Science.gov

Sample records for acid tga-capped cdte

  1. Photo-induced interaction of thioglycolic acid (TGA)-capped CdTe quantum dots with cyanine dyes

    NASA Astrophysics Data System (ADS)

    Abdelbar, Mostafa F.; Fayed, Tarek A.; Meaz, Talaat M.; Ebeid, El-Zeiny M.

    2016-11-01

    The photo-induced interaction of three different sizes of thioglycolic acid (TGA)-capped CdTe quantum dots (CdTe QDs) with two monomethine cyanine dyes belonging to the thiazole orange (TO) family has been studied. Positively charged cyanines interact with QDs surface which is negatively charged due to capping agent carboxylate ions. The energy transfer parameters including Stern-Volmer constant, Ksv, number of binding sites, n, quenching sphere radius, r, the critical energy transfer distance, R0, and energy transfer efficiencies, E have been calculated. The effect of structure and the number of aggregating molecules have been studied as a function of CdTe QDs particle size. Combining organic and inorganic semiconductors leads to increase of the effective absorption cross section of the QDs which can be utilized in novel nanoscale designs for light-emitting, photovoltaic and sensor applications. A synthesized triplet emission of the studied dyes was observed using CdTe QDs as donors and this is expected to play a potential role in molecular oxygen sensitization and in photodynamic therapy (PDT) applications.

  2. Photo-induced interaction of thioglycolic acid (TGA)-capped CdTe quantum dots with cyanine dyes.

    PubMed

    Abdelbar, Mostafa F; Fayed, Tarek A; Meaz, Talaat M; Ebeid, El-Zeiny M

    2016-11-01

    The photo-induced interaction of three different sizes of thioglycolic acid (TGA)-capped CdTe quantum dots (CdTe QDs) with two monomethine cyanine dyes belonging to the thiazole orange (TO) family has been studied. Positively charged cyanines interact with QDs surface which is negatively charged due to capping agent carboxylate ions. The energy transfer parameters including Stern-Volmer constant, Ksv, number of binding sites, n, quenching sphere radius, r, the critical energy transfer distance, R0, and energy transfer efficiencies, E have been calculated. The effect of structure and the number of aggregating molecules have been studied as a function of CdTe QDs particle size. Combining organic and inorganic semiconductors leads to increase of the effective absorption cross section of the QDs which can be utilized in novel nanoscale designs for light-emitting, photovoltaic and sensor applications. A synthesized triplet emission of the studied dyes was observed using CdTe QDs as donors and this is expected to play a potential role in molecular oxygen sensitization and in photodynamic therapy (PDT) applications. PMID:27267278

  3. Fluorescence Determination of Warfarin Using TGA-capped CdTe Quantum Dots in Human Plasma Samples.

    PubMed

    Dehbozorgi, A; Tashkhourian, J; Zare, S

    2015-11-01

    In this study, some effort has been performed to provide low temperature, less time consuming and facile routes for the synthesis of CdTe quantum dots using ultrasound and water soluble capping agent thioglycolic acid. TGA-capped CdTe quantum dots were characterized through x-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible and fluorescence spectroscopy. The prepared quantum dots were used for warfarin determination based on the quenching of the fluorescence intensity in aqueous solution. Under the optimized conditions, the linear range of quantum dots fluorescence intensity versus the concentration of warfarin was 0.1-160.0 μM, with the correlation coefficient of 0.9996 and a limit of detection of 77.5 nM. There was no interference to coexisting foreign substances. The selectivity of the sensor was also tested and the results show that the developed method possesses a high selectivity for warfarin. PMID:26477838

  4. A Simple Fluorescence Quenching Method for the Determination of Vanillin Using TGA-capped CdTe/ZnS Nanoparticles as Probes.

    PubMed

    Li, Li; Zhang, Qiaolin; Ding, Yaping; Lu, Yaxiang; Cai, Xiaoyong; Yu, Lurong

    2015-07-01

    Based on the quenching of the fluorescence intensity of thioglycolic acid (TGA)-capped core-shell CdTe/ZnS nanoparticles (NPs) by vanillin, a novel, simple and rapid method for the determination of vanillin was proposed. In aqueous medium, the functionalized core-shell CdTe/ZnS NPs were successfully synthesized with TGA as the capping ligand. TGA-capped core-shell CdTe/ZnS NPs were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Factors affecting the vanillin detection were investigated, and the optimum conditions were also determined. Under the optimum conditions, the relative fluorescence intensity of CdTe/ZnS NPs was linearly proportional to vanillin over a concentration range from 9.4 × 10(-7) to 5.2 × 10(-4) M with a correlation coefficient of 0.998 and a detection limit of 2.6 × 10(-7) M. The proposed method was also employed to detect trace vanillin in cookies with satisfactory results. PMID:25911548

  5. CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP.

    PubMed

    Shamsipur, Mojtaba; Farzin, Leila; Tabrizi, Mahmoud Amouzadeh; Shanehsaz, Maryam

    2016-12-01

    A "signal off" voltammetric aptasensor was developed for the sensitive and selective detection of ultra-low levels of adenosine triphosphate (ATP). For this purpose, a new strategy based on the principle of recognition-induced switching of aptamers from DNA/DNA duplex to DNA/target complex was designed using thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) as the signal amplifying nano-platforms. Owing to the small size, high surface-to-volume ratio and good conductivity, quantum dots were immobilized on the electrode surface for signal amplification. In this work, methylene blue (MB) adsorbed to DNA was used as a sensitive redox reporter. The intensity of voltammetric signal of MB was found to decrease linearly upon ATP addition over a concentration range of 0.1nM to 1.6μM with a correlation coefficient of 0.9924. Under optimized conditions, the aptasensor was able to selectively detect ATP with a limit of detection of 45pM at 3σ. The results also demonstrated that the QDs-based amplification strategy could be feasible for ATP assay and presented a potential universal method for other small biomolecular aptasensors. PMID:27612836

  6. A selective determination of copper ions in water samples based on the fluorescence quenching of thiol-capped CdTe quantum dots.

    PubMed

    Nurerk, Piyaluk; Kanatharana, Proespichaya; Bunkoed, Opas

    2016-03-01

    CdTe quantum dots (QDs) capped with different stabilizers, i.e. thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA) and glutathione (GSH) were investigated as fluorescent probes for the determination of Cu(2+) . The stabilizer was shown to play an important role in both the sensitivity and selectivity for the determination of Cu(2+) . TGA-capped CdTe QDs showed the highest sensitivity, followed by the MPA and GSH-capped CdTe QDs, respectively. The TGA- and MPA-capped CdTe QDs were not selective for Cu(2+) that was affected by Ag(+) . The GSH-capped CdTe QDs were insensitive to Ag(+) and were used to determine Cu(2+) in water samples. Under optimal conditions, quenching of the fluorescence intensity (F0 /F) increased linearly with the concentration of Cu(2+) over a range of 0.10-4.0 µg/mL and the detection limit was 0.06 µg/mL. The developed method was successfully applied to the determination of Cu(2+) in water samples. Good recoveries of 93-104%, with a relative standard deviation of < 6% demonstrated that the developed simple method was accurate and reliable. The quenching mechanisms were also described. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26250550

  7. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes.

    PubMed

    Jin, Dongri; Seo, Min-Ho; Huy, Bui The; Pham, Quoc-Thai; Conte, Maxwell L; Thangadurai, Daniel; Lee, Yong-Ill

    2016-03-15

    A convenient enzymatic optical method for uric acid detection was developed based on the fluorescence quenching of ligand-capped CdTe nanoparticles by H2O2 which was generated from the enzymatic reaction of uric acid. The interactions between the CdTe nanoparticles capped with different ligands (glutathione, 3-mercaptopropionic acid, and thioglycerol) and H2O2 were investigated. The fluorescence quenching studies of GSH-capped CdTe nanoparticles demonstrated an excellent sensitivity to H2O2. The effects of uric acid, uricase and H2O2 on the fluorescence intensity of CdTe nanoparticles were also explored. The detection conditions, reaction time, pH value, incubation period and the concentration of uricase and uric acid were optimized. The detection limit of uric acid was found to be 0.10 µM and the linear range was 0.22-6 µM under the optimized experimental conditions. These results typify that CdTe nanoparticles could be used as a fluorescent probe for uric acid detection. PMID:26433069

  8. Synthesis of positively charged CdTe quantum dots and detection for uric acid

    NASA Astrophysics Data System (ADS)

    Zhang, Tiliang; Sun, Xiangying; Liu, Bin

    2011-09-01

    The CdTe dots (QDs) coated with 2-Mercaptoethylamine was prepared in aqueous solution and characterized with fluorescence spectroscopy, UV-Vis absorption spectra, high-resolution transmission electron microscopy and infrared spectroscopy. When the λex = 350 nm, the fluorescence peak of positively charged CdTe quantum dots is at 592 nm. The uric acid is able to quench their fluorescence. Under optimum conditions, the change of fluorescence intensity is linearly proportional to the concentration of uric acid in the range 0.4000-3.600 μmol L -1, and the limit of detection calculated according to IUPAC definitions is 0.1030 μmol L -1. Compared with routine method, the present method determines uric acid in human serum with satisfactory results. The mechanism of this strategy is due to the interaction of the tautomeric keto/hydroxyl group of uric acid and the amino group coated at the CdTe QDs.

  9. pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O.

    PubMed

    Schneider, R; Weigert, F; Lesnyak, V; Leubner, S; Lorenz, T; Behnke, T; Dubavik, A; Joswig, J-O; Resch-Genger, U; Gaponik, N; Eychmüller, A

    2016-07-28

    The optical properties of semiconductor nanocrystals (SC NCs) are largely controlled by their size and surface chemistry, i.e., the chemical composition and thickness of inorganic passivation shells and the chemical nature and number of surface ligands as well as the strength of their bonds to surface atoms. The latter is particularly important for CdTe NCs, which - together with alloyed CdxHg1-xTe - are the only SC NCs that can be prepared in water in high quality without the need for an additional inorganic passivation shell. Aiming at a better understanding of the role of stabilizing ligands for the control of the application-relevant fluorescence features of SC NCs, we assessed the influence of two of the most commonly used monodentate thiol ligands, thioglycolic acid (TGA) and mercaptopropionic acid (MPA), on the colloidal stability, photoluminescence (PL) quantum yield (QY), and PL decay behavior of a set of CdTe NC colloids. As an indirect measure for the strength of the coordinative bond of the ligands to SC NC surface atoms, the influence of the pH (pD) and the concentration on the PL properties of these colloids was examined in water and D2O and compared to the results from previous dilution studies with a set of thiol-capped Cd1-xHgxTe SC NCs in D2O. As a prerequisite for these studies, the number of surface ligands was determined photometrically at different steps of purification after SC NC synthesis with Ellman's test. Our results demonstrate ligand control of the pH-dependent PL of these SC NCs, with MPA-stabilized CdTe NCs being less prone to luminescence quenching than TGA-capped ones. For both types of CdTe colloids, ligand desorption is more pronounced in H2O compared to D2O, underlining also the role of hydrogen bonding and solvent molecules. PMID:27357335

  10. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-09-01

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe2+ and Fe3+ on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe3+. Although both Fe2+ and Fe3+ could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe2+ and Fe3+. The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe3+ (60 μmol L-1), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe2+ (60 μmol L-1). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe3+ was reduced to Fe2+ by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe2+ to Fe3+. As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L-1, with a detection limit (3σ) of 1.25 μmol L-1 The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe2+ and Fe3+ on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe3+. Although both Fe2+ and Fe3+ could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe2+ and Fe3+. The PL intensity of the CdTe QD

  11. Mercaptopropionic acid-capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products.

    PubMed

    Bunkoed, Opas; Kanatharana, Proespichaya

    2015-11-01

    Mercaptopropionic acid (MPA)-capped cadmium telluride (CdTe) quantum dot (QDs) fluorescent probes were synthesized in aqueous solution and used for the determination of salicylic acid. The interaction between the MPA-capped CdTe QDs and salicylic acid was studied using fluorescence spectroscopy and some parameters that could modify the fluorescence were investigated to optimize the measurements. Under optimum conditions, the quenched fluorescence intensity of MPA-capped CdTe QDs was linearly proportional to the concentration of salicylic acid in the range of 0.5-40 µg mL(-1) with a coefficient of determination of 0.998, and the limit of detection was 0.15 µg mL(-1). The method was successfully applied to the determination of salicylic acid in pharmaceutical products, and satisfactory results were obtained that were in agreement with both the high pressure liquid chromatography (HPLC) method and the claimed values. The recovery of the method was in the range 99 ± 3% to 105 ± 9%. The proposed method is simple, rapid, cost effective, highly sensitivity and eminently suitable for the quality control of pharmaceutical preparation. The possible mechanisms for the observed quenching reaction was also discussed. PMID:25683730

  12. Optical and structural characterization of oleic acid-stabilized CdTe nanocrystals for solution thin film processing

    PubMed Central

    Gutiérrez-Lazos, Claudio Davet; Ortega-López, Mauricio; Pérez-Guzmán, Manuel A; Espinoza-Rivas, A Mauricio; Solís-Pomar, Francisco; Ortega-Amaya, Rebeca; Silva-Vidaurri, L Gerardo; Castro-Peña, Virginia C

    2014-01-01

    Summary This work presents results of the optical and structural characterization of oleic acid-stabilized cadmium telluride nanocrystals (CdTe-NC) synthesized by an organometallic route. After being cleaned, the CdTe-NC were dispersed in toluene to obtain an ink-like dispersion, which was drop-cast on glass substrate to deposit a thin film. The CdTe-NC colloidal dispersion as well as the CdTe drop-cast thin films were characterized with regard to the optical and structural properties. TEM analysis indicates that the CdTe-NC have a nearly spherical shape (3.5 nm as mean size). Electron diffraction and XRD diffraction analyses indicated the bulk-CdTe face-centered cubic structure for CdTe-NC. An additional diffraction line corresponding to the octahedral Cd3P2 was also detected as a secondary phase, which probably originates by reacting free cadmium ions with trioctylphosphine (the tellurium reducing agent). The Raman spectrum exhibits two broad bands centered at 141.6 and 162.3 cm−1, which could be associated to the TO and LO modes of cubic CdTe nanocrystals, respectively. Additional peaks located in the 222 to 324 cm−1 range, agree fairly well with the wavenumbers reported for TO modes of octahedral Cd3P2. PMID:24991525

  13. Removal of CdTe in acidic media by magnetic ion-exchange resin: a potential recycling methodology for cadmium telluride photovoltaic waste.

    PubMed

    Zhang, Teng; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste. PMID:25128764

  14. Impairments of spatial learning and memory following intrahippocampal injection in rats of 3-mercaptopropionic acid-modified CdTe quantum dots and molecular mechanisms

    PubMed Central

    Wu, Tianshu; He, Keyu; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2016-01-01

    With the rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in neuroscience, including basic neurological studies and diagnosis or therapy for neurological disorders, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs, with a growing number of studies. However, knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, even if several studies have attempted to evaluate the toxicity of QDs on neural cells. The aim of this study was to evaluate the adverse effects of intrahippocampal injection in rats of 3-mercaptopropionic acid (MPA)-modified CdTe QDs and underlying mechanisms. First of all, we observed impairments in learning efficiency and spatial memory in the MPA-modified CdTe QD-treated rats by using open-field and Y-maze tests, which could be attributed to pathological changes and disruption of ultrastructure of neurons and synapses in the hippocampus. In order to find the mechanisms causing these effects, transcriptome sequencing (RNA-seq), an advanced technology, was used to gain the potentially molecular targets of MPA-modified CdTe QDs. According to ample data from RNA-seq, we chose the signaling pathways of PI3K–Akt and MPAK–ERK to do a thorough investigation, because they play important roles in synaptic plasticity, long-term potentiation, and spatial memory. The data demonstrated that phosphorylated Akt (p-Akt), p-ERK1/2, and c-FOS signal transductions in the hippocampus of rats were involved in the mechanism underlying spatial learning and memory impairments caused by 3.5 nm MPA-modified CdTe QDs. PMID:27358562

  15. Impairments of spatial learning and memory following intrahippocampal injection in rats of 3-mercaptopropionic acid-modified CdTe quantum dots and molecular mechanisms.

    PubMed

    Wu, Tianshu; He, Keyu; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2016-01-01

    With the rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in neuroscience, including basic neurological studies and diagnosis or therapy for neurological disorders, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs, with a growing number of studies. However, knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, even if several studies have attempted to evaluate the toxicity of QDs on neural cells. The aim of this study was to evaluate the adverse effects of intrahippocampal injection in rats of 3-mercaptopropionic acid (MPA)-modified CdTe QDs and underlying mechanisms. First of all, we observed impairments in learning efficiency and spatial memory in the MPA-modified CdTe QD-treated rats by using open-field and Y-maze tests, which could be attributed to pathological changes and disruption of ultrastructure of neurons and synapses in the hippocampus. In order to find the mechanisms causing these effects, transcriptome sequencing (RNA-seq), an advanced technology, was used to gain the potentially molecular targets of MPA-modified CdTe QDs. According to ample data from RNA-seq, we chose the signaling pathways of PI3K-Akt and MPAK-ERK to do a thorough investigation, because they play important roles in synaptic plasticity, long-term potentiation, and spatial memory. The data demonstrated that phosphorylated Akt (p-Akt), p-ERK1/2, and c-FOS signal transductions in the hippocampus of rats were involved in the mechanism underlying spatial learning and memory impairments caused by 3.5 nm MPA-modified CdTe QDs. PMID:27358562

  16. Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor.

    PubMed

    Vinayaka, A C; Basheer, S; Thakur, M S

    2009-02-15

    Quantum dots (QD) are semiconductor fluorescent nanoparticles, which can be made use of for environmental monitoring with high sensitivity. In view of the alarming levels of pesticides and herbicides being used in agriculture practices, there is a need for their rapid, sensitive and specific detection in food and environmental samples, as pesticides and herbicides are harmful to living beings even at trace levels. Present study was carried out to develop a reliable and rapid method for analysis and detection of 2,4-D (herbicide) using cadmium telluride quantum dot nanoparticle (CdTe QD). Fluoroimmunoassay based on the fluorescent property of quantum dot was used along with immunoassay to detect 2,4-D. CdTe capped with mercaptopropionic acid, was conjugated using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) and a coupling reagent like N-hydroxysuccinimide (NHS) to alkaline phosphatase (ALP) which was in turn conjugated to 2,4-D molecule. Anti 2,4-D-IgG antibodies were immobilized in an immunoreactor column using Sepharose CL-4B as an inert matrix. The detection of 2,4-D was carried out by fluoroimmunoassay-based biosensor using competitive binding between conjugated 2,4-D-ALP-CdTe and free 2,4-D with immobilized anti 2,4-D antibodies in an immunoreactor column. It was possible to detect 2,4-D upto 250pgmL(-1). Present study also emphasizes on the resonance energy transfer between ALP and CdTe QD as a result of bioconjugation, which can be used for future biosensor development based on quantum dot-biomolecular interactions. PMID:18930650

  17. Chemiluminometric determination of ascorbic acid in pharmaceutical formulations exploiting photo-activation of GSH-capped CdTe quantum dots.

    PubMed

    Sasaki, M K; Ribeiro, D S M; Frigerio, C; Prior, J A V; Santos, J L M; Zagatto, E A G

    2014-11-01

    An automated multi-pumping flow system is proposed for the chemiluminometric determination of ascorbic acid in pharmaceutical formulations, relying on the ability of semiconductor nanocrystals to generate short-lived reactive species upon photo-irradiation. A photo-unit based on visible-light-emitting diodes is used to photo-excite cadmium telluride (CdTe) quantum dots capped with glutathione, leading to the generation of radicals that react with luminol under alkaline conditions, yielding the chemiluminescence. Ascorbic acid acts as a radical scavenger, preventing the oxidation of luminol, thus ensuring a concentration-dependent chemiluminescence quenching. After system optimization, a linear working range of 5.0 × 10(-7) to 5.0 × 10(-6) mol/L ascorbic acid (r = 0.9967, n = 5) was attained, with a detection limit of 3.05 × 10(-7) mol/L and a sampling rate of 200/h. The flow system was applied to the analysis of pharmaceutical formulations and the results were in good agreement with those obtained by the reference titrimetric procedure (RD < ± 4.3%, n = 7). PMID:24585556

  18. The selective synthesis of water-soluble highly luminescent CdTe nanoparticles and nanorods: The influence of the precursor Cd/Te molar ratio

    NASA Astrophysics Data System (ADS)

    Deng, Da-Wei; Qin, Yuan-Bin; Yang, Xi; Yu, Jun-Sheng; Pan, Yi

    2006-11-01

    In this report, we initially systematically investigated the influence of the precursor Cd/Te molar ratio on the morphology of water-soluble thiol-stabilized CdTe nanocrystals. By only changing the precursor Cd/Te molar ratio, highly luminescent CdTe nanoparticles (NPs) and nanorods (NRs) can be prepared selectively in the presence of the same concentration single ligand ( L-cysteine or thioglycolic acid) system. A high precursor Cd/Te molar ratio leads to isotropic spherical growth, whereas a low Cd/Te molar ratio promotes the linear self-assembly of NPs into NRs. Thus, a new efficient strategy has been developed in aqueous phase to prepare selectively highly luminescent dot- or rod-shaped CdTe nanocrystals in single ligand system. Then, we further explored the influence of the properties of initial CdTe dispersions with different luminescence maxima on the formation of NRs. The experiment results revealed that the formation of CdTe NRs is also dependent on the properties of initial CdTe dispersions. CdTe NPs with short wavelength emission (˜520-550 nm) can self-assemble directly into high quality CdTe NRs after storage at room temperature.

  19. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  20. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive.

    PubMed

    Dutta, Priyanka; Saikia, Dilip; Adhikary, Nirab Chandra; Sarma, Neelotpal Sen

    2015-11-11

    This work reports the development of highly fluorescent materials for the selective and efficient detection of picric acid explosive in the nanomolar range by fluorescence quenching phenomenon. Poly(vinyl alcohol) grafted polyaniline (PPA) and its nanocomposites with 2-mercaptosuccinic acid (MSA)-capped CdTe quantum dots (PPA-Q) and with MSA-capped CdTe/ZnS core/shell quantum dots (PPA-CSQ) are synthesized in a single step free radical polymerization reaction. The thermal stability and photo stability of the polymer increases in the order of PPA < PPA-Q < PPA-CSQ. The polymers show remarkably high selectivity and efficient sensitivity toward picric acid, and the quenching efficiency for PPA-CSQ reaches up to 99%. The detection limits of PPA, PPA-Q, and PPA-CSQ for picric acid are found to be 23, 1.6, and 0.65 nM, respectively, which are remarkably low. The mechanism operating in the quenching phenomenon is proposed to be a combination of a strong inner filter effect and ground state electrostatic interaction between the polymers and picric acid. A portable and cost-effective electronic device for the visual detection of picric acid by the sensory system is successfully fabricated. The device is further employed for quantitative detection of picric acid in real water samples. PMID:26484725

  1. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  2. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  3. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    NASA Astrophysics Data System (ADS)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  4. Raman characterization of a new Te-rich binary compound: CdTe2.

    PubMed

    Rousset, Jean; Rzepka, Edouard; Lincot, Daniel

    2009-04-01

    Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te. PMID:19253976

  5. CdTe devices and method of manufacturing same

    DOEpatents

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  6. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Gen; Shi, Lixin; Selke, Matthias; Wang, Xuemei

    2011-06-01

    Cadmium telluride quantum dots (Cdte QDs) have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR) on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  7. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  8. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods.

    PubMed

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV-vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV-vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV-vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG<0, ΔH<0 and ΔS<0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. PMID:26952487

  9. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers

    PubMed Central

    2014-01-01

    A new strategy for in situ preparation of highly fluorescent CdTe quantum dots (QDs) with 3-mercaptopropionic acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers was proposed in this paper. MPA and HPAMAM were added in turn to coordinate Cd2+. After adding NaHTe and further microwave irradiation, fluorescent CdTe QDs stabilized by MPA and HPAMAM were obtained. Such a strategy avoids the aftertreatment of thiol-stabilized QDs in their bioapplication and provides an opportunity for direct biomedical use of QDs due to the existence of biocompatible HPAMAM. The resulting CdTe QDs combine the mechanical, biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs together. PMID:24636234

  10. Synthesis of CdTe QDs by hydrothermal method, with tunable emission fluorescence

    NASA Astrophysics Data System (ADS)

    Liu, Fujun; Laurent, Sophie; Vander Elst, Luce; Muller, Robert N.

    2015-09-01

    Cadmium telluride (CdTe) quantum dots (QDs) were prepared via a hydrothermal method, using 3-mercaptopropionic acid (3-MPA) as the stabilizing agent. With the help of absorption and emission spectra, it was found that prolonging the reaction time and raising the reaction temperature can increase the size of the QDs obtained, and hence induce a red shift of fluorescence emission. Rhodamine 6G was used as the reference to calculate the quantum yield (QY), and this showed that the use of extra Cd ions will distinctly increase the QY of CdTe.

  11. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    NASA Astrophysics Data System (ADS)

    Luo, H.; Ma, L. G.; Xie, W. M.; Wei, Z. L.; Gao, K. G.; Zhang, F. M.; Wu, X. S.

    2016-04-01

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na2TeO3 instead of the usually used TeO2. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells.

  12. A Simple Sb2Te3 Back-Contact Process for CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Siepchen, B.; Späth, B.; Drost, C.; Krishnakumar, V.; Kraft, C.; Winkler, M.; König, J.; Bartholomé, K.; Peng, S.

    2015-10-01

    CdTe solar technology has proved to be a cost-efficient solution for energy production. Formation of the back contact is an important and critical step in preparing high-efficiency, stable CdTe solar cells. In this paper we report a simple CdTe solar cell (Sb2Te3) back contact-formation process. The CdS and CdTe layers were deposited by close-space sublimation. After CdCl2 annealing treatment, the CdTe surface was etched by use of a mixture of nitric and phosphoric acids to obtain a Te-rich surface. Elemental Sb was sputtered on the etched surface and successive post-annealing treatment induced Sb2Te3 alloy formation. Structural characterization by x-ray diffraction analysis confirmed formation of the Sb2Te3 phase. The performance of solar cells with nanoalloyed Sb2Te3 back contacts was comparable with that of reference solar cells prepared with sputtered Sb2Te3 back contact from a compound sputter target.

  13. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2009-06-23

    CdSe and CdTe nanocrystals are linked to nanostructured TiO2 films using 3-mercaptopropionic acid as a linker molecule for establishing the mechanistic aspects of interfacial charge transfer processes. Both these quantum dots are energetically capable of sensitizing TiO2 films and generating photocurrents in quantum dot solar cells. These two semiconductor nanocrystals exhibit markedly different external quantum efficiencies ( approximately 70% for CdSe and approximately 0.1% for CdTe at 555 nm). Although CdTe with a more favorable conduction band energy (E(CB) = -1.0 V vs NHE) is capable of injecting electrons into TiO2 faster than CdSe (E(CB) = -0.6 V vs NHE), hole scavenging by a sulfide redox couple remains a major bottleneck. The sulfide ions dissolved in aqueous solutions are capable of scavenging photogenerated holes in photoirradiated CdSe system but not in CdTe. The anodic corrosion and exchange of Te with S dominate the charge transfer at the CdTe interface. Factors that dictate the efficiency and photostability of CdSe and CdTe quantum dots are discussed. PMID:19435373

  14. CdTe(1-x)Se(x)/Cd0.5Zn0.5S core/shell quantum dots: core composition and property.

    PubMed

    Yang, Ping; Cao, Yongqiang; Li, Xiaoyu; Zhang, Ruili; Liu, Ning; Zhang, Yulan

    2014-08-01

    Alloy CdTe(1-x)Se(x) quantum dots (QDs) have been fabricated by an organic route using Cd, Te and Se precursors in a mixture of trioctylamine and octadecylphosphonic acid at 280 °C. The variation of photoluminescence (PL) peak wavelength of the CdTe(1-x)Se(x) QDs compared with CdTe QDs confirmed the formation of an alloy structure. The Se component drastically affected the stability of CdTe(1-x)Se(x) QDs. A Cd0.5Zn0.5S shell coating on CdTe(1-x)Se(x) cores was carried out using oleic acid as a capping agent. CdTe(1-x)Se(x)/Cd0.5Zn0.5S core/shell QDs revealed dark red PL while a yellow PL peak was observed for the CdTe(1-x)Se(x) cores. The PL efficiency of the core/shell QDs was drastically increased (less than 1% for the cores and up to 65% for the core/shell QDs). The stability of QDs in various buffer solutions was investigated. Core/shell QDs can be used for biological applications because of their high stability, tunable PL and high PL efficiency. PMID:23946281

  15. Photoinduced tellurium precipitation in CdTe

    NASA Astrophysics Data System (ADS)

    Sugai, Shunji

    1991-06-01

    Tellurium precipitation in CdTe is found to be induced by photoirradiation with energy higher than the energy gap at 240 W/sq cm. It is suggested that this photoinduced precipitation is related with the strong electron-phonon interactions, possibly self-trapped excitons. This irreducible tellurium precipitation may cause a serious problem for the life of semiconductor devices.

  16. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots

    PubMed Central

    2012-01-01

    We investigate systematically the influence of the nature of thiol-type capping ligands on the optical and structural properties of highly luminescent CdTe quantum dots synthesized in aqueous media, comparing mercaptopropionic acid (MPA), thioglycolic acid (TGA), 1-thioglycerol (TGH), and glutathione (GSH). The growth rate, size distribution, and quantum yield strongly depend on the type of surface ligand used. While TGH binds too strongly to the nanocrystal surface inhibiting growth, the use of GSH results in the fastest growth kinetics. TGA and MPA show intermediate growth kinetics, but MPA yields a much lower initial size distribution than TGA. The obtained fluorescence quantum yields range from 38% to 73%. XPS studies unambiguously put into evidence the formation of a CdS shell on the CdTe core due to the thermal decomposition of the capping ligands. This shell is thicker when GSH is used as ligand, as compared with TGA ligands. PMID:23017183

  17. Synthesis of AS1411-aptamer-conjugated CdTe quantum dots with high fluorescence strength for probe labeling tumor cells.

    PubMed

    Alibolandi, Mona; Abnous, Khalil; Ramezani, Mohammad; Hosseinkhani, Hossein; Hadizadeh, Farzin

    2014-09-01

    In this paper, we report microwave-assisted, one-stage synthesis of high-quality functionalized water-soluble cadmium telluride (CdTe) quantum dots (QDs). By selecting sodium tellurite as the Te source, cadmium chloride as the Cd source, mercaptosuccinic acid (MSA) as the capping agent, and a borate-acetic acid buffer solution with a pH range of 5-8, CdTe nanocrystals with four colors (blue to orange) were conveniently prepared at 100 °C under microwave irradiation in less than one hour (reaction time: 10-60 min). The influence of parameters such as the pH, Cd:Te molar ratio, and reaction time on the emission range and quantum yield percentage (QY%) was investigated. The structures and compositions of the prepared CdTe QDs were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, selective area electron diffraction, and X-ray powder diffraction experiments. The formation mechanism of the QDs is discussed in this paper. Furthermore, AS1141-aptamer-conjugated CdTe QDs in the U87MG glioblastoma cell line were assessed with a fluorescence microscope. The obtained results showed that the best conditions for obtaining a high QY of approximately 87% are a pH of 6, a Cd:Te molar ratio of 5:1, and a 30-min reaction time at 100 °C under microwave irradiation. The results showed that AS1141-aptamer-conjugated CdTe QDs could enter tumor cells efficiently. It could be concluded that a facile high-fluorescence-strength QD conjugated with a DNA aptamer, AS1411, which can recognize the extracellular matrix protein nucleolin, can specifically target U87MG human glioblastoma cells. The qualified AS1411-aptamer-conjugated QDs prepared in this study showed excellent capabilities as nanoprobes for cancer targeting and molecular imaging. PMID:25172439

  18. Carbon analysis in CdTe by nuclear activation

    NASA Astrophysics Data System (ADS)

    Chibani, H.; Stoquert, J. P.; Hage-Ali, M.; Koebel, J. M.; Abdesselam, M.; Siffert, P.

    1991-06-01

    We describe the capabilities of the nuclear reaction 12C(d, n) 13Nlimit→β +13C the measurement of absolute concentrations of C in CdTe by the charged particle activation (CPA) method. This technique is used to determine the segregation coefficient of C introduced as an impurity in CdTe.

  19. Annealing conditions for intrinsic CdTe

    NASA Astrophysics Data System (ADS)

    Berding, M. A.

    1999-01-01

    Equilibrium native defect densities in CdTe are calculated from ab initio methods, and compared with experimental results. We find that CdTe is highly compensated p type under tellurium-saturated conditions, with the cadmium vacancy as the dominant acceptor and the tellurium antisite as the compensating donor. This finding is in agreement with recent experiments that find a much larger deviation from stoichiometry than would be predicted by the electrically active defects. Under cadmium-saturated conditions, cadmium interstitials are predicted to dominate and the material is found to be n type. Native defect concentrations and the corresponding carrier concentrations are predicted as a function of processing conditions, and can serve as a guide to postgrowth anneals to manipulate the conductivity of undoped material for applications in x- and γ-ray spectrometers. Furthermore, we show that by choosing appropriate annealing conditions and extrinsic dopants, one can increase the operating efficiency of nuclear spectrometers by reducing the density of specific native defects that produce midgap trapping states.

  20. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  1. Process Development for High Voc CdTe Solar Cells

    SciTech Connect

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  2. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    PubMed

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills. PMID:25710599

  3. Preparation and properties of evaporated CdTe films compared with single crystal CdTe

    NASA Astrophysics Data System (ADS)

    Bube, R. H.

    The hot wall vacuum deposition system is discussed and is is good temperature tracking between the furnace core and the CdTe source itself are indicated. Homojunction cells prepared by HWVE deposition of n-CdTe on p-CdTe substrates show no significant change in dark or light properties after open circuit storage for the next 9 months. CdTe single crystal boules were grown with P, As and Cs impurity. For P impurity it appears that the segregation coefficient is close to unity, that the value of hole density is controlled by the P, and that growth with excess Cd gives slightly higher values of hole density than growth with excess Te. CdTe:As crystals appear similar to CdTe:P crystals.

  4. Folic acid-CdTe quantum dot conjugates and their applications for cancer cell targeting

    SciTech Connect

    Suriamoorthy, Preethi; Zhang, Xing; Hao, Guiyang; Joly, Alan G.; Singh, S.; Hossu, Marius; Sun, Xiankai; Chen, Wei

    2010-12-01

    In this study, we report the preparation,luminescence, and targeting properties of folic acid- CdTe quantum dot conjugates. Water-soluble CdTe quantum dots were synthesized and conjugated with folic acid using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide chemistry. The in-fluence of folic acid on the luminescence properties of CdTe quantum dots was investigated, and no energy transfer between them was observed. To investigate the efficiency of folic acid-CdTe nanoconjugates for tumor targeting, pure CdTe quantum dots and folic acid-coated CdTe quantum dots were incubated with human naso- pharyngeal epidermal carcinoma cell line with positive expressing folic acid receptors (KB cells) and lung cancer cells without expression of folic acid receptors (A549 cells). For the cancer cells with positive folate receptors (KB cells), the uptake for CdTe quantum dots is very low, but for folic acid-CdTe nanoconjugates, the uptake is very high. For the lung cancer cells without folate receptors (A549 cells), the uptake for folic acid- CdTe nanoconjugates is also very low. The results indicate that folic acid is an effective targeting molecule for tumor cells with overexpressed folate receptors.

  5. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    SciTech Connect

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  6. CdTe Solar Cells: The Role of Copper

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  7. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Dragica, Vasileska; Ringhofer, Christian

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  8. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  9. CdTe Photovoltaics for Sustainable Electricity Generation

    NASA Astrophysics Data System (ADS)

    Munshi, Amit; Sampath, Walajabad

    2016-04-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1-x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  10. CdTe Photovoltaics for Sustainable Electricity Generation

    NASA Astrophysics Data System (ADS)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  11. Strategies for recycling CdTe photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Eberspacher, Chris; Gay, Charles F.; Moskowitz, Paul D.

    1994-12-01

    Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

  12. High-quality CdTe films from nanoparticle precursors

    SciTech Connect

    Schulz, D.L.; Pehnt, M.; Urgiles, E.

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  13. Aqueous synthesis of CdTe at FeOOH and CdTe at Ni(OH){sub 2} composited nanoparticles

    SciTech Connect

    Li Liang; Ren Jicun . E-mail: Jicunren@sjtu.edu.cn

    2006-06-15

    Two kinds of bi-functional nanomaterials, CdTe at FeOOH and CdTe at Ni(OH){sub 2}, were synthesized in water phase. In the synthesis, using the luminescent CdTe nanocrystals (NCs) as a core, Fe{sup 3+} (Ni{sup 2+}) was added to CdTe NCs aqueous solution and slowly hydrolyzed to deposit a layer of hydroxide onto the luminescent CdTe NCs in the presence of stabilizer. TEM, XRD, XPS, UV, fluorescence spectrometer and physical property measurement system (PPMS) were used to characterize the final products, and the results showed that the as-prepared nanoparticles with core/shell structure exhibited certain magnetic properties and fluorescence. - Graphical abstract: Fluorescent and magnetic bi-functional CdTe at FeOOH and CdTe at Ni(OH){sub 2} nanoparticles were prepared by seed-mediated approach in water phase.

  14. Growth of CdTe films on GaAs by ionized cluster beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Feng, J. Y.; Fan, Y. D.; Li, H. D.

    1991-06-01

    Stoichiometric epitaxial films of CdTe were grown on (100)GaAs substrates by ionized cluster beam (ICB) epitaxy. Streaky RHEED patterns indicated good crystallinity and surface flatness of the epitaxial CdTe films. CdTe(100) orientation was obtained when the substrate preheating temperature was 480°C, while CdTe growth inboth (100) and (111) orientations occured when the substrate preheating temperature was above 550°C. The characteristics of the ICB growth process were investigated and the cluster-involving growth behavior has been evidenced. When sufficient clusters were generated in the deposition beam under adequate source vapor pressures, the crystalline quality of the resulting CdTe epilayers improved significantly with the increase of kinetic energy of the CdTe clusters. The best CdTe epilayer obtained exhibited a CdTe(400) double crystal rocking curve (DCRC) having a FWHM of 630 arc sec.

  15. Pressure-induced Phase Transition in Thiol-capped CdTe Nanoparticles

    SciTech Connect

    Wu, F; Zaug, J; Young, C; Zhang, J Z

    2006-11-29

    Phase transitions for CdTe nanoparticles (NPs) under high pressure up to 37.0 GPa have been studied using fluorescence measurements. The phase transition from cinnarbar to rocksalt phase has been observed in CdTe NPs solution at 5.8 GPa, which is much higher than the phase transition pressure of bulk CdTe (3.8 GPa) and that of CdTe NPs in solid form (0.8 GPa). CdTe NPs solution therefore shows elevated phase transition pressure and enhanced stability against pressure compared with bulk CdTe and CdTe NPs in solid forms. The enhanced stability of CdTe NPs solution has been attributed to possible shape change in the phase transition and/or inhomogeneous strains in nanoparticle solutions.

  16. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  17. Shockley-Read-Hall lifetimes in CdTe

    SciTech Connect

    Buurma, C.; Sivananthan, S.; Krishnamurthy, S.

    2014-07-07

    A combination of first principles electronic structure calculations, Green's function method, and empirical tight-binding Hamiltonian method is used to evaluate the minority carrier lifetimes of CdTe due to recombination via native point defects in CdTe. For defect energy levels near mid-gap, our calculated value of the Shockley-Read-Hall capture cross section for both electrons and holes is ~10⁻¹³ cm², which is considerably different from the most commonly employed values. We further find that minority carrier lifetimes in doped CdTe are affected more by defect levels closer to the Fermi level than those in the mid-gap.

  18. Resetting the Defect Chemistry in CdTe

    SciTech Connect

    Metzger, Wyatt K.; Burst, James; Albin, David; Colegrove, Eric; Moseley, John; Duenow, Joel; Farrell, Stuart; Moutinho, Helio; Reese, Matt; Johnston, Steve; Barnes, Teresa; Perkins, Craig; Guthrey, Harvey; Al-Jassim, Mowafak

    2015-06-14

    CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by increasing open-circuit voltage (Voc) and fill factor. Record-efficiency CdTe cells have been limited to Voc <; 880 mV, whereas GaAs can attain Voc of 1.10 V with a slightly smaller bandgap [2,3]. To overcome this barrier, we seek to understand and increase lifetime and carrier concentration in CdTe. In polycrystalline structures, lifetime can be limited by interface and grain-boundary recombination, and attaining high carrier concentration is complicated by morphology.

  19. Advances in CdTe R&D at NREL

    SciTech Connect

    Wu, X.; Zhou, J.; Keane, J. C.; Dhere, R. G.; Albin, D. S.; Gessert, T. A.; DeHart, C.; Duda, A.; Ward, J. J.; Yan, Y.; Teeter, G.; Levi, D. H.; Asher, S.; Perkins, C.; Moutinho, H. R.; To, B.

    2005-11-01

    This paper summarizes the following R&D accomplishments at National Renewable Energy Laboratory (NREL): (1) Developed several novel materials and world-record high-efficiency CdTe solar cell, (2) Developed "one heat-up step" manufacturing processes, and (3) Demonstrated 13.9% transparent CdTe cell and 15.3% CdTe/CIS polycrystalline tandem solar cell. Cadmium telluride has been well recognized as a promising photovoltaic material for thin-film solar cells because of its near-optimum bandgap of ~1.5 eV and its high absorption coefficient. Impressive results have been achieved in the past few years for polycrystalline CdTe thin-film solar cells at NREL. In this paper, we summarize some recent R&D activities at NREL.

  20. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs.

    PubMed

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-28

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL(-1) to 10 pg mL(-1). The half maximal inhibitory concentration was 0.53 pg mL(-1) and the limit of detection was 0.05 pg mL(-1). These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring. PMID:27093176

  1. Thin film CdTe solar cells - A review

    NASA Astrophysics Data System (ADS)

    Basol, Bulent M.

    High-efficiency thin-film CdTe solar cells can be fabricated using various methods ranging from the wet chemical techniques such as electrodeposition to the more conventional semiconductor processing methods such as vacuum evaporation. An examination of these different methods reveals that there are similarities between the postdeposition treatments that the CdTe films are subjected to, before they are used for device fabrication. Some of the cell fabrication techniques are reviewed, and the processing steps common to all methods are highlighted.

  2. Electrical properties of single CdTe nanowires

    PubMed Central

    Matei, Elena; Florica, Camelia; Costas, Andreea; Toimil-Molares, María Eugenia

    2015-01-01

    Summary Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties. PMID:25821685

  3. Electron-hole dynamics in CdTe tetrapods.

    PubMed

    Malkmus, Stephan; Kudera, Stefan; Manna, Liberato; Parak, Wolfgang J; Braun, Markus

    2006-09-01

    We present transient absorption studies with femtosecond time resolution on the electron-hole dynamics in CdTe tetrapod nanostructures. Electron-hole pairs are generated by optical excitation in the visible spectral range, and an immediate bleach and induced absorption signal are observed. The relaxation dynamics to the lowest excitonic state is completed in about 6 ps. Experiments with polarized excitation pulses give information about the localization of the excited-state wave functions. The influence of the nanocrystal shape on the optical properties of CdTe nanoparticles is discussed. PMID:16942067

  4. Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges

    NASA Astrophysics Data System (ADS)

    Shen, Xuehua; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen

    2015-03-01

    We report on an eco-friendly way to prepare CdTe/CdS quantum dots for quantum dot sensitized solar cell (QDSSC). CdTe/CdS quantum dots are synthesized through an anion exchange between CdTe quantum dots (QDs) and S2- in aqueous solution at low temperature under ambient condition. The resultant QDs are bonded onto TiO2 with the help of thioglycolic acid bifunctional molecule. The uniform distribution of QDs throughout the TiO2 mesoporous film depth is confirmed by the energy dispersive X-ray (EDX) elemental mapping. Absorption, dark current, impedance spectroscopy, and intensity-modulated photocurrent analyses prove that anion exchange can efficiently extend the absorption range, suppress the charge recombination, increase the electron injection as well as accelerate the electron transportation in the cell. In combination with CdS post-treatment, a solar-to-energy conversion efficiency of 2.44% is achieved for CdTe/CdS QDSSC, which is more than 15 times that of the CdTe based cell.

  5. Purified water etching of native oxides on heteroepitaxial CdTe thin films

    NASA Astrophysics Data System (ADS)

    Meinander, Kristoffer; Carvalho, Jessica L.; Miki, Carley; Rideout, Joshua; Jovanovic, Stephen M.; Devenyi, Gabriel A.; Preston, John S.

    2014-12-01

    The etching of native oxides on compound semiconductors is an important step in the production of electronic and optoelectronic devices. Although it is known that the native oxide on CdTe can be etched through a rinsing in purified water, a deeper investigation into this process has not been done. Here we present results on both surface morphology changes and reaction rates for purified water etching of the native oxide on heteroepitaxial CdTe thin films, as studied by atomic force microscopy and x-ray photoelectron spectroscopy. Together with a characterization of both the structure and stoichiometry of the initial native oxide, we show how an altering of the pH-level of the etchant will affect the etching rates. If oxide regrowth was allowed, constant etching rates could be observed for all etchants, while a logarithmic decrease in oxide thickness was observed if regrowth was inhibited. Both acidic and basic etchants proved to be more efficient than neutral water.

  6. Conjugation behaviours of CdTe quantum dots and antibody by a novel immunochromatographic method.

    PubMed

    Wang, Y; Bai, Y; Wei, X

    2011-03-01

    Three water-soluble CdTe quantum dots (QDs) (green-emitting, yellow-emitting and red-emitting) were synthesised for different refluxing time with 3-mercaptopropionic acid (MPA) as stabiliser. Then the red-emitting CdTe QDs and mouse immunoglobulin G (IgG) were taken as the representative to study the conjugation behaviour of QDs and antibody by a novel immunochromatographic method. After comparing with several methods, that is, direct conjugation, 1-ethyl-3(3-dimethylaminopropyl) carbodiimides hydrochloride (EDC)-mediated conjugation, N-hydroxysuccinimide (NHS)-mediated conjugation, EDC/NHS-mediated conjugation by immunochromatographic strips, EDC and NHS were selected together as coupling agents to conjugate QDs with antibody efficiently. Finally, the K562 leukaemia cells were incubated with the EDC/NHS-mediated conjugates to evaluate the performance in practical application, and the result from fluorescence images showed that it was successfully applied to label cells. The immunochromatographic strip was a superior method to study the conjugation of the fluorophore and antibody. PMID:21241157

  7. One-Pot Aqueous Phase Synthesis of CdTe and CdTe/ZnS Core/Shell Quantum Dots.

    PubMed

    Zhou, Beiying; Yang, Fengjiu; Zhang, Xin; Cheng, Wenyan; Luo, Wei; Wang, Lianjun; Jiang, Wan

    2016-06-01

    A facile and economical one-pot strategy has been developed for the synthesis of water-solute CdTe and CdTe/ZnS core/shell quantum dots (QDs) using tellurium dioxide (TeO2) as a tellurium precursor and thioglycolic acid (TGA) as stabilizer without any pre-treatment and inert atmosphere protection. As-synthesized QDs were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction spectroscopy (EDS), X-ray powder diffraction (XRD), UV-vis and photoluminescence (PL). The spherical particles were uniformly distributed with the average diameters of 3.2 nm (CdTe QDs) and -5 nm (CdTe/ZnS QDs). By altering the reaction conditions, the emission wavelengths of the CdTe core QDs and CdTe/ZnS core/shell QDs could be tuned from 508 to 574 nm and 526 to 600 nm with narrow full widths at half maximum (FWHM) of 33 to 58 nm, respectively. Meanwhile, on the optimum condition, the luminescence efficiency of CdTe/ZnS QDs can achieve to 74%, which was higher than that of CdTe core QDs (24%). PMID:27427627

  8. Preparation and characterization of bifunctional dendrimer modified Fe{sub 3}O{sub 4}/CdTe nanoparticles with both luminescent and superparamagnetic properties

    SciTech Connect

    Wang, Xiuling; Gu, Yinjun; Dong, Shuling; Zhao, Qin; Liu, Yongjian

    2015-10-15

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe{sub 3}O{sub 4} were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe{sub 3}O{sub 4} nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g.

  9. Applications of CdTe to nuclear medicine. Final report

    SciTech Connect

    Entine, G.

    1985-05-07

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals. (ACR)

  10. Electron transient transport in CdTe polycrystalline films

    NASA Astrophysics Data System (ADS)

    Ramírez-Bon, R.; Sánchez-Sinencio, F.; González de la Cruz, G.; Zelaya, O.

    1991-11-01

    Electron transient currents between coplanar electrodes have been measured in intrinsic polycrystalline films of CdTe, by means of the time of flight technique. The experimental results: electron transient current vs time, transit time vs voltage and the temperature dependence of the electron drift mobility, show features characteristics of dispersive electrical transport similar to that observed in disordered solids.

  11. Radiative and interfacial recombination in CdTe heterostructures

    SciTech Connect

    Swartz, C. H. Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H.; Zaunbrecher, K. N.

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  12. Radiation induced polarization in CdTe detectors

    NASA Astrophysics Data System (ADS)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J. M.; Regal, R.; Gerber, J.

    1988-01-01

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  13. CdTe nano-structures for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Corregidor, V.; Alves, L. C.; Franco, N.; Barreiros, M. A.; Sochinskii, N. V.; Alves, E.

    2013-07-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200-600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orientation and thickness of CdTe nano-structured layers is investigated by means of IBA techniques, SEM and X-ray diffraction. It was shown that the formed CdTe nano-layers have a cubic structure, mainly oriented towards the [1 1 1] crystallographic direction, except for those grown on ZAO layer where the X-ray diffraction signal is very weak to be associated to any crystallographic form. The RBS spectra recorded on different areas of each sample type showed an almost constant thickness and SEM images revealed an homogeneous and dense distribution of the structures. It was also possible to study the first stage of the nano-structures grown on the Bi2Te3 seeds.

  14. Intracavity CdTe modulators for CO2 lasers.

    NASA Technical Reports Server (NTRS)

    Kiefer, J. E.; Nussmeier, T. A.; Goodwin, F. E.

    1972-01-01

    The use of cadmium telluride as an electrooptic material for intracavity modulation of CO2 lasers is described. Included are the predicted and measured effects of CdTe intracavity modulators on laser performance. Coupling and frequency modulation are discussed and experimental results compared with theoretically predicted performance for both techniques. Limitations on the frequency response of the two types of modulation are determined.

  15. Simulation of charge transport in pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  16. A novel method for fabricating hybrid biobased nanocomposites film with stable fluorescence containing CdTe quantum dots and montmorillonite-chitosan nanosheets.

    PubMed

    Guo, Yawen; Ge, Xuesong; Guan, Jing; Wu, Lin; Zhao, Fuhua; Li, Hui; Mu, Xindong; Jiang, Yijun; Chen, Aibing

    2016-07-10

    A method was presented for fabricating the fluorescent nanocomposites containing CdTe quantum dots (QDs) and montmorillonite (MMT)-chitosan (CS). MMT-CS/CdTe QDs nanocomposites were prepared via a simple, versatile and robust approach combination of covalent and electrostatic assembly methods (Scheme 1). The negatively charged MMT was initially modified with positively charged CS through electrostatic assembly, followed by incorporation of CdTe-QDs into the MMT-CS nanosheets by covalent connections between the amino groups of CS and the carboxylic acid groups of thioglycollic acid (TGA). The X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and the FTIR were used to prove the QDs have intercalated into the MMT-CS matrix. The fluorescence emission spectra showed that the MMT-CS/CdTe QDs nanocomposites had the best fluorescence intensity compared with the bare CdTe QDs and CS-QDs. PMID:27106146

  17. Characterization of CdTe thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Russell, L.; Liu, C. H.; Meyers, P. V.; Ullal, H. S.

    Experimental results are presented for two types of solar cells produced from electrodeposited CdTe thin films, namely n-i-p CdS/CdTe/ZnTe and np CdS/CdTe structures. Properties of the n-i-p structure are highlighted and it is shown that the distribution of the electric field in the entire CdTe layer is crucial for producing high conversion efficiency solar cells. The properties of n-p and n-i-p devices of 0.08 sq cm area are compared and typical light I-V data are reported. Although neither device was fully optimized, the advantages of the n-i-p structure is reflected in increased short circuit current density, fill factor and as a reduced series resistance. The variation of the acceptor density (NA) with distance in the CdTe layer is shown for both devices. The zero bias depletion widths are 1.3 micron for the n-p and 1.58 micron for the n-i-p devices. The external quantum efficiency vs. wavelength for the two devices is given. For light incident from CdS side, the n-i-p device has a higher long wavelength response. Carriers generated deep in the CdTe are collected efficiently as the electric field extends throughout the i layer. Recombination in the field-free region of the n-p device is responsible for the losses. For short wavelength light, which is absorbed close to the CdTe surface, collection is limited due to diffusion and recombination. In the n-i-p device, however, these carriers are also collected by the drift field.

  18. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Liu, Meigui; Cao, Chun; Xia, Yunsheng; Bao, Linjun; Jin, Yingqiong; Yang, Song; Zhu, Changqing

    2010-03-01

    A novel method for the determination of berberine has been developed based on quenching of the fluorescence of thioglycolic acid-capped CdTe quantum dots (TGA-CdTe QDs) by berberine in aqueous solutions. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of berberine between 2.5 × 10 -8 and 8.0 × 10 -6 mol L -1 with a detection limit of 6.0 × 10 -9 mol L -1. The method has been applied to the determination of berberine in real samples, and satisfactory results were obtained. The mechanism of the proposed reaction was also discussed.

  19. Spectroscopic and electrochemical study of CdTe nanocrystals capped with thiol mixtures

    NASA Astrophysics Data System (ADS)

    Matos, Charlene R. S.; Souza, Helio O., Jr.; Candido, Luan P. M.; Costa, Luiz P.; Santos, Francisco A.; Alencar, Marcio A. R. C.; Abegao, Luis M. G.; Rodrigues, Jose J., Jr.; Midori Sussuchi, Eliana; Gimenez, Iara F.

    2016-06-01

    Here we report the aqueous synthesis of CdTe nanocrystals capped with 3-mercaptopropionic acid (MPA) and the evaluation of the effect of mixing different thiols with MPA on the spectroscopic and electrochemical properties. Additional ligands were cysteine (CYS) and glutathione (GSH). CYS and GSH produce opposite effects on the photoluminescence quantum yield (QY) with a decrease and increase in QY in comparison to MPA, respectively. All samples exhibited monoexponential photoluminescence decays indicating the presence of high-quality nanocrystals. Electrochemical measurements evidenced the presence of several redox peaks and allowed the calculation of the electrochemical band gaps, which were in agreement with the values estimated from absorption spectra and reflected differences in nanocrystal size.

  20. Super fast detection of latent fingerprints with water soluble CdTe quantum dots.

    PubMed

    Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun

    2013-03-10

    A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development. PMID:23428349

  1. Characterization of M-π-n CdTe pixel detectors coupled to HEXITEC readout chip

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Kalliopuska, J.; Pohjonen, H.; Andersson, H.; Nenonen, S.; Seller, P.; Wilson, M. D.

    2012-01-01

    Segmentation of the anode-side of an M-π-n CdTe diode, where the pn-junction is diffused into the detector bulk, produces large improvements in the spatial and energy resolution of CdTe pixel detectors. It has been shown that this fabrication technique produces very high inter-pixel resistance and low leakage currents are obtained by physical isolation of the pixels of M-π-n CdTe detectors. In this paper the results from M-π-n CdTe detectors stud bonded to a spectroscopic readout ASIC are reported. The CdTe pixel detectors have 250 μm pitch and an area of 5 × 5 mm2 with thicknesses of 1 and 2 mm. The polarization and energy resolution dependence of the M-π-n CdTe detectors as a function of detector thickness are discussed.

  2. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    DOE PAGESBeta

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Metzger, Wyatt; Wei, Su -Huai

    2016-01-25

    In this study, Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance ptype doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu willmore » prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.« less

  3. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Metzger, Wyatt; Wei, Su-Huai

    2016-01-01

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  4. Choice of Substrate Material for Epitaxial CdTe Solar Cells

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-06-14

    Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.

  5. Review of Photovoltaic Energy Production Using CdTe Thin-Film Modules: Extended Abstract Preprint

    SciTech Connect

    Gessert, T. A.

    2008-09-01

    CdTe has near-optimum bandgap, excellent deposition traits, and leads other technologies in commercial PV module production volume. Better understanding materials properties will accelerate deployment.

  6. Dependence of CdTe response of bias history

    SciTech Connect

    Sites, J.R.; Sasala, R.A.; Eisgruber, I.L.

    1995-11-01

    Several time-dependent effect have been observed in CdTe cells and modules in recent years. Some appear to be related to degradation at the back contact, some to changes in temperature at the thin-film junction, and some to the bias history of the cell or module. Back-contact difficulties only occur in some cases, and the other two effects are reversible. Nevertheless, confusion in data interpretation can arise when these effects are not characterized. This confusion can be particularly acute when more than one time-dependent effect occurs during the same measurement cycle. The purpose of this presentation is to help categorize time-dependent effects in CdTe and other thin-film cells to elucidate those related to bias history, and to note differences between cell and module analysis.

  7. CdTe nanoparticles synthesized by laser ablation

    SciTech Connect

    Semaltianos, N. G.; Logothetidis, S.; Perrie, W.; Romani, S.; Potter, R. J.; Dearden, G.; Watkins, K. G.; Sharp, M.

    2009-07-20

    Nanoparticle generation by laser ablation of a solid target in a liquid environment is an easy, fast, and 'green' method for a large scale production of nanomaterials with tailored properties. In this letter we report the synthesis of CdTe nanoparticles by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse energy=6 {mu}J (fluence=1.7 J/cm{sup 2})] ablation of the target material. Nanoparticles with diameters from {approx}2 up to {approx}25 nm were observed to be formed in the colloidal solution. Their size distribution follows the log-normal function with a statistical median diameter of {approx_equal}7.1 nm. Their crystal structure is the same as that of the bulk material (cubic zincblende) and they are slightly Cd-rich (Cd:Te percentage ratio {approx}1:0.9). Photoluminescence emission from the produced nanoparticles was detected in the deep red ({approx}652 nm)

  8. Digital pulse-shape processing for CdTe detectors

    NASA Astrophysics Data System (ADS)

    Bargholtz, Chr.; Fumero, E.; Mårtensson, L.; Wachtmeister, S.

    2001-09-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  9. Research on single-crystal CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Borrego, J. M.; Ghandhi, S. K.

    1986-06-01

    This report outlines work carried out during Phase 1 of growth and characterization of single-crystal CdTe layers to explore their potential in high-efficiency solar cells. High-quality InSb layers can be grown by organometallic vapor phase epitaxy (OMVPE). Layers have been grown whose photoluminescence peak has a full width half maximum of 5.8 MeV, the lowest value achieved to date in epitaxial layers of this compound semiconductor. CdTe layers with featureless morphology were grown at 350 to 420 C. All layers are n-type. A hole lifetime of 1.5 micrometers was measured by optical techniques and corroborated by DLTS measurements. Both Schottky and p-n junction cells have been made on these layers. Device characteristics are contained in the report.

  10. Native defects in MBE-grown CdTe

    SciTech Connect

    Olender, Karolina; Wosinski, Tadeusz; Makosa, Andrzej; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2013-12-04

    Deep-level traps in both n- and p-type CdTe layers, grown by molecular-beam epitaxy on GaAs substrates, have been investigated by means of deep-level transient spectroscopy (DLTS). Four of the traps revealed in the DLTS spectra, which displayed exponential kinetics for capture of charge carriers into the trap states, have been assigned to native point defects: Cd interstitial, Cd vacancy, Te antisite defect and a complex formed of the Te antisite and Cd vacancy. Three further traps, displaying logarithmic capture kinetics, have been ascribed to electron states of treading dislocations generated at the mismatched interface with the substrate and propagated through the CdTe layer.

  11. First principles modeling of grain boundaries in CdTe

    NASA Astrophysics Data System (ADS)

    Chan, Maria K. Y.; Sen, Fatih; Buurma, Christopher; Paulauskas, Tadas; Sun, Ce; Kim, Moon; Klie, Robert

    The role of extended defects is of significant interest for semiconductors, especially photovoltaics since energy conversion efficiencies are often affected by such defects. In particular, grain boundaries in CdTe photovoltaics are enigmatic since the achievable efficiencies of CdTe photovoltaics are higher in polycrystalline devices as compared to single crystalline devices. Yet, despite recent advances, the efficiency of poly-CdTe devices are still substantially below the theoretical maximum. We carry out an atomistic-level study using Scanning Transmission Electron Microscopy (STEM), together with first principles density functional theory (DFT) modeling, in order to understand the properties of specific bicrystals, i.e. artificial grain boundaries, constructed using wafer bonding. We discuss examples of bicrystals, including some involving large scale DFT calculations, and trends in defect and electronic properties. This work was funded by DOE SunShot BRIDGE program.

  12. Phosphorus Doping of Polycrystalline CdTe by Diffusion

    SciTech Connect

    Colegrove, Eric; Albin, David S.; Guthrey, Harvey; Harvey, Steve; Burst, James; Moutinho, Helio; Farrell, Stuart; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and cross-sectional cathodoluminescence corroborates expected P distributions. Devices fabricated with diffused P exhibit hole concentrations up to low 1015 cm-3, however a subsequent activation anneal enabled hole concentrations greater than 1016 cm-3. CdCl2 treatments and Cu based contacts were also explored in conjunction with the P doping process.

  13. Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism.

    PubMed

    Wu, Qiuli; Zhi, Lingtong; Qu, Yangyang; Wang, Dayong

    2016-07-01

    Caenorhabditis elegans is a useful model animal for fat storage study. In nematodes, CdTe quantum dots (QDs) induced an increase in fat storage in intestine that is partially due to prolonged defecation cycle length, and not attributed to altered feeding or cadmium ion released from CdTe QDs. Moreover, CdTe QDs altered the molecular basis of both synthesis and degradation of fatty acid; however, CdTe QDs did not influence that of degradation of phospholipids. CdTe QDs increased expression of fasn-1 and pod-2 genes encoding enzymes required for fatty acid synthesis, and decreased expression of acs-2 and ech-1 genes encoding enzymes required for fatty acid β-oxidation. The altered molecular basis of fatty acid synthesis or degradation by CdTe QDs acted in intestine to regulate fat storage. Our study highlights the potential of CdTe QDs in influencing lipid metabolism in certain organs or tissues in animals. PMID:26956412

  14. Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition

    SciTech Connect

    GIARE, C; RAO, S; RILEY, M; CHEN, L; Goyal, Amit; BHAT, I; LU, T; WANG, G

    2012-01-01

    CdTe thin film has been grown by metalorganic chemical vapor deposition (MOCVD) on Ni(100) substrate. Using x-ray pole figure measurements we observed the epitaxial relationship of {111}CdTe// {001}Ni with [110]CdTe//[010]Ni and [112] CdTe//[100]Ni. The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 0.7% in the [110] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction (EBSD) images show that the CdTe domains are 30 degrees orientated from each other.

  15. Estimation of the heat capacity of CdTe semiconductor

    NASA Astrophysics Data System (ADS)

    Koç, Hüseyin; Eser, Erhan

    2016-01-01

    The aim of this paper is to provide a simple and reliable analytical expression for the thermodynamic properties calculated in terms of the Debye model using the binomial coefficient, and examine specific heat capacity of CdTe in the 300-1400 K temperature range. The obtained results have been compared with the corresponding experimental and theoretical results. The calculated results are in good agreement with the other results over the entire temperature range.

  16. CDTE CERAMICS BASED ON COMPRESSION OF NANOCRYSTAL POWDER.

    SciTech Connect

    KOLESNIKOV, N.N.; BORISENKO, E.B.; BORISENKO, D.N.; JAMES, R.B.; KVEDER, V.V.; GARTMAN, V.K.; GNESIN, G.A.

    2005-07-01

    Wide-gap II-VI semiconductor crystalline materials are conventionally used in laser optics, light emitting devices, and nuclear detectors. The advances made in the studies of nanocrystals and in the associated technologies have created great interest in the design of semiconductor devices based on these new materials. The objectives of this work are to study the microstructure and the properties of the new material produced through CdTe nanopowder compression and to consider the prospects of its use in the design of ionizing-radiation detectors and in laser optics. Highly dense material produced of 7-10 nm CdTe particles under pressure of 20-600 MPa at temperatures from 20 to 200 C was analyzed using x-ray diffractometry, texture analysis; light and scanning electron microscopy, and optical spectrophotometry. The mechanical and electrical properties of the compacted material were measured and compared with similar characteristics of the conventionally grown single crystals. Phase transformation from metastable to stable crystal structure caused by deformation was observed in the material. Sharp crystallographic texture {l_brace}001{r_brace} that apparently affects specific mechanical, electrical and optical characteristics of compacted CdTe was observed. The specific resistivity calculated from the linear current-voltage characteristics was about 10{sup 10} Ohm x cm, which is a promisingly high value regarding the possibility of using this material in the design of semiconductor radiation detectors. The optical spectra show that the transmittance in the infrared region is sufficient to consider the prospects of possible applications of CdTe ceramics in laser optics.

  17. Optical modeling of graphene contacted CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  18. Results of a Si/Cdte Compton Telescope

    SciTech Connect

    Oonuki, Kousuke; Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Nakazawa, Kazuhiro; Mitani, Takefumi; Takahashi, Tadayuki; Tajima, Hiroyasu; Fukazawa, Yasushi; Nomachi, Masaharu; /Sagamihara, Inst. Space Astron. Sci. /Tokyo U. /SLAC /Hiroshima U. /Osaka U.

    2005-09-23

    We have been developing a semiconductor Compton telescope to explore the universe in the energy band from several tens of keV to a few MeV. We use a Si strip and CdTe pixel detector for the Compton telescope to cover an energy range from 60 keV. For energies above several hundred keV, the higher efficiency of CdTe semiconductor in comparison with Si is expected to play an important role as an absorber and a scatterer. In order to demonstrate the spectral and imaging capability of a CdTe-based Compton Telescope, we have developed a Compton telescope consisting of a stack of CdTe pixel detectors as a small scale prototype. With this prototype, we succeeded in reconstructing images and spectra by solving the Compton equation from 122 keV to 662 keV. The energy resolution (FWHM) of reconstructed spectra is 7.3 keV at 511 keV and 3.1 keV at 122 keV, respectively. The angular resolution obtained at 511 keV is measured to be 12.2{sup o}(FWHM).

  19. High-efficiency, large-area CdTe panels

    NASA Astrophysics Data System (ADS)

    Albright, S. P.; Singh, V. P.; Ackerman, B.

    1989-04-01

    This technical progress report on large-area CdTe solar panels cover work accomplished from June 1987 to May 1988. The highest-efficiency devices produced during this period measured 10.6 percent efficient on a 0.302-cm(2) cell. On 11-7/8 in. by 12 in. panels, the highest output obtained was 5.3 W over 847 cm(2), or 7.0 percent active-area efficiency. The aperture-area efficiency is presently about 12 percent lower, or 6.3 percent efficiency, because of interconnection losses. A 4-ft(2) panel was also produced. Resistivities of less than 100 ohm-cm have been observed consistently in phosphorus- or copper-doped CdTe. Surface analysis is presented for various CdTe treatments. Devices were characterized and analyzed using electron-beam-induced current, capacitance, spectral response, and I-V curves at various temperatures. A model for junction transport is presented. An encapsulation system is described, and lifetime test results are presented.

  20. Challenges in p-type Doping of CdTe

    NASA Astrophysics Data System (ADS)

    McCoy, Jedidiah; Swain, Santosh; Lynn, Kelvin

    We have made progress in defect identification of arsenic and phosphorous doped CdTe to understand the self-compensation mechanism which will help improve minority bulk carrier lifetime and net acceptor density. Combining previous measurements of un-doped CdTe, we performed a systematic comparison of defects between different types of crystals and confirmed the defects impacting the doping efficiency. CdTe bulk crystals have been grown via vertical Bridgman based melt growth technique with varying arsenic and phosphorous dopant schemes to attain p-type material. Furnace temperature profiles were varied to influence dopant solubility. Large carrier densities have been reproducibly obtained from these boules indicating successful incorporation of dopants into the lattice. However, these values are orders of magnitude lower than theoretical solubility values. Infrared Microscopy has revealed a plethora of geometrically abnormal second phase defects and X-ray Fluorescence has been used to identify the elemental composition of these defects. We believe that dopants become incorporated into these second phase defects as Cd compounds which act to inhibit dopant solubility in the lattice.

  1. CdTe Feedstock Development and Validation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00280

    SciTech Connect

    Albin, D.

    2011-05-01

    The goal of this work was to evaluate different CdTe feedstock formulations (feedstock provided by Redlen) to determine if they would significantly improve CdTe performance with ancillary benefits associated with whether changes in feedstock would affect CdTe cell processing and possibly reliability of cells. Feedstock also included attempts to intentionally dope the CdTe with pre-selected elements.

  2. Single-Crystal CdTe Homojunction Structures for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Su, Peng-Yu; Dahal, Rajendra; Wang, Gwo-Ching; Zhang, Shengbai; Lu, Toh-Ming; Bhat, Ishwara B.

    2015-09-01

    We report two different CdTe homojunction solar cell structures. Single-crystal CdTe homojunction solar cells were grown on GaAs single-crystal substrates by metalorganic chemical vapor deposition. Arsenic and iodine were used as dopants for p-type and n-type CdTe, respectively. Another homojunction solar cell structure was fabricated by growing n-type CdTe directly on bulk p-type CdTe single-crystal substrates. The electrical properties of the different layers were characterized by Hall measurements. When arsine was used as arsenic source, the highest hole concentration was ~6 × 1016 cm-3 and the activation efficiency was ~3%. Very abrupt arsenic doping profiles were observed by secondary ion mass spectrometry. For n-type CdTe with a growth temperature of 250°C and a high Cd/Te ratio the electron concentration was ~4.5 × 1016 cm-3. Because of the 300 nm thick n-type CdTe layer, the short circuit current of the solar cell grown on the bulk CdTe substrate was less than 10 mA/cm2. The open circuit voltage of the device was 0.86 V. According to a prediction based on measurement of short circuit current density ( J sc) as a function of open circuit voltage ( V oc), an open circuit voltage of 0.92 V could be achieved by growing CdTe solar cells on bulk CdTe substrates.

  3. Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolin; Zhan, Shengnan; Xu, Hengyi; Meng, Xianwei; Xiong, Yonghua; Chen, Xiaoyuan

    2016-04-01

    Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to perform a dynamic linear detection of OTA ranging from 0.05 pg mL-1 to 10 pg mL-1. The half maximal inhibitory concentration was 0.53 pg mL-1 and the limit of detection was 0.05 pg mL-1. These values were approximately 283- and 300-folds lower than those of horseradish peroxidase (HRP)-based conventional ELISA, respectively. The reported method is accurate, highly reproducible, and specific against other mycotoxins in agricultural products as well. In summary, the developed fluorescence immunoassay based on H2O2-induced fluorescence quenching of CdTe QDs can be used for the rapid and highly sensitive detection of mycotoxins or haptens in food safety monitoring.Herein, for the first time we report an improved competitive fluorescent enzyme linked immunosorbent assay (ELISA) for the ultrasensitive detection of ochratoxin A (OTA) by using hydrogen peroxide (H2O2)-induced fluorescence quenching of mercaptopropionic acid-modified CdTe quantum dots (QDs). In this immunoassay, catalase (CAT) was labeled with OTA as a competitive antigen to connect the fluorescence signals of the QDs with the concentration of the target. Through the combinatorial use of H2O2-induced fluorescence quenching of CdTe QDs as a fluorescence signal output and the ultrahigh catalytic activity of CAT to H2O2, our proposed method could be used to

  4. Absorption coefficient at 10.6 microm in CdTe modulator crystals.

    PubMed

    Tucker, A W; Birnbaum, M; Montes, H; Fincher, C L

    1982-08-15

    The bulk and surface absorption coefficients of CdTe modulator crystals at 10.6 microm were compared with those of single-crystal KC1 and NaCl which served to calibrate the laser calorimeter. High-resistivity (>10(7) ohm/cm) CdTe crystals exhibited a bulk absorption coefficient of 0.0014 cm(-1). PMID:20396150

  5. Homo-epitaxial growth of CdTe by sublimation under low pressure

    NASA Astrophysics Data System (ADS)

    Yoshioka, Yasushi; Yoda, Hiroki; Kasuga, Masanobu

    1991-12-01

    A new method to obtain a twin-free single crystal of CdTe on a CdTe substrate by sublimation is described. When CdTe(111)A substrates were employed for the homo-epitaxial growth of CdTe, twin crystals were frequently obtained. The substrate of CdTe(211)A and (211)B, however, gave no twins resulting in single crystals of high quality. The difference may come from the existence of many steps, sufficient to suppress two-dimensional nucleation and to promote step flow mechanism. To obtain twin-free films, therefore, a fairly large tilt angle of the substrate from a singular plane and a fairly low supersaturation are essential.

  6. Vapor phase epitaxy of CdTe on sapphire and GaAs

    NASA Astrophysics Data System (ADS)

    Kasuga, Masanobu; Futami, Hiroyuki; Iba, Yoshihiro

    1991-12-01

    CdTe films were deposited on three kinds of sapphire substrate and two kinds of GaAs substrate by open tube vapor transport. X-ray Laue diffraction study showed that CdTe(111) film grew on every kind of sapphire substrate used, i.e. on the (0001) basal plane, the (11 overline20)A plane and the (1 overline102)R plane, and that there exist a few degrees of tilt angel between CdTe(111) and the lattice plane of each substrate. The process of making the tilt angle may be explained by the atomistic mismatch model of the Cd and Al arrangement which is projected on the film-substrate interface. On GaAs(100), either CdTe(111) or CdTe(100) was obtained, whereas only a twin crystalline film was obtained on GaAs(111). These results are also consistent with the mismatch model of Cd and Ga atoms.

  7. Growth of CdTe thin films on graphene by close-spaced sublimation method

    SciTech Connect

    Jung, Younghun; Yang, Gwangseok; Kim, Jihyun; Chun, Seungju; Kim, Donghwan

    2013-12-02

    CdTe thin films grown on bi-layer graphene were demonstrated by using the close-spaced sublimation method, where CdTe was selectively grown on the graphene. The density of the CdTe domains was increased with increasing the number of the defective sites in the graphene, which was controlled by the duration of UV exposure. The CdTe growth rate on the bi-layer graphene electrodes was 400 nm/min with a bandgap energy of 1.45–1.49 eV. Scanning electron microscopy, micro-Raman spectroscopy, micro-photoluminescence, and X-ray diffraction technique were used to confirm the high quality of the CdTe thin films grown on the graphene electrodes.

  8. Synthesis and characterization of high-ordered CdTe nanorods

    NASA Astrophysics Data System (ADS)

    Ma, Ligang; Wei, Zelu; Zhang, Fengming; Wu, Xiaoshan

    2015-12-01

    Cadmium telluride (CdTe) materials are an important absorbed layer and development solar energy conversion devices based on nano-fabrication techniques have attracted considerable interest in fabricating optoelectronic devices. Herein, through close-space sublimation method, vertically high-aligned CdTe nanorods are successfully obtained for the first time, with the help of Anodic Aluminum Oxide (AAO) template, which can perfectly control the morphology, diameter, and spacing among the CdTe nanorods. Its the crystal structure and optical properties are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman scattering, and photoluminescence. The results indicate that CdTe nanorods are textured polycrystalline with the cubic phase and bear good crystallinity. In addition, this deposition technique is a clean, inexpensive, high-throughput, versatile and reproducible for obtaining vertically aligned CdTe nanorod, which shows the potential applications in the future for the preparation of CdTe-based nanostructure solar cells.

  9. Growth of CdTe smoke particles prepared by gas evaporation technique

    NASA Astrophysics Data System (ADS)

    Kaito, Chihiro; Fujita, Kazuo; Shiojiri, Makoto

    1983-07-01

    CdTe smoke particles prepared by evaporating CdTe powder in Ar gas were studied by electron microscopy. The zinc-blende particles were formed in an atmosphere of Ar containing an excess Te vapor. The wurtzite particles were formed in an atmosphere of Ar containing an excess of Cd vapor. The lattice images of the CdTe crystal particles prepared by evaporating CdTe powder showed that the particles were composed of pure CdTe crystal. Tetrapod crystals with the wurtzite structure and with the zinc-blende structure grew from nuclei which have been identified to have the zinc-blende structure. A thin layer skin-like mechanism was observed on the particles formed by the excess Te vapor.

  10. Influence of EDTA{sup 2-} on the hydrothermal synthesis of CdTe nanocrystallites

    SciTech Connect

    Gong Haibo; Hao Xiaopeng; Xu Xiangang

    2011-12-15

    Transformation from Te nanorods to CdTe nanoparticles was achieved with the assistance of EDTA as a ligand under hydrothermal conditions. Experimental results showed that at the beginning of reaction Te nucleated and grew into nanorods. With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Finally, nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were obtained. The effects of EDTA on the morphology and formation of CdTe nanoparticles were discussed in consideration of the strong ligand-effect of EDTA, which greatly decreased the concentration of Cd{sup 2+}. Furthermore, the possible formation process of CdTe nanoparticles from Te nanorods was further proposed. The crystal structure and morphology of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). - Graphical Abstract: Firstly, Te nucleated and grew into nanorods in the presence of EDTA{sup 2-}. Then CdTe nucleus began to emerge on Te nanorods and finally monodispersed CdTe nanoparticles were obtained. Highlights: Black-Right-Pointing-Pointer EDTA serves as a strong ligand with Cd{sup 2+}. Black-Right-Pointing-Pointer The existence of EDTA constrains the nucleation of CdTe and promotes the formation of Te nanorods. Black-Right-Pointing-Pointer With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Black-Right-Pointing-Pointer Nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were finally obtained.

  11. Selective Growth of CdTe on Nano-patterned CdS via Close-Space Sublimation

    NASA Astrophysics Data System (ADS)

    Aguirre, Brandon A.; Zubia, David; Ordonez, Rafael; Anwar, Farhana; Prieto, Heber; Sanchez, Carlos A.; Salazar, Maria T.; Pimentel, Alejandro. A.; Michael, Joseph R.; Zhou, Xiaowang; Mcclure, John C.; Nielson, Gregory N.; Cruz-Campa, Jose L.

    2014-07-01

    Selective-area deposition of CdTe on CdS via close-space sublimation is used to study the effect of window size (2 μm and 300 nm) on grain growth. The basic fabrication procedures for each of the layers (CdS, SiO2, and CdTe) and for achieving selective-area growth are presented. Selective-area growth of both micro- and nano-scale CdTe islands on CdS substrates using close-spaced sublimation is demonstrated. Scanning electron microscopy and electron backscatter diffraction microstructure analysis show that the micro-scale CdTe islands remain polycrystalline. However, when the island size is reduced to 300 nm, single crystal CdTe can be achieved within the windows. The CdTe grains were most often in the (101) orientation for both the micro- and nano-sized CdTe islands.

  12. Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Juan; Li, Minjie; Tang, Jieli; Li, Xiaozhou; Zhang, Hanqi; Zhang, Yihua

    2008-08-01

    This paper described a novel assay of enzyme based on the measurement of enhanced resonance light-scattering (RLS) signals resulting from the electrostatic and coordination interaction of functionalized CdTe nanoparticles with enzyme. The CdTe nanoparticles which were modified with 3-mercaptocarboxylic acid (MPA) have abundant carboxylic groups ( sbnd COOH). So the nanoparticles are water-soluble, stable and biocompatible. At pH 8.3 phosphate buffered saline (PBS), the RLS signals of functionalized nano-CdTe are greatly enhanced by bromelain and papain in the region of 220-800 nm characterized by the peak around 318-314 nm, respectively. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the enhanced RLS intensity is linearly proportional to the concentration of bromelain and papain. The liner range is (0.09-0.9) × 10 -6 mol/L for bromelain and (0.048-0.702) × 10 -6 mol/L for papain. The influences of some foreign substances were also examined. This method can be applied to the determination of enzyme.

  13. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    NASA Astrophysics Data System (ADS)

    Tran, Thi Kim Chi; Chinh Vu, Duc; Dieu Thuy Ung, Thi; Yen Nguyen, Hai; Hai Nguyen, Ngoc; Cao Dao, Tran; Nga Pham, Thu; Liem Nguyen, Quang

    2012-09-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor.

  14. Bi-nanoparticle (CdTe and CdSe) mixed polyaniline hybrid thin films prepared using spin coating technique

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Dutta, V.

    2009-02-01

    Polyaniline (Pani) films containing CdTe, CdSe, and both nanoparticles were deposited using spin coating technique. Pani was chemically synthesized by oxidation method, whereas surfactant free CdTe and CdSe nanoparticles were prepared using solvothermal method. Binanoparticle films showed an increase in the absorption from 350 nm to the near IR region. Absorption spectra also showed charge transfer complex formation for the binanoparticle hybrid thin films prepared with weight ratio of [Pani (camphor sulfonic acid, CSA):CdTe:CdSe] 200:100:75. Photoluminescence measurement for the bi-nanoparticle hybrid thin films confirmed that the required dissociation of excitons was taking place at the interface. Scanning electron microscopy images showed homogeneity and an interconnected network on the surface of the films prepared with Pani (CSA):CdTe:CdSe weight ratios of 200:100:50 and 200:100:75, respectively. Cyclic voltammetry confirmed better stability for the bi-nanoparticle hybrid films in comparison to Pani film. It also established the process of electrochemical charge transfer between the nanoparticles and the polymer matrix.

  15. Evaluation of acetylcysteine promoting effect on CdTe nanocrystals photoluminescence by using a multipumping flow system.

    PubMed

    Frigerio, Christian; Abreu, Vera L R G; Santos, João L M

    2012-07-15

    A simple and straightforward quantification method integrated in a fully automated multi-pumping flow system (MPFS) using water-soluble mercaptopropionic acid (MPA)-capped CdTe quantum dots (QDs) was implemented for the fluorescence quantification of N-acetyl-L-cysteine (NAC) in pharmaceutical formulations. The developed approach was based on NAC ability to establish surface interactions that result in enhanced nanocrystals fluorescence intensity, proportional to analyte concentration. Size and concentration of QDs, ageing, composition, concentration and pH of the buffer solution revealed to have a noticeable effect on the enhancing efficiency affecting sensitivity and linear working range of the methodology. Under the optimal conditions, a linear working range was obtained for NAC concentrations ranging from 50 to 750μmolL(-1) (r=0.9978), with good precision (r.s.d.<1.6%; n=5) and a sampling rate of about 75hr(-1). The detection limit (LOD) was approximately 1.6μmolL(-1). The method was applied to pharmaceutical preparations and the results revealed good agreement with those obtained by the reference procedure with relative deviations between -2.1 and +4.2%. Advantages of the new procedure include speed, low consumption of reagents, minor waste generation, requiring also much less work than the recommended HPLC method. The mechanism for luminescence enhancement of CdTe QDs is discussed. FT-IR spectra revealed that sulphydryl groups of NAC have a high affinity with the nanocrystals. PMID:22817928

  16. MPA-capped CdTe quantum dots exposure causes neurotoxic effects in nematode Caenorhabditis elegans by affecting the transporters and receptors of glutamate, serotonin and dopamine at the genetic level, or by increasing ROS, or both

    NASA Astrophysics Data System (ADS)

    Wu, Tianshu; He, Keyu; Zhan, Qinglin; Ang, Shengjun; Ying, Jiali; Zhang, Shihan; Zhang, Ting; Xue, Yuying; Tang, Meng

    2015-12-01

    As quantum dots (QDs) are widely used in biomedical applications, the number of studies focusing on their biological properties is increasing. While several studies have attempted to evaluate the toxicity of QDs towards neural cells, the in vivo toxic effects on the nervous system and the molecular mechanisms are unclear. The aim of the present study was to investigate the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride (CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C. elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral defects, including alterations to body bending, head thrashing, pharyngeal pumping and defecation intervals, as well as impaired learning and memory behavior plasticity, based on chemotaxis or thermotaxis, in a dose-, time- and size-dependent manner. Further investigations suggested that MPA-capped CdTe QDs exposure inhibited the transporters and receptors of glutamate, serotonin and dopamine in C. elegans at the genetic level within 24 h, while opposite results were observed after 72 h. Additionally, excessive reactive oxygen species (ROS) generation was observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity mechanism of oxidative stress damage, and might overcome the increased gene expression of neurotransmitter transporters and receptors in C. elegans induced by long-term QD exposure, resulting in more severe behavioral impairments.

  17. Study of tellurium precipitates in CdTe crystals

    NASA Technical Reports Server (NTRS)

    Jayatirtha, H. N.; Henderson, D. O.; Burger, A.; Volz, M. P.

    1993-01-01

    The effect of tellurium precipitates was studied in medium resistivity (10 exp 3-10 exp 6 ohm cm) undoped and Cl-doped CdTe using differential scanning calorimetry (DSC) and mid-infrared spectroscopy and the results were correlated with near-infrared microscopy photographs. When present in a significant quantity (about 0.25 wt pct), we show that Te precipitates are detectable using DSC measurements. In the mid-infrared, the contribution of the absorption by free-carriers is negligible, and therefore, the effect of the Te precipitates in these crystals can be considered uncoupled from the effects of Cd vacancies.

  18. High-Efficiency, Commercial Ready CdTe Solar Cells

    SciTech Connect

    Sites, James R.

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  19. Thermomechanical analysis in directional solidification of CdTe

    SciTech Connect

    Carlson, F.M.; Lee, T.; Moosbrugger, J.C.; Larson, D.J. Jr.

    1996-12-31

    Thermoelastic calculations for CdTe grown by the vertical Bridgman method are presented. Finite element calculations are verified by some experimental data. Solidification interface velocity, charge temperature and stress distributions are computed for prescribed ampoule withdrawal rates and several ampoule support systems. The support systems include various materials and seed-wafer transition zone geometries. Crystal stress in excess of the critical resolved shear stress is used as the figure of merit to judge the performance of a particular system. Emphasis is focused on the transition region between the seed and wafer. A processing strategy is proposed and desirable support system characteristics are presented.

  20. Nonstoichiometric composition shift in physical vapor deposition of CdTe thin films

    NASA Astrophysics Data System (ADS)

    Chin, Ken K.; Cheng, Zimeng; Delahoy, Alan E.

    2015-05-01

    While it is being debated whether Cd vacancy is an effective p-dopant in CdTe, and whether CdTe thin film in solar energy application should be Cd-deficient or Cd-rich, in the theory of CdTe physical vapor deposition (PVD) it has been assumed that both the source material and the thin film product is stoichiometric. To remediate the lack of effective theory, a new PVD model for CdTe photovoltaic (PV) modules is presented in this work, in which the composition of the CdTe thin film under growth is a parameter determined by the source CdTe composition as well as the growth condition. The solid phase Cd1-δTe1+δ compound under deposition temperature is treated as a solid solution with a mole of excess pure Te or Cd as solute and one mole of congruently grown CdTe as solvent. Assuming that the vapor pressure of Te2 can be calculated by using the law of solid solution PTe=H0+aH1+a2H2 round the congruent composition, where the molar number a and the constants H0, H1 and H2 as functions of temperature T are extracted from the experimental data. Thus, the mole fraction of solute in the grown CdTe thin film as well as the growth rate, as a function of the solute mole fraction in the source CdTe can be determined.

  1. Single CdTe Nanowire Optical Correlator for Femtojoule Pulses.

    PubMed

    Xin, Chenguang; Yu, Shaoliang; Bao, Qingyang; Wu, Xiaoqin; Chen, Bigeng; Wang, Yipei; Xu, Yingxin; Yang, Zongyin; Tong, Limin

    2016-08-10

    On the basis of the transverse second harmonic generation (TSHG) in a highly nonlinear subwavelength-diameter CdTe nanowire, we demonstrate a single-nanowire optical correlator for femto-second pulse measurement with pulse energy down to femtojoule (fJ) level. Pulses to be measured were equally split and coupled into two ends of a suspending nanowire via tapered optical fibers. The couterpropagating pulses meet each other around the central area of the nanowire, and emit TSHG signal perpendicular to the axis of the nanowire. By transferring the spatial intensity profile of the transverse second harmonic (TSH) image into the time-domain temporal profile of the input pulses, we operate the nanowire as a miniaturized optical correlator. Benefitted from the high nonlinearity and the very small effective mode area of the waveguiding CdTe nanowire, the input energy of the single-nanowire correlator can go down to fJ-level (e.g., 2 fJ/pulse for 1064 nm 200 fs pulses). The miniature fJ-pulse correlator may find applications from low power on-chip optical communication, biophotonics to ultracompact laser spectroscopy. PMID:27414182

  2. APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE

    SciTech Connect

    Khusainov, A. K.; Iwanczyk, J. S.; Patt, B. E.; Prirogov, A. M.; Vo, Duc T.

    2001-01-01

    A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  3. Research on single-crystal CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Borrego, J. M.; Ghandhi, S. K.

    1987-10-01

    This report outlines two years of work on the growth and characterization of single-crystal CdTe layers, to explore their potential for high-efficiency solar cells. It was demonstrated that high-quality layers can be grown by organometallic vapor phase epitaxy (OMVPE), whose photoluminescence peak has a FWHM of 5.8 MeV, the lowest value for them yet achieved. CdTe layers were extrinsically doped both n- and p-type with indium and arsenic, respectively. The doping level achieved for p-type is the highest yet reported in the literature, achieved for the first time in an OMVPE system. A hole lifetime of 2.0 microns was measured. In the n-type material, five deep levels were isolated; their capture cross section, energy level, and concentration were determined. A thermodynamic analysis was made to identify their defect character. Both Schottky and p-n junction devices were produced on these layers. The diode characteristics were superior to those of GaAs so this is a potentially superior material for solar cells.

  4. Advanced CdTe Photovoltaic Technology: September 2007 - March 2009

    SciTech Connect

    Barth, K.

    2011-05-01

    During the last eighteen months, Abound Solar (formerly AVA Solar) has enjoyed significant success under the SAI program. During this time, a fully automated manufacturing line has been developed, fabricated and commissioned in Longmont, Colorado. The facility is fully integrated, converting glass and semiconductor materials into complete modules beneath its roof. At capacity, a glass panel will enter the factory every 10 seconds and emerge as a completed module two hours later. This facility is currently undergoing trials in preparation for large volume production of 120 x 60 cm thin film CdTe modules. Preceding the development of the large volume manufacturing capability, Abound Solar demonstrated long duration processing with excellent materials utilization for the manufacture of high efficiency 42 cm square modules. Abound Solar prototype modules have been measured with over 9% aperture area efficiency by NREL. Abound Solar demonstrated the ability to produce modules at industry leading low costs to NREL representatives. Costing models show manufacturing costs below $1/Watt and capital equipment costs below $1.50 per watt of annual manufacturing capacity. Under this SAI program, Abound Solar supported a significant research and development program at Colorado State University. The CSU team continues to make progress on device and materials analysis. Modeling for increased device performance and the effects of processing conditions on properties of CdTe PV were investigated.

  5. Thin-film CdTe and CuInSe{sub 2} photovoltaic technologies

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; von Roedern, B.G.

    1993-08-01

    Total-area conversion efficiency of 15%--15.8% have been achieved for thin-film CdTe and CIS solar cells. Modules with power output of 5--53 W have been demonstrated by several groups world-wide. Critical processes and reaction pathways for achieving excellent PV devices have been eluciated. Research, development and technical issues have been identified, which could result in potential improvements in device and module performance. A 1-kW thin-film CdTe array has been installed and is being tested. Multimegawatt thin-film CdTe manufacturing plants are expected to be completed in 1-2 years.

  6. PC/FRAM plutonium isotopic analysis of CdTe gamma-ray spectra

    NASA Astrophysics Data System (ADS)

    Vo, D. T.; Russo, P. A.

    2002-07-01

    This paper reports the results of isotopics measurements of plutonium with the new CdTe gamma-ray spectrometer. These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than germanium spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. The complete experimental hardware included the new, commercial, portable CdTe detector and two commercial portable multichannel analyzers. Version 4 of FRAM is the software that performed the isotopics analysis.

  7. Electronic structure of the quantum spin Hall parent compound CdTe and related topological issues

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Bian, Guang; Fu, Li; Liu, Chang; Wang, Tao; Zha, Gangqiang; Jie, Wanqi; Neupane, Madhab; Miller, T.; Hasan, M. Z.; Chiang, T.-C.

    2014-11-01

    Cadmium telluride (CdTe), a compound widely used in devices, is a key base material for the experimental realization of the quantum spin Hall phase. We report herein a study of the electronic structure of CdTe by angle-resolved photoemission spectroscopy from well-ordered (110) surfaces. The results are compared with first-principles calculations to illustrate the topological distinction between CdTe and a closely related compound HgTe. Through a theoretical simulation a topological phase transition as well as the Dirac-Kane semimetal phase at the critical point was demonstrated in the mixed compound H gxC d1 -xTe .

  8. Time-resolved photoluminescence of polycrystalline CdTe grown by close-spaced sublimation

    SciTech Connect

    Keyes, B.; Dhere, R.; Ramanathan, K. )

    1994-06-30

    Polycrystalline CdTe has shown great promise as a low-cost material for thin-film, terrestrial photovoltaic applications, with efficiencies approaching 16% achieved with close-spaced sublimation (CSS)-grown CdTe. Due to the inherent complexities of polycrystalline material, much of the progress in this area has occurred through a slow trial-and-error process. This report uses time-resolved photoluminescence (TRPL) to characterize the CdTe material quality as a function of one basic growth parameter---substrate temperature. This characterization is done for two different glass substrate materials, soda-lime silicate and borosilicate.

  9. Growth and characterization of CdTe on GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, G.; Nouhi, A.; Liu, J.

    1988-01-01

    Epitaxial CdTe has been grown on both (100) GaAs/Si and (111) GaAs/Si substrates. A combination of molecular beam epitaxy and metal organic chemical vapor deposition have been employed to achieve this growth. The GaAs layers are grown in Si substrates by molecular beam epitaxy, followed by the growth of CdTe on GaAs/Si substra by metalorganic chemical vapor deposition. X-ray diffraction, photoluminescence, and scanning electron microscopy have been used to characterize the CdTe films.

  10. Effect of low energy ion irradiation on CdTe crystals: Luminescence enhancement

    SciTech Connect

    Olvera, J.; Plaza, J. L.; Dios, S. de; Dieguez, E.; Martinez, O.; Avella, M.

    2010-12-15

    In this work we show that low energy ion sputtering is a very efficient technique as a cleaning process for CdTe substrates. We demonstrate, by using several techniques like grazing-angle x-ray diffraction, cathodoluminescence, microluminescence, and micro-Raman spectroscopy that the luminescent properties of CdTe substrates can be very much increased when CdTe surfaces are irradiated with low energy Argon ions. We postulate that this enhancement is mainly due to the removal of surface damage induced by the cutting and polishing processes. The formation of a low density of nonluminescent aggregates after the sputtering process has also been observed.

  11. Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging

    PubMed Central

    2014-01-01

    A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a high quantum yield (QY) up to 58%. By preparing CdTe QDs within HPAMAM, the biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs can be combined, endowing the CdTe QDs with biocompatibility. The resulting CdTe QDs can be directly used in biomedical fields, and their potential application in bio-imaging was investigated. PMID:24624925

  12. Atomic-force microscopy and photoluminescence of nanostructured CdTe

    SciTech Connect

    Babentsov, V.; Sizov, F.; Franc, J.; Luchenko, A.; Svezhentsova, E. Tsybrii, Z.

    2013-09-15

    Low-dimensional CdTe nanorods with a diameter of 10-30 nm and a high aspect ratio that reaches 100 are studied. The nanorods are grown by the physical vapor transport method with the use of Bi precipitates on the substrates. In addition, thin films of closely packed CdTe nanorods with the transverse dimensions {approx}(100-200) nm are grown. Atomic-force microscopy shows that the cross sections of all of the nanorods were hexagonally shaped. By photoluminescence measurements, the inference about the wurtzite structure of CdTe is supported, and the structural quality, electron-phonon coupling, and defects are analyzed. On the basis of recent ab initio calculations, the nature of defects responsible for the formation of deep levels in the CdTe layers and bulk crystals are analyzed.

  13. APT mass spectrometry and SEM data for CdTe solar cells

    DOE PAGESBeta

    Li, Chen; Paudel, Naba R.; Yan, Yanfa; Pennycook, Stephen J.; Poplawsky, Jonathan D.; Guo, Wei

    2016-03-16

    Atom probe tomography (APT) data acquired from a CAMECA LEAP 4000 XHR for the CdS/CdTe interface for a non-CdCl2 treated CdTe solar cell as well as the mass spectrum of an APT data set including a GB in a CdCl2-treated CdTe solar cell are presented. Scanning electron microscopy (SEM) data showing the evolution of sample preparation for APT and scanning transmission electron microscopy (STEM) electron beam induced current (EBIC) are also presented. As a result, these data show mass spectrometry peak decomposition of Cu and Te within an APT dataset, the CdS/CdTe interface of an untreated CdTe solar cell, preparationmore » of APT needles from the CdS/CdTe interface in superstrate grown CdTe solar cells, and the preparation of a cross-sectional STEM EBIC sample.« less

  14. Position-sensitive CdTe detector using improved crystal growth method

    NASA Astrophysics Data System (ADS)

    1988-09-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  15. Position-sensitive CdTe detector using improved crystal growth method

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  16. First-Principles Study of Back Contact Effects on CdTe Thin Film Solar Cells

    SciTech Connect

    Du, Mao-Hua

    2009-01-01

    Forming a chemically stable low-resistance back contact for CdTe thin-film solar cells is critically important to the cell performance. This paper reports theoretical study of the effects of the back-contact material, Sb{sub 2}Te{sub 3}, on the performance of the CdTe solar cells. First-principles calculations show that Sb impurities in p-type CdTe are donors and can diffuse with low diffusion barrier. There properties are clearly detrimental to the solar-cell performance. The Sb segregation into the grain boundaries may be required to explain the good efficiencies for the CdTe solar cells with Sb{sub 2}Te{sub 3} back contacts.

  17. Biocompatible fluorescence-enhanced ZrO2-CdTe quantum dot nanocomposite for in vitro cell imaging

    NASA Astrophysics Data System (ADS)

    Lu, Zhisong; Zhu, Zhihong; Zheng, Xinting; Qiao, Yan; Guo, Jun; Li, Chang Ming

    2011-04-01

    With advances of quantum dots (QDs) in bioimaging applications, various materials have been used to coat QDs to reduce their nanotoxicity; however, the coating could introduce new toxic sources and quench the fluorescence in bioimaging applications. In this work, ZrO2, an excellent ceramic material with low extinction coefficient and good biocompatibility, is utilized to coat CdTe QDs for the first time. Experimental results show that ZrO2-QD nanocomposites with the size of ~ 30 nm possess enhanced fluorescence emission, lower nanotoxicity and gradually increased fluorescence under 350 nm light illumination. After functionalization with folic acid, they were applied to label cultured HeLa cells effectively. Therefore, the ZrO2-QD nanocomposites could be promising biocompatible nanomaterials with strong fluorescence emission to replace or complement QDs in biomedical applications.

  18. Formation and Properties of Polycrystalline p-Type High-Conductivity CdTe Films by Coevaporation of CdTe and Te

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiya; Hayashi, Hiroaki; Fukaya, Mitsuru; Ema, Yoshinori

    1991-10-01

    Polycrystalline p-type high-dark-conductivity CdTe films have been prepared by coevaporation of CdTe and Te. The structural and electrical properties were investigated. The dark conductivity of the films at 300 K ranged from 6.32× 10-8 to 3.41 S cm-1. The film structure was of the zincblende type with a preferential orientation of the (111) planes parallel to the substrate. The crystallinity was rather good. From the measurements of the carrier concentration versus ambient temperature characteristics, it was found that the high-conductivity p-type conduction of the films was due to the formation of Cd vacancies, acceptors resulting from the coevaporation of CdTe and Te. It is shown that the high-conductivity films obtained are suitable for p-CdTe/n-CdS solar cells.

  19. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole

    NASA Astrophysics Data System (ADS)

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-01

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL-1 (3.4 ng mL-1) and the quantitative determination range was 0-2.8 μg mL-1 with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  20. Oxygen Incorporation During Fabrication of Substrate CdTe Photovoltaic Devices: Preprint

    SciTech Connect

    Duenow, J. N.; Dhere, R. G.; Kuciauskas, D.; Li, J. V.; Pankow, J. W.; DeHart, C. M.; Gessert, T. A.

    2012-06-01

    Recently, CdTe photovoltaic (PV) devices fabricated in the nonstandard substrate configuration have attracted increasing interest because of their potential compatibility with flexible substrates such as metal foils and polymer films. This compatibility could lead to the suitability of CdTe for roll-to-roll processing and building-integrated PV. Currently, however, the efficiencies of substrate CdTe devices reported in the literature are significantly lower ({approx}6%-8%) than those of high-performance superstrate devices ({approx}17%) because of significantly lower open-circuit voltage (Voc) and fill factor (FF). In our recent device development efforts, we have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. Here, we investigate how oxygen incorporation in the CdTe deposition, CdCl2 heat treatment, CdS deposition, and post-deposition heat treatment affect device characteristics through their effects on the junction. By adjusting whether oxygen is incorporated during these processing steps, we have achieved Voc values greater than 860 mV and efficiencies greater than 10%.

  1. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.

    PubMed

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-15

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL(-1) (3.4 ng mL(-1)) and the quantitative determination range was 0-2.8 μg mL(-1) with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results. PMID:25659737

  2. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  3. Photovoltaic properties of CdTe layers grown by OMVPE

    NASA Astrophysics Data System (ADS)

    Bhimnathwala, H. G.; Taskar, N. R.; Lee, W. I.; Bhat, I.; Ghandhi, S. K.

    Photovoltaic characteristics of single-crystal cadmium telluride epitaxial layers grown by organometallic vapor phase epitaxy (OMVPE) on InSb substrates are reported. Electrical characterization of Schottky solar cells fabricated by depositing thin transparent gold shows that a hole diffusion length of 2 microns can be obtained in n-CdTe. The current flow in the p-n junction in the forward bias is determined by recombination in the depletion region. Theoretical calculations show that n+p CdTe solar cells could have an open-circuit voltage of 0.90 V, a short-circuit current of 22.2 mA/sq cm and an efficiency of 21 percent under AM1.5 illumination.

  4. Theoretical study of intrinsic defects in CdTe

    NASA Astrophysics Data System (ADS)

    Menéndez-Proupin, E.; Orellana, W.

    2016-05-01

    The quantum states and thermodynamical properties of the Cd and Te vacancies in CdTe are studied by first principles calculations. It is shown that the band structure of a cubic 64-atoms supercell with a Te vacancy is dramatically different from the band structure of the perfect crystal, suggesting that it cannot be used as model to calculate isolated defects. This flaw is solved modeling the Te vacancy within a cubic 216-atoms supercell. However, even with this large supercell, the 2— charge state relaxes to an incorrect distorted structure. This distortion is driven by partial filling of the conduction band induced by the k-point sampling. The correct structures and formation energies are obtained by relaxation with restriction of system symmetry, followed by band-filling correction to the energy, or by using a larger supercell that allows sampling the Brillouin zone with a single k-point.

  5. Preparation of pH-stimuli-responsive PEG-TGA/TGH-capped CdTe QDs and their application in cell labeling.

    PubMed

    Du, Yan; Yang, Dongzhi; Sun, Shian; Zhao, Ziming; Tang, Daoquan

    2015-08-01

    A pH-sensitive and double functional nanoprobe was designed and synthesized in a water-soluble system using thioglycolic acid (TGA) and mercapto-acetohydrazide (TGH) as the stabilizers. TGA is biocompatible because the carboxyl group is easily linked to biological macromolecules. At the same time, the hydrazide on TGH reacts with the aldehyde on poly(ethylene glycol) (PEG) and forms a hydrazone bond. The hydrazone bond ruptured at specific pH values and exhibited pH-stimuli-responsive characteristics. As an optical imaging probe, the PEG-TGA/TGH-capped CdTe quantum dots (QDs) had high quality, with a fluorescence efficiency of 25-30%, and remained stable for at least five months. This pH-responsive factor can be used for the effective release of CdTe QDs under the acidic interstitial extracellular environment of tumor cells. This allows the prepared pH-stimuli-responsive nanoprobes to show fluorescence signals for use in cancer cell imaging. PMID:25244429

  6. Silver Nanolabels-Assisted Ion-Exchange Reaction with CdTe Quantum Dots Mediated Exciton Trapping for Signal-On Photoelectrochemical Immunoassay of Mycotoxins.

    PubMed

    Lin, Youxiu; Zhou, Qian; Tang, Dianping; Niessner, Reinhard; Yang, Huanghao; Knopp, Dietmar

    2016-08-01

    Mycotoxins, highly toxic secondary metabolites produced by many invading species of filamentous fungi, contaminate different agricultural commodities under favorable temperature and humidity conditions. Herein, we successfully devised a novel signal-on photoelectrochemical immunosensing platform for the quantitative monitoring of mycotoxins (aflatoxin B1, AFB1, used as a model) in foodstuffs on the basis of silver nanolabels-assisted ion-exchange reaction with CdTe quantum dots (QDs) mediated hole-trapping. Initially, a competitive-type immunoreaction was carried out on a high-binding microplate by using silver nanoparticle (AgNP)-labeled AFB1-bovine serum albumin (AFB1-BSA) conjugates as the tags. Then, the carried AgNPs with AFB1-BSA were dissolved by acid to release numerous silver ions, which could induce ion-exchange reaction with the CdTe QDs immobilized on the electrode, thus resulting in formation of surface exciton trapping. Relative to pure CdTe QDs, the formed exciton trapping decreased the photocurrent of the modified electrode. In contrast, the detectable photocurrent increased with the increase of target AFB1 in a dynamic working range from 10 pg mL(-1) to 15 ng mL(-1) at a low limit of detection (LOD) of 3.0 pg mL(-1) under optimal conditions. In addition, the as-prepared photoelectrochemical immunosensing platform also displayed high specificity, good reproducibility, and acceptable method accuracy for detecting naturally contaminated/spiked blank peanut samples with consistent results obtained from the referenced enzyme-linked immunosorbent assay (ELISA) method. PMID:27348353

  7. Emitter/absorber interface of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be

  8. Temperature dependence measurements for Cadmium Telluride (CdTe) solar cells

    NASA Astrophysics Data System (ADS)

    Duarte, Fernanda; Wang, Weining

    2015-03-01

    Traditional silicon (Si)-based solar cells have been studied broadly and have already reached their maximum efficiency. However, their cost is relatively high, preventing them from being widely used. Unlike Si-based solar cells, Cadmium Telluride (CdTe) solar cells are considerably cheap, yet the record efficiency is still lower than that of traditional silicon-based solar cells. More studies are needed to understand and improve the efficiency of CdTe solar cells. In this work, we report our studies of the temperature dependence of CdTe solar cell parameters using the temperature-varying apparatus designed and built by us in-house. This temperature-varying apparatus will be incorporated with a solar cell testing station in order to measure the solar cell parameters while varying the temperature. The solar cell parameters will be measured at different temperatures (with a 100 K temperature range), and the effects of temperature on the open-circuit voltage, short-circuit current and efficiency of the solar cells will be reported. These results allow us to further understand the physics of CdTe solar cells and shine light on how to improve the efficiency of CdTe solar cells.

  9. Electronic Structure of Quantum Spin Hall Parent Compound CdTe

    NASA Astrophysics Data System (ADS)

    Bian, Guang

    2015-03-01

    Cadmium telluride, a compound widely used in devices, is a key base material for the experimental realization of the quantum spin Hall phase. The electronic structure of CdTe has been studied by various theoretical and experimental methods. However, high-resolution band mapping has been lacking to this date. The detailed low-energy electronic structure of CdTe is thus unavailable, but it is of fundamental importance for understanding the topological properties and trends of this type of materials. We report herein, for the first time, a systematic study of the electronic structure of CdTe by angle-resolved photoemission spectroscopy from well-ordered (110) surfaces. The results are compared with first-principles calculations to illustrate the topological distinction between CdTe and a closely related compound HgTe. In addition, topological phase transition from CdTe to HgTe upon alloying and the massless Dirac-Kane semimetal phase at the critical composition are illustrated by computations based on a mixed-pseudopotential simulation.

  10. Native Defect Control of CdTe Thin Film Solar Cells by Close-Spaced Sublimation

    NASA Astrophysics Data System (ADS)

    Okamoto, Tamotsu; Kitamoto, Shinji; Yamada, Akira; Konagai, Makoto

    2001-05-01

    The control of native defects in the CdTe thin film solar cells was investigated using a novel source for close-spaced sublimation (CSS) process which was prepared by vacuum evaporation with elemental Cd and Te (evaporated source). The evaporated sources were prepared on glass substrates at room temperature, and the Cd/Te ratio was controlled by varying the Cd and Te beam equivalent pressures. In the cells using the Te-rich source, the conversion efficiency was less than 0.2% because of the extremely low shunt resistance. On the other hand, a conversion efficiency above 15% was obtained by using the Cd-rich source. Capacitance-voltage (C-V) characteristics revealed that the acceptor concentration in the CdTe layer increased with increasing Cd/Te ratio of the evaporated source. Furthermore, photoluminescence spectra implied that the formation of the Cd vacancies in the CdTe layer was suppressed using the Cd-rich source.

  11. Performance of a new Schottky CdTe detector for hard x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Hirose, K.; Matsumoto, Chiho; Takizawa, Kyoko; Ohno, Ryouichi; Ozaki, Tsutomu; Mori, Kunishiro; Tomita, Yasuhiro

    1998-07-01

    We report a significant improvement of the spectral properties of a cadmium telluride (CdTe) detector. With the use of a high quality CdTe crystal, we formed a high Schottky barrier for the holes on a CdTe surface using a low work-function metal, indium. For a 2 X 2 mm(superscript 2) detector with a thickness of 0.5 mm the leakage current was measured to be 0.7 nA at room temperature (20 degree(s)C) and 10 pA at -20 degree(s)C for a 400 V bias voltage. The low-leakage current of the detector allows us to operate the detector at a higher bias voltage than previous CdTe detectors. The improved charge collection efficiency and the low-leakage current leads to an energy resolution of 1.1 - 2.5 keV FWHM in the energy range 2 keV to 150 keV at 20 degree(s)C without charge loss correction electronics. We confirmed that once a high electric field of several kV/cm is applied, the Schottky CdTe has a very good energy resolution as well as sufficient stability to be used for practical applications.

  12. Medipix2 based CdTe microprobe for dental imaging

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Fauler, A.; Fiederle, M.; Jakubek, J.; Svestkova, M.; Zwerger, A.

    2011-12-01

    Medical imaging devices and techniques are demanded to provide high resolution and low dose images of samples or patients. Hybrid semiconductor single photon counting devices together with suitable sensor materials and advanced techniques of image reconstruction fulfil these requirements. In particular cases such as the direct observation of dental implants also the size of the imaging device itself plays a critical role. This work presents the comparison of 2D radiographs of tooth provided by a standard commercial dental imaging system (Gendex 765DC X-ray tube with VisualiX scintillation detector) and two Medipix2 USB Lite detectors one equipped with a Si sensor (300 μm thick) and one with a CdTe sensor (1 mm thick). Single photon counting capability of the Medipix2 device allows virtually unlimited dynamic range of the images and thus increases the contrast significantly. The dimensions of the whole USB Lite device are only 15 mm × 60 mm of which 25% consists of the sensitive area. Detector of this compact size can be used directly inside the patients' mouth.

  13. Structural and AC conductivity study of CdTe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  14. Recombination by grain-boundary type in CdTe

    SciTech Connect

    Moseley, John Ahrenkiel, Richard K.; Metzger, Wyatt K.; Moutinho, Helio R.; Guthrey, Harvey L.; Al-Jassim, Mowafak M.; Paudel, Naba; Yan, Yanfa

    2015-07-14

    We conducted cathodoluminescence (CL) spectrum imaging and electron backscatter diffraction on the same microscopic areas of CdTe thin films to correlate grain-boundary (GB) recombination by GB “type.” We examined misorientation-based GB types, including coincident site lattice (CSL) Σ = 3, other-CSL (Σ = 5–49), and general GBs (Σ > 49), which make up ∼47%–48%, ∼6%–8%, and ∼44%–47%, respectively, of the GB length at the film back surfaces. Statistically averaged CL total intensities were calculated for each GB type from sample sizes of ≥97 GBs per type and were compared to the average grain-interior CL intensity. We find that only ∼16%–18% of Σ = 3 GBs are active non-radiative recombination centers. In contrast, all other-CSL and general GBs are observed to be strong non-radiative centers and, interestingly, these GB types have about the same CL intensity. Both as-deposited and CdCl{sub 2}-treated films were studied. The CdCl{sub 2} treatment reduces non-radiative recombination at both other-CSL and general GBs, but GBs are still recombination centers after the CdCl{sub 2} treatment.

  15. Defect-induced emission band in CdTe

    NASA Astrophysics Data System (ADS)

    Seto, S.; Tanaka, A.; Takeda, F.; Matsuura, K.

    1994-04-01

    We report on a distinct correlation between the 1.47 eV emission band and the dislocation density in bulk CdTe. The 1.47 eV band intensifies around the high-dislocation area (lineage structure) and at the position just on dislocation bundle. On the other hand, the 1.47 eV band was hardly observed in the low-dislocation area (etch pit density less than 2 × 10 5 cm -2) or at the position away from the dislocation bundle. Furthermore, the 1.47 eV band was intensified by γ-ray irradiation of 1.7 × 10 7 Gy, which produced a great number of Frenkel defects. It was shown that the 1.47 eV band is related not only to an extended defect such as a dislocation, but also to a point defect such as a Frenkel defect. These results suggest that the strain field induced in the vicinity of the defects is responsible for the recombination center of the 1.47 eV band.

  16. Recombination by grain-boundary type in CdTe

    NASA Astrophysics Data System (ADS)

    Moseley, John; Metzger, Wyatt K.; Moutinho, Helio R.; Paudel, Naba; Guthrey, Harvey L.; Yan, Yanfa; Ahrenkiel, Richard K.; Al-Jassim, Mowafak M.

    2015-07-01

    We conducted cathodoluminescence (CL) spectrum imaging and electron backscatter diffraction on the same microscopic areas of CdTe thin films to correlate grain-boundary (GB) recombination by GB "type." We examined misorientation-based GB types, including coincident site lattice (CSL) Σ = 3, other-CSL (Σ = 5-49), and general GBs (Σ > 49), which make up ˜47%-48%, ˜6%-8%, and ˜44%-47%, respectively, of the GB length at the film back surfaces. Statistically averaged CL total intensities were calculated for each GB type from sample sizes of ≥97 GBs per type and were compared to the average grain-interior CL intensity. We find that only ˜16%-18% of Σ = 3 GBs are active non-radiative recombination centers. In contrast, all other-CSL and general GBs are observed to be strong non-radiative centers and, interestingly, these GB types have about the same CL intensity. Both as-deposited and CdCl2-treated films were studied. The CdCl2 treatment reduces non-radiative recombination at both other-CSL and general GBs, but GBs are still recombination centers after the CdCl2 treatment.

  17. X-ray luminescence of CdTe quantum dots in LaF{sub 3}:Ce/CdTe nanocomposites

    SciTech Connect

    Hossu, Marius; Liu Zhongxin; Yao Mingzhen; Ma Lun; Chen Wei

    2012-01-02

    CdTe quantum dots have intense photoluminescence but exhibit almost no x-ray luminescence. However, intense x-ray luminescence from CdTe quantum dots is observed in LaF{sub 3}:Ce/CdTe nanocomposites. This enhancement in the x-ray luminescence of CdTe quantum dots is attributed to the energy transfer from LaF{sub 3}:Ce to CdTe quantum dots in the nanocomposites. The combination of LaF{sub 3}:Ce nanoparticles and CdTe quantum dots makes LaF{sub 3}:Ce/CdTe nanocomposites promising scintillators for radiation detection.

  18. Simulation of active-edge pixelated CdTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Duarte, D. D.; Lipp, J. D.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  19. Controlled optical properties of water-soluble CdTe nanocrystals via anion exchange.

    PubMed

    Li, Jing; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen

    2016-02-01

    We report a study on anion exchange reaction of CdTe nanocrystals with S(2-) in aqueous solution under ambient condition. We found that the optical properties of CdTe nanocrystals can be well tuned by controlling the reaction conditions, in which the reaction temperature is crucially important. At low reaction temperature, the product nanocrystals showed blue-shifts in both absorption and PL spectra, while the photoluminescence quantum yield (PLQY) was significantly enhanced. When anion exchanges were carried out at higher reaction temperature, on the other hand, obvious red shifts in absorption and PL spectra accompanied by a fast increase followed by gradual decrease in PLQY were observed. On variation of S(2-) concentration, it was found that the overall kinetics of Te(2-) for S(2-) exchanges depends also on [S(2-)] when anion exchanges were performed at higher temperature. A possible mechanism for anion exchanges in CdTe NCs was proposed. PMID:26520812

  20. Testing the plutonium isotopic analysis code FRAM with various CdTe detectors.

    SciTech Connect

    Vo, Duc T.; Russo, P. A.

    2002-01-01

    The isotopic analysis code Fixed-energy Response-function Analysis with Multiple efficiency (FRAM)1,2 has been proven to successfully analyze plutonium spectra taken with a portable CdTe detector with Peltier cooling, the first results of this kind for a noncryogenic detector.3 These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than Ge spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. This paper describes further testing of FRAM with two CdTe detectors of different sizes and resolutions using different analog and digital, portable multichannel analyzers (MCAs).

  1. Role of polycrystallinity in CdTe and CuInSe sub 2 photovoltaic cells

    SciTech Connect

    Sites, J.R. )

    1991-01-01

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  2. Advances in the In-House CdTe Research Activities at NREL

    SciTech Connect

    Gessert, T.; Wu, X.; Dhere, R.; Moutinho, H.; Smith, S.; Romero, M.; Zhou, J.; Duda, A.; Corwine, C.

    2005-01-01

    NREL in-house CdTe research activities have impacted a broad range of recent program priorities. Studies aimed at industrially relevant applications have produced new materials and processes that enhance the performance of devices based on commercial materials (e.g., soda-lime glass, SnO2:F). Preliminary tests of the effectiveness of these novel components using large-scale processes have been encouraging. Similarly, electro- and nano-probe techniques have been developed and used to study the evolution and function of CdTe grain boundaries. Finally, cathodoluminescence (CL) and photoluminescence (PL) studies on single-crystal samples have yielded improved understanding of how various processes may combine to produce important defects in CdTe films.

  3. Far-infrared spectroscopy of CdTe1-xSex(In): Phonon properties

    NASA Astrophysics Data System (ADS)

    Petrović, M.; Romčević, N.; Trajić, J.; Dobrowolski, W. D.; Romčević, M.; Hadžić, B.; Gilić, M.; Mycielski, A.

    2014-11-01

    The far-infrared reflectivity spectra of CdTe0.97Se0.03 and CdTe0.97Se0.03(In) single crystals were measured at different temperatures. The analysis of the far-infrared spectra was carried out by a fitting procedure based on the dielectric function which includes spatial distribution of free carriers as well as their influence on the plasmon-phonon interaction. We found that the long wavelength optical phonon modes of CdTe1-xSex mixed crystals exhibit a two-mode behavior. The local In mode at about 160 cm-1 is observed. In both sample, a surface layer with a low concentration of free carriers (depleted region) are formed.

  4. Role of polycrystallinity in CdTe and CuInSe2 photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Sites, J. R.

    The polycrystalline nature of thin-film CdTe and CuInSe2 solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe2 cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm(exp 2); those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe2 cells from International Solar Electric Technology have shown a hole density as high as 7 x 10(exp 16) cm(exp -3), implying a significant reduction in compensation.

  5. High resistivity in undoped CdTe: carrier compensation of Te antisites and Cd vacancies

    NASA Astrophysics Data System (ADS)

    Lindström, A.; Mirbt, S.; Sanyal, B.; Klintenberg, M.

    2016-01-01

    In this paper, we focus on the high resistivity of intentionally undoped CdTe, where the most prevalent defects are Cd vacancies and Te antisites. Our calculated formation energies lead to the conclusion that the Fermi energy of undoped CdTe is at midgap due to carrier compensation of Te antisites and Cd vacancies, which explains the experimentally observed high resistivity. We use density functional theory with the hybrid functional of Heyd, Scuseria and Ernzerhof (HSE06) and show that the proper description of the native defects in general fails using the local density approximation (LDA) instead of HSE06. We conclude that LDA is insufficient to understand the high resistivity of undoped CdTe. We calculate the neutral and double acceptor state of the Te antisite to be intrinsic DX-centers.

  6. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  7. A novel silica-coated multiwall carbon nanotube with CdTe quantum dots nanocomposite

    NASA Astrophysics Data System (ADS)

    Fei, Qiang; Xiao, Dehai; Zhang, Zhiquan; Huan, Yanfu; Feng, Guodong

    2009-10-01

    A novel silica-coated multiwall carbon nanotube (MWNTs) with CdTe quantum dots nanocomposite was synthesized in this paper. Here, we show the in situ growth of crystalline CdTe quantum dots on the surfaces of oxidized MWNTs. The approach proposed herein differs from previous attempts to synthesize nanotube assemblies in that we mix the oxidized MWNTs into CdCl 2 solution of CdTe nanocrystals synthesized in aqueous solution. Reinforced the QD-MWNTs heterostructures with silica coating, this method is not invasive and does not introduce defects to the structure of carbon nanotubes (CNTs), and it ensures high stability in a range of organic solvents. Furthermore, a narrow SiO 2 layer on the MWNT-CdTe heterostructures can eliminate the biological toxicity of quantum dots and carbon nanotubes. This is not only a breakthrough in the synthesis of one-dimensional nanostructures, but also taking new elements into bio-nanotechnology.

  8. Bismuth-induced deep levels and carrier compensation in CdTe

    SciTech Connect

    Du, Mao-Hua

    2008-01-01

    First-principles calculations show that Bi on Cd site in CdTe can be either a donor, Bi_Cd+, or an acceptor, Bi_Cd- , depending on the Fermi level. The can bind a substitutional O (O_Te) with large binding energy of 1.40 eV. The calculated (0/-) transition level for B_Cd- - O_Te complex is in good agreement with the observed deep hole trapping level. Bi can also substitute Te to form an acceptor. The amphoteric nature of Bi in CdTe results in the pinning of the Fermi level and the high resistivity. We also discuss the origin of p-type CdTe at high Bi doping level.

  9. A sensitive and selective sensing platform based on CdTe QDs in the presence of l-cysteine for detection of silver, mercury and copper ions in water and various drinks.

    PubMed

    Gong, Tingting; Liu, Junfeng; Liu, Xinxin; Liu, Jie; Xiang, Jinkun; Wu, Yiwei

    2016-12-15

    Water soluble CdTe quantum dots (QDs) have been prepared simply by one-pot method using potassium tellurite as stable tellurium source and thioglycolic acid (TGA) as stabilizer. The fluorescence of CdTe QDs can be improved 1.3-fold in the presence of l-cysteine (Cys), however, highly efficiently quenched in the presence of silver or mercury or copper ions. A sensitive and selective sensing platform for analysis of silver, mercury and copper ions has been simply established based on CdTe QDs in the presence of l-cysteine. Under the optimum conditions, excellent linear relationships exist between the quenching degree of the sensing platform and the concentrations of Ag(+), Hg(2+) and Cu(2+) ranging from 0.5 to 40ngmL(-1). By using masking agents of sodium diethyldithiocarbamate (DDTC) for Ag(+) and Cu(2+), NH4OH for Ag(+) and Hg(2+) and 1-(2-Pyridylazo)-2-naphthol (PAN) for Hg(2+) and Cu(2+), Hg(2+), Cu(2+) and Ag(+) can be exclusively detected in coexistence with other two ions, and the detection limits (3σ) were 0.65, 0.063 and 0.088ngmL(-1) for Ag(+), Hg(2+) and Cu(2+), respectively. This effective sensing platform has been used to detection of Ag(+), Hg(2+) and Cu(2+) in water and various drinks with satisfactory results. PMID:27451185

  10. Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe

    NASA Astrophysics Data System (ADS)

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji-Hui; Burst, James M.; Albin, David S.; Wei, Su-Huai; Metzger, Wyatt K.

    2016-05-01

    A key challenge in cadmium-telluride (CdTe) semiconductors is obtaining stable and high hole density. Group-I elements substituting Cd can form acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but this creates stability problems and hole density that has not exceeded 1015 cm-3 . If hole density can be increased beyond 1016 cm-3 , CdTe solar technology can exceed multicrystalline silicon performance and provide levelized costs of electricity below conventional energy sources. Group-V elements substituting Te offer a solution, but they are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain-boundary diffusion of phosphorus (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast grain-boundary diffusion, there is a critical fast bulk-diffusion component that enables deep P incorporation in CdTe. Detailed first-principle calculations indicate the slow bulk-diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk-diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, these results open up experimental possibilities for group-V doping in CdTe applications.

  11. Development of Substrate Structure CdTe Photovoltaic Devices with Performance Exceeding 10%: Preprint

    SciTech Connect

    Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Gessert, T. A.

    2012-08-01

    Most work on CdTe-based solar cells has focused on devices with a superstrate structure. This focus is due to the early success of the superstrate structure in producing high-efficiency cells, problems of suitable ohmic contacts for lightly doped CdTe, and the simplicity of the structure for manufacturing. The development of the CdCl2 heat treatment boosted CdTe technology and perpetuated the use of the superstrate structure. However, despite the beneficial attributes of the superstrate structure, devices with a substrate structure are attractive both commercially and scientifically. The substrate structure eliminates the need for transparent superstrates and thus allows the use of flexible metal and possibly plastic substrates. From a scientific perspective, it allows better control in forming the junction and direct access to the junction for detailed analysis. Research on such devices has been limited. The efficiency of these devices has been limited to around 8% due to low open-circuit voltage (Voc) and fill factor. In this paper, we present our recent device development efforts at NREL on substrate-structure CdTe devices. We have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. We have worked on a variety of contact materials including Cu-doped ZnTe and CuxTe. We will present a comparative analysis of the performance of these contacts. In addition, we have studied the influence of fabrication parameters on junction properties. We will present an overview of our development work, which has led to CdTe devices with Voc values of more than 860 mV and NREL-confirmed efficiencies approaching 11%.

  12. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    SciTech Connect

    Kumar, B. Rajesh; Hymavathi, B.; Rao, T. Subba

    2014-01-28

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2θ = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (ΔE) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, λ. The value of n and k increases with the increase of substrate temperature.

  13. Effect of shells on photoluminescence of aqueous CdTe quantum dots

    SciTech Connect

    Yuan, Zhimin; Yang, Ping

    2013-07-15

    Graphical abstract: Size-tunable CdTe coated with several shells using an aqueous solution synthesis. CdTe/CdS/ZnS quantum dots exhibited high PL efficiency up to 80% which implies the promising applications for biomedical labeling. - Highlights: • CdTe quantum dots were fabricated using an aqueous synthesis. • CdS, ZnS, and CdS/ZnS shells were subsequently deposited on CdTe cores. • Outer ZnS shells provide an efficient confinement of electron and hole inside the QDs. • Inside CdS shells can reduce the strain on the QDs. • Aqueous CdTe/CdS/ZnS QDs exhibited high stability and photoluminescence efficiency of 80%. - Abstract: CdTe cores with various sizes were fabricated in aqueous solutions. Inorganic shells including CdS, ZnS, and CdS/ZnS were subsequently deposited on the cores through a similar aqueous procedure to investigate the effect of shells on the photoluminescence properties of the cores. In the case of CdTe/CdS/ZnS quantum dots, the outer ZnS shell provides an efficient confinement of electron and hole wavefunctions inside the quantum dots, while the middle CdS shell sandwiched between the CdTe core and ZnS shell can be introduced to obviously reduce the strain on the quantum dots because the lattice parameters of CdS is situated at the intermediate-level between those of CdTe and ZnS. In comparison with CdTe/ZnS core–shell quantum dots, the as-prepared water-soluble CdTe/CdS/ZnS quantum dots in our case can exhibit high photochemical stability and photoluminescence efficiency up to 80% in an aqueous solution, which implies the promising applications in the field of biomedical labeling.

  14. Chapter 1.19: Cadmium Telluride Photovoltaic Thin Film: CdTe

    SciTech Connect

    Gessert, T. A.

    2012-01-01

    The chapter reviews the history, development, and present processes used to fabricate thin-film, CdTe-based photovoltaic (PV) devices. It is intended for readers who are generally familiar with the operation and material aspects of PV devices but desire a deeper understanding of the process sequences used in CdTe PV technology. The discussion identifies why certain processes may have commercial production advantages and how the various process steps can interact with each other to affect device performance and reliability. The chapter concludes with a discussion of considerations of large-area CdTe PV deployment including issues related to material availability and energy-payback time.

  15. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L.; Mayo, B.

    1998-10-29

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  16. Induced Recrystallization of CdTe Thin Films Deposited by Close-Spaced Sublimation

    SciTech Connect

    Moutinho, H. R.; Dhere, R. G.; Al-Jassim, M. M.; Levi, D. H.; Kazmerski, L. L.; Mayo, B.

    1998-10-26

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl2 treatment at 350 C and completely recrystallized after the same treatment at 400 C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl2 are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures.

  17. Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics.

    PubMed

    Mendis, B G; Gachet, D; Major, J D; Durose, K

    2015-11-20

    A novel time-resolved cathodoluminescence method, where a pulsed electron beam is generated via the photoelectric effect, is used to probe individual CdTe grain boundaries. Excitons have a short lifetime (≤100 ps) within the grains and are rapidly quenched at the grain boundary. However, a ~47 meV shallow acceptor, believed to be due to oxygen, can act as a long lifetime hole trap, even at the grain boundaries where their concentration is higher. This provides direct evidence supporting recent observations of hopping conduction across grain boundaries in highly doped CdTe at low temperature. PMID:26636877

  18. Long Lifetime Hole Traps at Grain Boundaries in CdTe Thin-Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Mendis, B. G.; Gachet, D.; Major, J. D.; Durose, K.

    2015-11-01

    A novel time-resolved cathodoluminescence method, where a pulsed electron beam is generated via the photoelectric effect, is used to probe individual CdTe grain boundaries. Excitons have a short lifetime (≤100 ps ) within the grains and are rapidly quenched at the grain boundary. However, a ˜47 meV shallow acceptor, believed to be due to oxygen, can act as a long lifetime hole trap, even at the grain boundaries where their concentration is higher. This provides direct evidence supporting recent observations of hopping conduction across grain boundaries in highly doped CdTe at low temperature.

  19. Characterizing Recombination in CdTe Solar Cells with Time-Resolved Photoluminescence: Preprint

    SciTech Connect

    Metzger, W. K.; Romero, M. J.; Dippo, P.; Young, M.

    2006-05-01

    Time-resolved photoluminescence (TRPL) computer simulations demonstrate that under certain experimental conditions it is possible to assess recombination in CdTe solar cells in spite of the junction. This is supported by experimental findings that open-circuit voltage (Voc) is dependent on lifetime in a manner consistent with device theory. Measurements on inverted structures show that the CdCl2 treatment significantly reduces recombination in the CdTe layer without S diffusion. However, S diffusion is required for lifetimes comparable to those observed in high-efficiency solar cells. The results indicate that substrate solar cells can be fabricated with recombination lifetimes similar to superstrate cells.

  20. Determination of dispersion parameters of thermally deposited CdTe thin film

    NASA Astrophysics Data System (ADS)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2016-05-01

    Cadmium Telluride (CdTe) thin film was deposited onto glass substrates under a vacuum of 5 × 10-6 torr by using thermal evaporation technique. The prepared film was characterized for dispersion analysis from reflectance spectra within the wavelength range of 300 nm - 1100 nm which was recorded by using UV-Visible spectrophotometer. The dispersion parameters (oscillator strength, oscillator wavelength, high frequency dielectric constant, long wavelength refractive index, lattice dielectric constant and plasma resonance frequency) of CdTe thin film were investigated using single sellimeir oscillator model.

  1. Experimental ground-based Bridgman CdTe growth in NASA's advanced automated directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Bostrup, G.; Viola, J.; Gertner, E.; Aldrich, W.

    1988-01-01

    The role of gravity-induced phenomena in bulk CdTe crystal growth is studied with emphasis placed on the negative effects of buoyancy-driven convection, container effects, and hydrostatic pressure. An earth-bound crystal growth data base utilizing NASA's prototype advanced automated directional solidification furnace is described. Growth procedures that can be employed in a microgravity environment aboard the Space Shuttle or Space Station are presented. It is found that NASA's directional solidification furnace can produce Bridgman-type CdTe and has the potential for producing it in space.

  2. Characterization of point defects in CdTe by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Elsharkawy, M. R. M.; Kanda, G. S.; Abdel-Hady, E. E.; Keeble, D. J.

    2016-06-01

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  3. Carrier compensation in semi-insulating CdTe: First-principles calculations

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2008-01-01

    Carrier compensation in semi-insulating CdTe has been attributed to the compensation of surplus shallow acceptors by deep donors, usually assumed to be Te antisites. However, our first-principles calculations show that intrinsic defects should not have a significant effect on the carrier compensation due either to lack of deep levels near midgap or to low defect concentration. We demonstrate that an extrinsic defect, OTe-H complex, may play an important role in the carrier compensation in CdTe because of its amphoteric character and reasonably high concentration. Our findings have important consequences for improving device performance in CdTe-based radiation detectors and solar cells.

  4. Optical and electrical characterizations of highly efficient CdTe thin film solar cells prepared by close-spaced sublimation

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Yamada, A.; Konagai, M.

    2000-06-01

    The effects of the Cu diffusion on the optical and electrical properties of CdTe thin film solar cells prepared by close-spaced sublimation (CSS) were investigated by capacitance-voltage ( C- V) measurement and low-temperature photoluminescence (PL) measurement. C- V measurement revealed that the net acceptor concentration in the CdTe layer was independent of the heat treatment after screen printing of the Cu-doped graphite electrode for Cu diffusion into the CdTe layer, although it greatly affected the solar cell performance. Furthermore, the depth profile of PL spectrum of CdTe layer implies that the heat treatment for Cu diffusion facilitates the formation of low-resistance contact to CdTe through the formation of a heavily doped (p +) region in the CdTe adjacent to the back electrode, but Cu atoms do not act as effective acceptors in the CdTe layer except the region near the back electrode.

  5. MBE-Grown CdTe Layers on GaAs with In-assisted Thermal Deoxidation

    NASA Astrophysics Data System (ADS)

    Arı, Ozan; Bilgilisoy, Elif; Ozceri, Elif; Selamet, Yusuf

    2016-03-01

    Molecular beam epitaxy (MBE) growth of thin (˜2 μm) CdTe layers characterized by high crystal quality and low defect density on lattice mismatched substrates, such as GaAs and Si, has thus far been difficult to achieve. In this work, we report the effects of in situ thermal deoxidation under In and As4 overpressure prior to the CdTe growth on epiready GaAs(211)B wafers, aiming to enhance CdTe crystal quality. Thermally deoxidized GaAs samples were analyzed using in situ reflection high energy electron diffraction, along with ex situ x-ray photo-electron spectroscopy (XPS) and atomic force microscopy. MBE-grown CdTe layers were characterized using x-ray diffraction (XRD) and Everson-type wet chemical defect decoration etching. We found that In-assisted desorption allowed for easier surface preparation and resulted in a smoother surface compared to As-assisted surface preparation. By applying In-assisted thermal deoxidation to GaAs substrates prior to the CdTe growth, we have obtained single crystal CdTe films with a CdTe(422) XRD rocking curve with a full-width half-maximum value of 130.8 arc-s and etch pit density of 4 × 106 cm-2 for 2.54 μm thickness. We confirmed, by XPS analysis, no In contamination on the thermally deoxidized surface.

  6. Prospects of Thickness Reduction of the CdTe Layer in Highly Efficient CdTe Solar Cells Towards 1 µm

    NASA Astrophysics Data System (ADS)

    Amin, Nowshad; Isaka, Takayuki; Okamoto, Tamotsu; Yamada, Akira; Konagai, Makoto

    1999-08-01

    This study focuses on the technique for the stable growth of CdTe (1.44 eV) with thickness near its absorption length, 1 µm, by close spaced sublimation (hereafter CSS) process, in order to achieve high conversion efficiency. X-ray diffraction (XRD) spectroscopy was carried out to examine the microstructure of the films. Current-voltage (I V) characteristics, spectral response and other features of the solar cells using these CdTe films were investigated to elucidate the optimum conditions for achieving the best performance in such thin (1 µm) CdTe solar cells. Thickness was found to be reduced by controlling the temperature profile used during CSS growth. The temperature profile was found to be an important factor in growing high-quality thin films. By controlling the growth parameters and optimizing the annealing temperature at different fabrication steps, we have succeeded, to date, in achieving cell efficiencies of 14.3% (open-circuit voltage (Voc): 0.82 V, short-circuit current (Jsc): 25.2 mA/cm2, fill factor (F.F.): 0.695, area: 1 cm2) with 5 µm, 11.4% (Voc: 0.77 V, Jsc: 23.7 mA/cm2, F.F.: 0.63, area: 1 cm2) with 1.5 µm and 11.2% (Voc: 0.77 V, Jsc: 23.1 mA/cm2, F.F.: 0.63, area: 1 cm2) with only 1 µm of CdTe layer thickness at an air mass of 1.5 without antireflection coatings. This is important for establishing a strong foundation before developing a new structure (e.g., glass/ITO/CdS/CdTe/ZnTe/Ag configuration) with a back surface field of wide-bandgap material (e.g., ZnTe).

  7. Temperature and illumination intensity dependence of photoconductivity in sputter-deposited heteroepitaxial (100)CdTe layers

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Cook, J. G.; Mukherjee, G.

    1991-06-01

    The photoconductivity behavior and the Hall-effect of sputter-deposited heteroepitaxial (100)CdTe layers grown at temperatures between 300 and 325 C were investigated. The (100)CdTe epilayers were found to be highly photoconductive and exhibited photoconductivity/dark conductivity ratios as high as 1 x 10 to the 6th at around 200 K. Photoconductivity showed a sublinear dependence on the illumination intensity and was higher at higher temperatures. It is shown that the model of Simmons and Taylor (1974) developed to explain photoconductivity in amorphous semiconductors is also applicable to the (100)CdTe epitaxial layers.

  8. Assembly of light-emitting diode based on hydrophilic CdTe quantum dots incorporating dehydrated silica gel.

    PubMed

    Du, Jinhua; Wang, Chunlei; Xu, Xiaojing; Wang, Zhuyuan; Xu, Shuhong; Cui, Yiping

    2016-03-01

    Stable photoluminescence QD light-emitting diodes (QD-LEDs) were made based on hydrophilic CdTe quantum dots (QDs). A quantum dot-inorganic nanocomposite (hydrophilic CdTe QDs incorporating dehydrated silica gel) was prepared by two methods (rotary evaporation and freeze drying). Taking advantage of its viscosity, plasticity and transparency, dehydrated silica gel could be coated on the surface of ultraviolet (UV) light LEDs to make photoluminescence QD-LEDs. This new photoluminescence QD-LED, which is stable, environmentally non-toxic, easy to operate and low cost, could expand the applications of hydrophilic CdTe QDs in photoluminescence. PMID:26199049

  9. Surface plasmon polariton enhanced ultrathin nano-structured CdTe solar cell.

    PubMed

    Luk, Ting S; Fofang, Nche T; Cruz-Campa, Jose L; Frank, Ian; Campione, Salvatore

    2014-08-25

    We demonstrate numerically that two-dimensional arrays of ultrathin CdTe nano-cylinders on Ag can serve as an effective broadband anti-reflection structure for solar cell applications. Such devices exhibit strong absorption properties, mainly in the CdTe semiconductor regions, and can produce short-circuit current densities of 23.4 mA/cm(2), a remarkable number in the context of solar cells given the ultrathin dimensions of our nano-cylinders. The strong absorption is enabled via excitation of surface plasmon polaritons (SPPs) under plane wave incidence. In particular, we identified the key absorption mechanism as enhanced fields of the SPP standing waves residing at the interface of CdTe nano-cylinders and Ag. We compare the performance of Ag, Au, and Al substrates, and observe significant improvement when using Ag, highlighting the importance of using low-loss metals. Although we use CdTe here, the proposed approach is applicable to other solar cell materials with similar absorption properties. PMID:25322192

  10. Spray Deposition of High Quality CuInSe2 and CdTe Films: Preprint

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Leisch, J.; Hersh, P.; Nekuda, J.; Ginley, D. S.

    2008-05-01

    A number of different ink and deposition approaches have been used for the deposition of CuInSe2 (CIS), Cu(In,Ga)Se2 (CIGS), and CdTe films. For CIS and CIGS, soluble precursors containing Cu, In, and Ga have been developed and used in two ways to produce CIS films. In the first, In-containing precursor films were sprayed on Mo-coated glass substrates and converted by rapid thermal processing (RTP) to In2Se3. Then a Cu-containing film was sprayed down on top of the In2Se3 and the stacked films were again thermally processed to give CIS. In the second approach, the Cu-, In-, and Ga-containing inks were combined in the proper ratio to produce a mixed Cu-In-Ga ink that was sprayed on substrates and thermally processed to give CIGS films directly. For CdTe deposition, ink consisting of CdTe nanoparticles dispersed in methanol was prepared and used to spray precursor films. Annealing these precursor films in the presence of CdCl2 produced large-grained CdTe films. The films were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Optimized spray and processing conditions are crucial to obtain dense, crystalline films.

  11. Molecular-beam epitaxy of CdTe on large area Si(100)

    NASA Astrophysics Data System (ADS)

    Sporken, R.; Lange, M. D.; Faurie, J. P.; Petruzzello, J.

    1991-10-01

    We have grown CdTe directly on 2- and 5-in. diam Si(100) by molecular-beam epitaxy and characterized the layers by in situ reflection high-energy electron diffraction, double crystal x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and low-temperature photoluminescence. The films are up to 10-μm thick and mirror-like over their entire surface. Even on 5-in. diam wafers, the structural and thickness uniformity is excellent. Two domains, oriented 90° apart, are observed in the CdTe films on oriented Si(100) substrates, whereas single-domain films are grown on Si(100) titled 6° or 8° toward [011]. The layers on misoriented substrates have better morphology than those on oriented Si(100), and the substrate tilt also eliminates twinning in the CdTe layers. First attempts to grow HgCdTe on Si(100 with a CdTe buffer layer have produced up to 10-μm thick layers with cutoff wavelengths between 5 and 10-μm and with an average full width at half-maximum of the double-crystal x-ray diffraction peaks of 200 arc s.

  12. Photorefractive nonlinearities caused by the Dember space-charge field in undoped CdTe.

    PubMed

    Schroeder, W A; Stark, T S; Boggess, T F; Smirl, A L; Valley, G C

    1991-06-01

    The photorefractive nonlinearity associated with the Dember space-charge field between electrons and holes produced by two-photon absorption is unambiguously isolated and studied in undoped CdTe by using a nondegenerate, forward-probing, polarization-sensitive, transient-grating technique with a temporal resolution of <5 ps. PMID:19776789

  13. Investigation of deep level defects in CdTe thin films

    SciTech Connect

    Shankar, H.; Castaldini, A.; Dauksta, E.; Medvid, A.; Cavallini, A.

    2014-02-21

    In the past few years, a large body of work has been dedicated to CdTe thin film semiconductors, as the electronic and optical properties of CdTe nanostructures make them desirable for photovoltaic applications. The performance of semiconductor devices is greatly influenced by the deep levels. Knowledge of parameters of deep levels present in as-grown materials and the identification of their origin is the key factor in the development of photovoltaic device performance. Photo Induced Current Transient Spectroscopy technique (PICTS) has proven to be a very powerful method for the study of deep levels enabling us to identify the type of traps, their activation energy and apparent capture cross section. In the present work, we report the effect of growth parameters and LASER irradiation intensity on the photo-electric and transport properties of CdTe thin films prepared by Close-Space Sublimation method using SiC electrical heating element. CdTe thin films were grown at three different source temperatures (630, 650 and 700 °C). The grown films were irradiated with Nd:YAG LASER and characterized by Photo-Induced Current Transient Spectroscopy, Photocurrent measurementand Current Voltage measurements. The defect levels are found to be significantly influenced by the growth temperature.

  14. The role of substrate surface alteration in the fabrication of vertically aligned CdTe nanowires.

    PubMed

    Neretina, S; Hughes, R A; Devenyi, G A; Sochinskii, N V; Preston, J S; Mascher, P

    2008-05-01

    Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires. PMID:21825689

  15. Analysis of electroluminescence images in small-area circular CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Bokalič, Matevž; Raguse, John; Sites, James R.; Topič, Marko

    2013-09-01

    The electroluminescence (EL) imaging process of small area solar cells is investigated in detail to expose optical and electrical effects that influence image acquisition and corrupt the acquired image. An approach to correct the measured EL images and to extract the exact EL radiation as emitted from the photovoltaic device is presented. EL images of circular cadmium telluride (CdTe) solar cells are obtained under different conditions. The power-law relationship between forward injection current and EL emission and a negative temperature coefficient of EL radiation are observed. The distributed Simulation Program with Integrated Circuit Emphasis (SPICE®) model of the circular CdTe solar cell is used to simulate the dark J-V curve and current distribution under the conditions used during EL measurements. Simulation results are presented as circularly averaged EL intensity profiles, which clearly show that the ratio between resistive parameters determines the current distribution in thin-film solar cells. The exact resistance values for front and back contact layers and for CdTe bulk layer are determined at different temperatures, and a negative temperature coefficient for the CdTe bulk resistance is observed.

  16. Characterization of Highly Efficient CdTe Thin Film Solar Cells by Low-Temperature Photoluminescence

    NASA Astrophysics Data System (ADS)

    Okamoto, Tamotsu; Matsuzaki, Yuichi; Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    1998-07-01

    Highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) method with a glass/ITO/CdS/CdTe/Cu-doped carbon/Ag structure were characterized by low-temperature photoluminescence (PL) measurement. A broad 1.42 eV band probably due to VCd Cl defect complexes appeared as a result of CdCl2 treatment. CdS/CdTe junction PL revealed that a CdSxTe1-x mixed crystal layer was formed at the CdS/CdTe interface region during the deposition of CdTe by CSS and that CdCl2 treatment promoted the formation of the mixed crystal layer. Furthermore, in the PL spectra of the heat-treated CdTe after screen printing of the Cu-doped carbon electrode, a neutral-acceptor bound exciton (ACu0, X) line at 1.590 eV was observed, suggesting that Cu atoms were incorporated into CdTe as effective acceptors after the heat treatment.

  17. Second Harmonic Generation in CdTe Plate by Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toshihiko; Kikuzawa, Nobuhiro; Minehara, Eisuke; Nagai, Ryoji; Nishimori, Nobuyuki; Sawamura, Masaru; Hajima, Ryoichi; Shizuma, Toshiyuki; Hayakawa, Takehito

    2000-10-01

    The second harmonic generation (SHG) signal converted from the 22 μm input wavelength of free electron laser (FEL) is observed using a non-birefringent CdTe crystal. The conversion efficiency of SHG is experimentally obtained to be ˜3× 10-5%/(MWcm-2).

  18. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates

    SciTech Connect

    Rance, W. L.; Burst, J. M.; Reese, M. O.; Gessert, T. A.; Metzger, W. K.; Barnes, T. M.; Meysing, D. M.; Wolden, C. A.; Garner, S.; Cimo, P.

    2014-04-07

    Flexible glass enables high-temperature, roll-to-roll processing of superstrate devices with higher photocurrents than flexible polymer foils because of its higher optical transmission. Using flexible glass in our high-temperature CdTe process, we achieved a certified record conversion efficiency of 14.05% for a flexible CdTe solar cell. Little has been reported on the flexibility of CdTe devices, so we investigated the effects of three different static bending conditions on device performance. We observed a consistent trend of increased short-circuit current and fill factor, whereas the open-circuit voltage consistently dropped. The quantum efficiency under the same static bend condition showed no change in the response. After storage in a flexed state for 24 h, there was very little change in device efficiency relative to its unflexed state. This indicates that flexible glass is a suitable replacement for rigid glass substrates, and that CdTe solar cells can tolerate bending without a decrease in device performance.

  19. A simple and sensitive label-free fluorescence sensing of heparin based on Cdte quantum dots.

    PubMed

    Rezaei, B; Shahshahanipour, M; Ensafi, Ali A

    2016-06-01

    A rapid, simple and sensitive label-free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water-soluble glutathione-capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X-ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione-capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0-200.0 ng mL(-1) with a low limit of detection, 2.0 ng mL(-1) . The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26542329

  20. Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2

    NASA Astrophysics Data System (ADS)

    Jensen, S. A.; Burst, J. M.; Duenow, J. N.; Guthrey, H. L.; Moseley, J.; Moutinho, H. R.; Johnston, S. W.; Kanevce, A.; Al-Jassim, M. M.; Metzger, W. K.

    2016-06-01

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  1. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  2. Nanoscale Imaging of Band Gap and Defects in Polycrystalline CdTe Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Zhitenev, Nikolai; Yoon, Yohan; Chae, Jungseok; Katzenmeyer, Aaron; Yoon, Heayoung; An, Sangmin; Shumacher, Joshua; Centrone, Andrea

    To further increase the power efficiency of polycrystalline thin film photovoltaic (PV) technology, a detailed understanding of microstructural properties of the devices is required. In this work, we investigate the microstructure of CdTe PV devices using two optical spectroscopies. Sub-micron thickness lamella samples were cut out from a PV device, either in cross-section or in-plane, by focused ion beam. The first technique is the photothermal induced resonance (PTIR) used to obtain absorption spectra over a broad range of wavelengths. In PTIR, a wavelength tunable pulsed laser is combined with an atomic force microscope to detect the local thermal expansion of lamella CdTe sample induced by light absorption. The second technique based on a near-field scanning optical microscope maps the local absorption at fixed near-IR wavelengths with energies at or below CdTe band-gap energy. The variation of the band gap throughout the CdTe absorber determined from PTIR spectra is ~ 20 meV. Both techniques detect strong spatial variation of shallow defects over different grains. The spatial distribution of mid-gap defects appears to be more uniform. The resolution, the sensitivity and the applicability of these two approaches are compared.

  3. CdTe quantum dots for an application in the life sciences

    NASA Astrophysics Data System (ADS)

    Thi Dieu Thuy, Ung; Toan, Pham Song; Chi, Tran Thi Kim; Duy Khang, Dinh; Quang Liem, Nguyen

    2010-12-01

    This report highlights the results of the preparation of semiconductor CdTe quantum dots (QDs) in the aqueous phase. The small size of a few nm and a very high luminescence quantum yield exceeding 60% of these materials make them promisingly applicable to bio-medicine labeling. Their strong, two-photon excitation luminescence is also a good characteristic for biolabeling without interference with the cell fluorescence. The primary results for the pH-sensitive CdTe QDs are presented in that fluorescence of CdTe QDs was used as a proton sensor to detect proton flux driven by adenosine triphosphate (ATP) synthesis in chromatophores. In other words, these QDs could work as pH-sensitive detectors. Therefore, the system of CdTe QDs on chromatophores prepared from the cells of Rhodospirillum rubrum and the antibodies against the beta-subunit of F0F1–ATPase could be a sensitive detector for the avian influenza virus subtype A/H5N1.

  4. Improvement of the charge-carrier transport property of polycrystalline CdTe for digital fluoroscopy

    NASA Astrophysics Data System (ADS)

    Oh, K. M.; Heo, Y. J.; Kim, D. K.; Kim, J. S.; Shin, J. W.; Lee, G. H.; Nam, S. H.

    2014-05-01

    Minimizing the radiation impact to the patient is currently an important issue in medical imaging. Particularly, in case of X-ray fluoroscopy, the patient is exposed to high X-ray dose because a large number of images is required in fluoroscopic procedures. In this regard, a direct-conversion X-ray sensor offers the advantages of high quantum efficiency, X-ray sensitivity, and high spatial resolution. In particular, an X-ray sensor in fluoroscopy operates at high frame rate, in the range from 30 to 60 image frames per second. Therefore, charge-carrier transport properties and signal lag are important factors for the development of X-ray sensors in fluoroscopy. In this study, in order to improve the characteristics of polycrystalline cadmium telluride (CdTe), CdTe films were prepared by thermal evaporation and RF sputtering. The deposition was conducted to form a CdTeO3 layer on top of a CdTe film. The role of CdTeO3 is not only to improve the charge-carrier transport by increasing the life-time but also to reduce the leakage current of CdTe films by acting as a passivation layer. In this paper, to establish the effect of a thin oxide layer on top of a CdTe film, the morphological and electrical properties including charge-carrier transport and signal lag were investigated by means of X-ray diffraction, X-ray photoemission spectroscopy, and resistivity measurements.

  5. Water-soluble CdTe quantum dots as an anode interlayer for solution-processed near infrared polymer photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Xilan; Zhou, Jinjun; Zheng, Jie; Becker, Matthew L.; Gong, Xiong

    2013-11-01

    Water-soluble cadmium telluride (CdTe) quantum dots (QDs) used as an anode interlayer in solution-processed near infrared (NIR) polymer photodetectors (PDs) were demonstrated. Polymer PDs incorporated with CdTe QDs as an anode interlayer exhibited 10-fold suppressed dark current density and analogous photocurrent density relative to poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), which resulted in enhanced detectivities over 1011 Jones in the spectral range from 350 nm to 900 nm. Moreover, with the substitution of PEDOT:PSS by CdTe QDs, the stability of unencapsulated NIR polymer PDs was extended up to 650 hours, which is more than 3 times longer than those with PEDOT:PSS as an anode interlayer. These results indicated that CdTe QDs can be utilized as a solution-processable alternative to PEDOT:PSS as an anode interlayer for high performance NIR polymer PDs.

  6. Influence of Kilo-Electron Oxygen Ion Irradiation on Structural, Electrical and Optical Properties of CdTe Thin Films

    NASA Astrophysics Data System (ADS)

    Honey, Shehla; Thema, F. T.; Bhatti, M. T.; Ishaq, A.; Naseem, Shahzad; Maaza, M.

    2016-09-01

    In this paper, effect of oxygen (O+) ion irradiation on the properties of polycrystalline cubic structure CdTe thin films has been investigated. CdTe thin films were irradiated with O+ ions of energy 80keV at different fluence ranging from 1×1015 to 5×1016 ion/cm2 at room temperature. At 1×1015 ion/cm2 O+ ions fluence, the CdTe structure was maintained while XRD peaks of cubic phase were shifted toward lower angles. At 5×1016 ion/cm2 O+ ions fluence, cubic structure of CdTe thin films was transformed into hexagonal structure. In addition, electrical resistivity and optical bandgap were decreased with increasing O+ ion beam irradiation.

  7. High-Quality (211)B CdTe on (211)Si Substrates Using Metalorganic Vapor-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Rao, S. R.; Shintri, S. S.; Markunas, J. K.; Jacobs, R. N.; Bhat, I. B.

    2011-08-01

    High-quality (211)B CdTe buffer layers are required during Hg1- x Cd x Te heteroepitaxy on Si substrates. In this study, direct metalorganic vapor-phase epitaxy (MOVPE) of (211)B CdTe on Si, as well as CdTe on Si using intermediate Ge and ZnTe layers, has been achieved. Tertiary butyl arsine was used as a precursor to enable As surfactant action during CdTe MOVPE on Si. The grown CdTe/Si films display a best x-ray diffraction rocking-curve full-width at half-maximum of 64 arc-s and a best Everson etch pit density of 3 × 105 cm-2. These values are the best reported for MOVPE-grown (211)B CdTe/Si and match state-of-the-art material grown using molecular-beam epitaxy.

  8. Luminescence Enhancement of CdTe Nanostructures in LaF3:Ce/CdTe Nanocomposites

    SciTech Connect

    Yao, Mingzhen; Zhang, Xing; Ma, Lun; Chen, Wei; Joly, Alan G.; Huang, Jinsong; Wang, Qingwu

    2010-11-15

    Radiation detection demands new scintillators with high quantum efficiency, high energy resolution and short luminescence lifetimes. Nanocomposites consisting of quantum dots and Ce3+ doped nanophosphors may be able to meet these requirements. Here we report the luminescence of LaF3:Ce/CdTe nanocomposites which were synthesized by a wet chemistry method. In LaF3:Ce/CdTe nanocomposites the CdTe quantum dots are converted into nanowires, while in LaF3/CdTe nanocomposites no such conversion is observed. The CdTe luminescence in LaF3:Ce/CdTe nanocomposites is enhanced about 5 times, while in LaF3/CdTe nanocomposites no enhancement was observed. Energy transfer, light-re-absorption and surface passivation are likely the reasons for the luminescence enhancement.

  9. X-ray radiation influence on photoluminescence spectra of composite thin films based on C60<CdTe>

    NASA Astrophysics Data System (ADS)

    Elistratova, M. A.; Zakharova, I. B.; Romanov, N. M.

    2015-01-01

    Photoluminescence spectra of composite thin films based on C60<CdTe> before and after X-ray irradiation, as well as the results of quantum-chemical calculations of corresponding molecular complexes are presented. Fullerene films doped by CdTe with various concentrations were obtained by means of vacuum co-evaporation in a Knudsen cell. Composition and surface morphology were measured by secondary electron microscopy and energy-dispersive X-ray spectroscopy. X-ray irradiated films were considered, and additional peaks in photoluminescence spectra were detected. These peaks appear as a result of molecular complexes formation from C60CdTe mixture and dimerization of the films. Density functional B3LYP quantum-chemical calculations for C60CdTe, molecular complexes, (C60)2 and C120O dimers were performed to elucidate some experimental results.

  10. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  11. Coexistence of optically active radial and axial CdTe insertions in single ZnTe nanowire.

    PubMed

    Wojnar, P; Płachta, J; Zaleszczyk, W; Kret, S; Sanchez, Ana M; Rudniewski, R; Raczkowska, K; Szymura, M; Karczewski, G; Baczewski, L T; Pietruczik, A; Wojtowicz, T; Kossut, J

    2016-03-14

    We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis. PMID:26903109

  12. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions: Preprint

    SciTech Connect

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  13. One-Dimensional Reaction-Diffusion Simulation of Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christain

    2014-06-13

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  14. Hydrothermal synthesis of high-quality type-II CdTe/CdSe core/shell quantum dots with dark red emission.

    PubMed

    Liu, Ning; Yang, Ping

    2014-08-01

    A hydrothermal method was used to synthesize type-II CdTe/CdSe core/shell quantum dots (QDs) using the thilglycolic acid (TGA) capped CdTe QDs as cores, which show a number of advantages. Because of the spatial separation of carriers the low excited states of CdTe/CdSe QDs, they exhibit many novel properties that are fundamentally different from the type-I QDs. On the other hand, our experiment results show that the wave function of the hole of the exciton in the CdTe core extends well into the CdSe shell. The results also reveal that a thick shell can confine the electrons inside the particles and thereby improve the PL efficiency and prolong the lifetime of the core/shell QDs. We use the UV-vis absorption and fluorescence spectrum measurements on growing particles in detail. We found that the fluorescence of the CdTe/CdSe QDs was strongly dependent on the thick of the shell and size of the core as well as the unique type-II heterostructure, which make the type-II core/shell QDs more suitable in photovoltaic or photoconduction applications. PMID:25936008

  15. Coexistence of optically active radial and axial CdTe insertions in single ZnTe nanowire

    NASA Astrophysics Data System (ADS)

    Wojnar, P.; Płachta, J.; Zaleszczyk, W.; Kret, S.; Sanchez, Ana M.; Rudniewski, R.; Raczkowska, K.; Szymura, M.; Karczewski, G.; Baczewski, L. T.; Pietruczik, A.; Wojtowicz, T.; Kossut, J.

    2016-03-01

    We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis.We report on the growth, cathodoluminescence and micro-photoluminescence of individual radial and axial CdTe insertions in ZnTe nanowires. In particular, the cathodoluminescence technique is used to determine the position of each emitting object inside the nanowire. It is demonstrated that depending on the CdTe deposition temperature, one can obtain an emission either from axial CdTe insertions only, or from both, radial and axial heterostructures, simultaneously. At 350 °C CdTe grows only axially, whereas at 310 °C and 290 °C, there is also significant deposition on the nanowire sidewalls resulting in radial core/shell heterostructures. The presence of Cd atoms on the sidewalls is confirmed by energy dispersive X-ray spectroscopy. Micro-photoluminescence study reveals a strong linear polarization of the emission from both types of heterostructures in the direction along the nanowire axis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08806b

  16. Hydrogenation of undoped and nitrogen doped CdTe and ZnSe grown by molecular beam epitaxy

    SciTech Connect

    Hirsch, L.S.; Setzler, S.D.; Ptak, A.J.; Giles, N.C.; Myers, T.H.

    1998-12-31

    Hydrogen incorporation in both undoped and nitrogen-doped CdTe and ZnSe is investigated. Evidence for a strong nitrogen-hydrogen interaction is presented. Preliminary data indicate that the growth of CdTe and ZnSe under an atomic hydrogen flux results in a significant concentration of paramagnetic defects possibly accompanied by enhanced auto-doping from residual impurities.

  17. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice.

    PubMed

    Li, Xiaohui; Yang, Xiangrong; Yuwen, Lihui; Yang, Wenjing; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui

    2016-07-01

    Fluorescent quantum dots (QDs) are highly promising nanomaterials for various biological and biomedical applications because of their unique optical properties, such as robust photostability, strong photoluminescence, and size-tunable fluorescence. Several studies have reported the in vivo toxicity of QDs, but their effects on the male reproduction system have not been examined. In this study, we investigated the reproductive toxicity of cadmium telluride (CdTe) QDs at a high dose of 2.0 nmol per mouse and a low dose of 0.2 nmol per mouse. Body weight measurements demonstrated there was no overt toxicity for both dose at day 90 after exposure, but the high dose CdTe affected body weight up to 15 days after exposure. CdTe QDs accumulated in the testes and damaged the tissue structure for both doses on day 90. Meanwhile, either of two CdTe QDs treatments did not significantly affect the quantity of sperm, but the high dose CdTe significantly decreased the quality of sperm on day 60. The serum levels of three major sex hormones were also perturbed by CdTe QDs treatment. However, the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those mated with untreated male mice. These results suggest that CdTe QDs can cause testes toxicity in a dose-dependent manner. The low dose of CdTe QDs is relatively safe for the reproductive system of male mice. Our preliminary result enables better understanding of the reproductive toxicity induced by cadmium-containing QDs and provides insight into the safe use of these nanoparticles in biological and environmental systems. PMID:27135714

  18. Band offsets for mismatched interfaces. The special case of ZnO on CdTe (001)

    SciTech Connect

    Jaffe, John E.; Kaspar, Tiffany C.; Droubay, Timothy C.; Varga, Tamas

    2013-08-02

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications, but appear difficult to achieve given the rather different crystal structures (CdTe is zinc blende with cubic lattice constant a = 6.482 Å, ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å.) However, ZnO has been reported to occur in some epitaxially stabilized films in the zinc blende structure with an fcc primitive lattice constant close to the hexagonal a value. Observing that this value equals half of the CdTe cubic lattice constant to within 1%, we propose that (001)-oriented cubic ZnO films could be grown epitaxially on a CdTe (001) surface in an R45° √2 x √2 configuration. Many terminations and alignments (in-plane fractional translations) are possible, and we describe density-functional total-energy electronic-structure calculations on several configurations to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe (001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a type II alignment as needed, for example, in solar cells. We also describe recent experiments that corroborate some of these predictions.

  19. Band offsets for mismatched interfaces: The special case of ZnO on CdTe (001)

    SciTech Connect

    Jaffe, John E.; Kaspar, Tiffany C.; Droubay, Timothy C.; Varga, Tamas

    2013-11-15

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications. Although CdTe is zinc blende with cubic lattice constant a = 6.482 Å while ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å, (001)-oriented cubic zinc blende ZnO films could be stabilized epitaxially on a CdTe (001) surface in an √2 × √2 R45° configuration with a lattice mismatch of <0.5%. Modeling such a configuration allows density-functional total-energy electronic-structure calculations to be performed on several interface arrangements (varying terminations and in-plane fractional translations) to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe(001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a Type II alignment as needed, for example, in solar cells. To corroborate some of these predictions, thin layers of ZnO were deposited on CdTe(001) by pulsed laser deposition, and the band alignments of the resulting heterojunctions were determined from x-ray photoelectron spectroscopy measurements. Although zinc blende ZnO could not be confirmed, the measured valence band offset (2.0–2.2 eV) matched well with the predicted value.

  20. Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing

    SciTech Connect

    Albin, D.; del Cueto, J.

    2011-03-01

    In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

  1. Process Development for High Voc CdTe Solar Cells: Phase I, Annual Technical Report, October 2005 - September 2006

    SciTech Connect

    Ferekides, C. S.; Morel, D. L.

    2007-04-01

    The focus of this project is the open-circuit voltage of the CdTe thin-film solar cell. CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, but the efficiency of the CdTe solar cell has been stagnant for the last few years. At the manufacturing front, the CdTe technology is fast paced and moving forward with U.S.-based First Solar LLC leading the world in CdTe module production. To support the industry efforts and continue the advancement of this technology, it will be necessary to continue improvements in solar cell efficiency. A closer look at the state-of-the-art performance levels puts the three solar cell efficiency parameters of short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the 24-26 mA/cm2, 844?850 mV, and 74%-76% ranges respectively. During the late 1090s, efforts to improve cell efficiency were primarily concerned with increasing JSC, simply by using thinner CdS window layers to enhance the blue response (<510 nm) of the CdTe cell. These efforts led to underscoring the important role 'buffers' (or high-resistivity transparent films) play in CdTe cells. The use of transparent bi-layers (low-p/high-p) as the front contact is becoming a 'standard' feature of the CdTe cell.

  2. High-resolution Schottky CdTe diode for hard X-ray and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Paul, B.; Hirose, K.; Matsumoto, C.; Ohno, R.; Ozaki, T.; Mori, K.; Tomita, Y.

    1999-10-01

    We report a significant improvement of the spectral properties of cadmium telluride (CdTe) detectors, fabricated in the form of a Schottky CdTe diode. With the use of high quality CdTe wafer, we formed a Schottky junction by evaporating indium on the Te-face and operated the detector as a diode. This allows us to apply much higher bias voltage than was possible with the previous CdTe detectors. A /2 mm/×2 mm detector of thickness 0.5 mm, when operated at a temperature of /5°C, shows leakage current of only 0.2 and 0.4 nA for an operating voltage of 400 and 800 V, respectively. We found that, at a high-electric field of several kV cm-1, the Schottky CdTe diode has very good energy resolution and stability, suitable for astronomical applications. The broad low-energy tail, often observed in CdTe detectors due to the low mobility and short lifetime of holes, was significantly reduced by the application of a higher bias voltage which improves the charge collection efficiency. We achieved very good FWHM energy resolution of /1.1% and /0.8% at energies 122 and 511 keV, respectively, without any rise time discrimination or pulse height correction electronics. For the detection of hard X-rays and gamma-rays above 100 keV, we have improved the detection efficiency by stacking a number of thin CdTe diodes. Using individual readout electronics for each layer, we obtained high detection efficiency without sacrificing the energy resolution. In this paper, we report the performance of the new CdTe diode and discuss its proposed applications in future hard X-ray and gamma-ray astronomy missions.

  3. Solution-Processed, Ultrathin Solar Cells from CdCl3(-)-Capped CdTe Nanocrystals: The Multiple Roles of CdCl3(-) Ligands.

    PubMed

    Zhang, Hao; Kurley, J Matthew; Russell, Jake C; Jang, Jaeyoung; Talapin, Dmitri V

    2016-06-22

    Solution-processed CdTe solar cells using CdTe nanocrystal (NC) ink may offer an economically viable route for large-scale manufacturing. Here we design a new CdCl3(-)-capped CdTe NC ink by taking advantage of novel surface chemistry. In this ink, CdCl3(-) ligands act as surface ligands, sintering promoters, and dopants. Our solution chemistry allows obtaining very thin continuous layers of high-quality CdTe which is challenging for traditional vapor transport methods. Using benign solvents, in air, and without additional CdCl2 treatment, we obtain a well-sintered CdTe absorber layer from the new ink and demonstrate thin-film solar cells with power conversion efficiency over 10%, a record efficiency for sub-400 nm thick CdTe absorber layer. PMID:27269672

  4. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo

    PubMed Central

    Zhang, Ting; Hu, Yuanyuan; Tang, Meng; Kong, Lu; Ying, Jiali; Wu, Tianshu; Xue, Yuying; Pu, Yuepu

    2015-01-01

    With the applications of quantum dots (QDs) expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe) QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12). CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA) in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS) and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2) deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes. PMID:26404244

  5. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  6. CdTe solar cells with open-circuit voltage breaking the 1 V barrier

    NASA Astrophysics Data System (ADS)

    Burst, J. M.; Duenow, J. N.; Albin, D. S.; Colegrove, E.; Reese, M. O.; Aguiar, J. A.; Jiang, C.-S.; Patel, M. K.; Al-Jassim, M. M.; Kuciauskas, D.; Swain, S.; Ablekim, T.; Lynn, K. G.; Metzger, W. K.

    2016-03-01

    CdTe solar cells have the potential to undercut the costs of electricity generated by other technologies, if the open-circuit voltage can be increased beyond 1 V without significant decreases in current. However, in the past decades, the open-circuit voltage has stagnated at around 800-900 mV. This is lower than in GaAs solar cells, even though GaAs has a smaller bandgap; this is because it is more difficult to achieve simultaneously high hole density and lifetime in II-VI materials than in III-V materials. Here, by doping the CdTe with a Group V element, we report lifetimes in single-crystal CdTe that are nearly radiatively limited and comparable to those in GaAs over a hole density range relevant for solar applications. Furthermore, the deposition on CdTe of nanocrystalline CdS layers that form non-ideal heterointerfaces with 10% lattice mismatch impart no damage to the CdTe surface and show excellent junction transport properties. These results enable the fabrication of CdTe solar cells with open-circuit voltage greater than 1 V.

  7. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-04-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  8. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ∼500 and 700 nm with the luminescence quantum yield (LQY) of 30–85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml‑1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3–50 ng μl‑1 with a detection limit of 3 ng μL‑1 has been performed based on the antibody-antigen recognition.

  9. Characterization of CdTe Growth on GaAs Using Different Etching Techniques

    NASA Astrophysics Data System (ADS)

    Bilgilisoy, E.; Özden, S.; Bakali, E.; Karakaya, M.; Selamet, Y.

    2015-09-01

    CdTe buffer layers which were grown on (211)B GaAs by molecular beam epitaxy were subjected to two different etch treatments to quantify the crystal quality and dislocation density. The optical properties and thicknesses of the samples were obtained by ex situ spectroscopic ellipsometry. The surface morphologies of the CdTe epilayers were analyzed by atomic force microscopy, scanning electron microscopy, and Nomarski microscopy before and after chemical etching. We compare the triangle- and trapezoid-shaped etch pits due to the Everson and Nakagawa etch solutions, respectively. Measured etch pit density (EPD) values of triangle etch pits were found in the 8 × 107 cm-2 to 2 × 108 cm-2 range, and trapezoid-shaped etch pits were found in the 1 × 107 cm-2 to 7 × 107 cm-2 range for samples with thicknesses <2 μm.

  10. Photoluminescence Imaging of Large-Grain CdTe for Grain Boundary Characterization

    SciTech Connect

    Johnston, Steve; Allende Motz, Alyssa; Reese, Matthew O.; Burst, James M.; Metzger, Wyatt K.

    2015-06-14

    In this work, we use photoluminescence (PL) imaging to characterize CdTe grain boundary recombination. We use a silicon megapixel camera and green (532 nm) laser diodes for excitation. A microscope objective lens system is used for high spatial resolution and a field of view down to 190 um x 190 um. PL images of large-grain (5 to 50 um) CdTe samples show grain boundary and grain interior features that vary with processing conditions. PL images of samples in the as-deposited state show distinct dark grain boundaries that suggest high excess carrier recombination. A CdCl2 treatment leads to PL images with very little distinction at the grain boundaries, which illustrates the grain boundary passivation properties. Other process conditions are also shown, along with comparisons of PL images to high spatial resolution time-resolved PL carrier lifetime maps.

  11. Energy and coincidence time resolution measurements of CdTe detectors for PET

    PubMed Central

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J.G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-01-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at −8°C with an applied bias voltage of −1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration. PMID:23750177

  12. First-principles DFT +G W study of oxygen-doped CdTe

    NASA Astrophysics Data System (ADS)

    Flores, Mauricio A.; Orellana, Walter; Menéndez-Proupin, Eduardo

    2016-05-01

    The role of oxygen doping in CdTe is addressed by first-principles calculations. Formation energies, charge transition levels, and quasiparticle defect states are calculated within the DFT+G W formalism. The formation of a new defect is identified, the (OTe-TeCd) complex.Thiscomplex is energetically favored over both isovalent (OTe) and interstitial oxygen (Oi), in the Te-rich limit. We find that the incorporation of oxygen passivates the harmful deep energy levels associated with (TeCd), suggesting an improvement in the efficiency of CdTe based solar cells. Substitutional (OCd) is only stable in the neutral charge state and undergoes a Jahn-Teller distortion. We also investigate the diffusion profiles of interstitial oxygen and find a low-energy diffusion barrier of only 0.14 eV between two structurally distinct interstitial sites.

  13. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Bi, Xianghong; Chen, Haibin; Wu, Jingshen

    2014-05-01

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence.

  14. Effects of Stoichiometry in Undoped CdTe Heteroepilayers on Si

    SciTech Connect

    Gessert, Timothy A.; Colegrove, Eric; Stafford, Brian; Gao, Wei; Sivananthan, Siva; Kuciauskas, Darius; Moutinho, Helio; Farrell, Stuart; Barnes, Teresa

    2015-06-14

    Crystalline CdTe layers have been grown heteroepitaxially onto crystalline Si substrates to establish material parameters needed for advanced photovoltaic (PV) device development and related simulation. These studies suggest that additional availability of the intrinsic anion (i.e., Te) during molecular beam epitaxy deposition can improve structural and optoelectronic quality of the epilayer and the interface between Si substrate and the epilayer. This is seen most notably for thin CdTe epitaxial films (<; ~10 micrometers). Although these observations are foundationally important, they are also relevant to envisioned high-performance multijunction II-VI alloy PV devices-where thin layers will be required to achieve production costs aligned with market constraints.

  15. A model for the growth of cdte by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nemirovsky, Y.; Goren, D.; Ruzin, A.

    1991-10-01

    A kinetic model for the metalorganic chemical vapor deposition (MOCVD) growth of CdTe over a wide temperature range is presented. The model yields the growth rate as a function of the gas-phase concentrations of the constituents. The model is corroborated with experimental results obtained by the MOCVD growth of CdTe at 380° C. The major features of the model are the observed two-step surface-controlled pyrolysis and surface saturation, leading initially to a growth rate that increases with the square root of the concentrations of the reacting species and subsequently to a decrease of the growth rate as the concentrations increase. At even higher concentrations, an additional increase of growth rate is observed and modeled.

  16. Growth and optical characterization of strained CdZnTe/ CdTe quantum wells

    NASA Astrophysics Data System (ADS)

    Reno, J. L.; Jones, E. D.

    1991-04-01

    We have grown strained Cd1-xZnxTe (x ≈ 0.2)/CdTe single and multiple quantum wells by molecular beam epitaxy. GaAs was used as a substrate. The well widths were systematically increased until the critical thickness was exceeded. Low-temperature (liquid helium) photoluminescence (PL) spectroscopy was used to characterize the films. Two prominent PL peaks were observed: one arising from the quantum well and the other from the barrier material. The energy of the quantum well luminescence is consistent with theory when strain is included. The critical layer thickness for the CdTe quantum wells was found to be between 150 and 175 å, in agreement with the model of Matthews and Blakeslee.

  17. CdTe quantum dot as a fluorescence probe for vitamin B12 in dosage form

    NASA Astrophysics Data System (ADS)

    Vaishnavi, E.; Renganathan, R.

    2013-11-01

    We here report the CdTe quantum dot (CdTe QDs)-based sensor for probing vitamin B12 derivatives in aqueous solution. In this paper, simple and sensitive fluorescence quenching measurements has been employed. The Stern-Volmer constant (KSV), quenching rate constant (kq) and binding constant (K) were rationalized from fluorescence quenching measurement. Furthermore, the fluorescence resonance energy transfer (FRET) mechanism was discussed. This method was applicable over the concentration ranging from 1 to 14 μg/mL (VB12) with correlation coefficient of 0.993. The limit of detection (LOD) of VB12 was found to be 0.15 μg/mL. Moreover, the present approach opens a simple pathway for developing cost-effective, sensitive and selective QD-based fluorescence sensors/probes for biologically significant VB12 in pharmaceutical sample with mean recoveries in the range of 100-102.1%.

  18. Induced recrystallization of CdTe thin films deposited by close-spaced sublimation

    SciTech Connect

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L.; Mayo, B.

    1999-03-01

    We have deposited CdTe thin films by close-spaced sublimation at two different temperature ranges. The films deposited at the lower temperature partially recrystallized after CdCl{sub 2} treatment at 350&hthinsp;{degree}C and completely recrystallized after the same treatment at 400&hthinsp;{degree}C. The films deposited at higher temperature did not recrystallize at these two temperatures. These results confirmed that the mechanisms responsible for changes in physical properties of CdTe films treated with CdCl{sub 2} are recrystallization and grain growth, and provided an alternative method to deposit CSS films using lower temperatures. {copyright} {ital 1999 American Institute of Physics.}

  19. Strongly confining bare core CdTe quantum dots in polymeric microdisk resonators

    SciTech Connect

    Flatae, Assegid Grossmann, Tobias; Beck, Torsten; Wiegele, Sarah; Kalt, Heinz

    2014-01-01

    We report on a simple route to the efficient coupling of optical emission from strongly confining bare core CdTe quantum dots (QDs) to the eigenmodes of a micro-resonator. The quantum emitters are embedded into QD/polymer sandwich microdisk cavities. This prevents photo-oxidation and yields the high dot concentration necessary to overcome Auger enhanced surface trapping of carriers. In combination with the very high cavity Q-factors, interaction of the QDs with the cavity modes in the weak coupling regime is readily observed. Under nanosecond pulsed excitation the CdTe QDs in the microdisks show lasing with a threshold energy as low as 0.33 μJ.

  20. Investigation of the origin of deep levels in CdTe doped with Bi

    SciTech Connect

    Saucedo, E.; Franc, J.; Elhadidy, H.; Horodysky, P.; Ruiz, C. M.; Bermudez, V.; Sochinskii, N. V.

    2008-05-01

    Combining optical (low temperature photoluminescence), electrical (thermoelectric effect spectroscopy), and structural (synchrotron X-ray powder diffraction) methods, the defect structure of CdTe doped with Bi was studied in crystals with dopant concentration in the range of 10{sup 17}-10{sup 19} at./cm{sup 3}. The semi-insulating state observed in crystals with low Bi concentration is assigned to the formation of a shallow donor level and a deep donor recombination center. Studying the evolution of lattice parameter with temperature, we postulate that the deep center is formed by a Te-Te dimer and their formation is explained by a tetrahedral to octahedral distortion, due to the introduction of Bi in the CdTe lattice. We also shows that this model agrees with the electrical, optical, and transport charge properties of the samples.

  1. Diffusion-Reaction Modeling of Cu Migration in CdTe Solar Devices

    SciTech Connect

    Guo, Da; Brinkman, Daniel; Fang, Tian; Akis, Richard; Sankin, Igor; Vasileska, Dragica; Ringhofer, Christian

    2015-09-04

    In this work, we report on development of one-dimensional (1D) finite-difference and two-dimensional (2D) finite-element diffusion-reaction simulators to investigate mechanisms behind Cu-related metastabilities observed in CdTe solar cells [1]. The evolution of CdTe solar cells performance has been studied as a function of stress time in response to the evolution of associated acceptor and donor states. To achieve such capability, the simu-lators solve reaction-diffusion equations for the defect states in time-space domain self-consistently with the free carrier transport. Re-sults of 1-D and 2-D simulations have been compared to verify the accuracy of solutions.

  2. Balloon-Borne Hard X-Ray Spectrometer Using CdTe Detectors

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Tsuneta, S.; Tamura, T.; Kumagai, K.; Katsukawa, Y.; Kubo, M.; Sakamoto, Y.; Kohara, N.; Yamagami, T.; Saito, Y.; Mori, K.

    2008-08-01

    Spectroscopic observation of solar flares in the hard X-ray energy range, particularly the 20 ˜ 100 keV region, is an invaluable tool for investigating the flare mechanism. This paper describes the design and performance of a balloon-borne hard X-ray spectrometer using CdTe detectors developed for solar flare observation. The instrument is a small balloon payload (gondola weight 70 kg) with sixteen 10×10×0.5 mm CdTe detectors, designed for a 1-day flight at 41 km altitude. It observes in an energy range of 20-120 keV and has an energy resolution of 3 keV at 60 keV. The second flight on 24 May 2002 succeeded in observing a class M1.1 flare.

  3. Identification of critical stacking faults in thin-film CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Yoo, Su-Hyun; Butler, Keith T.; Soon, Aloysius; Abbas, Ali; Walls, John M.; Walsh, Aron

    2014-08-01

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl2 is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

  4. Heteroepitaxy of CdTe(1 1 1)B on Si(1 1 1) : As

    NASA Astrophysics Data System (ADS)

    Schick, H.; Bensing, F.; Hilpert, U.; Richter, U.; Hansen, L.; Wagner, J.; Wagner, V.; Geurts, J.; Waag, A.; Landwehr, G.

    2000-06-01

    In order to improve the structural quality of CdTe/Si composite substrates, we have investigated the MBE growth mechanisms of CdTe(1 1 1) onto planar and vicinal arsenic-passivated Si(1 1 1) surfaces. The films were characterized by in situ RHEED, X-ray diffraction, Raman spectroscopy, photoluminescence, secondary electron microscopy, transmission electron microscopy and atomic force microscopy. Rocking curves had peaks narrower than 100 arcsec at a layer thickness of only 1-2 μm. BeTe buffer layers did not show a dominant effect, whereas the twin content decreased drastically when misoriented substrates were used. Efficient twin suppression can be obtained by realizing an interface step alignment between substrate and epitaxial CdTe film.

  5. High performance p-i-n CdTe and CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Khusainov, A. Kh; Dudin, A. L.; Ilves, A. G.; Morozov, V. F.; Pustovoit, A. K.; Arlt, R. D.

    1999-06-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35°C cooling (by a Peltier cooler of 15×15×10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  6. Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films

    SciTech Connect

    Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana

    2014-04-24

    Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

  7. CdTe and ZnTe metal interface formation and Fermi-level pinning

    NASA Technical Reports Server (NTRS)

    Wahi, A. K.; Carey, G. P.; Chiang, T. T.; Lindau, I.; Spicer, W. E.

    1989-01-01

    Interfacial morphology and Fermi-level pinning behavior at the interfaces of Al, Ag, and Pt with UHV-cleaved CdTe and ZnTe are studied using X-ray photoelectron and ultraviolet photoemission spectroscopies. Results are compared to metal/HgCdTe interface formation. For Al/CdTe, a case is found where significantly greater intermixing occurs in CdTe than seen on HgCdTe. The Al/ZnTe interface is also more abrupt than Al/CdTe. Band bending results for interfaces of all three metals with p-CdTe and p-ZnTe are presented and implications for metal/HgZnTe interface formation are considered.

  8. Crystal Growth of CdTe by Gradient Freeze in Universal Multizone Crystallizator (UMC)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Li, C.; Knuteson, D.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Barczy, P.

    2004-01-01

    In the case of unsealed melt growth of an array of II-VI compounds, namely, CdTe, CdZnTe and ZnSe, there is a tremendous amount of experimental data describing the correlations between melt conditions and crystal quality. The results imply that the crystallinity quality can be improved if the melt was markedly superheated or long-time held before growth. It is speculated that after high superheating the associated complex dissociate and the spontaneous nucleation is retarded. In this study, crystals of CdTe were grown from melts which have undergone different thermal history by the unseeded gradient freeze method using the Universal Multizone Crystallizator (UMC). The effects of melt conditions on the quality of grown crystal were studied by various characterization techniques, including Synchrotron White Beam X-ray Topography (SWSXT), infrared microscopy, chemical analysis by glow discharge mass spectroscopy (GDMS), electrical conductivity and Hall measurements.

  9. Identification of critical stacking faults in thin-film CdTe solar cells

    SciTech Connect

    Yoo, Su-Hyun; Walsh, Aron; Butler, Keith T.; Soon, Aloysius; Abbas, Ali; Walls, John M.

    2014-08-11

    Cadmium telluride (CdTe) is a p-type semiconductor used in thin-film solar cells. To achieve high light-to-electricity conversion, annealing in the presence of CdCl{sub 2} is essential, but the underlying mechanism is still under debate. Recent evidence suggests that a reduction in the high density of stacking faults in the CdTe grains is a key process that occurs during the chemical treatment. A range of stacking faults, including intrinsic, extrinsic, and twin boundary, are computationally investigated to identify the extended defects that limit performance. The low-energy faults are found to be electrically benign, while a number of higher energy faults, consistent with atomic-resolution micrographs, are predicted to be hole traps with fluctuations in the local electrostatic potential. It is expected that stacking faults will also be important for other thin-film photovoltaic technologies.

  10. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    SciTech Connect

    Zhang, Lei Chen, Haibin E-mail: mejswu@ust.hk; Wu, Jingshen E-mail: mejswu@ust.hk; Bi, Xianghong

    2014-05-15

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence.

  11. P-I-N CdTe gamma-ray detectors by liquid phase epitaxy (LPE)

    SciTech Connect

    Shin, S.H.; Niizawa, G.T.; Pasko, J.G.; Bostrup, G.L.; Ryan, F.J.; Khoshnevisan, M.; Westmark, C.I.; Fuller, C.

    1984-01-01

    A new device concept of CdTe gamma ray detectors has been demonstrated by using p+(HgCdTe)-n(CdTe)-n+(HgCdTe) diode structures. Both p+ and n/sup +/-type Hg/sub 0.25/Cd/sub 0.75/Te epilayers were grown by the liquid phase epitaxy (LPE) technique on semi-insulating CdTe sensor elements. The LPE-grown P-I-N structure offers potential advantages for p-n junction formation and ohmic contact over standard ion-implanted diodes or Schottky barrier devices. Detectors with active areas of 2 mm/sup 2/ were fabricated. Resolutions of 10 keV were obtained for the 122 keV gamma peak of Co/sup 57/ at room temperature.

  12. P-I-N CdTe gamma ray detectors by liquid phase epitaxy (LPE)

    SciTech Connect

    Shin, S.H.; Bostrup, G.L.; Fuller, C.; Khoshnevisan, M.; Niizawa, G.T.; Pasko, J.G.; Ryan, F.J.; Westmark, C.I.

    1985-02-01

    A new device concept for CdTe gamma ray detectors has been demonstrated using p/sup +/(HgCdTe)-n(CdTe)-n/sup +/ (HgCdTe) diode structures. Both p/sup +/ and n/sup +/ Hg /SUB 0.25/ Cd /SUB 0.75/ Te epilayers were grown by the liquid phase epitaxy (LPE) technique on semi-insulating CdTe sensor elements. The LPE grown P-I-N structure offers potential advantages for p-n junction and ohmic contact formation over standard ion implanted diodes or Schottky barrier devices. Detectors with active areas of 2 mm/sup 2/ were fabricated. Resolutions of 10 KeV were obtained for the 122 KeV gamma peak of Co/sup 57/ at room temperature.

  13. Large-area CdTe diode detector for space application

    NASA Astrophysics Data System (ADS)

    Nakazawa, K.; Takahashi, T.; Watanabe, S.; Sato, G.; Kouda, M.; Okada, Y.; Mitani, T.; Kobayashi, Y.; Kuroda, Y.; Onishi, M.; Ohno, R.; Kitajima, H.

    2003-10-01

    The current status of Schottky CdTe diode detectors, especially in view of their space application for hard X-ray and gamma-ray astronomy, are reported. For practical use in space science, a large-area CdTe diode with a size of 21.5×21.5mm2 and a thickness of 0.5mm was developed. A good energy resolution, 2.8keV (FWHM) at -20°C, and high homogeneity to within 0.2% over the detector were achieved for the spectral performance. This device has successfully passed a series of tests required for its use in space, in view of utilizing Japanese M-V rockets. The tests include the mechanical environment test, vacuum test, long run for weeks and proton-beam radiation. Initial results from a 2×2 segmented electrode large-area device with a guard-ring are also presented.

  14. High efficiency solution processed sintered CdTe nanocrystal solar cells: the role of interfaces.

    PubMed

    Panthani, Matthew G; Kurley, J Matthew; Crisp, Ryan W; Dietz, Travis C; Ezzyat, Taha; Luther, Joseph M; Talapin, Dmitri V

    2014-02-12

    Solution processing of photovoltaic semiconducting layers offers the potential for drastic cost reduction through improved materials utilization and high device throughput. One compelling solution-based processing strategy utilizes semiconductor layers produced by sintering nanocrystals into large-grain semiconductors at relatively low temperatures. Using n-ZnO/p-CdTe as a model system, we fabricate sintered CdTe nanocrystal solar cells processed at 350 °C with power conversion efficiencies (PCE) as high as 12.3%. JSC of over 25 mA cm(-2) are achieved, which are comparable or higher than those achieved using traditional, close-space sublimated CdTe. We find that the VOC can be substantially increased by applying forward bias for short periods of time. Capacitance measurements as well as intensity- and temperature-dependent analysis indicate that the increased VOC is likely due to relaxation of an energetic barrier at the ITO/CdTe interface. PMID:24364381

  15. Grain-boundary-enhanced carrier collection in CdTe solar cells.

    PubMed

    Li, Chen; Wu, Yelong; Poplawsky, Jonathan; Pennycook, Timothy J; Paudel, Naba; Yin, Wanjian; Haigh, Sarah J; Oxley, Mark P; Lupini, Andrew R; Al-Jassim, Mowafak; Pennycook, Stephen J; Yan, Yanfa

    2014-04-18

    When CdTe solar cells are doped with Cl, the grain boundaries no longer act as recombination centers but actively contribute to carrier collection efficiency. The physical origin of this remarkable effect has been determined through a combination of aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles theory. Cl substitutes for a large proportion of the Te atoms within a few unit cells of the grain boundaries. Density functional calculations reveal the mechanism, and further indicate the grain boundaries are inverted to n type, establishing local p-n junctions which assist electron-hole pair separation. The mechanism is electrostatic, and hence independent of the geometry of the boundary, thereby explaining the universally high collection efficiency of Cl-doped CdTe solar cells. PMID:24785058

  16. Cyclodextrin capped CdTe quantum dots as versatile fluorescence sensors for nitrophenol isomers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixing; Zhou, Jie; Liu, Yun; Tang, Jian; Tang, Weihua

    2015-11-01

    Cyclodextrin (CD) capped CdTe quantum dots (QDs) were prepared with uniform dimension (average diameter ~5 nm) and high quantum yield (ca. 65%). By taking advantage of the inclusion complexation of CD, β-CD-CdTe QDs exhibited strong fluorescence quenching in a linear relationship with the concentration of o-, m- and p-nitrophenol in the range of 20-100 μM. The detection limit reached 0.05 μM for o-/p-nitrophenol and 0.3 μM for m-nitrophenol. The fluorescence decay study revealed the stabilization effect of CD covering on CdTe QDs and fine-tuning of the fluorescence for selective ultrasensitive detection of nitrophenol isomers.Cyclodextrin (CD) capped CdTe quantum dots (QDs) were prepared with uniform dimension (average diameter ~5 nm) and high quantum yield (ca. 65%). By taking advantage of the inclusion complexation of CD, β-CD-CdTe QDs exhibited strong fluorescence quenching in a linear relationship with the concentration of o-, m- and p-nitrophenol in the range of 20-100 μM. The detection limit reached 0.05 μM for o-/p-nitrophenol and 0.3 μM for m-nitrophenol. The fluorescence decay study revealed the stabilization effect of CD covering on CdTe QDs and fine-tuning of the fluorescence for selective ultrasensitive detection of nitrophenol isomers. Electronic supplementary information (ESI) available: Experimental procedure and characterization for new materials. See DOI: 10.1039/c5nr06073g

  17. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  18. Angle-resolved photoemission studies of the CdTe(110) surface

    NASA Astrophysics Data System (ADS)

    Qu, H.; Kanski, J.; Nilsson, P. O.; Karlsson, U. O.

    1991-06-01

    The electronic structure of the CdTe(110) surface has been studied with angle-resolved photoelectron spectroscopy using synchrotron radiation. An empirical tight-binding linar combination of atomic orbitals band structure has been derived, based on normal-emission spectra. Several, previously unreported, surface-related states have been observed in off-normal emission, and their dispersions have been mapped along symmetry directions of the surface Brillouin zone.

  19. CdTe X-ray detectors under strong optical irradiation

    SciTech Connect

    Cola, Adriano; Farella, Isabella

    2014-11-17

    The perturbation behaviour of Ohmic and Schottky CdTe detectors under strong optical pulses is investigated. To this scope, the electric field profiles and the induced charge transients are measured, thus simultaneously addressing fixed and free charges properties, interrelated by one-carrier trapping. The results elucidate the different roles of the contacts and deep levels, both under dark and strong irradiation conditions, and pave the way for the improvement of detector performance control under high X-ray fluxes.

  20. Applications of CdTe to nuclear medicine. Annual report, February 1, 1979-January 31, 1980

    SciTech Connect

    Entine, G

    1980-01-01

    The application of CdTe gamma detectors in nuclear medicine is reported on. An internal probe was developed which can be inserted into the heart to measure the efficiency of various radiopharmaceuticals in the treatment of heart attacks. A second application is an array of detectors which is light enough to be worn by ambulatory patients and can measure the change in cardiac output over an eight hour period during heart attack treatment. The instrument includes an on board tape recorder. (ACR)

  1. Modeling the defect distribution and degradation of CdTe ultrathin films

    NASA Astrophysics Data System (ADS)

    Gorji, Nima E.

    2014-12-01

    The defect distribution across an ultrathin film CdTe layer of a CdS/CdTe solar cell is modelled by solving the balance equation in steady state. The degradation of the device parameters due to the induced defects during ion implantation is considered where the degradation rate is accelerated if the defect distribution is considerable. The defect concentration is maximum at the surface of the CdTe layer where implantation is applied and it is minimum at the junction with the CdS layer. It shows that ultrathin devices degrade faster if the defect concentration is high at the junction rather than the back region (CdTe/Metal). Since the front and back contacts of the device are close in ultrathin films and the electric field is strong to drive the defects into the junction, the p-doping process might be precisely controlled during ion implantation. The modeling results presented here are in agreement with the few available experimental reports in literature about the degradation and defect configuration of the ultrathin CdTe films.

  2. S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells

    DOE PAGESBeta

    Li, C.; Poplawsky, J.; Paudel, N.; Pennycook, T. J.; Haigh, S. J.; Al-Jassim, M. M.; Yan, Y.; Pennycook, S. J.

    2014-09-19

    At the CdTe/CdS interface, a significant Te-S interdiffusion has been found a few nanometers into the grain interiors with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). S substitution at Te sites has been directly resolved in CdTe with STEM Z-contrast images. Moreover, when enough S substitutes for Te, a structural transformation from zinc-blende to wurtzite has been observed. Cl segregation has also been found at the interface. STEM electron-beam-induced current (EBIC) shows that the p-n junction occurs a few nm into the CdTe grains, which is consistent with the S diffusion range we observe. The shiftmore » of the p-n junction suggests a buried homo-junction which would help reduce non-radiative recombination at the junction. Meanwhile, long-range S diffusion in CdTe grain boundaries (GBs) has been detected, as well as Te and Cl diffusion in CdS GBs.« less

  3. S–Te Interdiffusion within Grains and Grain Boundaries in CdTe Solar Cells

    SciTech Connect

    Li, C.; Poplawsky, J.; Paudel, N.; Pennycook, T. J.; Haigh, S. J.; Al-Jassim, M. M.; Yan, Y.; Pennycook, S. J.

    2014-09-19

    At the CdTe/CdS interface, a significant Te-S interdiffusion has been found a few nanometers into the grain interiors with scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). S substitution at Te sites has been directly resolved in CdTe with STEM Z-contrast images. Moreover, when enough S substitutes for Te, a structural transformation from zinc-blende to wurtzite has been observed. Cl segregation has also been found at the interface. STEM electron-beam-induced current (EBIC) shows that the p-n junction occurs a few nm into the CdTe grains, which is consistent with the S diffusion range we observe. The shift of the p-n junction suggests a buried homo-junction which would help reduce non-radiative recombination at the junction. Meanwhile, long-range S diffusion in CdTe grain boundaries (GBs) has been detected, as well as Te and Cl diffusion in CdS GBs.

  4. Luminescent CdTe and CdSe semiconductor nanocrystals: preparation, optical properties and applications.

    PubMed

    Wang, Ying

    2008-03-01

    The novel optical and electrical properties of luminescent semiconductor nanocrystals are appealing for ultrasensitive multiplexing and multicolor applications in a variety of fields, such as biotechnology, nanoscale electronics, and opto-electronics. Luminescent CdSe and CdTe nanocrystals are archetypes for this dynamic research area and have gained interest from diverse research communities. In this review, we first describe the advances in preparation of size- and shape-controlled CdSe and CdTe semiconductor nanocrystals with the organometallic approach. This article gives particular focus to water soluble nanocrystals due to the increasing interest of using semiconductor nanocrystals for biological applications. Post-synthetic methods to obtain water solubility, the direct synthesis routes in aqueous medium, and the strategies to improve the photoluminescence efficiency in both organic and aqueous phase are discussed. The shape evolution in aqueous medium via self-organization of preformed nanoparticles is a versatile and powerful method for production of nanocrystals with different geometries, and some recent advances in this field are presented with a qualitative discussion on the mechanism. Some examples of CdSe and CdTe nanocrystals that have been applied successfully to problems in biosensing and bioimaging are introduced, which may profoundly impact biological and biomedical research. Finally we present the research on the use of luminescent semiconductor nanocrystals for construction of light emitting diodes, solar cells, and chemical sensors, which demonstrate that they are promising building blocks for next generation electronics. PMID:18468108

  5. Signal-on electrochemiluminescence of biofunctional CdTe quantum dots for biosensing of organophosphate pesticides.

    PubMed

    Liang, Han; Song, Dandan; Gong, Jingming

    2014-03-15

    A new, highly sensitive and selective ECL assay biosensor based on target induced signal on has been developed for the detection of organophosphate pesticides (OPs), whereby the smart integration of graphene nanosheets (GNs), CdTe quantum dots (CdTe QDs), and acetylcholinesterase (AChE) enzymatic reaction yields a biofunctional AChE-GNs-QDs hybrid as cathodic ECL emitters for OPs sensing. The electrochemically synthesized GNs were selected as a supporting material to anchor CdTe QDs, exhibiting a significantly amplified ECL signal of QDs. On the basis of the effect of OPs on the ECL signal of AChE-QDs-GNs modified glassy carbon electrode (GCE), a highly sensitive GNs-anchored-QDs-based signal-on ECL biosensor was developed for sensing OPs, combined with the enzymatic reactions and the dissolved oxygen as coreactant. The conditions for OPs detection were optimized by using methyl parathion (MP) as a model OP compound. Under the optimized experimental conditions, such a newly designed system shows remarkably improved sensitivity and selectivity for the sensing of OPs. The detection limit was found to be as low as about 0.06 ng mL(-1) (S/N=3). Toward the goal for practical applications, the resulting sensor was further evaluated by monitoring MP in spiked vegetable samples, showing fine applicability for the detection of MP in real samples. PMID:24184599

  6. Radiation detection with CdTe quantum dots in sol-gel glass and polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Manickaraj, Kavin; Wagner, Brent K.; Kang, Zhitao

    2013-05-01

    Optically based radiation detectors in various fields of science still suffer from low resolution, sensitivity and efficiency that restrict their overall performance. Quantum dots (QD) are well-suited for such detectors due to their unique optical properties. CdTe QDs show fast luminescence decay times, high conversion efficiencies, and have band gaps strongly dependent on the particle radius. Since QD particle sizes are well below the wavelengths of their emissions, they remain optically transparent when incorporated in both polymer and sol-gel based silica glass due to negligible optical scattering. In addition, as these composite materials can greatly improve the mechanical robustness of alpha-particle detectors, conventionally known to have delicate components, CdTe QDs show high promise for radiation sensing applications. These properties are especially advantageous for alpha-particle and potentially neutron detection. In this work, CdTe QD-based glass or polymer matrix nanocomposites were synthesized for use as alpha-particle detection scintillators.. The fast photo-response and decay times provide excellent time resolution. The radiation responses of such nanocomposites in polymer or glass matrices were investigated.

  7. Electron and hole drift mobility measurements on thin film CdTe solar cells

    SciTech Connect

    Long, Qi; Dinca, Steluta A.; Schiff, E. A.; Yu, Ming; Theil, Jeremy

    2014-07-28

    We report electron and hole drift mobilities in thin film polycrystalline CdTe solar cells based on photocarrier time-of-flight measurements. For a deposition process similar to that used for high-efficiency cells, the electron drift mobilities are in the range of 10{sup −1}–10{sup 0} cm{sup 2}/V s, and holes are in the range of 10{sup 0}–10{sup 1} cm{sup 2}/V s. The electron drift mobilities are about a thousand times smaller than those measured in single crystal CdTe with time-of-flight; the hole mobilities are about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl{sub 2}; treatment had little effect on the hole drift mobility, but decreased the electron mobility. We are able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in thin film CdTe, but the actual mechanism reducing the mobilities from the single crystal values is not known.

  8. Probing the interactions of CdTe quantum dots with pseudorabies virus

    PubMed Central

    Du, Ting; Cai, Kaimei; Han, Heyou; Fang, Liurong; Liang, Jiangong; Xiao, Shaobo

    2015-01-01

    Quantum dots (QDs) have become one of the most promising luminescent materials for tracking viral infection in living cells. However, several issues regarding how QDs interact with the virus remain unresolved. Herein, the effects of Glutathione (GSH) capped CdTe QDs on virus were investigated by using pseudorabies virus (PRV) as a model. One-step growth curve and fluorescence colocalization analyses indicate that CdTe QDs inhibit PRV multiplication in the early stage of virus replication cycle by suppressing the invasion, but have no significant effect on the PRV penetration. Fluorescence spectrum analysis indicates that the size of QDs is reduced gradually after the addition of PRV within 30 min. Release of Cd2+ was detected during the interaction of QDs and PRV, resulting in a decreased number of viruses which can infect cells. Further Raman spectra and Circular Dichroism (CD) spectroscopy analyses reveal that the structure of viral surface proteins is altered by CdTe QDs adsorbed on the virus surface, leading to the inhibition of virus replication. This study facilitates an in-depth understanding of the pathogenic mechanism of viruses and provides a basis for QDs-labeled virus research. PMID:26552937

  9. Thin-film CdTe photovoltaic cells by laser deposition and rf sputtering

    NASA Astrophysics Data System (ADS)

    Compaan, A.; Bohn, R. G.; Bhat, A.; Tabory, C.; Shao, M.; Li, Y.; Savage, M. E.; Tsien, L.

    1992-12-01

    Laser-driven physical vapor deposition (LDPVD) and radio-frequency (rf) sputtering have been used to fabricate thin-film solar cells on SnO2-coated glass substrates. The laser-ablation process readily permits the use of several target materials in the same vacuum chamber and complete solar cell structures have been fabricated on SnO2-coated glass using LDPVD for the CdS, CdTe, and CdCl2. To date the best devices (˜9% AM1.5) have been obtained after a post-deposition anneal at 400 °C. In addition, cells have been fabricated with the combination of LDPVD CdS, rf-sputtered CdTe, and LDPVD CdCl2. The performance of these cells indicates considerable promise for the potential of rf sputtering for CdTe photovoltaic devices. The physical mechanisms of LDPVD have been studied by transient optical spectroscopy on the laser ablation plume. These measurements have shown that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a large fraction which is highly excited internally (≥6 eV) and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. Quality of as-grown and annealed films has been analyzed by optical absorption. Raman scattering, photoluminescence, electrical conductivity, Hall effect, x-ray diffraction, and SEM/EDS.

  10. Individual losses in thin-film CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Tavakolian, Hossein; Sites, James R.

    Thin-film polycrystalline CdTe solar cells have been analyzed using current-voltage, reflection, quantum efficiency, and capacitance measurements. The objective is to quantify the individual current and voltage losses in recent cells from different sources. Compared to an optimum photocurrent density of 30.5 mA/sq cm, they typically lose 2 mA/sq cm to reflection, 2-3 to uncollected CdTe carriers, and 2-6 to window-layer absorption. Voltage loss at maximum power is on the order of 200 mV because of the polycrystallinity, 100 mV due to light-dark differences in forward current, and 50 mV resulting from series resistance. Individual voltage loss values vary considerably among samples. The capacitance measurement implies that a significant fraction of the CdTe is a highly compensated i-layer and that the extraneous bandgap state density is above 10 to the 11th e/V/sq cm under operating conditions.

  11. Frontal IBICC study of the induced proton radiation damage in CdTe detectors

    NASA Astrophysics Data System (ADS)

    Pastuović, Željko; Jakšić, Milko

    2001-07-01

    Within a continuous international effort in developing the non-cryogenic semiconductor detectors for gamma ray spectroscopy, various wide gap materials were considered. With a best performance achieved, CdTe- and CdZnTe-based detectors become today widely accepted and commercially available. In addition to possible future use of such detectors for particle-induced gamma-ray emission (PIGE), nuclear microprobes are in recent years applied more as their characterisation tool using the ion beam-induced charge collection (IBICC) technique. Several CdTe detectors of 2×2×1 mm3 size were used in this study. On the basis of frontal IBICC measurements of the charge collection efficiency (CCE) distribution, the spectroscopy performance of detectors were measured. Further degradation of charge collection efficiency and the downward trend in peak position were studied by on-line irradiation of CdTe samples with 3 MeV protons up to 10 10 p/cm2 radiation dose.

  12. Hard x-ray polarimetry with a thick CdTe position sensitive spectrometer

    NASA Astrophysics Data System (ADS)

    Caroli, Ezio; Bertuccio, Giuseppe; Cola, Adriano; Curado da Silva, R. M.; Donati, Ariano; Dusi, Waldes; Landini, Gianni; Siffert, Paul; Sampietro, Marco; Stephen, John B.

    2000-12-01

    Even though it is recognized that the study of polarization from cosmic high-energy sources can give very important information about the nature of the emission mechanism, to date very few measurements have been attempted. For several years we have proposed the use of a thick CdTe array as a position sensitive spectrometer for hard X- and soft gamma-ray astronomy, a design which is also efficient for use as a polarimeter at energies above approximately 100 keV. Herein we describe the preliminary results of our study of a polarimeter based on 4096 CdTe microcrystals that we would like to develop for a high altitude balloon experiment. We present the telescope concept with a description of each subsystem together with some results on activities devoted to the optimization of the CdTe detector units' response. Furthermore we give an evaluation of the telescope performance in terms of achievable spectroscopic and polarimetric performance. In particular we will show the results of Monte Carlo simulations developed to evaluate the efficiency of our detector as a hard X ray polarimeter.

  13. Comparison of Minority Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices: Preprint

    SciTech Connect

    Gessert, T. A.; Dhere, R. G.; Duenow, J. N.; Kuciauskas, D.; Kanevce, A.; Bergeson, J. D.

    2011-07-01

    We discuss typical and alternative procedures to analyze time-resolved photoluminescence (TRPL) measurements of minority carrier lifetime (MCL) with the hope of enhancing our understanding of how this technique may be used to better analyze CdTe photovoltaic (PV) device functionality. Historically, TRPL measurements of the fast recombination rate (t1) have provided insightful correlation with broad device functionality. However, we have more recently found that t1 does not correlate as well with smaller changes in device performance, nor does it correlate well with performance differences observed between superstrate and substrate CdTe PV devices. This study presents TRPL data for both superstrate and substrate CdTe devices where both t1 and the slower TRPL decay (t2) are analyzed. The study shows that changes in performance expected from small changes in device processing may correlate better with t2. Numerical modeling further suggests that, for devices that are expected to have similar drift field in the depletion region, effects of changes in bulk MCL and interface recombination should be more pronounced in t2. Although this technique may provide future guidance to improving CdS/CdTe device performance, it is often difficult to extract statistically precise values for t2, and therefore t2 data may demonstrate significant scatter when correlated with performance parameters.

  14. CdTe detectors in medicine: a review of current applications and future perspectives

    NASA Astrophysics Data System (ADS)

    Scheiber, C.; Chambron, J.

    1992-11-01

    Cadmium telluride (CdTe) semiconductor sensors have been evaluated for medical applications for 15 years owing to their high stopping power, convenient energy resolution and operating conditions at room temperature. Most of the applications herein reviewed concern medical imaging procedures, i.e., nuclear medicine, including positron emission tomography and radiology with computerized tomography (XCT). Despite their attractive physical characteristics, their preliminary commercial development has been slowed down in the early 80s because of technical problems, particularly when large arrays were considered, and because of the competition with the more available and less expensive scintillators or xenon chambers which are still mounted in most modern medical imaging systems. Nowadays the characteristics of new materials have allowed the development of restricted but more specific domains of CdTe medical applications i.e. miniaturized nuclear probes dedicated to per-operative tumor detection or ambulatory monitoring of physiological (renal, cardiac) functions and bone absorptiometry using either planar or miniature tomographic systems. Supported by these features and encouraged by the growing competition between ionising and non-ionizing imaging modalities (US, MRI), research work is presently conducted with a view to using CdTe detectors in XCT.

  15. CuInSe[sub 2] and CdTe thin films for photovoltaic applications''

    SciTech Connect

    Attar, G.; Bhethanobolta, D.P.; Dugan, K.; Karthikeyan, S.; Kazi, M.; Killian, J.L.; Muthaiah, A.B.; Nierman, D.; Oman, D.M.; Swaminathan, R.; Zafar, S.A.; Ferekides, C.S.; Morel, D.L. )

    1994-06-30

    We are developing processing techniques for CuInSe[sub 2] that are manufacturing-friendly due to relaxed controls on deposition conditions. We routinely achieve J[sub sc]'s in the range 35--45+ mA/cm[sup 2], FF's of 0.55--0.63, and have recently achieved 410 mV in devices without advanced Ga alloying techniques. Our progress and analysis suggests that these processing techniques can achieve state-of-the-art efficiencies. We are also developing an understanding of the complex underlying device mechanisms and their correlation to processing. We propose that a multi-junction classical model which includes space charge recombination can adequately explain device performance and help guide development efforts. The effect of the substrate temperature on the performance of CdTe solar cells prepared by the close spaced sublimation (CSS) process is being investigated. Significant progress has been made and the maximum open-circuit voltage, short-circuit current, and fill factor obtained are 840--860 mV, 22+ mA/cm[sup 2], and 69--70% respectively. The extend of interface reaction between the CdTe and CdS layers appears to be dependent on the substrate temperature. Other process parameters such as the total pressure and spacing are of equal importance in obtaining dense CdTe films. Stability studies are also underway in order to determine whether any degradation mechanisms exist and identify their origins.

  16. Characterisation of an electron collecting CdTe strip sensor using the MYTHEN readout chip

    NASA Astrophysics Data System (ADS)

    Elbracht-Leong, S.; Bergamaschi, A.; Greiffenberg, D.; Peake, D.; Rassool, R.; Schmitt, B.; Toyokawa, H.; Sobbott, B.

    2015-01-01

    MYTHEN is a single photon counting hybrid strip X-ray detector that has found application in x-ray powder diffraction (XRPD) experiments at synchrotrons worldwide. Originally designed to operate with hole collecting silicon sensors, MYTHEN is suited for detecting X-rays above 5 keV, however many PD beamlines have been designed for energies above 50 keV where silicon sensors have an efficiency of only few percent. In order to adapt MYTHEN to meet these energies the absorption efficiency of the sensor must be substantially increased. Cadmium-Telluride (CdTe) has an absorption efficiency approximately 30 times that of silicon at 50 keV, and is therefore a very promising replacement candidate for silicon. Furthermore, the large dynamic range of the pre-amplifier of MYTHEN and its double polarity capability has enabled the characterisation of an electron collecting Schottky type CdTe sensor. A CdTe MYTHEN system has undergone a series of characterisation experiments including stress test of bias and radiation induced polarizations. The performance of this system will be presented and discussed.

  17. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

    NASA Astrophysics Data System (ADS)

    Dai, Shujun; Wang, Tao; Liu, Huimin; He, Yihui; Jie, Wanqi

    2016-06-01

    A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), {{Te}}_{{Cd}}^{2 + } - {{V}}_{{Cd}}^{2 - } (D complex), {{In}}_{{Cd}}^{ + } - {{V}}_{{Cd}}^{ - } (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a {{V}}_{{Cd}}^{2 - } , TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

  18. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    SciTech Connect

    Simonds, Brian J.; Kheraj, Vipul; Palekis, Vasilios; Ferekides, Christos; Scarpulla, Michael A.

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  19. Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint

    SciTech Connect

    Ullal, H. S.; von Roedern, B.

    2007-09-01

    We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

  20. First-principles DFT+GW study of oxygen doped CdTe

    NASA Astrophysics Data System (ADS)

    Orellana, Walter; Flores, Mauricio A.; Menéndez-Proupin, Eduardo

    The role of oxygen doping in CdTe is addressed by first-principles calculations. Formation energies, charge transition levels and quasiparticle defect states are calculated within the DFT+GW formalism. The formation of a new defect is identified, the (OTe -TeCd) complex. This complex is energetically favored over both isovalent (OTe) and interstitial oxygen (Oi). We find that incorporation of oxygen passivates the harmful deep energy levels derived from Te antisites, suggesting an improvement in the efficiency of CdTe based solar cells. Our calculations indicate that both (OTe) and (Oi) have low formation energies. Moreover, (OCd) is only stable in the neutral charge state and undergoes a Jahn-Teller distortion. The (VCd - OTe) complex is found to be a shallow acceptor with a high formation energy. We also report an oxygen-related interstitial defect, which plays a key role in the diffusion mechanism of oxygen in CdTe. Support by FONDECYT Grant No. 1130437 is acknowledged. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

  1. Optical absorption enhancement of CdTe nanostructures by low-energy nitrogen ion bombardment

    NASA Astrophysics Data System (ADS)

    Akbarnejad, E.; Ghoranneviss, M.; Mohajerzadeh, S.; Hantehzadeh, M. R.; Asl Soleimani, E.

    2016-02-01

    In this paper we present the fabrication of cadmium telluride (CdTe) nanostructures by means of RF magnetron sputtering followed by low-energy ion implantation and post-thermal treatment. We have thoroughly studied the structural, optical, and morphological properties of these nanostructures. The effects of nitrogen ion bombardment on the structural parameters of CdTe nanostructures such as crystal size, microstrain, and dislocation density have been examined. From x-ray diffractometer (XRD) analysis it could be deduced that N+ ion fluence and annealing treatment helps to form (3 0 0) orientation in the crystalline structure of cadmium-telluride films. Fluctuations in optical properties like the optical band gap and absorption coefficient as a function of N+ ion fluences have been observed. The annealing of the sample irradiated by a dose of 1018 ions cm-2 has led to great enhancement in the optical absorption over a wide range of wavelengths with a thickness of 250 nm. The enhanced absorption is significantly higher than the observed value in the original CdTe layer with a thickness of 3 μm. Surface properties such as structure, grain size and roughness are noticeably affected by varying the nitrogen fluences. It is speculated that nitrogen bombardment and post-annealing treatment results in a smaller optical band gap, which in turn leads to higher absorption. Nitrogen bombardment is found to be a promising method to increase efficiency of thin film solar cells.

  2. Review on first-principles study of defect properties of CdTe as a solar cell absorber

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Ma, Jie; Wei, Su-Huai

    2016-08-01

    CdTe is one of the leading materials for high-efficiency, low-cost, and thin-film solar cells. In this work, we review the recent first-principles study of defect properties of CdTe and present that: (1) When only intrinsic defects are present, p-type doping in CdTe is weak and the hole density is low due to the relatively deep acceptor levels of Cd vacancy. (2) When only intrinsic defects present, the dominant non-radiative recombination center in p-type CdTe is T{e}Cd2+, which limits the carrier lifetime to be around 200 ns. (3) Extrinsic p-type doping in CdTe by replacing Te with group V elements generally will be limited by the formation of AX centers. This could be overcome through a non-equilibrium cooling process and the hole density can achieve {10}17 {{{cm}}}-3. However, the long-term stability will be a challenging issue. (4) Extrinsic p-type doping by replacing Cd with alkaline group I elements is limited by alkaline interstitials and a non-equilibrium cooling process can efficiently enhance the hole density to the order of {10}17 {{{cm}}}-3. (5) Cu and Cl treatments are discussed. In bulk CdTe, Cu can enhance p-type doping, but Cl is found to be unsuitable for this. Both Cu and Cl show segregation at grain boundaries, especially at those with Te–Te wrong bonds. (6) External impurities are usually incorporated by diffusion. Therefore, the diffusion processes in CdTe are investigated. We find that cation interstitial (Nai, Cui) diffusion follows relatively simple diffusion paths, but anion diffusion (Cli, Pi) follows more complicated paths due to the degenerated defect wavefunctions.

  3. Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering

    SciTech Connect

    Marwoto, Putut; Made, D. P. Ngurah; Sugianto; Wibowo, Edy; Astuti, Santi Yuli; Aryani, Nila Prasetya; Othaman, Zulkafli

    2013-09-03

    Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV.

  4. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 3, May 1-July 31, 1981

    SciTech Connect

    Bube, R.H.

    1981-01-01

    Preparation of the hot-wall vacuum deposition system nears completion and the first trial evaporation should take place in mid October. A UTI 100C Mass Analyzer with a 1 to 300 AMU capability has been ordered for the system. Preliminary tests indicate good temperature tracking between the furnace core and the CdTe source itself. Homojunction cells prepared by HWVE deposition of n-CdTe on p-CdTe substrates in October 1980 show no significant change in dark or light properties after open-circuit storage for the next 9 months. CdTe single crystal boules have been grown with P, As and Cs impurity. For P impurity it appears from our data that the segregation coefficient is close to unity, that the value of hole density is controlled by the P and not by some unknown background acceptor, and that growth with excess Cd gives slightly higher values of hole density than growth with excess Te. CdTe:As crystals appear similar to CdTe:P crystals.

  5. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers.

    PubMed

    Viana, Osnir S; Ribeiro, Martha S; Rodas, Andréa C D; Rebouças, Júlio S; Fontes, Adriana; Santos, Beate S

    2015-01-01

    The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90%) depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity. PMID:25993419

  6. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    PubMed

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  7. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    NASA Astrophysics Data System (ADS)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  8. Crystal growth of CdTe in space and thermal field effects on mass flux and morphology

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1988-01-01

    The primary, long-range goals are the development of vapor phase crystal growth experiments, and the growth of technologically useful crystals in space. The necessary ground-based studies include measurements of the effects of temperature variations on the mass flux and crystal morphology in vapor-solid growth processes. For in-situ mass flux measurements dynamic microbalance techniques will be employed. Crystal growth procedures and equipment will be developed to be compatible with microgravity conditions and flight requirements. Emphasis was placed on the further development of crystal growth and the investigation of relevant transport properties of CdTe. The dependence of the mass flux on source temperature was experimentally established. The CdTe synthesis and pretreatment procedures are being developed that yield considerable improvements in mass transport rates, and mass fluxes which are independent of the amount of source material. A higher degree of stoichiometric control of CdTe than before was achieved during this period of investigation. Based on this, a CdTe crystal growth experiment, employing physical vapor transport, yielded very promising results. Optical microscopy and X-ray diffraction studies revealed that the boule contained several large sized crystal grains of a high degree of crystallinity. Further characterization studies of CdTe crystals are in progress. The reaction chamber, furnace dimensions, and ampoule location of the dynamic microbalance system were modified in order to minimize radiation effects on the balance performance.

  9. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    NASA Astrophysics Data System (ADS)

    Naderi, Ebadollah; Ghaisas, S. V.

    2016-08-01

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  10. Development of high-efficiency, thin-film CdTe solar cells. Final subcontract report, 1 February 1992--30 November 1995

    SciTech Connect

    Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A.

    1996-01-01

    This report describes work performed by the Georgia Institute of Technology (GIT) to bring the polycrystalline CdTe cell efficiency a step closer to the practically achievable efficiency of 18% through fundamental understanding of detects and loss mechanisms, the role of chemical and heat treatments, and investigation of now process techniques. The objective was addressed by a combination of in-depth characterization, modeling, materials growth, device fabrication, and `transport analyses of Au/Cu/CdTe/CdS/SnO {sub 2} glass front-wall heterojunction solar cells. GiT attempted to understand the loss mechanism(s) in each layer and interface by a step-by-step investigation of this multilayer cell structure. The first step was to understand, quantify, and reduce the reflectance and photocurrent loss in polycrystalline CdTe solar calls. The second step involved the investigation of detects and loss mechanisms associated with the CdTe layer and the CdTe/CdS interface. The third stop was to investigate the effect of chemical and heat treatments on CdTe films and cells. The fourth step was to achieve a better and reliable contact to CdTe solar cells by improving the fundamental understanding. Of the effects of Cu on cell efficiency. Finally, the research involved the investigation of the effect of crystallinity and grain boundaries on Cu incorporation in the CdTe films, including the fabrication of CdTe solar calls with larger CdTe grain size.

  11. NONLINEAR OPTICS: Energy exchange between optical waves due to self-diffraction by photorefractive gratings in a CdTe crystal

    NASA Astrophysics Data System (ADS)

    Borshch, A. A.; Brodin, M. S.; Burin, O. M.; Volkov, V. I.; Kukhtarev, N. V.; Semenets, T. I.; Smereka, Z. N.

    1990-07-01

    Theoretical and experimental investigations were made of a photorefractive nonlinearity of CdTe semiconductor crystals. Photorefractive gratings were formed in undoped CdTe and used to provide efficient energy exchange between nanosecond pulsed light beams (λ approx 1.06 μm) characterized by an exchange gain of ~ 0.13 cm - 1.

  12. Development of high-efficiency, thin-film CdTe solar cells. Annual subcontract report, January 1, 1993--December 31, 1993

    SciTech Connect

    Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A.

    1994-09-01

    Polycrystalline thin film CdTe solar cells are one of the leading candidates for terrestrial photovoltaic applications. Theoretical calculations project an efficiency of 27% for single crystal, single junction CdTe cells, and the practically achievable efficiency for polycrystalline CdTe cells is 18-20%. Polycrystalline CdTe cells made by different groups show a significant variation in short circuit currents, open circuit voltages, and cell efficiencies. A better understanding of carrier loss and transport mechanism is crucial for explaining these differences, improving the yield, and bridging the gap between current and practically achievable limits in CdTe cell efficiencies. The goal of this program is to improve the understanding of the loss mechanisms in thin film CdS/CdTe solar cells and to improve their efficiency by characterizing the properties of the films as well as the finished devices.

  13. IR spectroscopy of lattice vibrations and comparative analysis of the ZnTe/CdTe quantum-dot superlattices on the GaAs substrate and with the ZnTe and CdTe buffer layers

    SciTech Connect

    Kozyrev, S. P.

    2009-07-15

    A comparative analysis of multiperiod ZnTe/CdTe superlattices with the CdTe quantum dots grown by molecular beam epitaxy on the GaAs substrate with the ZnTe and CdTe buffer layers is carried out. The elastic-stress-induced shifts of eigenfrequencies of the modes of the CdTe- and ZnTe-like vibrations of materials forming similar superlattices but grown on different buffer ZnTe and CdTe layers are compared. The conditions of formation of quantum dots in the ZnTe/CdTe superlattices on the ZnTe and CdTe buffer layers differ radically.

  14. Single-Wall Carbon Nanotube Networks as a Transparent Back Contact in CdTe Solar Cells

    SciTech Connect

    Barnes, T. M.; Wu, X.; Zhou, J.; Duda, A.; van de Lagemaat, J.; Coutts, T. J.; Weeks, C. L.; Britz, D. A.; Glatkowski, P.

    2007-01-01

    Single-wall carbon nanotube (SWCNT) networks form a highly transparent and electrically conductive thin film that can be used to replace traditional transparent conducting oxides (TCOs) in a variety of applications. Here, the authors demonstrate their use as a transparent back contact in a near-infrared (NIR) transparent CdTe solar cell. SWCNT networks are hole-selective conductors and have a significantly greater NIR transparency than TCOs--qualities which could both make them very useful in tandem thin-film solar cells. SWCNT networks can be incorporated into single-junction CdTe devices and in CdTe top cells for mechanically stacked thin-film tandem devices, as described here. The best device efficiency using SWCNTs in the back contact was 12.4%, with 40%-50% transmission between 800 and 1500 nm.

  15. Luminescence Dynamics of Cr2+ in CdTe and Cd0.55Mn0.45Te

    NASA Astrophysics Data System (ADS)

    Bluiett, A.; Hommerich, U.; Seo, J. T.; Shah, R.; Trivedi, S. B.; Kutcher, S. W.; Chen, R. J.; Wang, C. C.; Zong, H.

    2001-04-01

    Cr^2+ in tetrahedrally coordinated CdTe and Cd_0.55Mn_0.45Te crystals are under investigation as potential host materials for tunable, mid-infrared (MIR) lasers. The small crystal field splitting of the free ion energy levels of Cr^2+ induces absorption (1900nm) and stokes shifted emission (2000nm-3000nm) bands in the MIR. Also, the relatively large ionic mass and tetrahedral environment of Cr^2+ in CdTe and Cd_0.55Mn_0.45Te have shown that the luminescence efficiency at room temperature is approximately 72100luminescence lifetime decreases rapidly, which suggest that the effects of nonradiative decay increases. The decay dynamics of Cr^2+ in CdTe and Cd_0.55Mn_0.45Te will be described with the model of Struck and Fonger for the non-radiative decay rate.

  16. Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Grecu, D.; Compaan, A. D.; Young, D.; Jayamaha, U.; Rose, D. H.

    2000-09-01

    We explore Cu electronic states in CdTe using photoluminescence as the main investigative method. Our results are consistent with some Cu atoms occupying substitutional positions on the Cd sublattice and with others forming Frenkel pairs of the type Cui+-VCd- involving an interstitial Cu and a Cd vacancy. In addition, we find that Cu-doped CdTe samples exhibit a significant "aging" behavior, attributable to the instability of Cu acceptor states as verified by our Hall measurements. The aging appears to be reversible by a 150-200 °C anneal. Our results are used to explain efficiency degradation of some CdTe solar-cell devices which use Cu for the formation of a backcontact.

  17. Distributed Bragg reflectors obtained by combining Se and Te compounds: Influence on the luminescence from CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Rousset, J.-G.; Kobak, J.; Janik, E.; Parlinska-Wojtan, M.; Slupinski, T.; Golnik, A.; Kossacki, P.; Nawrocki, M.; Pacuski, W.

    2016-05-01

    We report on the optical properties of structures containing self assembled CdTe quantum dots (QDs) combined with Te and Se based distributed Bragg reflectors either in a half cavity geometry with a relatively broad cavity mode or in a full cavity geometry where the cavity mode is much narrower. We show that for both structures the extraction coefficient of the light emitted from the QDs ensemble is enhanced by more than one order of magnitude with respect to the QDs grown on a ZnTe buffer. However, a single QD line broadening is observed and attributed to an unintentional incorporation of Se in the vicinity of the CdTe QDs. We show that postponing the QDs growth for 24 h after the distributed Bragg reflector deposition allows recovering sharp emission lines from individual QDs. This two step growth method is proven to be efficient also for the structures with CdTe QDs containing a single Mn2+ ion.

  18. Fabrication of polycrystalline CdTe thin-film solar cells using carbon electrodes with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Okamoto, Tamotsu; Hayashi, Ryoji; Ogawa, Yohei; Hosono, Aikyo; Doi, Makoto

    2015-04-01

    The effects of adding carbon nanotubes (CNTs) to carbon back electrodes in polycrystalline CdTe thin-film solar cells were investigated. The CNTs were prepared by arc discharge under atmospheric pressure. The conductivity of the obtained CNT film with a density of 1.65 g/cm3 was approximately 2.6 × 103 S/cm. In the CdTe solar cells using carbon back electrodes with CNTs, the fill factor (FF) was improved as a result of adding CNTs with a concentration of 1 to 5 wt %. The improvement of FF was mainly due to the decrease in the series resistance of the CdTe solar cell. Furthermore, the open-circuit voltage (VOC) was improved by the CNT addition. The improvement of VOC was probably due to the reduction of the back barrier at the back contact.

  19. High Energy Resolution Hard X-Ray and Gamma-Ray Imagers Using CdTe Diode Devices

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Ishikawa, Shin-Nosuke; Aono, Hiroyuki; Takeda, Shin'ichiro; Odaka, Hirokazu; Kokubun, Motohide; Takahashi, Tadayuki; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Onishi, Mitsunobu; Kuroda, Yoshikatsu

    2009-06-01

    We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was obtained at 59.54 keV. Moreover, the possibility of improved spectral performance by utilizing the energy information of both side strips was demonstrated. We designed and fabricated a new analog ASIC, VA32TA6, for the readout of semiconductor detectors, which is also suitable for DSDs. A new feature of the ASIC is its internal ADC function. We confirmed this function and good noise performance that reaches an equivalent noise charge of 110 e- under the condition of 3-4 pF input capacitance.

  20. Characterization of CdTe, (Cd,Zn)Te, and Cd(Te,Se) single crystals by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Rai, R. S.; Mahajan, S.; McDevitt, S.; Johnson, C. J.

    1991-10-01

    CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals grown by the Bridgman technique have been characterized by transmission electron microscopy. Results indicate that the Te precipitates are seen in all the crystals, but their density and size are lowest and largest in the case of Cd(Te,Se) crystals. In addition, dislocations, stacking faults, and microtwins are observed in as-grown CdTe, (Cd,Zn)Te, and Cd(Te,Se) crystals. Arguments have been developed to rationalize these observations and their ramifications on crystal perfection are discussed.

  1. Direct Analysis of JV-Curves Applied to an Outdoor-Degrading CdTe Module (Presentation)

    SciTech Connect

    Jordan, D; Kurtz, S.; Ulbrich, C.; Gerber, A.; Rau, U.

    2014-03-01

    We present the application of a phenomenological four parameter equation to fit and analyze regularly measured current density-voltage JV curves of a CdTe module during 2.5 years of outdoor operation. The parameters are physically meaningful, i.e. the short circuit current density Jsc, open circuit voltage Voc and differential resistances Rsc, and Roc. For the chosen module, the fill factor FF degradation overweighs the degradation of Jsc and Voc. Interestingly, with outdoor exposure, not only the conductance at short circuit, Gsc, increases but also the Gsc(Jsc)-dependence. This is well explained with an increase in voltage dependent charge carrier collection in CdTe.

  2. Dynamic X-ray direct conversion detector using a CdTe polycrystalline layer coupled to a CMOS readout chip

    NASA Astrophysics Data System (ADS)

    Arques, Marc; Renet, Sébastien; Brambilla, Andréa; Feuillet, Guy; Gasse, Adrien; Billon-Pierron, Nicolas; Jolliot, Muriel; Mathieu, Lydie; Rohr, Pierre

    2011-05-01

    A direct detection X-ray imager is presented. It uses polycrystalline cadmium telluride (CdTe) grown by close space sublimation technique for the X-ray photoconductor. A 15 mm×15 mm CdTe layer is connected to a 200×200 pixel readout CMOS by indium bumping. X-ray performance at 16 frames/s rate is measured. In particular a readout noise of 0.5 X-ray, an MTF of 50% at 4 lp/mm and a DQE of 20% at 4 lp/mm are obtained.

  3. High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques

    NASA Astrophysics Data System (ADS)

    Nouhi, A.; Stirn, R. J.; Meyers, P. V.; Liu, C. H.

    1989-06-01

    Energy conversion efficiency of metalorganic chemical vapor deposited CdTe as an intrinsic active layer in n-i-p solar cell structures is reported. Small-area devices with efficiencies over 9 percent have been demonstrated. I-V characteristics, photospectral response, and the results of Auger profiling of structural composition for typical devices will be presented. Also presented are preliminary results on similar photovoltaic devices having Cd(0.85)Mn(0.15)Te in place of CdTe as an i layer.

  4. Allyl- iso-propyltelluride, a new MOVPE precursor for CdTe, HgTe and (Hg,Cd)Te

    NASA Astrophysics Data System (ADS)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William

    2000-06-01

    The use of allyl- iso-propyltelluride as the tellurium precursor for the growth of CdTe, HgTe and (Hg,Cd)Te by metal organic vapour-phase epitaxy has been investigated. It has proved to be an efficient source of tellurium with growth rates for HgTe and (Hg,Cd)Te of up to 10 μm h -1 at 300°C. The best CdTe was grown at 4.5 μm h -1 under Me 2Cd-rich conditions at 300°C in the presence of Hg vapour.

  5. Sn doped CdTe as candidate for intermediate-band solar cells: A first principles DFT+GW study

    NASA Astrophysics Data System (ADS)

    Flores, Mauricio A.; Menéndez-Proupin, Eduardo

    2016-05-01

    In this work, we investigate the electronic properties and defect formation energies of Sn doped CdTe combining first principles density-functional theory and many body GW calculations. Due to the Sn dopant, an isolated impurity band is formed in the middle of the forbidden band gap of CdTe allowing the absorption of sub-bandgap photons via an intermediate-band. Our results suggest CdTe:Sn as a promising candidate for the development of third-generation intermediate-band solar cells with theoretical efficiencies up to 63.2%.

  6. High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Stirn, R. J.; Meyers, P. V.; Liu, C. H.

    1989-01-01

    Energy conversion efficiency of metalorganic chemical vapor deposited CdTe as an intrinsic active layer in n-i-p solar cell structures is reported. Small-area devices with efficiencies over 9 percent have been demonstrated. I-V characteristics, photospectral response, and the results of Auger profiling of structural composition for typical devices will be presented. Also presented are preliminary results on similar photovoltaic devices having Cd(0.85)Mn(0.15)Te in place of CdTe as an i layer.

  7. Improvement of the energy resolution of pixelated CdTe detectors for applications in 0νββ searches

    NASA Astrophysics Data System (ADS)

    Gleixner, T.; Anton, G.; Filipenko, M.; Seller, P.; Veale, M. C.; Wilson, M. D.; Zang, A.; Michel, T.

    2015-07-01

    Experiments trying to detect 0νββ are very challenging. Their requirements include a good energy resolution and a good detection efficiency. With current fine pixelated CdTe detectors there is a trade off between the energy resolution and the detection efficiency, which limits their performance. It will be shown with simulations that this problem can be mostly negated by analysing the cathode signal which increases the optimal sensor thickness. We will compare different types of fine pixelated CdTe detectors (Timepix, Dosepix, HEXITEC) from this point of view.

  8. Super-resolution x-ray imaging by CdTe discrete detector arrays

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Ishida, Y.; Morii, H.; Tomita, Y.; Ohashi, G.; Temmyo, J.; Hatanaka, Y.

    2005-08-01

    512-pixel CdTe super-liner imaging scanner was developed. This device was consist with 512 chips of M-π-n CdTe diode detector fabricated by excimer laser doping process, 8 chips of photon-counting mode 64ch ASIC with FPGA circuit, USB2.0 interface with 1-CPU. It has 5 discriminated levels and over 2Mcps count rate for X-ray penetration imaging. This imaging scanner has 512 discrete CdTe chips for detector arrays with the length of 2.0mm, width of 0.8mm and thickness of 0.5mm. These chips were mounted in four plover array rows for high-resolution imaging with 0.5mm-pitch, therefore the pixel pitch was over the pixel width. When images were taken with scanning system with this arrays, we could obtain over-resolution than pixel width. In this paper, this "over-resolution" imaging will be called "super resolution imaging". In high-resolution imaging device, the pixel devices on one substrate were formed by integrated process, or many discrete detector chips were installed on circuit board, usually. In the latter case, it is easer to make each detector chips than former case, and it are no need to consider charge sharing phenomena compare with one-chip pixel devices. However, a decrease in pixel pitch makes the mount to the detector chip to the ASIC board difficult because the handling will also be difficult The super-resolution technique in this scanner by pixel-shift method for X-ray imaging is shown in this paper

  9. Fabrication of stable, large-area, thin-film CdTe photovoltaic modules

    SciTech Connect

    Nolan, J.F.; Meyers, P.V. )

    1992-09-01

    Solar Cells, Inc (SCI) has a program to produce 60 cm X 120 cm solar modules based on CdTe films. The method of choice for semiconductor deposition is condensation from high temperature vapor's. Early work focussed on Close Spaced Sublimation and Chemical Vapor Deposition using elemental sources, but later equipment designs no longer strictly conform to either category. Small area efficiency has been confirmed by NREL at 9.3% on a 0.22 cm{sup 2} device (825 mV Voc, 18.2 mA/cm{sup 2} Jsc, and 0.62 FF) deposited on a 100 cm{sup 2} substrate. On 8 cell, 64 cm{sup 2} submodules, the best result to date is 7.3% (5.9 V Voc, 130 mA Isc, and 0.61 FF). CdS, CdTe, and ZnTe films have been deposited onto 60 cm X 120 cm substrates - single cells produced from this material have exceeded 8% efficiency, 64 cm{sup 2} submodules have exceeded 5%. Module efficiency is limited by mechanical defects - mostly shunts - associated with processing after deposition of the semiconductor layer's. Present best result is 1.4% total area efficiency. In anticipation of more advanced designs, CdTe films have also been deposited from apparatus employing elemental sources. This project is in an early stage and has produced only rudimentary results. A pro-active Safety, Health, Environmental and Disposal program has been developed. Results to date indicate that both employees and the environment have been protected against overexposure to hazards including toxic chemicals.

  10. Temperature dependence of the electron spin g factor in CdTe and InP

    NASA Astrophysics Data System (ADS)

    Pfeffer, Pawel; Zawadzki, Wlodek

    2012-04-01

    Temperature dependence of the electron spin g factors in bulk CdTe and InP is calculated and compared with experiment. It is assumed that the only modification of the band structure related to temperature is a dilatation change in the fundamental energy gap. The dilatation changes of fundamental gaps are calculated for both materials using available experimental data. Computations of the band structures in the presence of a magnetic field are carried out employing five-level P.p model appropriate for medium-gap semiconductors. In particular, the model takes into account spin splitting due to bulk inversion asymmetry (BIA) of the materials. The resulting theoretical effective masses and g factors increase with electron energy due to band nonparabolicity. Average g values are calculated by summing over populated Landau and spin levels properly accounting for the thermal distribution of electrons in the band. It is shown that the spin splitting due to BIA in the presence of a magnetic field gives observable contributions to g values. Our calculations are in good agreement with experiments in the temperature range of 0 K to 300 K for CdTe and 0 K to 180 K for InP. The temperature dependence of g is stronger in CdTe than in InP due to different signs of band-edge g values in the two materials. Good agreement between the theory and experiments strongly indicates that the temperature dependence of spin g factors is correctly explained. In addition, we discuss formulas for the energy dependence of spin g factor due to band nonparabolicity, which are liable to misinterpretation.

  11. Accuracy of existing atomic potentials for the CdTe semiconductor compound

    NASA Astrophysics Data System (ADS)

    Ward, D. K.; Zhou, X. W.; Wong, B. M.; Doty, F. P.; Zimmerman, J. A.

    2011-06-01

    CdTe and CdTe-based Cd1-xZnxTe (CZT) alloys are important semiconductor compounds that are used in a variety of technologies including solar cells, radiation detectors, and medical imaging devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-scale defects that form during crystal growth and manufacturing processes. Molecular dynamics simulations offer an effective approach to study the formation and interaction of atomic scale defects in these crystals, and provide insight on how to minimize their concentrations. The success of such a modeling effort relies on the accuracy and transferability of the underlying interatomic potential used in simulations. Such a potential must not only predict a correct trend of structures and energies of a variety of elemental and compound lattices, defects, and surfaces but also capture correct melting behavior and should be capable of simulating crystalline growth during vapor deposition as these processes sample a variety of local configurations. In this paper, we perform a detailed evaluation of the performance of two literature potentials for CdTe, one having the Stillinger-Weber form and the other possessing the Tersoff form. We examine simulations of structures and the corresponding energies of a variety of elemental and compound lattices, defects, and surfaces compared to those obtained from ab initio calculations and experiments. We also perform melting temperature calculations and vapor deposition simulations. Our calculations show that the Stillinger-Weber parameterization produces the correct lowest energy structure. This potential, however, is not sufficiently transferrable for defect studies. Origins of the problems of these potentials are discussed and insights leading to the development of a more transferrable potential suitable for molecular dynamics simulations of defects in CdTe crystals are provided.

  12. ASTRO-H CdTe detectors proton irradiation at PIF

    NASA Astrophysics Data System (ADS)

    Limousin, O.; Renaud, D.; Horeau, B.; Dubos, S.; Laurent, P.; Lebrun, F.; Chipaux, R.; Boatella Polo, C.; Marcinkowski, R.; Kawaharada, M.; Watanabe, S.; Ohta, M.; Sato, G.; Takahashi, T.

    2015-07-01

    ASTRO-H will be operated in a Low Earth Orbit with a 31° inclination at ~550 km altitude, thus passing daily through the South Atlantic Anomaly radiation belt, a specially harsh environment where the detectors are suffering the effect of the interaction with trapped high energy protons. As CdTe detector performance might be affected by the irradiation, we investigate the effect of the accumulated proton fluence on their spectral response. To do so, we have characterized and irradiated representative samples of SGD and HXI detector under different conditions. The detectors in question, from ACRORAD, are single-pixels having a size of 2 mm by 2 mm and 750 μm thick. The Schottky contact is either made of an Indium or Aluminum for SGD and HXI respectively. We ran the irradiation test campaign at the Proton Irradiation Facility (PIF) at PSI, and ESA approved equipment to evaluate the radiation hardness of flight hardware. We simulated the proton flux expected on the sensors over the entire mission, and secondary neutrons flux due to primary proton interactions into the surrounding BGO active shielding. We eventually characterized the detector response evolution, emphasizing each detector spectral response as well as its stability by studying the so-called Polarization effect. The latter is provoking a spectral response degradation against time as a charge accumulation process occurs in Schottky type CdTe sensors. In this paper, we report on the test campaigns at PIF and will show up our experimental setup. We will pursue describing the irradiation conditions associated with our GEANT 4 predictions and finally, we report the main results of our campaigns concluding that the proton effect does not severely affect the CdTe response neither the detector stability while the secondary neutrons might be more active to reduce the performance on the long run.

  13. High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011

    SciTech Connect

    Carmody, M.; Gilmore, A.

    2011-05-01

    The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

  14. Theoretical analysis of non-radiative multiphonon recombination activity of intrinsic defects in CdTe

    NASA Astrophysics Data System (ADS)

    Krasikov, D. N.; Scherbinin, A. V.; Knizhnik, A. A.; Vasiliev, A. N.; Potapkin, B. V.; Sommerer, T. J.

    2016-02-01

    We present an analysis of recombination activity of intrinsic defects (VCd, TeCd, VTe, and Tei) in CdTe based on the multiphonon single-mode carrier-capture model, with vibronic parameters obtained using hybrid density functional theory. This analysis allows us to determine the defects and the corresponding electronic processes that have high trapping rates for electrons, for holes, or for both. The latter, being potentially the most active recombination centers, decreases the carrier lifetime in the absorber layer of a CdTe solar cell. Taking into account the relatively high calculated capture cross-sections of the TeCd antisite defect (σ = 8.7× 10-15 cm2 for electron capture on TeCd+2 defect, σ = 6.8 × 10-14 cm2 for hole capture on TeCd+1 defect at room temperature) and its deep trapping level (0.41 eV for +2/+1 level), we conclude that this defect is the most active recombination center among the intrinsic defects in p-type CdTe. Other processes that do not lead to effective recombination are: (i) fast hole capture on Tei+1 defect (σ = 1.1 × 10-13 cm-2), (ii) electron capture on TeCd+1 defect (σ = 2.9 × 10-15 cm-2), (iii) somewhat slower hole capture on TeCd0 defect (σ = 9.4 × 10-20 cm-2), (iv) hole capture on VCd-1 defect (σ = 7 × 10-19 cm2), and (v) electron capture on Tei+1 defect (σ = 4.4 × 10-19 cm-2). The cross-sections are found to be negligibly small for the remaining capture processes.

  15. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films

    SciTech Connect

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.; Sathe, Vasant; Ganesan, V.

    2014-12-07

    In this paper, we report on physical properties of pure and Cu doped cadmium telluride (CdTe) films deposited onto corning 7059 microscopic glass substrates by electron beam evaporation technique. X-ray diffraction study showed that all the deposited films belong to amorphous nature. The average transmittance of the films is varied between 77% and 90%. The optical energy band gap of pure CdTe film is 1.57 eV and it decreased to 1.47 eV upon 4 wt. % of Cu addition, which may be due to the extension of localized states in the band structure. The refractive index of the films was calculated using Swanepoel method. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, and oscillator energy (E{sub o}) of CdTe and CdTe:Cu films were calculated and discussed in detail with the light of possible mechanisms underlying the phenomena. The variation in intensity of photoluminescence band edge emission peak observed at 820 nm with Cu dopant is due to the change in surface state density. The observed trigonal lattice of Te peaks in the micro-Raman spectra confirms the p-type conductive nature of films, which was further corroborated by the Hall effect measurement. The lowest resistivity of 6.61 × 10{sup 4} Ω cm was obtained for the CdTe:Cu (3 wt. %) film.

  16. Technical evaluation of Solar Cells, Inc., CdTe modules and array at NREL

    SciTech Connect

    Kroposki, B; Strand, T; Hansen, R

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  17. Low-damage processing of CdTe(110) surfaces using atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Slater, D. A.; Osgood, R. M., Jr.

    1995-07-01

    We present the results of an AES, XPS, and LEED study of the reaction of oxide and contaminant overlayers on the CdTe(110) surface with atomic hydrogen. Exposure of an oxidized surface to a flux of atomic hydrogen produced by ``cracking'' ambient molecular hydrogen on a hot tungsten filament results in a rapid, quantitative removal of the oxide overlayer with substrate temperatures as low as 300 K to produce a stoichiometric surface free of contaminants which has sufficient surface order to produce a sharp (1×1) LEED pattern.

  18. Grain boundaries in CdTe thin film solar cells: a review

    NASA Astrophysics Data System (ADS)

    Major, Jonathan D.

    2016-09-01

    The current state of knowledge on the impact of grain boundaries in CdTe solar cells is reviewed with emphasis being placed on working cell structures. The role of the chemical composition of grain boundaries as well as growth processes are discussed, along with characterisation techniques such as electron beam induced current and cathodoluminescence, which are capable of extracting information on a level of resolution comparable to the size of the grain boundaries. Work which attempts to relate grain boundaries to device efficiency is also assessed and gaps in the current knowledge are highlighted.

  19. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    NASA Astrophysics Data System (ADS)

    Jambi, L. K.; Lees, J. E.; Bugby, S. L.; Tipper, S.; Alqahtani, M. S.; Perkins, A. C.

    2015-06-01

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported.

  20. Technical evaluation of Solar Cells, Inc., CdTe module and array at NREL

    SciTech Connect

    Kroposki, B.; Strand, T.; Hansen, R.; Powell, R.; Sasala, R.

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}, V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  1. Effect of Copassivation of Cl and Cu on CdTe Grain Boundaries

    SciTech Connect

    Zhang, L.; Da Silva, J. L. F.; Li, J.; Yan, Y.; Gessert, T. A.; Wei, S.-H.

    2008-10-10

    Using a first-principles method, we investigate the structural and electronic properties of grain boundaries (GBs) in polycrystalline CdTe and the effects of copassivation of elements with far distinct electronegativities. Of the two types of GBs studied in this Letter, we find that the Cd core is less harmful to the carrier transport, but is difficult to passivate with impurities such as Cl and Cu, whereas the Te core creates a high defect density below the conduction band minimum, but all these levels can be removed by copassivation of Cl and Cu. Our analysis indicates that for most polycrystalline systems copassivation or multipassivation is required to passivate the GBs.

  2. Grain boundary enhanced carrier collection in CdTe solar cells

    SciTech Connect

    Li, Chen; Wu, Yelong; Poplawsky, Jonathan D; Paudel, Naba; Yin, Wanjian; Pennycook, Timothy; Haigh, Sarah; Oxley, Mark P; Lupini, Andrew R; Al-jassim, Mowafak; Pennycook, Stephen J; Yan, Yanfa

    2014-01-01

    The atomic structure and composition of grain boundaries in CdCl2 treated CdTe solar cells have been determined with aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy. A high fraction of Te in the grain boundary regions has been substituted by Cl. Density functional calculations reveal the origin of such segregation levels, and further indicate the GBs are likely inverted to n-type, establishing local P-N junctions, which help to separate electron-hole carriers. The results are in good agreement with electron beam induced current observations of high collection efficiency at grain boundaries.

  3. Subcellular Localization of Thiol-Capped CdTe Quantum Dots in Living Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Mi, Lan; Xiong, Rongling; Wang, Pei-Nan; Chen, Ji-Yao; Yang, Wuli; Wang, Changchun; Peng, Qian

    2009-07-01

    Internalization and dynamic subcellular distribution of thiol-capped CdTe quantum dots (QDs) in living cells were studied by means of laser scanning confocal microscopy. These unfunctionalized QDs were well internalized into human hepatocellular carcinoma and rat basophilic leukemia cells in vitro. Co-localizations of QDs with lysosomes and Golgi complexes were observed, indicating that in addition to the well-known endosome-lysosome endocytosis pathway, the Golgi complex is also a main destination of the endocytosed QDs. The movement of the endocytosed QDs toward the Golgi complex in the perinuclear region of the cell was demonstrated.

  4. Transmission second harmonic generation in CdTe at 1.064 μm

    NASA Astrophysics Data System (ADS)

    Petrovic, M. S.; Suchocki, A.; Powell, R. C.; Cantwell, G.

    1991-12-01

    Transmission geometry measurements of the efficiency of second harmonic generation in various thicknesses of CdTe samples were made to determine the conversion efficiency dependence on material thickness. Neglecting pump depletion, it is found that for samples of well-defined symmetry, the second harmonic conversion efficiency scales with film thickness, with no observed enhancement owing to coherence length effects. The angular dependence of the observed second harmonic light in films of well-defined symmetry is consistent with second harmonic generation originating in the bulk.

  5. Growth and Characterization of CdTe Thin Films on CdS/TCO/glass superstrate

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah O.; Chow, Lee; Zhou, Dan; Stevie, Fred

    1998-11-01

    The performance of CdTe/CdS/TCO/glass structure which is generally used as a solar cell depends on the impurities incorporated in the system before and after electrodeposition of CdTe thin films. In this report we present a detailed investigation of this structure using secondary ion mass spectrometry(SIMS), x-ray microanalysis, x-ray diffraction(XRD), and scanning electron microscopy(SEM) to identify those impurities. We also discuss possible ways of minimizing or eliminating some of these impurities in order to improve the cell efficiency.

  6. Role of polycrystallinity in CdTe and CuInSe[sub 2] photovoltaic cells

    SciTech Connect

    Sites, J.R. )

    1992-11-01

    The limiting role of polycrystallinity in thin-film solar calls has been reduced somewhat during the past year, and efficiencies of both CdTe and CuInSe[sub 2] cells are approaching 15%. Quantitative separation of loss mechanisms shows that individual losses, with the exception of forward recombination current, can be made comparable to their single crystal counterparts. One general manifestation of the extraneous trapping states in that the voltage of all polycrystalline thin-film cells drifts upward by 10--50 mV following the onset of illumination.

  7. Characterization of Semi-Insulating CdTe Crystals Grown by Horizontal Seeded Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, K.; Feth, S.; Chen, H.; Burger, A.; Su, Ching-Hua

    1998-01-01

    CdTe crystals were grown by horizontal seeded physical vapor transport technique in uncoated and boron nitride coated fused silica ampoules with the source materials near the congruent sublimation condition. The grown crystals were characterized by current-voltage measurements, low temperature photoluminescence spectroscopy, near IR transmission optical microscopy, spark source mass spectroscopy and chemical etching. The measured resistivities of the crystals were in the high-10(exp 8) ohm-cm range. Although the crystal grown in the boron nitride coating was contaminated with boron from the photoluminescence measurements, the coating yielded a single crystal with no inclusions or precipitates.

  8. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs.

    PubMed

    Liang, Yi; Huang, Xiaolin; Yu, Ruijin; Zhou, Yaofeng; Xiong, Yonghua

    2016-09-14

    The present study described a novel fluorescence enzyme-linked immunosorbent assay (ELISA) used to detect ochratoxin A (OTA) by using the glucose oxidase (GOx)-mediated fluorescence quenching of mercaptopropionic acid-capped CdTe quantum dots (MPA-QDs), in which GOx was used as an alternative to horseradish peroxidase (HRP) for the oxidization of glucose into hydrogen peroxide (H2O2) and gluconic acid. The MPA-QDs were used as a fluorescent signal output, whose fluorescence variation was extremely sensitive to the presence of H2O2 or hydrogen ions in the solution. Under the optimized conditions, the proposed fluorescence ELISA demonstrated a good linear detection of OTA in corn extract from 2.4 pg mL(-1) to 625 pg mL(-1) with a limit of detection of 2.2 pg mL(-1), which was approximately 15-fold lower than that of conventional HRP-based ELISA. Our developed fluorescence immunoassay was also similar to HRP-based ELISA in terms of selectivity, accuracy, and reproducibility. In summary, this study was the first to use the GOx-mediated fluorescence quenching of QDs in immunoassay to detect OTA, offering a new possibility for the analysis of other mycotoxins and biomolecules. PMID:27566355

  9. Microstructure, stress and optical properties of CdTe thin films laser-annealed by using an 808-nm diode laser: Effect of the laser scanning velocity

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Hoon; Park, Chan Il; Lee, Hyun-Yong

    2013-07-01

    A continuous wave 808-nm diode laser was used for the laser annealing process of CdTe thin films at various laser scanning velocities by using a galvanometric mirror. The grains in the laserannealed CdTe thin films grew along the C (111), H (110) and C (311) planes. The lattice constants of the CdTe thin films reached a minimum at a laser annealing velocity of 167 mm/s due to the disintegration of some large grain. The optical band gap energy of the CdTe thin films was inversely proportional to the lattice constant, showing 1.439 eV and 1.474 eV for the CdTe thin films laserannealed with laser scanning velocities of 667 mm/s and 167 mm/s, respectively. The absorbance of the CdTe thin films showed an improved value of 2.80 in the visible spectral region after laser annealing at a laser scanning velocity of 167 mm/s with the appropriate mixture of scattering and transparent grains in CdTe thin films although the crystallinity had deteriorated and showed the small recrystallized grains under this condition.

  10. Experimental evaluation of a-Se and CdTe flat-panel x-ray detectors for digital radiography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Adachi, Susumu; Hori, Naoyuki; Sato, Kenji; Tokuda, Satoshi; Sato, Toshiyuki; Uehara, Kazuhiro; Izumi, Yoshihiro; Nagata, Hisashi; Yoshimura, Youji; Yamada, Satoshi

    2000-04-01

    Described are two types of direct-detection flat-panel X-ray detectors utilizing amorphous selenium (a-Se) and cadmium telluride (CdTe). The a-Se detector is fabricated using direct deposition onto a thin film transistor (TFT) substrate, whereas the CdTe detector is fabricated using a novel hybrid method, in which CdTe is pre-deposited onto a glass substrate and then connected to a TFT substrate. The detector array format is 512 X 512 with a pixel pitch of 150 micrometer. The imaging properties of both detectors have been evaluated with respect to X-ray sensitivity, lag, spatial resolution, and detective quantum efficiency (DQE). The modulation transfer functions (MTFs) measured at 1 lp/mm were 0.96 for a- Se and 0.65 for CdTe. The imaging lags after 33 ms were about 4% for a-Se and 22% for CdTe. The DQE values measured at zero spatial frequency were 0.75 for a-Se and 0.22 for CdTe. The results indicate that the a-Se and CdTe detectors have high potential as new digital X-ray imaging devices for both radiography and fluoroscopy.

  11. Monte Carlo Polarimetric Efficiency Simulations for a Single Monolithic CdTe Thick Matrix

    NASA Astrophysics Data System (ADS)

    Curado da Silva, R. M.; Hage-Ali, M.; Caroli, E.; Siffert, P.; Stephen, J. B.

    Polarimetric measurements for hard X- and soft gamma-rays are still quite unexplored in astrophysical source observations. In order to improve the study of these sources through Compton polarimetry, detectors should have a good polarimetric efficiency and also satisfy the demands of the typical exigent detection environments for this kind of missions. Herein we present a simple concept for such systems, since we propose the use of a single thick (˜10 mm) monolithic matrix of CdTe of 32×32 pixels, with an active area of about 40 cm2. In order to predict the best configuration and dimension of detector pixels defined inside the CdTe monolithic piece, a Monte Carlo code based on GEANT4 library modules was developed. Efficiency and polarimetric modulation factor results as a function of energy and detector thickness, are presented and discussed. Q factor of the order of 0.3 has been found up to several hundreds of keV.

  12. Visualization of hormone binding proteins in vivo based on Mn-doped CdTe QDs

    NASA Astrophysics Data System (ADS)

    Liu, Fang fei; Yu, Ying; Lin, Bi xia; Hu, Xiao gang; Cao, Yu juan; Wu, Jian zhong

    2014-10-01

    Daminozide (B9) is a growth inhibitor with important regulatory roles in plant growth and development. Locating and quantifying B9-binding proteins in plant tissues will assist in investigating the mechanism behind the signal transduction of B9. In this study, red fluorescent Mn-doped CdTe quantum dots (CdTeMn QDs) were synthesized by a high-temperature hydrothermal process. Since CdTeMn QDs possess a maximum fluorescence emission peak at 610 nm, their fluorescence properties are more stable than those of CdTe QDs. A B9-CdTeMn probe was synthesized by coupling B9 with CdTeMn QDs. The fluorescence intensity of the probe is double that of CdTeMn QDs; its fluorescence stability is also superior under different ambient conditions. The probe retains the biological activity of B9 and is unaffected by interference from the green fluorescent protein present in plants. Therefore, we used this probe to label B9-binding proteins selectively in root tissue sections of mung bean seedlings. These proteins were observed predominantly on the surfaces of the cell membranes of the cortex and epidermal parenchyma.

  13. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    NASA Astrophysics Data System (ADS)

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  14. Direct imaging of CdTe(001) surface reconstructions by high-resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Smith, David J.

    1991-08-01

    Novel reconstructions of the CdTe(001) surface have been directly observed using high-resolution electron microscopy in the profile-imaging geometry. The CdTe(001) surface, obtained by in situ annealing under ultrahigh vacuum conditions, is found to have a (2 × 1) structure at temperatures of less than about 200° C, but it transforms reversibly into a (3 × 1) structure at temperatures above 200 °C. Structural models for the reconstructions have been proposed and confirmed by extensive computer simulations. The (2 × 1) reconstruction, stabilized by Cd atoms, consists of a {1}/{2} monolayer of Cd vacancies and a large inward relaxation of the remaining surface Cd atoms, similar to the (2 × 1) reconstruction previously proposed for the GaAs(001) surface. The (3 × 1) reconstruction, stabilized by Te atoms, involves formation of surface dimers and the presence of vacancies. In both reconstructions, atomic displacements are observed that extend a few layers into the bulk and serve to reduce the strain energy.

  15. Approaching cryogenic Ge performance with Peltier-cooled CdTe

    NASA Astrophysics Data System (ADS)

    Khusainov, Abdurakhman; Iwanczyk, Jan S.; Patt, Bradley E.; Pirogov, Alexandre M.; Vo, Duc T.; Russo, Phyllis A.

    2001-12-01

    A new class of hand-held, portable spectrometers based on large area (1cm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  16. Self-passivation rule and structure of CdTe Σ3 (112) grain boundaries

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-yan; Zhang, Yue-yu; Hou, Yu-sheng; Chen, Shi-you; Xiang, Hong-jun; Gong, Xin-gao

    2016-05-01

    The theoretical study of grain boundaries (GBs) in polycrystalline semiconductors is currently stalemated by their complicated nature, which is difficult to extract from any direct experimental characterization. Usually, coincidence-site-lattice models are constructed simply by aligning two symmetric planes ignoring various possible reconstructions. Here, we propose a general self-passivation rule to determine the low-energy GB reconstruction and find new configurations for the CdTe Σ3 (112) GBs. First-principles calculations show that it has lower formation energies than the prototype GBs adopted widely in previous studies. Surprisingly, the reconstructed GBs show self-passivated electronic properties without deep-level states in the band gap. Based on the reconstructed configurations, we revisited the influence of CdC l2 post-treatment on the CdTe GBs and found that the addition of both Cd and Cl atoms in the GB improves the photovoltaic properties by promoting self-passivation and inducing n -type levels, respectively. The present study provides a new route for further studies of GBs in covalent polycrystalline semiconductors and highlights that previous studies on the GBs of multinary semiconductors, which are based on the unreconstructed prototype GB models, should be revisited.

  17. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Stahl, C. V.; Almeida, D. B.; de Thomaz, A. A.; Fontes, A.; Menna-Barreto, R. F. S.; Santos-Mallet, J. R.; Cesar, C. L.; Gomes, S. A. O.; Feder, D.

    2010-02-01

    Many studies have been done in order to verify the possible nanotoxicity of quantum dots in some cellular types. Protozoan pathogens as Trypanosoma cruzi, etiologic agent of Chagas1 disease is transmitted to humans either by blood-sucking triatomine vectors, blood transfusion, organs transplantation or congenital transmission. The study of the life cycle, biochemical, genetics, morphology and others aspects of the T. cruzi is very important to better understand the interactions with its hosts and the disease evolution on humans. Quantum dot, nanocrystals, highly luminescent has been used as tool for experiments in in vitro and in vivo T. cruzi life cycle development in real time. We are now investigating the quantum dots toxicity on T. cruzi parasite cells using analytical methods. In vitro experiments were been done in order to test the interference of this nanoparticle on parasite development, morphology and viability (live-death). Ours previous results demonstrated that 72 hours after parasite incubation with 200 μM of CdTe altered the development of T. cruzi and induced cell death by necrosis in a rate of 34%. QDs labeling did not effect: (i) on parasite integrity, at least until 7 days; (ii) parasite cell dividing and (iii) parasite motility at a concentration of 2 μM CdTe. This fact confirms the low level of cytotoxicity of these QDs on this parasite cell. In summary our results is showing T. cruzi QDs labeling could be used for in vivo cellular studies in Chagas disease.

  18. Innovative sputtering techniques for CIS and CdTe submodule fabrication

    SciTech Connect

    Armstrong, J.M.; Misra, M.S.; Lanning, B. . Astronautics Group)

    1993-03-01

    This report describes work done during Phase 1 of the subject subcontract. The subcontract was designed to study innovative deposition techniques, such as the rotating cylindrical magnetron sputtering system and electrodeposition for large-area, low-cost copper indium diselenide (CIS) and cadmium telluride (CdTe) devices. A key issue for photovoltaics (PV) in terrestrial and future space applications is producibility, particularly for applications using a large quantity of PV. Among the concerns for fabrication of polycrystalline thin-film PV, such as CIS and CdTe, are production volume, cost, and minimization of waste. Both rotating cylindrical magnetron (C-Mag[trademark]) sputtering and electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film PV due to scaleability, efficient utilization of source materials, and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mae facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput reduced health and safety risks, and, ultimately, lower fabrication cost. Electrodeposited films appear to be adherent and comparable with low-cost fabrication techniques. Phase I involved the initial film and device fabrication using the two techniques mentioned herein. Devices were tested by both internal facilities, as well as NREL and ISET.

  19. Charge-carrier transport and recombination in heteroepitaxial CdTe

    SciTech Connect

    Kuciauskas, Darius Farrell, Stuart; Dippo, Pat; Moseley, John; Moutinho, Helio; Li, Jian V.; Allende Motz, A. M.; Kanevce, Ana; Zaunbrecher, Katherine; Gessert, Timothy A.; Levi, Dean H.; Metzger, Wyatt K.; Colegrove, Eric; Sivananthan, S.

    2014-09-28

    We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm² (Vs)⁻¹ and diffusion coefficient D of 17 cm² s⁻¹. We find limiting recombination at the epitaxial film surface (surface recombination velocity Ssurface = (2.8 ± 0.3) × 10⁵cm s ⁻¹) and at the heteroepitaxial interface (interface recombination velocity Sinterface = (4.8 ± 0.5) × 10⁵ cm s⁻¹). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic devices that employ epitaxial CdTe.

  20. CdTe Based Hard X-ray Imager Technology For Space Borne Missions

    NASA Astrophysics Data System (ADS)

    Limousin, Olivier; Delagnes, E.; Laurent, P.; Lugiez, F.; Gevin, O.; Meuris, A.

    2009-01-01

    CEA Saclay has recently developed an innovative technology for CdTe based Pixelated Hard X-Ray Imagers with high spectral performance and high timing resolution for efficient background rejection when the camera is coupled to an active veto shield. This development has been done in a R&D program supported by CNES (French National Space Agency) and has been optimized towards the Simbol-X mission requirements. In the latter telescope, the hard X-Ray imager is 64 cm² and is equipped with 625µm pitch pixels (16384 independent channels) operating at -40°C in the range of 4 to 80 keV. The camera we demonstrate in this paper consists of a mosaic of 64 independent cameras, divided in 8 independent sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique 1 cm² component, juxtaposable on its four sides. Recently, promising results have been obtained from the first micro-camera prototypes called Caliste 64 and will be presented to illustrate the capabilities of the device as well as the expected performance of an instrument based on it. The modular design of Caliste enables to consider extended developments toward IXO type mission, according to its specific scientific requirements.

  1. Imaging detector development for nuclear astrophysics using pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  2. Photoluminescenceof magnetron sputtered CdTe films: dependence on target purity, substrate, and annealing conditions

    NASA Astrophysics Data System (ADS)

    Hinko, Kathleen

    2002-03-01

    We have altered several parameters relating to the CdTe layer in CdTe-based solar cells and have analyzed the effects of these changes on low-temperature photoluminescence (PL). Polycrystalline CdTe films were grown by radio frequency magnetron sputtering from two targets purchased from commercial vendors and one pressed at the University of Toledo (UT). We observed substantial differences related to the targets and to the soda lime and borosilicate glass substrates. Parts of each film were annealed at 387 C and 400 C in the presence of CdCl2. The intensity and the spectrum of the PL suggest that films grown from the homemade UT target were of comparable quality to those grown from the commercial target. We found much weaker PL for films grown on borosilicate glass than for soda-lime glass. This may indicate that sodium from the soda-lime glass may leach into the films producing a shallow donor and enhancing the donor-acceptor pair luminescence. Work supported by NREL and NSF.

  3. Hybrid density functional studies of cadmium vacancy in CdTe

    NASA Astrophysics Data System (ADS)

    Xu, Run; Xu, Hai-Tao; Tang, Min-Yan; Wang, Lin-Jun

    2014-07-01

    The intrinsic defect of cadmium vacancy (VCd) in cadmium telluride (CdTe) has been studied by first-principles calculations using potentials with both the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE) approximation and the generalized gradient approximation of the Perdew—Burke—Ernzerhof form (PBE-GGA). Both results show that the Td structure of the VCd defect for different charges is the most stable structure as compared with the distorted C3v structure with one hole localized at one of the four nearest Te atoms. This indicates that the John—Teller distortion (C3v) structure may be unstable in bulk CdTe crystal. The reason likely lies in the delocalized resonance nature of the t2 state of the VCd defect. Moreover, the formation energy obtained by the HSE method is about 0.6-0.8 eV larger than that obtained by the PBE method. The transition levels calculated by the PBE method and the HSE method are similar and well consistent with the experimental results.

  4. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells

    DOE PAGESBeta

    Leite, Marina S.; National Inst. of Standards and Technology; Abashin, Maxim; National Inst. of Standards and Technology; Lezec, Henri J.; Gianfrancesco, Anthony; Talin, A. Alec; Sandia National Lab.; Zhitenev, Nikolai B.

    2014-10-15

    The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs).more » The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. As a result, resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defect and surfaces.« less

  5. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells

    SciTech Connect

    Leite, Marina S.; Abashin, Maxim; Lezec, Henri J.; Gianfrancesco, Anthony; Talin, A. Alec; Zhitenev, Nikolai B.

    2014-10-15

    The local collection characteristics of grain interiors and grain boundaries in thin film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs). The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. As a result, resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defect and surfaces.

  6. Study of the effect of the stress on CdTe nuclear detectors

    SciTech Connect

    Ayoub, M.; Radley, I.; Mullins, J. T.; Hage-Ali, M.

    2013-09-14

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given.

  7. Electronic structure of electrodeposited thin film CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Ullal, H. S.

    1988-05-01

    Independent experimental verification done at four research laboratories, namely, Ametek, Colorado State University (CSU), Institute of Energy Conversion (IEC), and Solar Energy Research Institute (SERI) confirm the n-i-p model proposed by Ametek. The experiments done for the verification of the n-i-p structure are the high frequency capacitance-voltage, light and voltage bias quantum efficiency, and EBIC measurements. All experimental evidence suggests that the n-i-p model is appropriate for the existing n-CdS/i-CdTe/p-ZnTe cell structure. From the C-V measurements, the depletion width has been estimated at 1.7 to 2.0 microns and corresponds to the thickness of the CdTe film. This unique thin films device design has resulted in improved stability and a SERI-verified world record single-junction total area AM1.5 global efficiency of 11 percent. Further refinements in device design and cell processing should result in 12 to 13 percent efficiencies for thin-film CdTe solar cells in the not-too-distant future.

  8. Nonresonant four-wave mixing in photorefractive CdTe crystals using a picosecond parametric generator

    NASA Astrophysics Data System (ADS)

    JarašiÅ«nas, Kestutis; Gudelis, Vytautas; Delaye, Philippe; Roosen, Gerald

    1998-11-01

    We demonstrate that a parametrically pumped picosecond laser has enough coherence and energy to write transient phase gratings at nonresonant interaction, thus allowing a study of time-resolved carrier transport in CdTe crystals to be made. Autocorrelation trace of light diffraction efficiency on transient grating allowed us to measure a coherence length of the parametric generator. Carrier diffusion, recombination, and drift in light-created internal space-charge (SC) electric fields have been studied in vanadium or germanium doped semi-insulating CdTe crystals by nonresonant four-wave mixing technique at 940 nm wavelength. It was found that modification of the deep level charge state in CdTe:V by As codoping has changed the sign of majority carriers, responsible for the creation of SC field. Dynamics of free carrier grating decay in CdTe:Ge revealed an electron-governed very fast initial grating decay which develops with time into the double-exponential hole-governed grating decay. Time-resolved transient grating technique described in this article provides a powerful tool for investigation of the role of deep traps in photorefractive semiconductors and optimization of their photoelectric properties in a required temporal and spectral range.

  9. Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent.

    PubMed

    Wuister, Sander F; de Mello Donegá, Celso; Meijerink, Andries

    2004-08-25

    Luminescence temperature antiquenching (LTAQ) is observed for water-soluble CdTe quantum dots (QDs) capped with aminoethanethiol (AET). The efficient exciton emission (quantum efficiency of approximately 40% at 300 K) is quenched almost completely as the QD solutions are cooled to below 230 K and is fully recovered around 270 K upon warming up to room temperature (LTAQ). Temperature-dependent lifetime measurements show that the quenching rate is high, resulting in an on/off behavior. No LTAQ is observed for CdTe QDs capped with aminoundecanethiol (AUT). The LTAQ is explained by the influence of solvent freezing on the surface of the QD core. Freezing of the solvation water molecules surrounding the QD will induce strain in the capping shell, due to the interaction between water and the charged heads of the capping molecules. Short carbon chains (AET) will propagate the strain to the QD surface, creating surface quenching states, whereas long and flexible chains (AUT) will dissipate the strain, thus avoiding surface distortion. Freezing-point depression by the addition of methanol results in a lowering of the transition temperature. Additional support is provided by the size dependence of the LTAQ: smaller particles, with higher local ionic strength due to a higher density of charged NH(3)(+) surface groups, experience a lower transition temperature due to stronger local freezing-point depression. PMID:15315455

  10. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells.

    PubMed

    Leite, Marina S; Abashin, Maxim; Lezec, Henri J; Gianfrancesco, Anthony; Talin, A Alec; Zhitenev, Nikolai B

    2014-11-25

    The local collection characteristics of grain interiors and grain boundaries in thin-film CdTe polycrystalline solar cells are investigated using scanning photocurrent microscopy. The carriers are locally generated by light injected through a small aperture (50-300 nm) of a near-field scanning optical microscope in an illumination mode. Possible influence of rough surface topography on light coupling is examined and eliminated by sculpting smooth wedges on the granular CdTe surface. By varying the wavelength of light, nanoscale spatial variations in external quantum efficiency are mapped. We find that the grain boundaries (GBs) are better current collectors than the grain interiors (GIs). The increased collection efficiency is caused by two distinct effects associated with the material composition of GBs. First, GBs are charged, and the corresponding built-in field facilitates the separation and the extraction of the photogenerated carriers. Second, the GB regions generate more photocurrent at long wavelength corresponding to the band edge, which can be caused by a smaller local band gap. Resolving carrier collection with nanoscale resolution in solar cell materials is crucial for optimizing the polycrystalline device performance through appropriate thermal processing and passivation of defects and surfaces. PMID:25317926

  11. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    PubMed

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18) F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  12. Enhanced chemiluminescence of CdTe quantum dots-H2O2 by horseradish peroxidase-mimicking DNAzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Junli; Li, Baoxin

    In this study, it was found that horseradish peroxidase (HRP)-mimicking DNAzyme could effectively enhance the CL emission of CdTe quantum dots (QDs)-H2O2 system, whereas HRP could not enhance the CL intensity. The CL enhancement mechanism was investigated, and the CL enhancement was supposed to originate from the catalysis of HRP-mimicking DNAzyme on the CL reaction between CdTe QDs and H2O2. Meantime, compared with CdTe QDs-H2O2 CL system, H2O2 concentration was markedly decreased in QDs-H2O2-HRP-mimicking DNAzyme CL system, improving the stability of QDs-H2O2 CL system. The QDs-based CL system was used to detect sensitively CdTe QDs and HRP-mimicking DNAzyme (as biologic labels). This work gives a path for enhancing CL efficiency of QDs system, and will be helpful to promote the step of QDs application in various fields such as bioassay and trace detection of analyte.

  13. Cu-doped CdS and its application in CdTe thin film solar cell

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Yang, Jun; Yang, Ruilong; Shen, Kai; Wang, Dezhao; Wang, Deliang

    2016-01-01

    Cu is widely used in the back contact formation of CdTe thin film solar cells. However, Cu is easily to diffuse from the back contact into the CdTe absorber layer and even to the cell junction interface CdS/CdTe. This phenomenon is generally believed to be the main factor affecting the CdTe solar cell stability. In this study Cu was intentionally doped in CdS thin film to study its effect on the microstructural, optical and electrical properties of the CdS material. Upon Cu doping, the VCd- and the surface-state-related photoluminescence emissions were dramatically decreased/quenched. The presence of Cu atom hindered the recrystallization/coalescence of the nano-sized grains in the as-deposited CdS film during the air and the CdCl2 annealing. CdTe thin film solar cell fabricated with Cu-doped CdS window layers demonstrated much decreased fill factor, which was induced by the increased space-charge recombination near the p-n junction and the worsened junction crystalline quality. Temperature dependent current-voltage curve measurement indicated that the doped Cu in the CdS window layer was not stable at both room and higher temperatures.

  14. Monocrystalline CdTe solar cells with open-circuit voltage over 1 V and efficiency of 17%

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Boccard, Mathieu; Liu, Shi; Becker, Jacob; Zhao, Xin-Hao; Campbell, Calli M.; Suarez, Ernesto; Lassise, Maxwell B.; Holman, Zachary; Zhang, Yong-Hang

    2016-06-01

    The open-circuit voltages of mature single-junction photovoltaic devices are lower than the bandgap energy of the absorber, typically by a gap of 400 mV. For CdTe, which has a bandgap of 1.5 eV, the gap is larger; for polycrystalline samples, the open-circuit voltage of solar cells with the record efficiency is below 900 mV, whereas for monocrystalline samples it has only recently achieved values barely above 1 V. Here, we report a monocrystalline CdTe/MgCdTe double-heterostructure solar cell with open-circuit voltages of up to 1.096 V. The latticed-matched MgCdTe barrier layers provide excellent passivation to the CdTe absorber, resulting in a carrier lifetime of 3.6 μs. The solar cells are made of 1- to 1.5-μm-thick n-type CdTe absorbers, and passivated hole-selective p-type a-SiCy:H contacts. This design allows CdTe solar cells to be made thinner and more efficient. The best power conversion efficiency achieved in a device with this structure is 17.0%.

  15. Molecular beam epitaxy of CdTe and HgCdTe on large-area Si(100)

    NASA Astrophysics Data System (ADS)

    Sporken, R.; Lange, M. D.; Faurie, Jean-Pierre

    1991-09-01

    The current status of molecular beam epitaxy (MBE) of CdTe and HgCdTe on Si(100) is reviewed. CdTe and HgCdTe grow in the (111)B orientation on Si(100); monocrystalline films with two domains are obtained on most nominal Si(100) substrates, single domain films are grown on misoriented substrates and on nominal Si(100) preheated to 900-950 degree(s)C. Double-crystal x-ray rocking curves (DCRCs) with full-width at half-maximum (FWHM) as low as 110 arcsec are reported for HgCdTe on silicon; these layers are n-type, and electron mobilities higher than 5 X 104 cm2V-2s-1 are measured at 23 K for x equals 0.26. Excellent thickness and composition uniformity is obtained: standard deviation of the CdTe thickness 0.4% of the average thickness on 2-in. and 2.3% on 5-in., standard deviation of the Cd concentration in the HgCdTe layers 0.6% of the average concentration on 3-in. and 2.4% on 5-in. First results regarding growth of CdTe on patterned Si substrates are also reported.

  16. Study of CdTe(1¯1¯1¯) surface reconstructions by RHEED and XPS

    NASA Astrophysics Data System (ADS)

    Duszak, R.; Tatarenko, S.; Cibert, J.; Magnéa, N.; Mariette, H.; Saminadayar, K.

    1991-07-01

    The surface and bulk contributions have been distinguished in the angle-resolved X-ray photoemission spectra of Te(3d{5}/{2}) electronic state from the CdTe(1¯1¯1¯) surface with the binding energies Eb1 = 574.0 eV (±0.1 eV) and Eb2 = 572.8 eV (± 0.1 eV), respectively. Several reconstructions, namely (1 × 1), (2 × 2), (2√3 × 2√3)R30° and c(8 × 4) have been observed for the CdTe(1¯1¯1¯) MBE-grown surfaces for different tellurium fluxes as a function of the substrate temperature. The growth of subsequent CdTe(1¯1¯1¯) layers on the reconstructed surfaces was attempted under different conditions such as different tellurium pressure and sample temperature. A correlation between the reconstruction type and the phase of the corresponding RHEED oscillations observed during the growth was found. Bilayer surface representations derived from the "hexagonal ring" model recently proposed for the √19 structure observed on the GaAs(1¯1¯1¯) surface [1] are suggested for the (2 × 2), c(8 × 4) and (2√3 × 2√3)R30° CdTe(1¯1¯1¯) structure

  17. Characterization of CdTe, HgTe, and Hg1-xCdxTe grown by chemical beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wagner, B. K.; Rajavel, D.; Benz, R. G.; Summers, C. J.

    1991-10-01

    Detailed characterization of chemical beam epitaxially (CBE) grown CdTe and Hg1-xCdxTe layers are reported. These characterizations include photoluminescence, infrared transmission, energy dispersive x-ray analysis, and variable temperature (10-300 K) Hall effect and resistivity measurements. The results indicate that high quality HgCdTe layers can be grown by CBE.

  18. Optical phonon frequencies in the quaternary CdTe1-x-ySexSy mixed system

    NASA Astrophysics Data System (ADS)

    Gupta, H. C.; Sood, Geeta; Malhotra, Jaishree; Tripathi, B. B.

    1986-08-01

    The optical phonon frequencies of the mixed-crystal system CdTe1-x-ySexSy are calculated theoretically by means of a concentration-dependent model utilizing the effect of nonrandomness. The calculations are in satisfactory agreement with the experimental results.

  19. Determination of 2-methoxyestradiol by chemiluminescence based on luminol-KMnO4-CdTe quantum dots system

    NASA Astrophysics Data System (ADS)

    Du, Bin; Wang, Tiantian; Han, Shuping; Cao, Xiaohui; Qu, Tiantian; Zhao, Feifei; Guo, Xinhong; Yao, Hanchun

    2015-02-01

    In this study, water-soluble CdTe quantum-dots (QDs) capped with glutathione (GSH) was synthesized. It was found that CdTe QDs could greatly enhance the chemiluminescence (CL) emission from the luminol-KMnO4 system in alkaline medium, and 4 nm CdTe QDs was used as catalysts to enhance the reaction sensitivity. The CL intensity of CdTe QDs-luminol-KMnO4 was strongly inhibited in the presence of 2-methoxyestradiol (2-ME) and the relative CL intensity was in linear correlation with the concentration of 2-ME. Based on this inhibition, a novel CL method with a lower detection limit and wider linear range was developed for the determination of 2-ME. The detection limit of plasma samples was 3.07 × 10-10 g mL-1 with a relative standard deviation of 0.24% for 8.0 × 10-9 g mL-1 2-ME. The method was successfully applied for determination of 2-ME in plasma samples. The possible CL reaction mechanism was also discussed briefly.

  20. Optical properties versus growth conditions of CdTe submonolayers inserted in ZnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Calvo, Vincent; Magnea, Noël; Taliercio, Thierry; Lefebvre, Pierre; Allègre, Jacques; Mathieu, Henry

    1998-12-01

    Standard and piezomodulated optical spectroscopy is performed on ZnTe quantum wells embedding integer and fractional monolayers of CdTe. The samples, grown in a molecular-beam-epitaxy setup on the (001) surface of ZnTe substrates, all basically consist of 120-ML-wide ZnTe/(Zn,Mg)Te quantum wells, and some of them contain five equally spaced full or half-monolayers of CdTe, producing monomolecular islands of CdTe ``buried'' in the wide host ZnTe well. The latter behave as efficient recombination centers for excitons. In order to change the size and the configuration of the islands, various growth parameters have been changed between the different samples, e.g., the growth process (molecular-beam epitaxy of binaries or ternaries, or atomic-layer epitaxy) or the temperature. From spectroscopic measurements, the influence of these parameters is analyzed in detail, in terms of the size of the islands and of their in-plane spacing, or of the vertical correlation between these islands. The internal strain state of the CdTe insertions and the overall photoluminescence efficiency are also studied versus growth conditions.

  1. Determination of 2-methoxyestradiol by chemiluminescence based on luminol-KMnO4-CdTe quantum dots system.

    PubMed

    Du, Bin; Wang, Tiantian; Han, Shuping; Cao, Xiaohui; Qu, Tiantian; Zhao, Feifei; Guo, Xinhong; Yao, Hanchun

    2015-02-01

    In this study, water-soluble CdTe quantum-dots (QDs) capped with glutathione (GSH) was synthesized. It was found that CdTe QDs could greatly enhance the chemiluminescence (CL) emission from the luminol-KMnO4 system in alkaline medium, and 4 nm CdTe QDs was used as catalysts to enhance the reaction sensitivity. The CL intensity of CdTe QDs-luminol-KMnO4 was strongly inhibited in the presence of 2-methoxyestradiol (2-ME) and the relative CL intensity was in linear correlation with the concentration of 2-ME. Based on this inhibition, a novel CL method with a lower detection limit and wider linear range was developed for the determination of 2-ME. The detection limit of plasma samples was 3.07×10(-10) g mL(-1) with a relative standard deviation of 0.24% for 8.0×10(-9) g mL(-1) 2-ME. The method was successfully applied for determination of 2-ME in plasma samples. The possible CL reaction mechanism was also discussed briefly. PMID:25439823

  2. Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Burst, James; Metzger, Wyatt K.; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai

    2015-07-01

    One of the main limiting factors in CdTe solar cells is its low p-type dopability and, consequently, low open-circuit voltage (VOC). We have systematically studied P and As doping in CdTe with first-principles calculations in order to understand how to increase the hole density. We find that both P and As p-type doping are self-compensated by the formation of AX centers. More importantly, we find that although high-temperature growth is beneficial to obtain high hole density, rapid cooling is necessary to sustain the hole density and to lower the Fermi level close to the valence band maximum (VBM) at room temperature. Thermodynamic simulations suggest that by cooling CdTe from a high growth temperature to room temperature under Te-poor conditions and choosing an optimal dopant concentration of about 1018/cm3 , P and As doping can reach a hole density above 1017/cm3 at room temperature and lower the Fermi level to within ˜0.1 eV above the VBM. These results suggest a promising pathway to improve the VOC and efficiency of CdTe solar cells.

  3. Enhanced chemiluminescence of CdTe quantum dots-H₂O₂ by horseradish peroxidase-mimicking DNAzyme.

    PubMed

    Zhang, Junli; Li, Baoxin

    2014-05-01

    In this study, it was found that horseradish peroxidase (HRP)-mimicking DNAzyme could effectively enhance the CL emission of CdTe quantum dots (QDs)-H2O2 system, whereas HRP could not enhance the CL intensity. The CL enhancement mechanism was investigated, and the CL enhancement was supposed to originate from the catalysis of HRP-mimicking DNAzyme on the CL reaction between CdTe QDs and H2O2. Meantime, compared with CdTe QDs-H2O2 CL system, H2O2 concentration was markedly decreased in QDs-H2O2-HRP-mimicking DNAzyme CL system, improving the stability of QDs-H2O2 CL system. The QDs-based CL system was used to detect sensitively CdTe QDs and HRP-mimicking DNAzyme (as biologic labels). This work gives a path for enhancing CL efficiency of QDs system, and will be helpful to promote the step of QDs application in various fields such as bioassay and trace detection of analyte. PMID:24556131

  4. CdTe and CdZnTe materials for room-temperature X-ray and gamma ray detectors

    NASA Astrophysics Data System (ADS)

    Eisen, Y.; Shor, A.

    1998-02-01

    Among the semiconductor materials of a wide band gap, CdTe and CdZnTe have attracted most attention as room-temperature X-ray and gamma-ray detectors. Suitable CdTe materials for nuclear detectors and, in particular, for spectrometers, have been developed over the past few decades and are mainly grown via the traveling heater method (THM). However, the manufacture of large homogeneous ingots at relatively low cost has not reached yet a proven stage. Cd 1- xZn xTe (CZT) materials, mainly grown via the high-pressure Bridgman (HPB) technique, possess several advantages over CdTe and appear to better approach the practicality of providing large volume X-ray and gamma-ray detectors at moderate costs. Continuing effort is still underway to improve the characteristics of both CdTe and CZT materials in order to achieve reproducible detectors for either low- and high-energy gamma rays. This review paper is divided into three parts: The first part describes different structural designs of detectors to improve their spectroscopic characteristics. These include hemispherical detectors, coplanar strip-electrode detectors and monolithic, two-dimensional segmented electrode arrays with pad sizes smaller than their thickness. This part will also describe various electronic methods to compensate for the poor charge collection of holes. The second part compares the characteristics of planar CdTe and CZT nuclear detectors containing metal contacts. Characteristics include: charge collection efficiencies for both electrons and holes indicated by the mobility-lifetime product, energy resolutions, leakage currents and robustness in field use. The third part is devoted to field uses of these detectors. Those include: X-ray fluorescent spectrometers, large volume spectrometers and a new generation nuclear gamma camera for medical diagnostics based on room-temperature solid-state spectrometers.

  5. Recrystallization of PVD CdTe Thin Films Induced by CdCl2 Treatment -- A Comparison Between Vapor and Solution Processes: Preprint

    SciTech Connect

    Mountinho, H. R.; Dhere, R. G.; Romero, M. J.; Jiang, C. S.; To, B.; Al-Jassim, M. M.

    2008-05-01

    This paper describes the large concentration of 60..deg.. <111> twin boundaries that was observed in every CdTe film analyzed in this work, even after recrystallization and grain growth, confirming the low energy of these interfaces.

  6. Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films

    SciTech Connect

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L.

    1999-07-01

    We have induced recrystallization of small grain CdTe thin films deposited at low temperatures by close-spaced sublimation (CSS), using a standard CdCl{sub 2} annealing treatment. We also studied the changes in the physical properties of CdTe films deposited by radio-frequency magnetron sputtering after the same post-deposition processing. We demonstrated that the effects of CdCl{sub 2} on the physical properties of CdTe films are similar, and independent of the deposition method. The recrystallization process is linked directly to the grain size and stress in the films. These studies indicated the feasibility of using lower-temperature processes in fabricating efficient CSS CdTe solar cells. We believe that, after the optimization of the parameters of the chemical treatment, these films can attain a quality similar to CSS films grown using current standard conditions. {copyright} {ital 1999 American Vacuum Society.}

  7. Explanation of red spectral shifts at CdTe grain boundaries

    NASA Astrophysics Data System (ADS)

    Moseley, John

    The best research-cell efficiencies for CdTe thin-film solar cells have recently increased from 17.3% to 20.4%. Despite these impressive recent gains, many improvements in device technology are necessary to reach the detailed-balance efficiency limit for CdTe-based (single-junction, non-concentrator) solar cells of ~32%. Improvements will increasingly rely on knowledge of the fundamental relationships between processing, electrical properties of defects, and device performance. In this study, scanning electron microscope (SEM)-based cathodoluminescence (CL) spectrum imaging was used to examine these fundamental relationships. In CL spectrum imaging we collect a spectrum per pixel in a 256 x 256 pixel SEM image by synchronizing a cryogenic silicon charge-coupled device with the electron-beam positioning. High spatial resolution photon energy maps obtained with this technique can reveal intricate luminescence phenomena that are not apparent in spectroscopic data. CL spectrum imaging was performed at T= 25 K on the back surface of CSS-deposited CdTe thin-films in a CdTe/CdS/SnO_2/glass configuration without back contacting. Both as-deposited and CdCl2 vapor-treated samples were analyzed. Luminescence emission is detected (bands) at ~1.32 eV and ~1.50 eV, which are consistent with Z- and Y-bands. The importance of the Z-band to CdTe solar cells is discussed. For the grains in the as-deposited films, there is a significant redshift in the transition energies near the grain boundaries. For the Z-band, this behavior is due to the effect of the high GB recombination velocity (sX~1x10 4 cm/s) in as-deposited CSS films on the donor-acceptor pair transition mechanism. The concentration of the shallow donor species participating in the Z-band transition was estimated to be ~1017 cm-3 . Based on this estimate, and the spatial correlation between the Z-band and the A-center (VCd-ClTe) complex transitions, ClTe is proposed as is the shallow donor species.

  8. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    SciTech Connect

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caraco, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter

  9. Wiring-up carbon single wall nanotubes to polycrystalline inorganic semiconductor thin films: low-barrier, copper-free back contact to CdTe solar cells.

    PubMed

    Phillips, Adam B; Khanal, Rajendra R; Song, Zhaoning; Zartman, Rosa M; DeWitt, Jonathan L; Stone, Jon M; Roland, Paul J; Plotnikov, Victor V; Carter, Chad W; Stayancho, John M; Ellingson, Randall J; Compaan, Alvin D; Heben, Michael J

    2013-11-13

    We have discovered that films of carbon single wall nanotubes (SWNTs) make excellent back contacts to CdTe devices without any modification to the CdTe surface. Efficiencies of SWNT-contacted devices are slightly higher than otherwise identical devices formed with standard Au/Cu back contacts. The SWNT layer is thermally stable and easily applied with a spray process, and SWNT-contacted devices show no signs of degradation during accelerated life testing. PMID:24156376

  10. Development of a computer model for polycrystalline thin-film CuInSe sub 2 and CdTe solar cells

    SciTech Connect

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. )

    1992-04-01

    This report describes work to develop a highly accurate numerical model for CuInSe{sub 2} and CdTe solar cells. ADEPT (A Device Emulation Program and Toolbox), a one-dimensional semiconductor device simulation code developed at Purdue University, was used as the basis of this model. An additional objective was to use ADEPT to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. The work is being performed in two phases. The first phase involved collecting device performance parameters, cell structure information, and material parameters. This information was used to construct the basic models to simulate CuInSe{sub 2} and CdTe solar cells. This report is a tabulation of information gathered during the first phase of this project on the performance of existing CuInSe{sub 2} and CdTe solar cells, the material properties of CuInSr{sub 2}, CdTe, and CdS, and the optical absorption properties of CuInSe{sub 2}, CdTe, and CdS. The second phase will entail further development and the release of a version of ADEPT tailored to CuInSe{sub 2} and CdTe solar cells that can be run on a personal computer. In addition, ADEPT will be used to analyze the performance of existing and proposed CuInSe{sub 2} and CdTe solar cell structures. 110 refs.

  11. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure

    NASA Astrophysics Data System (ADS)

    Luo, Run; Liu, Bo; Yang, Xiaoyan; Bao, Zheng; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-01-01

    The Cadmium telluride (CdTe) thin film has been prepared by physical vapor deposition (PVD), the Ar + O2 pressure is about 0.9 kPa. This method is a newer technique to deposit CdTe thin film in large area, and the size of the film is 30 × 40 cm2. This method is much different from the close-spaced sublimation (CSS), as the relevance between the source temperature and the substrate temperature is weak, and the gas phase of CdTe is transferred to the substrate by Ar + O2 flow. Through this method, the compact and uniform CdTe film (30 × 40 cm2) has been achieved, and the performances of the CdTe thin film have been determined by transmission spectrum, SEM and XRD. The film is observed to be compact with a good crystallinity, the CdTe is polycrystalline with a cubic structure and a strongly preferred (1 1 1) orientation. Using the CdTe thin film (3 × 5 cm2) which is taken from the deposited large-area film, the 14.6% efficiency CdS/CdTe thin film solar cell has been prepared successfully. The structure of the cell is glass/FTO/CdS/CdTe/graphite slurry/Au, short circuit current density (Jsc) of the cell is 26.9 mA/cm2, open circuit voltage (Voc) is 823 mV, and filling factor (FF) is 66.05%. This technique can be a quite promising method to apply in the industrial production, as it has great prospects in the fabricating of large-area CdTe film.

  12. Efficient generation of 480 fs electrical pulses on transmission lines by photoconductive switching in metalorganic chemical vapor deposited CdTe

    NASA Astrophysics Data System (ADS)

    Nuss, Martin C.; Kisker, D. W.; Smith, P. R.; Harvey, T. E.

    1989-01-01

    Electrical pulses of only 480 fs duration have been generated by photoconductive switching in CdTe grown by ultraviolet-enhanced metalorganic chemical vapor deposition (MOCVD). In addition to the extremely fast switching times, MOCVD CdTe also exhibits a high mobility of 180 sq cm/V s and can be grown on almost any substrate, making it ideal for integration into existing circuits and devices.

  13. [The impact of ZnS/CdS composite window layer on the quantun efficiency of CdTe solar cell in short wavelength].

    PubMed

    Zhang, Li-xiang; Feng, Liang-huan; Wang, Wen-wu; Xu, Hang; Wu, Li-li; Zhang, Jing-quan; Li, Wei; Zeng, Guang-gen

    2015-02-01

    ZnS/CdS composite window layer was prepared by magnetron sputtering method and then applied to CdTe solar cell. The morphology and structure of films were measured. The data of I-V in light and the quantum efficiency of CdTe solar cells with different window layers were also measured. The effect of ZnS films prepared in different conditions on the performance of CdTe solar cells was researched. The effects of both CdS thickness and ZnS/CdS composite layer on the transmission in short wavelength were studied. Particularly, the quantum efficiency of CdTe solar cells with ZnS/CdS window layer was measured. The results show as follows. With the thickness of CdS window layer reducing from 100 to 50 nm, the transmission increase 18.3% averagely in short wavelength and the quantum efficiency of CdTe solar cells increase 27.6% averagely. The grain size of ZnS prepared in 250 degrees C is smaller than prepared at room temperature. The performance of CdTe solar cells with ZnS/CdS window layer is much better if ZnS deposited at 250 degrees C. This indicates grain size has some effect on the electron transportation. When the CdS holds the same thickness, the transmission of ZnS/CdS window layer was improved about 2% in short wavelength compared with CdS window layer. The quantum efficiency of CdTe solar cells with ZnS/CdS window layer was also improved about 2% in short wavelength compared with that based on CdS window layer. These indicate ZnS/CdS composite window layer can increase the photon transmission in short wavelength so that more photons can be absorbed by the absorbent layer of CdTe solar cells. PMID:25970885

  14. Fluorescence quenching studies on the interaction of catechin-quinone with CdTe quantum dots. Mechanism elucidation and feasibility studies.

    PubMed

    Dwiecki, Krzysztof; Neunert, Grażyna; Nogala-Kałucka, Małgorzata; Polewski, Krzysztof

    2015-01-01

    Changes of the photoluminescent properties of QD in the presence of oxidized catechin (CQ) were investigated by absorption, steady-state fluorescence, fluorescence lifetime and dynamic light scattering measurements. Photoluminescence intensity and fluorescence lifetime was decreasing with increasing CQ concentration. Dynamic light scattering technique found the hydrodynamic diameter of QD suspension in water is in range of 45 nm, whereas in presence of CQ increased to mean values of 67 nm. Calculated from absorption peak position of excition band indicated on average QD size of 3.2 nm. Emission spectroscopy and time-resolved emission studies confirmed preservation of electronic band structure in QD-CQ aggregates. On basis of the presented results, the elucidated mechanism of QD fluorescence quenching is a result of the interaction between QD and CQ due to electron transfer and electrostatic attraction. The results of fluorescence quenching of water-soluble CdTe quantum dot (QD) capped with thiocarboxylic acid were used to implement a simple and fast method to determine the presence of native antioxidant quinones in aqueous solutions. Feasibility studies on this method carried out with oxidized catechin showed a linear relation between the QD emission and quencher concentration, in range from 1 up to 200 μM. The wide linear range of concentration dependence makes it possible to apply this method for the fast and sensitive detection of quinones in solutions. PMID:25978020

  15. CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2016-01-01

    A sensitive chemiluminescence (CL) sensor based on chemiluminescence resonance energy transfer (CRET) in CdTe quantum dots@luminol (CdTe QDs@luminol) nanomaterials combined with chitosan/graphene oxide-magnetite-molecularly imprinted polymer (Cs/GM-MIP) for sensing chrysoidine was developed. CdTe QDs@luminol was designed to not only amplify the signal of CL but also reduce luminol consumption in the detection of chrysoidine. On the basis of the abundant hydroxy and amino, Cs and graphene oxide were introduced into the GM-MIP to improve the adsorption ability. The adsorption capacities of chrysoidine by both Cs/GM-MIP and non-imprinted polymer (Cs/GM-NIP) were investigated, and the CdTe QDs@luminol and Cs/GM-MIP were characterized by UV-vis, FTIR, SEM and TEM. The proposed sensor can detect chrysoidine within a linear range of 1.0 × 10- 7 - 1.0 × 10- 5 mol/L with a detection limit of 3.2 × 10- 8 mol/L (3δ) due to considerable chemiluminescence signal enhancement of the CdTe quantum dots@luminol detector and the high selectivity of the Cs/GM-MIP system. Under the optimal conditions of CL, the CdTe QDs@luminol-Cs/GM-MIP-CL sensor was used for chrysoidine determination in samples with satisfactory recoveries in the range of 90-107%.

  16. Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions

    NASA Astrophysics Data System (ADS)

    Paudel, Naba R.; Yan, Yanfa

    2014-11-01

    The recent increases in the record efficiency of CdTe thin-film solar cell technology largely benefited from enhancements in short circuit current densities (JSC) in the short-wavelength regions by reducing the thicknesses of CdS window layers. Here, we report that the JSC can be enhanced in both short and long wavelength regions by using CdSe as the window layer. Comparing to CdS, CdSe has a higher solubility in CdTe, resulting in stronger interdiffusion at the CdSe/CdTe interface and the formation of CdTe1-xSex alloys with high x values. Due to bowing effects, the CdTe1-xSex alloys exhibit narrower band gaps than CdTe, enhancing the JSC in the CdTe-based solar cells for long-wavelengths. We further report that the use of combined CdS/CdSe window layers can realize high open circuit voltages and maintain the JSC enhancements. Our results suggest a viable approach to improve the performance of CdTe thin-film solar cells.

  17. A photoluminescence comparison of CdTe thin films grown by molecular-beam epitaxy, metalorganic chemical vapor deposition, and sputtering in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Feng, Z. C.; Bevan, M. J.; Krishnaswamy, S. V.; Choyke, W. J.

    1988-09-01

    High perfection CdTe thin films have been grown on (001) InSb and CdTe substrates by molecular-beam epitaxy, metalorganic chemical vapor deposition (MOCVD), and sputtering in ultrahigh vacuum techniques. The quality of the as-grown CdTe films are characterized by 2-K photoluminescence. The spectra show strong and sharp exciton transitions and weak 1.40-1.50-eV defect-related bands. Radiative defect densities of lower than 0.002 are realized. High-resolution spectroscopy shows that the full width at half maximum of the principal bound exciton lines is about 0.1 meV. Such small ρ values and narrow photoluminescence lines have not been previously reported. The largest luminescence efficiency is observed for MOCVD-CdTe films grown on CdTe substrates. A variety of impurities appear to be responsible for the observed radiative transitions in these three kinds of CdTe films. We attempt to assign the observed impurity related lines by a comparison with ``known'' impurities in bulk CdTe spectra given in the literature.

  18. Polycrystalline CuInSe{sub 2} and CdTe PV solar cells. Annual subcontract report, 15 April 1993--14 April 1994

    SciTech Connect

    Dhere, N.G.

    1994-11-01

    This is an annual technical report on the Phase 2 of a three-year phased research program. The principal objective of the research project is to develop novel and low-cost processes for the fabrication of stable and efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe polycrystalline-thin-film solar cells using reliable techniques amenable to scale-up for economic, large-scale manufacture. The aims are to develop a process for the non-toxic selenization so as to avoid the use of extremely toxic H{sub 2}Se in the fabrication of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} thin-film solar cells; to optimize selenization parameters; to develop a process for the fabrication of CdTe solar cells using Cd and Te layers sputtered from elemental targets; to develop an integrated process for promoting the interdiffusion between Cd/Te layers, CdTe phase formation, grain growth, type conversion, and junction formation; to improve adhesion; to minimize residual stresses; to improve the metallic back-contact; to improve the uniformity, stoichiometry, and morphology of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe thin films; and to improve the efficiency of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} and CdTe solar cells.

  19. Polycrystalline CuInSe{sub 2} and CdTe solar cells. Annual subcontract report, April 15, 1992--April 14, 1993

    SciTech Connect

    Dhere, N.G.

    1994-08-01

    The principal objective of the research project is to develop processes for the fabrication of cadmium-telluride, CdTe, and copper-indium-gallium-diselenide, Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2}, polycrystalline-thin-film solar cells using techniques that can be scaled-up for economic manufacture on a large scale. The aims are to fabricate CdTe solar cells using Cd and Te layers sputtered from elemental targets; to promote the interdiffusion between Cd/Te layers, CdTe phase formation, and grain growth; to utilize non-toxic selenization so as to avoid the use of extremely toxic H{sub 2}Se in the fabrication of Cu(In{sub l{minus}x}Ga{sub x})Se{sub 2} thin-film solar cells; to optimize selenization parameters; to improve adhesion; to minimize residual stresses; to improve the uniformity, stoichiometry, and morphology of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} thin films, and the efficiency of CdTe and Cu(In{sub 1{minus}x}Ga{sub x})Se{sub 2} solar cells.

  20. A Novel Method to Obtain Higher Deposition Rates of CdTe Using Low Temperature LPCVD for Surface Passivation of HgCdTe

    NASA Astrophysics Data System (ADS)

    Banerjee, Sneha; Dahal, Rajendra; Bhat, Ishwara B.

    2015-09-01

    The deposition rate of CdTe passivation films has been increased greatly by the implementation of a novel design of a graphite cracker cell. This cracker cell, consisting of an integrated diffuser, facilitates the efficient cracking of precursors. CdTe deposition rate has been increased from ~50 nm/h (without any cracker cell) to ~420 nm/h using this novel experimental set-up. H2 flow through the main gas flow line has been increased to obtain a progressive increase in deposition rates. CdTe deposited on high aspect ratio HgCdTe samples showed adequate conformal coverage on the side walls and also on the bottom of the trenches. Microwave photoconductive decay measurements were done on planar and patterned HgCdTe substrates at 77 K to extract the minority carrier lifetimes. There was a significant improvement in the lifetime of planar HgCdTe samples after CdTe passivation, though patterned HgCdTe samples showed a minor improvement. An additional annealing step was conducted at 250°C for 20 min in the presence of H2 after the deposition of CdTe passivation films. Minority carrier lifetimes improved further post-annealing, probably due to the formation of a graded interface between CdTe and HgCdTe.

  1. Comparative syntheses of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors.

    PubMed

    Chao, Mu-Rong; Hu, Chiung-Wen; Chen, Jian-Lian

    2014-11-15

    The amphoteric drug molecule tetracycline, which contains groups with pKa 3.4-9.9, was used as a template for conjugating molecularly imprinted polymers (MIPs) and as a quencher for CdTe quantum dot (QD) fluorescence. Two MIP-QD composites were synthesized by a sol-gel method using a silicon-based monomer and a monomer linker between the MIP and QD, i.e., tetraethoxylsilane/3-mercaptopropyltriethoxysilane (MPS) and tetraethoxylsilane/3-aminopropyltriethoxysilane (APS). Another MIP-QD composite was synthesized by the chain-growth polymerization of methacrylic acid (MAA) and an allyl mercaptan linker. The prepared MIP-QDs were characterized by FTIR and SEM and utilized at 0.33 mg/mL to determine the tetracycline content in phosphate buffers (pH 7.4, 50mM) through the Perrin and Stern-Volmer models of quenching fluorometry. The Perrin model was applied to tetracycline concentrations of 7.4 μM-0.37 mM for MIP-MPS-QD, 7.4 μM-0.12 mM for MIP-APS-QD, and 7.4 μM-0.10mM for MIP-MAA-QD (R(2)=0.9988, 0.9978, and 0.9931, respectively). The Stern-Volmer model was applied to tetracycline concentrations of 0.12-0.37 mM for MIP-APS-QD (R(2)=0.9983) and 0.10-0.37 mM for MIP-MAA-QD (R(2)=0.9970). The detection limits were 0.45 μM, 0.54 μM, and 0.50 μM for MIP-MPS-QD, MIP-APS-QD, and MIP-MAA-QD, respectively. Equilibrium times, differences between imprinted and nonimprinted polymers, and MIP-QD quenching mechanisms were discussed. Finally, specificity studies demonstrated that MIP-MAA-QD exhibited optimal recoveries of 96% from bovine serum albumin (n=5, RSD=3.6%) and 91% from fetal bovine serum (n=5, RSD=4.8%). PMID:24934749

  2. Photoluminescence characterization of the surface layer of chemically etched CdTe

    NASA Astrophysics Data System (ADS)

    García-García, J.; González-Hernández, J.; Mendoza-Alvarez, J. G.; Cruz, Elías López; Contreras-Puente, Gerardo

    1990-04-01

    The effects of several reducing and oxidizing etches on CdTe surfaces have been characterized by photoluminescence. For excitation, several lines from three different types of gas lasers, emitting at 325 nm (He-Cd laser), 488 nm (argon-ion laser), and 632.8 nm (He-Ne laser) were used. The corresponding light penetration depth varied from approximately 25 to 200 nm. The analysis of the photoluminescence as a function of the depth not only allows the characterization of the type of defects created by the etching but also their location from the treated surfaces. Proper etching solutions produce surfaces with a crystalline quality comparable to that of a cleaved surface and the photoluminescence spectra do not depend on the energy of the excitation.

  3. Thermodynamic parameters of CdTe crystals in the cubic phase

    NASA Astrophysics Data System (ADS)

    Freik, Dmytro; Parashchuk, Taras; Volochanska, Bohdana

    2014-09-01

    Based on the analysis of the crystal and electronic structures of CdTe crystals in the cubic phase cluster models have been built for calculation of the geometric and thermodynamic parameters. According to density functional theory (DFT) and by using the hybrid B3LYP functional the temperature dependences of formation energy ∆E, formation enthalpy ∆H, Gibbs free energy ∆G, entropy ∆S, specific heat capacity at constant volume CV and pressure CP have been defined. Also, in the work analytical expressions of temperature dependences of the presented thermodynamic parameters have been derived, which have been approximated by quantum-chemical calculation data using the mathematical package Maple 14. The results of ab initio calculations are compared with experimental data.

  4. Surface analysis of CdTe after various pre-contact treatments

    SciTech Connect

    Waters, D.M.; Niles, D.; Gessert, T.A.; Albin, D.; Rose, D.H.; Sheldon, P.

    1998-09-01

    The authors present surface analysis of close-spaced sublimated (CSS) CdTe after various pre-contact treatments. Methods include Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), and grazing-incidence x-ray diffraction (GI-XRD). XPS and GI-XRD analyses of the surface residue left by the solution-based CdCl{sub 2} treatment do not indicate the presence of a significant amount of CdCl{sub 2}. In addition, the solubility properties and relatively high thermal stability of the residue suggest the presence of the oxychloride Cd{sub 3}Cl{sub 2}O{sub 2} rather than CdCl{sub 2} as the major chlorine-containing component. Of the methods tested for their effectiveness in removing the residue, only HNO{sub 3} etches removed all detectable traces of chlorine from the surface.

  5. Surface energies for molecular beam epitaxy growth of HgTe and CdTe

    NASA Astrophysics Data System (ADS)

    Berding, M. A.; Krishnamurthy, Srinivasan; Sher, A.

    1991-10-01

    We present results for the surface binding energies for HgTe and CdTe that will serve as input for molecular beam epitaxy growth models. We have found that the surface binding energies are surface orientation dependent and are not simply proportional to the number of first-neighbor bonds being made to the underlying layer. Moreover, because of the possibility of charge transfer between cation and anion surface states, one may have large differences between the binding energy for the first and the last atom in a given layer, and these differences will be different for the narrow-gap, less ionic materials than for the wide gap, ionic materials. We also find that the surface states associated with an isolated surface atom or vacancy are extended in materials with small gaps and small effective masses, and thus call into question the modeling of surface binding by simple pair interactions.

  6. Photorefractive nonlinearities caused by the Dember space-charge field in undoped CdTe

    NASA Astrophysics Data System (ADS)

    Schroeder, W. Andreas; Stark, Thomas S.; Boggess, Thomas F.; Smirl, Arthur L.; Valley, George C.

    1991-06-01

    The decay of a photorefractive grating in undoped CdTe produced by subband-gap picosecond excitation has been isolated and temporally resolved. The grating is observed to decay completely at the same rate as the free-carrier grating, a rate consistent with the decay of a 1.7 micron-period grating by ambipolar diffusion. This provides convincing evidence that the source of the photorefractive grating is the Dember space-charge field that is established between electron-hole pairs created by band-to-band two-photon absorption. This establishes the Dember field as a source for the photorefractive space-charge field that can be turned on in the dielectric relaxation time and turned off in the ambipolar diffusion time. It also allows the material to recover fully in the recombination lifetime which can be adjusted by doping or damaging the material.

  7. Small hole polaron in CdTe: Cd-vacancy revisited

    PubMed Central

    Shepidchenko, A.; Sanyal, B.; Klintenberg, M.; Mirbt, S.

    2015-01-01

    The characteristics of electronic states of Cd-vacancies in CdTe, an important semiconductor for various technological applications, are under debate both from theoretical and experimental points of view. Experimentally, the Cd-vacancy in its negative charge state is found to have C3v symmetry and a (−1/−2) transition level at 0.4 eV. Our first principles density functional calculations with hybrid functionals confirm for the first time these experimental findings. Additionally, we find that the C3v symmetry and the position of the (−1/−2) transition level are caused by the formation of a hole polaron localised at an anionic site around the vacancy. PMID:26411338

  8. Commercial production of thin-film CdTe photovoltaic modules. 1995 annual report

    SciTech Connect

    Brog, T.K.

    1997-02-01

    This report presents a general overview of progress made in Golden Photon Inc.`s commercial production of thin-film CdTe photovoltaic modules. It describes the improvement in the number of batch runs processed through substrate deposition, all inter-connection, and encapsulation process steps; a progressive increase in the total number of panels processed each month; an improvement in cumulative process yields; and the continual attention given to modifying operating parameters of each major process step. The report also describes manpower status and staffing issues. The description of the status of subcontract progress includes engineering design; process improvement and development; cost improvement and raw materials; environment, safety, and health; and manufacturing cost and productivity optimization. Milestones and deliverables are also described.

  9. Nanosecond spin coherence of excitons bound to acceptors in a CdTe quantum well

    NASA Astrophysics Data System (ADS)

    Grinberg, P.; Bernardot, F.; Eble, B.; Karczewski, G.; Testelin, C.; Chamarro, M.

    2016-03-01

    We have studied the coherent spin dynamics of excitons bound to acceptors, A0X, immersed in a CdTe quantum well by using time resolved photo-induced Faraday rotation. We have also measured the time-resolved differential transmission in order to determine a A0X lifetime of 220 ps, which is independent of the applied magnetic field. We show that at low magnetic field, the spin of A0X is completely frozen during a time, ≅ 4.5 ns, at least twenty times longer than its lifetime. We compare the spin properties of A0X with the spin properties of other charged excitons systems, and we conclude that the hyperfine interaction of the photo-created electron spin with nuclear spins is very likely to be at the origin of the observed spin dephasing times.

  10. Broadening of optical transitions in polycrystalline CdS and CdTe thin films

    SciTech Connect

    Li Jian; Chen Jie; Collins, R. W.

    2010-11-01

    The dielectric functions {epsilon} of polycrystalline CdS and CdTe thin films sputter deposited onto Si wafers were measured from 0.75 to 6.5 eV by in situ spectroscopic ellipsometry. Differences in {epsilon} due to processing variations are well understood using an excited carrier scattering model. For each sample, a carrier mean free path {lambda} is defined that is found to be inversely proportional to the broadening of each of the band structure critical points (CPs) deduced from {epsilon}. The rate at which broadening occurs with {lambda}{sup -1} is different for each CP, enabling a carrier group speed {upsilon}{sub g} to be identified for the CP. With the database for {upsilon}{sub g}, {epsilon} can be analyzed to evaluate the quality of materials used in CdS/CdTe photovoltaic heterojunctions.

  11. Surface defect states in MBE-grown CdTe layers

    SciTech Connect

    Olender, Karolina; Wosinski, Tadeusz; Fronc, Krzysztof; Tkaczyk, Zbigniew; Chusnutdinow, Sergij; Karczewski, Grzegorz

    2014-02-21

    Semiconductor surface plays an important role in the technology of semiconductor devices. In the present work we report results of our deep-level transient spectroscopy (DLTS) investigations of surface defect states in nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. We observed a deep-level trap associated with surface states, with the activation energy for hole emission of 0.33 eV. DLTS peak position in the spectra for this trap, and its ionization energy, strongly depend on the electric field. Our measurements allow to determine a mechanism responsible for the enhancement of hole emission rate from the traps as the phonon-assisted tunnel effect. Density of surface defect states significantly decreased as a result of passivation in ammonium sulfide. Capacitance-voltage measurements confirmed the results obtained by the DLTS technique.

  12. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses.

    PubMed

    Chiang, Wei-Yi; Okuhata, Tomoki; Usman, Anwar; Tamai, Naoto; Masuhara, Hiroshi

    2014-12-11

    The development in optical trapping and manipulation has been showing rapid progress, most of it is in the small particle sizes in nanometer scales, substituting the conventional continuous-wave lasers with high-repetition-rate ultrashort laser pulse train and nonlinear optical effects. Here, we evaluate two-photon absorption in optical trapping of 2.7 nm-sized CdTe quantum dots (QDs) with high-repetition-rate femtosecond pulse train by probing laser intensity dependence of both Rayleigh scattering image and the two-photon-induced luminescence spectrum of the optically trapped QDs. The Rayleigh scattering imaging indicates that the two-photon absorption (TPA) process enhances trapping ability of the QDs. Similarly, a nonlinear increase of the two-photon-induced luminescence with the incident laser intensity fairly indicates the existence of the TPA process. PMID:24926894

  13. Performance Stabilization of CdTe PV Modules using Bias and Light

    SciTech Connect

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Kurtz, S. R.

    2014-07-01

    Reversible performance changes due to light exposure frustrate repeatable performance measurements on CdTe PV modules. It is common to use extended light-exposure to ensure that measurements are representative of outdoor performance. We quantify the extent to which such a light-exposed state depends on module temperature and consider bias in the dark to aid in stabilization. We evaluate the use of dark forward bias to bring about a performance state equivalent to that obtained with light exposure, and to maintain a light-exposed state prior to STC performance measurement. Our results indicate that the most promising method for measuring a light-exposed state is to use light exposure at controlled temperature followed by prompt STC measurement with a repeatable time interval between exposure and the STC measurement.

  14. CdS: Characterization and recent advances in CdTe solar cell performance

    SciTech Connect

    Ferekides, C.; Marinskiy, D.; Morel, D.L.

    1997-12-31

    Cadmium sulfide (CdS) films deposited by chemical bath deposition (CBD) have been used for the fabrication of high efficiency CdTe and CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} thin film solar cells. An attractive alternative deposition technology with manufacturing advantages over the CBD is the close spaced sublimation (CSS). In this work CdTe/CdS solar cells prepared entirely by the CSS process exhibited 15.0% efficiencies under global AM1.5 conditions as verified at the National Renewable Energy Laboratory. This paper reports on studies carried out on as deposited and heat treated CSS CdS films and all CSS CdTe/CdS solar cells using photoluminescence, x-ray diffraction, and I-V-T measurements.

  15. Electroluminescence of thin-film CdTe solar cells and modules

    NASA Astrophysics Data System (ADS)

    Raguse, John Michael

    Thin-film photovoltaics has the potential to be a major source of world electricity. Mitigation of non-uniformities in thin-film solar cells and modules may help improve photovoltaic conversion efficiencies. In this manuscript, a measurement technique is discussed in detail which has the capability of detecting such non-uniformities in a form useful for analysis. Thin-film solar cells emit radiation while operating at forward electrical bias, analogous to an LED, a phenomena known as electroluminescence (EL). This process relatively is inefficient for polycrystalline CdTe devices, on the order of 10-4%, as most of the energy is converted into heat, but still strong enough for many valuable measurements. A EL system was built at the Colorado State University Photovoltaics Laboratory to measure EL from CdTe cells and modules. EL intensity normalized to exposure time and injection current density has been found to correlate very well with the difference between ideal and measured open-circuit voltage from devices that include a GaAs cell, an AlGaAs LED, and several CdTe cells with variations in manufacturing. Furthermore, these data points were found to be in good agreement when overlaid with calibrated data from two additional sources. The magnitude of the inverse slope of the fit is in agreement with the thermal voltage and the intercept was found to have a value near unity, in agreement with theory. The expanded data set consists of devices made from one of seven different band gaps and spans eight decades of EQELED efficiencies. As expected, cells which exhibit major failure of light-dark J-V superposition did not follow trend of well-behaved cells. EL images of selected defects from CdTe cells and modules are discussed and images are shown to be highly sensitive to defects in devices, since the intensity depends exponentially on the cells' voltages. The EL technique has proven to be a useful high-throughput tool for screening of cells. In addition to EL images

  16. CuInSe2 and CdTe: Scale-up for manufacturing

    NASA Astrophysics Data System (ADS)

    Zweibel, Ken; Mitchell, Richard

    1989-12-01

    The information in this report was originally compiled to serve as a chapter in a photovoltaic reference book. The particular focus of this chapter was on the development of low-cost photovoltaic materials, namely CuInSe2 and CdTe, two leading polycrystalline thin film materials exhibiting high efficiencies and low production costs. Both materials demonstrate significant potential as usable technologies in the commercial market. While the primary focus of this review is on the characteristics of these materials, the authors also provide a look at key methods for making these materials as well as for making added layers that are required for completing a device. In addition, the authors discuss related issues to specific materials (e.g., availability, stability, toxicity) and to each approach (e.g., advantages and drawbacks).

  17. Polycrystalline CdTe on CuInSe2 cascaded solar cells

    NASA Astrophysics Data System (ADS)

    Meyers, P. V.; Liu, C. H.; Russell, L.; Ramanathan, V.; Birkmire, R. W.

    Experimental results obtained using a CdS/CdTe/ZnTe top cell on a CdS/CuInSe2 bottom cell are presented. Single cells of each type exhibit an 11 percent efficiency. The fabrication of a mechanically stacked CdTe-CuInSe2 tandem cell that shows an efficiency of 9.9 percent is discussed . The current of the CuInSe2 cell is limited by the transmission through the CdTe cell. Semiquantitative analysis of the optical losses in the structure indicates that substantial improvements in tandem device performance can be achieved by: 1) reducing free carrier absorption in the transparent (SnOx) top contact, e.g., by using an alternative transparent contact such as ITO or ZnO which has better near-IR transmission, and 2) reducing the absorption in the Cu-doped ZnTe layer-perhaps by reducing the Cu doping level.

  18. Post-growth, In doping of CdTe single crystals via vapor phase

    NASA Astrophysics Data System (ADS)

    Lyahovitskaya, Vera; Kaplan, Larissa; Goswami, Jaydeb; Cahen, David

    1999-02-01

    We have developed a new, efficient method to dope bulk single crystals of CdTe by In, via gas phase diffusion, using In 4Te 3 as the source. Doping was carried out on crystals of very high resistivity (>5 MΩ cm), following annealing in the temperature range of 350-1000°C. Resulting crystals showed n-type conductivity with a free carrier concentration in the range of 10 15-10 18 cm -3 and carrier mobility of 100-750 cm 2/(V s), depending on the annealing temperature and time, and on the cooling conditions. Incorporation of In was found to be a function of annealing time and temperature only. Up to 650°C, the In and the free electron concentrations are roughly the same.

  19. Photoluminescence of CdTe Crystals Grown by Contactless PVT Method

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Cui, Y.; Wright, G.; Roy, U. N.; Burger, A.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    High quality CdTe crystals with resistivities higher than 10(exp 8) Omega cm were grown by the 'contactless' PVT (physical vapor transport) technique. Group III elements In and Al, and the transition metal Sc were introduced at the nominal level of about 6 ppm to the source material. Low-temperature photoluminescence (PL) has been employed to identify the origins of PL emissions of the crystals. It was found that the emission peaks at 1.584 eV and 1.581 eV exist only in the In-doped crystal. The result suggests that the luminescence line at 1.584 eV is associated with Cd-vacancy/indium complex. The intensity of the broadband centered at 1.43 eV decreases dramatically with introduction of Sc.

  20. Photoluminescence of CdTe Crystals Grown by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A. (Technical Monitor); Palosz, W.; Grasza, K.; Boyd, P. R.; Cui, Y.; Wright, G.; Roy, U. N.; Burger, A.

    2002-01-01

    High quality CdTe crystals with resistivities higher than 10(exp 8) omega cm were grown by the physical vapor transport technique. Indium, Aluminum, and the transition metal Scandium were introduced at the nominal level of about 6 ppm to the source material. Low-temperature photoluminescence (PL) has been employed to identify the origins of PL emissions of the crystals. The emission peaks at 1.584 eV and 1.581 eV were found only in the In-doped crystal. The result suggests that the luminescence line at 1.584 eV is associated with Cd-vacancy/indium complex. The intensity of the broadband centered at 1.43 eV decreases strongly with introduction of Sc.

  1. Photoluminescence of CdTe Crystals Grown by Physical-Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Boyd, P. R.; Cui, Y.; Wright, G.; Roy, U. N.; Burger, A.

    2003-01-01

    High-quality CdTe crystals with resistivities higher than 10(exp 8) omega cm were grown by the physical-vapor transport (PVT) technique. Indium, aluminum, and the transition-metal scandium were introduced at the nominal level of about 6 ppm to the source material. Low-temperature photoluminescence (PL) has been employed to identify the origins of PL emissions of the crystals. The emission peaks at 1.584 eV and 1.581 eV were found only in the In-doped crystal. The result suggests that the luminescence line at 1.584 eV is associated with Cd-vacancy/In complex. The intensity of the broadband centered at 1.43 eV decreases strongly with introduction of Sc.

  2. Optical properties of down-shifting barium borate glass for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Loos, Sebastian; Steudel, Franziska; Ahrens, Bernd; Schweizer, Stefan

    2015-03-01

    CdTe thin film solar cells have a poor response in the ultraviolet and blue spectral range, mainly due to absorption and thermalization losses in the CdS buffer layer. To overcome this efficiency drop in the short wavelength range trivalent rare-earth doped barium borate glass is investigated for its potential as frequency down-shifting cover glass on top of the cell. The glass is doped with either Tb3+ or Eu3+ up to a level of 2.5 at.% leading to strong absorption in the ultraviolet/blue spectral range. Tb3+ shows intense emission bands in the green spectral range while Eu3+ emits in the orange/red spectral range. Based on rare-earth absorption and luminescence quantum efficiency the possible gain in short-circuit current density is calculated.

  3. Effect of Back Contact and Rapid Thermal Processing Conditions on Flexible CdTe Device Performance

    SciTech Connect

    Mahabaduge, Hasitha; Meysing, D. M.; Rance, Will L.; Burst, James M.; Reese, Matthew O.; Wolden, C. A.; Gessert, Timothy A.; Metzger, Wyatt K.; Garner, S.; Barnes, Teresa M.

    2015-06-14

    Flexible CdTe solar cells on ultra-thin glass substrates can enable new applications that require high specific power, unique form-factors, and low manufacturing costs. To be successful, these cells must be cost competitive, have high efficiency, and have high reliability. Here we present back contact processing conditions that enabled us to achieve over 16% efficiency on flexible Corning (R) Willow (R) Glass substrates. We used co-evaporated ZnTe:Cu and Au as our back contact and used rapid thermal processing (RTP) to activate the back contact. Both the ZnTe to Cu ratio and the RTP activation temperature provide independent control over the device performance. We have investigated the influence of various RTP conditions to Cu activation and distribution. Current density-voltage, capacitance-voltage measurements along with device simulations were used to examine the device performance in terms of ZnTe to Cu ratio and rapid thermal activation temperature.

  4. Facile synthesis of cysteine and triethanolamine capped CdTe nanoparticles.

    PubMed

    Mntungwa, Nhlakanipho; Pullabhotla, Viswanadha Srirama Rajasekhar; Revaprasadu, Neerish

    2013-01-01

    Cysteine and triethanolamine capped CdTe nanoparticles have been synthesized using a simple aqueous solution based method. This method involves the reaction of tellurium powder with sodium borohydride (NaBH(4)) in water to produce telluride ions (Te(2-)), followed by the simultaneous addition of an aqueous solution of cadmium chloride or other cadmium source (acetate, carbonate and nitrate) and solution of L-cysteine ethyl ester hydrochloride or triethanolamine. The effect of capping agent on the size, structure and morphology of the as-synthesized nanoparticles was investigated. The particles were characterized using optical spectroscopy, transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. PMID:23010054

  5. High-temporal-resolution CdTe nuclear stethoscope for cardiac γ-ventriculography: preclinical evaluation

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Arntz, Y.; Chambron, Jacques; Prat, Vincent; Perret, C.; Karman, Miklos; Pszota, Agnes; Nemeth, Laszlo

    1999-10-01

    A hand-size probe including 64 elementary 5 X 5 X 2 mm CdTe detectors has been optimized to detect the (gamma) tracer 99Tc in the heart left ventricle. The system, has been developed, not for imaging, allowing acquisitions at 33 Hz to describe the labeled blood volume variations. The (gamma) -counts variations were found accurately proportional to the known volume variations of an artificial ventricle paced at variable rate and systolic volume. Softwares for on line data monitoring and for post-processing have been developed for beat to beat assessment of cardiac performance at rest and during physical exercise. The evaluation of this probe has been performed on 5 subjects in the Nucl Dep of Balatonfured Cardiology Hospital. It appears that the probe needs to be better shielded to work properly in the hot environment of the ventricle, but can provide reliable ventriculography, even under heavy exercise load, although the ventricle volume itself is unknown.

  6. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  7. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. PMID:26249745

  8. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  9. Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots.

    PubMed

    Califano, Marco

    2015-03-24

    Recent experimental studies have identified at least two nonradiative components in the fluorescence decay of solutions of CdTe colloidal quantum dots (CQDs). The lifetimes reported by different groups, however, differed by orders of magnitude, raising the question of whether different types of traps were at play in the different samples and experimental conditions and even whether different types of charge carriers were involved in the different trapping processes. Considering that the use of these nanomaterials in biology, optoelectronics, photonics, and photovoltaics is becoming widespread, such a gap in our understanding of carrier dynamics in these systems needs addressing. This is what we do here. Using the state-of-the-art atomistic semiempirical pseudopotential method, we calculate trapping times and nonradiative population decay curves for different CQD sizes considering up to 268 surface traps. We show that the seemingly discrepant experimental results are consistent with the trapping of the hole at unsaturated Te bonds on the dot surface in the presence of different dielectric environments. In particular, the observed increase in the trapping times following air exposure is attributed to the formation of an oxide shell on the dot surface, which increases the dielectric constant of the dot environment. Two types of traps are identified, depending on whether the unsaturated bond is single (type I) or part of a pair of dangling bonds on the same Te atom (type II). The energy landscape relative to transitions to these traps is found to be markedly different in the two cases. As a consequence, the trapping times associated with the different types of traps exhibit a strikingly contrasting sensitivity to variations in the dot environment. Based on these characteristics, we predict the presence of a sub-nanosecond component in all photoluminescence decay curves of CdTe CQDs in the size range considered here if both trap types are present. The absence of such a

  10. Development of mammography system using CdTe photon counting detector for the exposure dose reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Sho; Niwa, Naoko; Yamazaki, Misaki; Yamakawa, Tsutomu; Nagano, Tatsuya; Kodera, Yoshie

    2014-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) photon-counting detector for exposure dose reduction. In contrast to conventional mammography, this system uses high-energy X-rays. This study evaluates the usefulness of this system in terms of the absorbed dose distribution and contrast-to-noise ratio (CNR) at acrylic step using a Monte Carlo simulation. In addition, we created a prototype system that uses a CdTe detector and automatic movement stage. For various conditions, we measured the properties and evaluated the quality of images produced by the system. The simulation result for a tube voltage of 40 kV and tungsten/barium (W/Ba) as a target/filter shows that the surface dose was reduced more than 60% compared to that under conventional conditions. The CNR of our proposal system also became higher than that under conventional conditions. The point at which the CNRs coincide for 4 cm polymethyl methacrylate (PMMA) at the 2-mm-thick step corresponds to a dose reduction of 30%, and these differences increased with increasing phantom thickness. To improve the image quality, we determined the problematic aspects of the scanning system. The results of this study indicate that, by using a higher X-ray energy than in conventional mammography, it is possible to obtain a significant exposure dose reduction without loss of image quality. Further, the image quality of the prototype system can be improved by optimizing the balance between the shift-and-add operation and the output of the X-ray tube. In future work, we will further examine these improvement points.

  11. Thin-film-based CdTe photovoltaic module characterization: Measurements and energy prediction improvement

    NASA Astrophysics Data System (ADS)

    Lay-Ekuakille, A.; Arnesano, A.; Vergallo, P.

    2013-01-01

    Photovoltaic characterization is a topic of major interest in the field of renewable energy. Monocrystalline and polycrystalline modules are mostly used and, hence characterized since many laboratories have data of them. Conversely, cadmium telluride (CdTe), as thin-film module are, in some circumstances, difficult to be used for energy prediction. This work covers outdoor testing of photovoltaic modules, in particular that regarding CdTe ones. The scope is to obtain temperature coefficients that best predict the energy production. A First Solar (K-275) module has been used for the purposes of this research. Outdoor characterizations were performed at Department of Innovation Engineering, University of Salento, Lecce, Italy. The location of Lecce city represents a typical site in the South Italy. The module was exposed outdoor and tested under clear sky conditions as well as under cloudy sky ones. During testing, the global-inclined irradiance varied between 0 and 1500 W/m2. About 37 000 I-V characteristics were acquired, allowing to process temperature coefficients as a function of irradiance and ambient temperature. The module was characterized by measuring the full temperature-irradiance matrix in the range from 50 to 1300 W/m2 and from -1 to 40 W/m2 from October 2011 to February 2012. Afterwards, the module energy output, under real conditions, was calculated with the "matrix method" of SUPSI-ISAAC and the results were compared with the five months energy output data of the same module measured with the outdoor energy yield facility in Lecce.

  12. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    PubMed Central

    Yan, Ming; Zhang, Yun; Qin, Haiyan; Liu, Kezhou; Guo, Miao; Ge, Yakun; Xu, Mingen; Sun, Yonghong; Zheng, Xiaoxiang

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs). However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER) in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (−21.63±0.91 mV), with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature). The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine) dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and activation of protein kinase RNA-like ER kinase-eIF2α-activating transcription factor 4 pathway (including phosphorylation of both protein kinase RNA-like ER kinase and eIF2α and elevated level of activating transcription factor 4). CdTe QDs further promoted an increased C/EBP homologous protein expression, phosphorylation of c-JUN NH2-terminal kinase, and cleavage of ER-resident caspase-4, while the specific inhibitor (SP600125, Z-LEVD-fmk, or salubrinal) significantly attenuated QDs-triggered apoptosis, indicating that all three ER stress-mediated apoptosis pathways were activated and the direct participation of ER in the CdTe QDs-caused apoptotic cell death in HUVECs

  13. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress.

    PubMed

    Yan, Ming; Zhang, Yun; Qin, Haiyan; Liu, Kezhou; Guo, Miao; Ge, Yakun; Xu, Mingen; Sun, Yonghong; Zheng, Xiaoxiang

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs). However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER) in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (-21.63±0.91 mV), with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature). The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine) dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and activation of protein kinase RNA-like ER kinase-eIF2α-activating transcription factor 4 pathway (including phosphorylation of both protein kinase RNA-like ER kinase and eIF2α and elevated level of activating transcription factor 4). CdTe QDs further promoted an increased C/EBP homologous protein expression, phosphorylation of c-JUN NH2-terminal kinase, and cleavage of ER-resident caspase-4, while the specific inhibitor (SP600125, Z-LEVD-fmk, or salubrinal) significantly attenuated QDs-triggered apoptosis, indicating that all three ER stress-mediated apoptosis pathways were activated and the direct participation of ER in the CdTe QDs-caused apoptotic cell death in HUVECs. Our

  14. Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Ge, Shenguang; Lu, Juanjuan; Ge, Lei; Yan, Mei; Yu, Jinghua

    2011-09-01

    A novel procedure for the determination of deltmethrin (DM) is reported. The water-soluble CdTe quantum dots (QDs) and highly fluorescent silica molecularly imprinted nanospheres embedded CdTe QDs (CdTe-SiO 2-MIPs) were prepared and characterized by fluorescence spectroscopy, UV-vis spectroscopy, TEM and IR. The fluorescence nanosensor based CdTe-SiO 2-MIPs is developed. The possible quenching mechanism is discussed by DM. Under optimal conditions, the relative fluorescence intensity of CdTe-SiO 2-MIPs decreased with increasing DM by a Stern-Volmer type equation in the concentration range of 0.5-35.0 μg mL -1, the corresponding detection limit is 0.16 μg mL -1. The developed sensor based on CdTe-SiO 2-MIPs was applied to determine DM in fruit and vegetable samples.

  15. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    SciTech Connect

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu E-mail: jiexiong@uestc.edu.cn; Qian, Zhicheng; Huang, Jianwen; Xiong, Jie E-mail: jiexiong@uestc.edu.cn; Luo, Hongmei

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  16. Preparation of Cu2Te Thin Films and Back-Contact Formation of CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Lv, Bin; Di, Xia; Li, Wei; Feng, Lianghuan; Lei, Zhi; Zhang, Jingquan; Wu, Lili; Cai, Yaping; Li, Bing; Sun, Zhen

    2009-08-01

    Cu2Te thin films were prepared by a coevaporation method. The structural, optical, and electronic properties of Cu2Te thin films were investigated using X-ray diffraction, UV-visible-IR transmittance and reflectance spectra, and Hall measurements. The results show that single-phase Cu2Te thin films can be obtained after annealing at 170 °C, and that annealing temperatures higher than 200 °C induce the Cu2Te coexisting phase. Subsequently, CdTe solar cells with a Cu2Te layer were fabricated and annealed at various temperatures. CdTe solar cells with a single-phase hexagonal Cu2Te layer annealed at a temperature of 180 °C show a good ohmic-contact behavior.

  17. Blinking suppression of CdTe quantum dots on epitaxial graphene and the analysis with Marcus electron transfer

    SciTech Connect

    Hirose, Takuya; Tamai, Naoto; Kutsuma, Yasunori; Kurita, Atsusi; Kaneko, Tadaaki

    2014-08-25

    We have prepared epitaxial graphene by a Si sublimation method from 4H-SiC. Single-particle spectroscopy of CdTe quantum dots (QDs) on epitaxial graphene covered with polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG) showed the suppression of luminescence blinking and ∼10 times decreased luminescence intensity as compared with those on a glass. The electronic coupling constant, H{sub 01}, between CdTe QDs and graphene was calculated to be (3.3 ± 0.4) × 10{sup 2 }cm{sup −1} in PVP and (3.7 ± 0.8) × 10{sup 2 }cm{sup −1} in PEG based on Marcus theory of electron transfer and Tang-Marcus model of blinking with statistical distribution.

  18. Modeling and simulation of Positron Emission Mammography (PEM) based on double-sided CdTe strip detectors

    NASA Astrophysics Data System (ADS)

    Ozsahin, I.; Unlu, M. Z.

    2014-03-01

    Breast cancer is the most common leading cause of cancer death among women. Positron Emission Tomography (PET) Mammography, also known as Positron Emission Mammography (PEM), is a method for imaging primary breast cancer. Over the past few years, PEMs based on scintillation crystals dramatically increased their importance in diagnosis and treatment of early stage breast cancer. However, these detectors have significant limitations like poor energy resolution resulting with false-negative result (missed cancer), and false-positive result which leads to suspecting cancer and suggests an unnecessary biopsy. In this work, a PEM scanner based on CdTe strip detectors is simulated via the Monte Carlo method and evaluated in terms of its spatial resolution, sensitivity, and image quality. The spatial resolution is found to be ~ 1 mm in all three directions. The results also show that CdTe strip detectors based PEM scanner can produce high resolution images for early diagnosis of breast cancer.

  19. Surface band structure of CdTe(111)-2 × 2 by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Janowitz, C.; Manzke, R.; Skibowski, M.; Orlowski, B. A.

    1991-05-01

    The surface band structure of non-cleavable CdTe(111)-2 × 2 reconstructed surfaces is determined by means of angle-resolved photoemission and constant-final-state (CFS) spectroscopy. The experiments were performed with He I radiation and synchrotron radiation from the DORIS II storage ring at HASYLAB. High-quality (111)-2 × 2 surfaces were prepared by sputtering and annealing controlled by electron diffraction (LEED and RHEED). In order to distinguish between surface and bulk related emissions in the spectra we utilized, besides the criteria that the k∥ dispersion of surface states should reveal the 2 × 2 periodicity of the surfac mesh, also photon energy dependent CFS series at several critical points of the surface Brillouin zone. The data on CdTe(111) will be compared with experimental and theoretical results which are available for the electronically similar GaAs(111) surface.

  20. A multifunctional mesoporous Fe3O4/SiO2/CdTe magnetic-fluorescent composite nanoprobe

    NASA Astrophysics Data System (ADS)

    Yin, Naiqiang; Wu, Ping; Liang, Guo; Cheng, Wenjing

    2016-03-01

    A multifunctional mesoporous, magnetic and fluorescent Fe3O4/SiO2/CdTe nanoprobe with well-defined core-shell nanostructures was prepared. This multifunctional nanoprobe was synthesized through a novel method mainly including two steps. The first step involved the controlled growth of mesoporous silica layer onto the surface of Fe3O4 nanoparticle using tetraethyl orthosilicate as silica source, cationic surfactant cetyltrimethylammonium bromide as template, and 1,3,5-triisopropylbenzene as pore swelling agents. The second step involved the layer-by-layer assembly of 3-aminopropyltrimethoxysilane and fluorescent CdTe quantum dots with the mesoporous Fe3O4/SiO2 nanoparticles. The well-designed nanoprobe exhibits strong excitonic photoluminescence and superparamagnetism at room temperature. In attention, the mesoporous silica layer of the nanoprobe with great loading capacity makes it a promising candidate as targeted drug delivery platform.

  1. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    NASA Astrophysics Data System (ADS)

    Gimenez, E. N.; Astromskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N.

    2016-07-01

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e- collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system.

  2. Preparation and Properties of Evaporated CdTe and All Thin Film CdTe/CdS Solar Cells

    NASA Astrophysics Data System (ADS)

    Shahzad, Naseem

    1991-05-01

    Cadmium telluride thin films were prepared by vacuum evaporation of CdTe powder in an attempt to fabricate all thin film solar cells of the type CdTe/CdS. Characterization of CdTe has shown it to have a band gap of 1.522 eV and a resistivity of 22Ω-cm. As prepared, solar cells exhibited low values of output parameters. Given quantity of copper was then deposited on top of the CdTe/CdS solar cells and the whole system was annealed at 350° C. This copper doping changed the output parameters favorably with a maximum efficiency of 1.9%.

  3. A simulation of a CdTe gamma ray detector based on collection efficiency profiles as determined by lateral IBIC

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Fizzotti, F.; Lo Giudice, A.; Polesello, P.; Manfredotti, C.

    1999-06-01

    Collection efficiency profiles as determined by the ion beam-induced charge (IBIC) technique have been considered to evaluate the spectroscopic performance of a cadmium telluride (CdTe) nuclear radiation detector. The dependence of such profiles on the applied bias voltage and the shaping time are presented and discussed on the basis of a theoretical model, which is also used to evaluate the electron/hole collection lengths profiles. Experimental collection efficiency profiles were used as input data of the "ISIDE" Monte Carlo programme to simulate the CdTe response to gamma rays produced by 57Co. A systematic investigation of such spectra obtained under different detection conditions shows the effects of non constant collection efficiency profiles and ballistic deficit on the energy resolution of the detector.

  4. Epitaxial Growth of High-Resistivity CdTe Thick Films Grown Using a Modified Close Space Sublimation Method

    NASA Astrophysics Data System (ADS)

    Jiang, Quanzhong; Brinkman, Andy W.; Veeramani, Perumal; Sellin, Paul. J.

    2010-02-01

    This paper reports the growth of high-resistivity CdTe thick epitaxial films of single crystal nature using a modified close space sublimation method (MCSS) in a Te-rich environment. We propose that the high Te2 partial pressure results in an increased concentration of TeCd antisites acting as deep donors to produce the high-resistivity CdTe, as well as improved quality of thick films. This is in agreement with the deep-donor model introduced by Fiderele et al. [Cryst. Res. Technol. 38 (2003) 588]. The thick films have a µeτe value in the order 10-4 cm2 V-1 and as expected, the TeCd antisites appeared not to act as electron traps.

  5. Band bending at Al, In, Ag, and Pt interfaces with CdTe and ZnTe (110)

    NASA Technical Reports Server (NTRS)

    Wahi, A. K.; Miyano, K.; Carey, G. P.; Chiang, T. T.; Lindau, I.

    1990-01-01

    UV and X-ray photoelectron spectroscopic methods are presently used to study the band-bending behavior and interfacial chemistry of Al, In, Ag, and Pt overlayers on vacuum-cleaved p-CdTe and p-ZnTe (110). All four metals are found to yield Schottky barriers on CdTe and ZnTe. The metal-induced gap states model prediction of a difference in barrier heights for two semiconductors which is dependent on their band lineup is borne out by the results for Ag, Pt, and Al, but not for In. Reaction and intermixing for Al, Ag, and Pt overlayers on CdTe and ZnTe indicate that these interfaces are not ideal.

  6. Electronic structures of HgTe and CdTe surfaces and HgTe/CdTe interfaces

    NASA Technical Reports Server (NTRS)

    Schick, J. T.; Bose, S. M.; Chen, A.-B.

    1989-01-01

    A Green's-function method has been used to study the surface and interface electronic structures of the II-VI compounds HgTe and CdTe. Localized surface and resonance states near the cation-terminated (100) surface of CdTe and the anion-terminated surface of HgTe have been found for the ideal surfaces. The energies and strengths of these surface states are altered by surface perturbations. The bulk states near the surface are drastically modified by the creation of the surface, but the band gaps remain unchanged. Numerical evaluation of the local densities of states at the Gamma and J points shows that, at the (100) interface of HgTe/CdTe, the previously observed surface states are no longer present. However, in the interface region, bulk states of one material penetrate some distance into the other material.

  7. Impact of thermal annealing on optical properties of vacuum evaporated CdTe thin films for solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Lal, C.; Nehra, S. P.; Dhaka, M. S.

    2016-05-01

    In this paper, the impact of thermal annealing on optical properties of cadmium telluride (CdTe) thin films is investigated. The films of thickness 650 nm were deposited on thoroughly cleaned glass substrate employing vacuum evaporation followed by thermal annealing in the temperature range 250-450 °C. The as-deposited and annealed films were characterized using UV-Vis spectrophotometer. The optical band gap is found to be decreased from 1.88 eV to 1.48 eV with thermal annealing. The refractive index is found to be in the range 2.73-2.92 and observed to increase with annealing treatment. The experimental results reveal that the thermal annealing plays an important role to enhance the optical properties of CdTe thin films and annealed films may be used as absorber layer in CdTe/CdS solar cells.

  8. Characterization measurement of a thick CdTe detector for BNCT-SPECT - detection efficiency and energy resolution.

    PubMed

    Murata, Isao; Nakamura, Soichiro; Manabe, Masanobu; Miyamaru, Hiroyuki; Kato, Itsuro

    2014-06-01

    Author׳s group is carrying out development of BNCT-SPECT with CdTe device, which monitors the therapy effect of BNCT in real-time. From the design calculations, the dimensions were fixed to 1.5×2×30mm(3). For the collimator it was confirmed that it would have a good spatial resolution and simultaneously the number of counts would be acceptably large. After producing the CdTe crystal, the characterization measurement was carried out. For the detection efficiency an excellent agreement between calculation and measurement was obtained. Also, the detector has a very good energy resolution so that gamma-rays of 478keV and 511keV could be distinguished in the spectrum. PMID:24581600

  9. Emerging materials for solar cell applications: electrodeposited CdTe. Final report, February 14, 1979-February 14, 1980

    SciTech Connect

    Rod, R.L.; Bunshah, R.; Stafsudd, O.; Basol, B.M.; Nath, P.

    1980-05-15

    Thin film gold/polycrystalline cadmium telluride Schottky solar cells made by electrodepositing the semiconductor on an ITO-coated glass substrate serving also as an ohmic contact demonstrated an internal efficiency of 4% over 2 mm/sup 2/ areas. During the year being reported upon, Monosolar devoted mator attention to refining the electroplating process and determining the parameters governing CdTe film stoichiometry, grain size, substrate adhesion, and quality. UCLA acting as a Monosolar sub-contractor characterized both the CdTe films themselves and solar cells made from them. Techniques were developed for making measurements on films often less than 1 micron in thickness. The highest values achieved for efficiency parameters, not necessarily all in the same cell, were V/sub oc/ = 0.5 V, J/sub sc/ = 11 mA/cm/sup 2/, and fill factor = 0.55 before corrections in the absence of anti-reflection coatings. Typical resistivities for n-CdTe films were 10/sup 5/ ..cap omega..-cm. Lifetimes of about 10/sup -10/ sec were measured. Absorption coefficient of these films is in the order of 10/sup 4/ for lambda < 0.7 ..mu..m. Measured energy gap for these CdTe films is 1.55 eV, sightly higher than the 1.45 eV value for single crystal CdTe. The activation energy of the dominating trap level is 0.55 eV. Trap density is in the order of 10/sup 16//cm/sup 3/. Schottky diodes were of excellent quality and pinhole-free. The measured barrier height varied between 0.75 and 0.85 eV. Rectification ratios of 10/sup 4/ were obtained reproducibly. Films measure about 1 inch square. Indications are that larger and more efficient low cost solar devices can readily be obtained soon using the techniques developed in this program.

  10. Correlation of the Cd-to-Te ratio on CdTe surfaces with the surface structure

    NASA Astrophysics Data System (ADS)

    Wu, Y. S.; Becker, C. R.; Waag, A.; Kraus, M. M.; Bicknell-Tassius, R. N.; Landwehr, G.

    1991-10-01

    We report here that reconstruction on (100), (111)A, and (111)B CdTe surfaces is either c(2×2), (2×2), and (1×1) or (2×1), (1×1), and (1×1) when they are Cd or Te stabilized, respectively. There is a mixed region between Cd and Te stabilization in which the reflected high-energy electron-diffraction (RHEED) patterns contain characteristics of both Cd- and Te-stabilized surfaces. We have also found that the Cd-to-Te ratio of the x-ray photoelectron intensities of their 3d3/2 core levels is about 20% larger for a Cd-stabilized (111)A, (111)B, or (100) CdTe surface than for a Te-stabilized one. According to a simple model calculation, which was normalized by means of the photoelectron intensity ratio of a Cd-stabilized (111)A and a Te-stabilized (111)B CdTe surface, the experimental data for CdTe surfaces can be explained by a linear dependence of the photoelectron-intensity ratio on the fraction of Cd in the uppermost monatomic layer. This surface composition can be correlated with the surface structure, i.e., the corresponding RHEED patterns. This correlation can in turn be employed to determine Te and Cd evaporation rates. The Te reevaporation rate is increasingly slower for the Te-stabilized (111)A, (111)B, and (100) surfaces, while the opposite is true for Cd from Cd-stabilized (111)A and (111)B surfaces. In addition, Te is much more easily evaporated from all the investigated surfaces than is Cd, if the substrate is kept at normal molecular-beam-epitaxy growth temperatures ranging from 200 °C to 300 °C.

  11. Preparation and characterisation of nearly stoichiometric CdTe films from a non-aqueous electrodeposition bath

    NASA Astrophysics Data System (ADS)

    Gore, R. B.; Pandey, Rajendra Kumar; Kumar, S. R.

    1991-06-01

    The cathodic polarisation characteristics and the growth behaviour of CdTe films in an ethylene-glycol-based bath have been studied. Conditions favouring stoichiometric deposition have been examined. The influence of the processing variables on the film properties has also been discussed with the help of the XRD, SEM and XPS studies. It has been shown that the films deposited potentiostatically at -0.8 V are stoichiometric and single phase.

  12. Thermal lensing and frequency chirp in a heated CdTe modulator crystal and its effects on laser radar performance

    NASA Astrophysics Data System (ADS)

    Eng, R. S.; Kachelmyer, A. L.; Harris, N. W.

    1991-08-01

    The effects of optical and microwave heatings and thermally-induced birefringence in a CdTe modulator crystal on the performance of a linear FM CO2 laser radar are examined. This is conducted in terms of reductions in beam Strehl ratio and dynamic ranges of the Doppler shift and range for given optical and microwave powers. An analysis of the thermal lenses generated by these heatings is presented.

  13. Infrared magneto-transmission studies of the 2DEGs in (CdMn)Te and CdTe Quantum wells

    NASA Astrophysics Data System (ADS)

    Tanveer, Imtiaz; Wiater, Maciej; Karczewski, Grzegorz; Wojtowicz, Tomasz; McCombe, B. D.

    We are probing quantum hall ferromagnetism (QHF) in the 2DEG of Modulation-doped quantum wells (QWs) in the (CdMn)Te/(CdMg)Te (with 1.5% Mn) heterostructure system by THz cyclotron resonance. Samples with CdTe QWs are also studied. Both structures have the same QW width (30 nm), very similar electron densities in the wells ~3.0 x 1011 cm-2 and mobilities of 450,000 (CdTe) and 66,000 cm2/Vs ((CdMn)Te) at 1.6 K. The electron effective masses (m*/m0) from cyclotron resonance measurements at 5K are 0.110 +/- 0.001 for CdTe and 0.114 +/- 0.003 for (CdMn)Te . Linear fits to the resonance positions in frequency vs. field give small non-zero intercepts which may result from small non-parabolicity or bound magneto-plasmon effects. The FWHM linewidths from Lorentzian fits of the transmission minima are ~2 cm-1(CdTe) and ~8 cm-1((CdMn)Te). Our present focus is on detailed studies of the CR positions and linewidths in the magnetic field region around the cusp-like behavior in the Rxx oscillations, which indicates the presence of the QHF state. The field position of this state is tuned via electron density in the QWs varied incrementally by a photon-dose method with an in-situ green LED. Work at UB was supported in part by the Office of the Provost, and work in Poland was supported in part by the National Science Centre through Grant DEC-2012/06/A/ST3/00247.

  14. Quasi-phase matching analysis of the terahertz generation in CdTe pumped by 1064nm ns laser

    NASA Astrophysics Data System (ADS)

    Huang, Jing Guo; Wang, Bing Bing; Lu, Jin Xing; Huang, Zhi Ming

    2011-08-01

    The terahertz radiation from the crystal of Cadmium Telluride (CdTe) can be achieved in difference frequency generation (DFG) experiment of 1064 nm nanosecond laser for collinear configuration. For the isotropic crystal CdTe, the exact phase matching could not be fulfilled by the two NIR lasers. However, if the interaction length is smaller than the coherent length, quasi-phase matching could be achieved. In order to understand the property of the coherent length in CdTe, the property of the refractive index and the absorption coefficient at the THz region is analyzed by two kinds of transmission spectra: one from Terahertz Time-Domain Spectroscopy (TDS) and the other from Fourier Transform Infrared Spectrometer (FTIRS). From the transmission spectra of FTIRS, four absorption lines are detected: 2.1 Thz, 4.2 Thz, 7.4 Thz, and 8.6 Thz. Also additional two little absorption peaks occurred at 1.6 Thz and 1.8 Thz. This maybe explained by the phone mode LO-LA and LA-TA, respectively. Below 1.0 Thz, the absorption coefficient is small and constant (about 5cm-1). Based on the refractive index spectra of THz-TDS, the coherent length calculated increases linearly with the THz wavelength in the region of 200μm to 900μm, with its' value 3.6 mm at 300μm. Then interaction length can be long enough to satisfy the quasi-phase matching condition. A high power and compactable terahertz source can be obtained from CdTe under 1 Thz, which can be tuned continually and operated under room temperature.

  15. Thin film solar cells based on CdTe and Cu(In,Ga)Se2 (CIGS) compounds

    NASA Astrophysics Data System (ADS)

    Gladyshev, P. P.; Filin, S. V.; Puzynin, A. I.; Tanachev, I. A.; Rybakova, A. V.; Tuzova, V. V.; Kozlovskiy, S. A.; Gremenok, V. F.; Mudryi, A. V.; Zaretskaya, E. P.; Zalesskiy, V. B.; Kravchenko, V. M.; Leonova, U. R.; Khodin, A. A.; Pilipovich, V. A.; Polikanin, A. M.; Khrypunov, G. S.; Chernyh, E. P.; Kovtun, N. A.; Belonogov, E. K.; Ievlev, V. M.; Dergacheva, M. B.; Stacuk, V. N.; Fogel, L. A.

    2011-04-01

    We are publishing recent results in chalcogenide photoelectric convertors fabrication, which are efforts of many scientific teams from Russia, Belarus, Ukraine, and Kazakhstan. Competitively high efficiency of photoelectric convertors (11.4% for CdTe and 11% for CIGS) was achieved in the process of our work. Furthermore, luminescent filters for improvement of spectral response of such chalcogenide solar cells in a short wavelengths region were also developed and investigated here.

  16. Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems.

    PubMed

    Han, Kai; Wang, Mei; Zhang, Shuai; Wu, Suli; Yang, Yong; Sun, Licheng

    2015-04-25

    A hybrid system with a coordinative interaction between a cobalt complex of a N2S2-tetradentate ligand and CdTe quantum dots displayed a high activity (initial TOF 850 h(-1)) and improved stability (TON 1.44 × 10(4) based on catalyst over 30 h) for the photochemical H2 generation from water, with a quantum efficiency of 5.32% at 400 nm. PMID:25800286

  17. Development of a CdTe pixel detector with a window comparator ASIC for high energy X-ray applications

    NASA Astrophysics Data System (ADS)

    Hirono, T.; Toyokawa, H.; Furukawa, Y.; Honma, T.; Ikeda, H.; Kawase, M.; Koganezawa, T.; Ohata, T.; Sato, M.; Sato, G.; Takagaki, M.; Takahashi, T.; Watanabe, S.

    2011-09-01

    We have developed a photon-counting-type CdTe pixel detector (SP8-01). SP8-01 was designed as a prototype of a high-energy X-ray imaging detector for experiments using synchrotron radiation. SP8-01 has a CdTe sensor of 500 μm thickness, which has an absorption efficiency of almost 100% up to 50 keV and 45% even at 100 keV. A full-custom application specific integrated circuit (ASIC) was designed as a readout circuit of SP8-01, which is equipped with a window-type discriminator. The upper discriminator realizes a low-background measurement, because X-ray beams from the monochromator contain higher-order components beside the fundamental X-rays in general. ASIC chips were fabricated with a TSMC 0.25 μm CMOS process, and CdTe sensors were bump-bonded to the ASIC chips by a gold-stud bonding technique. Beam tests were performed at SPring-8. SP8-01 detected X-rays up to 120 keV. The capability of SP8-01 as an imaging detector for high-energy X-ray synchrotron radiation was evaluated with its performance characteristics.

  18. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  19. Electrical characterization of CdTe grain-boundary properties from as processed CdTe/CdS solar cells

    SciTech Connect

    Woods, L.M.; Robinson, G.Y.; Levi, D.H.; Ahrenkiel, R.K.; Kaydanov, V.

    1998-09-01

    An ability to liftoff or separate the thin-film polycrystalline CdTe from the CdS, without the use of chemical etches, has enabled direct electrical characterization of the as-processed CdTe near the CdTe/CdS heterointerface. The authors use this ability to understand how a back-contact, nitric-phosphoric (NP) etch affects the grain boundaries throughout the film. Quantitative determination of the grain-boundary barrier potentials and estimates of doping density near the grain perimeter are determined from theoretical fits to measurements of the current vs. temperature. Estimates of the bulk doping are determined from high-frequency resistivity measurements. The light and dark barrier potentials change after the NP etch, and the origin of this change is postulated. Also, a variable doping density within the grains of non-etched material has been determined. These results allow a semi-quantitative grain-boundary band diagram to be drawn that should aid in determining more accurate two-dimensional models for polycrystalline CdTe solar cells.

  20. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  1. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE PAGESBeta

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  2. Influence of a high resistivity transparent (HRT) layer on the performance of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Mahabaduge, Hasitha; Wieland, Kristopher; Compaan, Alvin

    2010-04-01

    Cadmium telluride (CdTe) solar cells have become very successful for large scale application of photovoltaic energy conversion with Ohio-based solar cell manufacturer, First Solar, now the largest manufacturer of thin-film cells in the world. Although CdTe solar cells have shown laboratory efficiencies in excess of 16.5% its realistic potential efficiency is well above 20%. High-resistivity transparent oxide buffer layers (HRT's) added between the transparent conducting oxide (TCO) and CdS layers in CdTe solar cells can enhance the performance of the device. Our results show an increase in efficiency with the HRT layer with the greatest contribution coming from improved fill factor (FF). Open circuit-voltage (Voc) and short-circuit current (Jsc) stay relatively constant. The effect of different materials as the HRT layer on the cell structure TCO/HRT/CdS/CdTe/Cu/Au was investigated using commercially available SnO2:F as the TCO. The study included ZnO, ZnO:Al, SiO2, SnO2 and Al2O3. Our results show that ZnO and ZnO:Al are promising candidates for the HRT layer and the use of ZnO:Al reactively sputtered with O2 is particularly attractive since the transition from TCO to HRT is accomplished simply by adding O2 to the Ar sputtering gas.

  3. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    NASA Astrophysics Data System (ADS)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  4. Implantation effects on resonant Raman scattering in CdTe and Cd 0.23Hg 0.77Te

    NASA Astrophysics Data System (ADS)

    Ramsteiner, M.; Lusson, A.; Wagner, J.; Koidl, P.; Bruder, M.

    1990-04-01

    We have studied In + implanted CdTe and Cd 0.23Hg 0.77Te by resonant Raman scattering. The laser excitation was in resonance with the EO + Δ O band gap in CdTe or the E1 gap in Cd 0.23Hg 0.77Te. Under these conditions dipole forbidden but defect ind scattering by one longitudinal optical (LO) phonon as well as Fröhlich-induced two-LO phonon scattering is observed. In both cases scattering is found to be strongly affected by ion implantation. In + was implanted at an ion energy of 350 keV with doses ranging from 10 11 to 5×10 14 ions/cm 2. The intensity ratio of the one-LO phonon lines is found to be a quantitative measure of the implantation damage in CdTe and Cd 0.23Hg 0.77Te even for doses as low as 10 11 ions/cm 2. It is shown that the observed effects of implantation damage on resonant Raman scattering by LO phonons are due to a broadening and an energy shift of the corresponding resonances in the Raman scattering efficiency.

  5. Comparison of NaI(Tl), CdTe, and HgI2 surgical probes: physical characterization.

    PubMed

    Barber, H B; Barrett, H H; Hickernell, T S; Kwo, D P; Woolfenden, J M; Entine, G; Ortale Baccash, C

    1991-01-01

    The physical properties of three surgical probes containing different radiation detectors are compared: a NaI(Tl) scintillator with a flexible, fiber-optic light guide, and two semiconductor detectors that operate at room temperature, CdTe and HgI2. Also compared are spectra, energy resolutions, and counting efficiencies measured at a variety of gamma-ray energies between 30 and 1000 keV. The energy resolution of the NaI probe is substantially poorer than that of either semiconductor probe due in part to light losses in coupling the scintillator to the fiber optics. The semiconductor probes have complex spectral response due to charge-carrier trapping and K x-ray escape, and not all photoelectric interactions in these detectors contribute to the useful part of the photopeak. Above 120 keV the counting efficiency for the NaI probe is an order of magnitude higher than for the CdTe and HgI2 probes. Both energy resolution and counting efficiency are slightly better for the HgI2 probe than for the CdTe probe. PMID:1870478

  6. Charge separation in type II tunneling structures of close-packed CdTe and CdSe nanocrystals.

    PubMed

    Gross, Dieter; Susha, Andrei S; Klar, Thomas A; Da Como, Enrico; Rogach, Andrey L; Feldmann, Jochen

    2008-05-01

    We report on charge separation between type II aligned CdTe and CdSe nanocrystals. Two types of electrostatically bound nanocrystal structures have been studied: first, clusters of nanocrystals hold together by Ca(II) ions in aqueous solution and, second, thin film structures of nanocrystals created with layer-by-layer deposition in combination with polyelectrolytes. In both types of structures, short interparticle distances of less than 1 nm have been achieved, whereby the isolating organic ligands on the nanocrystal surfaces and/or the polymer monolayers act as tunneling barriers between nanocrystals. We have observed an efficient quenching of photoluminescence and a reduced emission lifetime for CdTe nanocrystals in both types of type II heterostructures. This result is explained by a spatial charge separation of the photoexcited electron-hole pairs due to tunneling of charge carriers through the thin organic layer between CdTe and CdSe nanocrystals. Type II heterostructures demonstrated here may find future applications in photovoltaics. PMID:18410153

  7. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    SciTech Connect

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  8. Design and optimization of large area thin-film CdTe detector for radiation therapy imaging applications

    SciTech Connect

    Parsai, E. Ishmael; Shvydka, Diana; Kang, Jun

    2010-08-15

    Purpose: The authors investigate performance of thin-film cadmium telluride (CdTe) in detecting high-energy (6 MV) x rays. The utilization of this material has become technologically feasible only in recent years due to significant development in large area photovoltaic applications. Methods: The CdTe film is combined with a metal plate, facilitating conversion of incoming photons into secondary electrons. The system modeling is based on the Monte Carlo simulations performed to determine the optimized CdTe layer thickness in combination with various converter materials. Results: The authors establish a range of optimal parameters producing the highest DQE due to energy absorption, as well as signal and noise spatial spreading. The authors also analyze the influence of the patient scatter on image formation for a set of detector configurations. The results of absorbed energy simulation are used in device operation modeling to predict the detector output signal. Finally, the authors verify modeling results experimentally for the lowest considered device thickness. Conclusions: The proposed CdTe-based large area thin-film detector has a potential of becoming an efficient low-cost electronic portal imaging device for radiation therapy applications.

  9. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors

    NASA Astrophysics Data System (ADS)

    Cassol, F.; Portal, L.; Graber-Bolis, J.; Perez-Ponce, H.; Dupont, M.; Kronland, C.; Boursier, Y.; Blanc, N.; Bompard, F.; Boudet, N.; Buton, C.; Clémens, J. C.; Dawiec, A.; Debarbieux, F.; Delpierre, P.; Hustache, S.; Vigeolas, E.; Morel, C.

    2015-07-01

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  10. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors.

    PubMed

    Cassol, F; Portal, L; Graber-Bolis, J; Perez-Ponce, H; Dupont, M; Kronland, C; Boursier, Y; Blanc, N; Bompard, F; Boudet, N; Buton, C; Clémens, J C; Dawiec, A; Debarbieux, F; Delpierre, P; Hustache, S; Vigeolas, E; Morel, C

    2015-07-21

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images. PMID:26133567

  11. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths. PMID:25133302

  12. Effect of surface stoichiometry and interfacial interactions on ultrafast carrier dynamics of crystalline CdTe (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    He, Xing; Punpongjareorn, Napat; Wu, Chengyi; Rajagopal, Karjini; Yang, Ding-Shyue

    2015-08-01

    To improve the efficiency of optoelectronic devices, it is critical to understand the carrier dynamics of photoactive materials and the mechanisms involved, including those effects caused by different surface stoichiometry and/or interfacial interactions. A good example is CdTe, which exhibits cost-effective high performance in thin-film photovoltaic cells; it is also known to show surface oxidation, which may affect device efficiency and hence limit the production methods used. In this contribution, we present ultrafast carrier dynamics of crystalline CdTe specimens with different surface conditions using transient reflectivity measurements, following a femtosecond above-gap excitation. The distinct differences observed in the dynamics and the time constants for oxidized and stoichiometrically restored specimens indicate the major role of surface tellurium oxide on the relaxation of photoinduced carriers. The much slower recovery observed on oxidized surfaces is attributed to a transfer (and trapping) of electrons to the tellurium atoms with a high oxidation state, which signifies a charge separation near the surface. To distinguish the effect caused by oxygen adsorption, we also examined the carrier dynamics of CdTe surfaces covered by a thin layer of water molecules for comparison. These results, which show clear interfacial effects, may have broader implications for the understanding of carrier dynamics in nanostructured and polycrystalline specimens under different chemical environments, as such materials exhibit a high surface-to-volume ratio.

  13. A low-cost non-toxic post-growth activation step for CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  14. A low-cost non-toxic post-growth activation step for CdTe solar cells.

    PubMed

    Major, J D; Treharne, R E; Phillips, L J; Durose, K

    2014-07-17

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 10(14) cm(-3)) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production. PMID:25030171

  15. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    NASA Astrophysics Data System (ADS)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an

  16. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Antier, S.; Ferrando, P.; Limousin, O.; Caroli, E.; Curado da Silva, R. M.; Blondel, C.; Chipaux, R.; Honkimaki, V.; Horeau, B.; Laurent, P.; Maia, J. M.; Meuris, A.; Del Sordo, S.; Stephen, J. B.

    2015-06-01

    Since the initial exploration of the X- and soft γ-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars, black holes, and Active Galactic Nuclei are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical processes in these high energy sources, allowing the discrimination between competing models which may otherwise all be consistent with other types of measurement. This is why most of the projects for the next generation of space missions covering the few tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability, in this energy range, is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The compact hard X-ray imaging spectrometer module, developed in CEA with the generic name of "Caliste" module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility (ESRF). These results, obtained at 200 and 300 keV, demonstrate the capability of these modules to detect Compton events and to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. For example, applying an optimized selection to our data set, equivalent to select 90° Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78 ± 0.06 in the 200-300 keV range. The polarization angle and fraction are derived with accuracies of approximately 1° and 5 % respectively for both CdZnTe and CdTe crystals. The

  17. High efficiency thin film CdTe and a-Si based solar cells

    SciTech Connect

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2000-01-04

    This report describes work done by the University of Toledo during the first year of this subcontract. During this time, the CdTe group constructed a second dual magnetron sputter deposition facility; optimized reactive sputtering for ZnTe:N films to achieve 10 ohm-cm resistivity and {approximately}9% efficiency cells with a copper-free ZnTe:N/Ni contact; identified Cu-related photoluminescence features and studied their correlation with cell performance including their dependence on temperature and E-fields; studied band-tail absorption in CdS{sub x}Te{sub 1{minus}x} films at 10 K and 300 K; collaborated with the National CdTe PV Team on (1) studies of high-resistivity tin oxide (HRT) layers from ITN Energy Systems, (2) fabrication of cells on the HRT layers with 0, 300, and 800-nm CdS, and (3) preparation of ZnTe:N-based contacts on First Solar materials for stress testing; and collaborated with Brooklyn College for ellipsometry studies of CdS{sub x}Te{sub 1{minus}x} alloy films, and with the University of Buffalo/Brookhaven NSLS for synchrotron X-ray fluorescence studies of interdiffusion in CdS/CdTe bilayers. The a-Si group established a baseline for fabricating a-Si-based solar cells with single, tandem, and triple-junction structures; fabricated a-Si/a-SiGe/a-SiGe triple-junction solar cells with an initial efficiency of 9.7% during the second quarter, and 10.6% during the fourth quarter (after 1166 hours of light-soaking under 1-sun light intensity at 50 C, the 10.6% solar cells stabilized at about 9%); fabricated wide-bandgap a-Si top cells, the highest Voc achieved for the single-junction top cell was 1.02 V, and top cells with high FF (up to 74%) were fabricated routinely; fabricated high-quality narrow-bandgap a-SiGe solar cells with 8.3% efficiency; found that bandgap-graded buffer layers improve the performance (Voc and FF) of the narrow-bandgap a-SiGe bottom cells; and found that a small amount of oxygen partial pressure ({approximately}2 {times} 10

  18. Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry.

    PubMed

    Kalytchuk, Sergii; Zhovtiuk, Olga; Kershaw, Stephen V; Zbořil, Radek; Rogach, Andrey L

    2016-01-27

    Temperature-dependent optical studies of semiconductor quantum dots (QDs) are fundamentally important for a variety of sensing and imaging applications. The steady-state and time-resolved photoluminescence properties of CdTe QDs in the size range from 2.3 to 3.1 nm embedded into a protective matrix of NaCl are studied as a function of temperature from 80 to 360 K. The temperature coefficient is found to be strongly dependent on QD size, with the highest sensitivity obtained for the smallest size of QDs. The emission from solid-state CdTe QD-based powders is maintained with high color purity over a wide range of temperatures. Photoluminescence lifetime data suggest that temperature dependence of the intrinsic radiative lifetime in CdTe QDs is rather weak, and it is mostly the temperature-dependent nonradiative decay of CdTe QDs which is responsible for the thermal quenching of photoluminescence intensity. By virtue of the temperature-dependent photoluminescence behavior, high color purity, photostability, and high photoluminescence quantum yield (26%-37% in the solid state), CdTe QDs embedded in NaCl matrices are useful solid-state probes for thermal imaging and sensing over a wide range of temperatures within a number of detection schemes and outstanding sensitivity, such as luminescence thermochromic imaging, ratiometric luminescence, and luminescence lifetime thermal sensing. PMID:26618345

  19. Eects of Post Deposition Treatments on Vacuum Evaporated CdTe Thin Films and CdS=CdTe Heterojunction Devices

    NASA Astrophysics Data System (ADS)

    Bayhan, Habibe; Erçelebý, Çiðdem

    1998-05-01

    CdTe, CdS thin films and n-CdS/p-CdTe heterostructures have been prepared by conventional vacuum evaporation technique. Some post deposition treatments to optimize the device efficiency have been analyzed and the effects of the individual process steps on the material and device properties were investigated. Annealing in air with and without CdCl2-treatment decreased the CdTe resistivity. The CdCl2-dip followed by annealing in air at 300°C for 5 min improved the grain size and polycrystalline nature of CdTe thin films. Solar efficiency improvements were achieved when heterojunctions were prepared on successively treated (i.e. etched, air annealed, CdCl2-processed) CdTe surfaces. Etching of the CdTe surface with potassium dichromate solution prior to metal contact deposition lead to the formation of low-resistance Au contacts and increase in open circuit voltage and fill factor values.

  20. FRET Studies Between CdTe Capped by Small-Molecule Ligands and Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    Water-soluble luminescent semiconductor nanocrystals also known as quantum dots (QDs) that have prominent photostability, wide absorption cross sections and tunable narrow emission, have been shown as promising probes in immunoassays. QDs are often used as donors in fluorescence resonance energy transfer (FRET) based sensors using organic dyes or fluorescent proteins as acceptors. Here, the FRET between a QD donor and fluorescent protein acceptors has been studied. The fluorescent protein (FP)mCherry appended with a hexa-histidine-tag could effectively self-assemble onto CdTe to produce small donor-acceptor distances and hence highly efficient FRET (efficiency > 80%) at relatively low FP:CdTe copy numbers (ca.1). Using the Förster dipole-dipole interaction formula, the Förster radius (R0) and respective donor-acceptor distances for the CdTe-FP FRET systems have been calculated. The binding constants (Kd) of the QD-FP systems have also been evaluated by the emission spectra.

  1. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    DOE PAGESBeta

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-06-03

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocationmore » cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.« less

  2. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    NASA Astrophysics Data System (ADS)

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-06-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.

  3. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  4. Stability and removal of water soluble CdTe quantum dots in water.

    PubMed

    Zhang, Yang; Chen, Yongsheng; Westerhoff, Paul; Crittenden, John C

    2008-01-01

    Commercial use of quantum dots (GDs) will lead to their entry into aquatic environments. This study examines the characteristics and stability of CdTe QDs with thioglycolate capping ligands in water as well as their removal by alum salts. The capping ligands of QDs are a key factor in determining their fate in water. Protonated thioglycolate capping ligands cause QDs to aggregate. The stability of QDs depends more on their ionic composition in water than on the ionic strength. In KCl solution, QDs remain stable even under 0.15 M ionic strength. Relatively low concentrations (< or = 2 meq/L) of divalent (Mg2+ and Ca2+) or trivalent (Al3+) cations, however, can induce aggregation. The proposed mechanism for this phenomenon is that multivalent metal cations (or their hydrated species) react with capping ligands to form complexes that bridge QDs or neutralize their surface charges. Because the complexation of hydrated Al3+ with capping ligands inhibits the formation of Al(OH)3 precipitates, alum dosages higher than the A3+ solubility are required to form settleable flocs and remove QDs from nanopure water by sedimentation. Divalent cations (Mg2+ and Ca2+) in tap water induce the formation of settleable QD flocs such that 70-80% of the QGDs by mass settle out. PMID:18350915

  5. Imaging of Ra-223 with a small-pixel CdTe detector

    NASA Astrophysics Data System (ADS)

    Scuffham, J. W.; Pani, S.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.; Cernik, R. J.

    2015-01-01

    Ra-223 Dichloride (Xofigo™) is a promising new radiopharmaceutical offering survival benefit and palliation of painful bone metastases in patients with hormone-refractory prostate cancer [1]. The response to radionuclide therapy and toxicity are directly linked to the absorbed radiation doses to the tumour and organs at risk respectively. Accurate dosimetry necessitates quantitative imaging of the biodistribution and kinetics of the radiopharmaceutical. Although primarily an alpha-emitter, Ra-223 also has some low-abundance X-ray and gamma emissions, which enable imaging of the biodistribution in the patient. However, the low spectral resolution of conventional gamma camera detectors makes in-vivo imaging of Ra-223 challenging. In this work, we present spectra and image data of anthropomorphic phantoms containing Ra-223 acquired with a small-pixel CdTe detector (HEXITEC) [2] with a pinhole collimator. Comparison is made with similar data acquired using a clinical gamma camera. The results demonstrate the advantages of the solid state detector in terms of scatter rejection and quantitative accuracy of the images. However, optimised collimation is needed in order for the sensitivity to rival current clinical systems. As different dosage levels and administration regimens for this drug are explored in current clinical trials, there is a clear need to develop improved imaging technologies that will enable personalised treatments to be designed for patients.

  6. High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates

    SciTech Connect

    Mahabaduge, H. P.; Rance, W. L.; Burst, J. M.; Reese, M. O.; Gessert, T. A.; Metzger, W. K.; Barnes, T. M.; Meysing, D. M.; Wolden, C. A.; Li, J.; Beach, J. D.; Garner, S.

    2015-03-30

    Flexible, high-efficiency, low-cost solar cells can enable applications that take advantage of high specific power, flexible form factors, lower installation and transportation costs. Here, we report a certified record efficiency of 16.4% for a flexible CdTe solar cell that is a marked improvement over the previous standard (14.05%). The improvement was achieved by replacing chemical-bath-deposited CdS with sputtered CdS:O and also replacing the high-temperature sputtered ZnTe:Cu back contact layer with co-evaporated and rapidly annealed ZnTe:Cu. We use quantum efficiency and capacitance-voltage measurements combined with device simulations to identify the reasons for the increase in efficiency. Both device simulations and experimental results show that higher carrier density can quantitatively account for the increased open circuit voltage (V{sub OC}) and Fill Factor (FF), and likewise, the increase in short circuit current density (J{sub SC}) can be attributed to the more transparent CdS:O.

  7. Effect of Chloride Passivation on Recombination Dynamics in CdTe Colloidal Quantum Dots

    PubMed Central

    Espinobarro-Velazquez, Daniel; Leontiadou, Marina A; Page, Robert C; Califano, Marco; O'Brien, Paul; Binks, David J

    2015-01-01

    Colloidal quantum dots (CQDs) can be used in conjunction with organic charge-transporting layers to produce light-emitting diodes, solar cells and other devices. The efficacy of CQDs in these applications is reduced by the non-radiative recombination associated with surface traps. Here we investigate the effect on the recombination dynamics in CdTe CQDs of the passivation of these surface traps by chloride ions. Radiative recombination dominates in these passivated CQDs, with the radiative lifetime scaling linearly with CQD volume over τr=20–55 ns. Before chloride passivation or after exposure to air, two non-radiative components are also observed in the recombination transients, with sample-dependent lifetimes typically of less than 1 ns and a few ns. The non-radiative dynamics can be explained by Auger-mediated trapping of holes and the lifetimes of this process calculated by an atomistic model are in agreement with experimental values if assuming surface oxidation of the CQDs. PMID:25630838

  8. Empirical correlations between the arrhenius' parameters of impurities' diffusion coefficients in CdTe crystals

    SciTech Connect

    Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.

    2015-01-21

    Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–ΔEa/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ΔEa, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities and Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.

  9. Empirical correlations between the arrhenius' parameters of impurities' diffusion coefficients in CdTe crystals

    DOE PAGESBeta

    Shcherbak, L.; Kopach, O.; Fochuk, P.; James, R. B.; Bolotnikov, A. E.

    2015-01-21

    Understanding of self- and dopant-diffusion in semiconductor devices is essential to our being able to assure the formation of well-defined doped regions. In this paper, we compare obtained in the literature up to date the Arrhenius’ parameters (D=D0exp(–ΔEa/kT)) of point-defect diffusion coefficients and the I-VII groups impurities in CdTe crystals and films. We found that in the diffusion process there was a linear dependence between the pre-exponential factor, D0, and the activation energy, ΔEa, of different species: This was evident in the self-diffusivity and isovalent impurity Hg diffusivity as well as for the dominant IIIA and IVA groups impurities andmore » Chlorine, except for the fast diffusing elements (e.g., Cu and Ag), chalcogens O, S, and Se, halogens I and Br as well as the transit impurities Mn, Co, Fe. As a result, reasons of the lack of correspondence of the data to compensative dependence are discussed.« less

  10. Purification of p-type CdTe crystals by thermal treatment

    NASA Astrophysics Data System (ADS)

    Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Nykoniuk, Ye.; Shlyakhovyj, V.; Bolotnikov, A. E.; Yang, Ge; James, R. B.

    2014-09-01

    We studied the influence of prolonged thermal treatment on the concentration and the acceptor energy level positions in p-CdTe samples. We found that heating them at 720 K entails a decrease in the concentration of electrically active centers, i.e., a "self-cleaning" of the adverse effects of some contaminants. In samples wherein the conductivity was determined by the concentration of acceptors of the A1 type (EV + 0.03-0.05) eV, after heating it becomes controlled by a deeper acceptor of the A2 type (EV + 0.13-0.14) eV, and both the charge-carrier's mobility and the ratio μр80/μр300 increase. This effect reflects the fact that during thermal treatment, the A1 acceptors and the compensating donors are removed from their electrically active positions, most likely due to their diffusion and trapping within the inclusions in the CdTe bulk, where they have little or no influence on carrier scattering and trapping.

  11. Spatially resolved measurements of charge carrier lifetimes in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Kraft, C.; Hempel, H.; Buschmann, V.; Siebert, T.; Heisler, C.; Wesch, W.; Ronning, C.

    2013-03-01

    The lifetime of the minority charge carriers in polycrystalline Cadmium Telluride (pc-CdTe) for solar cell applications is a crucial material parameter and has been determined by analysis of the decay curves of the luminescence signal. Both the lateral and the transversal distributions of the carrier lifetime on the surface and in the bulk of pc-CdTe material as well as the respective solar cell characteristics were measured as a function of the deposition technique, the activation treatment, and the incorporation of additional group-V elements. The results are compared to prior studies. It was found that an activation process passivates grain boundaries and increases the carrier lifetime, which is then higher at the pn-junction than at the surface. Furthermore, nitrogen and phosphorus doping of the CdTe absorber material influences the charge carrier lifetime. The results show that the spatial resolved measurement of the carrier lifetime in pc-CdTe gives an important insight to the charge carrier dynamics of the material.

  12. Tilt growth of CdTe epilayers on sapphire substrates by MOCVD

    NASA Astrophysics Data System (ADS)

    Ebe, H.; Sawada, A.; Maruyama, K.; Nishijima, Y.; Shinohara, K.; Takigawa, H.

    1991-12-01

    We studied model lattice matching in the growth direction by tilt growth and found that the ratio of the tilt angle of the epilayer (α) to the offset angle of the substrate (θ) had a maximum at α / θ = 0.73, independent of the offset angle. Experimental plots of the ratio versus the full width at half maximum (FWHM) of (333) CdTe rocking curves in double-crystal X-ray diffraction show that the ratio ranges from 0.05 to 0.6 while the FWHM varies from 1100 to 400 arc sec. This result suggests that the lattice inclination orients the lattice structure perpendicular to the CdTe-sapphire heterointerface and that the tilt angle reduces defects such as dislocations and stacking faults. Most epilayers grown on sapphire substrates with offset angles above 3° were confirmed to have a α / θ ratio below 0.2. This suggests that crystal defects may be generated by shearing stress due to large offset angles. Greater defect density lowers the ratio and degrades crystallinity.

  13. Quantum spin Hall effect in α -Sn /CdTe(001 ) quantum-well structures

    NASA Astrophysics Data System (ADS)

    Küfner, Sebastian; Matthes, Lars; Bechstedt, Friedhelm

    2016-01-01

    The electronic and topological properties of heterovalent and heterocrystalline α -Sn/CdTe(001) quantum wells (QWs) are studied in dependence on the thickness of α -Sn by means of ab initio calculations. We calculate the topological Z2 invariants of the respective bulk crystals, which identify α -Sn as strong three-dimensional (3D) topological insulators (TIs), whereas CdTe is a trivial insulator. We predict the existence of two-dimensional (2D) topological interface states between both materials and show that a topological phase transition from a trivial insulating phase into the quantum spin Hall (QSH) phase in the QW structures occurs at much higher thicknesses than in the HgTe case. The QSH effect is characterized by the localization, dispersion, and spin polarization of the topological interface states. We address the distinction of the 3D and 2D TI characters of the studied QW structures, which is inevitable for an understanding of the underlying quantum state of matter. The 3D TI nature is characterized by two-dimensional topological interface states, while the 2D phase exhibits one-dimensional edge states. The two different state characteristics are often intermixed in the discussion of the topology of 2D QW structures, especially, the comparison of ab initio calculations and experimental transport studies.

  14. Electronic structure of the CdTe(111) A-(2 × 2) surface

    NASA Astrophysics Data System (ADS)

    Bekenev, V. L.; Zubkova, S. M.

    2015-09-01

    Based on data of scanning tunneling microscopy, ab initio calculations of the electronic structure were performed for the first time for four variants of Cd-terminated polar CdTe(111) A-(2 × 2) surfaces, namely, ideal, relaxed, reconstructed with a Cd vacancy, and reconstructed with the subsequent relaxation. In the approximation of a layered superlattice, the surfaces were simulated by a film with a thickness of 12 atomic layers and a vacuum gap of ˜16 Å. Dangling bonds of Te atoms were closed by adding, on the opposite side of the film, four fictive hydrogen atoms, each having a charge of 0.5 electrons. Ab initio calculations were performed with the QUANTUM ESPRESSO program based on the density functional theory. In each of the variants, the equilibrium coordinates of 16 (15) atoms of cadmium and tellurium of the upper four freestanding layers were determined. It was shown that the relaxation leads to a splitting of layers of both the unreconstructed and reconstructed surfaces. For four variants of the surfaces, the band structures were calculated and analyzed, as well as the total densities of states of the surfaces and densities of states of individual layers. After the relaxation of the reconstructed surface, the upper two atomic layers 11 and 12 changed their places, which can be responsible for the specific features of the surface structure of these layers.

  15. Mechanical and Electrical Properties of CdTe Tetrapods Studied byAtomic Force Microscopy

    SciTech Connect

    Fang, Liang; Park, Jeong Young; Cui, Yi; Alivisatos, Paul; Shcrier, Joshua; Lee, Byounghak; Wang, Lin-Wang; Salmeron, Miquel

    2007-08-30

    The mechanical and electrical properties of CdTe tetrapod-shaped nanocrystals have been studied with atomic force microscopy. Tapping mode images of tetrapods deposited on silicon wafers revealed that they contact the surface with the ends of three arms. The length of these arms was found to be 130 {+-} 10 nm. A large fraction of the tetrapods had a shortened vertical arm as a result of fracture during sample preparation. Fracture also occurs when the applied load is a few nanonewtons. Compression experiments with the AFM tip indicate that tetrapods with the shortened vertical arm deform elastically when the applied force was less than 50 nN. Above 90 nN additional fracture events occurred that further shorted the vertical arm. Loads above 130 nN produced irreversible damage to the other arms as well. Current-voltage characteristics of tetrapods deposited on gold indicated semiconducting behavior with a current gap of {approx}2 eV at low loads (<50 nN) and a narrowing to about 1 eV at loads between 60 and 110 nN. Atomic calculation of the deformation suggests that the ends of the tetrapod arms are stuck during compression so that the deformations are due to bending modes. The reduction of the current gap is due to electrostatic effects, rather than strain deformation effects inside the tetrapod.

  16. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface.

    PubMed

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K Y; Klie, Robert F; Kim, Moon J

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1-10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  17. Experimental observation of spin-dependent electron many-body effects in CdTe

    SciTech Connect

    Horodyská, P.; Němec, P. Novotný, T.; Trojánek, F.; Malý, P.

    2014-08-07

    In semiconductors, the spin degree of freedom is usually disregarded in the theoretical treatment of electron many-body effects such as band-gap renormalization and screening of the Coulomb enhancement factor. Nevertheless, as was observed experimentally in GaAs, not only the single-particle phase-space filling but also many-body effects are spin sensitive. In this paper, we report on time- and polarization-resolved differential transmission pump-probe measurements in CdTe, which has the same zincblende crystal structure but different material parameters compared to that of GaAs. We show experimentally that at room temperature in CdTe—unlike in GaAs—the pump-induced decrease of transmission due to the band-gap renormalization can even exceed the transmission increase due to the phase-space filling, which enables to measure directly the spin-sensitivity of the band-gap renormalization. We also observed that the influence of the band-gap renormalization is more prominent at low temperatures.

  18. Improved Intrinsic Stability of CdTe Polycrystalline Thin Film Devices

    SciTech Connect

    Albin, D.; Berniard, T.; McMahon, T.; Noufi, R.; Demtsu, S.

    2005-01-01

    A systems-driven approach linking upstream solar cell device fabrication history with downstream performance and stability has been applied to CdS/CdTe small-area device research. The best resulting initial performance (using thinner CdS, thicker CdTe, no oxygen during VCC, and the use of NP etch) was shown to simultaneously correlate with poor stability. Increasing the CdS layer thickness significantly improved stability at only a slight decrease in overall performance. It was also determined that cell perimeter effects can accelerate degradation in these devices. A ''margined'' contact significantly reduces the contribution of edge shunting to degradation, and thus yields a more accurate determination of the intrinsic stability. Pspice discrete element models demonstrate how spatially localized defects can effectively dominate degradation. Mitigation of extrinsic shunting improved stabilized efficiency degradation levels (SEDL) to near 20% in 100 C tests. Further process optimization to reduce intrinsic effects improved SEDL to better than 10% at the same stress temperatures and times.

  19. Midgap traps related to compensation processes in CdTe alloys

    SciTech Connect

    Castaldini, A.; Cavallini, A.; Fraboni, B.

    1997-12-01

    We study, by cathodoluminescence and junction spectroscopy methods, the deep traps located near midgap in semiconducting and semi-insulating II-VI compounds, namely, undoped CdTe, CdTe:Cl, and Cd{sub 0.8}Zn{sub 0.2}Te. In order to understand the role such deep levels play in the control of the electrical properties of the material, it appears necessary to determine their character, donor, or acceptor, in addition to their activation energy and capture cross section. Photoinduced-current transient spectroscopy and photo deep-level transient spectroscopy are used to investigate the semi-insulating (SI) samples, and a comparison of the complementary results obtained allows us to identify an acceptor trap, labeled H, and an electron trap, labeled E. Level H is common to all investigated compounds, while E is present only in CdTe:Cl samples. This provides clear experimental evidence of the presence of a deep trap in CdTe:Cl, which could be a good candidate for the deep donor level needed to explain the compensation process of SI CdTe:Cl. {copyright} {ital 1997} {ital The American Physical Society}

  20. Numerical Simulation of THM Growth of CdTe in Presence of Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ghaddar, Chahid K.; Lee, Cheo K.; Motakef, Sharihar; Gillies, Donald

    1998-01-01

    The influence of rotating magnetic fields (RMF) on the flow pattern and compositional uniformity in the solution zone of a traveling heater method (THM) system for growth of CdTe is numerically investigated. The analysis is conducted at the 10(exp -6) and 10(exp -1) g(sub 0) as representative of space and ground processing conditions. It is shown that under microgravity conditions, application of RMF can be used to overwhelm residual buoyancy-induced convection and to control the uniformity of solution-zone composition at the growth front without appreciable modification of the growth interface shape. At high gravity levels, RMF is found not to be able to completely dominate buoyancy-induced convection. In this regime, for the range of field strengths studied, RMF is found to result in a) complex flow structures in the solution zone, b) enhancement of compositional non-uniformities at the growth front, and c) increased convexity of the growth interface. A scaling analysis of convection in the solution zone is used to generate a non-dimensional map delineating the RMF- and gravity-dominated flow regimes.

  1. Crystal Growth and Characterization of CdTe Grown by Vertical Gradient Freeze

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Raghothamachar, B.; Dudley, M.

    2007-01-01

    In this study, crystals of CdTe were grown from melts by the unseeded vertical gradient freeze method. The quality of grown crystal were studied by various characterization techniques including Synchrotron White Beam X-ray Topography (SWBXT), chemical analysis by glow discharge mass spectroscopy (GDMS), low temperature photoluminescence (PL), and Hall measurements. The SWBXT images from various angles show nearly strain-free grains, grains with inhomogeneous strains, as well as twinning nucleated in the shoulder region of the boule. The GDMS chemical analysis shows the contamination of Ga at a level of 3900 ppb, atomic. The low temperature PL measurement exhibits the characteristic emissions of a Ga-doped sample. The Hall measurements show a resistivity of 1 x l0(exp 7) ohm-cm at room temperature to 3 x 10(exp 9) ohm-cm at 78K with the respective hole and electron concentration of 1.7 x 10(exp 9) cm(exp -3) and 3.9 x 10(exp 7) cm(exp -3) at room temperature.

  2. Imaging Long-Range Carrier Diffusion Across Grains in Polycrystalline CdTe

    NASA Astrophysics Data System (ADS)

    Alberi, Kirstin; Fluegel, Brian; Moutinho, Helio; Dhere, Ramesh; Li, Jian; Mascarenhas, Angelo

    2014-03-01

    The use of polycrystalline semiconductors in electronic devices enables low cost fabrication on large area substrates. Understanding the extent to which structural defects and impurities influence carrier transport in these materials is increasingly important as device performance is maximized, but most conventional characterization techniques often cannot directly probe their effects. We have applied a novel photoluminescence imaging technique to directly observe carrier diffusion in the presence of grain boundaries and impurities in poly-CdTe films. Our results show that the grain boundaries in this material are relatively transparent to free carrier and exciton diffusion as compared to poly-GaAs. Furthermore, a network of inhomogeneously distributed impurity states is found to mediate hole transport across multiple grains to distances greater than 10 microns from the point of photogeneration. These results underscore the importance of controlling the concentration and distribution of impurity states in poly-CdTe thin film solar cells. This work was supported by the DOE Office of Science, Basic Energy Sciences (PL imaging development) and the Office of Energy Efficiency and Renewable Energy (CdTe study) under contract DE-AC36-08GO28308.

  3. A Computational Investigation of Random Angle Grain Boundaries for CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Buurma, Christopher; Chan, Maria; Klie, Robert; Sivananthan, Sivalingam; DOE Bridge Collaboration

    2015-03-01

    Grain boundaries (GB) in poly-CdTe solar cells play an important role in species diffusion, segregation, defect formation, and carrier recombination. Many studies on GBs in CdTe focus on either entire grain-boundary networks found in complete poly-CdTe devices, those exhibiting high symmetry such as the coincident site lattice (CSL) or symmetric tilt or twist, or on very small scale Scanning-Tunneling Electron Microscopse (STEM) viewable interfaces and dislocations. The topic of this talk is a comprehensive survey of the grain boundary parameter space regardless of the degree of symmetry found and whether the STEM channeling condition is satisfied. Our survey encompasses both near-CSL or vicinal grain boundaries decorated with nearby dislocations, as well as mixed tilt and twist interfaces with all possible symmetrically inequivalent grain boundary planes. Atomistic calculations using a Stillinger-Weber potential will be presented on a large representative sample of random-angle GBs. Trends in interfacial energies and atomistic structures as a function of tilt/twist/displacement parameters will be investigated. First principles density functional theory (DFT) calculations will be performed on a subset of these GBs to reveal their electronic structures and their implications towards PV performance. DoE Sunshot program contract DOE DEEE005956. Use of the Center for Nanoscale Materials was supported by the USDoE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  4. High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates

    NASA Astrophysics Data System (ADS)

    Mahabaduge, H. P.; Rance, W. L.; Burst, J. M.; Reese, M. O.; Meysing, D. M.; Wolden, C. A.; Li, J.; Beach, J. D.; Gessert, T. A.; Metzger, W. K.; Garner, S.; Barnes, T. M.

    2015-03-01

    Flexible, high-efficiency, low-cost solar cells can enable applications that take advantage of high specific power, flexible form factors, lower installation and transportation costs. Here, we report a certified record efficiency of 16.4% for a flexible CdTe solar cell that is a marked improvement over the previous standard (14.05%). The improvement was achieved by replacing chemical-bath-deposited CdS with sputtered CdS:O and also replacing the high-temperature sputtered ZnTe:Cu back contact layer with co-evaporated and rapidly annealed ZnTe:Cu. We use quantum efficiency and capacitance-voltage measurements combined with device simulations to identify the reasons for the increase in efficiency. Both device simulations and experimental results show that higher carrier density can quantitatively account for the increased open circuit voltage (VOC) and Fill Factor (FF), and likewise, the increase in short circuit current density (JSC) can be attributed to the more transparent CdS:O.

  5. CdTe quantum dots and gold nanoparticle based spectral methods for determination of lincomycin

    NASA Astrophysics Data System (ADS)

    Ge, Baoyu; Li, Zhigang; Xie, Yuanzhe; Yang, Lingling; Wang, Ruiyong

    2015-05-01

    Two novel and convenient methods for the determination of lincomycin (LCM) in aqueous solutions have been developed. The first method was based on the enhanced fluorescence of thioglycolic acidcapped CdTe quantum dots (TGA-CdTe QDs) by LCM. For the second method, the introduction of LCM could induce the aggregation of gold nanoparticles (AuNPs), displaying distinct changes in color and in UVvis spectra. Under optimal conditions, the enhanced fluorescence intensity was linearly proportional to LCM concentration in the range of 1-240 μg mL-1 with a detection limit of 2.63 × 10-1 μg mL-1. The second platform is capable of determining LCM in ranges from 1.00 × 10-3 to 2.00 × 10-2 μg mL-1 and from 3.00 × 10-2 to 1.20 × 10-1 μg mL-1 with a detection limit of 1.27 × 10-4 μg mL-1. Both methods were used for rapid detection of LCM in real samples with satisfactory results. Comparisons between the two methods were made.

  6. Molecular Dynamics Studies of Dislocations in CdTe Crystals from a New Bond Order Potential.

    PubMed

    Zhou, Xiaowang; Ward, Donald K; Wong, Bryan M; Doty, F Patrick; Zimmerman, Jonathan A

    2012-08-23

    Cd(1-x)Zn(x)Te (CZT) crystals are the leading semiconductors for radiation detection, but their application is limited by the high cost of detector-grade materials. High crystal costs primarily result from property nonuniformity that causes low manufacturing yield. Although tremendous efforts have been made in the past to reduce Te inclusions/precipitates in CZT, this has not resulted in an anticipated improvement in material property uniformity. Moreover, it is recognized that in addition to Te particles, dislocation cells can also cause electric field perturbations and the associated property nonuniformities. Further improvement of the material, therefore, requires that dislocations in CZT crystals be understood and controlled. Here, we use a recently developed CZT bond order potential to perform representative molecular dynamics simulations to study configurations, energies, and mobilities of 29 different types of possible dislocations in CdTe (i.e., x = 1) crystals. An efficient method to derive activation free energies and activation volumes of thermally activated dislocation motion will be explored. Our focus gives insight into understanding important dislocations in the material and gives guidance toward experimental efforts for improving dislocation network structures in CZT crystals. PMID:22962626

  7. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    PubMed Central

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  8. Photoconductivity of CdTe Nanocrystal-Based Thin Films. Te2- Ligands Lead To Charge Carrier Diffusion Lengths Over 2 Micrometers

    SciTech Connect

    Crisp, Ryan W.; Callahan, Rebecca; Reid, Obadiah G.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Rumbles, Garry; Luther, Joseph M.; Kopidakis, Nikos

    2015-11-16

    We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm2/(V s)). Our TRMC findings show that Te2- capped CdTe NCs show a marked improvement in carrier mobility (11 cm2/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

  9. Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1990--31 March 1991

    SciTech Connect

    Sites, J.R.

    1991-12-31

    The polycrystalline nature of thin-film CdTe and CuInSe{sub 2} solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe{sub 2} cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm{sup 2}; those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe{sub 2} cells from International Solar Electric Technology have shown a hole density as high as 7 {times} 10{sup 16} cm{sup {minus}3}, implying a significant reduction in compensation. 9 refs.

  10. Atomic-resolution characterization of the effects of CdCl{sub 2} treatment on poly-crystalline CdTe thin films

    SciTech Connect

    Paulauskas, T. Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Klie, R. F.

    2014-08-18

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl{sub 2} environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl{sub 2}, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  11. Photoconductivity of CdTe Nanocrystal-Based Thin Films: Te(2-) Ligands Lead To Charge Carrier Diffusion Lengths Over 2 μm.

    PubMed

    Crisp, Ryan W; Callahan, Rebecca; Reid, Obadiah G; Dolzhnikov, Dmitriy S; Talapin, Dmitri V; Rumbles, Garry; Luther, Joseph M; Kopidakis, Nikos

    2015-12-01

    We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm(2)/(V s)). Our TRMC findings show that Te(2-) capped CdTe NCs show a marked improvement in carrier mobility (11 cm(2)/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films. PMID:26571095

  12. Real-Time In Situ Monitoring of GaAs (211) Oxide Desorption and CdTe Growth by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Lennon, C. M.; Almeida, L. A.; Jacobs, R. N.; Markunas, J. K.; Smith, P. J.; Arias, J.; Brown, A. E.; Pellegrino, J.

    2012-10-01

    We describe the growth of CdTe (211)B by molecular beam epitaxy on large-area epiready GaAs (211)B substrates. Prior to CdTe growth, GaAs substrates were thermally cleaned under an As4 flux. Oxide desorption was verified by in situ spectroscopic ellipsometry (SE) and reflection high-energy electron diffraction. The use of in situ SE played a significant role in the study of CdTe-on-GaAs growth and annealing processes. An effective medium approximation (EMA) was used to model the overlayer thickness variation of CdTe epilayers throughout growth and in situ annealing cycles. A correlation between SE-derived EMA thickness values and surface defect formation mitigation is discussed. All annealed samples (11.5 μm to 13 μm thick) exhibited excellent crystalline quality with average double crystal rocking curve full-width at half-maximum (FWHM) values of ~60 arcsec.

  13. Atomic-resolution characterization of the effects of CdCl2 treatment on poly-crystalline CdTe thin films

    NASA Astrophysics Data System (ADS)

    Paulauskas, T.; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Chan, M. K. Y.; Klie, R. F.

    2014-08-01

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl2 environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl2, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  14. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    PubMed Central

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors. PMID:22412323

  15. [Spectral analyzing effects of atmosphere states on the structure and characteristics of CdTe polycrystalline thin films made by close-spaced sublimation].

    PubMed

    Zheng, Hua-jing; Zheng, Jia-gui; Feng, Liang-huan; Zhang, Jing-quan; Xie, Er-qing

    2005-07-01

    The structure and characteristics of CdTe thin films are dependent on the working atmosphere states in close-spaced sublimation. In the present paper, CdTe polycrystalline thin films were deposited by CSS in mixture atmosphere of argon and oxygen. The physical mechanism of CSS was analyzed, and the temperature distribution in CSS system was measured. The dependence of preliminary nucleus creation on the atmosphere states (involving component and pressure) was studied. Transparencies were measured and optic energy gaps were calculated. The results show that: (1) The CdTe films deposited in different atmospheres are cubic structure. With increasing oxygen concentration, a increases and reaches the maximum at 6% oxygen concentration, then reduces, and increases again after passing the point at 12% oxygen concentration. Among them, the sample depositing at 9% oxygen concentration is the best. The optic energy gaps are 1.50-1.51 eV for all CdTe films. (2) The samples depositing at different pressures at 9% oxygen concentration are all cubical structure of CdTe, and the diffraction peaks of CdS and SnO2:F still appear. With the gas pressure increasing, the crystal size of CdTe minishes, the transparency of the thin film goes down, and the absorption side shifts to the short-wave direction. (3) The polycrystalline thin films with high quality deposit in 4 minutes under the depositing condition that the substrate temperature is 550 degrees C, and source temperature is 620 degrees C at 9% oxygen concentration. PMID:16241058

  16. Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications.

    PubMed

    Gao, Yangyang; Dong, Qigeqi; Lan, Shi; Cai, Qian; Simalou, Oudjaniyobi; Zhang, Shiqi; Gao, Ge; Chokto, Harnoode; Dong, Alideertu

    2015-05-13

    Quantum dots (QDs) as potent candidates possess advantageous superiority in fluorescence imaging applications, but they are susceptible to the biological circumstances (e.g., bacterial environment), leading to fluorescence quenching or lose of fluorescent properties. In this work, CdTe QDs were embedded into mesoporous silica nanospheres (m-SiO2 NSs) for preventing QD agglomeration, and then CdTe QD-embedded m-SiO2 NSs (m-SiO2/CdTe NSs) were modified with Ag nanoparticles (Ag NPs) to prevent bacteria invasion for enhanced anticounterfeit applications. The m-SiO2 NSs, which serve as intermediate layers to combine CdTe QDs with Ag NPs, help us establish a highly fluorescent and long-term antibacterial system (i.e., m-SiO2/CdTe/Ag NSs). More importantly, CdTe QD-embedded m-SiO2 NSs showed fluorescence quenching when they encounter bacteria, which was avoided by attaching Ag NPs outside. Ag NPs are superior to CdTe QDs for preventing bacteria invasion because of the structure (well-dispersed Ag NPs), size (small diameter), and surface charge (positive zeta potentials) of Ag NPs. The plausible antibacterial mechanisms of m-SiO2/CdTe/Ag NSs toward both Gram-positive and Gram-negative bacteria were established. As for potential applications, m-SiO2/CdTe/Ag NSs were developed as fluorescent anticounterfeiting ink for enhanced imaging applications. PMID:25901940

  17. Concentration of uncompensated impurities as a key parameter of CdTe and CdZnTe crystals for Schottky diode x\\ssty{/}γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Kosyachenko, L. A.; Lambropoulos, C. P.; Aoki, T.; Dieguez, E.; Fiederle, M.; Loukas, D.; Sklyarchuk, O. V.; Maslyanchuk, O. L.; Grushko, E. V.; Sklyarchuk, V. M.; Crocco, J.; Bensalah, H.

    2012-01-01

    In this paper we report on the strong impact of the concentration of uncompensated impurities on the detection efficiency of CdTe and Cd0.9Zn0.1Te Schottky diodes. The results of our study explain the observed poor detection properties of some Cd0.9Zn0.1Te detectors with resistivity and lifetime of carriers comparable to those of good CdTe detectors. We show that the concentration of uncompensated impurities in a highly efficient CdTe Schottky diode detector is several orders of magnitude higher than that of a CdZnTe, which does not register the gamma spectra of commonly used isotopes (59-662 keV) by using photoelectric measurements. The significant difference of the concentration of uncompensated impurities between CdTe and Cd0.9Zn0.1Te crystals is confirmed by our study of the temperature change of the resistivity and of the Fermi level energy. The degree of compensation of the donor complex, responsible for the electrical conductivity of the material, is much lower in the CdTe crystal compared to that in the Cd0.9Zn0.1Te crystal. The calculations of the detection efficiency of x/γ-radiation by a Schottky diode result in a dependence on the concentration of uncompensated impurities described by a curve with a pronounced maximum. The position of this maximum occurs at a concentration of uncompensated impurities which ranges from 3 × 1010 to 3 × 1012 cm-3 depending on the registered photon energy of x/γ-rays and on the lifetime of the charge carriers. Our measurements and calculations lead to the conclusion that the concentration of uncompensated impurities in this range is a necessary condition for the effective operation of x- and γ-ray Schottky diode detectors based on CdTe and Cd1-xZnxTe crystals.

  18. Highly Luminescent Hybrid SiO2-Coated CdTe Quantum Dots Retained Initial Photoluminescence Efficiency in Sol-Gel SiO2 Film.

    PubMed

    Sun, Hongsheng; Xing, Yugui; Wu, Qinan; Yang, Ping

    2015-02-01

    A highly luminescent silica film was fabricated using tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane (APS) through a controlled sol-gel reaction. The pre-hydrolysis of TEOS and APS which resulted in the mixture of TEOS and APS in a molecular level is a key for the formation of homogenous films. The aminopropyl groups in APS play an important role for obtaining homogeneous film with high photoluminescence (PL). Red-emitting hybrid SiO2-coated CdTe nano-crystals (NCs) were fabricated by a two-step synthesis including a thin SiO2 coating via a sol-gel process and a subsequent refluxing using green-emitting CdTe NCs. The hybrid SiO2-coated CdTe NCs were embedded in a functional SiO2 film via a two-step process including adding the NCs in SiO2 sol with a high viscosity and almost without ethanol and a subsequent spinning coating. The hybrid SiO2-coated CdTe NCs retained their initial PL efficiency (54%) in the film. Being encapsulated with the hybrid NCs in the film, no change on the absorption and PL spectra of red-emitting CdTe NCs (632 nm) was observed. This indicates the hybrid NCs is stable enough during preparation. This phenomenon is ascribed to the controlled sol-gel process and a hybrid SiO2 shell on CdTe NCs. Because these films exhibited high PL efficiency and stability, they will be utilizable for potential applications in many fields. PMID:26353691

  19. Analysis of rocking curve width and bound exciton linewidth of MOCVD grown CdTe layers in relation with substrate type and crystalline orientation

    NASA Astrophysics Data System (ADS)

    Tromson-Carli, A.; Svob, L.; Marfaing, Y.; Druilhe, R.; Desjonqueres, F.; Triboulet, R.

    1991-12-01

    X-ray double diffraction and photoluminescence experiments were performed on a series of CdTe layers grown by MOVPE on CdTe, CdZnTe and GaAs substrates. Some correlation appears between the measured rocking curve widths and impurity-bound exciton linewidth. To analyze these results, a model relating the exciton linewidth to the average strain induced by an array of random dislocations has been developed. It appears that X-ray diffraction is also sensitive to non-random dislocation configurations which do not affect luminescence linewidth.

  20. Multiwafer growth of CdTe on GaAs by metalorganic chemical vapor deposition in a vertical, high-speed, rotating disk reactor

    NASA Astrophysics Data System (ADS)

    Tompa, G. S.; Nelson, C. R.; Saracino, M. A.; Colter, P. C.; Anderson, P. L.

    1989-07-01

    Growth by the MOCVD (at temperatures between 308 and 402 C) of CdTe (111) layers on GaAs (100) and GaAs (111) substrates in a commercial vertical high-speed rotating disk reactor was investigated, using dimethylcadmium (DMCd) and diisopropyltelluride as the growth precursors. For growth temperatures greater than 368 C, DMCd molar growth efficiencies greater than 50 percent were obtained. Results of SEM, IR spectroscopy, and FIR reflectivity examinations indicate that the CdTe films obtained in the vertical reactor were more uniform and of higher quality than the best films produced in a horizontal reactor using similar growth procedures.