of building blocks (amino acids, or nucleotides) in long-chain copolymers (proteins and nucleic acids, respectively). The second difficulty deals with a conceptual problem, namely with the emergence of specific sequences among a vast array of possible ones, the huge “sequence space”, leading to the question “why these macromolecules, and not the others?” We have recently addressed these questions by using a chemical synthetic biology approach. In particular, we have tested the catalytic activity of small peptides, like Ser-His, with respect to peptide- and nucleotides-condensation, as a realistic model of primitive organocatalysis. We have also set up a strategy for exploring the sequence space of random proteins and RNAs (the so-called “never born biopolymer” project) with respect to the production of folded structures. Being still far from solved, the main aspects of these “open questions” are discussed here, by commenting on recent results obtained in our groups and by providing a unifying view on the problem and possible solutions. In particular, we propose a general scenario for macromolecule formation via fragment-condensation, as a scheme for the emergence of specific sequences based on molecular growth and selection. PMID:24757502

  11. Identification of the ZAK-MKK4-JNK-TGFβ signaling pathway as a molecular target for novel synthetic iminoquinone anticancer compound BA-TPQ.

    PubMed

    Chen, Deng; Wang, Wei; Qin, Jiang-Jiang; Wang, Ming-Hai; Murugesan, Srinivasan; Nadkarni, Dwayaja H; Velu, Sadanandan E; Wang, Hui; Zhang, Ruiwen

    2013-07-01

    Identification and validation of molecular targets are considered as key elements in new drug discovery and development. We have recently demonstrated that a novel synthetic iminoquinone analog, termed [7-(benzylamino)- 1,3,4,8-tetrahydropyrrolo [4,3, 2-de]quinolin-8(1H)-one] (BA-TPQ), has significant anti-breast cancer activity both in vitro and in vivo, but the underlying molecular mechanisms are not fully understood. Herein, we report the molecular studies for BA-TPQ's effects on JNK and its upstream and downstream signaling pathways. The compound up-regulates the JNK protein levels by increasing its phosphorylation and decreasing its polyubiquitination-mediated degradation. It activates ZAK at the MAPKKK level and MKK4 at the MAPKK level. It also up-regulates the TGFβ2 mRNA level, which can be abolished by the JNK-specific inhibitor SP600125, but not TGFβ pathway-specific inhibitor SD-208, indicating that both JNK and TGFβ signaling pathways are activated by BA-TPQ and that the JNK pathway activation precedes TGFβ activation. The pro-apoptotic and anti-growth effects of BA-TPQ are significantly blocked by both the JNK and TGFβ pathway inhibitors. In addition, BA-TPQ activates the ZAK-MKK4-JNK pathway in MCF7 cells, but not normal MCF10A cells, demonstrating its cancer-specific activities. In conclusion, our results demonstrate that BA-TPQ activates the ZAK-MKK4-JNK-TGFβ signaling cascade as a molecular target for its anticancer activity.

  12. Properties of synthetic ferrihydrite as an amino acid adsorbent and a promoter of peptide bond formation.

    PubMed

    Matrajt, G; Blanot, D

    2004-03-01

    Ferrihydrite, an iron oxide hydroxide, is found in all kinds of environments, from hydrothermal hot springs to extraterrestrial materials. It has been shown that this material is nanoporous, and because of its high surface area, it has outstanding adsorption properties and in some cases catalysis properties. In this work we studied the adsorption properties of ferrihydrite with respect to amino acids. Samples of pure ferrihydrite were synthesised and exposed to solutions of amino acids including both proteinaceous and non-proteinaceous species. These experiments revealed important characteristics of this mineral as both an adsorbent of amino acids and a promoter of peptide bond formation.

  13. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-07

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility.

  14. Identification of the Leucine-to-2-Methylbutyric Acid Catabolic Pathway of Lactococcus lactis† ‡

    PubMed Central

    Ganesan, Balasubramanian; Dobrowolski, Piotr; Weimer, Bart C.

    2006-01-01

    Nutrient starvation and nonculturability in bacteria lead to changes in metabolism not found during the logarithmic phase. Substrates alternate to those used during growth are metabolized in these physiological states, yielding secondary metabolites. In firmicutes and actinobacteria, amino acid catabolic pathways are induced during starvation and nonculturability. Examination of lactococci showed that the population entered a nonculturable state after carbohydrate depletion and was incapable of growth on solid media; however, the cells gained the ability to produce branched-chain fatty acids from amino acids. Gene expression profiling and in silico pathway analysis coupled with nuclear magnetic resonance spectroscopy were used to delineate the leucine catabolic pathway. Lactococci produced acetic and propionic acid during logarithmic growth and starvation. At the onset of nonculturability, 2-methylbutyric acid was produced via hydroxymethyl-glutaryl-coenzyme A (CoA) and acetyl-CoA, along with ATP and oxidation/reduction precursors. Gene expression profiling and genome sequence analysis showed that lactococci contained redundant genes for branched-chain fatty acid production that were regulated by an unknown mechanism linked to carbon metabolism. This work demonstrated the ability of a firmicute to induce new metabolic capabilities in the nonculturable state for producing energy and intermediates needed for transcription and translation. Phylogenetic analyses showed that homologues of these enzymes and their functional motifs were widespread across the domains of life. PMID:16751541

  15. Inhibition of Fatty Acid Synthase Reduces Blastocyst Hatching through Regulation of the AKT Pathway in Pigs

    PubMed Central

    Guo, Jing; Kim, Nam-Hyung; Cui, Xiang-Shun

    2017-01-01

    Fatty acid synthase (FASN) is an enzyme responsible for the de novo synthesis of long-chain fatty acids. During oncogenesis, FASN plays a role in growth and survival rather than acting within the energy storage pathways. Here, the function of FASN during early embryonic development was studied using its specific inhibitor, C75. We found that the presence of the inhibitor reduced blastocyst hatching. FASN inhibition decreased Cpt1 expression, leading to a reduction in mitochondria numbers and ATP content. This inhibition of FASN resulted in the down-regulation of the AKT pathway, thereby triggering apoptosis through the activation of the p53 pathway. Activation of the apoptotic pathway also leads to increased accumulation of reactive oxygen species and autophagy. In addition, the FASN inhibitor impaired cell proliferation, a parameter of blastocyst quality for outgrowth. The level of OCT4, an important factor in embryonic development, decreased after treatment with the FASN inhibitor. These results show that FASN exerts an effect on early embryonic development by regulating both fatty acid oxidation and the AKT pathway in pigs. PMID:28107461

  16. Study on synthetic methods of trialkyl phosphate oxide and its extraction behavior of some acids

    SciTech Connect

    Yu, M.J.; Su, Y.F.

    1987-01-01

    Trioctyl phosphine oxide (TOPO) is useful for the extraction of many inorganic and organic compounds. A mixed trialkyl phosphine oxide (TRPO) is similar in property to TOPO. The total number of carbon atoms per molecule of TRPO ranges from 15 to 27. Three methods for synthesizing TRPO are described in this paper. When TRPO is synthesized from an alcohol mixture it is significantly cheaper than a single pure alcohol as required for the production of TOPO; tedious purification steps are eliminated. TRPO is a brown liquid which is very slightly soluble in water. Toxicological measurements of LD50, AMES test, hereditary and accumulative toxicity show that TRPO is safe for use in the extraction of some pharmaceutical and biochemical compounds. Examinations of IR and NMR show that the complex interaction of P=O bond of TRPO with extracted substances is the same as that of TOPO. The distribution coefficients of phosphoric acid, citric acid, malic acid, oxalic acid, and tartaric acid with TRPO are reported. The extraction of these acids is believed to proceed by neutral-complex mechanism.

  17. To assess of behavior of natural colloid (soil extraction and fractionation of natural water) humus acid in comparison with synthetic humus acid

    NASA Astrophysics Data System (ADS)

    Dinu, Marina; Shkinev, Valery

    2015-04-01

    To study and predict the fate of natural colloid - nanoparticles in surface water or soil extraction - necessary to understand the features of the migration and physic-chemical activity of biocolloids. Comparison of the behavior of natural biocolloids, such as humus acid extracts of soil or natural water with artificial, synthetic humic acids (introduced into the environment) allows you to explore the mechanism of formation and transformation biocolloids under the influence of a number of parameters. In this work, we studied these interactions in natural surface waters from lakes and soil (Russian Federation, Kola North and Western Siberia) which displaying contrast organic and inorganic compositions. During the study, researches identified zonal features influence on the qualitative and quantitative composition of colloids, their stability and chemical activity. A model approach was also followed with synthetic water of comparable composition in order to better understand the driving mechanisms. We investigated the size, zeta potential and other physical and chemical parameters of the system. Particular attention is given to the process of complexation with heavy metal ions. As humic substances have excellent complexion properties and reduce the toxicity of many metal ions. The study of such non-static natural systems allow studying the features of the existence of natural colloidal components. The use of synthetic humic substances, which were introduced into the natural environment possible to study the standard mechanisms of formation, development and destruction of colloidal polymer systems. The obtained results allowed with used computer programs MatnLab, MathCad, Statistics simulate the processes of formation, development and functioning of natural colloids.

  18. Kinetics for the synthetic bile acid 75-selenohomocholic acid-taurine in humans: comparison with (/sup 14/C)taurocholate

    SciTech Connect

    Jazrawi, R.P.; Ferraris, R.; Bridges, C.; Northfield, T.C.

    1988-07-01

    The apparent fractional turnover rate of the gamma-labeled bile acid analogue 75-selenohomocholic acid-taurine (75-SeHCAT) was assessed from decline in radioactivity over the gallbladder area on 4 successive days using a gamma-camera, and was compared in the same subjects with the fractional turnover rate of the corresponding natural bile acid, cholic acid-taurine, labeled with 14C ((14C)CAT) using the classical Lindstedt technique. Very similar results were obtained in 5 healthy individuals (coefficient of variation 4.8%, medians 0.35 and 0.34, respectively). By contrast, the fractional deconjugation rate assessed from zonal scanning of glycine- and taurine-conjugated bile acids on thin-layer chromatography was much less for 75-SeHCAT than for (14C)CAT (0.02 and 0.13, respectively; p less than 0.05). The fractional rate for deconjugation plus dehydroxylation was also determined by zonal scanning, and gave lower values for 75-SeHCAT than for (14C)CAT (0.02 and 0.12, respectively; p less than 0.05). There was a striking similarity between the fractional rate for deconjugation alone and that for deconjugation plus dehydroxylation for both bile acids in individual samples (r = 0.999, p less than 0.001), suggesting that these two processes might occur simultaneously and probably involve the same bacteria. We conclude that our scintiscanning technique provides an accurate, noninvasive method of measuring fractional turnover rate of a bile acid in humans, and that the finding that 75SeHCAT remains conjugated with taurine during enterohepatic recycling means that absorption should be specific for the ileal active transport site, thus rendering it an ideal substance for assessing ileal function.

  19. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana

    PubMed Central

    Tzin, Vered; Galili, Gad

    2010-01-01

    The aromatic amino acids phenylalanine, tyrosine and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acid metabolic pathway, with chorismate serving as a major branch point intermediate metabolite. Yet, the regulation of their synthesis is still far from being understood. So far, only three enzymes in this pathway, namely, chorismate mutase of phenylalanine and tyrosine synthesis, tryptophan synthase of tryptophan biosynthesis and arogenate dehydratase of phenylalanine biosynthesis, proved experimentally to be allosterically regulated. The major biosynthesis route of phenylalanine in plants occurs via arogenate. Yet, recent studies suggest that an alternative route of phynylalanine biosynthesis via phenylpyruvate may also exist in plants, similarly to many microorganisms. Several transcription factors regulating the expression of genes encoding enzymes of both the shikimate pathway and aromatic amino acid metabolism have also been recently identified in Arabidopsis and other plant species. PMID:22303258

  20. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance.

    PubMed Central

    Zeldin, D C; Plitman, J D; Kobayashi, J; Miller, R F; Snapper, J R; Falck, J R; Szarek, J L; Philpot, R M; Capdevila, J H

    1995-01-01

    Cytochrome P450 metabolizes arachidonic acid to several unique and biologically active compounds in rabbit liver and kidney. Microsomal fractions prepared from rabbit lung homogenates metabolized arachidonic acid through cytochrome P450 pathways, yielding cis-epoxyeicosatrienoic acids (EETs) and their hydration products, vic-dihydroxyeicosatrienoic acids, mid-chain cis-trans conjugated dienols, and 19- and 20-hydroxyeicosatetraenoic acids. Inhibition studies using polyclonal antibodies prepared against purified CYP2B4 demonstrated 100% inhibition of arachidonic acid epoxide formation. Purified CYP2B4, reconstituted in the presence of NADPH-cytochrome P450 reductase and cytochrome b5, metabolized arachidonic acid, producing primarily EETs. EETs were detected in lung homogenate using gas chromatography/mass spectroscopy, providing evidence for the in vivo pulmonary cytochrome P450 epoxidation of arachidonic acid. Chiral analysis of these lung EETs demonstrated a preference for the 14(R),15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET enantiomers. Both EETs and vic-dihydroxyeicosatrienoic acids were detected in bronchoalveolar lavage fluid. At micromolar concentrations, methylated 5,6-EET and 8,9-EET significantly relaxed histamine-contracted guinea pig hilar bronchi in vitro. In contrast, 20-hydroxyeicosatetraenoic acid caused contraction to near maximal tension. We conclude that CYP2B4, an abundant rabbit lung cytochrome P450 enzyme, is the primary constitutive pulmonary arachidonic acid epoxygenase and that these locally produced, biologically active eicosanoids may be involved in maintaining homeostasis within the lung. Images PMID:7738183

  1. Hepatic handling of a synthetic gamma-labeled bile acid (/sup 75/SeHCAT)

    SciTech Connect

    Galatola, G.; Jazrawi, R.P.; Bridges, C.; Joseph, A.E.; Northfield, T.C.

    1988-03-01

    /sup 75/Se-homocholic acid-taurine (/sup 75/SeHCAT) is the first available gamma-labeled bile acid, and should therefore be handled more efficiently and specifically by the liver than previous hepatoscintigraphic agents. We have measured serum and hepatic kinetics for /sup 75/SeHCAT, and compared them with those for the conventional hepatobiliary scintigraphic agent 99mTc-hepatoiminodiacetic acid, and with serum kinetics for the corresponding natural bile acid, (/sup 14/C)cholic acid-taurine. We used a dynamic scintigraphic technique and serial blood sampling in 8 subjects. Initial hepatic uptake rate was identical to initial serum disappearance rate (14% dose/min) for /sup 75/SeHCAT, but significantly lower for 99mTc-hepatoiminodiacetic acid (6% vs. 14% dose/min, p less than 0.001). Hepatic transit time was shorter for /sup 75/SeHCAT (13 min vs. 22 min, p less than 0.02), net hepatic excretory rate was more rapid (1.4% vs. 0.8% dose/min, p less than 0.001), and urinary excretion was lower (1.0% vs. 9.0% dose, p less than 0.001). Initial and late-plasma disappearance rates were significantly lower for /sup 75/SeHCAT (14.3% and 1.5% dose/min) than for (/sup 14/C)cholic acid-taurine (21.3% and 2.8% dose/min, respectively), and plasma clearance was also lower (2/sup 75/ vs. 670 ml/min). In vitro, /sup 75/SeHCAT was bound to serum proteins more completely than (/sup 14/C)cholic acid-taurine (90.4% vs. 86.5%, p less than 0.005). We conclude that /sup 75/SeHCAT provides a hepatoscintigraphic agent that is handled more efficiently and specifically by the liver than the conventionally used agent 99mTc-hepatoiminodiacetic acid. It is not cleared from the serum as rapidly as (/sup 14/C)cholic acid-taurine, probably due to its stronger protein binding. The clinical value of /sup 75/SeHCAT in assessing liver disease should be investigated.

  2. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants.

  3. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues

    PubMed Central

    Xu, Liang; Butler, Kyle Vincent; Chong, Jenny; Wengel, Jesper; Kool, Eric T.; Wang, Dong

    2014-01-01

    The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open state to a closed active state to facilitate nucleotide addition upon the binding of the cognate substrate to the Pol II active site. However, a comprehensive understanding of the specific chemical interactions and substrate structural signatures that are essential to this TL conformational change remains elusive. Here we employed synthetic nucleotide analogues as ‘chemical mutation’ tools coupling with α-amanitin transcription inhibition assay to systematically dissect the key chemical interactions and structural signatures governing the substrate-coupled TL closure in Saccharomyces cerevisiae Pol II. This study reveals novel insights into understanding the molecular basis of TL conformational transition upon substrate binding during Pol II transcription. This synthetic chemical biology approach may be extended to understand the mechanisms of other RNA polymerases as well as other nucleic acid enzymes in future studies. PMID:24692664

  4. Comparative inhibitory effects of niflumic acid and novel synthetic derivatives on the rat isolated stomach fundus.

    PubMed

    Criddle, David N; Meireles, AnaVanescaP; Macêdo, Liana B; Leal-Cardoso, José H; Scarparo, Henrique C; Jaffar, Mohammed

    2002-02-01

    Novel derivatives of 2-[3-(trifluoromethyl)-analino]nicotinic acid (niflumic acid) were synthesized. The compounds were compared for their inhibitory effects on 5-hydroxytryptamine (5-HT)- and KCI-induced contraction of the rat fundus. The aim was to assess structure-activity relationships regarding the selectivity and potency of these compounds. Niflumic acid (1-100 microM) concentration-dependently inhibited 5-HT-induced tonic contractions with an IC50 value (concentration reducing the control contractile response by 50%, calculated from semi-log graphs) of 0.24 x 10(4) M (n = 9). In contrast, it was significantly less potent at inhibiting KCl-induced responses (IC50 = 1.49 x 10(4) M, n = 9). The methyl ester (NFAme) and amido (NFAm) analogues showed no selectivity between 5-HT- and KCl-induced contractions with IC50 values of 1.64 x 10(-4) M (n = 8) and 1.87 x 10(-4) M (n = 9) for 5-HT responses, and 2.61 x 10(-4) M (n = 8) and 2.55 x 10(-4) M (n = 7) for KCl-induced responses, respectively. Our results suggest that alteration of the carboxylic acid moiety of niflumic acid reduces the selectivity and potency of its inhibitory action on 5-HT-induced contractile responses of the rat fundus, possibly via a reduced interaction with calcium-activated chloride channels.

  5. Activation of the Jasmonic Acid Plant Defence Pathway Alters the Composition of Rhizosphere Bacterial Communities

    PubMed Central

    Carvalhais, Lilia C.; Dennis, Paul G.; Badri, Dayakar V.; Tyson, Gene W.; Vivanco, Jorge M.; Schenk, Peer M.

    2013-01-01

    Jasmonic acid (JA) signalling plays a central role in plant defences against necrotrophic pathogens and herbivorous insects, which afflict both roots and shoots. This pathway is also activated following the interaction with beneficial microbes that may lead to induced systemic resistance. Activation of the JA signalling pathway via application of methyl jasmonate (MeJA) alters the composition of carbon containing compounds released by roots, which are implicated as key determinants of rhizosphere microbial community structure. In this study, we investigated the influence of the JA defence signalling pathway activation in Arabidopsis thaliana on the structure of associated rhizosphere bacterial communities using 16S rRNA gene amplicon pyrosequencing. Application of MeJA did not directly influence bulk soil microbial communities but significant changes in rhizosphere community composition were observed upon activation of the jasmonate signalling pathway. Our results suggest that JA signalling may mediate plant-bacteria interactions in the soil upon necrotrophic pathogen and herbivorous insect attacks. PMID:23424661

  6. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1)

    PubMed Central

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; Allen, Eric E.; Kalyuzhnaya, Marina G.

    2017-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph. PMID:28119683

  7. ELECTRON DETACHMENT DISSOCIATION OF SYNTHETIC HEPARAN SULFATE GLYCOSAMINOGLYCAN TETRASACCHARIDES VARYING IN DEGREE OF SULFATION AND HEXURONIC ACID STEREOCHEMISTRY.

    PubMed

    Leach, Franklin E; Arungundram, Sailaja; Al-Mafraji, Kanar; Venot, Andre; Boons, Geert-Jan; Amster, I Jonathan

    2012-12-15

    Glycosaminoglycan (GAG) carbohydrates provide a challenging analytical target for structural determination due to their polydisperse nature, non-template biosynthesis, and labile sulfate modifications. The resultant structures, although heterogeneous, contain domains which indicate a sulfation pattern or code that correlates to specific function. Mass spectrometry, in particular electron detachment dissociation Fourier transform ion cyclotron resonance (EDD FT-ICR MS), provides a highly sensitive platform for GAG structural analysis by providing cross-ring cleavages for sulfation location and product ions specific to hexuronic acid stereochemistry. To investigate the effect of sulfation pattern and variations in stereochemistry on EDD spectra, a series of synthetic heparan sulfate (HS) tetrasaccharides are examined. Whereas previous studies have focused on lowly sulfated compounds (0.5-1 sulfate groups per disaccharide), the current work extends the application of EDD to more highly sulfated tetrasaccharides (1-2 sulfate groups per disaccharide) and presents the first EDD of a tetrasaccharide containing a sulfated hexuronic acid. For these more highly sulfated HS oligomers, alternative strategies are shown to be effective for extracting full structural details. These strategies inlcude sodium cation replacement of protons, for determining the sites of sulfation, and desulfation of the oligosaccharides for the generation of product ions for assigning uronic acid stereochemistry.

  8. A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids.

    PubMed

    Moreno, Pedro M D; Wenska, Malgorzata; Lundin, Karin E; Wrange, Orjan; Strömberg, Roger; Smith, C I Edvard

    2009-04-01

    Accessing the nucleus through the surrounding membrane poses one of the major obstacles for therapeutic molecules large enough to be excluded due to nuclear pore size limits. In some therapeutic applications the large size of some nucleic acids, like plasmid DNA, hampers their access to the nuclear compartment. However, also for small oligonucleotides, achieving higher nuclear concentrations could be of great benefit. We report on the synthesis and possible applications of a natural RNA 5'-end nuclear localization signal composed of a 2,2,7-trimethylguanosine cap (m(3)G-CAP). The cap is found in the small nuclear RNAs that are constitutive part of the small nuclear ribonucleoprotein complexes involved in nuclear splicing. We demonstrate the use of the m(3)G signal as an adaptor that can be attached to different oligonucleotides, thereby conferring nuclear targeting capabilities with capacity to transport large-size cargo molecules. The synthetic capping of oligos interfering with splicing may have immediate clinical applications.

  9. Vinylboronic Acids as Fast Reacting, Synthetically Accessible, and Stable Bioorthogonal Reactants in the Carboni–Lindsey Reaction

    PubMed Central

    Eising, Selma; Lelivelt, Francis

    2016-01-01

    Abstract Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m −1 s−1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox. PMID:27605057

  10. Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid

    PubMed Central

    Hulikova, Alzbeta; Black, Nicholas; Hsia, Lin-Ting; Wilding, Jennifer; Bodmer, Walter F.; Swietach, Pawel

    2016-01-01

    Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer–stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities. PMID:27543333

  11. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    PubMed

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism.

  12. Ethacrynic acid inhibits multiple steps in the NF-kappaB signaling pathway.

    PubMed

    Han, Yusheng; Englert, Joshua A; Delude, Russell L; Fink, Mitchell P

    2005-01-01

    Ethacrynic acid has been used as a safe and effective diuretic for more than 30 years. In this study, we tested the hypothesis that ethacrynic acid is also an anti-inflammatory agent that inhibits signaling by the proinflammatory transcription factor NF-kappaB. We showed that ethacrynic acid inhibited luciferase expression in lipopolysaccharide-stimulated macrophage-like RAW 264.7 cells transfected with an NF-kappaB-dependent luciferase reporter vector and also inhibited NF-kappaB DNA binding in lipopolysaccharide-stimulated RAW 264.7 cells (electrophoretic mobility shift assay). Ethacrynic acid inhibited degradation of IkappaBalpha and IkappaBbeta in lipopolysaccharide-stimulated RAW 264.7 cells. Ethacrynic acid impaired DNA binding of wild-type p65 subunits of NF-kappaB in cells. However, DNA binding of a Cys--> Ser p65 mutant was not inhibited by ethacrynic acid, suggesting that ethacrynic acid inhibits DNA binding by alkylating p65 at Cys. In a cell-free system, binding of p50 homodimers to an NF-kappaB consensus sequence was inhibited by ethacrynic acid at concentrations from 10 to 100 microM, indicating that ethacrynic acid probably also covalently modifies the p50 subunit. These data indicate that ethacrynic acid inhibits activation of the NF-kappaB pathway at multiple points and suggest that this well-studied drug warrants further investigation as a potential therapeutic for various conditions that are associated with excessive inflammation.

  13. Protein Analysis of Sapienic Acid-Treated Porphyromonas gingivalis Suggests Differential Regulation of Multiple Metabolic Pathways

    PubMed Central

    Dawson, Deborah V.; Blanchette, Derek R.; Drake, David R.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    ABSTRACT Lipids endogenous to skin and mucosal surfaces exhibit potent antimicrobial activity against Porphyromonas gingivalis, an important colonizer of the oral cavity implicated in periodontitis. Our previous work demonstrated the antimicrobial activity of the fatty acid sapienic acid (C16:1Δ6) against P. gingivalis and found that sapienic acid treatment alters both protein and lipid composition from those in controls. In this study, we further examined whole-cell protein differences between sapienic acid-treated bacteria and untreated controls, and we utilized open-source functional association and annotation programs to explore potential mechanisms for the antimicrobial activity of sapienic acid. Our analyses indicated that sapienic acid treatment induces a unique stress response in P. gingivalis resulting in differential expression of proteins involved in a variety of metabolic pathways. This network of differentially regulated proteins was enriched in protein-protein interactions (P = 2.98 × 10−8), including six KEGG pathways (P value ranges, 2.30 × 10−5 to 0.05) and four Gene Ontology (GO) molecular functions (P value ranges, 0.02 to 0.04), with multiple suggestive enriched relationships in KEGG pathways and GO molecular functions. Upregulated metabolic pathways suggest increases in energy production, lipid metabolism, iron acquisition and processing, and respiration. Combined with a suggested preferential metabolism of serine, which is necessary for fatty acid biosynthesis, these data support our previous findings that the site of sapienic acid antimicrobial activity is likely at the bacterial membrane. IMPORTANCE P. gingivalis is an important opportunistic pathogen implicated in periodontitis. Affecting nearly 50% of the population, periodontitis is treatable, but the resulting damage is irreversible and eventually progresses to tooth loss. There is a great need for natural products that can be used to treat and/or prevent the overgrowth of

  14. Distinct modes of interaction of the retinoic acid receptor alpha with natural and synthetic retinoids.

    PubMed

    Lefebvre, B; Mouchon, A; Formstecher, P; Lefebvre, P

    1998-04-30

    Retinoids regulate key cellular processes through their binding to their cognate nuclear receptors, RARs and RXRs. Synthetic ligands mimic most of their biological effects and alteration of their chemical structure confers selectivity for RAR isotypes alpha, beta or gamma. In this study, we have examined the contribution of a domain (L box) of hRARalpha located at the C-terminus of the ligand binding domain (LBD), between helices H11 and H12, to the ligand binding activity of this receptor. By site-directed mutagenesis, we demonstrate that, in the absence of the ligand-dependent activation domain 2 (AF2-AD), the receptor discriminates between classes of structurally distinct retinoids. This property was lost in the presence of the AF2-AD domain, evidencing major structural transitions in this part of the receptor. We propose that ligand binding occurs in two steps: first, the ligand interacts with the LBD in its opened, holo-receptor conformation in which the L box plays a crucial role in defining the ligand binding repertoire of hRARalpha; secondly, the LBD adopts its closed conformation in which the ligand interacts with the receptor mostly through its carboxylic moiety.

  15. Where Synthetic Biology Meets ET

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  16. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings.

    PubMed

    Zhang, Xue; Yu, Hong Jun; Zhang, Xiao Meng; Yang, Xue Yong; Zhao, Wen Chao; Li, Qiang; Jiang, Wei Jie

    2016-11-01

    L-Ascorbic acid (AsA, ascorbate) is one of the most abundant natural antioxidants, and it is an important factor in the nutritional quality of cucumber. In this work, key enzymes involved in the ascorbic acid biosynthesis and recycling pathway in cucumber seedlings under nitrogen deficiency were investigated at the levels of transcription and enzyme activity. The activities of myo-inositol oxygenase (MIOX) and transcript levels of MIOXs increased dramatically, while the activities of ascorbate oxidase (AO) and glutathione reductase (GR) and transcript levels of AOs and GR2 decreased significantly in N-limited leaves, as did the ascorbate concentration, in nitrogen-deficient cucumber seedlings. The activities of other enzymes and transcript levels of other genes involved in the ascorbate recycling pathway and ascorbate synthesis pathways decreased or remained unchanged under nitrogen deficiency. These results indicate that nitrogen deficiency induced genes involved in the ascorbate-glutathione recycling and myo-inositol pathway in cucumber leaves. Thus, the AO, GR and MIOX involved in the pathways might play roles in AsA accumulation.

  17. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    PubMed

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  18. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum

    PubMed Central

    Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier

    2016-01-01

    ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species

  19. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    NASA Astrophysics Data System (ADS)

    Samuelsen, Simone V.; Solov’Yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-10-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies.

  20. Synthetic oligonucleotide antigens modified with locked nucleic acids detect disease specific antibodies

    PubMed Central

    Samuelsen, Simone V.; Solov’yov, Ilia A.; Balboni, Imelda M.; Mellins, Elizabeth; Nielsen, Christoffer Tandrup; Heegaard, Niels H. H.; Astakhova, Kira

    2016-01-01

    New techniques to detect and quantify antibodies to nucleic acids would provide a significant advance over current methods, which often lack specificity. We investigate the potential of novel antigens containing locked nucleic acids (LNAs) as targets for antibodies. Particularly, employing molecular dynamics we predict optimal nucleotide composition for targeting DNA-binding antibodies. As a proof of concept, we address a problem of detecting anti-DNA antibodies that are characteristic of systemic lupus erythematosus, a chronic autoimmune disease with multiple manifestations. We test the best oligonucleotide binders in surface plasmon resonance studies to analyze binding and kinetic aspects of interactions between antigens and target DNA. These DNA and LNA/DNA sequences showed improved binding in enzyme-linked immunosorbent assay using human samples of pediatric lupus patients. Our results suggest that the novel method is a promising tool to create antigens for research and point-of-care monitoring of anti-DNA antibodies. PMID:27775006

  1. Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history.

    PubMed

    Kandiba, Lina; Eichler, Jerry

    2013-08-01

    Sialic acids and the other nonulosonic acid sugars, legionaminic acid and pseudaminic acid, are nine carbon-containing sugars that can be detected as components of the glycans decorating proteins and other molecules in Eukarya and Bacteria. Yet, despite the prevalence of N-glycosylation in Archaea and the variety of sugars recruited for the archaeal version of this post-translational modification, only a single report of a nonulosonic acid sugar in an archaeal N-linked glycan has appeared. Hence, to obtain a clearer picture of nonulosonic acid sugar biosynthesis capability in Archaea, 122 sequenced genomes were scanned for the presence of genes involved in the biogenesis of these sugars. The results reveal that while Archaea and Bacteria share a common route of sialic acid biosynthesis, numerous archaeal nonulosonic acid sugar biosynthesis pathway components were acquired from elsewhere via various routes. Still, the limited number of Archaea encoding components involved in the synthesis of nonulosonic acid sugars implies that such saccharides are not major components of glycans in this domain.

  2. The Effect of Multiple Single Nucleotide Polymorphisms in the Folic Acid Pathway Genes on Homocysteine Metabolism

    PubMed Central

    Liang, Shuang; Zhou, Yuanpeng; Wang, Huijun; Qian, Yanyan; Ma, Duan; Tian, Weidong; Persaud-Sharma, Vishwani; Yu, Chen; Ren, Yunyun; Zhou, Shufeng; Li, Xiaotian

    2014-01-01

    Objective. To investigate the joint effects of the single nucleotide polymorphisms (SNPs) of genes in the folic acid pathway on homocysteine (Hcy) metabolism. Methods. Four hundred women with normal pregnancies were enrolled in this study. SNPs were identified by MassARRAY. Serum folic acid and Hcy concentration were measured. Analysis of variance (ANOVA) and support vector machine (SVM) regressions were used to analyze the joint effects of SNPs on the Hcy level. Results. SNPs of MTHFR (rs1801133 and rs3733965) were significantly associated with maternal serum Hcy level. In the different genotypes of MTHFR (rs1801133), SNPs of RFC1 (rs1051266), TCN2 (rs9606756), BHMT (rs3733890), and CBS (rs234713 and rs2851391) were linked with the Hcy level adjusted for folic acid concentration. The integrated SNPs scores were significantly associated with the residual Hcy concentration (RHC) (r = 0.247). The Hcy level was significantly higher in the group with high SNP scores than that in other groups with SNP scores of less than 0.2 (P = 0.000). Moreover, this difference was even more significant in moderate and high levels of folic acid. Conclusion. SNPs of genes in the folic acid pathway possibly affect the Hcy metabolism in the presence of moderate and high levels of folic acid. PMID:24524080

  3. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    PubMed

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  4. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  5. Hydroxyeicosatetraenoic acids released through the cytochrome P-450 pathway regulate 3T6 fibroblast growth.

    PubMed

    Nieves, Diana; Moreno, Juan José

    2006-12-01

    Eicosanoids participate in the regulation of cellular proliferation. Thus, we observed that prostaglandin E(2) interaction with membrane receptors is involved in the control of 3T6 fibroblast growth induced by serum. However, our results suggested that another arachidonic acid pathway might be implicated in these events. Our results show that 3T6 fibroblasts synthesized hydroxyeicosatetraenoic acids (HETEs) such as 12-HETE through the cytochrome P-450 (CYP450) pathway. However, 3T6 fibroblasts did not produce leukotriene B(4) (LTB(4)), and lipoxygenase inhibitors and LT antagonists failed to inhibit 3T6 fibroblast growth induced by FBS. In contrast, we observed that CYP450 inhibitors such as SKF-525A, 17-octadecynoic acid, 1-aminobenzotriazole, and 6-(2-propargyloxyphenyl)hexanoic acid reduced 12(S)-HETE levels, 3T6 fibroblast growth, and DNA synthesis induced by FBS. The impairment of DNA synthesis and 3T6 fibroblast growth induced by SKF-525A were reversed by exogenous addition of HETEs. Moreover, we report that 5-HETE, 12(S)-HETE, and 15(S)-HETE are mitogenic on 3T6 fibroblast in the absence of another growth factor, and this effect was dependent on the activation of the phosphatidylinositol-3-kinase pathway. In conclusion, our results show that HETEs, probably produced by CYP450, are involved in the control of 3T6 fibroblast growth.

  6. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    PubMed Central

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  7. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus)

    PubMed Central

    2013-01-01

    Background Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial

  8. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells.

    PubMed

    Horn, Adolfo; Fernandes, Christiane; Parrilha, Gabrieli L; Kanashiro, Milton M; Borges, Franz V; de Melo, Edésio J T; Schenk, Gerhard; Terenzi, Hernán; Pich, Claus T

    2013-11-01

    The nuclease activity and the cytotoxicity toward human leukemia cancer cells of iron complexes, [Fe(HPClNOL)Cl2]NO3 (1), [Cl(HPClNOL)Fe(μ-O)Fe(HPClNOL)Cl]Cl2·2H2O (2), and [(SO4)(HPClNOL)Fe(μ-O)Fe(HPClNOL)(SO4)]·6H2O (3) (HPClNOL=1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol), were investigated. Each complex was able to promote plasmid DNA cleavage and change the supercoiled form of the plasmid to circular and linear ones. Kinetic data revealed that (1), (2) and (3) increase the rate of DNA hydrolysis about 278, 192 and 339 million-fold, respectively. The activity of the complexes was inhibited by distamycin, indicating that they interact with the minor groove of the DNA. The cytotoxic activity of the complexes toward U937, HL-60, Jukart and THP-1 leukemia cancer cells was studied employing 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), fluorescence and electronic transmission microscopies, flow cytometry and a cytochrome C release assay. Compound (2) has the highest activity toward cancer cells and is the least toxic for normal ones (i.e. peripheral blood mononuclear cells (PBMCs)). In contrast, compound (1) is the least active toward cancer cells but displays the highest toxicity toward normal cells. Transmission electronic microscopy indicates that cell death shows features typical of apoptotic cells, which was confirmed using the annexin V-FITC/PI (fluorescein isothiocyanate/propidium iodide) assay. Furthermore, our data demonstrate that at an early stage during the treatment with complex (2) mitochondria lose their transmembrane potential, resulting in cytochrome C release. A quantification of caspases 3, 9 (intrinsic apoptosis pathway) and caspase 8 (extrinsic apoptosis pathway) indicated that both the intrinsic (via mitochondria) and extrinsic (via death receptors) pathways are involved in the apoptotic stimuli.

  9. Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways.

    PubMed

    Scalschi, Loredana; Vicedo, Begonya; Camañes, Gemma; Fernandez-Crespo, Emma; Lapeña, Leonor; González-Bosch, Carmen; García-Agustín, Pilar

    2013-05-01

    Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule might play a role per se in Hx-IR. These results support a positive relationship between the SA and JA pathways in Hx-primed plants. Furthermore, one of the mechanisms of virulence mediated by COR is stomatal re-opening on infection with P. syringae. In this work, we observed that Hx seems to inhibit stomatal opening in planta in the presence of COR, which suggests that, on infection in tomato, this treatment suppresses effector action to prevent bacterial entry into the mesophyll.

  10. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites.

    PubMed

    Ríos, C A; Williams, C D; Roberts, C L

    2008-08-15

    Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations, resulting from the microbial oxidation of pyrite in presence of water and air, affording an acidic solution that contains toxic metal ions. The generation of AMD and release of dissolved heavy metals is an important concern facing the mining industry. The present study aimed at evaluating the use of low-cost sorbents like coal fly ash, natural clinker and synthetic zeolites to clean-up AMD generated at the Parys Mountain copper-lead-zinc deposit, Anglesey (North Wales), and to remove heavy metals and ammonium from AMD. pH played a very important role in the sorption/removal of the contaminants and a higher adsorbent ratio in the treatment of AMD promoted the increase of the pH, particularly using natural clinker-based faujasite (7.70-9.43) and the reduction of metal concentration. Na-phillipsite showed a lower efficiency as compared to that of faujasite. Selectivity of faujasite for metal removal was, in decreasing order, Fe>As>Pb>Zn>Cu>Ni>Cr. Based on these results, the use of these materials has the potential to provide improved methods for the treatment of AMD.

  11. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)

    DOE PAGES

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; ...

    2017-01-10

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less

  12. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes

    PubMed Central

    Ruyter, Bente; Berge, Gerd Marit; Sun, Yajing; Østbye, Tone-Kari Knutsdatter

    2016-01-01

    Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad) genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids. PMID:27973547

  13. Bioplex technology: novel synthetic gene delivery pharmaceutical based on peptides anchored to nucleic acids.

    PubMed

    Simonson, Oscar E; Svahn, Mathias G; Törnquist, Elisabeth; Lundin, Karin E; Smith, C I E

    2005-01-01

    Non-viral gene delivery is an important approach in order to establish safe in vivo gene therapy in the clinic. Although viral vectors currently exhibit superior gene transfer efficacy, the safety aspect of viral gene delivery is a concern. In order to improve non-viral in vivo gene delivery we have designed a pharmaceutical platform called Bioplex (biological complex). The concept of Bioplex is to link functional entities via hybridising anchors, such as Peptide Nucleic Acids (PNA), directly to naked DNA. In order to promote delivery functional entities consisting of biologically active peptides or carbohydrates, are linked to the PNA anchor. The PNA acts as genetic glue and hybridises with DNA in a sequence specific manner. By using functional entities, which elicit receptor-mediated endocytosis, improved endosomal escape and enhance nuclear entry we wish to improve the transfer of genetic material into the cell. An important aspect is that the functional entities should also have tissue-targeting properties in vivo. Examples of functional entities investigated to date are the Simian virus 40 nuclear localisation signal to improve nuclear uptake and different carbohydrate ligands in order to achieve receptor specific uptake. The delivery system is also endowed with regulatory capability, since the release of functional entities can be controlled. The aim is to create a safe, pharmaceutically defined and stable delivery system for nucleic acids with enhanced transfection properties that can be used in the clinic.

  14. Peptide interfacial biomaterials improve endothelial cell adhesion and spreading on synthetic polyglycolic acid materials.

    PubMed

    Huang, Xin; Zauscher, Stefan; Klitzman, Bruce; Truskey, George A; Reichert, William M; Kenan, Daniel J; Grinstaff, Mark W

    2010-06-01

    Resorbable scaffolds such as polyglycolic acid (PGA) are employed in a number of clinical and tissue engineering applications owing to their desirable property of allowing remodeling to form native tissue over time. However, native PGA does not promote endothelial cell adhesion. Here we describe a novel treatment with hetero-bifunctional peptide linkers, termed "interfacial biomaterials" (IFBMs), which are used to alter the surface of PGA to provide appropriate biological cues. IFBMs couple an affinity peptide for the material with a biologically active peptide that promotes desired cellular responses. One such PGA affinity peptide was coupled to the integrin binding domain, Arg-Gly-Asp (RGD), to build a chemically synthesized bimodular 27 amino acid peptide that mediated interactions between PGA and integrin receptors on endothelial cells. Quartz crystal microbalance with dissipation monitoring (QCMD) was used to determine the association constant (K (A) 1 x 10(7) M(-1)) and surface thickness (~3.5 nm). Cell binding studies indicated that IFBM efficiently mediated adhesion, spreading, and cytoskeletal organization of endothelial cells on PGA in an integrin-dependent manner. We show that the IFBM peptide promotes a 200% increase in endothelial cell binding to PGA as well as 70-120% increase in cell spreading from 30 to 60 minutes after plating.

  15. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    PubMed

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  16. Betulin and ursolic acid synthetic derivatives as inhibitors of Papilloma virus.

    PubMed

    Kazakova, Oxana B; Giniyatullina, Gul'nara V; Yamansarov, Emil Yu; Tolstikov, Genrikh A

    2010-07-15

    The synthesis of new betulin and ursolic acid derivatives and evaluation of their antiviral activity in vitro is reported. Betulin was modified at positions C-3, C-20 and C-28 to afford the derivatives with nicotinoyl-, methoxycynnamoyl-, alkyne and aminopropoxy-2-cyanoethyl-moieties. The two stage conversion of betulin to the new ursane-type triterpenoid by treatment of allobetulin with Ac(2)O-HClO(4) is suggested. Cyanoethylation of ursonic acid oxime led to cyanoethyloximinoderivative. According to the results of antiviral screening against human papillomavirus type 11 the selectivity index for tested triterpenoids has a range from 10 to 35 with no cellular cytotoxicity, the most remarkable activity was found for 3beta,28-di-O-nicotinoylbetulin. 3Beta,28-dihydroxy-29-norlup-20(30)-yne was also active against HCV replicon (EC(50) 1.32; EC(90) 16.82; IC(50) 12.41; IC(90) >20; SI(50) 9.4; SI(90) >1.19). 28-O-methoxycynnamoylbetulin was active against influenza type A virus (H1N1) (EC(50) 2; IC(50) >200; SI >100).

  17. A synthetic uric acid analog accelerates cutaneous wound healing in mice.

    PubMed

    Chigurupati, Srinivasulu; Mughal, Mohamed R; Chan, Sic L; Arumugam, Thiruma V; Baharani, Akanksha; Tang, Sung-Chun; Yu, Qian-Sheng; Holloway, Harold W; Wheeler, Ross; Poosala, Suresh; Greig, Nigel H; Mattson, Mark P

    2010-04-06

    Wound healing is a complex process involving intrinsic dermal and epidermal cells, and infiltrating macrophages and leukocytes. Excessive oxidative stress and associated inflammatory processes can impair wound healing, and antioxidants have been reported to improve wound healing in animal models and human subjects. Uric acid (UA) is an efficient free radical scavenger, but has a very low solubility and poor tissue penetrability. We recently developed novel UA analogs with increased solubility and excellent free radical-scavenging properties and demonstrated their ability to protect neural cells against oxidative damage. Here we show that the uric acid analog (6, 8 dithio-UA, but not equimolar concentrations of UA or 1, 7 dimethyl-UA) modified the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in ways consistent with enhancement of the wound healing functions of all three cell types. We further show that 6, 8 dithio-UA significantly accelerates the wound healing process when applied topically (once daily) to full-thickness wounds in mice. Levels of Cu/Zn superoxide dismutase were increased in wound tissue from mice treated with 6, 8 dithio-UA compared to vehicle-treated mice, suggesting that the UA analog enhances endogenous cellular antioxidant defenses. These results support an adverse role for oxidative stress in wound healing and tissue repair, and provide a rationale for the development of UA analogs in the treatment of wounds and for modulation of angiogenesis in other pathological conditions.

  18. Biosynthesis of gallic acid in Rhus typhina: discrimination between alternative pathways from natural oxygen isotope abundance.

    PubMed

    Werner, Roland A; Rossmann, Andreas; Schwarz, Christine; Bacher, Adelbert; Schmidt, Hanns-Ludwig; Eisenreich, Wolfgang

    2004-10-01

    The biosynthetic pathway of gallic acid in leaves of Rhus typhina is studied by oxygen isotope ratio mass spectrometry at natural oxygen isotope abundance. The observed delta18O-values of gallic acid indicate an 18O-enrichment of the phenolic oxygen atoms of more than 30 per thousand above that of the leaf water. This enrichment implies biogenetical equivalence with oxygen atoms of carbohydrates but not with oxygen atoms introduced by monooxygenase activation of molecular oxygen. It can be concluded that all phenolic oxygen atoms of gallic acid are retained from the carbohydrate-derived precursor 5-dehydroshikimate. This supports that gallic acid is synthesized entirely or predominantly by dehydrogenation of 5-dehydroshikimate.

  19. [Metabolic pathway and metabolites of total diterpene acid isolated from Pseudolarix kaempferi].

    PubMed

    Liu, Peng; Guo, Hong-Zhu; Sun, Jiang-Hao; Xu, Man; Guo, Hui; Sun, Shi-Feng; Guo, De-An

    2014-08-01

    The preliminary metabolic profile of total diterpene acid (TDA) isolated from Pseudolarix kaempferi was investigated by using in vivo and in vitro tests. Pseudolaric acid C2 (PC2) was identified as the predominant metabolite in plasma, urine, bile and feces after both oral and intravenous administrations to rats using HPLC-UV and HPLC-ESI/MS(n), and demethoxydeacetoxypseudolaric acid B (DDPB), a metabolite proposed to be the glucoside of PC2 (PC2G), as well as pseudolaric acid C (PC), pseudolaric acid A (PA), pseudolaric acid A O-beta-D glucopyranoside (PAG), pseudolaric acid B O-beta-D glucopyranoside (PBG) and deacetylpseudolaric acid A (DPA) originated from TDA could also be detected. It was demonstrated by tests that the metabolism of TDA is independent of intestinal microflora, and neither of pepsin and trypsin is in charge of metabolism of TDA, TDA is also stable in both pH environments of gastric tract and intestinal tract. The metabolites of TDA in whole blood in vitro incubation were found to be PC2, DDPB and PC2G, which demonstrated that the metabolic reaction of TDA in vivo is mainly occurred in blood and contributed to be the hydrolysis of plasma esterase to ester bond, as well as the glucosylation reaction. These results clarified the metabolic pathway of TDA for the first time, which is of great significance to the in vivo active form and acting mechanism research of P. kaempferi.

  20. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance.

    PubMed

    Chen, Jianshun; Cheng, Changyong; Xia, Ye; Zhao, Hanxin; Fang, Chun; Shan, Ying; Wu, Beibei; Fang, Weihuan

    2011-11-01

    Listeria monocytogenes is a foodborne pathogen causing listeriosis. Acid is one of the stresses that foodborne pathogens encounter most frequently. The ability to survive and proliferate in acidic environments is a prerequisite for infection. However, there is limited knowledge about the molecular basis of adaptation of L. monocytogenes to acid. Arginine deiminase (ADI) and agmatine deiminase (AgDI) systems are implicated in bacterial tolerance to acidic environments. Homologues of ADI and AgDI systems have been found in L. monocytogenes lineages I and II strains. Sequence analysis indicated that lmo0036 encodes a putative carbamoyltransferase containing conserved motifs and residues important for substrate binding. Lmo0036 acted as an ornithine carbamoyltransferase and putrescine carbamoyltransferase, representing the first example, to our knowledge, that catalyses reversible ornithine and putrescine carbamoyltransfer reactions. Catabolic ornithine and putrescine carbamoyltransfer reactions constitute the second step of ADI and AgDI pathways. However, the equilibrium of in vitro carbamoyltransfer reactions was overwhelmingly towards the anabolic direction, suggesting that catabolic carbamoyltransferase was probably the limiting step of the pathways. lmo0036 was induced at the transcriptional level when L. monocytogenes was subjected to low-pH stress. Its expression product in Escherichia coli exhibited higher catabolic carbamoyltransfer activities under acidic conditions. Consistently, absence of this enzyme impaired the growth of Listeria under mild acidic conditions (pH 4.8) and reduced its survival in synthetic human gastric fluid (pH 2.5), and corresponded to a loss in ammonia production, indicating that Lmo0036 was responsible for acid tolerance at both sublethal and lethal pH levels. Furthermore, Lmo0036 played a possible role in Listeria virulence.

  1. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: inference of the degradation pathway from an analysis of decolorized products.

    PubMed

    Gomi, Nichina; Yoshida, Shuji; Matsumoto, Kazutsugu; Okudomi, Masayuki; Konno, Hiroki; Hisabori, Toru; Sugano, Yasushi

    2011-11-01

    We examined the degradation of amaranth, a representative azo dye, by Bjerkandera adusta Dec 1. The degradation products were analyzed by high performance liquid chromatography (HPLC), visible absorbance, and electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS). At the primary culture stage (3 days), the probable reaction intermediates were 1-aminonaphthalene-2,3,6-triol, 4-(hydroxyamino) naphthalene-1-ol, and 2-hydroxy-3-[2-(4-sulfophenyl) hydrazinyl] benzenesulfonic acid. After 10 days, the reaction products detected were 4-nitrophenol, phenol, 2-hydroxy-3-nitrobenzenesulfonic acid, 4-nitrobenzene sulfonic acid, and 3,4'-disulfonyl azo benzene, suggesting that no aromatic amines were created. Manganese-dependent peroxidase activity increased sharply after 3 days culture. Based on these results, we herein propose, for the first time, a degradation pathway for amaranth. Our results suggest that Dec 1 degrades amaranth via the combined activities of peroxidase and hydrolase and reductase action.

  2. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected

  3. The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice.

    PubMed

    Antflick, Jordan E; Baker, Glen B; Hampson, David Richard

    2010-06-01

    L-serine is required for cellular and tissue growth and is particularly important in the immature brain where it acts as a crucial neurotrophic factor. In this study, the levels of amino acids and enzymes in the L-serine biosynthetic pathway were examined in the forebrain, cerebellum, liver, and kidney after the exposure of mice to protein-restricted diets. The levels of L-serine, D-serine, and L-serine-O-phosphate were quantified by HPLC and quantitative Western blotting was used to measure changes in protein levels of five enzymes in the pathway. The L-serine biosynthetic enzyme phosphoserine phosphatase was strongly upregulated, while the serine degradative enzymes serine racemase and serine dehydratase were downregulated in the livers and kidneys of mice fed low (6%) or very low (2%) protein diets for 2 weeks compared with mice fed a normal diet (18% protein). No changes in these enzymes were seen in the brain. The levels of L-serine increased in the livers of mice fed 2% protein; in contrast, D-serine levels were reduced below the limit of detection in the livers of mice given either the 6 or 2% diets. D-Serine is a co-agonist at the NMDA class of glutamate receptors; no alterations in NMDA-R1 subunit expression were observed in liver or brain after protein restriction. These findings demonstrate that the expression of L-serine synthetic and degradative enzymes display reciprocal changes in the liver and kidney to increase L-serine and decrease D-serine levels under conditions of protein restriction, and that the brain is insulated from such changes.

  4. Indole diterpene synthetic studies. Total synthesis of (+)-nodulisporic acid F and construction of the heptacyclic cores of (+)-nodulisporic acids A and B and (-)-nodulisporic acid D.

    PubMed

    Smith, Amos B; Davulcu, Akin H; Cho, Young Shin; Ohmoto, Kazuyuki; Kürti, László; Ishiyama, Haruaki

    2007-06-22

    A first-generation strategy for construction of (+)-nodulisporic acids A (1) and B (2) is described. The strategy entails union of the eastern and western hemisphere subtargets via the indole synthesis protocol developed in our laboratory. Subsequent elaboration of rings E and F, however, revealed the considerable acid instability of the C(24) hydroxyl, thereby preventing further advancement. Nonetheless, preparation of the heptacyclic core of (+)-nodulisporic acids A and B, the total synthesis of (+)-nodulisporic acid F, the simplest member of the nodulisporic acid family, and elaboration of the heptacyclic core of (-)-nodulisporic acid D were achieved.

  5. Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2013-02-01

    Protein Kinase C (PKC) isozymes are key components involved in cell proliferation and their over activation leads to abnormal tumor growth. PKC follows signalling pathway by activation of downstream gene NF-kB and early transcription factor c-Myc. Over activation of NF-kB and c-Myc gene are also linked with unregulated proliferation of cancer cells. Therefore any agent which can inhibit the activation of Protein kinase C, NF-kB and c-Myc may be useful in reducing cancer progression. To investigate this hypothesis we have tested the effect of ellagic acid on these genes in Dalton's lymphoma bearing (DL). The role of ellagic acid was also tested in regulation of tumor suppressor gene Transforming growth factor-β1 (TGF-β1). DL mice were treated with three different doses (40, 60 and 80 mg/kg body weight) of ellagic acid. Ascites cells of mice were used for the experiments. Ellagic acid administration to DL mice decreased oxidative stress by reducing lipid peroxidation. Ellagic acid also down regulates the expression of classical isozymes of PKC i.e. PKCα, PKCβ, and PKCγ as well as activity of total PKC and NF-kB, indicating its antitumor action. The anticarcinogenic action of ellagic acid was also confirmed by up regulation of TGF-β1 and down regulation of c-Myc. Lymphoma prevention by ellagic acid is further supported by decrease in cell proliferation, cell viability, ascites fluid accumulation and increase in life span of DL mice. All these findings suggest that ellagic acid prevents the cancer progression by down regulation of PKC signaling pathway leading to cell proliferation.

  6. The Synthetic Elicitor 2-(5-Bromo-2-Hydroxy-Phenyl)-Thiazolidine-4-Carboxylic Acid Links Plant Immunity to Hormesis.

    PubMed

    Rodriguez-Salus, Melinda; Bektas, Yasemin; Schroeder, Mercedes; Knoth, Colleen; Vu, Trang; Roberts, Philip; Kaloshian, Isgouhi; Eulgem, Thomas

    2016-01-01

    Synthetic elicitors are drug-like compounds that induce plant immune responses but are structurally distinct from natural defense elicitors. Using high-throughput screening, we previously identified 114 synthetic elicitors that activate the expression of a pathogen-responsive reporter gene in Arabidopsis (Arabidopsis thaliana). Here, we report on the characterization of one of these compounds, 2-(5-bromo-2-hydroxy-phenyl)-thiazolidine-4-carboxylic acid (BHTC). BHTC induces disease resistance of plants against bacterial, oomycete, and fungal pathogens and has a unique mode of action and structure. Surprisingly, we found that low doses of BHTC enhanced root growth in Arabidopsis, while high doses of this compound inhibited root growth, besides inducing defense. These effects are reminiscent of the hormetic response, which is characterized by low-dose stimulatory effects of a wide range of agents that are toxic or inhibitory at higher doses. Like its effects on defense, BHTC-induced hormesis in Arabidopsis roots is partially dependent on the WRKY70 transcription factor. Interestingly, BHTC-induced root hormesis is also affected in the auxin-response mutants axr1-3 and slr-1. By messenger RNA sequencing, we uncovered a dramatic difference between transcriptional profiles triggered by low and high doses of BHTC. Only high levels of BHTC induce typical defense-related transcriptional changes. Instead, low BHTC levels trigger a coordinated intercompartmental transcriptional response manifested in the suppression of photosynthesis- and respiration-related genes in the nucleus, chloroplasts, and mitochondria as well as the induction of development-related nuclear genes. Taken together, our functional characterization of BHTC links defense regulation to hormesis and provides a hypothetical transcriptional scenario for the induction of hormetic root growth.

  7. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  8. DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, blocks malignant glioblastoma growth and invasion by inhibiting AEG-1 and NF-κB signaling pathways

    PubMed Central

    Zou, Meijuan; Duan, Yongtao; Wang, Pengfei; Gao, Rui; Chen, Xuguan; Ou, Yingwei; Liang, Mingxing; Wang, Zhongchang; Yuan, Yi; Wang, Li; Zhu, Hailiang

    2016-01-01

    Astrocyte elevated gene-1 (AEG-1) has been explored as a novel target for human glioma therapy, thus reflecting its potential contribution to gliomagenesis. In the present study, we investigated the effect of DYT-40, a novel synthetic 2-styryl-5-nitroimidazole derivative, on cell growth and invasion in glioblastoma (GBM) and uncovered the underlying mechanisms of this molecule. DYT-40 induces the intrinsic mitochondrial pathway of apoptosis and inhibits the epithelial-mesenchymal transition (EMT) and invasion of GBM cell lines. Furthermore, DYT-40 deactivates PI3K/Akt and MAPK pathways, suppresses AEG-1 expression, and inhibits NF-κB nuclear translocation. DYT-40 reduced the tumor volumes in a rat C6 glioma model by apoptotic induction. Moreover, HE staining demonstrated that the glioma rat model treated with DYT-40 exhibited better defined tumor margins and fewer invasive cells to the contralateral striatum compared with the vehicle control and temozolomide-treated rats. Microscopic examination showed a decrease in AEG-1-positive cells in DYT-40-treated rats compared with the untreated controls. DYT-40-treatment increases the in vivo apoptotic response of glioma cells to DYT-40 treatment by TUNEL staining. In conclusion, the inhibitory effects of DYT-40 on growth and invasion in GBM suggest that DYT-40 might be a potential AEG-1 inhibitor to prevent the growth and motility of malignant glioma. PMID:27251589

  9. Novel synthetic kojic acid-methimazole derivatives inhibit mushroom tyrosinase and melanogenesis.

    PubMed

    Chen, Ming-Jen; Hung, Chih-Chuan; Chen, Yan-Ru; Lai, Shih-Ting; Chan, Chin-Feng

    2016-12-01

    In this study, two kojic acid-methimazole (2-mercapto-1-methylimidazole, MMI, 1) derivatives, 5-hydroxy-2-{[(1-methyl-1H-imidazol-2-yl)thio]methyl}-4H-pyran-4-one (compound 4) and 5-methoxy-2-{[(1-methyl-1H-imidazol-2-yl)thio]methyl}-4H-pyran-4-one (compound 5), were synthesized to examine their inhibitory kinetics on mushroom tyrosinase. Compound 4 exhibited a potent inhibitory effect on monophenolase activity in a dose-dependent manner, with an IC50 value of 0.03 mM. On diphenolase activity, compound 4 exhibited a less inhibitory effect (IC50 = 1.29 mM) but was stronger than kojic acid (IC50 = 1.80 mM). Kinetic analysis indicated that compound 4 was both as a noncompetitive monophenolase and diphenolase inhibitor. By contrast, compound 5 exhibited no inhibitory effects on mushroom tyrosinase activity. The IC50 value of compound 4 for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was 4.09 mM, being much higher than the IC50 of compound 4 for inhibiting the tyrosinase activity. The results indicated that the antioxidant activity of compound 4 may be partly related to the potent inhibitory effect on mushroom tyrosinase. Compound 4 also exerted a potent inhibitory effect on intracellular melanin formation in B16/F10 murine melanoma cells, and caused no cytotoxicity. Furthermore, compound 4 induced no adverse effects on the Hen's egg test-chorioallantoic membrane (HET-CAM).

  10. Retroconversion of docosapentaenoic acid (n-6): an alternative pathway for biosynthesis of arachidonic acid in Daphnia magna.

    PubMed

    Strandberg, Ursula; Taipale, Sami J; Kainz, Martin J; Brett, Michael T

    2014-06-01

    The aim of this study was to assess metabolic pathways for arachidonic acid (20:4n-6) biosynthesis in Daphnia magna. Neonates of D. magna were maintained on [(13)C] enriched Scenedesmus obliquus and supplemented with liposomes that contained separate treatments of unlabeled docosapentaenoic acid (22:5n-6), 20:4n-6, linoleic acid (18:2n-6) or oleic acid (18:1n-9). Daphnia in the control treatment, without any supplementary fatty acids (FA) containing only trace amounts of 20:4n-6 (~0.3% of all FA). As expected, the highest proportion of 20:4n-6 (~6.3%) was detected in Daphnia that received liposomes supplemented with this FA. Higher availability of 18:2n-6 in the diet increased the proportion of 18:2n-6 in Daphnia, but the proportion of 20:4n-6 was not affected. Daphnia supplemented with 22:5n-6 contained ~3.5% 20:4n-6 in the lipids and FA specific stable isotope analyses validated that the increase in the proportion of 20:4n-6 was due to retroconversion of unlabeled 22:5n-6. These results suggest that chain shortening of 22:5n-6 is a more efficient pathway to synthesize 20:4n-6 in D. magna than elongation and desaturation of 18:2n-6. These results may at least partially explain the discrepancies noticed between phytoplankton FA composition and the expected FA composition in freshwater cladocerans. Finally, retroconversion of dietary 22:5n-6 to 20:4n-6 indicates Daphnia efficiently retain long chain n-6 FA in lake food webs, which might be important for the nutritional ecology of fish.

  11. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    PubMed

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid.

  12. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  13. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.

  14. Docosahexaenoic Acid Modulates Invasion and Metastasis of Human Ovarian Cancer via Multiple Molecular Pathways

    PubMed Central

    Wang, Ying-Chun; Wu, Yi-Nan; Wang, Su-Li; Lin, Qing-Hua; He, Ming-Fang; Liu, Qiao-lin; Wang, Jin-Hua

    2016-01-01

    Objective We investigated the effect of docosahexaenoic acid (DHA) on the invasion and metastasis of ovarian cancer cells (A2780, HO8910, and SKOV-3). Methods Cytotoxicity assay was performed to determine the optimal doses of DHA in this experiment. The effects of DHA on invasion ability were assessed by invasion assay. The expressions of messenger RNA and/or proteins associated with invasion or metastasis were detected by quantitative Real Time-Polymerase Chain Reaction or Western blot. The effect of DHA on cell metastasis was assessed in xenograft model of zebrafish. Results Docosahexaenoic acid and α-linolenic acid could reduce the cell vitalities in dose-dependent manner. However, DHA inhibited the invasion and metastasis of ovarian cancer cells, but α-linolenic acid did not (**P < 0.01). Docosahexaenoic acid could downregulate the expressions of WAVE3, vascular endothelial cell growth factor, and MMP-9, and upregulate KISS-1, TIMP-1, and PPAR-γ, which negatively correlated with cell invasion and metastasis (*P < 0.05). Docosahexaenoic acid restrained the development of subintestinal vessels and cancer cell metastasis in xenograft model of zebrafish (**P < 0.01). Conclusions Docosahexaenoic acid inhibited the invasion and metastasis of ovarian cancer cells in vitro and in vivo through the modulation of NF-κB signaling pathway, suggesting that DHA is a promising candidate for ovarian cancer therapy. PMID:27258728

  15. Synthetic approaches to multifunctional indenes

    PubMed Central

    López-Pérez, Sara; Dinarès, Immaculada

    2011-01-01

    Summary The synthesis of multifunctional indenes with at least two different functional groups has not yet been extensively explored. Among the plausible synthetic routes to 3,5-disubstituted indenes bearing two different functional groups, such as the [3-(aminoethyl)inden-5-yl)]amines, a reasonable pathway involves the (5-nitro-3-indenyl)acetamides as key intermediates. Although several multistep synthetic approaches can be applied to obtain these advanced intermediates, we describe herein their preparation by an aldol-type reaction between 5-nitroindan-1-ones and the lithium salt of N,N-disubstituted acetamides, followed immediately by dehydration with acid. This classical condensation process, which is neither simple nor trivial despite its apparent directness, permits an efficient entry to a variety of indene-based molecular modules, which could be adapted to a range of functionalized indanones. PMID:22238553

  16. Evaluation of UASB reactor performance during start-up operation using synthetic mixed-acid waste.

    PubMed

    Vadlani, P V; Ramachandran, K B

    2008-11-01

    A start-up experiment was performed in a laboratory-scale, upflow anaerobic sludge blanket (UASB) reactor using seed sludge from a domestic waste treatment plant at 3.8-33.3gCODl(-1)day(-1) loading rates. Analysis over the height of the reactor with time showed that the VSS in the reactor was initially differentiated into active and non-active biomass at increasing gas production and upflow velocities, and specific update rates of the volatile fatty acids (VFA) components were pronounced at the bottom 10% of the reactor. During start-up, specific methanogenic activity and chemical oxygen demand (COD) uptake rate increased from 0.075 to 0.75gCOD-CH4(gVSS)(-1)day(-1) and from 0.08 to 0.875gCOD removed (gVSS)(-1)day(-1), respectively. When seed sludge from a distillery waste treatment plant was used, improved performance due to a predominance of active biomass was evident when the loading rate was increased from 9.4 to 28.7gCODl(-1)day(-1). The proposed start-up evaluation is an effective tool to successfully monitor performance of UASB reactors.

  17. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    SciTech Connect

    Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi; Kwon, Ho Jeong

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effect of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.

  18. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids.

    PubMed

    Kondo, Natsuki; Ohno, Yusuke; Yamagata, Maki; Obara, Takashi; Seki, Naoya; Kitamura, Takuya; Naganuma, Tatsuro; Kihara, Akio

    2014-10-27

    The long-chain base phytosphingosine is a component of sphingolipids and exists in yeast, plants and some mammalian tissues. Phytosphingosine is unique in that it possesses an additional hydroxyl group compared with other long-chain bases. However, its metabolism is unknown. Here we show that phytosphingosine is metabolized to odd-numbered fatty acids and is incorporated into glycerophospholipids both in yeast and mammalian cells. Disruption of the yeast gene encoding long-chain base 1-phosphate lyase, which catalyzes the committed step in the metabolism of phytosphingosine to glycerophospholipids, causes an ~40% reduction in the level of phosphatidylcholines that contain a C15 fatty acid. We also find that 2-hydroxypalmitic acid is an intermediate of the phytosphingosine metabolic pathway. Furthermore, we show that the yeast MPO1 gene, whose product belongs to a large, conserved protein family of unknown function, is involved in phytosphingosine metabolism. Our findings provide insights into fatty acid diversity and identify a pathway by which hydroxyl group-containing lipids are metabolized.

  19. An Abscisic Acid-Independent Oxylipin Pathway Controls Stomatal Closure and Immune Defense in Arabidopsis

    PubMed Central

    Mondy, Samuel; Tranchimand, Sylvain; Rumeau, Dominique; Boudsocq, Marie; Garcia, Ana Victoria; Douki, Thierry; Bigeard, Jean; Laurière, Christiane; Chevalier, Anne; Castresana, Carmen; Hirt, Heribert

    2013-01-01

    Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. PMID:23526882

  20. Anterograde transport of horseradish peroxidase in the nigrostriatal pathway after neostriatal kainic acid lesions.

    PubMed

    Walker, P D; McAllister, J P

    1986-08-01

    We used the anterograde transport of HRP to analyze the nigrostriatal pathway after intrastriatal injections of kainic acid. A total volume of 1 microliter kainic acid (3 nM) was injected unilaterally into the neostriatum of adult rats. After 5, 10, or 35 days, HRP was injected into the ipsilateral substantia nigra. Sections stained for Nissl substance revealed that kainic acid damaged as much as three-quarters of the neostriatum. Lesion sites were characterized by gliosis and the absence of neurons. Alternate sections processed for HRP histochemistry and analyzed with bright- and dark-field microscopy revealed labeled axons and terminals in the lesion site. These findings were consistent in all three time periods. Much of the labeling was similar to that seen in neostriatal of control animals. However, the normal homogeneous pattern of the nigrostriatal terminal field was disrupted in all experimental groups, illustrated by changes in some labeling characteristics in the lesion site. These findings provide morphologic evidence for the preservation of much of the nigrostriatal pathway but indicate that some axons and their terminals may be altered after kainic acid injection.

  1. Simultaneous/Selective Detection of Dopamine and Ascorbic Acid at Synthetic Zeolite-Modified/Graphite-Epoxy Composite Macro/Quasi-Microelectrodes

    PubMed Central

    Ilinoiu, Elida Cristina; Manea, Florica; Serra, Pier Andrea; Pode, Rodica

    2013-01-01

    The present paper aims to miniaturize a graphite-epoxy and synthetic zeolite-modified graphite-epoxy composite macroelectrode as a quasi-microelectrode aiming in vitro and also, envisaging in vivo simultaneous electrochemical detection of dopamine (DA) and ascorbic acid (AA) neurotransmitters, or DA detection in the presence of AA. The electrochemical behavior and the response of the designed materials to the presence of dopamine and ascorbic acid without any protective membranes were studied by cyclic voltammetry and constant-potential amperometry techniques. The catalytic effect towards dopamine detection was proved for the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode, allowing increasing the sensitivity and selectivity for this analyte detection, besides a possible electrostatic attraction between dopamine cation and the negative surface of the synthetic zeolite and electrostatic repulsion with ascorbic acid anion. Also, the synthetic zeolite-modified graphite-epoxy composite quasi-microelectrode gave the best electroanalytical parameters for dopamine detection using constant-potential amperometry, the most useful technique for practical applications. PMID:23736851

  2. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite.

    PubMed

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-09-30

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.

  3. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  4. Effect of ascorbic acid on the pitting resistance of 316L stainless steel in synthetic tap water

    NASA Astrophysics Data System (ADS)

    Hong, Min-Sung; Kim, Seon-Hong; Im, Shin-Young; Kim, Jung-Gu

    2016-07-01

    This study examined the effect of L-ascorbic acid (A.A) concentration on the pitting corrosion properties of 316L stainless steel (316L STS) of heat exchanger in synthetic tap water containing 400 ppm of Cl- ion. The pitting corrosion of 316L STS can be effectively inhibited by the 10-4 M of A.A concentration. In this condition, the adsorption of A.A reinforced the passive film of steel by blocking the Cl- ions at the active site. However, the passive film was deteriorated and severe pitting corrosion occurred above the 10-4 M of A.A concentration. Above the 10-4 M of A.A concentration, A.A generates soluble chelate rather than absorbs on the steel surface and it causes passive film deterioration and severe pitting corrosion. The critical ratio, which is a critical ratio of surface coverage of aggressive to inhibitive ion necessary to initiate localized corrosion, calculated 2.93 up to the 10-4 M. It has approximately 2.93:1 ratio of the coverage of local Cl- ions to A.A. Above the critical ratio, the pitting corrosion will occur with degradation of the passive film. On the other hands, above the 10-4 M A.A concentration caused a negative effect because the heat energy for adsorption is increased.

  5. A phase I safety and pharmacokinetic study of ATX-101: injectable, synthetic deoxycholic acid for submental contouring.

    PubMed

    Walker, Patricia; Fellmann, Jere; Lizzul, Paul F

    2015-03-01

    ATX-101 (deoxycholic acid [DCA] injection) is a proprietary formulation of pure synthetic DCA. When injected into subcutaneous fat, ATX-101 results in focal adipocytolysis, the targeted destruction of fat cells. ATX-101 is undergoing investigation as an injectable drug for contouring the submental area by reducing submental fat (SMF). The purpose of this study was to evaluate the safety and pharmacokinetics (PK) of the maximal therapeutic dose of ATX-101 (100 mg total dose). Following PK evaluation of endogenous DCA, subjects (N=24) received subcutaneous injections of ATX-101 (2 mg/cm2, with or without 0.9% benzyl alcohol) into SMF; PK evaluation was repeated periodically over 24 hours. Endogenous DCA plasma concentrations measured prior to injection were highly variable within and between subjects. Similarly, following ATX-101 injection, DCA plasma concentrations were highly variable, peaked rapidly, and returned to the range observed for endogenous values by 24 hours postdose. All subjects experienced at least 1 adverse event (AE). No death, serious AE, or AE-related discontinuations occurred. The majority of AEs were transient, associated with the area treated, and of mild or moderate severity. No clinically significant changes were reported for laboratory test results, vital signs, or Holter electrocardiograms postdosing. These data support the favorable safety and efficacy observations of ATX-101 as an injectable drug to reduce SMF.

  6. Effect of 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) on Partitioning of Np and Pu to Synthetic Boehmite

    SciTech Connect

    Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.

    2009-05-01

    The effect of 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) on sorption of Np(V) and Pu(V) to synthetic boehmite ({gamma}-AlOOH) was examined a function of time and pH (between 4 to 11). Sorption of both elements in boehmite suspensions (1 M NaCl, 600 mg L{sup -1} boehmite) increased with increasing pH. Sorption edges for neptunium and plutonium occurred at approximately pH 8.0 and 6.6, respectively. After steady state partitioning was reached, HEDPA was added to the neptunium-boehmite and plutonium-boehmite suspensions. Neptunium and plutonium partitioning appears to be primarily affected by the formation of soluble Np:HEDPA and Pu:HEDPA complexes, the dissolution of boehmite promoted by HEDPA, and the precipitation of Np:HEDPA and Pu:HEDPA colloids. The results are discussed in terms of applicability of HEDPA-promoted dissolution as a waste reduction method in the treatment of sludge phases contained within high-level nuclear waste storage tanks.

  7. Identification of genes and pathways involved in the synthesis of Mead acid (20:3n-9), an indicator of essential fatty acid deficiency.

    PubMed

    Ichi, Ikuyo; Kono, Nozomu; Arita, Yuka; Haga, Shizuka; Arisawa, Kotoko; Yamano, Misato; Nagase, Mana; Fujiwara, Yoko; Arai, Hiroyuki

    2014-01-01

    In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n-9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1-6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n-9, 20:1n-9 and 20:2n-9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n-9→(Fads2)→18:2n-9→(Elovl5)→20:2n-9→(Fads1)→20:3n-9 and pathway 2) 18:1n-9→(Elovl5)→20:1n-9→(Fads2)→20:2n-9→(Fads1)→20:3n-9.

  8. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid.

    PubMed

    Peng, Siyuan; Yan, Lijuan; Zhang, Jie; Wang, Zhanlin; Tian, Meiping; Shen, Heqing

    2013-12-01

    Perfluorooctanoic acid (PFOA) is one of the most representative perfluorinated compounds and liver is the major organ where PFOA is accumulated. Although the multiple toxicities had been reported, its toxicological profile remained unclear. In this study, a systems toxicology strategy integrating liquid chromatography/mass spectrometry-based metabonomics and transcriptomics analyses was applied for the first time to investigate the effects of PFOA on a representative Chinese normal human liver cell line L-02, with focusing on the metabolic disturbance. Fifteen potential biomarkers were identified on metabolic level and most observations were consistent with the altered levels of gene expression. Our results showed that PFOA induced the perturbations in various metabolic processes in L-02 cells, especially lipid metabolism-related pathways. The up-stream mitochondrial carnitine metabolism was proved to be influenced by PFOA treatment. The specific transformation from carnitine to acylcarnitines, which showed a dose-dependent effect, and the expression level of key genes involved in this pathway were observed to be altered correspondingly. Furthermore, the down-stream cholesterol biosynthesis was directly confirmed to be up-regulated by both increased cholesterol content and elevated expression level of key genes. The PFOA-induced lipid metabolism-related effects in L-02 cells started from the fatty acid catabolism in cytosol, fluctuated to the processes in mitochondria, extended to the cholesterol biosynthesis. Many other metabolic pathways like amino acid metabolism and tricarboxylic acid cycle might also be disturbed. The findings obtained from the systems biological research provide more details about metabolic disorders induced by PFOA in human liver.

  9. Synthetic biology, inspired by synthetic chemistry.

    PubMed

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell.

  10. Gibberellic acid, synthetic auxins, and ethylene differentially modulate alpha-L-Arabinofuranosidase activities in antisense 1-aminocyclopropane-1-carboxylic acid synthase tomato pericarp discs.

    PubMed

    Sozzi, Gabriel O; Greve, L Carl; Prody, Gerry A; Labavitch, John M

    2002-07-01

    Alpha-L-Arabinofuranosidases (alpha-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different alpha-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. alpha-Af I and II are active throughout fruit ontogeny. alpha-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. alpha-Af II activity accounts for over 80% of the total alpha-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, alpha-Af III is ethylene dependent and specifically active during ripening. alpha-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas alpha-Af II and III acted on Na(2)CO(3)-soluble pectins. Different alpha-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. alpha-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only alpha-Af III activity. Results suggest that tomato alpha-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production.

  11. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    PubMed Central

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  12. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    PubMed

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1-(14)C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1-(14)C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  13. Solanesyl Diphosphate Synthase, an Enzyme of the Ubiquinone Synthetic Pathway, Is Required throughout the Life Cycle of Trypanosoma brucei

    PubMed Central

    Lai, De-Hua; Poropat, Estefanía; Pravia, Carlos; Landoni, Malena; Couto, Alicia S.; Pérez Rojo, Fernando G.; Fuchs, Alicia G.; Dubin, Marta; Elingold, Igal; Rodríguez, Juan B.; Ferella, Marcela; Esteva, Mónica I.

    2014-01-01

    Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target. PMID:24376001

  14. An Adaptation To Life In Acid Through A Novel Mevalonate Pathway

    PubMed Central

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.; Bowie, James U.

    2016-01-01

    Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments. PMID:28004831

  15. Saturated fatty acids alter the late secretory pathway by modulating membrane properties.

    PubMed

    Payet, Laurie-Anne; Pineau, Ludovic; Snyder, Ellen C R; Colas, Jenny; Moussa, Ahmed; Vannier, Brigitte; Bigay, Joelle; Clarhaut, Jonathan; Becq, Frédéric; Berjeaud, Jean-Marc; Vandebrouck, Clarisse; Ferreira, Thierry

    2013-12-01

    Saturated fatty acids (SFA) have been reported to alter organelle integrity and function in many cell types, including muscle and pancreatic β-cells, adipocytes, hepatocytes and cardiomyocytes. SFA accumulation results in increased amounts of ceramides/sphingolipids and saturated phospholipids (PL). In this study, using a yeast-based model that recapitulates most of the trademarks of SFA-induced lipotoxicity in mammalian cells, we demonstrate that these lipid species act at different levels of the secretory pathway. Ceramides mostly appear to modulate the induction of the unfolded protein response and the transcription of nutrient transporters destined to the cell surface. On the other hand, saturated PL, by altering membrane properties, directly impact vesicular budding at later steps in the secretory pathway, i.e. at the trans-Golgi Network level. They appear to do so by increasing lipid order within intracellular membranes which, in turn, alters the recruitment of loose lipid packing-sensing proteins, required for optimal budding, to nascent vesicles. We propose that this latter general mechanism could account for the well-documented deleterious impacts of fatty acids on the last steps of the secretory pathway in several cell types.

  16. Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus.

    PubMed

    Romano, Andrea; Ladero, Victor; Alvarez, Miguel A; Lucas, Patrick M

    2014-04-03

    Decarboxylation pathways are widespread among lactic acid bacteria; their physiological role is related to acid resistance through the regulation of the intracellular pH and to the production of metabolic energy via the generation of a proton motive force and its conversion into ATP. These pathways include, among others, biogenic amine (BA) production pathways. BA accumulation in foodstuffs is a health risk; thus, the study of the factors involved in their production is of major concern. The analysis of several lactic acid bacterial strains isolated from different environments, including fermented foods and beverages, revealed that the genes encoding these pathways are clustered on the chromosome, which suggests that these genes are part of a genetic hotspot related to acid stress resistance. Further attention was devoted to the ornithine decarboxylase pathway, which affords putrescine from ornithine. Studies were performed on three lactic acid bacteria belonging to different species. The ODC pathway was always shown to be involved in cytosolic pH alkalinisation and acid shock survival, which were observed to occur with a concomitant increase in putrescine production.

  17. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control

    PubMed Central

    Xu, Peng; Li, Lingyun; Zhang, Fuming; Stephanopoulos, Gregory; Koffas, Mattheos

    2014-01-01

    Global energy demand and environmental concerns have stimulated increasing efforts to produce carbon-neutral fuels directly from renewable resources. Microbially derived aliphatic hydrocarbons, the petroleum-replica fuels, have emerged as promising alternatives to meet this goal. However, engineering metabolic pathways with high productivity and yield requires dynamic redistribution of cellular resources and optimal control of pathway expression. Here we report a genetically encoded metabolic switch that enables dynamic regulation of fatty acids (FA) biosynthesis in Escherichia coli. The engineered strains were able to dynamically compensate the critical enzymes involved in the supply and consumption of malonyl-CoA and efficiently redirect carbon flux toward FA biosynthesis. Implementation of this metabolic control resulted in an oscillatory malonyl-CoA pattern and a balanced metabolism between cell growth and product formation, yielding 15.7- and 2.1-fold improvement in FA titer compared with the wild-type strain and the strain carrying the uncontrolled metabolic pathway. This study provides a new paradigm in metabolic engineering to control and optimize metabolic pathways facilitating the high-yield production of other malonyl-CoA–derived compounds. PMID:25049420

  18. Determination of selected synthetic cannabinoids and their metabolites by micellar electrokinetic chromatography--mass spectrometry employing perfluoroheptanoic acid-based micellar phase.

    PubMed

    Švidrnoch, Martin; Přibylka, Adam; Maier, Vítězslav

    2016-04-01

    Perfluoroheptanoic acid was employed as a volatile micellar phase in background electrolyte for micellar electrokinetic chromatography-tandem mass spectrometry separation and determination of 15 selected naphthoyl- and phenylacetylindole- synthetic cannabinoids and main metabolites derived from JWH-018, JWH-019, JWH-073, JWH-200 and JWH-250. The influence of concentration of perfluoroheptanoic acid in background electrolytes on the separation was studied as well as the influence of perfluoroheptanoic acid on mass spectrometry detection. The background electrolyte consisted of 75 mM perfluoroheptanoic acid, 150 mM ammonium hydroxide pH 9.2 with 10% (v/v) propane-2-ol allowed micellar electrokinetic chromatography separation together with mass spectrometry identification of the studied parent synthetic cannabinoids and their metabolites. The limits of detection of studied synthetic cannabinoids and metabolites were in the range from 0.9 ng/mL for JWH-073 to 3.0 ng/mL for JWH-200 employing liquid-liquid extraction. The developed method was applied on the separation and identification of studied analytes after liquid-liquid extraction of spiked urine and serum samples to demonstrate the potential of the method applicability for forensic and toxicological purposes.

  19. Repurposing lipoic acid changes electron flow in two important metabolic pathways of Escherichia coli.

    PubMed

    Feeney, Morgan Anne; Veeravalli, Karthik; Boyd, Dana; Gon, Stéphanie; Faulkner, Melinda Jo; Georgiou, George; Beckwith, Jonathan

    2011-05-10

    In bacteria, cysteines of cytoplasmic proteins, including the essential enzyme ribonucleotide reductase (RNR), are maintained in the reduced state by the thioredoxin and glutathione/glutaredoxin pathways. An Escherichia coli mutant lacking both glutathione reductase and thioredoxin reductase cannot grow because RNR is disulfide bonded and nonfunctional. Here we report that suppressor mutations in the lpdA gene, which encodes the oxidative enzyme lipoamide dehydrogenase required for tricarboxylic acid (TCA) cycle functioning, restore growth to this redox-defective mutant. The suppressor mutations reduce LpdA activity, causing the accumulation of dihydrolipoamide, the reduced protein-bound form of lipoic acid. Dihydrolipoamide can then provide electrons for the reactivation of RNR through reduction of glutaredoxins. Dihydrolipoamide is oxidized in the process, restoring function to the TCA cycle. Thus, two electron transfer pathways are rewired to meet both oxidative and reductive needs of the cell: dihydrolipoamide functionally replaces glutathione, and the glutaredoxins replace LpdA. Both lipoic acid and glutaredoxins act in the reverse manner from their normal cellular functions. Bioinformatic analysis suggests that such activities may also function in other bacteria.

  20. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought.

    PubMed

    Savchenko, Tatyana; Kolla, Venkat A; Wang, Chang-Quan; Nasafi, Zainab; Hicks, Derrick R; Phadungchob, Bpantamars; Chehab, Wassim E; Brandizzi, Federica; Froehlich, John; Dehesh, Katayoon

    2014-03-01

    Membranes are primary sites of perception of environmental stimuli. Polyunsaturated fatty acids are major structural constituents of membranes that also function as modulators of a multitude of signal transduction pathways evoked by environmental stimuli. Different stresses induce production of a distinct blend of oxygenated polyunsaturated fatty acids, "oxylipins." We employed three Arabidopsis (Arabidopsis thaliana) ecotypes to examine the oxylipin signature in response to specific stresses and determined that wounding and drought differentially alter oxylipin profiles, particularly the allene oxide synthase branch of the oxylipin pathway, responsible for production of jasmonic acid (JA) and its precursor 12-oxo-phytodienoic acid (12-OPDA). Specifically, wounding induced both 12-OPDA and JA levels, whereas drought induced only the precursor 12-OPDA. Levels of the classical stress phytohormone abscisic acid (ABA) were also mainly enhanced by drought and little by wounding. To explore the role of 12-OPDA in plant drought responses, we generated a range of transgenic lines and exploited the existing mutant plants that differ in their levels of stress-inducible 12-OPDA but display similar ABA levels. The plants producing higher 12-OPDA levels exhibited enhanced drought tolerance and reduced stomatal aperture. Furthermore, exogenously applied ABA and 12-OPDA, individually or combined, promote stomatal closure of ABA and allene oxide synthase biosynthetic mutants, albeit most effectively when combined. Using tomato (Solanum lycopersicum) and Brassica napus verified the potency of this combination in inducing stomatal closure in plants other than Arabidopsis. These data have identified drought as a stress signal that uncouples the conversion of 12-OPDA to JA and have revealed 12-OPDA as a drought-responsive regulator of stomatal closure functioning most effectively together with ABA.

  1. The acid sphingomyelinase/ceramide pathway: biomedical significance and mechanisms of regulation.

    PubMed

    Zeidan, Y H; Hannun, Y A

    2010-07-01

    One of the most intriguing enzymes of sphingolipid biology is acid sphingomyelinase (ASMase). In a phospholipase C reaction, ASMase catalyzes the cleavage of the phosphocholine head group of sphingomyelin to generate ceramide. Cumulative efforts of various laboratories over the past 40 years have placed ASMase and its product ceramide at the forefront of lipid research. Activation of the ASMase/ceramide pathway is a shared response to an ever-growing list of receptor and non-receptor mediated forms of cellular stress including: death ligands (TNFalpha, TRAIL, Fas ligand), cytokines (IL-1, IFNgamma), radiation, pathogenic infections, cytotoxic agents and others. The strategic role of ASMase in lipid metabolism and cellular stress response has sparked interest in investigatig the molecular mechanisms underlying ASMase activation. In this article, we review the translational role of the ASMase/ceramide pathway and recent advances on its mechanisms of regulation.

  2. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.

    PubMed Central

    Jakubowski, H; Fersht, A R

    1981-01-01

    Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed. PMID:7024910

  3. The autotaxin-lysophosphatidic acid pathway in pathogenesis of rheumatoid arthritis.

    PubMed

    Orosa, Beatriz; García, Samuel; Conde, Carmen

    2015-10-15

    Lysophosphatidic acid (LPA) is a phospholipid that is mainly produced by the hydrolysis of lysophosphatidylcholine (LPC) by lysophospholipase D, which is also called autotaxin (ATX). LPA interacts with specific G-protein coupled receptors and is involved in the regulation of cellular survival, proliferation, differentiation and motility. LPA also has roles in several pathological disorders, such as cancer and pulmonary, dermal and renal fibrosis. The involvement of the ATX-LPA pathway has recently been demonstrated in inflammatory responses and apoptosis of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis and during the development of experimental arthritis. This review summarises the current literature of the ATX-LPA pathway in rheumatoid arthritis.

  4. Human immunodeficiency virus contains an epitope immunoreactive with thymosin. cap alpha. /sub 1/ and the 30-amino acid synthetic p17 group-specific antigen peptide HGP-30

    SciTech Connect

    Naylor, P.H.; Naylor, C.W.; Badamchian, M.; Wada, S.; Goldstein, A.L.; Wang, S.S.; Sun, D.K.; Thornton, A.H.; Sarin, P.S.

    1987-05-01

    The authors have reported that an antiserum prepared against thymosin ..cap alpha../sub 1/ (which shares a region of homology with the p17 protein of the acquired immunodeficiency syndrome (AIDS)-associated human immunodeficiency virus) effectively neutralized the AIDs virus and prevented its replication in H9 cells. Using HPLC and immunoblot analysis, they have identified from a clone B, type III human T-lymphotropic virus (HTLV-IIIB) extracts a protein with a molecular weight of 17,000 that is immunoreactive with thymosin ..cap alpha../sub 1/. In contrast, no immunoreactivity was found in retroviral extracts from a number of nonhuman species including feline, bovine, simian, gibbon, and murine retroviruses. Heterologous antiserum prepared against a 30-amino acid synthetic peptide analogue (HGP-30) does not cross-react with thymosin ..cap alpha../sub 1/ but does react specifically with the p17 protein of the AIDS virus in a manner identical to that seen with an HTLV-IIIB p17-specific monoclonal antibody. The demonstration that this synthetic analogue is immunogenic and that antibodies to HGP-30 cross-react not only with synthetic peptide but also with the HTLV-IIIB p17 viral protein provides an additional, and potentially more specific, candidate for development of a synthetic peptide vaccine for AIDS. In addition, the p17 synthetic peptide (HGP-3) may prove to be useful in a diagnostic assay for the detection of AIDS virus infection in seronegative individuals.

  5. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.

    PubMed

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2014-10-01

    Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs (+)/ech (+)).

  6. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    PubMed

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented.

  7. Acidic stimuli activates two distinct pathways in taste receptor cells from rat fungiform papillae.

    PubMed

    Liu, L; Simon, S A

    2001-12-27

    A sour taste sensation may be produced when acidic stimuli interact with taste receptor cells (TRCs) on the dorsal surface of the tongue. We have searched for pathways in TRCs that may be activated by acidic stimuli using RT-PCR and changes in intracellular calcium (Ca(2+)(I)) induced by acidic stimuli in rat fungiform papillae. RT-PCR revealed the presence of proton-gated subunits ASIC-beta and VR1. Ca(2+) imaging measurements of the TRCs revealed two distinct responses to acidic stimuli: Ca(2+)(i) was increased in 9% (28/308; Type I) and was decreased in 39% (121/308; Type II). Neither of these responses was affected by the removal of extracellular Ca(2+), indicating that the changes arise from the release and sequestration of Ca(2+) from intracellular stores. These responses were also not inhibited by the vanilloid receptor antagonist, capsazepine, suggesting they do not arise from the activation of vanilloid receptors. The Type I, but not the Type II response was inhibited by amiloride. Dose-response measurements for Types I and II responses yielded pH(50%) of 4.8 and 4.9, respectively. Type II responses were inhibited by pertussis toxin, suggesting G-protein involvement. TRCs that exhibit Type II responses could also be activated by quinine (which increased Ca(2+)(I)) thus suggesting a mechanism by which the addition of acid may be suppressive to other chemical stimuli.

  8. Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers.

    PubMed

    Loyer, Pascal; Cammas-Marion, Sandrine

    2014-08-01

    The field of specific drug delivery is an expanding research domain. Besides the use of liposomes formed from various lipids, natural and synthetic polymers have been developed to prepare more efficient drug delivery systems either under macromolecular prodrugs or under particulate nanovectors. To ameliorate the biocompatibility of such nanocarriers, degradable natural or synthetic polymers have attracted the interest of many researchers. In this context, poly(malic acid) (PMLA) extracted from microorganisms or synthesized from malic or aspartic acid was used to prepare water-soluble drug carriers or nanoparticles. Within this review, both the preparation and the applications of PMLA derivatives are described emphasizing the in vitro and in vivo assays. The results obtained by several groups highlight the interest of such polyesters in the field of drug delivery.

  9. Bioenergetics and pathway of acid blue 113 degradation by Staphylococcus lentus.

    PubMed

    Sekar, Sudharshan; Mahadevan, Surianarayanan; Shanmugam, Bhuvanesh Kumar; Mandal, Asit Baran

    2012-01-01

    Bioreaction calorimetric studies of degradation of the dye acid blue 113 by Staphylococcus lentus are reported for the first time. The heat released during the dye degradation process can be successfully measured using reaction calorimeter. Power time and oxygen uptake rate (OUR) profile followed each other suggesting that heat profiles could monitor the progress of the dye degradation in biocalorimetry. The shifts observed in power-time profile indicated three distinct phases of the bioprocess indicating simultaneous utilization of glucose (primary) and dye (secondary carbon source). Secretion of azoreductase enzyme enhanced the degradation process. Optimization of aeration and agitation rates was observed to be vital to efficient dye degradation. The degradative pathway for acid blue 113 by S. lentus was delineated via high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR), and gas chromatography coupled with mass spectrometry (GC-MS) analyses. Interestingly the products of degradation were found to have low toxicity, as per cytotoxicity measurements.

  10. Thermochemistry for silicic acid formation reaction: Prediction of new reaction pathway

    NASA Astrophysics Data System (ADS)

    Mondal, Bhaskar; Ghosh, Deepanwita; Das, Abhijit K.

    2009-08-01

    Reaction between SiO 2 and water has been studied extensively using ab initio methods. The mechanism for formation of metasilicic acid SiO(OH) 2 and orthosilicic acid Si(OH) 4 has been explored and a new pathway for formation of Si(OH) 4 is predicted. Heats of reaction ( ΔrH298∘) and heats of formation ( ΔfH298∘) at 298 K for the related reactions and species calculated at two different theoretical levels G3B3 and G3MP2B3 agree well with the literature values. It is found that when SiO 2 reacts simultaneously with two water molecules, the thermodynamic as well as kinetic feasibility of the process is much greater than that when SiO 2 reacts with one molecule of water.

  11. SHIP2 on pI3K/Akt pathway in palmitic acid stimulated islet β cell.

    PubMed

    Liu, Qingjuan; Wang, Ruiying; Zhou, Hong; Zhang, Lihui; Cao, Yanping; Wang, Xianjuan; Hao, Yongmei

    2015-01-01

    This study is to investigate the influence of SHIP2 on palmitic acid stimulated islet β cell and insulin secretion, as well as its role in pI3K/Akt pathway. We defined four groups: control, acid group, acid + NC siRNA group and acid + siRNA transfection group. The control was neither treated by palmitic acid nor transfection. The acid group was subjected to palmitic acid incubation. The acid + NC siRNA group was transiently transfected by NC siRNA, then was stimulated by palmitic acid. The acid + siRNA group was transiently transfected by siRNA, then was stimulated by palmitic acid. Cell proliferation and apoptosis were measured by MTT and flow cytometry. Immunocytochemistry, Western Blot and QPCR were designed to detect the expression of SHIP2, Akt, p-Akt protein and mRNA. Insulin secretion was tested by radioimmunoassay. The apoptosis rate in the acid + siRNA group was non-significantly lower than the acid group and the acid + NC siRNA group (P > 0.05). The expression levels of Akt phosphorylation in the acid + siRNA group was significantly higher than in the acid + NC siRNA group and the acid group (P < 0.05). And under 22.4 mmol/L glucose KRB, insulin secretion in the acid + siRNA group was significantly more than the acid + NC siRNA group and the acid group (P < 0.05). SHIP2 silencing probably stimulates insulin secretion, which may be associated with the enhanced proliferation in the pI3K/Akt pathway.

  12. Defining and Modeling Known Adverse Outcome Pathways: Domoic Acid and Neuronal Signaling as a Case Study

    SciTech Connect

    Watanabe, Karen H.; Andersen, Melvin E.; Basu, Nil; Carvan, Michael J.; Crofton, Kevin M.; King, Kerensa A.; Sunol, Cristina; Tiffany-Castiglioni, Evelyn; Schultz, Irvin R.

    2011-01-01

    An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level initiating event and an ensuing cascade of steps to an adverse outcome with population level significance. To implement a predictive strategy for ecotoxicology, the multiscale nature of an AOP requires computational models to link salient processes (e.g., in chemical uptake, toxicokinetics, toxicodynamics, and population dynamics). A case study with domoic acid was used to demonstrate strategies and enable generic recommendations for developing computational models in an effort to move toward a toxicity testing paradigm focused on toxicity pathway perturbations applicable to ecological risk assessment. Domoic acid, an algal toxin with adverse effects on both wildlife and humans, is a potent agonist for kainate receptors (ionotropic glutamate receptors whose activation leads to the influx of Na+ and Ca2+). Increased Ca2+ concentrations result in neuronal excitotoxicity and cell death primarily in the hippocampus, which produces seizures, impairs learning and memory, and alters behavior in some species. Altered neuronal Ca2+ is a key process in domoic acid toxicity which can be evaluated in vitro. Further, results of these assays would be amenable to mechanistic modeling for identifying domoic acid concentrations and Ca2+ perturbations that are normal, adaptive, or clearly toxic. In vitro assays with outputs amenable to measurement in exposed populations can link in vitro to in vivo conditions, and toxicokinetic information will aid in linking in vitro results to the individual organism. Development of an AOP required an iterative process with three important outcomes: (1) a critically reviewed, stressor-specific AOP; (2) identification of key processes suitable for evaluation with in vitro assays; and (3) strategies for model development.

  13. Chenodeoxycholic acid synthesis in the hamster: a metabolic pathway via 3 beta, 7 alpha-dihydroxy-5-cholen-24-oic acid

    SciTech Connect

    Kulkarni, B.; Javitt, N.B.

    1982-11-01

    The quantitative significance of the metabolism of 3 beta, 7 alpha-dihydroxy-5-cholen-24-oic acid to chenodeoxycholic acid was evaluated in the hamster. A precursor-product relationship was established in this species by the finding that intravenous administration to an animal previously given cholesterol-4-14C caused a significant reduction in the specific activity of chenodeoxycholic acid. Administration of 12.9 mumole of the precursor was followed by a 10-fold increase in chenodeoxycholic acid excretion although the predominant excretory pathway was via biliary excretion as a monosulfate. The data indicate that synthesis of bile acid from cholesterol via the intermediate 3 beta, 7 alpha-dihydroxy-5-cholen-24-oic acid can be a quantitatively important pathway.

  14. NERP-2 regulates gastric acid secretion and gastric emptying via the orexin pathway.

    PubMed

    Namkoong, Cherl; Toshinai, Koji; Waise, T M Zaved; Sakoda, Hideyuki; Sasaki, Kazuki; Ueta, Yoichi; Kim, Min-Seon; Minamino, Naoto; Nakazato, Masamitsu

    2017-02-16

    Neuroendocrine regulatory peptide (NERP)-2 is derived from a distinct region of VGF, a neurosecretory protein originally identified as a product of a nerve growth factor-responsive gene in rat PC12 cells. Colocalization of NERP-2 with orexin-A in the lateral hypothalamus increases orexin-A-induced feeding and energy expenditure in both rats and mice. Orexigenic and anorectic peptides in the hypothalamus modulate gastric function. In this study, we investigated the effect of NERP-2 on gastric function in rats. Intracerebroventricular administration of NERP-2 to rats increased gastric acid secretion and gastric emptying, whereas peripheral administration did not affect gastric function. NERP-2-induced gastric acid secretion and gastric emptying were blocked by an orexin 1 receptor antagonist, SB334867. NERP-2 also induced Fos expression in the lateral hypothalamus and the dorsomotor nucleus of the vagus X, which are key sites in the central nervous system for regulation of gastric function. Atropine, a blocker of vagal efferent signal transduction, completely blocked NERP-2-induced gastric acid secretion. These results demonstrate that central administration of NERP-2 activates the orexin pathway, resulting in elevated gastric acid secretion and gastric emptying.

  15. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    PubMed Central

    Devanna, Paolo; Middelbeek, Jeroen; Vernes, Sonja C.

    2014-01-01

    FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells. PMID:25309332

  16. The heparan and heparin metabolism pathway is involved in regulation of fatty acid composition.

    PubMed

    Jiang, Zhihua; Michal, Jennifer J; Wu, Xiao-Lin; Pan, Zengxiang; MacNeil, Michael D

    2011-01-01

    Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.

  17. Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway

    PubMed Central

    Bollino, Dominique; Balan, Irina; Aurelian, Laure

    2015-01-01

    A growing body of evidence indicates that valproic acid (VPA), a histone deacetylase (HDAC) inhibitor used to treat epilepsy and mood disorders, has HDAC-related and -unrelated neurotoxic activity, the mechanism of which is still poorly understood. We report that VPA induces neuronal cell death through an atypical calpain-dependent necroptosis pathway that initiates with downstream activation of c-Jun N-terminal kinase 1 (JNK1) and increased expression of receptor-interacting protein 1 (RIP-1) and is accompanied by cleavage and mitochondrial release/nuclear translocation of apoptosis-inducing-factor (AIF), mitochondrial release of Smac/DIABLO, and inhibition of the anti-apoptotic protein X-linked inhibitor of apoptosis (XIAP). Coinciding with AIF nuclear translocation, VPA induces phosphorylation of the necroptosis-associated histone H2A family member H2AX, which is known to contribute to lethal DNA degradation. These signals are inhibited in neuronal cells that express constitutively activated MEK/ERK and/or PI3-K/Akt survival pathways, allowing them to resist VPA-induced cell death. The data indicate that VPA has neurotoxic activity and identify a novel calpain-dependent necroptosis pathway that includes JNK1 activation and RIP-1 expression. PMID:25581256

  18. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli

    PubMed Central

    Zhang, Junli; Kang, Zhen; Chen, Jian; Du, Guocheng

    2015-01-01

    5-Aminolevulinic acid (ALA), the committed intermediate of the heme biosynthesis pathway, shows significant promise for cancer treatment. Here, we identified that in addition to hemA and hemL, hemB, hemD, hemF, hemG and hemH are also the major regulatory targets of the heme biosynthesis pathway. Interestingly, up-regulation of hemD and hemF benefited ALA accumulation whereas overexpression of hemB, hemG and hemH diminished ALA accumulation. Accordingly, by combinatorial overexpression of the hemA, hemL, hemD and hemF with different copy-number plasmids, the titer of ALA was improved to 3.25 g l−1. Furthermore, in combination with transcriptional and enzymatic analysis, we demonstrated that ALA dehydratase (HemB) encoded by hemB is feedback inhibited by the downstream intermediate protoporphyrinogen IX. This work has great potential to be scaled-up for microbial production of ALA and provides new important insights into the regulatory mechanism of the heme biosynthesis pathway. PMID:25716896

  19. Effect of okadaic acid on cultured clam heart cells: involvement of MAPkinase pathways.

    PubMed

    Hanana, Houda; Talarmin, Hélène; Pennec, Jean-Pierre; Droguet, Mickael; Morel, Julie; Dorange, Germaine

    2012-12-15

    Okadaic acid (OA) is one of the main diarrhetic shellfish poisoning toxins and a potent inhibitor of protein phosphatases 1 and 2A. The downstream signal transduction pathways following the protein phosphatase inhibition are still unknown and the results of most of the previous studies are often conflicting. The aim of the present study was to evaluate the effects of OA on heart clam cells and to analyse its possible mechanisms of action by investigating the signal transduction pathways involved in OA cytotoxicity. We showed that OA at 1 µM after 24 h of treatment induces disorganization of the actin cytoskeleton, rounding and detachment of fibroblastic cells. Moreover, treatment of heart cells revealed a sequential activation of MAPK proteins depending on the OA concentration. We suggest that the duration of p38 and JNK activation is a critical factor in determining cell apoptosis in clam cardiomyocytes. In the opposite, ERK activation could be involved in cell survival. The cell death induced by OA is a MAPK modulated pathway, mediated by caspase 3-dependent mechanism. OA was found to induce no significant effect on spontaneous beating rate or inward L-type calcium current in clam cardiomyocytes, suggesting that PP1 was not inhibited even by the highest dose of OA.

  20. Reprogramming of the retinoic acid pathway in decidualizing human endometrial stromal cells

    PubMed Central

    Ozaki, Rie; Ikemoto, Yuko; Ochiai, Asako; Matsumoto, Akemi; Kumakiri, Jun; Kitade, Mari; Itakura, Atsuo; Muter, Joanne; Brosens, Jan J; Takeda, Satoru

    2017-01-01

    Upon breaching of the endometrial surface epithelium, the implanting embryo embeds in the decidualizing stroma. Retinoic acid (RA), a metabolite of vitamin A, is an important morphogen during embryonic and fetal development, although the role of the RA pathway in the surrounding decidual cells is not understood. Here we show that decidual transformation of human endometrial stromal cells (HESCs) results in profound reprogramming of the RA signaling and metabolism pathways. Differentiating HESCs downregulate the intracellular carrier proteins CRABP2 and FABP5, responsible for transfer and binding of RA to the nuclear receptors RAR and PPARβ/δ, respectively. Furthermore, the expression of RAR, the receptor that mediates the pro-apoptotic effects of RA, was also inhibited. By contrast, PPARβ/δ, which transduces the differentiation responses of RA, was upregulated. Decidualization was also associated with increased expression of retinol-binding protein 4 (RBP4) and various enzymes involved in the metabolism of RA and its precursor, retinaldehyde (Rald), including CYP26A1, DHRS3, and RDH12. Exposure of differentiating HESCs to RA or Rald reversed the inhibition of the CRABP2-RAR pathway, perturbed the expression of decidual marker genes and triggered cell death. Taken together, the data demonstrate that decidualizing HESCs silence RA signaling by downregulating key cytoplasmic binding proteins and by increasing retinoid metabolism. However, excessive RA exposure is toxic for decidual cells and triggers a response that may lead to pregnancy failure. PMID:28253328

  1. Effects of salicylic acid on alternative pathway respiration and alternative oxidase expression in tobacco calli.

    PubMed

    Lei, Tao; Yan, Ying-Cai; Xi, De-Hui; Feng, Hong; Sun, Xin; Zhang, Fan; Xu, Wei-Lin; Liang, Hou-Guo; Lin, Hong-Hui

    2008-01-01

    The alternative pathway (AP) respiration of plants is a cyanide-resistant and non-phosphorylating electron transport pathway in mitochondria. Alternative oxidase (AOX) is the terminal oxidase of the AP and exists in plant mitochondria as two states: the reduced, noncovalently linked state or the oxidized, covalently cross-linked state. In the present study, the effects of 20 microM exogenous salicylic acid (SA) on both AP activity and AOX expression in mitochondria of tobacco (Nicotiana rustica L. cv. yellow flower) calli were investigated. The results showed that SA treatment enhanced the AP activity. During the process of SA treatment, the AP activity increased dramatically and achieved the peak value after 8 h of treatment. Then it declined until 16 h, and maintained a steady level between 16 and 24 h. Changes in both the total AOX protein level and the reduced state were in accordance with the AP activity, but the oxidized state changed differently. The aox1 gene transcript level also showed a similar change as the AP activity and AOX protein level. The induction of AOX expression by low concentrations of SA was inferred through a reactive oxygen species (ROS)-independent pathway. These results indicate that the enhancement of AP activity in response to SA is correlated to the expression of AOX, and the reduced, non-covalently linked state of AOX plays an important role during this process.

  2. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway.

    PubMed

    Zhang, Wei; Yang, Xiufen; Qiu, Dewen; Guo, Lihua; Zeng, Hongmei; Mao, Jianjun; Gao, Qiufeng

    2011-04-01

    Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.

  3. N{sub 2}O production pathways in the subtropical acid forest soils in China

    SciTech Connect

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-07-15

    To date, N{sub 2}O production pathways are poorly understood in the humid subtropical and tropical forest soils. A {sup 15}N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N{sub 2}O production in four subtropical acid forest soils (pH<4.5) in China. The results showed that denitrification was the main source of N{sub 2}O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N{sub 2}O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N{sub 2}O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N{sub 2}O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N{sub 2}O product ratios from nitrification. The ratio of N{sub 2}O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: {yields} We studied N{sub 2}O production pathways in subtropical acid forest soil under aerobic conditions. {yields} Denitrification was the main source of N{sub 2}O production in subtropical acid forest soils. {yields} Heterotrophic nitrification accounted for 27.3%-41.8% of N{sub 2}O production. {yields} While, contribution of autotrophic nitrification to N{sub 2}O production was little. {yields} Ratios of N{sub 2}O-N emission from nitrification were higher than those in most previous references.

  4. A reconfigured Kennedy pathway which promotes efficient accumulation of medium chain fatty acids in leaf oils.

    PubMed

    Reynolds, Kyle B; Taylor, Matthew C; Cullerne, Darren P; Blanchard, Christopher L; Wood, Craig C; Singh, Surinder P; Petrie, James R

    2017-03-16

    Medium chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, though these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer non-seed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils. This article is protected by copyright. All rights reserved.

  5. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid

    PubMed Central

    Liu, Long; Guan, Ningzi; Zhu, Gexin; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Chen, Jian

    2016-01-01

    Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii, and two key enzymes—glycerol dehydrogenase and malate dehydrogenase—were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii. First, the phosphoenolpyruvate carboxylase gene (ppc) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase (ldh) and pyruvate oxidase (poxB) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L−1 to 33.21 ± 1.92 g·L−1 and 30.50 ± 1.63 g·L−1, whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD+ ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L−1 in a fed-batch culture. PMID:26814976

  6. Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass (Panicum virgatum L.).

    PubMed

    Escamilla-Treviño, Luis L; Shen, Hui; Hernandez, Timothy; Yin, Yanbin; Xu, Ying; Dixon, Richard A

    2014-03-01

    Studying lignin biosynthesis in Panicum virgatum (switchgrass) has provided a basis for generating plants with reduced lignin content and increased saccharification efficiency. Chlorogenic acid (CGA, caffeoyl quinate) is the major soluble phenolic compound in switchgrass, and the lignin and CGA biosynthetic pathways potentially share intermediates and enzymes. The enzyme hydroxycinnamoyl-CoA: quinate hydroxycinnamoyltransferase (HQT) is responsible for CGA biosynthesis in tobacco, tomato and globe artichoke, but there are no close orthologs of HQT in switchgrass or in other monocotyledonous plants with complete genome sequences. We examined available transcriptomic databases for genes encoding enzymes potentially involved in CGA biosynthesis in switchgrass. The protein products of two hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT) genes (PvHCT1a and PvHCT2a), closely related to lignin pathway HCTs from other species, were characterized biochemically and exhibited the expected HCT activity, preferring shikimic acid as acyl acceptor. We also characterized two switchgrass coumaroyl shikimate 3'-hydroxylase (C3'H) enzymes (PvC3'H1 and PvC3'H2); both of these cytochrome P450s had the capacity to hydroxylate 4-coumaroyl shikimate or 4-coumaroyl quinate to generate caffeoyl shikimate or CGA. Another switchgrass hydroxycinnamoyl transferase, PvHCT-Like1, is phylogenetically distant from HCTs or HQTs, but exhibits HQT activity, preferring quinic acid as acyl acceptor, and could therefore function in CGA biosynthesis. The biochemical features of the recombinant enzymes, the presence of the corresponding activities in plant protein extracts, and the expression patterns of the corresponding genes, suggest preferred routes to CGA in switchgrass.

  7. TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat

    PubMed Central

    Kooiker, Maarten; Drenth, Janneke; Glassop, Donna; McIntyre, C. Lynne; Xue, Gang-Ping

    2013-01-01

    Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait. PMID:23873993

  8. Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.

    PubMed

    Masek, Pavel; Keene, Alex C

    2013-01-01

    Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.

  9. Drosophila Fatty Acid Taste Signals through the PLC Pathway in Sugar-Sensing Neurons

    PubMed Central

    Masek, Pavel; Keene, Alex C.

    2013-01-01

    Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids. PMID:24068941

  10. Metabolic pathways and fermentative production of L-aspartate family amino acids.

    PubMed

    Park, Jin Hwan; Lee, Sang Yup

    2010-06-01

    The L-aspartate family amino acids (AFAAs), L-threonine, L-lysine, L-methionine and L-isoleucine have recently been of much interest due to their wide spectrum of applications including food additives, components of cosmetics and therapeutic agents, and animal feed additives. Among them, L-threonine, L-lysine and L-methionine are three major amino acids produced currently throughout the world. Recent advances in systems metabolic engineering, which combine various high-throughput omics technologies and computational analysis, are now facilitating development of microbial strains efficiently producing AFAAs. Thus, a thorough understanding of the metabolic and regulatory mechanisms of the biosynthesis of these amino acids is urgently needed for designing system-wide metabolic engineering strategies. Here we review the details of AFAA biosynthetic pathways, regulations involved, and export and transport systems, and provide general strategies for successful metabolic engineering along with relevant examples. Finally, perspectives of systems metabolic engineering for developing AFAA overproducers are suggested with selected exemplary studies.

  11. Nitrate reduction pathway in an anaerobic acidification reactor and its effect on acid fermentation.

    PubMed

    Xie, Li; Ji, Chi; Wang, Rui; Zhou, Qi

    2015-01-01

    This study investigated the performance of a reactor in which denitrification was integrated into the anaerobic acidogenic process. Industrial wastewater cassava stillage was used as the carbon source, and the nitrate reduction pathway and its effects on acid fermentation were examined. Results from batch and semi-continuous tests showed that the presence of nitrate did not inhibit anaerobic acidification but altered the distribution of volatile fatty acid (VFA) species. Nitrate reduction was attributable to denitrification and to dissimilatory nitrate reduction to ammonia (DNRA). The ratio of DNRA to denitrification was proportional to the ratio of [Formula: see text] . After 130 days of semi-continuous operation, denitrification removal efficiency accounted for about 60% at a [Formula: see text] of 50. The proportional distribution of VFAs was acetate, followed by propionate and then butyrate. The polymerase chain reaction-denaturing gradient gel electrophoresis results confirmed the contributions of denitrification and DNRA in the nitrate-amended reactor and showed that the addition of nitrate enriched the structure of the bacterial community, but did not suppress the activity of acid-producing bacteria.

  12. Foreign gene recruitment to the fatty acid biosynthesis pathway in diatoms.

    PubMed

    Chan, Cheong Xin; Baglivi, Francesca L; Jenkins, Christina E; Bhattacharya, Debashish

    2013-09-01

    Diatoms are highly successful marine and freshwater algae that contribute up to 20% of global carbon fixation. These species are leading candidates for biofuel production owing to ease of culturing and high fatty acid content. To assist in strain improvement and downstream applications for potential use as a biofuel, it is important to understand the evolution of lipid biosynthesis in diatoms. The evolutionary history of diatoms is however complicated by likely multiple endosymbioses involving the capture of foreign cells and horizontal gene transfer into the host genome. Using a phylogenomic approach, we assessed the evolutionary history of 12 diatom genes putatively encoding functions related to lipid biosynthesis. We found evidence of gene transfer likely from a green algal source for seven of these genes, with the remaining showing either vertical inheritance or evolutionary histories too complicated to interpret given current genome data. The functions of horizontally transferred genes encompass all aspects of lipid biosynthesis (initiation, biosynthesis, and desaturation of fatty acids) as well as fatty acid elongation, and are not restricted to plastid-targeted proteins. Our findings demonstrate that the transfer, duplication, and subfunctionalization of genes were key steps in the evolution of lipid biosynthesis in diatoms and other photosynthetic eukaryotes. This target pathway for biofuel research is highly chimeric and surprisingly, our results suggest that research done on related genes in green algae may have application to diatom models.

  13. Aquaglyceroporins Are the Entry Pathway of Boric Acid in Trypanosoma brucei.

    PubMed

    Marsiccobetre, Sabrina; Rodríguez-Acosta, Alexis; Lang, Florian; Figarella, Katherine; Uzcátegui, Néstor L

    2017-05-01

    The boron element possesses a range of different effects on living beings. It is essential to beneficial at low concentrations, but toxic at excessive concentrations. Recently, some boron-based compounds have been identified as promising molecules against Trypanosoma brucei, the causative agent of sleeping sickness. However, until now, the boron metabolism and its access route into the parasite remained elusive. The present study addressed the permeability of T. brucei aquaglyceroporins (TbAQPs) for boric acid, the main natural boron species. To this end, the three TbAQPs were expressed in Saccharomyces cerevisiae and Xenopus laevis oocytes. Our findings in both expression systems showed that all three TbAQPs are permeable for boric acid. Especially TbAQP2 is highly permeable for this compound, displaying one of the highest conductances reported for a solute in these channels. Additionally, T. brucei aquaglyceroporin activities were sensitive to pH. Taken together, these results establish that TbAQPs are channels for boric acid and are highly efficient entry pathways for boron into the parasite. Our findings stress the importance of studying the physiological functions of boron and their derivatives in T. brucei, as well as the pharmacological implications of their uptake by trypanosome aquaglyceroporins.

  14. Thermal conversions of fatty acid peroxides to cyclopentenones: a biomimetic model for allene oxide synthase pathway.

    PubMed

    Mukhtarova, Lucia S; Mukhitova, Fakhima K; Grechkin, Alexander N

    2013-01-01

    The trimethylsilyl (TMS) peroxides of linoleic acid 9(S)-hydroperoxide (TMS or Me esters) were subjected to gas chromatography-mass spectrometry (GC-MS) analyses. The cyclopentenones, trans- and cis-10-oxo-11-phytoenoic acid (10-oxo-PEA, Me or TMS esters) were first time detected as the products of TMS-peroxide thermal conversions. The major products were ketodienes, epoxyalcohols, hemiacetals and decadienals. For further study of thermal cyclopentenone formation, 9(S)- or 13(S)-hydroperoxides of linoleic acid (Me esters) were sealed in ampoules and heated at 230 °C for 15 or 30 min. The products were separated by HPLC. The cyclopentenone fractions were collected and analyzed by GC-MS. Trans-10-oxo-PEA (Me) and 10-oxo-9(13)-PEA (Me) were formed during the thermal conversion of 9-hydroperoxide (Me ester). Similarly, the cyclopentenones trans-12-oxo-PEA (Me) and 12-oxo-9(13)-PEA (Me) were detected after the heating of 13-hydroperoxide (Me ester). Thermal formation of cyclopentenones can be considered as a biomimetic model of AOS pathway, providing new insights into the mechanisms of allene oxide formation and cyclization.

  15. Clay minerals on Mars: Riotinto mining district (Huelva, Spain) as Earth analogue for acidic alteration pathways

    NASA Astrophysics Data System (ADS)

    Mavris, C.; Cuadros, J.; Bishop, J. L.; Nieto, J. M.; Michalski, J. R.

    2015-12-01

    Combined satellite and in-situ measurements of Mars surface have detected mineral assemblages indicating processes for which Earth analogues exist. Among them, aluminous clay-sulfate assemblages have been observed, which suggest alteration by acidic fluids. The Riotinto mining district (SW Spain) provides an Earth analogue site for such Martian processes. The parent rocks belong to an Upper Palaeozoic (Late Famennian-Tournaisian) volcano-sedimentary complex including siliciclastic sediments and mafic and felsic volcanics, all of which underwent hydrothermal alteration. The oxidation of an extensive pyrite-rich orebody provided mild to extreme acidic fluxes that leached the surrounding rocks for over 20 million years. The mineral assemblages are strongly dependent on their acidic alteration intensity. The observed mineralogical parageneses and leaching conditions for our sites at Riotinto are consistent with three alteration sequences: i) Mild: containing a range of clay minerals from vermiculite to kaolinite, with a wide variety of crystal order and mixed-layering; ii) Intermediate: containing smectite to kaolinite with jarosite-group phases; iii) Advanced: containing kaolinite, jarosite-group phases, and iron oxides. Our findings suggest that, even within this general scheme, the specific alteration pathways can be different.

  16. Unfolding pathway in red kidney bean acid phosphatase is dependent on ligand binding.

    PubMed

    Cashikar, A G; Rao, N M

    1996-03-01

    Structural basis for ligand-induced protein stabilization was investigated in the case of an acid phosphatase (red kidney bean purple acid phosphatase (KBPAP)) from red kidney bean. Phosphate, a physiological ligand, increases the stability against solvent denaturation by 3.5 kcal/mol. Generality of phosphate stabilization was shown by similar effects with other KBPAP ligands viz. adenosine 5'-O-(thiotriphosphate), a nonhydrolyzable ligand, and arsenate, an inhibitor. The dissociation constant of phosphate obtained from denaturation curves matches with the dissociation constant estimated by conventional methods. The guanidinium chloride-mediated denaturation of KBPAP was monitored by several structural and functional parameters viz. activity, tryptophan fluorescence, 8-anilinonaphthalene 1-sulfonic acid binding, circular dichroism, and size exclusion chromatography, in the presence and absence of 10 mm phosphate. In the presence of phosphate, profiles of all the parameters shift to a higher guanidinium chloride concentration. Noncoincidence of these profiles in the absence of phosphate indicates multistate unfolding pathway for KBPAP; however, in the presence of phosphate, KBPAP unfolds with a single intermediate. Based on the crystal structure, we propose that the Arg258 may have an important role to play in stabilization mediated by phosphate.

  17. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway.

    PubMed

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-05-18

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway.

  18. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway

    PubMed Central

    Jia, Xiaochen; Meng, Qingshan; Zeng, Haihong; Wang, Wenxia; Yin, Heng

    2016-01-01

    Chitosan is one of the most abundant carbohydrate biopolymers in the world, and chitosan oligosaccharide (COS), which is prepared from chitosan, is a plant immunity regulator. The present study aimed to validate the effect of COS on inducing resistance to tobacco mosaic virus (TMV) in Arabidopsis and to investigate the potential defence-related signalling pathways involved. Optimal conditions for the induction of TMV resistance in Arabidopsis were COS pretreatment at 50 mg/L for 1 day prior to inoculation with TMV. Multilevel indices, including phenotype data, and TMV coat protein expression, revealed that COS induced TMV resistance in wild-type and jasmonic acid pathway- deficient (jar1) Arabidopsis plants, but not in salicylic acid pathway deficient (NahG) Arabidopsis plants. Quantitative-PCR and analysis of phytohormone levels confirmed that COS pretreatment enhanced the expression of the defence-related gene PR1, which is a marker of salicylic acid signalling pathway, and increased the amount of salicylic acid in WT and jar1, but not in NahG plants. Taken together, these results confirm that COS induces TMV resistance in Arabidopsis via activation of the salicylic acid signalling pathway. PMID:27189192

  19. Palmitic acid interferes with energy metabolism balance by adversely switching the SIRT1-CD36-fatty acid pathway to the PKC zeta-GLUT4-glucose pathway in cardiomyoblasts.

    PubMed

    Chen, Yeh-Peng; Tsai, Chia-Wen; Shen, Chia-Yao; Day, Cecilia-Hsuan; Yeh, Yu-Lan; Chen, Ray-Jade; Ho, Tsung-Jung; Padma, V Vijaya; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-05-01

    Metabolic regulation is inextricably linked with cardiac function. Fatty acid metabolism is a significant mechanism for creating energy for the heart. However, cardiomyocytes are able to switch the fatty acids or glucose, depending on different situations, such as ischemia or anoxia. Lipotoxicity in obesity causes impairments in energy metabolism and apoptosis in cardiomyocytes. We utilized the treatment of H9c2 cardiomyoblast cells palmitic acid (PA) as a model for hyperlipidemia to investigate the signaling mechanisms involved in these processes. Our results show PA induces time- and dose-dependent lipotoxicity in H9c2 cells. Moreover, PA enhances cluster of differentiation 36 (CD36) and reduces glucose transporter type 4 (GLUT4) pathway protein levels following a short period of treatment, but cells switch from CD36 back to the GLUT4 pathway after during long-term exposure to PA. As sirtuin 1 (SIRT1) and protein kinase Cζ (PKCζ) play important roles in CD36 and GLUT4 translocation, we used the SIRT1 activator resveratrol and si-PKCζ to identify the switches in metabolism. Although PA reduced CD36 and increased GLUT4 metabolic pathway proteins, when we pretreated cells with resveratrol to activate SIRT1 or transfected si-PKCζ, both were able to significantly increase CD36 metabolic pathway proteins and reduce GLUT4 pathway proteins. High-fat diets affect energy metabolism pathways in both normal and aging rats and involve switching the energy source from the CD36 pathway to GLUT4. In conclusion, PA and high-fat diets cause lipotoxicity in vivo and in vitro and adversely switch the energy source from the CD36 pathway to the GLUT4 pathway.

  20. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways.

    PubMed

    Shen, C R; Liao, J C

    2008-11-01

    Production of higher alcohols via the keto-acid intermediates found in microorganism's native amino-acid pathways has recently shown promising results. In this work, an Escherichia coli strain that produces 1-butanol and 1-propanol from glucose was constructed. The strain first converts glucose to 2-ketobutyrate, a common keto-acid intermediate for isoleucine biosynthesis. Then, 2-ketobutyrate is converted to 1-propanol through reactions catalyzed by the heterologous decarboxylase and dehydrogenase, or to 1-butanol via the chemistry involved in the synthesis of the unnatural amino acid norvaline. We systematically improved the synthesis of 1-propanol and 1-butanol through deregulation of amino-acid biosynthesis and elimination of competing pathways. The final strain demonstrated a production titer of 2 g/L with nearly 1:1 ratio of butanol and propanol.

  1. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway.

    PubMed Central

    Braus, G H

    1991-01-01

    This review focuses on the gene-enzyme relationships and the regulation of different levels of the aromatic amino acid biosynthetic pathway in a simple eukaryotic system, the unicellular yeast Saccharomyces cerevisiae. Most reactions of this branched pathway are common to all organisms which are able to synthesize tryptophan, phenylalanine, and tyrosine. The current knowledge about the two main control mechanisms of the yeast aromatic amino acid biosynthesis is reviewed. (i) At the transcriptional level, most structural genes are regulated by the transcriptional activator GCN4, the regulator of the general amino acid control network, which couples transcriptional derepression to amino acid starvation of numerous structural genes in multiple amino acid biosynthetic pathways. (ii) At the enzyme level, the carbon flow is controlled mainly by modulating the enzyme activities at the first step of the pathway and at the branch points by feedback action of the three aromatic amino acid end products. Implications of these findings for the relationship of S. cerevisiae to prokaryotic as well as to higher eukaryotic organisms and for general regulatory mechanisms occurring in a living cell such as initiation of transcription, enzyme regulation, and the regulation of a metabolic branch point are discussed. PMID:1943992

  2. Characterization of metabolic pathway of linoleic acid 9-hydroperoxide in cytosolic fraction of potato tubers and identification of reaction products.

    PubMed

    Kimura, Hideto; Yokota, Kazushige

    2004-01-01

    Potato tubers are shown to contain a unique lipoxygenase pathway to form 9-hydroperoxy-10,12-octadecadienoic acid (9-HPODE) from linoleic acid. Here, we report the metabolic pathway of 9-HPODE in the cytosolic fraction and the characterization of enzymes involved in the conversion of metabolites. The analysis of enzymatic reaction products at pH 5.5 revealed the formation of 9-keto-10,12-octadecadienoic acid, 9-hydroxy-10,12-octadecadienoic acid, 9,10-epoxy-11-hydroxy-12-octadecenoic acid, 9,10,13-trihydroxy-11-octadecenoic acid, and 9,12,13-trihydroxy-10-octadecenoic acid. The cytosolic enzymes were separated by anion-exchange chromatography into two fractions E1 and E2, having molecular masses of 66 and 54 kDa, respectively. The enzyme fraction E1 only produced 9-keto-10,12-octadecadienoic acid, whereas E2 formed other products. The enzyme E1 showed higher reactivity with 13- and 9-hydroperoxide of alpha-linolenic acid than 9-HPODE, but no reaction with hydroxy fatty acids. In contrast, the enzyme E2 showed the highest reactivity with 9-HPODE, followed by hydroperoxides of alpha-linolenic acid and arachidonic acid. We also evaluated the antibacterial activity of hydroxy fatty acids against Erwinia carotovora T-29, a bacterium infecting potato tubers. Growth of the bacteria was suppressed more potently with 9- or 13-hydroxy fatty acids than dihydroxy or trihydroxy fatty acids, suggesting a role for the metabolites in the resistance of bacterial infection.

  3. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  4. Synthetic Astrobiology

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2015-01-01

    'Are we alone?' is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  5. Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway

    SciTech Connect

    Chan, Tom S. Wilson, John X.; Selliah, Subajini; Bilodeau, Marc; Zwingmann, Claudia; Poon, Raymond; O'Brien, Peter J.

    2008-11-01

    Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the

  6. Selective, potent blockade of the IRE1 and ATF6 pathways by 4-phenylbutyric acid analogues

    PubMed Central

    Zhang, Hui; Nakajima, Shotaro; Kato, Hironori; Gu, Liubao; Yoshitomi, Tatsuya; Nagai, Kaoru; Shinmori, Hideyuki; Kokubo, Susumu; Kitamura, Masanori

    2013-01-01

    BACKGROUND AND PURPOSE 4-Phenylbutyric acid (4-PBA) is a chemical chaperone that eliminates the accumulation of unfolded proteins in the endoplasmic reticulum (ER). However, its chaperoning ability is often weak and unable to attenuate the unfolded protein response (UPR) in vitro or in vivo. To develop more potent chemical chaperones, we synthesized six analogues of 4-PBA and evaluated their pharmacological actions on the UPR. EXPERIMENTAL APPROACH NRK-52E cells were treated with ER stress inducers (tunicamycin or thapsigargin) in the presence of each of the 4-PBA analogues; the suppressive effects of these analogues on the UPR were assessed using selective indicators for individual UPR pathways. KEY RESULTS 2-POAA-OMe, 2-POAA-NO2 and 2-NOAA, but not others, suppressed the induction of ER stress markers GRP78 and CHOP. This suppressive effect was more potent than that of 4-PBA. Of the three major UPR branches, the IRE1 and ATF6 pathways were markedly blocked by these compounds, as indicated by suppression of XBP1 splicing, inhibition of UPRE and ERSE activation, and inhibition of JNK phosphorylation. Unexpectedly, however, these agents did not inhibit phosphorylation of PERK and eIF2α triggered by ER stress. These compounds dose-dependently inhibited the early activation of NF-κB in ER stress-exposed cells. 2-POAA-OMe and 2-POAA-NO2 also inhibited ER stress-induced phosphorylation of Akt. CONCLUSION AND IMPLICATIONS The 4-PBA analogues 2-POAA-OMe, 2-POAA-NO2 and 2-NOAA strongly inhibited activation of the IRE1 and ATF6 pathways and downstream pathogenic targets, including NF-κB and Akt, in ER stress-exposed cells. These compounds may be useful for therapeutic intervention in ER stress-related pathological conditions. PMID:23869584

  7. Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers.

    PubMed

    Kuroda, Keisuke; Murakami, Michio; Oguma, Kumiko; Takada, Hideshige; Takizawa, Satoshi

    2014-08-01

    We employed a multi-tracer approach to investigate sources and pathways of perfluoroalkyl acids (PFAAs) in urban groundwater, based on 53 groundwater samples taken from confined aquifers and unconfined aquifers in Tokyo. While the median concentrations of groundwater PFAAs were several ng/L, the maximum concentrations of perfluorooctane sulfonate (PFOS, 990 ng/L), perfluorooctanoate (PFOA, 1800 ng/L) and perfluorononanoate (PFNA, 620 ng/L) in groundwater were several times higher than those of wastewater and street runoff reported in the literature. PFAAs were more frequently detected than sewage tracers (carbamazepine and crotamiton), presumably owing to the higher persistence of PFAAs, the multiple sources of PFAAs beyond sewage (e.g., surface runoff, point sources) and the formation of PFAAs from their precursors. Use of multiple methods of source apportionment including principal component analysis-multiple linear regression (PCA-MLR) and perfluoroalkyl carboxylic acid ratio analysis highlighted sewage and point sources as the primary sources of PFAAs in the most severely polluted groundwater samples, with street runoff being a minor source (44.6% sewage, 45.7% point sources and 9.7% street runoff, by PCA-MLR). Tritium analysis indicated that, while young groundwater (recharged during or after the 1970s, when PFAAs were already in commercial use) in shallow aquifers (<50 m depth) was naturally highly vulnerable to PFAA pollution, PFAAs were also found in old groundwater (recharged before the 1950s, when PFAAs were not in use) in deep aquifers (50-500 m depth). This study demonstrated the utility of multiple uses of tracers (pharmaceuticals and personal care products; PPCPs, tritium) and source apportionment methods in investigating sources and pathways of PFAAs in multiple aquifer systems.

  8. Nadroparin sodium activates Nrf2/HO-1 pathway in acetic acid-induced colitis in rats.

    PubMed

    Yalniz, Mehmet; Demirel, Ulvi; Orhan, Cemal; Bahcecioglu, Ibrahim Halil; Ozercan, Ibrahim Hanefi; Aygun, Cem; Tuzcu, Mehmet; Sahin, Kazim

    2012-06-01

    Effects of nadroparin sodium, a low molecular weight heparin, in colitis was investigated by analyzing proteins implicated in nuclear factor E2-related factor-2/heme oxygenase-1 (Nrf2/HO-1) and nuclear factor kappa B (NF-κB) pathways. Twenty-eight rats were used. Colitis was induced by acetic acid (AA). Nadroparin sodium was given to prevention and treatment groups in addition to AA. Colitis was assessed histologically and levels of proteins were analyzed with Western blot. Nadroparin not only prevented and ameliorated the AA-induced colitis histopathologically but also decreased expression of colon NF-κB, activator protein-1, cyclooxygenase-2, tumor necrosis factor-alpha, and IL-6, which were significantly increased in group AA compared to control. The accumulation of Nrf2 in nuclear fraction and HO-1 found low in group AA was increased with nadroparin (p < 0.05). The mean malondialdehyde level increased with AA and was decreased significantly with nadroparin prevention and treatment (p < 0.001). Nadroparin sodium has both protective and therapeutic effects against colonic inflammation via exerting anti-oxidative and anti-inflammatory effects by modulating Nrf2/HO-1 and NF-κB pathways.

  9. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway

    PubMed Central

    Wang, Yuqiang; Cao, Qing; Sang, Tiantian; Liu, Fang; Chen, Shuyan

    2015-01-01

    Acidic fibroblast growth factor (FGF1) has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs). The Forkhead homeobox type O transcription factors (FOXOs), a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a) or a GFP control (Ad-GFP). FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future. PMID:26061278

  10. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    PubMed

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-06-09

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis.

  11. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.

    PubMed

    Wu, Xue-Long; Liu, Zhi-Hong; Hu, Zhang-Hua; Huang, Rui-Zhi

    2014-06-01

    Photosynthesis in "green" seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mechanism underpinning the coordinated expression of fatty acid (FA) biosynthesis- and photosynthesis-related genes in such developing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyll content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Overexpression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.

  12. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  13. Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater.

    PubMed

    Song, Yonghui; Dai, Yunrong; Hu, Qiong; Yu, Xiaohua; Qian, Feng

    2014-04-01

    P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids.

  14. Regulation of ascorbic acid and of xylulose synthesis in rat-liver extracts. The effect of starvation on the enzymes of the glucuronic acid pathway

    PubMed Central

    Stirpe, F.; Comporti, M.

    1965-01-01

    1. The synthesis of ascorbic acid in rat-liver extracts is impaired during starvation, and more from glucuronolactone and glucuronate than from gulonate and gulonolactone. 2. The formation of xylulose from gulonate and from gulonolactone is greatly enhanced during starvation, whereas it is decreased from glucuronolactone and from glucuronate. 3. The activity of the enzymes of the glucuronic acid pathway during starvation has been determined in rat-liver preparations. Gulonolactone oxidase is decreased, NAD-linked gulonate dehydrogenase is enhanced, and uronolactonase, aldonolactonase and NADP-linked hexonate dehydrogenase are unchanged. 4. The impairment of ascorbic acid synthesis from gulonate observed during starvation can be accounted for by the depressed activity of gulonolactone oxidase. 5. The cause of the enhanced formation of xylulose has been located in the sedimentable fraction of liver homogenate. 6. The hypothesis is formulated of an increased utilization of the glucuronic acid pathway during starvation. PMID:14340084

  15. Regulation of Primary Metabolic Pathways in Oyster Mushroom Mycelia Induced by Blue Light Stimulation: Accumulation of Shikimic Acid

    PubMed Central

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-01-01

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis. PMID:25721093

  16. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid.

    PubMed

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-02-27

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis.

  17. Reconstruction of the Fatty Acid Biosynthetic Pathway of Exiguobacterium antarcticum B7 Based on Genomic and Bibliomic Data

    PubMed Central

    Kawasaki, Regiane; Carepo, Marta S. P.; Oliveira, Rui; Marques, Rodolfo; Ramos, Rommel T. J.; Schneider, Maria P. C.

    2016-01-01

    Exiguobacterium antarcticum B7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show the in silico reconstruction of the fatty acid biosynthesis pathway of E. antarcticum B7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using the log2⁡FC values obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity of E. antarcticum B7 to de novo produce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments. PMID:27595107

  18. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol.

    PubMed

    Lee, Ming-Yi; Hung, Wen-Pin; Tsai, Shu-Hsien

    2017-02-01

    Shikimic acid is an important metabolic intermediate with various applications. This paper presents a novel control strategy for the construction of shikimic acid producing strains, without completely blocking the aromatic amino acid biosynthesis pathways. Growth phase-dependent expression and gene deletion was performed to regulate the aroK gene expression in the shikimic acid producing Escherichia coli strain, SK4/rpsM. In this strain, the aroL and aroK genes were deleted, and the aroB, aroG*, ppsA, and tktA genes were overexpressed. The relative amount of shikimic acid that accumulated in SK4/rpsM was 1.28-fold higher than that in SK4/pLac. Furthermore, a novel shikimic acid production pathway, combining the expression of the dehydroquinate dehydratase-shikimate dehydrogenase (DHQ-SDH) enzyme from woody plants, was constructed in E. coli strains. The results demonstrated that a growth phase-dependent control of the aroK gene leads to higher SA accumulation (5.33 g/L) in SK5/pSK6. This novel design can achieve higher shikimic acid production by using the same amount of medium used by the current methods and can also be widely used for modifying other metabolic pathways.

  19. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: The phenylacetyl-CoA catabolon

    PubMed Central

    Olivera, E. R.; Miñambres, B.; García, B.; Muñiz, C.; Moreno, M. A.; Ferrández, A.; Díaz, E.; García, J. L.; Luengo, J. M.

    1998-01-01

    Fourteen different genes included in a DNA fragment of 18 kb are involved in the aerobic degradation of phenylacetic acid by Pseudomonas putida U. This catabolic pathway appears to be organized in three contiguous operons that contain the following functional units: (i) a transport system, (ii) a phenylacetic acid activating enzyme, (iii) a ring-hydroxylation complex, (iv) a ring-opening protein, (v) a β-oxidation-like system, and (vi) two regulatory genes. This pathway constitutes the common part (core) of a complex functional unit (catabolon) integrated by several routes that catalyze the transformation of structurally related molecules into a common intermediate (phenylacetyl-CoA). PMID:9600981

  20. Identification of transport pathways for citric acid cycle intermediates in the human colon carcinoma cell line, Caco-2.

    PubMed

    Weerachayaphorn, Jittima; Pajor, Ana M

    2008-04-01

    Citric acid cycle intermediates are absorbed from the gastrointestinal tract through carrier-mediated mechanisms, although the transport pathways have not been clearly identified. This study examines the transport of citric acid cycle intermediates in the Caco-2 human colon carcinoma cell line, often used as a model of small intestine. Inulin was used as an extracellular volume marker instead of mannitol since the apparent volume measured with mannitol changed with time. The results show that Caco-2 cells contain at least three distinct transporters, including the Na+-dependent di- and tricarboxylate transporters, NaDC1 and NaCT, and one or more sodium-independent pathways, possibly involving organic anion transporters. Succinate transport is mediated mostly by Na+-dependent pathways, predominantly by NaDC1, but with some contribution by NaCT. RT-PCR and functional characteristics verified the expression of these transporters in Caco-2 cells. In contrast, citrate transport in Caco-2 cells occurs by a combination of Na+-independent pathways, possibly mediated by an organic anion transporter, and Na+-dependent mechanisms. The non-metabolizable dicarboxylate, methylsuccinate, is also transported by a combination of Na+-dependent and -independent pathways. In conclusion, we find that multiple pathways are involved in the transport of di- and tricarboxylates by Caco-2 cells. Since many of these pathways are not found in human intestine, this model may be best suited for studying Na+-dependent transport of succinate by NaDC1.

  1. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

    PubMed

    Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Böhmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-Ha; Lee, Stephen; Robert, Nadia; Parker, Jane E; Schroeder, Julian I

    2011-06-07

    Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

  2. Cytosolic and chloroplastic DHARs cooperate in oxidative stress-driven activation of the salicylic acid pathway.

    PubMed

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Issakidis-Bourguet, Emmanuelle; Mhamdi, Amna; Noctor, Graham

    2017-04-05

    The complexity of plant antioxidative systems gives rise to many unresolved questions. One relates to the functional importance of dehydroascorbate reductases (DHARs) in interactions between ascorbate and glutathione. To investigate this issue, we produced a complete set of loss-of-function mutants for the three annotated Arabidopsis DHARs. The combined loss of DHAR1 and DHAR3 expression decreased extractable activity to very low levels but had little effect on phenotype or ascorbate and glutathione pools in standard conditions. An analysis of the subcellular localization of the DHARs in Arabidopsis lines stably transformed with GFP fusion proteins revealed that DHAR1 and DHAR2 are cytosolic while DHAR3 is chloroplastic, with no evidence for peroxisomal or mitochondrial localizations. When the mutations were introduced into an oxidative stress genetic background (cat2), the dhar1 dhar2 combination decreased glutathione oxidation and inhibited cat2-triggered induction of the salicylic acid pathway. These effects were reversed in cat2 dhar1 dhar2 dhar3 complemented with any of the three DHARs. The data suggest that (1) DHAR can be decreased to negligible levels without marked effects on ascorbate pools; (2) the cytosolic isoforms are particularly important in coupling intracellular H2O2 metabolism to glutathione oxidation; (3) DHAR-dependent glutathione oxidation influences redox-driven salicylic acid accumulation.

  3. Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells

    PubMed Central

    Vancura, Patrick; Wolloscheck, Tanja; Baba, Kenkichi; Tosini, Gianluca; Iuvone, P. Michael; Spessert, Rainer

    2016-01-01

    The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy—one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (Acadm) to display daily rhythms with peak values during daytime in preparations of the whole retina and microdissected photoreceptors. The cycling of both enzymes persisted in constant darkness, was dampened in mice deficient for dopamine D4 (D4) receptors and was altered in db/db mice—a model of diabetic retinopathy. The data of the present study are consistent with circadian clock-dependent and dopaminergic regulation of fatty acid oxidation in retina and its putative disturbance in diabetic retina. PMID:27727308

  4. Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis

    PubMed Central

    Han, Suxia; Lei, Jianjun; Xu, Qinhong; Chen, Xin; Jiang, Zhengdong; Nan, Ligang; Li, Jiahui; Chen, Ke; Han, Liang; Wang, Zheng; Li, Xuqi; Wu, Erxi; Huo, Xiongwei

    2015-01-01

    Ginkgolic acid (GA) is a botanical drug extracted from the seed coat of Ginkgo biloba L. with a wide range of bioactive properties, including anti-tumor effect. However, whether GA has antitumor effect on pancreatic cancer cells and the underlying mechanisms have yet to be investigated. In this study, we show that GA suppressed the viability of cancer cells but has little toxicity on normal cells, e.g, HUVEC cells. Furthermore, treatment of GA resulted in impaired colony formation, migration, and invasion ability and increased apoptosis of cancer cells. In addition, GA inhibited the de novo lipogenesis of cancer cells through inducing activation of AMP-activated protein kinase (AMPK) signaling and downregulated the expression of key enzymes (e.g. acetyl-CoA carboxylase [ACC], fatty acid synthase [FASN]) involved in lipogenesis. Moreover, the in vivo experiment showed that GA reduced the expression of the key enzymes involved in lipogenesis and restrained the tumor growth. Taken together, our results suggest that GA may serve as a new candidate against tumor growth of pancreatic cancer partially through targeting pathway driving lipogenesis. PMID:25895130

  5. Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway.

    PubMed

    Bhattarai, Kishor K; Xie, Qi-Guang; Mantelin, Sophie; Bishnoi, Usha; Girke, Thomas; Navarre, Duroy A; Kaloshian, Isgouhi

    2008-09-01

    Responses of resistant (Mi-1/Mi-1) and susceptible (mi-1/ mi-1) tomato (Solanum lycopersicum) to root-knot nematodes (RKNs; Meloidogyne spp.) infection were monitored using cDNA microarrays, and the roles of salicylic acid (SA) and jasmonic acid (JA) defense signaling were evaluated in these interactions. Array analysis was used to compare transcript profiles in incompatible and compatible interactions of tomato roots 24 h after RKN infestation. The jai1 and def1 tomato mutant, altered in JA signaling, and tomato transgenic line NahG, altered in SA signaling, in the presence or absence of the RKN resistance gene Mi-1, were evaluated. The array analysis identified 1,497 and 750 genes differentially regulated in the incompatible and compatible interactions, respectively. Of the differentially regulated genes, 37% were specific to the incompatible interactions. NahG affected neither Mi-1 resistance nor basal defenses to RKNs. However, jai1 reduced tomato susceptibility to RKNs while not affecting Mi-1 resistance. In contrast, the def1 mutant did not affect RKN susceptibility. These results indicate that JA-dependent signaling does not play a role in Mi-1-mediated defense; however, an intact JA signaling pathway is required for tomato susceptibility to RKNs. In addition, low levels of SA might be sufficient for basal and Mi-1 resistance to RKNs.

  6. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance.

    PubMed

    Ding, Pingtao; Rekhter, Dmitrij; Ding, Yuli; Feussner, Kirstin; Busta, Lucas; Haroth, Sven; Xu, Shaohua; Li, Xin; Jetter, Reinhard; Feussner, Ivo; Zhang, Yuelin

    2016-10-01

    Systemic acquired resistance (SAR) is an immune response induced in the distal parts of plants following defense activation in local tissue. Pipecolic acid (Pip) accumulation orchestrates SAR and local resistance responses. Here, we report the identification and characterization of SAR-DEFICIENT4 (SARD4), which encodes a critical enzyme for Pip biosynthesis in Arabidopsis thaliana Loss of function of SARD4 leads to reduced Pip levels and accumulation of a Pip precursor, Δ(1)-piperideine-2-carboxylic acid (P2C). In Escherichia coli, expression of the aminotransferase ALD1 leads to production of P2C and addition of SARD4 results in Pip production, suggesting that a Pip biosynthesis pathway can be reconstituted in bacteria by coexpression of ALD1 and SARD4. In vitro experiments showed that ALD1 can use l-lysine as a substrate to produce P2C and P2C is converted to Pip by SARD4. Analysis of sard4 mutant plants showed that SARD4 is required for SAR as well as enhanced pathogen resistance conditioned by overexpression of the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1. Compared with the wild type, pathogen-induced Pip accumulation is only modestly reduced in the local tissue of sard4 mutant plants, but it is below detection in distal leaves, suggesting that Pip is synthesized in systemic tissue by SARD4-mediated reduction of P2C and biosynthesis of Pip in systemic tissue contributes to SAR establishment.

  7. Ursolic acid inhibits colorectal cancer angiogenesis through suppression of multiple signaling pathways.

    PubMed

    Lin, Jiumao; Chen, Youqin; Wei, Lihui; Hong, Zhenfeng; Sferra, Thomas J; Peng, Jun

    2013-11-01

    Angiogenesis plays a critical role in the development of solid tumors by supplying nutrients and oxygen to support continuous growth of tumor as well as providing an avenue for hematogenous metastasis. Tumor angiogenesis is highly regulated by multiple intracellular signaling transduction cascades such as Hedgehog, STAT3, Akt and p70S6K pathways that are known to malfunction in many types of cancer including colorectal cancer (CRC). Therefore, suppression of tumor angiogenesis through targeting these signaling pathways has become a promising strategy for cancer chemotherapy. Ursolic acid (UA) is a major active compound present in many medicinal herbs that have long been used in China for the clinical treatment of various types of cancer. Although previous studies have demonstrated an antitumor effect for UA, the precise mechanisms of its anti-angiogenic activity are not well understood. To further elucidate the mechanism(s) of the tumorcidal activity of UA, using a CRC mouse xenograft model, chick embryo chorioallantoic membrane (CAM) model, the human colon carcinoma cell line HT-29 and human umbilical vein endothelial cells (HUVECs), in the present study we evaluated the efficacy of UA against tumor growth and angiogenesis in vivo and in vitro and investigated the underlying molecular mechanisms. We found that administration of UA significantly inhibited tumor volume but had no effect on body weight changes in CRC mice, suggesting that UA can suppress colon cancer growth in vivo without noticeable signs of toxicity. In addition, UA treatment reduced intratumoral microvessel density (MVD) in CRC mice, decreased the total number of blood vessels in the CAM model, and dose and time-dependently inhibited the proliferation, migration and tube formation of HUVECs, demonstrating UA's antitumor angiogenesis in vivo and in vitro. Moreover, UA treatment inhibited the expression of critical angiogenic factors, such as VEGF-A and bFGF. Furthermore, UA suppressed the

  8. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    PubMed Central

    2012-01-01

    plays an important role in baking-associated stress tolerance. Conclusions In this work, we clarified the importance of Put1- and Mpr1-mediated NO generation from proline to the baking-associated stress tolerance in industrial baker's yeast. We also demonstrated that baker's yeast that enhances the proline and NO synthetic pathway by expressing the Pro1-I150T and Mpr1-F65L variants showed improved fermentation ability under multiple baking-associated stress conditions. From a biotechnological perspective, the enhancement of proline and NO synthesis could be promising for breeding novel baker's yeast strains. PMID:22462683

  9. Therapeutic interventions to disrupt the protein synthetic machinery in melanoma.

    PubMed

    Kardos, Gregory R; Robertson, Gavin P

    2015-09-01

    Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, to increase the protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery, thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma.

  10. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy.

    PubMed

    Žiberna, Lovro; Šamec, Dunja; Mocan, Andrei; Nabavi, Seyed Fazel; Bishayee, Anupam; Farooqi, Ammad Ahmad; Sureda, Antoni; Nabavi, Seyed Mohammad

    2017-03-16

    Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5' adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical.

  11. Transcriptomes of purified gastric ECL and parietal cells: identification of a novel pathway regulating acid secretion.

    PubMed

    Lambrecht, Nils W G; Yakubov, Iskandar; Zer, Cindy; Sachs, George

    2006-03-13

    The gastric entero-chromaffin-like (ECL) cell plays a key regulatory role in peripheral regulation of acid secretion due to the release of histamine that stimulates acid secretion by the parietal cell. Studies in intact animals, gastric glands, and isolated cells after short-term culture have shown expression of stimulatory CCK2 and PAC1 and inhibitory SST2 and Gal1 receptors as well as histidine decarboxylase. However, the pattern of its gene expression as a neuroendocrine cell has not been explored. Comparison of gene expression by 95% pure ECL cells obtained by density gradient, elutriation, and fluorescence-assisted cell sorting with isolates of the intact fundic gastric epithelium (i.e., "subtractive hybridization") identified a variety of additional expressed gene families characteristic of this neuroendocrine cell. These include genes 1) involved in neuropeptide synthesis and secretory vesicle exocytosis, 2) involved in control of inflammation, 3) implicated in healing of the epithelium, 4) encoding inhibitory Gi protein-coupled receptors, 5) playing a role in neuroendocrine regulation of food intake, and 6) encoding proteins likely involved in maintenance of circadian rhythm, in addition to the ECL cell-specific genes histidine decarboxylase and monoamine transporter. Particularly, the inhibitory apelin receptor gene, APJ, was highly expressed in the ECL cell preparation. Because parietal cells express apelin, immunohistochemical and functional studies showed that there is an inhibitory feed back loop between the parietal and ECL cell during gastrin stimulation, providing evidence for a novel pathway of downregulation of acid secretion due to interaction between these two cell types.

  12. Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy

    PubMed Central

    Žiberna, Lovro; Šamec, Dunja; Mocan, Andrei; Nabavi, Seyed Fazel; Bishayee, Anupam; Farooqi, Ammad Ahmad; Sureda, Antoni; Nabavi, Seyed Mohammad

    2017-01-01

    Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5′ adenosine monophosphate-activated protein kinase, extracellular signal–regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical. PMID:28300756

  13. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.

  14. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  15. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-07-26

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.

  16. Kinetic Behavior of Leucine and Other Amino Acids Modulating Cognitive Performance via mTOR Pathway

    DTIC Science & Technology

    2011-12-02

    Acid BBB Transporter Type Structure Leucine L1 Essential Neutral Non-polar (hydrophobic) Branched chain Aspartic Acid Acidic X- Acidic Polar Glutamine...compared with other tissues. • Effects of leucine on other amino acids were analyzed. Those measured were aspartic acid , glutamic acid, serine, histidine

  17. An analytical method for the measurement of acid metabolites of tryptophan-NAD pathway and related acids in urine.

    PubMed

    Liao, Xiangjun; Zhu, Jiping; Rubab, Mamoona; Feng, Yong-Lai; Poon, Raymond

    2010-04-15

    An analytical method has been developed for the measurements of five urinary acids namely, quinolinic acid, picolinic acid, nicotinic acid, 2-pyridylacetic acid and 3-pyridylacetic acid. The high performance liquid chromatograph-electrospray ionization mass spectrometry was operated in positive polarity under selected ion monitoring mode, with a column flow rate of 0.2 ml/min and an injection volume of 20 microl. The method used isotope-labelled picolinic acid (PA-d(4)) and nicotinic acid (NA-d(4)) as internal standards for the quantification. The sample preparation involved parallel use of two different types of mixed-mode solid phase extraction cartridges (Strata-X-AW for the extraction of quinolinic acid, and Strata-X-C for the remaining acids). Quantitative analysis of five target acids in several human and rat urine samples showed that the levels of acids were relatively uniform among rats while larger variations were observed for human samples.

  18. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress

    PubMed Central

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-01-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  19. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  20. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.

    PubMed

    Huang, Di; Wang, Ru; Du, Wenjie; Wang, Guanyi; Xia, Menglei

    2015-11-01

    Rhizopus oryzae is strictly inhibited by biodiesel-based by-product crude glycerol, which results in low fumaric acid production. In this study, evolutionary engineering was employed to activate the glycerol utilization pathway for fumaric acid production. An evolved strain G80 was selected, which could tolerate and utilize high concentrations of crude glycerol to produce 14.9g/L fumaric acid with a yield of 0.248g/g glycerol. Key enzymes activity analysis revealed that the evolved strain displayed a significant upregulation in glycerol dissimilation, pyruvate consumption and reductive tricarboxylic acid pathways, compared with the parent strain. Subsequently, intracellular metabolic profiling analysis showed that amino acid biosynthesis, tricarboxylic acid cycle, fatty acid and stress response metabolites accounted for metabolic difference between two strains. Moreover, a glycerol fed-batch strategy was optimized to obtain the highest fumaric acid production of 25.5g/L, significantly increased by 20.9-fold than that of the parent strain of 1.2g/L.

  1. Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum.

    PubMed

    Chen, Nanhua; LaCrue, Alexis N; Teuscher, Franka; Waters, Norman C; Gatton, Michelle L; Kyle, Dennis E; Cheng, Qin

    2014-08-01

    Artemisinin (ART)-based combination therapy (ACT) is used as the first-line treatment of uncomplicated falciparum malaria worldwide. However, despite high potency and rapid action, there is a high rate of recrudescence associated with ART monotherapy or ACT long before the recent emergence of ART resistance. ART-induced ring-stage dormancy and recovery have been implicated as possible causes of recrudescence; however, little is known about the characteristics of dormant parasites, including whether dormant parasites are metabolically active. We investigated the transcription of 12 genes encoding key enzymes in various metabolic pathways in P. falciparum during dihydroartemisinin (DHA)-induced dormancy and recovery. Transcription analysis showed an immediate downregulation for 10 genes following exposure to DHA but continued transcription of 2 genes encoding apicoplast and mitochondrial proteins. Transcription of several additional genes encoding apicoplast and mitochondrial proteins, particularly of genes encoding enzymes in pyruvate metabolism and fatty acid synthesis pathways, was also maintained. Additions of inhibitors for biotin acetyl-coenzyme A (CoA) carboxylase and enoyl-acyl carrier reductase of the fatty acid synthesis pathways delayed the recovery of dormant parasites by 6 and 4 days, respectively, following DHA treatment. Our results demonstrate that most metabolic pathways are downregulated in DHA-induced dormant parasites. In contrast, fatty acid and pyruvate metabolic pathways remain active. These findings highlight new targets to interrupt recovery of parasites from ART-induced dormancy and to reduce the rate of recrudescence following ART treatment.

  2. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphonic acid in dairy cows.

    PubMed

    von Soosten, D; Meyer, U; Hüther, L; Dänicke, S; Lahrssen-Wiederholt, M; Schafft, H; Spolders, M; Breves, G

    2016-07-01

    From 6 balance experiments with total collection of feces and urine, samples were obtained to investigate the excretion pathways of glyphosate (GLY) in lactating dairy cows. Each experiment lasted for 26d. The first 21d served for adaptation to the diet, and during the remaining 5d collection of total feces and urine was conducted. Dry matter intake and milk yield were recorded daily and milk and feed samples were taken during the sampling periods. In 2 of the 6 experiments, at the sampling period for feces and urine, duodenal contents were collected for 5d. Cows were equipped with cannulas at the dorsal sac of the rumen and the proximal duodenum. Duodenal contents were collected every 2h over 5 consecutive days. The daily duodenal dry matter flow was measured by using chromium oxide as a volume marker. All samples (feed, feces, urine, milk and duodenal contents were analyzed for GLY and aminomethylphosphonic acid (AMPA). Overall, across the 6 experiments (n=32) the range of GLY intake was 0.08 to 6.67mg/d. The main proportion (61±11%; ±SD) of consumed GLY was excreted with feces; whereas excretion by urine was 8±3% of GLY intake. Elimination via milk was negligible. The GLY concentrations above the limit of quantification were not detected in any of the milk samples. A potential ruminal degradation of GLY to AMPA was derived from daily duodenal GLY flow. The apparent ruminal disappearance of GLY intake was 36 and 6%. In conclusion, the results of the present study indicate that the gastrointestinal absorption of GLY is of minor importance and fecal excretion represents the major excretion pathway. A degradation of GLY to AMPA by rumen microbes or a possible retention in the body has to be taken into account.

  3. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways.

    PubMed

    Guo, Junhong; Linetsky, Mikhail; Yu, Annabelle O; Zhang, Liang; Howell, Scott J; Folkwein, Heather J; Wang, Hua; Salomon, Robert G

    2016-12-19

    Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF

  4. Synthetic biology for microbial production of lipid-based biofuels.

    PubMed

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  5. Microalgae Synthesize Hydrocarbons from Long-Chain Fatty Acids via a Light-Dependent Pathway1[OPEN

    PubMed Central

    Légeret, Bertrand; Mirabella, Boris; Guédeney, Geneviève; Jetter, Reinhard; Peltier, Gilles

    2016-01-01

    Microalgae are considered a promising platform for the production of lipid-based biofuels. While oil accumulation pathways are intensively researched, the possible existence of a microalgal pathways converting fatty acids into alka(e)nes has received little attention. Here, we provide evidence that such a pathway occurs in several microalgal species from the green and the red lineages. In Chlamydomonas reinhardtii (Chlorophyceae), a C17 alkene, n-heptadecene, was detected in the cell pellet and the headspace of liquid cultures. The Chlamydomonas alkene was identified as 7-heptadecene, an isomer likely formed by decarboxylation of cis-vaccenic acid. Accordingly, incubation of intact Chlamydomonas cells with per-deuterated D31-16:0 (palmitic) acid yielded D31-18:0 (stearic) acid, D29-18:1 (oleic and cis-vaccenic) acids, and D29-heptadecene. These findings showed that loss of the carboxyl group of a C18 monounsaturated fatty acid lead to heptadecene formation. Amount of 7-heptadecene varied with growth phase and temperature and was strictly dependent on light but was not affected by an inhibitor of photosystem II. Cell fractionation showed that approximately 80% of the alkene is localized in the chloroplast. Heptadecane, pentadecane, as well as 7- and 8-heptadecene were detected in Chlorella variabilis NC64A (Trebouxiophyceae) and several Nannochloropsis species (Eustigmatophyceae). In contrast, Ostreococcus tauri (Mamiellophyceae) and the diatom Phaeodactylum tricornutum produced C21 hexaene, without detectable C15-C19 hydrocarbons. Interestingly, no homologs of known hydrocarbon biosynthesis genes were found in the Nannochloropsis, Chlorella, or Chlamydomonas genomes. This work thus demonstrates that microalgae have the ability to convert C16 and C18 fatty acids into alka(e)nes by a new, light-dependent pathway. PMID:27288359

  6. Folic Acid Alters Methylation Profile of JAK-STAT and Long-Term Depression Signaling Pathways in Alzheimer's Disease Models.

    PubMed

    Li, Wen; Liu, Huan; Yu, Min; Zhang, Xumei; Zhang, Yan; Liu, Hongbo; Wilson, John X; Huang, Guowei

    2016-11-01

    Dementia has emerged as a major societal issue because of the worldwide aging population and the absence of any effective treatment. DNA methylation is an epigenetic mechanism that evidently plays a role in Alzheimer's disease (AD). Folate acts through one-carbon metabolism to support the methylation of multiple substrates including DNA. We aimed to test the hypothesis that folic acid supplementation alters DNA methylation profiles in AD models. Mouse Neuro-2a cells expressing human APP695 (N2a-APP cells) were incubated with folic acid (2.8-20 μmol/L). AD transgenic mice were fed either folate-deficient or control diets and gavaged daily with water or folic acid (600 μg/kg). Gene methylation profiles were determined by methylated DNA immunoprecipitation-DNA microarray (MeDIP-chip). Differentially methylated regions (DMRs) were determined by Quantitative Differentially Methylated Regions analysis, and differentially methylated genes (DMGs) carrying at least three DMRs were selected for pathway analysis. Folic acid up-regulated DNA methylation levels in N2a-APP cells and AD transgenic mouse brains. Functional network analysis of folic acid-induced DMGs in these AD models revealed subnetworks composed of 24 focus genes in the janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway and 12 focus genes in the long-term depression (LTD) signaling pathway. In conclusion, these results revealed a role for folic acid in the JAK-STAT and LTD signaling pathways which may be relevant to AD pathogenesis. This novel finding may stimulate reinvestigation of folic acid supplementation as a prophylactic or therapeutic treatment for AD.

  7. Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of Target of Rapamycin signaling in Drosophila.

    PubMed

    Armstrong, Alissa R; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2014-12-01

    How adipocytes contribute to the physiological control of stem cells is a critical question towards understanding the link between obesity and multiple diseases, including cancers. Previous studies have revealed that adult stem cells are influenced by whole-body physiology through multiple diet-dependent factors. For example, nutrient-dependent pathways acting within the Drosophila ovary control the number and proliferation of germline stem cells (GSCs). The potential role of nutrient sensing by adipocytes in modulating stem cells in other organs, however, remains largely unexplored. Here, we report that amino acid sensing by adult adipocytes specifically modulates the maintenance of GSCs through a Target of Rapamycin-independent mechanism. Instead, reduced amino acid levels and the consequent increase in uncoupled tRNAs trigger activation of the GCN2-dependent amino acid response pathway within adipocytes, causing increased rates of GSC loss. These studies reveal a new step in adipocyte-stem cell crosstalk.

  8. Antibacterial activity of synthetic curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA).

    PubMed

    Vilekar, Prachi; King, Catherine; Lagisetty, Pallavi; Awasthi, Vibhudutta; Awasthi, Shanjana

    2014-04-01

    Curcumin is well known for its antimicrobial and anti-inflammatory properties. However, since systemic absorption and bioavailability of curcumin from gastrointestinal tract is considerably poor, synthetic curcuminoids are being developed as better alternatives. Two curcumin derivatives: 3,5-bis(benzylidene)-4-piperidone (EF24) and EF24-dimer linked via diethylenetriaminepentacetic acid (EF2DTPA), were included in this study. We investigated the antibacterial activity of EF24 and EF2DTPA against Gram-negative (Escherichia coli) and Gram-positive (Enterococcus faecalis, Staphylococcus aureus) bacteria. We also studied the effects of EF24 and EF2DTPA on uptake and localization of pHrodo-labeled E. coli in the acidic compartments (phagolysosomes) of dendritic cells (DCs) under in vitro conditions. Our results demonstrate that treatment with EF24 and EF2DTPA directly suppresses the bacterial growth. However, these compounds do not affect the bacterial uptake or localization in the DCs.

  9. Improved Acid Stress Survival of Lactococcus lactis Expressing the Histidine Decarboxylation Pathway of Streptococcus thermophilus CHCC1524*

    PubMed Central

    Trip, Hein; Mulder, Niels L.; Lolkema, Juke S.

    2012-01-01

    Degradative amino acid decarboxylation pathways in bacteria generate secondary metabolic energy and provide resistance against acid stress. The histidine decarboxylation pathway of Streptococcus thermophilus CHCC1524 was functionally expressed in the heterologous host Lactococcus lactis NZ9000, and the benefits of the newly acquired pathway for the host were analyzed. During growth in M17 medium in the pH range of 5–6.5, a small positive effect was observed on the biomass yield in batch culture, whereas no growth rate enhancement was evident. In contrast, a strong benefit for the engineered L. lactis strain was observed in acid stress survival. In the presence of histidine, the pathway enabled cells to survive at pH values as low as 3 for at least 2 h, conditions under which the host cells were rapidly dying. The flux through the histidine decarboxylation pathway in cells grown at physiological pH was under strict control of the electrochemical proton gradient (pmf) across the membrane. Ionophores that dissipated the membrane potential (ΔΨ) and/or the pH gradient (ΔpH) strongly increased the flux, whereas the presence of glucose almost completely inhibited the flux. Control of the pmf over the flux was exerted by both ΔΨ and ΔpH and was distributed over the transporter HdcP and the decarboxylase HdcA. The control allowed for a synergistic effect between the histidine decarboxylation and glycolytic pathways in acid stress survival. In a narrow pH range around 2.5 the synergism resulted in a 10-fold higher survival rate. PMID:22351775

  10. Replacing synthetic with microbial surfactants as collectors in the treatment of aqueous effluent produced by acid mine drainage, using the dissolved air flotation technique.

    PubMed

    Menezes, Carlyle T B; Barros, Erilson C; Rufino, Raquel D; Luna, Juliana M; Sarubbo, Leonie A

    2011-02-01

    Dissolved air flotation (DAF) is a well-established separation process employing micro bubbles as a carrier phase. The application of this technique in the treatment of acid mine drainage, using three yeast biosurfactants as alternative collectors, is hereby analyzed. Batch studies were carried out in a 50-cm high acrylic column with an external diameter of 2.5 cm. High percentages (above 94%) of heavy metals Fe(III) and Mn(II) were removed by the biosurfactants isolated from Candida lipolytica and Candida sphaerica and the values were found to be similar to those obtained with the use of the synthetic sodium oleate surfactant. The DAF operation with both surfactant and biosurfactants, achieved acceptable turbidity values, in accordance with Brazilian standard limits. The best ones were obtained by the biosurfactant from C. lipolytica, which reached 4.8 NTU. The results obtained with a laboratory synthetic effluent were also satisfactory. The biosurfactants removed almost the same percentages of iron, while the removal percentages of manganese were slightly higher compared with those obtained in the acid mine drainage effluent. They showed that the use of low-cost biosurfactants as collectors in the DAF process is a promising technology for the mining industries.

  11. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs.

    PubMed

    Myers, Cullen L; Ireland, Ronald G; Garrett, Teresa A; Brown, Eric D

    2015-07-31

    The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities.

  12. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin–proteasome pathway

    PubMed Central

    Ando, Hideya; Wen, Zhi-Ming; Kim, Hee-Yong; Valencia, Julio C.; Costin, Gertrude-E.; Watabe, Hidenori; Yasumoto, Ken-ichi; Niki, Yoko; Kondoh, Hirofumi; Ichihashi, Masamitsu; Hearing, Vincent J.

    2005-01-01

    Proteasomes are multicatalytic proteinase complexes within cells that selectively degrade ubiquitinated proteins. We have recently demonstrated that fatty acids, major components of cell membranes, are able to regulate the proteasomal degradation of tyrosinase, a critical enzyme required for melanin biosynthesis, in contrasting manners by relative increases or decreases in the ubiquitinated tyrosinase. In the present study, we show that altering the intracellular composition of fatty acids affects the post-Golgi degradation of tyrosinase. Incubation with linoleic acid (C18:2) dramatically changed the fatty acid composition of cultured B16 melanoma cells, i.e. the remarkable increase in polyunsaturated fatty acids such as linoleic acid and arachidonic acid (C20:4) was compensated by the decrease in monounsaturated fatty acids such as oleic acid (C18:1) and palmitoleic acid (C16:1), with little effect on the proportion of saturated to unsaturated fatty acid. When the composition of intracellular fatty acids was altered, tyrosinase was rapidly processed to the Golgi apparatus from the ER (endoplasmic reticulum) and the degradation of tyrosinase was increased after its maturation in the Golgi. Retention of tyrosinase in the ER was observed when cells were treated with linoleic acid in the presence of proteasome inhibitors, explaining why melanin synthesis was decreased in cells treated with linoleic acid and a proteasome inhibitor despite the abrogation of tyrosinase degradation. These results suggest that the intracellular composition of fatty acid affects the processing and function of tyrosinase in connection with the ubiquitin–proteasome pathway and suggest that this might be a common physiological approach to regulate protein degradation. PMID:16232122

  13. Amino Acid Bound Surfactants: A New Synthetic Family of Polymeric Monoliths Open Up Possibilities for Chiral Separations in Capillary Electrochromatography

    PubMed Central

    He, Jun; Wang, Xiaochun; Morrill, Mike; Shamsi, Shahab A.

    2012-01-01

    By combining a novel chiral amino-acid surfactant containing acryloyl amide tail, carbamate linker and leucine head group of different chain lengths with a conventional cross linker and a polymerization technique, a new “one-pot”, synthesis for the generation of amino-acid based polymeric monolith is realized. The method promises to open up the discovery of amino-acid based polymeric monolith for chiral separations in capillary electrochromatography (CEC). Possibility of enhanced chemoselectivity for simultaneous separation of ephedrine and pseudoephedrine containing multiple chiral centers, and the potential use of this amino-acid surfactant bound column for CEC and CEC coupled to mass spectrometric detection is demonstrated. PMID:22607448

  14. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  15. Mycophenolic Acid Inhibits Migration and Invasion of Gastric Cancer Cells via Multiple Molecular Pathways

    PubMed Central

    Dun, Boying; Sharma, Ashok; Teng, Yong; Liu, Haitao; Purohit, Sharad; Xu, Heng; Zeng, Lingwen; She, Jin-Xiong

    2013-01-01

    Mycophenolic acid (MPA) is the metabolized product and active element of mycophenolate mofetil (MMF) that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA’s antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer) cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA) and proteins (PRKCA, AKT, SRC, CD147 and MMP1) with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1). However, a few genes that may promote migration (CYR61 and NOS3) were up-regulated. Therefore, MPA’s overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment. PMID:24260584

  16. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation

    PubMed Central

    Allen, Jeffrey R.; Clark, Daniel D.; Krum, Jonathan G.; Ensign, Scott A.

    1999-01-01

    The bacterial metabolism of short-chain aliphatic alkenes occurs via oxidation to epoxyalkanes followed by carboxylation to β-ketoacids. Epoxyalkane carboxylation requires four enzymes (components I–IV), NADPH, NAD+, and a previously unidentified nucleophilic thiol. In the present work, coenzyme M (2-mercaptoethanesulfonic acid), a compound previously found only in the methanogenic Archaea where it serves as a methyl group carrier and activator, has been identified as the thiol and central cofactor of aliphatic epoxide carboxylation in the Gram-negative bacterium Xanthobacter strain Py2. Component I catalyzed the addition of coenzyme M to epoxypropane to form a β-hydroxythioether, 2-(2-hydroxypropylthio)ethanesulfonate. Components III and IV catalyzed the NAD+-dependent stereoselective dehydrogenation of R- and S-enantiomers of 2-(2-hydroxypropylthio)ethanesulfonate to form 2-(2-ketopropylthio)ethanesulfonate. Component II catalyzed the NADPH-dependent cleavage and carboxylation of the β-ketothioether to form acetoacetate and coenzyme M. These findings evince a newfound versatility for coenzyme M as a carrier and activator of alkyl groups longer in chain-length than methane, a function for coenzyme M in a catabolic pathway of hydrocarbon oxidation, and the presence of coenzyme M in the bacterial domain of the phylogenetic tree. These results serve to unify bacterial and Archaeal metabolism further and showcase diverse biological functions for an elegantly simple organic molecule. PMID:10411892

  17. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  18. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway

    PubMed Central

    Cai, Wei; Duan, Xi-Mei; Liu, Ying; Yu, Jiao; Tang, Yun-Liang; Liu, Ze-Lin; Jiang, Shan; Zhang, Chun-Ping; Liu, Jian-Ying

    2017-01-01

    Uric acid (UA) is a risk factor for endothelial dysfunction, a process in which inflammation may play an important role. UA increases high mobility group box chromosomal protein 1 (HMGB1) expression and extracellular release in endothelial cells. HMGB1 is an inflammatory cytokine that interacts with the receptor for advanced glycation end products (RAGE), inducing an oxidative stress and inflammatory response, which leads to endothelial dysfunction. In this study, human umbilical vein endothelial cells (HUVECs) were incubated with a high concentration of UA (20 mg/dL) after which endothelial function and the expression of HMGB1, RAGE, nuclear factor kappa B (NF-κB), inflammatory cytokines, and adhesion molecules were evaluated. UA inhibited endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production in HUVECs, increased intracellular HMGB1 expression and extracellular HMGB1 secretion, and upregulated RAGE expression. UA also activated NF-κB and increased the level of inflammatory cytokines. Blocking RAGE significantly suppressed the upregulation of RAGE and HMGB1 and prevented the increase in DNA binding activity of NF-κB and the levels of inflammatory cytokines. It also blocked the decrease in eNOS expression and NO production induced by UA. Our results suggest that high concentrations of UA cause endothelial dysfunction via the HMGB1/RAGE signaling pathway. PMID:28116308

  19. Inverse Temperature-Dependent Pathway of Cellulose Decrystallization in Trifluoroacetic Acid

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-05-17

    Abstract An unusual inverse temperature-dependent pathway was observed during cellulose decrystallization in trifluoroacetic acid (TFA). Decreasing the TFA treatment temperature accelerated the cellulose decrystallization process. It took only 100 minutes to completely decrystallize cellulose at 0 °C in TFA, a result not achieved in 48 hours at 25°C in the same medium. There was neither cellulose esterification nor a change of cellulose macrofibril morphology by TFA treatment at 0 °C. Our IR data suggest that TFA molecules are present as cyclic dimers when they penetrate into crystalline cellulose regions, transforming crystalline cellulose to amorphous cellulose. The TFA cyclic dimer does not form strong hydrogen bonds with cellulose since the IR vibration frequency of the carbonyl group of the dimer molecule remained unchanged after the dimer diffused into the cellulose matrix. On the other hand, the rate of TFA penetration into the cellulose matrix was greatly retarded at higher temperatures where monomeric TFA esterification took place on the external surface of crystalline cellulose. At elevated temperatures esterification of TFA monomers with cellulose, as well as water released from the esterification reaction, inhibit the diffusion rate of TFA into the cellulose crystalline region and decreases the TFA swelling capability. Based on experimental observations, our study indicates that cellulose decrystallization does not require that solvent molecules form strong hydrogen bonds with cellulose.

  20. EGCG Attenuates Uric Acid-Induced Inflammatory and Oxidative Stress Responses by Medicating the NOTCH Pathway

    PubMed Central

    Xie, Hua; Sun, Jianqin; Chen, Yanqiu; Zong, Min; Li, Shijie; Wang, Yan

    2015-01-01

    Background. The aim of this study is to investigate whether (-)-epigallocatechin-3-gallate (EGCG) can prevent the UA-induced inflammatory effect of human umbilical vein endothelial cells (HUVEC) and the involved mechanisms in vitro. Methods. HUVEC were subjected to uric acid (UA) with or without EGCG treatment. RT-PCR and western blots were performed to determine the level of inflammation marker. The antioxidant activity was evaluated by measuring scavenged reactive oxygen species (ROS). Functional studies of the role of Notch-1 in HUVEC lines were performed using RNA interference analyses. Results. UA significantly increased the expressions of IL-6, ICAM-1, TNF-α, and MCP-1 and the production of ROS in HUVEC. Meanwhile, the expression of Notch-1 and its downstream effects significantly increased. Using siRNA, inhibition of Notch-1 signaling significantly impeded the expressions of inflammatory cytokines under UA treatment. Interestingly, EGCG suppressed the expressions of inflammatory cytokines and the generation of ROS. Western blot analysis of Notch-1 showed that EGCG significantly decreased the expressions of inflammatory cytokines through Notch-1 signaling pathways. Conclusions. In summary, our findings indicated that Notch-1 plays an important role in the UA-induced inflammatory response, and the downregulation of Notch-1 by EGCG could be an effective approach to decrease inflammation and oxidative stress induced by UA. PMID:26539255

  1. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products

    PubMed Central

    Blodgett, Joshua A. V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W.

    2015-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus-methylation remain poorly understood. In addition, the model for NRPS assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it to the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analysed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery. PMID:26328935

  2. Conserved biosynthetic pathways for phosalacine, bialaphos and newly discovered phosphonic acid natural products.

    PubMed

    Blodgett, Joshua A V; Zhang, Jun Kai; Yu, Xiaomin; Metcalf, William W

    2016-01-01

    Natural products containing phosphonic or phosphinic acid functionalities often display potent biological activities with applications in medicine and agriculture. The herbicide phosphinothricin-tripeptide (PTT) was the first phosphinate natural product discovered, yet despite numerous studies, questions remain surrounding key transformations required for its biosynthesis. In particular, the enzymology required to convert phosphonoformate to carboxyphosphonoenolpyruvate and the mechanisms underlying phosphorus methylation remain poorly understood. In addition, the model for non-ribosomal peptide synthetase assembly of the intact tripeptide product has undergone numerous revisions that have yet to be experimentally tested. To further investigate the biosynthesis of this unusual natural product, we completely sequenced the PTT biosynthetic locus from Streptomyces hygroscopicus and compared it with the orthologous cluster from Streptomyces viridochromogenes. We also sequenced and analyzed the closely related phosalacine (PAL) biosynthetic locus from Kitasatospora phosalacinea. Using data drawn from the comparative analysis of the PTT and PAL pathways, we also evaluate three related recently discovered phosphonate biosynthetic loci from Streptomyces sviceus, Streptomyces sp. WM6386 and Frankia alni. Our observations address long-standing biosynthetic questions related to PTT and PAL production and suggest that additional members of this pharmacologically important class await discovery.

  3. Wnt signaling pathway participates in valproic acid-induced neuronal differentiation of neural stem cells.

    PubMed

    Wang, Li; Liu, Yuan; Li, Sen; Long, Zai-Yun; Wu, Ya-Min

    2015-01-01

    Neural stem cells (NSCs) are multipotent cells that have the capacity for differentiation into the major cell types of the nervous system, i.e. neurons, astrocytes and oligodendrocytes. Valproic acid (VPA) is a widely prescribed drug for seizures and bipolar disorder in clinic. Previously, a number of researches have been shown that VPA has differential effects on growth, proliferation and differentiation in many types of cells. However, whether VPA can induce NSCs from embryonic cerebral cortex differentiate into neurons and its possible molecular mechanism is also not clear. Wnt signaling is implicated in the control of cell growth and differentiation during CNS development in animal model, but its action at the cellular level has been poorly understood. In this experiment, we examined neuronal differentiation of NSCs induced by VPA culture media using vitro immunochemistry assay. The neuronal differentiation of NSCs was examined after treated with 0.75 mM VPA for three, seven and ten days. RT-PCR assay was employed to examine the level of Wnt-3α and β-catenin. The results indicated that there were more β-tublin III positive cells in NSCs treated with VPA medium compared to the control group. The expression of Wnt-3α and β-catenin in NSCs treated with VPA medium was significantly greater compared to that of control media. In conclusion, these findings indicated that VPA could induce neuronal differentiation of NSCs by activating Wnt signal pathway.

  4. Profiling the changes in signaling pathways in ascorbic acid/β-glycerophosphate-induced osteoblastic differentiation.

    PubMed

    Chaves Neto, Antonio Hernandes; Queiroz, Karla Cristiana; Milani, Renato; Paredes-Gamero, Edgar Julian; Justo, Giselle Zenker; Peppelenbosch, Maikel P; Ferreira, Carmen Veríssima

    2011-01-01

    Despite numerous reports on the ability of ascorbic acid and β-glycerophosphate (AA/β-GP) to induce osteoblast differentiation, little is known about the molecular mechanisms involved in this phenomenon. In this work, we used a peptide array containing specific consensus sequences (potential substrates) for protein kinases and traditional biochemical techniques to examine the signaling pathways modulated during AA/β-GP-induced osteoblast differentiation. The kinomic profile obtained after 7 days of treatment with AA/β-GP identified 18 kinase substrates with significantly enhanced or reduced phosphorylation. Peptide substrates for Akt, PI3K, PKC, BCR, ABL, PRKG1, PAK1, PAK2, ERK1, ERBB2, and SYK showed a considerable reduction in phosphorylation, whereas enhanced phosphorylation was observed in substrates for CHKB, CHKA, PKA, FAK, ATM, PKA, and VEGFR-1. These findings confirm the potential usefulness of peptide microarrays for identifying kinases known to be involved in bone development in vivo and in vitro and show that this technique can be used to investigate kinases whose function in osteoblastic differentiation is poorly understood.

  5. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway.

    PubMed

    Wang, Xi; Lu, Xiaocheng; Zhu, Ronglan; Zhang, Kaixin; Li, Shuai; Chen, Zhongjun; Li, Lixin

    2017-01-25

    Betulinic acid (BA), a pentacyclic triterpene of natural origin, has been demonstrated to have varied biologic activities including anti-viral, anti-inflammatory, and anti-malarial effects; it has also been found to induce apoptosis in many types of cancer. However, little is known about the effect of BA on normal cells. In this study, the effects of BA on normal neuronal cell apoptosis and the mechanisms involved were studied using differentiated PC12 cells as a model. Treatment with 50 μM BA for 24 h apparently induced PC12 cell apoptosis. In the early stage of apoptosis, the level of intracellular reactive oxygen species (ROS) increased. Afterwards, the loss of the mitochondrial membrane potential, the release of cytochrome c and the activation of caspase-3 occurred. Treatment with antioxidants could significantly reduce BA-induced PC12 cell apoptosis. In conclusion, we report for the first time that BA induced the mitochondrial apoptotic pathway in differentiated PC12 cells through ROS.

  6. Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells.

    PubMed Central

    Allan, A. C.; Fricker, M. D.; Ward, J. L.; Beale, M. H.; Trewavas, A. J.

    1994-01-01

    Commelina guard cells can be rapidly closed by abscisic acid (ABA), and it is thought that this signal is always transduced through increases in cytosolic calcium. However, when Commelina plants were grown at 10 to 17[deg]C, most guard cells failed to exhibit any ABA-induced increase in cytosolic calcium even though all of these cells closed. At growth temperatures of 25[deg]C or above, ABA-induced closure was always associated with an increase in cytosolic calcium. This suggests that there may be two transduction routes for ABA in guard cells; only one involves increases in cytosolic calcium. Activation of either pathway on its own appears to be sufficient to cause closure. Because the rates of ABA accumulation and transport in plants grown at different temperatures are likely to be different, we synthesized and microinjected caged ABA directly into guard cells. ABA was released internally by UV photolysis and subsequently caused stomatal closure. This result suggests a possible intracellular locale for the hypothesized ABA receptor. PMID:12244274

  7. Orally Administered Berberine Modulates Hepatic Lipid Metabolism by Altering Microbial Bile Acid Metabolism and the Intestinal FXR Signaling Pathway.

    PubMed

    Sun, Runbin; Yang, Na; Kong, Bo; Cao, Bei; Feng, Dong; Yu, Xiaoyi; Ge, Chun; Huang, Jingqiu; Shen, Jianliang; Wang, Pei; Feng, Siqi; Fei, Fei; Guo, Jiahua; He, Jun; Aa, Nan; Chen, Qiang; Pan, Yang; Schumacher, Justin D; Yang, Chung S; Guo, Grace L; Aa, Jiye; Wang, Guangji

    2017-02-01

    Previous studies suggest that the lipid-lowering effect of berberine (BBR) involves actions on the low-density lipoprotein receptor and the AMP-activated protein kinase signaling pathways. However, the implication of these mechanisms is unclear because of the low bioavailability of BBR. Because the main action site of BBR is the gut and intestinal farnesoid X receptor (FXR) plays a pivotal role in the regulation of lipid metabolism, we hypothesized that the effects of BBR on intestinal FXR signaling pathway might account for its pharmacological effectiveness. Using wild type (WT) and intestine-specific FXR knockout (FXR(int-/-)) mice, we found that BBR prevented the development of high-fat-diet-induced obesity and ameliorated triglyceride accumulation in livers of WT, but not FXR(int-/-) mice. BBR increased conjugated bile acids in serum and their excretion in feces. Furthermore, BBR inhibited bile salt hydrolase (BSH) activity in gut microbiota, and significantly increased the levels of tauro-conjugated bile acids, especially tauro-cholic acid(TCA), in the intestine. Both BBR and TCA treatment activated the intestinal FXR pathway and reduced the expression of fatty-acid translocase Cd36 in the liver. These results indicate that BBR may exert its lipid-lowering effect primarily in the gut by modulating the turnover of bile acids and subsequently the ileal FXR signaling pathway. In summary, we provide the first evidence to suggest a new mechanism of BBR action in the intestine that involves, sequentially, inhibiting BSH, elevating TCA, and activating FXR, which lead to the suppression of hepatic expression of Cd36 that results in reduced uptake of long-chain fatty acids in the liver.

  8. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  9. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  10. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway.

    PubMed

    Gulevich, Andrey Yu; Skorokhodova, Alexandra Yu; Sukhozhenko, Alexey V; Shakulov, Rustem S; Debabov, Vladimir G

    2012-03-01

    The basic reactions of the clostridial 1-butanol biosynthesis pathway can be regarded to be the inverted reactions of the fatty acid β-oxidation pathway. A pathway for the biosynthesis of fuels and chemicals was recently engineered by combining enzymes from both aerobic and anaerobic fatty acid β-oxidation as well as enzymes from other metabolic pathways. In the current study, we demonstrate the inversion of the entire aerobic fatty acid β-oxidation cycle for 1-butanol biosynthesis. The constructed markerless and plasmidless Escherichia coli strain BOX-3 (MG1655 lacI(Q) attB-P(trc-ideal-4)-SD(φ10)-adhE(Glu568Lys) attB-P(trc-ideal-4)-SD(φ10)-atoB attB-P(trc-ideal-4)-SD(φ10)-fadB attB-P(trc-ideal-4)-SD(φ10)-fadE) synthesises 0.3-1 mg 1-butanol/l in the presence of the specific inducer. No 1-butanol production was detected in the absence of the inducer.

  11. Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells.

    PubMed

    Wang, Songbo; Xiang, Nana; Yang, Liusong; Zhu, Canjun; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-03-18

    The regulation of food intake is a promising way to combat obesity. It has been implicated that various fatty acids exert different effects on food intake and body weight. However, the underlying mechanism remains poorly understood. The aim of the present study was to investigate the effects of linoleic acid (LA) and stearic acid (SA) on agouti-related protein (AgRP) expression and secretion in immortalized mouse hypothalamic N38 cells and to explore the likely underlying mechanisms. Our results demonstrated that LA inhibited, while SA stimulated AgRP expression and secretion of N38 cells in a dose-dependent manner. In addition, LA suppressed the protein expression of toll-like receptor 4 (TLR4), phosphorylation levels of JNK and IKKα/β, suggesting the inhibition of TLR4-dependent inflammation pathway. However, the above mentioned inhibitory effects of LA were eliminated by TLR4 agonist lipopolysaccharide (LPS). In contrast, SA promoted TLR4 protein expression and activated TLR4-dependent inflammation pathway, with elevated ratio of p-JNK/JNK. While TLR4 siRNA reversed the stimulatory effects of SA on AgRP expression and TLR4-dependent inflammation. Moreover, we found that TLR4 was also involved in LA-enhanced and SA-impaired leptin/insulin signal pathways in N38 cells. In conclusion, our findings indicated that LA elicited inhibitory while SA exerted stimulatory effects on AgRP expression and secretion via TLR4-dependent inflammation and leptin/insulin pathways in N38 cells. These data provided a better understanding of the mechanism underlying fatty acids-regulated food intake and suggested the potential role of long-chain unsaturated fatty acids such as LA in reducing food intake and treating obesity.

  12. Synthetic biology and metabolic engineering.

    PubMed

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  13. Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics.

    PubMed

    Lü, Fan; Hao, Liping; Guan, Dongxing; Qi, Yujiao; Shao, Liming; He, Pinjing

    2013-05-01

    Combined effects of acids and ammonium on functional pathway and microbial structure during organics methanization were investigated by stable isotopic method and quantitative PCR. The results showed that the stress from acids and ammonium was synergetic, resulted in different inhibition for acetoclastic and hydrogenotrophic methanogenesis and syntrophic acetate oxidation, leading to pathway shift. Methane production from acetate was affected more by acetate than by ammonium until the ammonium concentration reached 6-7 g-N/L. When the ammonium concentration exceeded 6 g-N/L, ammonium inhibition was strengthened by the increased concentration of acetate. At a low acetate concentration (50 mmol/L), acetoclastic methanogenesis dominated, regardless of ammonium concentration. At higher acetate concentrations (150 and 250 mmol/L) and at low-medium ammonium levels (1-4 g-N/L), acetate was mainly degraded by acetoclastic methanogenesis, while residual acetate was degraded by a combination of acetoclastic methanogenesis and the syntrophic reaction of syntrophic acetate oxidization and hydrogenotrophic methanogenesis with the latter dominating at 250 mmol/L acetate. At high ammonium levels (6-7 g-N/L), the degradation of acetate in the 150 mmol/L treatment was firstly through a combination of acetoclastic methanogenesis and the syntrophic pathway and then gradually shifted to the syntrophic pathway, while the degradation of acetate in the 250 mmol/L treatment was completely by the syntrophic pathway.

  14. Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway.

    PubMed

    Lee, Kyung Mi; Kwon, Jung Yeon; Lee, Ki Won; Lee, Hyong Joo

    2009-01-15

    Although the health benefits of dietary antioxidants have been extensively studied, their potential negative effects remain unclear. L-Ascorbic acid 6-palmitate (AAP), a synthetic derivative of ascorbic acid (AA), is widely used as an antioxidant and preservative in foods, vitamins, drugs, and cosmetics. Previously, we found that AA exerted an antitumor effect by protecting inhibition of gap-junctional intercellular communication (GJIC), which is closely associated with tumor progression. In this study, we examined whether AAP, an amphipathic derivative of AA, has chemopreventive effects using a GJIC model. AAP and AA exhibited dose-dependent free radical-scavenging activities and inhibited hydrogen peroxide (H(2)O(2))-induced intracellular reactive oxygen species (ROS) production in normal rat liver epithelial cells. Unexpectedly, however, AAP did not protect against the inhibition of GJIC induced by H(2)O(2); instead, it inhibited GJIC synergistically with H(2)O(2). AAP inhibited GJIC in a dose-dependent and reversible manner. This inhibitory effect was not due to the conjugated lipid structure of AAP, as treatment with palmitic acid alone failed to inhibit GJIC under the same conditions. The inhibition of GJIC by AAP was restored in the presence of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126, but not in the presence of other signal inhibitors and antioxidant (PKC inhibitors, EGFR inhibitor, NADPH oxidase inhibitor, catalase, vitamin E, or AA), indicating the critical involvement of MEK signaling in the GJIC inhibitory activity of AAP. Phosphorylation of ERK and connexin 43 (Cx43) was observed following AAP treatment, and this was reversed by U0126. These results suggest that the AAP-induced inhibition of GJIC is mediated by the phosphorylation of Cx43 via activation of the MEK-ERK pathway. Taken together, our results indicate that AAP has a potent carcinogenic effect, and that the influence of dietary

  15. Selective Detection of Carbohydrates and Their Peptide Conjugates by ESI-MS Using Synthetic Quaternary Ammonium Salt Derivatives of Phenylboronic Acids

    NASA Astrophysics Data System (ADS)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  16. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    PubMed

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  17. The Synthetic Elicitor 3,5-Dichloroanthranilic Acid Induces NPR1-Dependent and NPR1-Independent Mechanisms of Disease Resistance in Arabidopsis1[W][OA

    PubMed Central

    Knoth, Colleen; Salus, Melinda S.; Girke, Thomas; Eulgem, Thomas

    2009-01-01

    Immune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis. PMID:19304930

  18. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis.

    PubMed

    Knoth, Colleen; Salus, Melinda S; Girke, Thomas; Eulgem, Thomas

    2009-05-01

    Immune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis.

  19. Assignment Of Hexuronic Acid Stereochemistry In Synthetic Heparan Sulfate Tetrasaccharides With 2-O-Sulfo Uronic Acids Using Electron Detachment Dissociation.

    PubMed

    Agyekum, Isaac; Patel, Anish B; Zong, Chengli; Boons, Geert-Jan; Amster, Jonathan

    2015-11-15

    The present work focuses on the assignment of uronic acid stereochemistry in heparan sulfate (HS) oligomers. The structural elucidation of HS glycosaminoglycans is the subject of considerable importance due to the biological and biomedical significance of this class of carbohydrates. They are highly heterogeneous due to their non-template biosynthesis. Advances in tandem mass spectrometry activation methods, particularly electron detachment dissociation (EDD), has led to the development of methods to assign sites of sulfo modification in glycosaminoglycan oligomers, but there are few reports of the assignment of uronic acid stereochemistry, necessary to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA). Whereas preceding studies focused on uronic acid epimers with no sulfo modification, the current work extends the assignment of the hexuronic acid stereochemistry to 2-O-sulfo uronic acid epimeric tetrasaccharides. The presence of a 2-O-sulfo group on the central uronic acid was found to greatly influence the formation of B3, C2, Z2, and Y1 ions in glucuronic acid and Y2 and (1,5)X2 for iduronic acid. The intensity of these peaks can be combined to yield a diagnostic ratios (DR), which can be used to confidently assign the uronic acid stereochemistry.

  20. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice.

    PubMed

    Tsai, Jui-He; Chi, Maggie M-Y; Schulte, Maureen B; Moley, Kelle H

    2014-02-01

    Embryo implantation and development requires the endometrial stromal cells (ESCs) to undergo decidualization. This differentiation process requires glucose utilization, and blockade of the pentose phosphate pathway inhibits decidualization of ESCs both in vitro and in vivo. Glucose and fatty acids are energy substrates for many cell types, and fatty acid beta-oxidation is critical for embryo implantation. Here, we investigated whether beta-oxidation is required for decidualization of ESCs. As assessed by marker gene expression, decidualization of human primary ESCs was blocked by reducing activity of carnitine calmitoyltransferase I, the rate-limiting enzyme in beta-oxidation, either by short hairpin RNA-mediated silencing or by treatment with the inhibitor etomoxir. Ranolazine (RAN), a partial beta-oxidation inhibitor, blocked early decidualization of a human ESC line. However, decidualization resumed after several days, most likely due to a compensatory up-regulation of GLUT1 expression and an increase in glucose metabolism. Simultaneous inhibition of the beta-oxidation pathway with RAN and the pentose phosphate pathway with glucosamine (GlcN) impaired in vitro decidualization of human ESCs more strongly than inhibition of either pathway alone. These findings were confirmed in murine ESCs in vitro, and exposure to RAN plus GlcN inhibited decidualization in vivo in a deciduoma model. Finally, intrauterine implantation of time-release RAN and GlcN pellets reduced pup number. Importantly, pup number returned to normal after the end of the pellet-active period. This work indicates that both fatty acids and glucose metabolism pathways are important for ESC decidualization, and suggests novel pathways to target for the design of future nonhormonal contraceptives.

  1. Plasmodium falciparum Field Isolates Commonly Use Erythrocyte Invasion Pathways That Are Independent of Sialic Acid Residues of Glycophorin A

    PubMed Central

    Okoyeh, Jude Nnaemeka; Pillai, C. R.; Chitnis, Chetan E.

    1999-01-01

    Erythrocyte invasion by malaria parasites is mediated by specific molecular interactions. Sialic acid residues of glycophorin A are used as invasion receptors by Plasmodium falciparum. In vitro invasion studies have demonstrated that some cloned P. falciparum lines can use alternate receptors independent of sialic acid residues of glycophorin A. It is not known if invasion by alternate pathways occurs commonly in the field. In this study, we used in vitro growth assays and erythrocyte invasion assays to determine the invasion phenotypes of 15 P. falciparum field isolates. Of the 15 field isolates tested, 5 multiply in both neuraminidase and trypsin-treated erythrocytes, 3 multiply in neuraminidase-treated but not trypsin-treated erythrocytes, and 4 multiply in trypsin-treated but not neuraminidase-treated erythrocytes; 12 of the 15 field isolates tested use alternate invasion pathways that are not dependent on sialic acid residues of glycophorin A. Alternate invasion pathways are thus commonly used by P. falciparum field isolates. Typing based on two polymorphic markers, MSP-1 and MSP-2, and two microsatellite markers suggests that only 1 of the 15 field isolates tested contains multiple parasite genotypes. Individual P. falciparum lines can thus use multiple invasion pathways in the field. These observations have important implications for malaria vaccine development efforts based on EBA-175, the P. falciparum protein that binds sialic acid residues of glycophorin A during invasion. It may be necessary to target parasite ligands responsible for the alternate invasion pathways in addition to EBA-175 to effectively block erythrocyte invasion by P. falciparum. PMID:10531229

  2. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    PubMed Central

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  3. Allosteric regulation of the discriminative responsiveness of retinoic acid receptor to natural and synthetic ligands by retinoid X receptor and DNA.

    PubMed

    Mouchon, A; Delmotte, M H; Formstecher, P; Lefebvre, P

    1999-04-01

    Transcriptional activation by retinoids is mediated through two families of nuclear receptors, all-trans-retinoic acid (RARs) and 9-cis retinoic acid receptors (RXRs). Conformationally restricted retinoids are used to achieve selective activation of RAR isotype alpha, beta or gamma, which reduces side effects in therapeutical applications. Synthetic retinoids mimic some of all-trans retinoic acid biological effects in vivo but interact differently with the ligand binding domain of RARalpha and induce distinct structural transitions of the receptor. In this report, we demonstrate that RAR-selective ligands have distinct quantitative activation properties which are reflected by their abilities to promote interaction of DNA-bound human RXRalpha (hRXRalpha)-hRARalpha heterodimers with the nuclear receptor coactivator (NCoA) SRC-1 in vitro. The hormone response element core motifs spacing defined the relative affinity of liganded heterodimers for two NCoAs, SRC-1 and RIP140. hRXRalpha activating function 2 was critical to confer hRARalpha full responsiveness but not differential sensitivity of hRARalpha to natural or synthetic retinoids. We also provide evidence showing that lysines located in helices 3 and 4, which define part of hRARalpha NCoA binding surface, contribute differently to (i) the transcriptional activity and (ii) the interaction of RXR-RAR heterodimers with SRC-1, when challenged by either natural or RAR-selective retinoids. Thus, ligand structure, DNA, and RXR exert allosteric regulations on hRARalpha conformation organized as a DNA-bound heterodimer. We suggest that the use of physically distinct NCoA binding interfaces may be important in controlling specific genes by conformationally restricted ligands.

  4. H11-H12 loop retinoic acid receptor mutants exhibit distinct trans-activating and trans-repressing activities in the presence of natural or synthetic retinoids.

    PubMed

    Lefebvre, B; Mouchon, A; Formstecher, P; Lefebvre, P

    1998-06-30

    Retinoids, such as the naturally occurring all-trans-retinoic acid (atRA) and synthetic ligand CD367 modulate ligand-dependent transcription through retinoic acid receptors (RARs). Retinoid binding to RAR is believed to trigger structural transitions in the ligand-binding domain (LBD), leading to helix H1 and helix H12 repositioning and coactivator recruitment and corepressor release. Here, we carried out a detailed mutagenesis analysis of the H11-H12 loop (designated the L box) to study its contribution to hRARalpha activation process. Point mutations that reduced transactivation by atRA also reduced atRA-induced transrepression of AP1 transcription, correlating ligand-induced activation and repression. However, a correlation was not observed with these mutations when tested with another ligand CD367, a synthetic agonist with binding properties identical to those of atRA. Transcription was strongly inhibited in the presence of CD367 for some mutants, thus leading to an inverse agonist activity of this ligand. None of these mutations significantly altered binding affinity for either ligand, indicating that altered transcription was not caused by altered ligand binding by these mutations. Although simple correlations with transcriptional activities were not found, these mutations were also characterized by altered ligand-induced structural transitions, which were distinct for the atRA-hRARalpha or CD367-hRARalpha complexes. These results indicate that amino acids in the L box are involved in specifying trans-repressive and trans-activating properties of the hRARalpha, and support the notion that different agonists induce distinct conformations in the LBD of the receptor.

  5. Allosteric Regulation of the Discriminative Responsiveness of Retinoic Acid Receptor to Natural and Synthetic Ligands by Retinoid X Receptor and DNA

    PubMed Central

    Mouchon, Arnaud; Delmotte, Marie-Hélène; Formstecher, Pierre; Lefebvre, Philippe

    1999-01-01

    Transcriptional activation by retinoids is mediated through two families of nuclear receptors, all-trans-retinoic acid (RARs) and 9-cis retinoic acid receptors (RXRs). Conformationally restricted retinoids are used to achieve selective activation of RAR isotype α, β or γ, which reduces side effects in therapeutical applications. Synthetic retinoids mimic some of all-trans retinoic acid biological effects in vivo but interact differently with the ligand binding domain of RARα and induce distinct structural transitions of the receptor. In this report, we demonstrate that RAR-selective ligands have distinct quantitative activation properties which are reflected by their abilities to promote interaction of DNA-bound human RXRα (hRXRα)-hRARα heterodimers with the nuclear receptor coactivator (NCoA) SRC-1 in vitro. The hormone response element core motifs spacing defined the relative affinity of liganded heterodimers for two NCoAs, SRC-1 and RIP140. hRXRα activating function 2 was critical to confer hRARα full responsiveness but not differential sensitivity of hRARα to natural or synthetic retinoids. We also provide evidence showing that lysines located in helices 3 and 4, which define part of hRARα NCoA binding surface, contribute differently to (i) the transcriptional activity and (ii) the interaction of RXR-RAR heterodimers with SRC-1, when challenged by either natural or RAR-selective retinoids. Thus, ligand structure, DNA, and RXR exert allosteric regulations on hRARα conformation organized as a DNA-bound heterodimer. We suggest that the use of physically distinct NCoA binding interfaces may be important in controlling specific genes by conformationally restricted ligands. PMID:10082574

  6. Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway.

    PubMed

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Nesme, Xavier; Lavire, Céline; Hommais, Florence

    2014-06-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)-CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.

  7. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  8. Allicin Alleviates Inflammation of Trinitrobenzenesulfonic Acid-Induced Rats and Suppresses P38 and JNK Pathways in Caco-2 Cells

    PubMed Central

    Li, Chen; Lun, Weijian; Zhao, Xinmei; Lei, Shan; Guo, Yandong; Ma, Jiayi

    2015-01-01

    Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin. PMID:25729217

  9. Action of Azotobacter vinelandii poly-beta-D-mannuronic acid C-5-epimerase on synthetic D-glucuronans.

    PubMed

    Chang, P S; Mukerjea, R; Fulton, D B; Robyt, J F

    2000-12-01

    Eleven different glucans (wheat starch, potato amylopectin, potato amylose, pullulan, alternan, regular comb dextran, alpha-cellulose, microcrystalline cellulose, CM-cellulose, chitin, and chitosan) that had their C-6 primary alcohol groups oxidized to carboxyl groups by reaction with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion (TEMPO), were reacted with Azotobacter vinelandii poly-beta-(1-->4)-D-mannuronic acid C-5-epimerase. All of the oxidized polysaccharides reacted with the C-5-epimerase, as evidenced by comparing: (1) differences in the relative viscosities; (2) differences in the carbazole reaction; (3) differences in their susceptibility to acid hydrolysis, and (4) differences in their ability to form calcium gels, before and after reaction. We further show the formation of L-iduronic acid from D-glucuronic acid for oxidized and epimerized amylose by 2D NOESY and COSY + 1H NMR.

  10. Isolation and dynamic expression of four genes involving in shikimic acid pathway in Camellia sinensis 'Baicha 1' during periodic albinism.

    PubMed

    Zhu, Xu-Jun; Zhao, Zhen; Xin, Hua-Hong; Wang, Ming-Le; Wang, Wei-Dong; Chen, Xuan; Li, Xing-Hui

    2016-10-01

    Flavonoids are the main flavor components and functional ingredients in tea, and the shikimic acid pathway is considered as one of the most important pathways in flavonoid biosynthesis, but little was known about the function of regulatory genes in the metabolism phenolic compounds in tea plant (Camellia sinensis), especially related genes in shikimic acid pathway. The dynamic changes of catechin (predominant flavonoid) contents were analyzed in this study, and four genes (CsPPT, CsDAHPS, CsSDH and CsCS) involving in shikimic acid pathway in C. sinensis albino cultivar 'Baicha 1' were cloned and characterized. The full-length cDNA sequences of these genes were obtained using reverse transcription-PCR and rapid amplification of cDNA ends. At the albinistic stage, the amounts of all catechins decreased to the lowest levels, when epigallocatechin gallate was the highest, whereas gallocatechin-3-O-gallate the lowest. Gene expression patterns analyzed by qRT-PCR showed that CsPPT and CsDAHPS were highly expressed in flowers and buds, while CsSDH and CsCS showed high expression levels in buds and leaves. It was also found that the transcript abundance of shikimic acid biosynthetic genes followed a tightly regulated biphasic pattern, and was affected by albinism. The transcript levels of CsPPT and CsDAHPS were decreased at albinistic stage followed elevated expression, whereas CsSDH and CsCS were increased only at re-greening stage. Taken together, these findings suggested that these four genes in C. sinensis may play different roles in shikimic acid biosynthesis and these genes may have divergent functions.

  11. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast.

    PubMed

    Staschke, Kirk A; Dey, Souvik; Zaborske, John M; Palam, Lakshmi Reddy; McClintick, Jeanette N; Pan, Tao; Edenberg, Howard J; Wek, Ronald C

    2010-05-28

    Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.

  12. The role of the acquisition methods in the analysis of natural and synthetic steroids and cholic acids by gas chromatography-mass spectrometry.

    PubMed

    Andrási, N; Helenkár, A; Vasanits-Zsigrai, A; Záray, Gy; Molnár-Perl, I

    2011-11-11

    An exhaustive GC-MS acquisition study was performed, for the simultaneous analysis of natural and synthetic steroids and cholic acids (in order to insert them into the last tierce of our multiresidue analysis system), such as androsterone, β-estradiol, transdehydroandro-sterone, transdehyroandrosterone, mestranol, dihydrotestosterone, ethinylestradiol, testosterone, norethisterone, estriol, 4-androstene-3,17-dione, gestodene, levonorgestrel, etonogestrel, coprostanol, progesterone, cholesterol, medroxyprogesterone-acetate, lithocholic acid, stigmasterol, cholic acid, chenodeoxycholic acid, β-sitosterol, ursodeoxycholic acid, 3-hydroxy-7-ketocholic acid and dehydrocholic acid, in total 26 compounds. As novelties to the field, for the trimethylsilyl (TMS) oxime ether/ester derivatives of steroids and cholic acids, at first, a tandem mass spectrometric (MS/MS), multiple reaction monitoring (MRM) type acquisition method has been developed in a single run; also for the first time, the three acquisition techniques, the full scan (FS), the selective ion monitoring (SIM), in our case the multiple ion monitoring (MIM) and the currently optimized MRM methods, have been compared; all three, in parallel, under strictly the same derivatization/instrumental conditions, both in matrix free solutions and municipal wastewater from two Hungarian wastewater treatment plants (WWTPs). Critical evaluation of the three acquisition protocols was collated on their analytical performances and validated under the same conditions. The data of six point calibration curves for FS, MIM and MRM methods, showed that both R² (0.9995, 0.9858, 0.9975) and RSD (5.3, 5.8, 5.0), for two parallel derivatizations, each injected three times, proved to be independent of the acquisition processes. Whereas, for the method limit of quantification (LOQ) and the instrument limit of quantification (ILQ) values showed considerable differences. LOQ data, were decreasing in the FS, MIM, MRM line (expressed in ng

  13. Quantitative extraction and concentration of synthetic water-soluble acid dyes from aqueous media using a quinine-chloroform solution

    SciTech Connect

    Kobayashi, F.; Ozawa, N.; Hanai, J.; Isobe, M.; Watabe, T.

    1986-12-01

    Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidic base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.

  14. Chlorogenic Acid Prevents Osteoporosis by Shp2/PI3K/Akt Pathway in Ovariectomized Rats

    PubMed Central

    Zuo, Hui Ling; Yao, Fen Fen; Ruan, Hui Bing; Xu, Jin; Song, Wei; Zhou, Yi Cheng; Wen, Shi Yao; Dai, Jiang Hua; Zhu, Mei Lan; Luo, Jun

    2016-01-01

    Cortex Eucommiae is used worldwide in traditional medicine, various constituents of Cortex Eucommiae, such as chlorogenic acid (CGA), has been reported to exert anti-osteoporosis activity in China, but the mechanism about their contribution to the overall activity is limited. The aims of this study were to determine whether chlorogenic acid can prevent estrogen deficiency-induced osteoporosis and to analyze the mechanism of CGA bioactivity. The effect of CGA on estrogen deficiency-induced osteoporosis was performed in vivo. Sixty female Sprague-Dawley rats were divided randomly among a sham-operated group and five ovariectomy (OVX) plus treatment subgroups: saline vehicle, 17α-ethinylestradiol (E2), or CGA at 9, 27, or 45 mg/kg/d. The rats’ femoral metaphyses were evaluated by micro-computed tomography (μCT). The mechanism of CGA bioactivity was investigated in vitro. Bone mesenchymal stem cells (BMSCs) were treated with CGA, with or without phosphoinositide 3-kinase (PI3K) inhibitor LY294002. BMSCs proliferation and osteoblast differentiation were assessed with 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and alkaline phosphatase, with or without Shp2 interfering RNA (RNAi). The results display that CGA at 27 and 45 mg/kg/day inhibited the decrease of bone mineral density (BMD) that induced by OVX in femur (p< 0.01), significantly promoted the levels of bone turnover markers, and prevented bone volume fraction (BV/TV), connectivity density (CoonD), trabecular number (Tb.N), trabecular thickness (Tb.Th) (all p< 0.01) to decrease and prevented the trabecular separation (Tb.Sp), structure model index (SMI)(both p< 0.01) to increase. CGA at 1 or 10 μM enhanced BMSC proliferation in a dose-dependent manner. CGA at 0.1 to 10 μM increased phosphorylated Akt (p-Akt) and cyclin D1. These effects were reversed by LY294002. CGA at 1 or 10 μM increased BMSC differentiation to osteoblasts (p< 0.01), Shp2 RNAi suppressed CGA-induced osteoblast

  15. Salicylic Acid Regulates Pollen Tip Growth through an NPR3/NPR4-Independent Pathway.

    PubMed

    Rong, Duoyan; Luo, Nan; Mollet, Jean Claude; Liu, Xuanming; Yang, Zhenbiao

    2016-11-07

    Tip growth is a common strategy for the rapid elongation of cells to forage the environment and/or to target to long-distance destinations. In the model tip growth system of Arabidopsis pollen tubes, several small-molecule hormones regulate their elongation, but how these rapidly diffusing molecules control extremely localized growth remains mysterious. Here we show that the interconvertible salicylic acid (SA) and methylated SA (MeSA), well characterized for their roles in plant defense, oppositely regulate Arabidopsis pollen tip growth with SA being inhibitory and MeSA stimulatory. The effect of SA and MeSA was independent of known NPR3/NPR4 SA receptor-mediated signaling pathways. SA inhibited clathrin-mediated endocytosis in pollen tubes associated with an increased accumulation of less stretchable demethylated pectin in the apical wall, whereas MeSA did the opposite. Furthermore, SA and MeSA alter the apical activation of ROP1 GTPase, a key regulator of tip growth in pollen tubes, in an opposite manner. Interestingly, both MeSA methylesterase and SA methyltransferase, which catalyze the interconversion between SA and MeSA, are localized at the apical region of pollen tubes, indicating of the tip-localized production of SA and MeSA and consistent with their effects on the apical cellular activities. These findings suggest that local generation of a highly diffusible signal can regulate polarized cell growth, providing a novel mechanism of cell polarity control apart from the one involving protein and mRNA polarization.

  16. Effects of linseed oil and natural or synthetic vitamin E supplementation in lactating ewes' diets on meat fatty acid profile and lipid oxidation from their milk fed lambs.

    PubMed

    Gallardo, B; Manca, M G; Mantecón, A R; Nudda, A; Manso, T

    2015-04-01

    Forty-eight Churra ewes with their new-born lambs were separated into four dietary treatments: Control (without added fat), LO (with 3% linseed oil), LO-Syn E (LO plus 400 mg/kg TMR of synthetic vitamin E) and LO-Nat E (LO plus 400 g/kg TMR of natural vitamin E). Linseed oil caused an increase in trans-11 C18:1 (VA), trans-10 C18:1, cis-9, trans-11 C18:2 (RA), trans-10, cis-12 C18:2 and C18:3 n-3 (ALA) in milk fat compared to the Control. The addition of vitamin E to the LO diets did not influence significantly the majority of milk fatty acids compared with the LO diet alone. Trans-10 C18:1, VA, RA, trans-10, cis-12 C18:2 and LA levels were higher in intramuscular lamb fat from treatments with linseed oil. No statistically significant differences were observed in these FA due to vitamin E supplementation or the type of vitamin E (synthetic vs. natural). Vitamin supplementation resulted in lipid oxidation levels below the threshold values for detection of rancidity in lamb meat.

  17. CYP2J2 Overexpression Ameliorates Hyperlipidemia via Increased Fatty Acid Oxidation Mediated by the AMPK Pathway

    PubMed Central

    Zhang, Shasha; Chen, Guangzhi; Li, Ning; Dai, Meiyan; Chen, Chen; Wang, Peihua; Tang, Huiru; Hoopes, Samantha L.; Zeldin, Darryl C.; Wang, Dao Wen; Xu, Xizhen

    2015-01-01

    Objective The study aims to investigate the effect of Cytochrome P450 2J2 (CYP2J2) overexpression on hyperlipidemia in mice and further to explore their effect on fatty acid oxidation in vivo and in vitro. Methods The effects and mechanisms of endothelial-specific CYP2J2 transgene (Tie2-CYP2J2-Tr) on lipid and fatty acids metabolism were investigated in high fat diet (HFD)-treated mice. HepG2, LO2 cells and HUVECs were exposed to 0.4 mM free fatty acid (FFA) for 24h and used as a model to investigate the roles of CYP2J2 overexpression and epoxyeicosatrienoic acids (EETs) on fatty acid β oxidation in vitro. Results Tie2-CYP2J2-Tr mice had significantly lower plasma and liver triglycerides, lower liver cholesterol and fatty acids, and the reduction in HFD-induced lipid accumulation. CYP2J2 overexpression resulted in activation of the hepatic and endothelial AMPKα, increased ACC phosphorylation, increased expression of CPT-1 and PPARα, which were all reduced by HFD treatment. In FFA-treated HepG2, LO2 and HUVECs, both CYP2J2 overexpression and EETs significantly decreased lipid accumulation and increased fatty acid oxidation via activating the AMPK and PPARα pathway. Conclusions Endothelial specific CYP2J2 overexpression alleviates HFD–induced hyperlipidemia in vivo. CYP2J2 ameliorates FFA-induced dyslipidemia via increased fatty acid oxidation mediated by the AMPK and PPARα pathway. PMID:26053032

  18. Amino acids trigger down-regulation of superoxide via TORC pathway in the midgut of Rhodnius prolixus

    PubMed Central

    Gandara, Ana Caroline P.; Oliveira, José Henrique M.; Nunes, Rodrigo D.; Goncalves, Renata L.S.; Dias, Felipe A.; Hecht, Fabio; Fernandes, Denise C.; Genta, Fernando A.; Laurindo, Francisco R.M.; Oliveira, Marcus F.; Oliveira, Pedro L.

    2016-01-01

    Sensing incoming nutrients is an important and critical event for intestinal cells to sustain life of the whole organism. The TORC is a major protein complex involved in monitoring the nutritional status and is activated by elevated amino acid concentrations. An important feature of haematophagy is that huge amounts of blood are ingested in a single meal, which results in the release of large quantities of amino acids, together with the haemoglobin prosthetic group, haem, which decomposes hydroperoxides and propagates oxygen-derived free radicals. Our previous studies demonstrated that reactive oxygen species (ROS) levels were diminished in the mitochondria and midgut of the Dengue fever mosquito, Aedes aegypti, immediately after a blood meal. We proposed that this mechanism serves to avoid oxidative damage that would otherwise be induced by haem following a blood meal. Studies also performed in mosquitoes have shown that blood or amino acids controls protein synthesis through TORC activation. It was already proposed, in different models, a link between ROS and TOR, however, little is known about TOR signalling in insect midgut nor about the involvement of ROS in this pathway. Here, we studied the effect of a blood meal on ROS production in the midgut of Rhodnius prolixus. We observed that blood meal amino acids decreased ROS levels in the R. prolixus midgut immediately after feeding, via lowering mitochondrial superoxide production and involving the amino acid-sensing TORC pathway. PMID:26945025

  19. Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen Bonded Co-Assembly of Aromatic Amino Acids.

    PubMed

    Xing, Pengyao; Li, Peizhou; Chen, Hongzhong; Hao, Aiyou; Zhao, Yanli

    2017-04-03

    Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at micro/nanoscale using a co-assembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form co-assembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to co-assemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.

  20. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.

    PubMed

    Morrison, Erin N; Knowles, Sarah; Hayward, Allison; Thorn, R Greg; Saville, Barry J; Emery, R J N

    2015-01-01

    The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed.

  1. Simple preparation of new [(18) F]F-labeled synthetic amino acid derivatives with two click reactions in one-pot and SPE purification.

    PubMed

    Yook, Cheol-Min; Lee, Sang Ju; Oh, Seung Jun; Ha, Hyun-Joon; Lee, Jong Jin

    2015-06-30

    New [(18) F]fluorinated 1,2,3-triazolyl amino acid derivatives were efficiently prepared from Huisgen 1,3-dipolar cycloaddition reactions, well known as click reaction. We developed two simultaneous click reactions in one-pot with a simple solid-phase extraction (SPE) purification method. [(18) F]fluoro-1-propyne was obtained at a 45% non-decay corrected radiochemical yield based on the [(18) F]fluoride ion. The one-pot and simultaneous two click reactions were performed with unprotected azido-alkyl amino acid, [(18) F]fluoro-1-propyne, and lipophilic additive alkyne to produce three synthetic amino acid derivatives, AMC-101 ([(18) F]-6a), AMC-102 ([(18) F]-6b), and AMC-103 ([(18) F]-6c) with 29%, 28%, and 24% of non-decay corrected radiochemical yields, respectively. All radiotracers indicated that radiochemical purities were >95% without any residual organic solvent. Our new method involving two click reactions in one-pot showed high radiochemical and chemical purity by easy removal of the residual precursor from the simultaneous two click reactions.

  2. Role of Stearic Acid in the Strain-Induced Crystallization of Crosslinked Natural Rubber and Synthetic Cis-1,4-Polyisoprene

    SciTech Connect

    Kohjiya,S.; Tosaka, M.; Furutani, M.; Ikeda, Y.; Toki, S.; Hsiao, B.

    2007-01-01

    Strain-induced crystallization of crosslinked natural rubber (NR) and its synthetic analogue, cis-1,4-polyisoprene (IR), both mixed with various amounts of stearic acid (SA), were investigated by time-resolved X-ray diffraction using a powerful synchrotron radiation source and simultaneous mechanical (tensile) measurement. No acceleration or retardation was observed on NR in spite of the increase of SA amount. Even the SA-free IR crystallized upon stretching, and the overall crystallization behavior of IR shifted to the larger strain ratio with increasing SA content. No difference due to the SA was detected in the deformation of crystal lattice by stress for both NR and IR. These results suggested that the extended network chains are effective for the initiation of crystallization upon stretching, while the role of SA is trivial. These behaviors are much different from their crystallization at low temperature by standing, where SA acts as a nucleating agent.

  3. Synthetic oils

    NASA Technical Reports Server (NTRS)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  4. Syntrophic exchange in synthetic microbial communities

    PubMed Central

    Mee, Michael T.; Collins, James J.; Church, George M.; Wang, Harris H.

    2014-01-01

    Metabolic crossfeeding is an important process that can broadly shape microbial communities. However, little is known about specific crossfeeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multimember, multidimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic crossfeeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine, and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher dimensions. In more complex communities, we find certain members exhibiting keystone species-like behavior that drastically impact the community dynamics. Based on comparative genomic analysis of >6,000 sequenced bacteria from diverse environments, we present evidence suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced crossfeeding to support synergistic growth across the biosphere. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current modeling approaches to describe the dynamic complexities underlying microbial ecosystems. This work sets the foundation for future endeavors to resolve key questions in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology. PMID:24778240

  5. Activity-induced convergence of APP and BACE-1 in acidic microdomains via an endocytosis-dependent pathway.

    PubMed

    Das, Utpal; Scott, David A; Ganguly, Archan; Koo, Edward H; Tang, Yong; Roy, Subhojit

    2013-08-07

    The convergence of APP (substrate) and BACE-1 (enzyme) is a rate-limiting, obligatory event triggering the amyloidogenic pathway-a key step in Alzheimer's disease (AD) pathology. However, as both APP/BACE-1 are highly expressed in brain, mechanisms precluding their unabated convergence are unclear. Exploring dynamic localization of APP/BACE-1 in cultured hippocampal neurons, we found that after synthesis via the secretory pathway, dendritic APP/BACE-1-containing vesicles are largely segregated in physiologic states. While BACE-1 is sorted into acidic recycling endosomes, APP is conveyed in Golgi-derived vesicles. However, upon activity induction-a known trigger of the amyloidogenic pathway-APP is routed into BACE-1-positive recycling endosomes via a clathrin-dependent mechanism. A partitioning/convergence of APP/BACE-1 vesicles is also apparent in control/AD brains, respectively. Considering BACE-1 is optimally active in an acidic environment, our experiments suggest that neurons have evolved trafficking strategies that normally limit APP/BACE-1 proximity and also uncover a pathway routing APP into BACE-1-containing organelles, triggering amyloidogenesis.

  6. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes.

    PubMed

    Mir, Rafia; Jallu, Shais; Singh, T P

    2015-06-01

    The aromatic compounds such as aromatic amino acids, vitamin K and ubiquinone are important prerequisites for the metabolism of an organism. All organisms can synthesize these aromatic metabolites through shikimate pathway, except for mammals which are dependent on their diet for these compounds. The pathway converts phosphoenolpyruvate and erythrose 4-phosphate to chorismate through seven enzymatically catalyzed steps and chorismate serves as a precursor for the synthesis of variety of aromatic compounds. These enzymes have shown to play a vital role for the viability of microorganisms and thus are suggested to present attractive molecular targets for the design of novel antimicrobial drugs. This review focuses on the seven enzymes of the shikimate pathway, highlighting their primary sequences, functions and three-dimensional structures. The understanding of their active site amino acid maps, functions and three-dimensional structures will provide a framework on which the rational design of antimicrobial drugs would be based. Comparing the full length amino acid sequences and the X-ray crystal structures of these enzymes from bacteria, fungi and plant sources would contribute in designing a specific drug and/or in developing broad-spectrum compounds with efficacy against a variety of pathogens.

  7. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    SciTech Connect

    Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min; Sohn, Jeongwon; Kim, Joon

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  8. Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats?

    PubMed

    Azzout-Marniche, Dalila; Gaudichon, Claire; Blouet, Clémence; Bos, Cécile; Mathé, Véronique; Huneau, Jean-François; Tomé, Daniel

    2007-04-01

    This paper provides molecular evidence for a liver glyconeogenic pathway, that is, a concomitant activation of hepatic gluconeogenesis and glycogenesis, which could participate in the mechanisms that cope with amino acid excess in high-protein (HP) fed rats. This evidence is based on the concomitant upregulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression, downregulation of glucose 6-phosphatase catalytic subunit (G6PC1) gene expression, an absence of glucose release from isolated hepatocytes and restored hepatic glycogen stores in the fed state in HP fed rats. These effects are mainly due to the ability of high physiological concentrations of portal blood amino acids to counteract glucagon-induced liver G6PC1 but not PEPCK gene expression. These results agree with the idea that the metabolic pathway involved in glycogen synthesis is dependent upon the pattern of nutrient availability. This nonoxidative glyconeogenic disposal pathway of gluconeogenic substrates copes with amino excess and participates in adjusting both amino acid and glucose homeostasis. In addition, the pattern of PEPCK and G6PC1 gene expression provides evidence that neither the kidney nor the small intestine participated in gluconeogenic glucose production under our experimental conditions. Moreover, the main glucose-6-phosphatase (G6Pase) isoform expressed in the small intestine is the ubiquitous isoform of G6Pase (G6PC3) rather than the G6PC1 isoform expressed in gluconeogenic organs.

  9. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  10. The kynurenine pathway and quinolinic acid: pivotal roles in HIV associated neurocognitive disorders.

    PubMed

    Kandanearatchi, Apsara; Brew, Bruce J

    2012-04-01

    This brief review will first consider HIV associated neurocognitive disorder followed by the current understanding of its neuropathogenesis. Against this background the role of the kynurenine pathway will be detailed. Evidence both direct and indirect will be discussed for involvement of the kynurenine pathway at each step in the neuropathogenesis of HIV associated neurocognitive disorder.

  11. Acid loading stimulates rat glomerular mesangial cells proliferation through Na(+)-H (+) exchanger isoform 1 (NHE1)-dependent pathway.

    PubMed

    Li, Kun; Su, Wei; Li, Man; Chen, Chang-Jie; Li, Yong-Yu; Lai, Lin-Yun; Zhang, Ming-Min; Liu, Shao-Jun; Fichna, Jakub; Peng, Ai; Hao, Chuan-Ming; Gu, Yong; Lin, Shan-Yan

    2013-06-01

    The role of metabolic acidosis in the progression of chronic kidney disease (CKD) remains unclear. The aim of the present study was to investigate the direct effects of acid loading on the proliferation of rat glomerular mesangial cells (GMCs) in vitro and the possible role of sodium-hydrogen ion exchanger isoform 1 (NHE1). Rat GMCs were treated with acidic medium as acid loading. Growth and proliferation of GMCs was studied by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, thymidine ((3)H-TdR) incorporation, and flow cytometry. NHE1 protein expression and activity were quantified by Western blot and dual wavelength epifluorescent illumination with 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein, respectively. 5-(N,N-dimethyl) amiloride hydrochloride (DMA), a specific inhibitor of NHE1, was used to investigate the possible involvement of NHE1 in the proliferation of GMCs. The MTT assay, (3)H-TdR incorporation, and cell cycle distribution analysis indicated that acid loading stimulated the proliferation of GMCs. Acid loading increased NHE1 activity, but had no effects on NHE1 expression at the protein level. The effects of acid loading on the proliferation of GMCs were inhibited by DMA. Acid loading induced GMC proliferation through NHE1-dependent pathways. Our findings may contribute to the understanding of metabolic acidosis in the progression of CKD.

  12. Biological degradation of 4-chlorobenzoic acid by a PCB-metabolizing bacterium through a pathway not involving (chloro)catechol.

    PubMed

    Adebusoye, Sunday A

    2017-02-01

    Cupriavidus sp. strain SK-3, previously isolated on polychlorinated biphenyl mixtures, was found to aerobically utilize a wide spectrum of substituted aromatic compounds including 4-fluoro-, 4-chloro- and 4-bromobenzoic acids as a sole carbon and energy source. Other chlorobenzoic acid (CBA) congeners such as 2-, 3-, 2,3-, 2,5-, 3,4- and 3,5-CBA were all rapidly transformed to respective chlorocatechols (CCs). Under aerobic conditions, strain SK-3 grew readily on 4-CBA to a maximum concentration of 5 mM above which growth became impaired and yielded no biomass. Growth lagged significantly at concentrations above 3 mM, however chloride elimination was stoichiometric and generally mirrored growth and substrate consumption in all incubations. Experiments with resting cells, cell-free extracts and analysis of metabolite pools suggest that 4-CBA was metabolized in a reaction exclusively involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoic acid, which was then hydroxylated to protocatechuic acid (PCA) and subsequently metabolized via the β-ketoadipate pathway. When strain SK-3 was grown on 4-CBA, there was gratuitous induction of the catechol-1,2-dioxygenase and gentisate-1,2-dioxygenase pathways, even if both were not involved in the metabolism of the acid. While activities of the modified ortho- and meta-cleavage pathways were not detectable in all extracts, activity of PCA-3,4-dioxygenase was over ten-times higher than those of catechol-1,2- and gentisate-1,2-dioxygenases. Therefore, the only reason other congeners were not utilized for growth was the accumulation of CCs, suggesting a narrow spectrum of the activity of enzymes downstream of benzoate-1,2-dioxygenase, which exhibited affinity for a number of substituted analogs, and that the metabolic bottlenecks are either CCs or catabolites of the modified ortho-cleavage metabolic route.

  13. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  14. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  15. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides.

    PubMed

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-11

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  16. Folic Acid Is Able to Polarize the Inflammatory Response in LPS Activated Microglia by Regulating Multiple Signaling Pathways

    PubMed Central

    Salvatore, Rosaria; Porro, Chiara; Trotta, Teresa

    2016-01-01

    We investigated the ability of folic acid to modulate the inflammatory responses of LPS activated BV-2 microglia cells and the signal transduction pathways involved. To this aim, the BV-2 cell line was exposed to LPS as a proinflammatory response inducer, in presence or absence of various concentrations of folic acid. The production of nitric oxide (NO) was determined by the Griess test. The levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-10 were determined by ELISA. Inducible NO synthase (iNOS), nuclear transcription factor-kappa B (NF-κB) p65, MAPKs protein, and suppressors of cytokine signaling (SOCS)1 and SOCS3 were analyzed by western blotting. TNF-α and IL-1β, as well as iNOS dependent NO production, resulted significantly inhibited by folic acid pretreatment in LPS-activated BV-2 cells. We also observed that folic acid dose-dependently upregulated both SOCS1 and SOCS3 expression in BV-2 cells, leading to an increased expression of the anti-inflammatory cytokine IL-10. Finally, p-IκBα, which indirectly reflects NF-κB complex activation, and JNK phosphorylation resulted dose-dependently downregulated by folic acid pretreatment of LPS-activated cells, whereas p38 MAPK phosphorylation resulted significantly upregulated by folic acid treatment. Overall, these results demonstrated that folic acid was able to modulate the inflammatory response in microglia cells, shifting proinflammatory versus anti-inflammatory responses through regulating multiple signaling pathways. PMID:27738387

  17. Glycyrrhizic acid attenuates CCl4-induced hepatocyte apoptosis in rats via a p53-mediated pathway

    PubMed Central

    Guo, Xiao-Ling; Liang, Bo; Wang, Xue-Wei; Fan, Fu-Gang; Jin, Jing; Lan, Rui; Yang, Jing-Hui; Wang, Xiao-Chun; Jin, Lei; Cao, Qin

    2013-01-01

    AIM: To investigate the effect of glycyrrhizic acid (GA) on carbon tetrachloride (CCl4)-induced hepatocyte apoptosis in rats via a p53-dependent mitochondrial pathway. METHODS: Forty-five male Sprague-Dawley rats were randomly and equally divided into three groups, the control group, the CCl4 group, and the GA treatment group. To induce liver fibrosis in this model, rats were given a subcutaneous injection of a 40% solution of CCl4 in olive oil at a dose of 0.3 mL/100 g body weight biweekly for 8 wk, while controls received the same isovolumetric dose of olive oil by hypodermic injection, with an initial double-dose injection. In the GA group, rats were also treated with a 40% solution of CCl4 plus 0.2% GA solution in double distilled water by the intraperitoneal injection of 3 mL per rat three times a week from the first week following previously published methods, with modifications. Controls were given the same isovolumetric dose of double distilled water. Liver function parameters, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Pathologic changes in the liver were detected by hematoxylin and eosin staining. Collagen fibers were evaluated by Sirius red staining. Hepatocyte apoptosis was investigated using the terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) assay and the cleaved caspase-3 immunohistochemistry assay. The expression levels of p53 and apoptosis-related proteins were evaluated by immunohistochemistry or Western blotting analysis. RESULTS: After 8 wk of treatment, GA significantly reduced serum activity of ALT (from 526.7 ± 57.2 to 342 ± 44.8, P < 0.05) and AST (from 640 ± 33.7 to 462.8 ± 30.6, P < 0.05), attenuated the changes in liver histopathology and reduced the staging score (from 3.53 ± 0.74 to 3.00 ± 0.76, P < 0.05) in CCl4-treated rats. GA markedly reduced the positive area of Sirius red and the ratio of the hepatic fibrotic region (from 7

  18. A tandem mass spectrometric study of bile acids: interpretation of fragmentation pathways and differentiation of steroid isomers.

    PubMed

    Qiao, Xue; Ye, Min; Liu, Chun-fang; Yang, Wen-zhi; Miao, Wen-juan; Dong, Jing; Guo, De-an

    2012-02-01

    Bile acids are steroids with a pentanoic acid substituent at C-17. They are the terminal products of cholesterol excretion, and play critical physiological roles in human and animals. Bile acids are easy to detect but difficult to identify by using mass spectrometry due to their poly-ring structure and various hydroxylation patterns. In this study, fragmentation pathways of 18 free and conjugated bile acids were interpreted by using tandem mass spectrometry. The analyses were conducted on ion trap and triple quadrupole mass spectrometers. Upon collision-induced dissociation, the conjugated bile acids could cleave into glycine or taurine related fragments, together with the steroid skeleton. Fragmentations of free bile acids were further elucidated, especially by atmospheric pressure chemical ionization mass spectrometry in positive ion mode. Aside from universally observed neutral losses, eliminations occurred on bile acid carbon rings were proposed for the first time. Moreover, four isomeric 5β-cholanic acid hydroxyl derivatives (3α,6α-, 3α,7β-, 3α,7α-, and 3α,12α-) were differentiated using electrospray ionization in negative ion mode: 3α,7β-OH substituent inclined to eliminate H(2)O and CH(2)O(2) groups; 3α,6α-OH substituent preferred neutral loss of two H(2)O molecules; 3α,12α-OH substituent apt to lose the carboxyl in the form of CO(2) molecule; and 3α,7α-OH substituent exhibited no further fragmentation after dehydration. This study provided specific interpretation for mass spectra of bile acids. The results could contribute to bile acid analyses, especially in clinical assays and metabonomic studies.

  19. Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials.

    PubMed

    Opiso, Einstine; Sato, Tsutomu; Yoneda, Tetsuro

    2009-10-15

    Pollution caused by boric acid and toxic anions such as As(V), Cr(VI) and Se(VI) is hazardous to human health and environment. The sorption characteristics of these environmentally significant ionic species on allophane-like nanoparticles were investigated in order to determine whether allophane can reduce their mobility in the subsurface environment at circum-neutral pH condition. Solutions containing 100 or 150 mmol of AlCl(3)x6H(2)O were mixed to 100 mmol of Na(4)SiO(4) and the pH were adjusted to 6.4+/-0.3. The mineral suspensions were shaken for 1h and incubated at 80 degrees C for 5 days. Appropriate amounts of As, B, Cr and Se solutions were added separately during and after allophane precipitation. The results showed that As(V) and boric acid can be irreversibly fixed during co-precipitation in addition to surface adsorption. However, Cr(VI) and Se(VI) retention during and after allophane precipitation is mainly controlled by surface adsorption. The structurally fixed As(V) and boric acid were more resistant to release than those bound on the surface. The sorption characteristics of oxyanions and boric acid were also influenced by the final Si/Al molar ratio of allophane in which Al-rich allophane tend to have higher uptake capacity. The overall results of this study have demonstrated the role of allophane-like nanoparticles and the effect of its Si/Al ratio on As, B, Cr and Se transport processes in the subsurface environment.

  20. Synthetic, structural and biological studies of the ubiquitin system: synthesis and crystal structure of an analogue containing unnatural amino acids.

    PubMed Central

    Love, S G; Muir, T W; Ramage, R; Shaw, K T; Alexeev, D; Sawyer, L; Kelly, S M; Price, N C; Arnold, J E; Mee, M P; Mayer, R J

    1997-01-01

    Ubiquitin is a 76-amino acid protein involved in the targeting for destruction of proteins in the cell. The protein can readily be synthesized chemically affording an extra dimension to studies of protein stability. Ubiquitin with various modifications to the hydrophobic core has been synthesized. In particular, two core amino acids have been replaced by aminobutyric acid (Val-26) and norvaline (for Ile-30) and the product crystallized. The refined crystal structure shows an overall contraction of the molecule and the side chain of Nva-30 rotates relative to Ile-30. However, the side chain rotation is not sufficient to compensate for the effect of the loss of the methyl group and hence a small cavity is introduced into the structure, which decreases the stability of the protein. The biological behaviour of the modified protein is unaltered. The observed changes in stability are of the magnitude expected for the removal of methyl groups from the hydrophobic core of a protein. Interestingly, the effect appears to be independent of the position of the removed methyl group. The intact structure, but not its stability, is important for recognition by the biological conjugating system. PMID:9169606

  1. Chlorogenic Acid Improves Late Diabetes through Adiponectin Receptor Signaling Pathways in db/db Mice

    PubMed Central

    Jin, Shasha; Chang, Cuiqing; Zhang, Lantao; Liu, Yang; Huang, Xianren; Chen, Zhimin

    2015-01-01

    The aim of this study was to examine the effects of chlorogenic acid (CGA) on glucose and lipid metabolism in late diabetic db/db mice, as well as on adiponectin receptors and their signaling molecules, to provide evidence for CGA in the prevention of type 2 diabetes. We randomly divided 16 female db/db mice into db/db-CGA and db/db-control (CON) groups equally; db/m mice were used as control mice. The mice in both the db/db-CGA and db/m-CGA groups were administered 80 mg/kg/d CGA by lavage for 12 weeks, whereas the mice in both CON groups were given equal volumes of phosphate-buffered saline (PBS) by lavage. At the end of the intervention, we assessed body fat and the parameters of glucose and lipid metabolism in the plasma, liver and skeletal muscle tissues as well as the levels of aldose reductase (AR) and transforming growth factor-β1 (TGF-β1) in the kidneys and measured adiponectin receptors and the protein expression of their signaling molecules in liver and muscle tissues. After 12 weeks of intervention, compared with the db/db-CON group, the percentage of body fat, fasting plasma glucose (FPG) and glycosylated hemoglobin (HbA1c) in the db/db-CGA group were all significantly decreased; TGF-β1 protein expression and AR activity in the kidney were both decreased; and the adiponectin level in visceral adipose was increased. The protein expression of adiponectin receptors (ADPNRs), the phosphorylation of AMP-activated protein kinase (AMPK) in the liver and muscle, and the mRNA and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) in the liver were all significantly greater. CGA could lower the levels of fasting plasma glucose and HbA1c during late diabetes and improve kidney fibrosis to some extent through the modulation of adiponectin receptor signaling pathways in db/db mice. PMID:25849026

  2. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica

    PubMed Central

    Li, Qingyuan; Lei, Sheng; Du, Kebing; Li, Lizhi; Pang, Xufeng; Wang, Zhanchang; Wei, Ming; Fu, Shao; Hu, Limin; Xu, Lin

    2016-01-01

    Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of ‘Jiangxue’, a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants. PMID:27819341

  3. Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-(gamma)-glutamic acid production by Bacillus subtilis BL53.

    PubMed

    de Cesaro, Alessandra; da Silva, Suse Botelho; Ayub, Marco Antônio Záchia

    2014-09-01

    The aims of this study were to evaluate the effects of the addition of metabolic precursors and polydimethylsiloxane (PDMS) as an oxygen carrier to cultures of Bacillus subtilis BL53 during the production of γ-PGA. Kinetics analyses of cultivations of different media showed that B. subtilis BL53 is an exogenous glutamic acid-dependent strain. When the metabolic pathway precursors of γ-PGA synthesis, L-glutamine and a-ketoglutaric acid, were added to the culture medium, production of the biopolymer was increased by 20 % considering the medium without these precursors. The addition of 10 % of the oxygen carrier PDMS to cultures caused a two-fold increase in the volumetric oxygen mass transfer coefficient (kLa), improving γ-PGA production and productivity. Finally, bioreactor cultures of B. subtilis BL53 adopting the combination of optimized medium E, added of glutamine, α-ketoglutaric acid, and PDMS, showed a productivity of 1 g L(-1) h(-1) of g-PGA after only 24 h of cultivation. Results of this study suggest that the use of metabolic pathway precursors glutamine and a-ketolgutaric acid, combined with the addition of PDMS as an oxygen carrier in bioreactors, can improve γ-PGA production and productivity by Bacillus strains .

  4. Synthetic polyphosphate inhibits endogenous coagulation and platelet aggregation in vitro

    PubMed Central

    Yang, Xiaoyang; Wan, Mengjie; Liang, Ting; Peng, Minyuan; Chen, Fangping

    2017-01-01

    Platelet-derived polyphosphate has previously been indicated to induce coagulation. However, industrially synthesized polyphosphate has been found to have different effects from those of the platelet-derived form. The present study investigated whether synthetic sodium polyphosphate inhibits coagulation using routine coagulation tests and thromboelastography. Synthetic polyphosphate was found to inhibit adenosine diphosphate-, epinephrine-, arachidonic acid-, ristocetin-, thrombin-, oxytocin- and pituitrin-induced platelet aggregation. The effects of synthetic polyphosphate in clotting inhibition were revealed by the analysis of clotting factor activity and platelet aggregation tests. Synthetic polyphosphate may inhibit platelet aggregation by reducing platelet calcium levels, as indicated by the results of flow cytometric analysis and high-throughput fluorescent screening. Furthermore, analysis of thromboxane (TX)B2 by ELISA indicated that synthetic polyphosphate reduces platelet aggregation by inhibiting the TXA2 signaling pathway. In conclusion, synthetic polyphosphate inhibits clotting factor activity and endogenous coagulation by reducing the levels of calcium ions and TXA2 to curb platelet aggregation. PMID:28123708

  5. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    PubMed Central

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application. PMID:27148319

  6. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    PubMed Central

    Song, Geun C.; Choi, Hye K.; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen. PMID:26500665

  7. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    PubMed

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  8. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  9. Boosting functionality of synthetic DNA circuits with tailored deactivation

    PubMed Central

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-01-01

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology. PMID:27845324

  10. Boosting functionality of synthetic DNA circuits with tailored deactivation.

    PubMed

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-11-15

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology.

  11. The role of hydrogen-bonding interactions in acidic sugar reaction pathways.

    PubMed

    Qian, Xianghong; Johnson, David K; Himmel, Michael E; Nimlos, Mark R

    2010-09-03

    Previously, theoretical multiple sugar (beta-d-xylose and beta-d-glucose) reaction pathways were discovered that depended on the initial protonation site on the sugar molecules using Car-Parrinello-based molecular dynamics (CPMD) simulations [Qian, X. H.; Nimlos, M. R.; Davis, M.; Johnson, D. K.; Himmel, M. E. Carbohydr. Res.2005, 340, 2319-2327]. In addition, simulation results showed that water molecules could participate in the sugar reactions, thus altering the reaction pathways. In the present study, the temperature and water density effects on the sugar degradation pathways were investigated with CPMD. We found that changes in both temperature and water density could profoundly affect the mechanisms and pathways. We attributed these effects to both the strength of hydrogen bonding and proton affinity of water.

  12. The inhibitory effects of carnosic acid on cervical cancer cells growth by promoting apoptosis via ROS-regulated signaling pathway.

    PubMed

    Su, Ke; Wang, Chun-Fang; Zhang, Ying; Cai, Yu-Jie; Zhang, Yan-Yan; Zhao, Qian

    2016-08-01

    Cervical cancer has been the fourth most common cancer killing many women across the world. Carnosic acid (CA), as a phenolic diterpene, has been suggested to against cancer, exerting protective effects associated with inflammatory cytokines. It is aimed to demonstrate the therapeutic role of carnosic acid against cervical cancer and indicate its underlying molecular mechanisms. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was performed to assess the possible anti-proliferative effects of carnosic acid. And also, colony formation was used to further estimate carnosic acid's ability in suppressing cervical cancer cells proliferation. Flow cytometry assays were performed here to indicate the alterations of cervical cancer cells cycle and the development of apoptosis. Western blot assays and RT-PCR were also applied to clarify the apoptosis-associated signaling pathways affected by reactive oxygen species (ROS) generation. And immunofluorescence was used to detect ROS-positive cells. In vivo experiments, CaSki xenograft model samples of nude mice were involved to further elucidate the effects of carnosic acid. In our results, we found that carnosic acid exerted anti-tumor ability in vitro supported by up-regulation of apoptosis and ROS production in cervical cancer cells. Also, acceleration of ROS led to the phospharylation of (c-Jun N-terminal kinase (JNK) and its-related signals, as well as activation of Endoplasmic Reticulum (ER) stress, promoting the progression of apoptosis via stimulating Caspase3 expression. The development and growth of xenograft tumors in nude mice were found to be inhibited by the administration of carnosic acid for five weeks. And the suppressed role of carnosic acid in proliferation of cervical cancer cells and apoptosis of nude mice with tumor tissues were observed in our study. Taken together, our data indicated that carnosic acid resulted in apoptosis both in vitro and vivo experiments via promoting ROS and

  13. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.

    PubMed

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication.

  14. The aspartate-family pathway of plants: linking production of essential amino acids with energy and stress regulation.

    PubMed

    Galili, Gad

    2011-02-01

    The Asp family pathway of plants is highly important from a nutritional standpoint because it leads to the synthesis of the four essential amino acids Lys, Thr, Met and Ile. These amino acids are not synthesized by human and its monogastric livestock and should be supplemented in their diets. Among the Asp-family amino acids, Lys is considered as the nutritionally most important essential amino acid because its level is most limiting in cereal grains, representing the largest source of plant foods and feeds worldwide. Metabolic engineering approaches led to significant increase in Lys level in seeds by enhancing its synthesis and reducing its catabolism. However, results from the model plant Arabidopsis showed that this approach may retard seed germination due to a major negative effect on the levels of a number of TCA cycle metabolites that associate with cellular energy. In the present review, we discuss the regulatory metabolic link of the Asp-family pathway with the TCA cycle and its biological significance upon exposure to stress conditions that cause energy deprivation. In addition, we also discuss how deep understanding of the regulatory metabolic link of the Asp-family pathway with energy and stress regulation can be used to improve Lys level in seeds of important crop species, minimizing the interference with the cellular energy status and plant-stress interaction. This review thus provides an example showing how deep understanding the inter-regulation of metabolism with plant stress physiology can lead to successful nutritional improvements with minimal negative effect on plant growth and response to stressful environments.

  15. Naphthene upgrading with pillared synthetic clay catalysts

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1995-12-31

    Catalytic hydrotreatment of methylcyclohexane was investigated to model upgrading of coal-derived naphthenes. Nickel-substituted synthetic mica montmorillonite (NiSMM), alumina-pillared NiSMM, and zirconia-pillared NiSMM were prepared and tested for hydrocracking and hydroisomerization of mediylcyclohexane. Infrared and thermal desorption studies of the pyridine-adsorbed catalysts indicated the presence of Lewis as well as Bronsted acid sites. Total acidity and surface area increased with pillaring of NiSMM with polyoxy aluminum and polyoxy zirconium cations. Most of the products were branched alkanes (isoparaffins). These compositions are highly desirable for environmentally acceptable transportation fuels. Furthermore, dehydrogenation was not a major pathway, as indicated by the minimal formation of aromatic hydrocarbons, coke, or other oligomeric materials. This paper describes the effect of various operating conditions, which included reaction temperature, contact time, hydrogen pressure, and catalyst on the product distribution.

  16. Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile

    PubMed Central

    Volkmann, Harriet; Imianovsky, Ulisses; Oliveira, Jorge L.B.; Sant’Anna, Ernani S.

    2008-01-01

    Arthrospira (Spirulina) platensis was cultivated in laboratory under controlled conditions (30°C, photoperiod of 12 hours light/dark provided by fluorescent lamps at a light intensity of 140 μmol photons.m-2.s-1 and constant bubbling air) in three different culture media: (1) Paoletti medium (control), (2) Paoletti supplemented with 1 g.L-1 NaCl (salinated water) and (3) Paoletti medium prepared with desalinator wastewater. The effects of these treatments on growth, protein content and amino acid profile were measured. Maximum cell concentrations observed in Paoletti medium, Paoletti supplemented with salinated water or with desalinator wastewater were 2.587, 3.545 and 4.954 g.L-1, respectively. Biomass in medium 3 presented the highest protein content (56.17%), while biomass in medium 2 presented 48.59% protein. All essential amino acids, except lysine and tryptophan, were found in concentrations higher than those requiried by FAO. PMID:24031187

  17. Synthetic Cyclolipopeptides Selective against Microbial, Plant and Animal Cell Targets by Incorporation of D-Amino Acids or Histidine

    PubMed Central

    Vilà, Sílvia; Badosa, Esther; Montesinos, Emilio; Planas, Marta; Feliu, Lidia

    2016-01-01

    Cyclolipopeptides derived from the antimicrobial peptide c(Lys-Lys-Leu-Lys-Lys-Phe-Lys-Lys-Leu-Gln) (BPC194) were prepared on solid-phase and screened against four plant pathogens. The incorporation at Lys5 of fatty acids of 4 to 9 carbon atoms led to active cyclolipopeptides. The influence on the antimicrobial activity of the Lys residue that is derivatized was also evaluated. In general, acylation of Lys1, Lys2 or Lys5 rendered the sequences with the highest activi