Science.gov

Sample records for acid treatment increased

  1. Stress-induced increases in brainstem amino acid levels are prevented by chronic sodium hydrosulfide treatment.

    PubMed

    Warenycia, M W; Kombian, S B; Reiffenstein, R J

    1990-01-01

    Neurotransmitter amino acid levels were measured in select brain regions of rats and mice after chronic treatment with sublethal doses of sodium hydrosulfide (NaHS). Brainstem aspartate, glutamate, glutamine, taurine and GABA levels increased in chronically but not acutely saline-treated rats. These increases may have been due to stress from frequent handling, and were prevented by chronic NaHS treatment (7.5 mg/kg ip every 8 hr for 3 consecutive days). In contrast, aspartate, glutamate and glutamine increased in female but not in male ICR mouse brainstems after once daily treatment with 7.0 mg/kg NaHS for 5 consecutive days. These effects of NaHS may indicate chronic low level H2S neurotoxicity. Differences between chronic and acute treatments, female and male responses, and treatment paradigms may complicate interpretations of such toxicity studies.

  2. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it. PMID:26634573

  3. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it.

  4. Increased saccharification yields from aspen biomass upon treatment with enzymatically generated peracetic acid.

    PubMed

    Duncan, Shona; Jing, Qing; Katona, Adrian; Kazlauskas, Romas J; Schilling, Jonathan; Tschirner, Ulrike; Aldajani, Waleed Wafa

    2010-03-01

    The recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier. Nature uses oxidative enzymes to selectively degrade lignin in lignocellulosic biomass, but thus far, natural enzymes have been too slow for industrial use. In this study, oxidative pretreatment with commercial peracetic acid (470 mM) removed 40% of the lignin (from 19.9 to 12.0 wt.% lignin) from aspen and enhanced the sugar yields in subsequent enzymatic hydrolysis to about 90%. Increasing the amount of lignin removed correlated with increasing yields of sugar release. Unfortunately, peracetic acid is expensive, and concentrated forms can be hazardous. To reduce costs and hazards associated with using commercial peracetic acid, we used a hydrolase to catalyze the perhydrolysis of ethyl acetate generating 60-70 mM peracetic acid in situ as a pretreatment to remove lignin from aspen wood. A single pretreatment was insufficient, but multiple cycles (up to eight) removed up to 61.7% of the lignin enabling release of >90% of the sugars during saccharification. This value corresponds to a predicted 581 g of fermentable sugars from 1 kg of aspen wood. Improvements in the enzyme stability are needed before the enzymatically generated peracetic acid is a commercially viable alternative.

  5. Treatment of flaxseed to reduce biohydrogenation of a-linolenic acid by ruminal microbes in sheep and cattle and increase n-3 fatty acid concentrations in red meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study determined if flaxseed treated with a formaldehyde-free process increased n-3 fatty acid (FA) levels in ruminant muscle. Twenty-four lambs (initial BW 43.8 ± 4.4 kg) were randomly divided into 4 groups for a 90-d trial. One treatment group (FLX) was fed 136 g/d of non-treated ground flaxse...

  6. Increasing bioavailability of (R)-alpha-lipoic acid to boost antioxidant activity in the treatment of neuropathic pain.

    PubMed

    Maglione, Emilia; Marrese, Cinzia; Migliaro, Elisa; Marcuccio, Fortuna; Panico, Claudia; Salvati, Carmine; Citro, Giuseppe; Quercio, Marco; Roncagliolo, Federico; Torello, Carlo; Brufani, Mario

    2015-01-01

    a-lipoic acid (a-LA) is a potent natural antioxidant because it has a broad spectrum of action towards a great many free radical species and boosts the endogenous antioxidant systems.Although it is a multi-functional molecule, its pharmacokinetic characteristics pose restrictions to its use in the treatment of oxidative stress-dependent illnesses. Formulations that increase the bioavailability of a-LA have a better potential efficacy as adjuvants for the treatment of these conditions.This objective was achieved with a liquid formulation for oral use containing only R-aLA, the natural enantiomeric and most active form of a-lipoic acid.For the first time, the effects of this formulation were evaluated on neuropathic pain, a symptom caused by an increase in oxidative stress, regardless of the underlying cause. Neuropathic patients who have used this dietary supplement noticed an improvement in their quality of life and a significant reduction was observed in a number of certain descriptive pain parameters (intensity, burning, unpleasantness, superficial pain).Undoubtedly further, more in-depth, studies need to be conducted; however, this first investigation confirms the role of R-aLA as an anti-oxidant for the aetiological treatment of peripheral neuropathy. Increasing its plasma bioavailability even after a non-invasive administration through the oral route is a good starting point for proposing a valid adjuvant for the treatment of pain symptoms. PMID:26694149

  7. Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice

    PubMed Central

    Attané, Camille; Foussal, Camille; Le Gonidec, Sophie; Benani, Alexandre; Daviaud, Danièle; Wanecq, Estelle; Guzmán-Ruiz, Rocío; Dray, Cédric; Bezaire, Veronic; Rancoule, Chloé; Kuba, Keiji; Ruiz-Gayo, Mariano; Levade, Thierry; Penninger, Josef; Burcelin, Rémy; Pénicaud, Luc; Valet, Philippe; Castan-Laurell, Isabelle

    2012-01-01

    Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement. PMID:22210322

  8. Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility.

    PubMed

    Tommasi, T; Sassi, G; Ruggeri, B

    2008-01-01

    The present study is aimed to test the effectiveness and the reproducibility of the acid pre-treatment of sewage sludge to suppress the methanogenic bacteria activity, in order to increase the hydrogen forming bacteria activity, mainly Clostridium species. The treated sludge has been tested on glucose reach medium under mesophilic conditions (35 degrees C), in batch mode to quantify the biological fermentative hydrogen production. In the whole series of experiments, the main components of biogas are hydrogen (52-60%) and carbon dioxide (40-48%); no methane and hydrogen sulphide were present in it. The rate of biogas production reached a maximum of 75 ml/lh. An overall mean hydrogen conversion efficiency was 11.20% on the assumption of maximum of 3 mol H2/mol glucose. Clostridium spp. multiplied ten times after 10 h of fermentation and over that thousand times at the end of fermentation.

  9. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  10. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  11. Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury

    PubMed Central

    Tuvdendorj, D.; Chinkes, DL.; Zhang, XJ.; Suman, OE.; Aarsland, A.; Ferrando, A.; Kulp, GA; Jeschke, MG.; Wolfe, RR.; Herndon, DN.

    2011-01-01

    Background We recently showed that mechanisms of protein turnover in skeletal muscle are unresponsive to amino acid (AA) infusion in severely burned pediatric patients at 6 months postinjury. In the current study, we evaluated if oxandrolone treatment affects mechanisms of protein turnover in skeletal muscle and whole-body protein breakdown in pediatric burn patients 6 months postinjury. Methods At the time of admission, patients were randomized to control or oxandrolone treatments. The treatment regimens were continued until 6 months postinjury, at which time patients (n = 26) underwent study with a stable isotope tracer infusion to measure muscle and whole-body protein turnover. Results Protein kinetics in leg muscle were expressed in nmol/min/100 ml leg volume (mean±SE). During AA infusion, rates of protein synthesis in leg muscle were increased (p < .05) in both groups (Basal vs. AA: control, 51±8 vs. 86±21; oxandrolone, 56±7 vs. 96±12). In the control group, there was also a simultaneous increase in breakdown (Basal vs. AA: 65±10 vs. 89±25), which resulted in no change in the net balance of leg muscle protein (Basal vs. AA: − 15±4 vs. − 2±10). In the oxandrolone group, protein breakdown did not change (Basal vs. AA: 80±12 vs. 77±9), leading to increased net balance (Basal vs. AA: − 24±7 vs. 19±7, p < .05). Protein breakdown at the whole-body level was not different between the groups. Conclusion Long-term oxandrolone treatment increased net deposition of leg muscle protein during AA infusion by attenuating protein breakdown, but did not affect whole-body protein breakdown. PMID:21333314

  12. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... Treatment of amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please ... this page It's been added to your dashboard . Amino acid metabolism disorders are rare health conditions that affect ...

  13. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  14. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  15. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue.

  16. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  17. Fatty acids increase neuronal hypertrophy of Pten knockdown neurons

    PubMed Central

    Fricano, Catherine J.; DeSpenza, Tyrone; Frazel, Paul W.; Li, Meijie; O'Malley, A. James; Westbrook, Gary L.; Luikart, Bryan W.

    2014-01-01

    Phosphatase and tensin homolog (Pten) catalyzes the reverse reaction of PI3K by dephosphorylating PIP3 to PIP2. This negatively regulates downstream Akt/mTOR/S6 signaling resulting in decreased cellular growth and proliferation. Co-injection of a lentivirus knocking Pten down with a control lentivirus allows us to compare the effects of Pten knockdown between individual neurons within the same animal. We find that knockdown of Pten results in neuronal hypertrophy by 21 days post-injection. This neuronal hypertrophy is correlated with increased p-S6 and p-mTOR in individual neurons. We used this system to test whether an environmental factor that has been implicated in cellular hypertrophy could influence the severity of the Pten knockdown-induced hypertrophy. Implantation of mini-osmotic pumps delivering fatty acids results in increased neuronal hypertrophy and p-S6/p-mTOR staining. These hypertrophic effects were reversed in response to rapamycin treatment. However, we did not observe a similar increase in hypertrophy in response to dietary manipulations of fatty acids. Thus, we conclude that by driving growth signaling with fatty acids and knocking down a critical regulator of growth, Pten, we are able to observe an additive morphological phenotype of increased soma size mediated by the mTOR pathway. PMID:24795563

  18. Increase in the permeability of tonoplast of garlic (Allium sativum) by monocarboxylic acids.

    PubMed

    Bai, Bing; Li, Lei; Hu, Xiaosong; Wang, Zhengfu; Zhao, Guanghua

    2006-10-18

    Immersion of intact aged garlic (Allium sativum) cloves in a series of 5% weak organic monocarboxylate solutions (pH 2.0) resulted in green color formation. No color was formed upon treatment with other weak organic acids, such as citric and malic acids, and the inorganic hydrochloric acid under the same conditions. To understand the significance of monocarboxylic acids and their differing function from that of other acids, acetic acid was compared with organic acids citric and malic and the inorganic hydrochloric acid. The effects of these acids on the permeability of plasma and intracellular membrane of garlic cells were measured by conductivity, light microscopy, and transmission electron microscopy. Except for hydrochloric acid, treatment of garlic with all three organic acids greatly increased the relative conductivity of their respective pickling solutions, indicating that all tested organic acids increased the permeability of plasma membrane. Moreover, a pickling solution containing acetic acid exhibited 1.5-fold higher relative conductivity (approximately 90%) as compared to those (approximately 60%) of both citric and malic acids, implying that exposure of garlic cloves to acetic acid not only changed the permeability of the plasma membrane but also increased the permeability of intracellular membrane. Exposure of garlic to acetic acid led to the production of precipitate along the tonoplast, but no precipitate was formed by citric and malic acids. This indicates that the structure of the tonoplast was damaged by this treatment. Further support for this conclusion comes from results showing that the concentration of thiosulfinates [which are produced only by catalytic conversion of S-alk(en)yl-l-cysteine sulfoxides in cytosol by alliinase located in the vacuole] in the acetic acid pickling solution is 1.3 mg/mL, but almost no thiosulfinates were detected in the pickling solution of citric and malic acids. Thus, all present results suggest that damage of

  19. Treatment of Bile Acid Amidation Defects with Glycocholic Acid

    PubMed Central

    Heubi, James E.; Setchell, Kenneth D.R.; Jha, Pinky; Buckley, Donna; Zhang, Wujuan; Rosenthal, Philip; Potter, Carol; Horslen, Simon; Suskind, David

    2014-01-01

    Bile acid amidation defects were predicted to present with fat/fat soluble vitamin malabsorption with minimal cholestasis. We identified and treated 5 patients (1 male/4 females) from 4 families with defective bile acid amidation due to a genetically confirmed deficiency in bile acid CoA:amino acid N-acyl transferase (BAAT) with the conjugated bile acid, glycocholic acid (GCA). Fast atom bombardment-mass spectrometry analysis of urine and bile at baseline revealed predominantly unconjugated cholic acid and absence of the usual glycine and taurine conjugated primary bile acids. Treatment with 15 mg/kg GCA resulted in total duodenal bile acid concentrations of 23.3 ± 19.1 mmol/L (mean ± SD) and 63.5 ± 4.0% of the bile acids were secreted in bile in the conjugated form of which GCA represented 59.6 ± 9.3% of the total biliary bile acids. Unconjugated cholic acid continued to be present in high concentrations in bile because of partial intestinal deconjugation of orally administered GCA. Serum total bile acid concentrations did not significantly differ between pretreatment and post-treatment samples and serum contained predominantly unconjugated cholic acid. These findings confirmed efficient intestinal absorption, hepatic extraction and biliary secretion of the administered GCA. Oral tolerance tests for vitamin D2 (1000 IU vitamin D2/kg) and tocopherol (100 IU/kg tocopherol acetate) demonstrated improvement in fat-soluble vitamin absorption after GCA treatment. Growth improved in 3/3 growth-delayed prepubertal patients. Conclusions: Oral glycocholic acid therapy is safe and effective in improving growth and fat-soluble vitamin absorption in children and adolescents with inborn errors of bile acid metabolism due to amidation defects. PMID:25163551

  20. Steam treatment of digested biofibers for increasing biogas production.

    PubMed

    Bruni, Emiliano; Jensen, Anders Peter; Angelidaki, Irini

    2010-10-01

    The aim of this study was to elucidate the effect of steam pretreatment on the biomethane potential of biofibers from digested manure. These biofibers were treated for 15 min with steam in a pressure vessel. The effect of steam treatment temperature, solids content, catalyst concentration and time of pre-soaking on the methane potential of the biofibers was determined. The highest increase of methane production from steam-treated biofibers compared to untreated biofibers was 67% and was achieved at 155 degrees C with addition of 2.1% w/w H2SO4. Also higher treatment temperatures (180 degrees C without addition of acid) improved the methane production, but only by 29% compared to untreated biofibers. Long pre-soaking treatment (24 h) and high acid concentration increased the risk of inhibition of the biogas process. The energy from the increased methane production after steam treatment was between 15 and 121 kW h (t WW)(-1) (wet weight of untreated biofibers).

  1. Acetic Acid Increases Stability of Silage under Aerobic Conditions

    PubMed Central

    Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R.

    2003-01-01

    The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability. PMID:12514042

  2. Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid

    DOEpatents

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-09-14

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  3. Acid peptic diseases: pharmacological approach to treatment

    PubMed Central

    Mejia, Alex; Kraft, Walter K

    2011-01-01

    Acid peptic disorders are the result of distinctive, but overlapping pathogenic mechanisms leading to either excessive acid secretion or diminished mucosal defense. They are common entities present in daily clinical practice that, owing to their chronicity, represent a significant cost to healthcare. Key elements in the success of controlling these entities have been the development of potent and safe drugs based on physiological targets. The histamine-2 receptor antagonists revolutionized the treatment of acid peptic disorders owing to their safety and efficacy profile. The proton-pump inhibitors (PPIs) represent a further therapeutic advance due to more potent inhibition of acid secretion. Ample data from clinical trials and observational experience have confirmed the utility of these agents in the treatment of acid peptic diseases, with differential efficacy and safety characteristics between and within drug classes. Paradigms in their speed and duration of action have underscored the need for new chemical entities that, from a single dose, would provide reliable duration of acid control, particularly at night. Moreover, PPIs reduce, but do not eliminate, the risk of ulcers in patients taking NSAIDs, reflecting untargeted physiopathologic pathways and a breach in the ability to sustain an intragastric pH of more than 4. This review provides an assessment of the current understanding of the physiology of acid production, a discussion of medications targeting gastric acid production and a review of efficacy in specific acid peptic diseases, as well as current challenges and future directions in the treatment of acid-mediated diseases. PMID:21822447

  4. Breeding Vegetables with Increased Content in Bioactive Phenolic Acids.

    PubMed

    Kaushik, Prashant; Andújar, Isabel; Vilanova, Santiago; Plazas, Mariola; Gramazio, Pietro; Herraiz, Francisco Javier; Brar, Navjot Singh; Prohens, Jaime

    2015-01-01

    Vegetables represent a major source of phenolic acids, powerful antioxidants characterized by an organic carboxylic acid function and which present multiple properties beneficial for human health. In consequence, developing new varieties with enhanced content in phenolic acids is an increasingly important breeding objective. Major phenolic acids present in vegetables are derivatives of cinnamic acid and to a lesser extent of benzoic acid. A large diversity in phenolic acids content has been found among cultivars and wild relatives of many vegetable crops. Identification of sources of variation for phenolic acids content can be accomplished by screening germplasm collections, but also through morphological characteristics and origin, as well as by evaluating mutations in key genes. Gene action estimates together with relatively high values for heritability indicate that selection for enhanced phenolic acids content will be efficient. Modern genomics and biotechnological strategies, such as QTL detection, candidate genes approaches and genetic transformation, are powerful tools for identification of genomic regions and genes with a key role in accumulation of phenolic acids in vegetables. However, genetically increasing the content in phenolic acids may also affect other traits important for the success of a variety. We anticipate that the combination of conventional and modern strategies will facilitate the development of a new generation of vegetable varieties with enhanced content in phenolic acids.

  5. Topiramate increases the risk of valproic acid-induced encephalopathy.

    PubMed

    Noh, Young; Kim, Dong Wook; Chu, Kon; Lee, Soon-Tae; Jung, Keun-Hwa; Moon, Hye-Jin; Lee, Sang Kun

    2013-01-01

    Metabolic encephalopathy is a rare but serious complication of valproic acid (VPA) therapy that usually presents with impaired consciousness or increased seizure frequency. Although it has been suggested that topiramate (TPM) increases the risk of VPA-induced encephalopathy, the additional risk in patients receiving TPM therapy has not been evaluated. We reviewed all adult patients who took VPA between January 2005 and February 2009 at the Seoul National University Hospital and identified patients with VPA-induced encephalopathy based on clinical and electroencephalography (EEG) data. Information on sex, age, serum ammonia level, serum VPA level, liver function test, and EEG was collected from patient registry and medical data. We enrolled 8,372 patients who received VPA therapy and 1,236 patients who received VPA/TPM combination therapy. We identified 11 patients with VPA-induced encephalopathy (0.13%), 7 of whom received a combination therapy of VPA and TPM. The odds ratio of VPA-induced encephalopathy with TPM over that without TPM was 10.16. There were no significant differences in sex distribution, number of antiepileptic agents, ammonia level, VPA serum level, underlying diseases, dosage of VPA, duration of VPA treatment, treatment of encephalopathy, and outcomes between the two groups. Our study showed that the prevalence of VPA-induced encephalopathy is approximately 0.1% among patients treated with VPA and that the risk of this condition, although still low, can increase by approximately 10 times in the presence of TPM therapy. Based on these results, we suggest that TPM should be carefully used in patients receiving VPA treatment.

  6. Fumaric acid esters: an alternative systemic treatment for psoriasis.

    PubMed

    Ameen, M; Russell-Jones, R

    1999-09-01

    We report the successful clearance of severe chronic plaque psoriasis following treatment with fumaric acid esters (FAE) in two patients who had failed previous systemic therapy. FAE is gaining increasing acceptance for the treatment of psoriasis in countries such as Germany and the Netherlands, but at present remains unlicensed in Britain.

  7. Microwave treatment of naphthenic acids in water.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay K; Headley, John V; Peru, Kerry M; McMartin, Dena W

    2010-08-01

    Naphthenic acids (NAs) are natural constituents of bitumen and crude oil. These compounds are concentrated as part of the oil sands process water (OSPW) during petroleum refining and separation from oil sands. NAs are considered among the major water contaminants in OSPW due to their toxicity and environmental recalcitrance. A laboratory scale microwave system was developed and experiments were conducted to determine the efficiency of NA degradation during microwave treatment. The effects of water source and quality (deionized lab water and river water) and of TiO(2) catalyst in the degradation process were also investigated. Degradation kinetic parameters for both total NAs and individual z-family were calculated. The microwave system degraded OSPW NAs and commercial Fluka NAs in river water in the presence of TiO(2) rapidly, producing half-life values of 3.32 and 3.61 hours, respectively. Toxicity assessments of the NA samples pre-and post-treatment indicated that the microwave system reduced overall toxicity of water containing Fluka NAs from high (5 min. IC(50) v/v = 15.85%) to moderate (5 min. IC(50) v/v = 36.45%) toxicity levels. However, a slight increase in toxicity was noted post-treatment in OSPW NAs.

  8. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    PubMed Central

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  9. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    PubMed

    Simopoulos, Artemis P

    2016-03-02

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.

  10. Omega-3 fatty acids in the treatment of psychiatric disorders.

    PubMed

    Peet, Malcolm; Stokes, Caroline

    2005-01-01

    The importance of omega-3 fatty acids for physical health is now well recognised and there is increasing evidence that omega-3 fatty acids may also be important to mental health. The two main omega-3 fatty acids in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important biological functions in the CNS. DHA is a major structural component of neuronal membranes, and changing the fatty acid composition of neuronal membranes leads to functional changes in the activity of receptors and other proteins embedded in the membrane phospholipid. EPA has important physiological functions that can affect neuronal activity. Epidemiological studies indicate an association between depression and low dietary intake of omega-3 fatty acids, and biochemical studies have shown reduced levels of omega-3 fatty acids in red blood cell membranes in both depressive and schizophrenic patients. Five of six double-blind, placebo-controlled trials in schizophrenia, and four of six such trials in depression, have reported therapeutic benefit from omega-3 fatty acids in either the primary or secondary statistical analysis, particularly when EPA is added on to existing psychotropic medication. Individual clinical trials have suggested benefits of EPA treatment in borderline personality disorder and of combined omega-3 and omega-6 fatty acid treatment for attention-deficit hyperactivity disorder. The evidence to date supports the adjunctive use of omega-3 fatty acids in the management of treatment unresponsive depression and schizophrenia. As these conditions are associated with increased risk of coronary heart disease and diabetes mellitus, omega-3 fatty acids should also benefit the physical state of these patients. However, as the clinical research evidence is preliminary, large, and definitive randomised controlled trials similar to those required for the licensing of any new pharmacological treatment are needed.

  11. Treatment of broiler litter with organic acids.

    PubMed

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  12. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  13. Interventions to increase adherence to acne treatment

    PubMed Central

    Moradi Tuchayi, Sara; Alexander, Tiffany M; Nadkarni, Anish; Feldman, Steven R

    2016-01-01

    Background Adherence to acne medication is poor and is a major reason why treatment plans are ineffective. Recognizing solutions to nonadherence is critical. Objective The purpose of this study is to describe the hurdles associated with acne nonadherence and to provide mechanisms on how to ameliorate them. Methods PubMed database was searched. Of the 419 search results, 29 articles were reviewed to identify hurdles to adherence and corresponding solutions. Results Hurdles to primary nonadherence where the medication is not even started, include lack of knowledge, confusion about usage, weak physician–patient relationship, fear of adverse reactions, and cost. Secondary nonadherence hurdles where the medication is started but is not taken as directed include lack of results, complex regimens, side effects, busy lifestyle, forgetfulness, inconvenience, and psychiatric comorbidity. Solutions to these hurdles include treatment simplification, technology, and dynamic education. Limitations Adherence is affected by numerous factors, but available literature analyzing acne adherence and interventions to improve adherence to treatment is limited. Conclusion There are several hurdles in adhering to acne treatment. Recognition of these hurdles and finding appropriate solutions may be as important to treatment outcomes as choosing the right medication to prescribe. PMID:27784999

  14. Acid mine drainage and subsidence: effects of increased coal utilization.

    PubMed Central

    Hill, R D; Bates, E R

    1979-01-01

    The increases above 1975 levels for acid mine drainage and subsidence for the years 1985 and 2000 based on projections of current mining trends and the National Energy Plan are presented. No increases are projected for acid mine drainage from surface mines or waste since enforcement under present laws should control this problem. The increase in acid mine drainage from underground mines is projected to be 16 percent by 1985 and 10 percent by 2000. The smaller increase in 2000 over 1985 reflects the impact of the PL 95-87 abandoned mine program. Mine subsidence is projected to increase by 34 and 115 percent respectively for 1985 and 2000. This estimate assumes that subsidence will parallel the rate of underground coal production and that no new subsidence control measures are adopted to mitigate subsidence occurrence. PMID:540617

  15. Increased Brain Fatty Acid Uptake in Metabolic Syndrome

    PubMed Central

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti; Hirvonen, Jussi; Fielding, Barbara A.; Virtanen, Kirsi; Oikonen, Vesa; Kemppainen, Jukka; Viljanen, Tapio; Guiducci, Letizia; Haaparanta-Solin, Merja; Någren, Kjell; Solin, Olof; Nuutila, Pirjo

    2010-01-01

    OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [11C]-palmitate and [18F]fluoro-6-thia-heptadecanoic acid ([18F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [18F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [11C]-palmitate was 86% higher. Brain fatty acid uptake measured with [18F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction. PMID:20566663

  16. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  17. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  18. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  19. Carcinogen treatment increases glutathione hydrolysis by gamma-glutamyl transpeptidase.

    PubMed

    Conway, J G; Neptun, D A; Garvey, L K; Popp, J A

    1987-07-01

    The effect of carcinogen treatment on gamma-glutamyl transpeptidase (GGT)-mediated hydrolysis of GSH to glutamate and cysteinylglycine in the blood and bile compartments was investigated in livers perfused in situ. Treatment of rats with 40 p.p.m. diethylnitrosamine (DEN) in the drinking water or 0.02% 2-acetylaminofluorene (AAF) in the diet for 50-60 days increased GGT activity in liver homogenates by 100 and 800% respectively. Bile flow and the sum of glutamate and glutathione (GSH) efflux into the bile of perfused livers was not affected by carcinogen treatment. However, the ratio of GSH to glutamate in bile was 2.1, 1.1 and 0.2 in livers from control, DEN- and AAF-treated rats respectively. Pretreatment with L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT125) decreased GGT activity in liver homogenates by about 85% and elevated the ratio of GSH to glutamate in the bile to 3.2 in all groups. Thus, the hydrolysis of GSH to glutamate in the bile of perfused livers correlated with the degree of induction of GGT by DEN and AAF treatments. Exogenous GSH (10 microM) infused into the portal vein of perfused livers from control, DEN- and AAF-treated rats was recovered completely in the effluent perfusate. Pretreatment with AT125 had no effect on the recovery of exogenous GSH in the effluent perfusate. Thus, metabolism of GSH in the blood space was not detected after short-term carcinogen treatment. To increase the possible hydrolysis of GSH in the perfusate, rats were treated for 130-180 days with DEN and GSH (60 microM) was infused into the hepatic artery of livers perfused simultaneously via the hepatic artery and portal vein. Only 50% of the infused GSH was recovered in the effluent perfusate of perfused livers from DEN-treated rats. In contrast, significantly more GSH (80-90%) was recovered from livers from control rats or DEN-treated rats that had received AT125 pretreatment. In addition AT125 pretreatment increased the basal rates of GSH

  20. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  1. Lignor process for acidic rock drainage treatment.

    PubMed

    Zhuang, J M; Walsh, T

    2004-09-01

    The process using lignosulfonates for acidic rock drainage (ARD) treatment is referred to as the Lignor process. Lignosulfonates are waste by-products produced in the sulfite pulping process. The present study has shown lignosulfonates are able to protect lime from developing an external surface coating, and hence to favor its dissociation. Further, the addition of lignosulfonates to ARD solutions increased the dotting and settling rate of the formed sludge. The capability of lignosulfonates to form stable metal-lignin complexes makes them very useful in retaining metal ions and thus improving the long-term stability of the sludge against leaching. The Lignor process involves metal sorption with lignosulfonates, ARD neutralization by lime to about pH 7, pH adjustment with caustic soda to 9.4 - 9.6, air oxidation to lower the pH to a desired level, and addition of a minimum amount of FeCl3 for further removal of dissolved metals. The Lignor process removes all concerned metals (especially Al and Mn) from the ARD of the Britannia Mine (located at Britannia Beach, British Columbia, Canada) to a level lower than the limits of the B.C. Regulations. Compared with the high-density sludge (HDS) process, the Lignor process has many advantages, such as considerable savings in lime consumption, greatly reduced sludge volume, and improved sludge stability. PMID:15515269

  2. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    PubMed

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease.

  3. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    PubMed

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. PMID:25616451

  4. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  5. Hydrothermal acid treatment for sugar extraction from Golenkinia sp.

    PubMed

    Choi, Sun-A; Choi, Won-Il; Lee, Jin-Suk; Kim, Seung Wook; Lee, Gye-An; Yun, Jihyun; Park, Ji-Yeon

    2015-08-01

    In this study, hydrothermal acid treatment for efficient recovery of sugar from Golenkinia sp. was investigated. The initial glucose and XMG (xylose, mannose, and galactose) contents of a prepared Golenkinia sp. solution (40g/L) were 15.05 and 5.24g/L, respectively. The microalgal cell walls were hydrolyzed, for sugar recovery, by enzymatic saccharification and/or hydrothermal acid treatment. Among the various hydrothermal acid treatment conditions, the most optimal were the 2.0% H2SO4 concentration at 150°C for 15min, under which the glucose- and XMG-extraction yields were 71.7% and 64.9%, respectively. By pH 4.8, 50°C enzymatic hydrolysis after optimal hydrothermal acid treatment, the glucose- and XMG-extraction yields were additionally increased by 8.3% and 0.8%, respectively. After hydrothermal acid treatment, the combination with the enzymatic hydrolysis process improved the total sugar yield of Golenkinia sp. to 75.4%.

  6. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry.

  7. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    PubMed

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry. PMID:25212133

  8. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, M.; Millard, C.S.; Stols, L.

    1998-06-23

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria. 2 figs.

  9. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2002-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  10. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    2001-09-25

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which has been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  11. Mutant E. coli strain with increased succinic acid production

    DOEpatents

    Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1998-01-01

    A method for isolating succinic acid producing bacteria is provided comprising increasing the biomass of an organism which lacks the ability to catabolize pyruvate, and then subjecting the biomass to glucose-rich medium in an anaerobic environment to enable pyruvate-catabolizing mutants to grow. The invention also provides for a mutant that produces high amounts of succinic acid, which as been derived from a parent which lacked the genes for pyruvate formate lyase and lactate dehydrogenase, and which belongs to the E.coli Group of Bacteria.

  12. Acidic beverages increase the risk of in vitro tooth erosion.

    PubMed

    Ehlen, Leslie A; Marshall, Teresa A; Qian, Fang; Wefel, James S; Warren, John J

    2008-05-01

    Acidic beverages are thought to increase the potential for dental erosion. We report pH and titratable acidities (ie, quantity of base required to bring a solution to neutral pH) of beverages popular in the United States and lesion depths in enamel and root surfaces after beverage exposure, and we describe associations among pH, titratable acidity, and both enamel and root erosive lesion depths. The pH of 100% juices, regular sodas, diet sodas, and sports drinks upon opening and the titratable acidity both upon opening and after 60 minutes of stirring were measured. Enamel and root surfaces of healthy permanent molars and premolars were exposed to individual beverages (4 enamel and 4 root surfaces per beverage) for 25 hours, and erosion was measured. Statistical analyses included 2-sample t tests, analyses of variance with post hoc Tukey studentized range test; and Spearman rank correlation coefficients. All beverages were acidic; the titratable acidity of energy drinks was greater than that of regular and diet sodas that were greater than that of 100% juices and sports drinks (P < .05). Enamel lesion depths after beverage exposures were greatest for Gatorade, followed by those for Red Bull and Coke that were greater than those for Diet Coke and 100% apple juice (P < .05). Root lesion depths were greatest for Gatorade, followed by Red Bull, Coke, 100% apple juice, and Diet Coke (P < .05). Lesion depths were not associated with pH or titratable acidity. Beverages popular in the United States can produce dental erosion.

  13. Tetradecylthioacetic acid increases fat metabolism and improves cardiac function in experimental heart failure.

    PubMed

    Øie, Erik; Berge, Rolf K; Ueland, Thor; Dahl, Christen P; Edvardsen, Thor; Beitnes, Jan Otto; Bohov, Pavol; Aukrust, Pål; Yndestad, Arne

    2013-02-01

    Changes in myocardial metabolism, including a shift from fatty acid to glucose utilization and changes in fatty acid availability and composition are characteristics of heart failure development. Tetradecylthioacetic acid (TTA) is a fatty acid analogue lacking the ability to undergo mitochondrial β-oxidation. TTA promotes hepatic proliferation of mitochondria and peroxisomes and also decreases serum triglycerides and cholesterol in animals. We investigated the effect of TTA, in combination with a high-fat or regular diet, in a rat model of post-myocardial infarction heart failure. TTA had a beneficial effect on cardiac function in post-myocardial infarction heart failure without affecting myocardial remodeling. These effects of TTA on myocardial function were accompanied by decreased free fatty acids in plasma, increased myocardial proportion of n-3 polyunsaturated fatty acids (PUFA) and a decreased proportion of n-6 PUFA. Myocardial enzyme gene expression during TTA treatment suggested that the increase in n-3 PUFA could reflect increased n-3 PUFA synthesis and inadequately increased n-3 PUFA β-oxidation. Based on our data, it is unlikely that the changes are secondary to alterations in other tissues as plasma and liver showed an opposite pattern with decreased n-3 PUFA during TTA treatment. The present study suggests that TTA may improve myocardial function in heart failure, potentially involving its ability to decrease the availability of FFA and increase the myocardial proportion of n-3 PUFA. PMID:23266898

  14. Polymorphonuclear leukocytes increase glomerular albumin permeability via hypohalous acid.

    PubMed

    Li, J Z; Sharma, R; Dileepan, K N; Savin, V J

    1994-10-01

    Acute glomerulonephritis is characterized by the presence of neutrophils within glomeruli and the generation of reactive oxygen species (ROS) by activated polymorphonuclear leukocytes (PMNs). Hydrogen peroxide (H2O2) and other ROS including hypothalous acids have been implicated in PMN mediated injury. To determine the role of specific ROS in PMN mediated glomerular injury, isolated rat glomeruli were incubated for 30 minutes at 37 degrees C with H2O2, with H2O2 and myeloperoxidase, or with activated PMNs. Scavengers of ROS were included in some experiments. PMNs were harvested from rat peritoneal cavity and activated with phorbol myristate acetate (PMA). Glomerular albumin permeability (Palbumin) was calculated from the volume response to an oncotic gradient. Palbumin of glomeruli incubated with H2O2 (10(-3) or 10(-1) M) was not increased, while Palbumin after incubation with H2O2 and MPO was markedly increased (0.94 +/- 0.004). Palbumin after incubation with PMA, or with non-activated PMNs was not different from that of control glomeruli, Palbumin of the glomeruli incubated with activated PMNs increased (0.85 +/- 0.01, P < 0.001). This increase in Palbumin was inhibited by superoxide dismutase, catalase, or taurine (Palbumin = 0.035 +/- 0.06, -0.39 +/- 0.10, 0.028 +/- 0.06, respectively) and ameliorated by sodium azide (Palbumin = 0.21 +/- 0.03). In contrast, dimethyl sulfoxide did not prevent the increase in Palbumin (Palbumin = 0.92 +/- 0.01). Our results show that the hypohalous acid derived from that of H2O2-MPO-halide system is capable of increasing Palbumin. We conclude that hypohalous acid may be the primary mediator of the immediate increase in glomerular protein permeability induced by PMNs. PMID:7861697

  15. Valproic Acid Increases the Hepatic Differentiation Potential of Salivary Gland Cells.

    PubMed

    Petrakova, O S; Ashapkin, V V; Shtratnikova, V Y; Kutueva, L I; Vorotelyak, E A; Borisov, M A; Terskikh, V V; Gvazava, I G; Vasiliev, A V

    2015-01-01

    The studies of cell plasticity and differentiation abilities are important problems in modern cellular biology. The use of histone deacetylase inhibitor - valproic acid is a promising approach to increasing the differentiation efficiency of various cell types. In this paper we investigate the ability of mouse submandibular salivary gland cells to differentiate into the hepatic direction and the effect of valproic acid on the efficiency of this differentiation. It was shown that the gene expression levels of hepatocyte markers (Aat, Afp, G6p, Pepck, Tat, Cyp3a13) and liver-enriched transcription factors (Hnf-3α, Hnf-3β, Hnf-4α, Hnf-6) were increased after differentiation in salivary gland cells. Valproic acid increases the specificity of hepatic differentiation, reducing the expression levels of the ductal (Krt19, Hhex1, Cyp7a1) and acinar (Ptf1a) markers. After valproic acid exposure, the efficiency of hepatic differentiation also increases, as evidenced by the increase in the gene expression level of Alb and Tdo, and increase in urea production by differentiated cells. No change was found in DNA methylation of the promoter regions of the genes; however, valproic acid treatment and subsequent hepatic differentiation largely affected the histone H3 methylation of liver-enriched genes. Thus, mouse submandibular salivary gland cells are capable of effective differentiation in the hepatic direction. Valproic acid increases the specificity and efficiency of the hepatic differentiation of these cells.

  16. Neridronic acid for the treatment of bone metabolic diseases.

    PubMed

    Gatti, Davide; Viapiana, Ombretta; Idolazzi, Luca; Fracassi, Elena; Adami, Silvano

    2009-10-01

    Neridronic acid (6-amino-1-idroxyesilidene-1,1-bisphosphonate) is a nitrogen-containing bisphosphonate licensed in Italy for the treatment of osteogenesis imperfecta and Paget's disease of bone. The pharmacodynamic profile is similar to that of other nitrogen-containing bisphosphonates and is characterized by its high affinity for bone tissue particularly at sites undergoing a process of remodeling. In growing children affected by osteogenesis imperfect, neridronic acid rapidly increases bone mineral density as measured by dual X-ray absortiometry and this is associated with a significant decrease in fracture cumulative number. Similar results have been obtained also in newborns (< 12 month old) and in adult patients. In Paget's disease of bone, 200 mg intravenous neridronic acid is associated with a 65% rate of full remission and a biochemical response (decrease of > 75% of bone turnover markers) in 95% of the patients. Neridronic acid treatment has been reported to be effective also in other skeletal diseases such as osteoporosis, algodystrophy, hypercalcemia of malignancy and bone metastasis. Neridronic acid has been developed only for parenteral use, and it is the only one used as intramuscular injection. This avoids all the limitations of oral bisphosphonates and may be offered for a home treatment with simple nursing assistance. PMID:19761412

  17. Oleic, Linoleic and Linolenic Acids Increase ROS Production by Fibroblasts via NADPH Oxidase Activation

    PubMed Central

    Hatanaka, Elaine; Dermargos, Alexandre; Hirata, Aparecida Emiko; Vinolo, Marco Aurélio Ramirez; Carpinelli, Angelo Rafael; Newsholme, Philip; Armelin, Hugo Aguirre; Curi, Rui

    2013-01-01

    The effect of oleic, linoleic and γ-linolenic acids on ROS production by 3T3 Swiss and Rat 1 fibroblasts was investigated. Using lucigenin-amplified chemiluminescence, a dose-dependent increase in extracellular superoxide levels was observed during the treatment of fibroblasts with oleic, linoleic and γ-linolenic acids. ROS production was dependent on the addition of β-NADH or NADPH to the medium. Diphenyleneiodonium inhibited the effect of oleic, linoleic and γ-linolenic acids on fibroblast superoxide release by 79%, 92% and 82%, respectively. Increased levels of p47phox phosphorylation due to fatty acid treatment were detected by Western blotting analyses of fibroblast proteins. Increased p47phox mRNA expression was observed using real-time PCR. The rank order for the fatty acid stimulation of the fibroblast oxidative burst was as follows: γ-linolenic > linoleic > oleic. In conclusion, oleic, linoleic and γ-linolenic acids stimulated ROS production via activation of the NADPH oxidase enzyme complex in fibroblasts. PMID:23579616

  18. Dietary n-6 polyunsaturated fatty acid deprivation increases docosahexaenoic acid metabolism in rat brain.

    PubMed

    Igarashi, Miki; Kim, Hyung-Wook; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2012-03-01

    Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.

  19. Acid mine treatment with open limestone channels

    SciTech Connect

    Ziemkiewicz, P.F.; Brant, D.L.; Skousen, J.G.

    1996-12-31

    Acid mine drainage (AMD) is often associated with mining of pyritic coal and metal deposits. Typical AMD associated with coal mines in the eastern US can have acidity and iron concentrations ranging from the teens to the thousands of mg/l. Aluminum and manganese can be present in concentrations ranging from zero to the low hundreds of mg/l. Much attention has been devoted to developing inexpensive, limestone (LS)-based systems for treating AMID with little or no maintenance. However, LS tends to coat with metal hydroxides when exposed to AMID in an oxidized state, a process known as {open_quotes}armoring{close_quotes}. It is generally assumed that once armored, LS ceases to neutralize acid. Another problem is that the hydroxides tend to settle into plug the pore spaces in LS beds forcing water to move around rather than through the LS. While both are caused by the precipitation of metal hydroxides, armoring and plugging are two different problems. Plugging of LS pores can be avoided by maintaining a high flushing rate through the LS bed. Armoring, however, occurs regardless of water velocity. This study investigated the influence of armoring on LS solubility and the implications of armoring and plugging on the construction of open (oxidizing) LS channels for treating AMD. We evaluated the AMID treatment performance of armored and unarmored LS in oxidizing environments both in laboratory and field studies.

  20. Plasmidic Expression of nemA and yafC* Increased Resistance of Ethanologenic Escherichia coli LY180 to Nonvolatile Side Products from Dilute Acid Treatment of Sugarcane Bagasse and Artificial Hydrolysate

    PubMed Central

    Shi, Aiqin; Zheng, Huabao; Yomano, Lorraine P.; York, Sean W.; Shanmugam, Keelnatham T.

    2016-01-01

    Hydrolysate-resistant Escherichia coli SL100 was previously isolated from ethanologenic LY180 after sequential transfers in AM1 medium containing a dilute acid hydrolysate of sugarcane bagasse and was used as a source of resistance genes. Many genes that affect tolerance to furfural, the most abundant inhibitor, have been described previously. To identify genes associated with inhibitors other than furfural, plasmid clones were selected in an artificial hydrolysate that had been treated with a vacuum to remove furfural. Two new resistance genes were discovered from Sau3A1 libraries of SL100 genomic DNA: nemA (N-ethylmaleimide reductase) and a putative regulatory gene containing a mutation in the coding region, yafC*. The presence of these mutations in SL100 was confirmed by sequencing. A single mutation was found in the upstream regulatory region of nemR (nemRA operon) in SL100. This mutation increased nemA activity 20-fold over that of the parent organism (LY180) in AM1 medium without hydrolysate and increased nemA mRNA levels >200-fold. Addition of hydrolysates induced nemA expression (mRNA and activity), in agreement with transcriptional control. NemA activity was stable in cell extracts (9 h, 37°C), eliminating a role for proteinase in regulation. LY180 with a plasmid expressing nemA or yafC* was more resistant to a vacuum-treated sugarcane bagasse hydrolysate and to a vacuum-treated artificial hydrolysate than LY180 with an empty-vector control. Neither gene affected furfural tolerance. The vacuum-treated hydrolysates inhibited the reduction of N-ethylmaleimide by NemA while also serving as substrates. Expression of the nemA or yafC* plasmid in LY180 doubled the rate of ethanol production from the vacuum-treated sugarcane bagasse hydrolysate. PMID:26826228

  1. Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences

    PubMed Central

    Derr, Julien; Manapat, Michael L.; Rajamani, Sudha; Leu, Kevin; Xulvi-Brunet, Ramon; Joseph, Isaac; Nowak, Martin A.; Chen, Irene A.

    2012-01-01

    During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life. PMID:22319215

  2. Increase of geometrical and positional fatty acid isomers in dark meat from broilers fed heated oils.

    PubMed

    Bou, R; Tres, R Codony A; Baucells, M D; Guardiola, F

    2005-12-01

    Oxidation of polyunsaturated fatty acids leads to primary and secondary oxidation products. Compounds and amounts of these products vary, depending on the oxidative conditions. Because these oxidation products have different absorption and biological effects, we performed 2 different heating treatments on sunflower oil. The first was heating the oil at 190 to 195 degrees C for 28 h (i.e., very oxidized oil), and the other was heating at 60 degrees C for 12 d (i.e., peroxidized oil). In the frame of this study, we compared the fatty acid composition of a refined sunflower oil (fresh oil), peroxidized oil, very oxidized oil, and a mixture (1:1) of fresh and very oxidized oil (i.e., oxidized oil). Oil fatty acid compositions were affected by the heating treatments. In addition, different fatty acid isomers were formed during heating at 190 to 195 degrees C, and significant differences were found between their contents in the sunflower oils. We also studied the effect of feeding broilers with these oils and Zn and tocopherol supplements on the fatty acid composition of their raw dark meat. Various trans fatty acid isomers increased in dark meat from broilers fed oxidized and very oxidized oils. In addition, discriminant analysis showed that ditrans-conjugated linoleic acid content was able to distinguish dark chicken meat from chickens fed sunflower oils heated at 190 to 195 degrees C.

  3. Increasing dietary crude protein does not increase the essential amino acid requirements of kittens.

    PubMed

    Strieker, M J; Morris, J G; Rogers, Q R

    2006-08-01

    Essential amino acid (EAA) requirements of omnivores and herbivores (e.g. chicks, lambs, pigs and rats) are directly related to the concentration of dietary crude protein (CP). When an EAA is limiting in the diet, addition of a mixture of EAA lacking the limiting one (which increases dietary CP) results in a decrease in food intake and weight gain. This interaction has been referred to as an AA imbalance and has not been studied in depth in strict carnivores. The objectives of these experiments were to examine the effects on growing kittens (2-week periods) of the addition to diets of a mixture of AA lacking the limiting one. The control diets were at the requirement of the respective limiting EAA (or about 85% of the 1986 National Research Council requirement). In experiment 1, with the dietary EAAs at the minimally determined requirements, the concentration of the essential or dispensable amino acids was increased to determine if CP or an EAA was limiting. Results of growth rates (n = 12) and plasma AA concentrations indicated that tryptophan was limiting, but increased body weight gain also occurred when the concentration of CP was increased as dispensable amino acids without additional tryptophan. Experiment 1 was repeated in experiment 2 using a crossover design. Again, when tryptophan was limiting additional concentrations of dispensable AAs increased body weight gain. This response is the opposite of that in herbivores and omnivores. Experiment 3 consisted of 10 separate crossover trials, one for each of the 10 EAA and examined the effect of two concentrations of dietary CP (200 and 300 g CP/kg diet) on body weight gain of kittens (n = 8) offered diets limiting in each respective EAA. Body weight gain was numerically greater when diets contained 300 g CP/kg than 200 g CP/kg for eight of 10 EAAs (p < 0.05 for only isoleucine and threonine) when each amino acid was limiting. This response is the reverse of that which occurs in chicks, lambs, pigs and rats when

  4. Internal waves as a proposed mechanism for increasing ambient noise in an increasingly acidic ocean.

    PubMed

    Rouseff, Daniel; Tang, Dajun

    2010-06-01

    The effect on the ambient noise level in shallow water of the ocean growing more acidic is modeled. Because most noise sources are near the surface, high-order acoustic modes are preferentially excited. Linear internal waves, however, can scatter the noise into the low-order, low-loss modes most affected by the changes in acidity. The model uses transport theory to couple the modes and assumes an isotropic distribution for the noise sources. For a scenario typical of the East China Sea, the noise at 3 kHz is predicted to increase by 30%, about one decibel, as the pH decreases from 8.0 to 7.4.

  5. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid. PMID:26854723

  6. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    PubMed

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  7. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    PubMed Central

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  8. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  9. Insulin rapidly increases diacylglycerol by activating de novo phosphatidic acid synthesis.

    PubMed

    Farese, R V; Konda, T S; Davis, J S; Standaert, M L; Pollet, R J; Cooper, D R

    1987-05-01

    The mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes were examined. When [3H]arachidonate labeling of phospholipids was used as an indicator of phospholipase C activation, transient increases in [3H]diacylglycerol were observed between 0.5 and 10 minutes after the onset of insulin treatment. With [3H]glycerol labeling as an indicator of de novo phospholipid synthesis, [3H]diacylglycerol was increased maximally at 1 minute and remained elevated for 20 minutes. [3H]Glycerol-labeled diacylglycerol was largely derived directly from phosphatidic acid. Insulin increased de novo phosphatidic acid synthesis within 5 to 10 seconds; within 1 minute, this synthesis was 60 times greater than that of controls. Thus, the initial increase in diacylglycerol is due to both increased hydrolysis of phospholipids and a burst of de novo phosphatidic acid synthesis. After 5 to 10 minutes, de novo phosphatidic acid synthesis continues as a major source of diacylglycerol. Both phospholipid effects of insulin seem important for generating diacylglycerol and other phospholipid-derived intracellular signaling substances.

  10. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  11. Increased mutagenicity of chromium compounds by nitrilotriacetic acid

    SciTech Connect

    Loprieno, N.; Boncristiani, G.; Venier, P.; Montaldi, A.; Majone, F.; Bianchi, V.; Paglialunga, S.; Levis, A.G.

    1985-01-01

    Nitrilotriacetic acid trisodium salt (NTA), which is a substitute for polyphosphates in household laundry detergents, and N-nitrosoiminodiacetic acid (NIDA), a derivative of NTA produced by metabolism of soil microorganisms, were tested for in vitro mutagenicity in bacteria and yeasts. No gene reversions in five strains of Salmonella typhimurium (TA1535, TA1537, TA1538, TA98, and TA100), no forward gene mutations in Schizosaccharomyces pombe P1, and no mitotic gene conversions at two loci in Saccharomyces cerevisiae D4 were induced by NTA and NIDA independently of the presence of rat liver metabolic activation. The influence of NTA on the mutagenic and clastogenic activity of several chromium compounds was examined in the Salmonella/microsome assay and in the sister chromatid exchange (SCE) assay in mammalian cell cultures (Chinese hamster ovary (CHO) line). NTA does not affect the genetic inactivity of water-soluble Cr(III) (Cr/sub 2/(SO/sub 4/)/sub 3/) and the direct mutagenicity of soluble Cr(VI) (Na/sub 2/CrO/sub 4/, K/sub 2/Cr/sub 2/O/sub 7/) compounds. The very insoluble Cr(VI) compounds PbCrO/sub 4/ and PbCrO/sub 4/ x PbO are instead clearly mutagenic in the Salmonella/microsome assay (TA100 strain) only in the presence of NTA or NaOH. The chromosome-damaging activity of PbCrO/sub 4/ is significantly increased by NTA but not by NaOH.

  12. Increases in body mass index following initiation of methadone treatment

    PubMed Central

    Fenn, Jennifer M.; Laurent, Jennifer S.; Sigmon, Stacey C.

    2014-01-01

    Despite the clear efficacy of methadone for opioid dependence, one less desirable phenomenon associated with methadone may be weight gain. We examined changes in body mass index (BMI) among patients entering methadone treatment. A retrospective chart review was conducted for 96 patients enrolled in an outpatient methadone clinic for ≥6 months. The primary outcome of BMI was assessed at intake and a subsequent physical examination approximately 1.8±0.95 years later. Demographic, drug use and treatment characteristics were also examined. There was a significant increase in BMI following intake (p < 0.001). Mean BMIs increased from 27.2±6.8 to 30.1±7.7 kg/m2, translating to a 17.8-pound increase (10% increase in body weight) in the overall patient sample. Gender was the strongest predictor of BMI changes (p < 0.001), with significantly greater BMI increases in females than males (5.2 vs. 1.7 kg/m2, respectively). This translates to a 28-pound (17.5%) increase in females vs. a 12-pound (6.4%) increase in males. In summary, methadone treatment enrollment was associated with clinically significant weight gain, particularly among female patients. This study highlights the importance of efforts to help patients mitigate weight gain during treatment, particularly considering the significant health and economic consequences of obesity for individuals and society more generally. PMID:25441923

  13. Uric acid excretion predicts increased aggression in urban adolescents.

    PubMed

    Mrug, Sylvie; Mrug, Michal

    2016-09-01

    Elevated levels of uric acid have been linked with impulsive and disinhibited behavior in clinical and community populations of adults, but no studies have examined uric acid in relation to adolescent aggression. This study examined the prospective role of uric acid in aggressive behavior among urban, low income adolescents, and whether this relationship varies by gender. A total of 84 adolescents (M age 13.36years; 50% male; 95% African American) self-reported on their physical aggression at baseline and 1.5years later. At baseline, the youth also completed a 12-h (overnight) urine collection at home which was used to measure uric acid excretion. After adjusting for baseline aggression and age, greater uric acid excretion predicted more frequent aggressive behavior at follow up, with no significant gender differences. The results suggest that lowering uric acid levels may help reduce youth aggression. PMID:27180134

  14. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  15. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  16. Treatment of NASH with ursodeoxycholic acid: pro.

    PubMed

    Ratziu, Vlad

    2012-09-01

    Ursodeoxycholic acid (UDCA) is one of hepatologists'oldest friends, always ready to help, throughout the years, in numerous and various liver and biliary tract diseases. On paper, it has had an impeccable track record of cytoprotection in vitro and in vivo due to its pleiotropic effects on many pathways leading to cell injury. Most of its hepatoprotective effects demonstrated under experimental conditions proved able to counteract pathogenic mechanisms involved in the transition from steatosis to steatohepatitis, and early clinical studies suggested a potentially beneficial effect in non-alcoholic steatohepatitis (NASH) as well. Yet, only scant data on the efficacy of UDCA specifically in experimental models of steatosis/NASH are available, and the few available randomized controlled clinical studies have substantial methodological issues and are discussed in this review. Thus, at this point, there is not enough evidence to either confirm or reject the efficacy of UDCA in NASH, although many NASH patients clearly experience biochemical improvements with prolonged UDCA treatment. Also, a few new UDCA derivatives have shown promising activity in preclinical models and may be worth testing in clinical trials. PMID:23141893

  17. Minocycline, but not ascorbic acid, increases motor activity and extends the life span of Drosophila melanogaster.

    PubMed

    Mora, Marylhi; Medina-Leendertz, Shirley J; Bonilla, Ernesto; Terán, Raikelin E; Paz, Milagros C; Arcaya, José Luis

    2013-06-01

    In the present study we compared the effects of minocycline and ascorbic acid in the life span, motor activity and lipid peroxidation of Drosophila melanogaster, in an effort to find a substance capable of providing protection against oxidative stress in aging. In the flies treated with minocycline a very significant increase in the life span (101 +/- 1.33 days) was observed when compared to those treated with ascorbic acid and controls (42.3% and 38.4%, respectively). The motor activity of minocycline treated flies also increased significantly with respect to control and ascorbic acid fed flies, from the 3rd to the 9th week of treatment. With regard to lipid peroxidation, it was found that the levels of malondialdehyde (MDA) in flies treated with minocycline showed no statistical differences to the control on the first day of treatment, but a significantly lower content on the day of 50% survival. In contrast, in flies treated with ascorbic acid significantly elevated levels of MDA compared to control and minocycline treated flies were detected throughout. These results suggest a protective effect of minocycline against oxidative stress and aging in D. melanogaster. An inhibitory effect on reactive oxygen species production may be an important contributing factor.

  18. Negative reinforcement-based treatment to increase food intake.

    PubMed

    Kitfield, E B; Masalsky, C J

    2000-09-01

    A negative reinforcement-based treatment package was associated with desirable weight gain in a 22-year-old woman with developmental disabilities who demonstrated chronic food refusal. Treatments including extinction of escape and continuous access to preferred foods were not successful in increasing her weight. The negative reinforcement intervention included escape from eating and the dining area contingent upon the consumption of food. Improved oral consumption and increases in weight were achieved under negative reinforcement conditions and these results were maintained at follow-up intervals of 1 and 3 months.

  19. Soy-Based Multiple Amino Acid Oral Supplementation Increases the Anti-Sarcoma Effect of Cyclophosphamide

    PubMed Central

    Yao, Chien-An; Chen, Chin-Chu; Wang, Nai-Phog; Chien, Chiang-Ting

    2016-01-01

    The use of a mixture of amino acids caused a selective apoptosis induction against a variety of tumor cell lines, reduced the adverse effects of anti-cancer drugs and increased the sensitivity of tumor cells to chemotherapeutic agents. We evaluated the effects and underlying mechanisms of soy-derived multiple amino acids’ oral supplementation on the therapeutic efficacy of low-dose cyclophosphamide (CTX) and on tumor growth, apoptosis, and autophagy in severe combined immunodeficiency (SCID) mice that were injected with sarcoma-180 (S-180) cells. 3-methyladenine or siRNA knockdown of Atg5 was used to evaluate its effect on sarcoma growth. A comparison of mice with implanted sarcoma cells, CTX, and oral saline and mice with implanted sarcoma cells, CTX, and an oral soy-derived multiple amino acid supplement indicated that the soy-derived multiple amino acid supplement significantly decreased overall sarcoma growth, increased the Bax/Bcl-2 ratio, caspase 3 expression, and apoptosis, and depressed LC3 II-mediated autophagy. Treatment with 3-methyladenine or Atg5 siRNA elicited similar responses as CTX plus soy-derived multiple amino acid in downregulating autophagy and upregulating apoptosis. A low dose of CTX combined with an oral soy-derived multiple amino acid supplement had a potent anti-tumor effect mediated through downregulation of autophagy and upregulation of apoptosis. PMID:27043621

  20. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits. PMID:21506518

  1. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    PubMed

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits.

  2. Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study

    SciTech Connect

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R.

    2008-04-15

    Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

  3. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    PubMed

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    The effects of dietary palmitic and stearic acids on feed intake, yields of milk and milk components, and feed efficiency of dairy cows were evaluated in an experiment with a crossover arrangement of treatments with a covariate period. Cows with a wide range of milk production (38 to 65 kg/d) were used to determine if response to fat supplementation varied according to production level. Thirty-two Holstein cows (143 ± 61 d in milk) were assigned randomly to a treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet dry matter) with palmitic acid (PA; 97.9% C16:0) or stearic acid (SA; 97.4% C18:0). Treatment periods were 21 d and cows were fed a nonfat supplemented diet for 14 d immediately before the first treatment period. The final 4d of each period were used for sample and data collection. Milk production measured during the covariate period (preliminary milk yield) was used as the covariate. No interactions were detected between treatment and preliminary milk yield for the production response variables measured. Compared with SA, the PA treatment increased milk fat concentration (3.66 vs. 3.55%) and yield (1.68 vs. 1.59 kg/d), and 3.5% fat-corrected milk yield (47.5 vs. 45.6 kg/d). Treatment did not affect dry matter intake, milk yield, milk protein yield, body weight, or body condition score. Milk protein concentration was lower for PA compared with SA treatment (3.24 vs. 3.29%). The PA treatment increased feed efficiency (3.5% fat-corrected milk yield/dry matter intake) compared with SA (1.48 vs. 1.40). The increase in milk fat yield by PA was entirely accounted for by a 24% increase in 16-carbon fatty acid output into milk. Yields of de novo (3.2%) and preformed fatty acids (2.9%) were only slightly decreased by PA relative to SA. The PA treatment increased plasma concentration of nonesterified fatty acids (96.3 vs. 88.2 μEq/L) and glucose (56.6 vs. 55.7 mg/dL) compared with SA, but insulin and

  4. Heat treatment procedure to increase ductility of degraded nickel alloy

    NASA Technical Reports Server (NTRS)

    Prager, M.

    1968-01-01

    Tests demonstrate the room temperature ductility of degraded Rene 41 can be increased to acceptable values by solution heat treatment at a temperature of 2050 degrees to 2150 degrees F /1 to 2 hours/ and cooling through a controlled temperature range followed by normal aging in air /16 hours at 1400 degrees F/.

  5. An Increase Incidence in Uric Acid Nephrolithiasis: Changing Patterns

    PubMed Central

    Kumari, Asha; Mittal, Pawan; Kumar, Rajender; Goel, Richa; Bansal, Piyush; Kumar, Himanshu Devender; Bhutani, Jaikrit

    2016-01-01

    Introduction Nephrolithiasis is a complex disease affecting all age groups globally. As the causative factors for nephrolithiasis rises significantly, its incidence, prevalence and recurrence continues to baffle clinicians and patients. Aim To study the prevalence of different types of renal stones extracted by Percutaneous Nephrolithotomy (PCNL) and open surgical procedures. Materials and Methods Renal stones from 50 patients were retrieved by Percutaneous Nephrolithotomy (PCNL), Ureterorenoscopy (URS) and open surgical techniques for qualitative tests for detection of calcium, oxalate, uric acid, phosphate, ammonium ion, carbonate, cystine and xanthine. Results Three patients had stone removed by open surgery and rest had undergone PCNL. Nine of the stones were pure of calcium oxalate, 9 were of pure uric acid and 32 were mixed stones. Forty one stones had calcium. Among the mixed stones, oxalate was present in 25 samples (39 of total), uric acid was seen in 17 (25 of total stones), phosphate was present in 23 (23 of total) and carbonate was present in 4 stones (4 of total). Only 1 patient had triple phosphate stone. 12 were of staghorn appearance of which 6 were of struvite type, 6 were pure uric acid and remaining were mixed oxalate-phosphate stones. Conclusion Our study, though in a small number of hospital based patients, found much higher prevalence of uric acid stones and mixed stones than reported by previous hospital based studies in north India (oxalate stones~90%, uric acid~1% and mixed stones~3%). Biochemical analysis of renal stones is warranted in all cases. PMID:27630833

  6. An Increase Incidence in Uric Acid Nephrolithiasis: Changing Patterns

    PubMed Central

    Kumari, Asha; Mittal, Pawan; Kumar, Rajender; Goel, Richa; Bansal, Piyush; Kumar, Himanshu Devender; Bhutani, Jaikrit

    2016-01-01

    Introduction Nephrolithiasis is a complex disease affecting all age groups globally. As the causative factors for nephrolithiasis rises significantly, its incidence, prevalence and recurrence continues to baffle clinicians and patients. Aim To study the prevalence of different types of renal stones extracted by Percutaneous Nephrolithotomy (PCNL) and open surgical procedures. Materials and Methods Renal stones from 50 patients were retrieved by Percutaneous Nephrolithotomy (PCNL), Ureterorenoscopy (URS) and open surgical techniques for qualitative tests for detection of calcium, oxalate, uric acid, phosphate, ammonium ion, carbonate, cystine and xanthine. Results Three patients had stone removed by open surgery and rest had undergone PCNL. Nine of the stones were pure of calcium oxalate, 9 were of pure uric acid and 32 were mixed stones. Forty one stones had calcium. Among the mixed stones, oxalate was present in 25 samples (39 of total), uric acid was seen in 17 (25 of total stones), phosphate was present in 23 (23 of total) and carbonate was present in 4 stones (4 of total). Only 1 patient had triple phosphate stone. 12 were of staghorn appearance of which 6 were of struvite type, 6 were pure uric acid and remaining were mixed oxalate-phosphate stones. Conclusion Our study, though in a small number of hospital based patients, found much higher prevalence of uric acid stones and mixed stones than reported by previous hospital based studies in north India (oxalate stones~90%, uric acid~1% and mixed stones~3%). Biochemical analysis of renal stones is warranted in all cases.

  7. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review

    PubMed Central

    2011-01-01

    Background Linoleic acid, with a DRI of 12-17 g/d, is the most highly consumed polyunsaturated fatty acid in the Western diet and is found in virtually all commonly consumed foods. The concern with dietary linoleic acid, being the metabolic precursor of arachidonic acid, is its consumption may enrich tissues with arachidonic acid and contribute to chronic and overproduction of bioactive eicosanoids. However, no systematic review of human trials regarding linoleic acid consumption and subsequent changes in tissue levels of arachidonic acid has been undertaken. Objective In this study, we reviewed the human literature that reported changes in dietary linoleic acid and its subsequent impact on changing tissue arachidonic acid in erythrocytes and plasma/serum phospholipids. Design We identified, reviewed, and evaluated all peer-reviewed published literature presenting data outlining changes in dietary linoleic acid in adult human clinical trials that reported changes in phospholipid fatty acid composition (specifically arachidonic acid) in plasma/serum and erythrocytes within the parameters of our inclusion/exclusion criteria. Results Decreasing dietary linoleic acid by up to 90% was not significantly correlated with changes in arachidonic acid levels in the phospholipid pool of plasma/serum (p = 0.39). Similarly, when dietary linoleic acid levels were increased up to six fold, no significant correlations with arachidonic acid levels were observed (p = 0.72). However, there was a positive relationship between dietary gamma-linolenic acid and dietary arachidonic acid on changes in arachidonic levels in plasma/serum phospholipids. Conclusions Our results do not support the concept that modifying current intakes of dietary linoleic acid has an effect on changing levels of arachidonic acid in plasma/serum or erythrocytes in adults consuming Western-type diets. PMID:21663641

  8. VASP Increases Hepatic Fatty Acid Oxidation by Activating AMPK in Mice

    PubMed Central

    Tateya, Sanshiro; Rizzo-De Leon, Norma; Handa, Priya; Cheng, Andrew M.; Morgan-Stevenson, Vicki; Ogimoto, Kayoko; Kanter, Jenny E.; Bornfeldt, Karin E.; Daum, Guenter; Clowes, Alexander W.; Chait, Alan; Kim, Francis

    2013-01-01

    Activation of AMP-activated protein kinase (AMPK) signaling reduces hepatic steatosis and hepatic insulin resistance; however, its regulatory mechanisms are not fully understood. In this study, we sought to determine whether vasodilator-stimulated phosphoprotein (VASP) signaling improves lipid metabolism in the liver and, if so, whether VASP’s effects are mediated by AMPK. We show that disruption of VASP results in significant hepatic steatosis as a result of significant impairment of fatty acid oxidation, VLDL-triglyceride (TG) secretion, and AMPK signaling. Overexpression of VASP in hepatocytes increased AMPK phosphorylation and fatty acid oxidation and reduced hepatocyte TG accumulation; however, these responses were suppressed in the presence of an AMPK inhibitor. Restoration of AMPK phosphorylation by administration of 5-aminoimidazole-4-carboxamide riboside in Vasp−/− mice reduced hepatic steatosis and normalized fatty acid oxidation and VLDL-TG secretion. Activation of VASP by the phosphodiesterase-5 inhibitor, sildenafil, in db/db mice reduced hepatic steatosis and increased phosphorylated (p-)AMPK and p-acetyl CoA carboxylase. In Vasp−/− mice, however, sildendafil treatment did not increase p-AMPK or reduce hepatic TG content. These studies identify a role of VASP to enhance hepatic fatty acid oxidation by activating AMPK and to promote VLDL-TG secretion from the liver. PMID:23349495

  9. Increased libido associated with donepezil treatment: a case report.

    PubMed

    Segrec, Nusa; Zaman, Rashid; Pregelj, Peter

    2016-01-01

    Inappropriate verbal and physical sexual behaviour is not common among individuals with dementia, but when it does occur, it can have profound consequences. We report a case of 79-year-old woman with dementia of the Alzheimer's type who complained of increased libido after an increased dose of donepezil, which was being used along with tianeptine. Donepezil withdrawal led to the resolution of increased libido, but when it was reintroduced, increased libido reappeared once again (Naranjo score: 7). Increased libido was not reported by the patient during the 6-year follow-up period after donepezil withdrawal. A potential mechanism of acetylcholinesterase inhibitor-induced increased libido and the current literature on hypersexuality as a side-effect of donepezil treatment are discussed.

  10. Increased libido associated with donepezil treatment: a case report.

    PubMed

    Segrec, Nusa; Zaman, Rashid; Pregelj, Peter

    2016-01-01

    Inappropriate verbal and physical sexual behaviour is not common among individuals with dementia, but when it does occur, it can have profound consequences. We report a case of 79-year-old woman with dementia of the Alzheimer's type who complained of increased libido after an increased dose of donepezil, which was being used along with tianeptine. Donepezil withdrawal led to the resolution of increased libido, but when it was reintroduced, increased libido reappeared once again (Naranjo score: 7). Increased libido was not reported by the patient during the 6-year follow-up period after donepezil withdrawal. A potential mechanism of acetylcholinesterase inhibitor-induced increased libido and the current literature on hypersexuality as a side-effect of donepezil treatment are discussed. PMID:25735193

  11. Mechanisms increasing n-3 highly unsaturated fatty acids in the heart.

    PubMed

    Glück, Tobias; Rupp, Heinz; Alter, Peter

    2016-03-01

    Due to ambiguous findings on cardiovascular benefits of systemic omega-3 fatty acid therapy, endogenous mechanisms contributing to local organ-specific concentrations of highly unsaturated fatty acids (HUFA) were examined. Using gas chromatography, 43 fatty acids were analyzed in atrial and ventricular myocardium and in pericardial fluid of male Wistar rats. To examine the endogenous fatty acid metabolism, precursors were administered into the pericardial sac. Pro- and anti-inflammatory actions were induced by talc or fenofibrate, respectively. Physical exercise and a sedentary obese state were used for increased beta-oxidation. DHA (22:6n-3) was increased in ventricular when compared with atrial myocardium (9.0 ± 2.1% vs. 4.7 ± 1.0%, p < 0.001). Intrapericardial EPA (20:5n-3) application lead to an increase of the succeeding tetracosapentaenoic acid (24:5n-3) in atrial myocardium, which is a key precursor of DHA. In contrast, proinflammatory stimulation of the n-6 HUFA pathway did not influence the n-3 metabolism. Exercise- and obesity-induced increased beta-oxidation, the finalizing step of DHA synthesis, was associated with increased ventricular DHA concentrations (6.7 ± 1.0% vs. 8.4 ± 1.2%, p < 0.01). It is concluded that the endogenous metabolism contributes markedly to myocardial HUFA concentrations. The findings are supposed to influence the efficacy of oral HUFA treatment and provide a rationale for divergent findings of previous trials on omega-3 therapy. PMID:26780261

  12. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.

    PubMed

    Baier, L J; Sacchettini, J C; Knowler, W C; Eads, J; Paolisso, G; Tataranni, P A; Mochizuki, H; Bennett, P H; Bogardus, C; Prochazka, M

    1995-03-01

    The intestinal fatty acid binding protein locus (FABP2) was investigated as a possible genetic factor in determining insulin action in the Pima Indian population. A polymorphism at codon 54 of FABP2 was identified that results in an alanine-encoding allele (frequency 0.71) and a threonine-encoding allele (frequency 0.29). Pimas who were homozygous or heterozygous for the threonine-encoding allele were found to have a higher mean fasting plasma insulin concentration, a lower mean insulin-stimulated glucose uptake rate, a higher mean insulin response to oral glucose and a mixed meal, and a higher mean fat oxidation rate compared with Pimas who were homozygous for the alanine-encoding allele. Since the FABP2 threonine-encoding allele was found to be associated with insulin resistance and increased fat oxidation in vivo, we further analyzed the FABP2 gene products for potential functional differences. Titration microcalorimetry studies with purified recombinant protein showed that the threonine-containing protein had a twofold greater affinity for long-chain fatty acids than the alanine-containing protein. We conclude that the threonine-containing protein may increase absorption and/or processing of dietary fatty acids by the intestine and thereby increase fat oxidation, which has been shown to reduce insulin action. PMID:7883976

  13. Humic substances increase survival of freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2013-02-01

    Humic substances (HS) are known to decrease the toxicity of heavy metals to aquatic organisms, and it has been suggested that they can provide buffering protection in low pH conditions. Despite this, little is known about the ability for HS to increase survival to acid mine drainage (AMD). In this study, the ability of HS to increase survival of the freshwater shrimp (Caridina sp. D sensu Page et al. in Biol Lett 1:139-142, 2005) to acid mine drainage was investigated using test waters collected from the Mount Morgan open pit in Central Queensland with the addition of Aldrich humic acid (AHA). The AMD water from the Mount Morgan open pit is highly acidic (pH 2.67) as well as contaminated with heavy metals (1780 mg/L aluminum, 101 mg/L copper [Cu], 173 mg/L manganese, 51.8 mg/L zinc [Zn], and 51.8 mg/L iron). Freshwater shrimp were exposed to dilutions in the range of 0.5 % to 5 % AMD water with and without the addition of 10 or 20 mg/L AHA. In the absence of HS, all shrimp died in the 2.5 % AMD treatment. In contrast, addition of HS increased survival in the 2.5 % AMD treatment by ≤66 % as well as significantly decreased the concentration of dissolved Cu, cobalt, cadmium, and Zn. The decreased toxicity of AMD in the presence of HS is likely to be due to complexation and precipitation of heavy metals with the HS; it is also possible that HS caused changes to the physiological condition of the shrimp, thus increasing their survival. These results are valuable in contributing to an improved understanding of potential role of HS in ameliorating the toxicity of AMD environments. PMID:23135152

  14. Ionic liquid pretreatment to increase succinic acid production from lignocellulosic biomass.

    PubMed

    Wang, Caixia; Yan, Daojiang; Li, Qiang; Sun, Wei; Xing, Jianmin

    2014-11-01

    In this study, pinewood and corn stover pretreated with the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride (AmimCl) were used as a feedstock for succinic acid production. Results reveal that 5% (v/v) AmimCl inhibited bacterial growth, whereas 0.01% (v/v) AmimCl inhibited succinic acid production. AmimCl was effective in extracting cellulose from pinewood and in degrading pinewood into a uniform pulp, as revealed by scanning electron microscopy (SEM). The rate of enzymatic hydrolysis of pinewood extract reached 72.16%. The combinations of AmimCl pretreatment with steam explosion or with hot compressed water were effective in treating corn stover, whereas AmimCl treatment alone did not result in a significant improvement. Pinewood extract produced 20.7g/L succinic acid with an average yield of 0.37g per gram of biomass. Workflow calculations indicated pine wood pretreated with IL has a theoretical yield of succinic acid of 57.1%. IL pretreatment led to increase in succinic acid yields.

  15. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming.

    PubMed

    Nüsken, Eva; Gellhaus, Alexandra; Kühnel, Elisabeth; Swoboda, Isabelle; Wohlfarth, Maria; Vohlen, Christina; Schneider, Holm; Dötsch, Jörg; Nüsken, Kai-Dietrich

    2016-07-01

    Regulation of placental nutrient transport significantly affects fetal development and may modify intrauterine growth restriction (IUGR) and fetal programming. We hypothesized that placental nutrient transporters are differentially affected both by utero-placental insufficiency and prenatal surgical stress. Pregnant rats underwent bilateral uterine artery and vein ligation (LIG), sham operation (SOP) or no operation (controls, C) on gestational day E19. Placentas were obtained by caesarean section 4 h (LIG, n=20 placentas; SOP, n=24; C, n=12), 24 h (LIG, n=28; SOP, n=20; C, n=12) and 72 h (LIG, n=20; SOP, n=20; C, n=24) after surgery. Gene and protein expression of placental nutrient transporters for fatty acids (h-FABP, CD36), amino acids (SNAT1, SNAT2) and glucose (GLUT-1, Connexin 26) were examined by qRT-PCR, western blot and immunohistochemistry. Interestingly, the mean protein expression of h-FABP was doubled in placentas of LIG and SOP animals 4, 24 (SOP significant) and 72 h (SOP significant) after surgery. CD36 protein was significantly increased in LIG after 72 h. SNAT1 and SNAT2 protein and gene expressions were significantly reduced in LIG and SOP after 24 h. Further significantly reduced proteins were GLUT-1 in LIG (4 h, 72 h) and SOP (24 h), and Connexin 26 in LIG (72 h). In conclusion, placental nutrient transporters are differentially affected both by reduced blood flow and stress, probably modifying the already disturbed intrauterine milieu and contributing to IUGR and fetal programming. Increased fatty acid transport capacity may affect energy metabolism and could be a compensatory reaction with positive effects on brain development. J. Cell. Biochem. 117: 1594-1603, 2016. © 2015 Wiley Periodicals, Inc.

  16. Raspberry ketone increases both lipolysis and fatty acid oxidation in 3T3-L1 adipocytes.

    PubMed

    Park, Kyoung Sik

    2010-10-01

    Raspberry ketone (RK) is a natural phenolic compound of the red raspberry. The dietary administration of RK to male mice has been reported to prevent high-fat diet-induced elevation in body weight and to increase lipolysis in white adipocytes. To elucidate a possible mechanism for the antiobesity action of RK, its effects on the expression and the secretion of adiponectin, lipolysis, and fatty acid oxidation in 3T3-L1 were investigated. Treatment with 10 µM of RK increased lipolysis significantly in differentiated 3T3-L1 cells. An immunoassay showed that RK increased both the expression and the secretion of adiponectin, an adipocytokine mainly expressed and secreted by adipose tissue. In addition, treatment with 10 µM of RK increased the fatty acid oxidation and suppressed lipid accumulation in 3T3-L1 adipocytes. These findings suggest that RK holds great promise as an herbal medicine since its biological activities alter the lipid metabolism in 3T3-L1 adipocytes.

  17. Early Increases in Bile Acids Post Roux-en-Y Gastric Bypass Are Driven by Insulin-Sensitizing, Secondary Bile Acids

    PubMed Central

    Albaugh, Vance L.; Flynn, Charles Robb; Cai, Steven; Xiao, Yi; Tamboli, Robyn A.

    2015-01-01

    Context: Roux-en-Y gastric bypass (RYGB) is the most effective treatment for morbid obesity and resolution of diabetes. Over the last decade, it has become well accepted that this resolution of diabetes occurs before significant weight loss; however, the mechanisms behind this effect remain unknown and could represent novel therapeutic targets for obesity and diabetes. Bile acids have been identified as putative mediators of these weight loss-independent effects. Objective: To identify the longitudinal changes in bile acids after RYGB, which may provide mechanistic insight into the weight loss-independent effects of RYGB. Design: Observational study before/after intervention. Setting: Academic medical center. Patients/Participants: Samples were collected from morbidly obese patients (n = 21) before and after RYGB. Intervention: RYGB. Main Outcome Measures: Seventeen individual bile acid species were measured preoperatively and at 1, 6, 12, and 24 months postoperatively. Anthropometric, hormonal, and hyperinsulinemic-euglycemic clamp data were also examined to identify physiological parameters associated with bile acid changes. Results: Fasting total plasma bile acids increased after RYGB; however, increases were bimodal and were observed only at 1 (P < .05) and 24 months (P < .01). One-month increases were secondary to surges in ursodeoxycholic acid and its glycine and taurine conjugates, bacterially derived bile acids with putative insulin-sensitizing effects. Increases at 24 months were due to gradual rises in primary unconjugated bile acids as well as deoxycholic acid and its glycine conjugate. Plasma bile acid changes were not significantly associated with any anthropometric or hormonal measures, although hepatic insulin sensitivity was significantly improved at 1 month. Conclusions: Overall findings suggest that bacterially derived bile acids may mediate the early improvements at 1 month after RYGB. Future studies should examine the changes in specific bile

  18. Radiofrequency Thermal Ablation: Increase in Lesion Diameter with Continuous Acetic Acid Infusion

    SciTech Connect

    Lubienski, Andreas Duex, Markus; Lubienski, Katrin; Grenacher, Lars; Kauffmann, Guenter

    2005-12-15

    Purpose. To evaluate the influence of continuous infusion of acetic acid 50% during radiofrequency ablation (RFA) on the size of the thermal lesion produced. Methods. Radiofrequency (RF) was applied to excised bovine liver by using an expandable needle electrode with 10 retractable tines (LeVeen Needle Electrode, RadioTherapeutics, Sunnyvale, CA) connected to a commercially available RF generator (RF 2000, RadioTherapeutics, Sunnyvale, CA). Experiments were performed using three different treatment modalities: RF only (n = 15), RF with continuous saline 0.9% infusion (n = 15), and RF with continuous acetic acid 50% infusion (n = 15). RF duration, power output, tissue impedance, and time to a rapid rise in impedance were recorded. The ablated lesions were evaluated both macroscopically and histologically. Results. The ablated lesions appeared as spherical or ellipsoid, well-demarcated pale areas with a surrounding brown rim with both RF only and RF plus saline 0.9% infusion. In contrast, thermolesions generated with RF in combination with acetic acid 50% infusion were irregular in shape and the central portion was jelly-like. Mean diameter of the coagulation necrosis was 22.3 {+-} 2.1 mm (RF only), 29.2 {+-} 4.8 mm (RF + saline 0.9%) and 30.7 {+-} 5.7 mm (RF + acetic acid 50%), with a significant increase in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Time to a rapid rise in impedance was significantly prolonged in the RF plus saline 0.9% and RF plus acetic acid 50% groups compared with RF alone. Conclusions. A combination of RF plus acetic acid 50% infusion is able to generate larger thermolesions than RF only or RF combined with saline 0.9% infusion.

  19. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  20. Zoledronic acid in vivo increases in vitro proliferation of rat mesenchymal stromal cells.

    PubMed

    Heino, Terhi J; Alm, Jessica J; Halkosaari, Heikki J; Välimäki, Ville-Valtteri

    2016-08-01

    Background and purpose - Bisphosphonates are widely used in the treatment of bone loss, but they might also have positive effects on osteoblastic cells and bone formation. We evaluated the effect of in vivo zoledronic acid (ZA) treatment and possible concomitant effects of ZA and fracture on the ex vivo osteogenic capacity of rat mesenchymal stromal cells (MSCs). Methods - A closed femoral fracture model was used in adult female rats and ZA was administered as a single bolus or as weekly doses up to 8 weeks. Bone marrow MSCs were isolated and cultured for in vitro analyses. Fracture healing was evaluated by radiography, micro-computed tomography (μCT), and histology. Results - Both bolus and weekly ZA increased fracture-site bone mineral content and volume. MSCs from weekly ZA-treated animals showed increased ex vivo proliferative capacity, while no substantial effect on osteoblastic differentiation was observed. Fracture itself did not have any substantial effect on cell proliferation or differentiation at 8 weeks. Serum biochemical markers showed higher levels of bone formation in animals with fracture than in intact animals, while no difference in bone resorption was observed. Interestingly, ex vivo osteoblastic differentiation of MSCs was found to correlate with in vivo serum bone markers. Interpretation - Our data show that in vivo zoledronic acid treatment can influence ex vivo proliferation of MSCs, indicating that bisphosphonates can have sustainable effects on cells of the osteoblastic lineage. Further research is needed to investigate the mechanisms. PMID:27196705

  1. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality.

    PubMed

    Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo

    2015-01-01

    Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure.

  2. Treatment of Irradiated Mice with High-Dose Ascorbic Acid Reduced Lethality

    PubMed Central

    Sato, Tomohito; Kinoshita, Manabu; Yamamoto, Tetsuo; Ito, Masataka; Nishida, Takafumi; Takeuchi, Masaru; Saitoh, Daizoh; Seki, Shuhji; Mukai, Yasuo

    2015-01-01

    Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure. PMID:25651298

  3. Engineering Porous Organic Cage Crystals with Increased Acid Gas Resistance.

    PubMed

    Zhu, Guanghui; Hoffman, Christopher D; Liu, Yang; Bhattacharyya, Souryadeep; Tumuluri, Uma; Jue, Melinda L; Wu, Zili; Sholl, David S; Nair, Sankar; Jones, Christopher W; Lively, Ryan P

    2016-07-25

    Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers. PMID:27253350

  4. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  5. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  6. 15. INTERIOR MIDDLE BAY DETAIL VIEW, FACING WEST. ACID TREATMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR MIDDLE BAY DETAIL VIEW, FACING WEST. ACID TREATMENT, CUTTING EQUIPMENT, LOCKERS ABANDONED ON SITE. TRACKS FOR MOVEMENT OF MATERIALS VISIBLE HANGING FROM CEILING. - NASA Industrial Plant, Missile Research Laboratory, 12214 Lakewood Boulevard, Downey, Los Angeles County, CA

  7. Lovastatin increases arachidonic acid levels and stimulates thromboxane synthesis in human liver and monocytic cell lines.

    PubMed Central

    Hrboticky, N; Tang, L; Zimmer, B; Lux, I; Weber, P C

    1994-01-01

    The effect of lovastatin (LOV), the inhibitor of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, on linoleic acid (LA, 18:2n-6) metabolism was examined in human monocytic Mono Mac 6 (MM6) and hepatoma Hep G2 cells. The desaturation of LA was examined after LOV (72 h, 10 microM) or dimethylsulfoxide (LOV carrier, < 0.1%) and [14C]LA (last 18 h, 0.3 microCi, 5 microM). In both cell lines, LOV reduced the percentage of 14C label associated with LA and increased the percentage of label in the 20:4n-6 and the 22:5n-6 fractions. In Hep G2 but not MM6 cells, this effect was fully reversible by means of coincubation with mevalonic acid (500 microM), but not with cholesterol or lipoproteins. In both cell lines, the LOV-mediated increase in LA desaturation resulted in dose-dependent reductions of LA and elevations of AA in cellular phospholipids. The lipids secreted by LOV-treated Hep G2 cells were also enriched in arachidonic acid (AA). In the MM6 cells, LOV increased release of thromboxane upon stimulation with the calcium ionophore A23187. In summary, our findings of higher LA desaturation and AA enrichment of lipids secreted by the Hep G2 cells suggest that LOV treatment may increase the delivery of AA from the liver to extrahepatic tissues. The changes in membrane fatty acid composition can influence a variety of cellular functions, such as eicosanoid synthesis in monocytic cells. The mechanism appears to be related to the reduced availability of intermediates of cholesterogenesis. PMID:8282787

  8. [Advances in the research of treatment of hydrofluoric acid burn].

    PubMed

    Wang, Xin-gang; Zhang, Yuan-hai; Han, Chun-mao

    2013-08-01

    Hydrofluoric acid (HF) is one of the most common inorganic acids used widely in industrial circle. HF not only causes cutaneous burn, but also induces systemic toxicity by its unique injury mechanism. Accurate and timely diagnosis and treatment are critical after HF burns. To date, the strategies for treating HF burns have been developed, mainly including topical treatments and systematic support. However, there is no standard treatment strategy with wide acceptance in the world. This paper presents a comprehensive overview of the advances in the research of strategies for the treatment of HF burns.

  9. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  10. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes.

    PubMed

    Quitain, Armando T; Faisal, Muhammad; Kang, Kilyoon; Daimon, Hiroyuki; Fujie, Koichi

    2002-07-22

    This article reports production of low-molecular-weight carboxylic acids from the hydrothermal treatment of representative organic wastes and compounds (i.e. domestic sludge, proteinaceous, cellulosic and plastic wastes) with or without oxidant (H(2)O(2)). Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa), acetic acid of about 26 mg/g dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H(2)O(2). Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of polyethylene terephthalate (PET) plastic wastes and glucose, respectively. In addition, production of lactic acid, one of the interesting low-molecular-weight carboxylic acids, was discussed on the viewpoint of resources recovery. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product.

  11. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker.

    PubMed

    Harris, William S; Lemke, Shawna L; Hansen, Susan N; Goldstein, Daniel A; DiRienzo, Maureen A; Su, Hong; Nemeth, Margaret A; Taylor, Mary L; Ahmed, Gulam; George, Cherian

    2008-09-01

    A plant source of omega-3 fatty acid (FA) that can raise tissue eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) is needed. A soybean oil (SBO) containing approximately 20% stearidonic acid [SDA; the delta-6 desaturase product of alpha-linolenic acid (ALA)] derived from genetically modified soybeans is under development. This study compared the effects of EPA to SDA-SBO on erythrocyte EPA+DHA levels (the omega-3 index). Overweight healthy volunteers (n=45) were randomized to SDA-SBO (24 ml/day providing approximately 3.7 g SDA) or to regular SBO (control group) without or with EPA ethyl esters (approximately 1 g/day) for 16 weeks. Serum lipids, blood pressure, heart rate, platelet function and safety laboratory tests were measured along with the omega-3 index. A per-protocol analysis was conducted on 33 subjects (11 per group). Compared to baseline, average omega-3 index levels increased 19.5% in the SDA group and 25.4% in the EPA group (p<0.05 for both, vs. control). DHA did not change in any group. Relative to EPA, SDA increased RBC EPA with about 17% efficiency. No other clinical endpoints were affected by SDA or EPA treatment (vs. control). In conclusion, SDA-enriched SBO significantly raised the omega-3 index. Since EPA supplementation has been shown to raise the omega-3 index and to lower risk for cardiac events, SDA-SBO may be a viable plant-based alternative for providing meaningful intakes of cardioprotective omega-3 FAs.

  12. Humic substances of varying types increase survivorship of the freshwater shrimp Caridina sp. D to acid mine drainage.

    PubMed

    Holland, Aleicia; Duivenvoorden, Leo J; Kinnear, Susan H W

    2014-07-01

    Differences relating to the ability of various types of humic substances (HS) to influence toxicity of pollutants have been reported in the literature, but there still remains a gap in understanding whether various HS will have the same influence on the toxicity of acid mine drainage (AMD). This study investigated differences in the ability of Aldrich humic acid (AHA), Suwannee River humic acid and Suwannee River fulvic acid to decrease toxicity of AMD to the freshwater shrimp (Caridina sp. D). Toxicity tests were conducted over 96 h and used Mount Morgan open pit water as source of AMD and Dee River water as control/diluents. Concentrations of 0-4 % AMD at 0 mg/L HS, 10 mg/L AHA, 10 mg/L Suwannee River humic acid and 10 mg/L Suwannee River fulvic acid were used. Significantly higher survival of shrimp was recorded in the HS treatments compared with the treatment containing no HS. No significant differences were found among HS type. HS considerably increased LC50 values irrespective of type, from 1.29 (0 mg/L HS) to 2.12 % (AHA); 2.19 (Suwannee River humic acid) and 2.22 % (Suwannee River fulvic acid). These results support previous work that HS decrease the toxicity of AMD to freshwater organisms, but with the novel finding that this ability occurs irrespective of HS type. These results increase the stock of knowledge regarding HS and may contribute to a possible remediation option for AMD environments. PMID:24715599

  13. Cancer treatment by ultrasound: Increasing the depth of necrosis

    NASA Astrophysics Data System (ADS)

    Melodelima, David; Cathignol, Dominique

    2004-06-01

    Tissue coagulation by high-intensity ultrasound is a well-established method of cancer treatment. It suffers, however, from insufficient depth of action in the case of deep-seated tumors where endoscopic or interstitial applicators are used. It is demonstrated here that this depth can be increased by temporarily creating cavitation bubbles in such a way that ultrasound attenuation becomes stronger in the zone where tissue heating is insufficient. In vitro experiments in liver tissue confirm that bubbles are indeed located in this zone and that the effective depth of coagulation necrosis is doubled.

  14. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    SciTech Connect

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  15. Tolerability and Efficacy of Retinoic Acid Given after Full-face Peel Treatment of Photodamaged Skin

    PubMed Central

    Hu, Judy Y.; Biron, Julie A.; Yatskayer, Margarita; Dahl, Amanda; Oresajo, Christian

    2011-01-01

    Objective: All-trans retinoic acid is a well-established topical treatment of photodamaged skin. This study assessed the tolerance and efficacy of all-trans retinoic acid after full-face treatment with a chemical peel. Design: This was a split-face, randomized study. One side of each face was treated with peel and the other side with peel and all-trans retinoic acid (3%). Four treatments were given during the 10-week study period. Setting: Physician office. Participants: Fifteen female subjects 39 to 55 years of age. Measurements: Results were evaluated at Baseline; Weeks 4, 7, and 10; and at a 13-week follow-up visit by dermal grading of visual symptoms of irritation, subjective experiences of irritation, clinical grading of skin condition, and self-assessment questionnaires. Results: Both peel and peel plus all-trans retinoic acid treatments achieved significant improvement in fine lines, radiance, roughness, skin tone clarity, skin tone evenness, and hyperpigmentation appearance. Improvement in wrinkles and firmness was not observed in the peel plus all-trans retinoic acid arm, while pore appearance failed to improve in either treatment arm. Improvement in overall facial appearance was greater in the peel alone arm. Peel alone and the addition of all-trans retinoic acid did not cause dryness, edema, or peeling, and the frequency of peel-induced erythema did not increase with the addition of all-trans retinoic acid. Subject-perceived improvements with the peel treatment did not differ significantly from subject-perceived improvements of the peel plus all-trans retinoic acid treatment. Adverse events requiring intervention or discontinuing treatment were not observed in either treatment arm. Conclusion: The addition of all-trans retinoic acid after peel treatment does not significantly enhance peel-induced improvement in photoaging parameters, peel-induced adverse effects, and subject-perceived improvements. PMID:22010055

  16. 300 Area waste acid treatment system closure plan

    SciTech Connect

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  17. Elaidate, an 18-Carbon Trans-monoenoic Fatty Acid, but not Physiological Fatty Acids Increases Intracellular Zn2+ in Human Macrophages

    PubMed Central

    Zacherl, Janelle R.; Tourkova, Irina; St Croix, Claudette M.; Robinson, Lisa J.; Peck Palmer, Octavia M.; Mihalik, Stephanie J.; Blair, Harry C.

    2015-01-01

    Artificial trans fatty acids promote atherosclerosis by blocking macrophage clearance of cell debris. Classical fatty-acid response mechanisms include TLR4-NF-κB activation, and Erk1/2 phosphorylation, but these may not indicate long-term mechanisms. Indeed, nuclear NF-κB was increased by 60 minute treatment by 30 μM of the 18 carbon trans unsaturated fatty acid elaidic acid (elaidate), the physiological cis-unsaturated fatty acid oleic acid (oleate), and the 18 or 16 carbon saturated fatty acids stearic and palmitic acid (stearate or palmitate). However, except for stearate, effects on related pathways were minimal at 44 hours. To determine longer term effects of trans fatty acids, we compared whole exome mRNA expression of (trans) elaidate to (cis) oleate, 30 μM, at 44 hours in human macrophages. We found that elaidate changed Zn2+-homeostasis gene mRNAs markedly. This might be important because Zn2+ is a major regulator of macrophage activity. Messenger RNAs of seven Zn2+-binding metallothioneins decreased 2–4 fold; the zinc importer SLC39A10 increased 2-fold, in elaidate relative to oleate-treated cells. Results were followed by quantitative PCR comparing cis, trans, and saturated fatty acid effects on Zn2+-homeostasis gene mRNAs. This confirmed that elaidate uniquely decreased metallothionein expression and increased SLC39A10 at 44 hours. Further, intracellular Zn2+ was measured using N-(carboxymethyl)-N-[2-[2-[2(carboxymethyl)amino]-5-(2,7,-difluoro-6-hydroxy-3-oxo-3H-xanthen-9-yl)-phenoxy]-ethoxy]-4-methoxyphenyl]glycine, acetoxymethyl ester (FluoZin-3-AM). This showed that, at 44 hours, only cells treated with elaidate had increased Zn2+. The durable effect of elaidate on Zn2+ activation is a novel and specific effect of trans fatty acids on peripheral macrophage metabolism. PMID:25358453

  18. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer’s disease

    PubMed Central

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2014-01-01

    Seizures are a known co-occurring symptom of Alzheimer’s disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer’s disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer’s disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically-induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/−APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer’s disease. PMID:25616451

  19. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    PubMed

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  20. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study.

    PubMed

    Xie, Haifeng; Shen, Shuping; Qian, Mengke; Zhang, Feimin; Chen, Chen; Tay, Franklin R

    2015-01-01

    The aim of this study was to evaluate the effects of hydrofluoric (HF) acid, acetic acid, and citric acid treatments on the physical properties and structure of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) at ambient temperature. In total, 110 bar-shaped zirconia specimens were randomly assigned to 11 groups. The specimens in the control group (C) received no surface treatment, while those in the Cage group were hydrothermally aged at 134°C and 0.2 MPa for 20 h. Ten specimens each were immersed at ambient temperature in 5% and 40% HF acid for 2 h (40HF0), 1 day (5HF1, 40HF1), and 5 days (5HF5, 40HF5), while 10 each were immersed at ambient temperature in 10% acetic acid and 20% citric acid for 7 (AC7, CI7) and 14 days (AC14, CI14). X-ray diffraction (XRD) was used to quantitatively estimate the monoclinic phase. Furthermore, flexural strength, surface roughness, and surface Vickers hardness were measured after treatment. Scanning electron microscopy (SEM) was used to characterize the surface morphology. The Cage group specimens exhibited an increased monoclinic phase and flexural strength. Furthermore, 40% HF acid immersion decreased the flexural strength and surface hardness and deteriorated the surface finish, while 5% HF acid immersion only decreased the surface hardness. All the HF acid-immersed specimens showed an etched surface texture on SEM observations, while the other groups did not. These findings suggest that the treatment of Y-TZP with 40% HF acid at ambient temperature causes potential damage, while treatment with 5% HF acid, acetic acid, and citric acid is safe.

  1. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study

    PubMed Central

    Xie, Haifeng; Shen, Shuping; Qian, Mengke; Zhang, Feimin; Chen, Chen; Tay, Franklin R.

    2015-01-01

    The aim of this study was to evaluate the effects of hydrofluoric (HF) acid, acetic acid, and citric acid treatments on the physical properties and structure of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) at ambient temperature. In total, 110 bar-shaped zirconia specimens were randomly assigned to 11 groups. The specimens in the control group (C) received no surface treatment, while those in the Cage group were hydrothermally aged at 134°C and 0.2 MPa for 20 h. Ten specimens each were immersed at ambient temperature in 5% and 40% HF acid for 2 h (40HF0), 1 day (5HF1, 40HF1), and 5 days (5HF5, 40HF5), while 10 each were immersed at ambient temperature in 10% acetic acid and 20% citric acid for 7 (AC7, CI7) and 14 days (AC14, CI14). X-ray diffraction (XRD) was used to quantitatively estimate the monoclinic phase. Furthermore, flexural strength, surface roughness, and surface Vickers hardness were measured after treatment. Scanning electron microscopy (SEM) was used to characterize the surface morphology. The Cage group specimens exhibited an increased monoclinic phase and flexural strength. Furthermore, 40% HF acid immersion decreased the flexural strength and surface hardness and deteriorated the surface finish, while 5% HF acid immersion only decreased the surface hardness. All the HF acid-immersed specimens showed an etched surface texture on SEM observations, while the other groups did not. These findings suggest that the treatment of Y-TZP with 40% HF acid at ambient temperature causes potential damage, while treatment with 5% HF acid, acetic acid, and citric acid is safe. PMID:26301413

  2. Increased breastfeeding rates in black women after a treatment intervention.

    PubMed

    Spinelli, Margaret G; Endicott, Jean; Goetz, Raymond R

    2013-12-01

    There has been a considerable increase in rates of breastfeeding in the United States. Despite these trends, black women continue to fall below medical recommendations. Impoverished and poorly educated women also have a comparatively lower rate of breastfeeding. Provider encouragement and supportive interventions increase breastfeeding initiation among women of all backgrounds. The data presented come from a three-site randomized controlled bilingual depression treatment trial from 2005 to 2011 that examined the comparative effectiveness of interpersonal psychotherapy and a parenting education program. Breastfeeding education and support were provided for the majority of participants in each intervention. Breastfeeding status was queried at postpartum week 4. We found higher rates of breastfeeding in black women compared with those reported in national surveys. The black breastfeeding rate did not significantly differ from that of white or Hispanic women. American-born black women were just as likely to breastfeed as American-born white women, both at significantly greater rates than American-born Hispanic women. We also found no differences in breastfeeding rate in poorly educated and impoverished women. These data must be seen against the backdrop of a significant intervention to treat depression. Because breastfeeding interventions have been shown to increase breastfeeding rates, the support provided in our study likely increased rates in groups that lag behind. PMID:23971683

  3. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  4. Ocean acidification increases fatty acids levels of larval fish

    PubMed Central

    Díaz-Gil, Carlos; Catalán, Ignacio A.; Palmer, Miquel; Faulk, Cynthia K.; Fuiman, Lee A.

    2015-01-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  5. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs.

  6. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors.

    PubMed

    Vuille-dit-Bille, Raphael N; Camargo, Simone M; Emmenegger, Luca; Sasse, Tom; Kummer, Eva; Jando, Julia; Hamie, Qeumars M; Meier, Chantal F; Hunziker, Schirin; Forras-Kaufmann, Zsofia; Kuyumcu, Sena; Fox, Mark; Schwizer, Werner; Fried, Michael; Lindenmeyer, Maja; Götze, Oliver; Verrey, François

    2015-04-01

    Sodium-dependent neutral amino acid transporter B(0)AT1 (SLC6A19) and imino acid (proline) transporter SIT1 (SLC6A20) are expressed at the luminal membrane of small intestine enterocytes and proximal tubule kidney cells where they exert key functions for amino acid (re)absorption as documented by their role in Hartnup disorder and iminoglycinuria, respectively. Expression of B(0)AT1 was shown in rodent intestine to depend on the presence of the carboxypeptidase angiotensin-converting enzyme 2 (ACE2). This enzyme belongs to the renin-angiotensin system and its expression is induced by treatment with ACE-inhibitors (ACEIs) or angiotensin II AT1 receptor blockers (ARBs) in many rodent tissues. We show here in the Xenopus laevis oocyte expression system that human ACE2 also functionally interacts with SIT1. To investigate in human intestine the potential effect of ACEIs or ARBs on ACE2, we analysed intestinal biopsies taken during routine gastroduodenoscopy and ileocolonoscopy from 46 patients of which 9 were under ACEI and 13 ARB treatment. Analysis of transcript expression by real-time PCR and of proteins by immunofluorescence showed a co-localization of SIT1 and B(0)AT1 with ACE2 in the brush-border membrane of human small intestine enterocytes and a distinct axial expression pattern of the tested gene products along the intestine. Patients treated with ACEIs displayed in comparison with untreated controls increased intestinal mRNA levels of ACE2, peptide transporter PEPT1 (SLC15A1) and AA transporters B(0)AT1 and PAT1 (SLC36A1). This study unravels in human intestine the localization and distribution of intestinal transporters involved in amino acid absorption and suggests that ACEIs impact on their expression.

  7. Oral treatment with ACCUTANE does not increase measures of anhedonia or depression in rats.

    PubMed

    Ferguson, Sherry A; Cisneros, F Javier; Hanig, Joseph P; Berry, Kimberly J

    2007-01-01

    Reports of depression and/or suicide with ACCUTANE (13-cis-retinoic acid (13-cis-RA)) use prompted studies in a rodent model to ascertain its potential effects. Previously, there were no effects on measures of anhedonia (intake of a saccharin-flavored solution) and depression (forced swim test (FST) behaviors) in rats treated with 7.5 or 22.5 mg/kg 13-cis-RA [S.A. Ferguson, F.J. Cisneros, B. Gough, J.P. Hanig, K.J. Berry, Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats, Toxicol. Sci. 87 (2005) 451-459.]. Here, dose and temporal thresholds were investigated by increasing the maximum 13-cis-RA dose to 30 mg/kg, extending treatment duration, and measuring behaviors repeatedly. Beginning on post-natal day 59, male and female Sprague-Dawley rats were gavaged with soybean oil, 7.5 or 30 mg/kg/day of 13-cis-RA for approximately 19 weeks. FST behaviors were measured after 24, 82, and 131 treatment days and saccharin intake (0.03% solution) was measured at baseline and after 14, 35, 56, and 112 treatment days. Body weight and food intake were not altered by treatment. FST durations of swim, climb/struggle, and immobility were unaffected by 13-cis-RA at any time during treatment. More males than females required "rescue" in the FST but there was no treatment effect on number of rats requiring early removal. 13-cis-RA treatment had no effects on saccharin intake at any time. Given that the 7.5 mg/kg dose produces serum levels which parallel those of humans [S.A. Ferguson, P.H. Siitonen, F.J. Cisneros, B. Gough, J.F. Young, Steady state pharmacokinetics of oral treatment with 13-cis-retinoic acid or all-trans-retinoic acid in male and female adult rats, Basic Clin. Pharmacol. Toxicol 98 (2006) 582-587.], these results are quite relevant. Combined with previous results, these results provide further evidence that 13-cis-RA does not produce behavioral alterations indicative of depression

  8. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    PubMed

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries. PMID:24684635

  9. Increasing Potential Access to Opioid Agonist Treatment in U.S. Treatment Shortage Areas

    PubMed Central

    Dick, Andrew W.; Pacula, Rosalie Liccardo; Gordon, Adam J.; Sorbero, Mark; Burns, Rachel M.; Leslie, Douglas L.; Stein, Bradley D.

    2015-01-01

    Opioid use disorders are a significant public health problem, affecting over 2 million individuals in the US. Although opioid agonist treatment, predominantly offered in licensed methadone clinics, is both effective and cost-effective, many individuals do not receive it. Buprenorphine, approved in 2002 for prescription by waivered physicians, could improve opioid agonist treatment access for individuals unable or unwilling to receive methadone. We examine the extent to which the geographic distribution of waivered physicians has enhanced potential opioid agonist treatment access, particularly in non-metropolitan areas with fewer methadone clinics. We found that while the approximately 90% of counties classified as methadone clinic shortage areas remained constant, buprenorphine shortage areas fell from 99% of counties in 2002 to 51% in 2011, lowering the US population percentage residing in opioid treatment shortage counties to approximately 10%. The increase in buprenorphine-waivered physicians has dramatically increased potential access to opioid agonist treatment, especially in non-metropolitan counties. PMID:26056209

  10. Effects of increased dietary sulfur on beef steer mineral status, performance, and meat fatty acid composition.

    PubMed

    Richter, E L; Drewnoski, M E; Hansen, S L

    2012-11-01

    Ninety-six crossbred yearling steers (321 ± 29 kg BW) were used to determine the effects of feeding cattle a high S diet on pasture before receiving a high S diet in the feedlot. Steers were blocked by BW, allocated to 2.4-ha bromegrass (Bromus inermis L.) pastures (n = 4 plots per treatment), and supplemented at 1% BW with either low S dried distillers grains with solubles (DDGS; 0.34% total diet S; LS) or LS DDGS with additional S (0.47% total diet S; HS) from NaSO(4) for 36 d. On d 37, steers moved into the feedlot where one-half remained on the previous S treatment and the other half switched treatments, resulting in 4 treatments (LS-LS, LS-HS, HS-LS, HS-HS; LS: 0.2 to 0.3% total diet S, HS: 0.5 to 0.6% total diet S; n = 6 feedlot pens per treatment). During the pasture period, forage mass offered, grazing residual mass, and in vitro digestible DM of forage did not differ among treatments (P > 0.40), and ADG did not differ (LS: 1.6 kg · d(-1), HS: 1.7 kg · d(-1), P = 0.54). Plasma Mg measured on d 35 was decreased by ≈ 5% in response to increased dietary S during the pasture period (P = 0.05), though no effect on plasma Mg was observed during finishing (P > 0.15). Plasma Cu concentrations on d 155 were ≈ 15% less (P = 0.02) in HS vs. LS steers, and d 155 liver Cu concentrations were ≈ 51% less in HS vs. LS steers (P = 0.01). Increased dietary S during the feedlot period decreased ADG by ≈ 10% (P = 0.01) and tended to decrease HCW by ≈ 5% (P = 0.06) compared with LS steers. Steers receiving the HS diet had increased stearic acid (C18:0) and heptadecanoic acid (C17:0; P = 0.04 and 0.01, respectively) percentages in rib facings collected at slaughter. Exposing cattle to greater S diets (0.47% S) during a forage-based diet did not influence later performance on high S feedlot diets (0.5 to 0.6% S); however, cattle fed high dietary S on pasture had greater fat cover at slaughter (P = 0.01), suggesting S may have influenced lipid metabolism.

  11. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment

    PubMed Central

    Gondor, Orsolya K.; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K.; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid. PMID:27733857

  12. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis.

    PubMed

    Svahn, Sara L; Ulleryd, Marcus A; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov; Johansson, Maria E

    2016-04-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics,S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival.

  13. Dietary Omega-3 Fatty Acids Increase Survival and Decrease Bacterial Load in Mice Subjected to Staphylococcus aureus-Induced Sepsis

    PubMed Central

    Ulleryd, Marcus A.; Grahnemo, Louise; Ståhlman, Marcus; Borén, Jan; Nilsson, Staffan; Jansson, John-Olov

    2016-01-01

    Sepsis caused by Staphylococcus aureus is increasing in incidence. With the alarming use of antibiotics, S. aureus is prone to become methicillin resistant. Antibiotics are the only widely used pharmacological treatment for sepsis. Interestingly, mice fed high-fat diet (HFD) rich in polyunsaturated fatty acids have better survival of S. aureus-induced sepsis than mice fed HFD rich in saturated fatty acids (HFD-S). To investigate what component of polyunsaturated fatty acids, i.e., omega-3 or omega-6 fatty acids, exerts beneficial effects on the survival of S. aureus-induced sepsis, mice were fed HFD rich in omega-3 or omega-6 fatty acids for 8 weeks prior to inoculation with S. aureus. Further, mice fed HFD-S were treated with omega-3 fatty acid metabolites known as resolvins. Mice fed HFD rich in omega-3 fatty acids had increased survival and decreased bacterial loads compared to those for mice fed HFD-S after S. aureus-induced sepsis. Furthermore, the bacterial load was decreased in resolvin-treated mice fed HFD-S after S. aureus-induced sepsis compared with that in mice treated with vehicle. Dietary omega-3 fatty acids increase the survival of S. aureus-induced sepsis by reversing the deleterious effect of HFD-S on mouse survival. PMID:26857576

  14. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs).

    PubMed

    Schaefer, Charles E; Andaya, Christina; Urtiaga, Ana; McKenzie, Erica R; Higgins, Christopher P

    2015-09-15

    Laboratory experiments were performed to evaluate the use of electrochemical treatment for the decomposition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), as well as other perfluoroalkyl acids (PFAAs), in aqueous film forming foam (AFFF)-impacted groundwater collected from a former firefighter training area and PFAA-spiked synthetic groundwater. Using a commercially-produced Ti/RuO2 anode in a divided electrochemical cell, PFOA and PFOS decomposition was evaluated as a function of current density (0-20 mA/cm(2)). Decomposition of both PFOA and PFOS increased with increasing current density, although the decomposition of PFOS did not increase as the current density was increased above 2.5 mA/cm(2). At a current density of 10 mA/cm(2), the first-order rate constants, normalized for current density and treatment volume, for electrochemical treatment of both PFOA and PFOS were 46 × 10(-5) and 70 × 10(-5) [(min(-1)) (mA/cm(2))(-1) (L)], respectively. Defluorination was confirmed for both PFOA and PFOS, with 58% and 98% recovery as fluoride, respectively (based upon the mass of PFOA and PFOS degraded). Treatment of other PFAAs present in the groundwater also was observed, with shorter chain PFAAs generally being more recalcitrant. Results highlight the potential for electrochemical treatment of PFAAs, particularly PFOA and PFOS, in AFFF-impacted groundwater.

  15. Azithromycin (AZM) treatment increases survival of high risk corneal allotransplants

    PubMed Central

    Medina, Carlos A.; Rowe, Alexander M.; Yun, Hongmin; Knickelbein, Jared E.; Lathrop, Kira L.; Hendricks, Robert L.

    2012-01-01

    Purpose To test the therapeutic efficacy of AZM, a macrolide antibiotic for prolonging murine “high risk” corneal allograft survival. Methods Fully MHC mismatched corneas were transplanted from C57BL/6 donors to BALB/c recipients with suture-induced vascularized “high risk” corneal beds. Recipient mice were either not treated or treated with topical AZM, oral AZM, or both. Evaluation of graft vascularization and clarity was performed in masked fashion. Lymph nodes were excised and analyzed for CD4, FoxP3, and CD44 by flow cytometry; and for T cell priming by proliferation and cytokine production in mixed lymphocyte cultures. Corneal whole mounts were evaluated by confocal microscopy. Results The incidence of graft rejection in the control group (81.8%) was significantly reduced by AZM treatment (18.2% topical, 21.7% oral, 33.3% topical + oral), although corneal vascularization was not affected by treatment. The frequency of corneas that retained complete clarity following transplantation was higher in the AZM treated groups. Reduced graft rejection in the AZM treated groups was not associated with a reduced allospecific T cell response or increased frequency of T regulatory cells. Conclusions AZM is effective in prolonging survival of “high risk” corneal allografts by an as yet undefined mechanism that does not appear to involve modulation of corneal neovascularization or allo-specific T cell priming. PMID:23407315

  16. N-methyl-D-aspartate treatment increases circulating adrenocorticotropin and luteinizing hormone in the rat.

    PubMed

    Farah, J M; Rao, T S; Mick, S J; Coyne, K E; Iyengar, S

    1991-04-01

    Excitatory amino acids have been known to increase pituitary secretion of LH in vivo and are probably involved in the neuroendocrine regulation of the hypothalamic-pituitary-gonadal axis. We have found that systemic administration of the excitatory amino acid agonist N-methyl-D-aspartate (NMDA) evokes a transient and profound increase in circulating levels of ACTH as well. Treatment of adult male Long-Evans rats with NMDA (30 mg/kg, sc) maximally increased plasma ACTH and immunoreactive beta-endorphin from 7-15 min after injection, and levels of both remained significantly elevated until 60 min into the time course. Corresponding increases in corticosterone were observed 15 and 30 min after treatment, while LH, similar to other pituitary hormones, was increased from 7-30 min after NMDA. Stimulation of the pituitary-adrenal and pituitary-gonadal neuroendocrine axes by NMDA was monitored in subsequent studies by plasma ACTH and LH, respectively; both were increased in a dose-related manner after the administration of 3-60 mg/kg NMDA, although stimulation of ACTH (800%) was more pronounced than that of LH (200%). The increases in ACTH and LH due to NMDA were inhibited by pretreatment with the competitive NMDA antagonist (+/-)3-(2-carboxypiperazin-4- yl)propyl-1-phosphonic acid, CPP (6 and 10 mg/kg, ip, for 21 min); by contrast, dexamethasone pretreatment (50 micrograms/kg, ip, for 4 h) blocked only the NMDA-evoked increase in circulating ACTH. These findings indicate that an NMDA receptor mechanism might be involved in the acute activation of the hypothalamic-pituitary-adrenal axis in the rat.

  17. Early postnatal dexamethasone treatment and increased incidence of cerebral palsy

    PubMed Central

    Shinwell, E; Karplus, M; Reich, D; Weintraub, Z; Blazer, S; Bader, D; Yurman, S; Dolfin, T; Kogan, A; Dollberg, S; Arbel, E; Goldberg, M; Gur, I; Naor, N; Sirota, L; Mogilner, S; Zaritsky, A; Barak, M; Gottfried, E

    2000-01-01

    OBJECTIVE—To study the long term neurodevelopmental outcome of children who participated in a randomised, double blind, placebo controlled study of early postnatal dexamethasone treatment for prevention of chronic lung disease.
METHODS—The original study compared a three day course of dexamethasone (n = 132) with a saline placebo (n = 116) administered from before 12 hours of age in preterm infants, who were ventilated for respiratory distress syndrome and had received surfactant treatment. Dexamethasone treatment was associated with an increased incidence of hypertension, hyperglycaemia, and gastrointestinal haemorrhage and no reduction in either the incidence or severity of chronic lung disease or mortality. A total of 195 infants survived to discharge and five died later. Follow up data were obtained on 159 of 190 survivors at a mean (SD) age of 53 (18) months.
RESULTS—No differences were found between the groups in terms of perinatal or neonatal course, antenatal steroid administration, severity of initial disease, or major neonatal morbidity. Dexamethasone treated children had a significantly higher incidence of cerebral palsy than those receiving placebo (39/80 (49%) v 12/79 (15%) respectively; odds ratio (OR) 4.62, 95% confidence interval (95% CI) 2.38 to 8.98). The most common form of cerebral palsy was spastic diplegia (incidence 22/80 (28%) v 5/79 (6%) in dexamethasone and placebo treated infants respectively; OR 4.45, 95% CI 1.95to 10.15). Developmental delay was significantly more common in the dexamethasone treated group (44/80 (55%)) than in the placebo treated group (23/79 (29%); OR 2.87, 95% CI 1.53 to 5.38). Dexamethasone treated infants had more periventricular leucomalacia and less intraventricular haemorrhage in the neonatal period than those in the placebo group, although these differences were not statistically significant. Eleven children with cerebral palsy had normal ultrasound scans in the neonatal period; all 11 had received

  18. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H.; Patton-Vogt, Jana; Bakalinsky, Alan T.

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  19. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification.

  20. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance.

    PubMed

    Ding, Jun; Holzwarth, Garrett; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2015-01-01

    Acetic acid-mediated inhibition of the fermentation of lignocellulose-derived sugars impedes development of plant biomass as a source of renewable ethanol. In order to overcome this inhibition, the capacity of Saccharomyces cerevisiae to synthesize acetyl-CoA from acetic acid was increased by overexpressing ACS2 encoding acetyl-coenzyme A synthetase. Overexpression of ACS2 resulted in higher resistance to acetic acid as measured by an increased growth rate and shorter lag phase relative to a wild-type control strain, suggesting that Acs2-mediated consumption of acetic acid during fermentation contributes to acetic acid detoxification. PMID:25673654

  1. Hyperprolactinemia during antipsychotics treatment increases the level of coagulation markers

    PubMed Central

    Ishioka, Masamichi; Yasui-Furukori, Norio; Sugawara, Norio; Furukori, Hanako; Kudo, Shuhei; Nakamura, Kazuhiko

    2015-01-01

    Objective The strong association between psychiatric patients who receive antipsychotics and the incidence of venous thromboembolism (VTE) is known. Although previous reports suggest that hyperprolactinemia often increases markers of activated coagulation, few studies have examined the direct relationship between the prolactin level elevated by antipsychotics and activated markers of activated coagulation. Method The participants included 182 patients with schizophrenia (male =89, female =93) who received antipsychotic treatments for at least 3 months. Markers of VTE (D-dimer, fibrin/fibrinogen degradation products, and thrombin–antithrombin complex) and serum prolactin concentrations were measured. Results Prolactin levels were significantly correlated with the logarithmic transformation of the D-dimer (r=0.320, P=0.002) and fibrin/fibrinogen degradation product levels (r=0.236, P=0.026) but not of the thrombin–antithrombin complex level (r=0.117, ns) among men. However, no correlations were found between the VTE markers and prolactin levels among women. These results were confirmed using multiple regression analyses that included demographic factors and antipsychotic dosages. Conclusion The current study indicates that hyperprolactinemia is associated with an increase in markers of activated coagulation among men receiving antipsychotics. This finding clinically implies that monitoring and modulating prolactin levels among men are important to decrease the risk of VTE. PMID:25750528

  2. Directed evolution increases desaturation of a cyanobacterial fatty acid desaturase in eukaryotic expression systems.

    PubMed

    Bai, Shuangyi; Wallis, James G; Denolf, Peter; Browse, John

    2016-07-01

    Directed evolution of a cyanobacterial Δ9 fatty acid desaturase (DSG) from Synechococcus elongatus, PCC6301 created new, more productive desaturases and revealed the importance of certain amino acid residues to increased desaturation. A codon-optimized DSG open reading frame with an endoplasmic-reticulum retention/retrieval signal appended was used as template for random mutagenesis. Increased desaturation was detected using a novel screen based on complementation of the unsaturated fatty acid auxotrophy of Saccharomyces cerevisiae mutant ole1Δ. Amino acid residues whose importance was discovered by the random processes were further examined by saturation mutation to determine the best amino acid at each identified location in the peptide chain and by combinatorial analysis. One frequently-detected single amino acid change, Q240R, yielded a nearly 25-fold increase in total desaturation in S. cerevisiae. Several other variants of the protein sequence with multiple amino acid changes increased total desaturation more than 60-fold. Many changes leading to increased desaturation were in the vicinity of the canonical histidine-rich regions known to be critical for electron transfer mediated by these di-iron proteins. Expression of these evolved proteins in the seed of Arabidopsis thaliana altered the fatty acid composition, increasing monounsaturated fatty acids and decreasing the level of saturated fatty acid, suggesting a potential application of these desaturases in oilseed crops. Biotechnol. Bioeng. 2016;113: 1522-1530. © 2016 Wiley Periodicals, Inc. PMID:26724425

  3. Pantothenic acid deficiency may increase the urinary excretion of 2-oxo acids and nicotinamide catabolites in rats.

    PubMed

    Shibata, Katsumi; Inomoto, Kasumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Pantothenic acid (PaA) is involved in the metabolism of amino acids as well as fatty acid. We investigated the systemic metabolism of amino acids in PaA-deficient rats. For this purpose, urine samples were collected and 2-oxo acids and L-tryptophan (L-Trp) and its metabolites including nicotinamide were measured. Group 1 was freely fed a conventional chemically-defined complete diet and used as an ad lib-fed control, which group was used for showing reference values. Group 2 was freely fed the complete diet without PaA (PaA-free diet) and used as a PaA-deficient group. Group 3 was fed the complete diet, but the daily food amount was equal to the amount of the PaA-deficient group and used as a pair-fed control group. All rats were orally administered 100 mg of L-Trp/kg body weight at 09:00 on day 34 of the experiment and the following 24-h urine samples were collected. The urinary excretion of the sum of pyruvic acid and oxaloacetic acid was higher in rats fed the PaA-free diets than in the rats fed pair-fed the complete diet. PaA deficiency elicited the increased urinary excretion of anthranilic acid and kynurenic acid, while the urinary excretion of xanthurenic acid decreased. The urinary excretion of L-Trp itself, 3-hydroxyanthranilic acid, and quinolinic acid revealed no differences between the rats fed the PaA-free and pair-fed the complete diets. PaA deficiency elicited the increased excretion of N(1)-methylnicotinamide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide. These findings suggest that PaA deficiency disturbs the amino acid catabolism.

  4. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass.

    PubMed

    Anstey, Andrew; Vivekanandhan, Singaravelu; Rodriguez-Uribe, Arturo; Misra, Manjusri; Mohanty, Amar Kumar

    2016-04-15

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM-EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200°C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives.

  5. Amoxycillin and clavulanic acid in the treatment of urinary infection.

    PubMed Central

    Al Roomi, L G; Sutton, A M; Cockburn, F; McAllister, T A

    1984-01-01

    The pharmacokinetics and clinical efficacy of amoxycillin combined with clavulanic acid in the treatment of 32 children with urinary tract infection were studied. Twenty one (80%) of 26 children with proved urinary tract infection showed a favourable clinical and bacteriological response. Fifteen of these children had amoxycillin resistant organisms and were treated successfully. In 20 children the serum and urine concentrations of amoxycillin and clavulanic acid were measured after the first oral dose. PMID:6712275

  6. Enhancement of cell viability after treatment with polyunsaturated fatty acids.

    PubMed

    Bartl, J; Walitza, S; Grünblatt, E

    2014-01-24

    Attention-deficit/hyperactivity disorder (ADHD) is highly prevalent in children and adolescents and both environmental and genetic factors play major roles. Polyunsaturated fatty acids (PUFAs) are postulated to contribute to the development of the infant brain and an imbalance in these may increase the risk of ADHD. In recent clinical studies, supplementation with PUFAs improved symptoms of ADHD in some cases. Similarly, some beneficial effects were observed with PUFA treatment in neuronal cell cultures. Therefore, in this study, we hypothesized that a specific PUFA combination (available on the market as Equazen™ [Vifor Pharma, Switzerland]) along with iron, zinc, or vitamin B5 (vitB5) would produce an additive beneficial effect on the viability of rat pheochromocytoma-12 dopaminergic cells. The specific PUFA combination alone, as well as added to each of the three nutrients, was tested in a dose-response manner. The specific PUFAs significantly improved cell viability, starting at very low doses (100pM) from 60h up to 90h; while the combined treatment with vitB5 and minerals did not provide additional benefit. Our results confirmed the beneficial effect of the specific PUFAs on neuronal cell viability; although supplementation with minerals and vitB5 did not enhance this effect.

  7. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  8. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    PubMed

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChRα7, α4 and β2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p < 0.05). While 8-hydroxy-2-deoxyguanosine and malondialdehyde levels were significantly decreased, NR2B and nAChRα7 expressions were significantly increased in the aspirin+ascorbic acid group as compared to the control group (p < 0.05). Subchronic treatment with aspirin+ascorbic acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process.

  9. Oxidized Docosahexaenoic Acid Species and Lipid Peroxidation Products Increase Amyloidogenic Amyloid Precursor Protein Processing.

    PubMed

    Grimm, Marcus O W; Haupenthal, Viola J; Mett, Janine; Stahlmann, Christoph P; Blümel, Tamara; Mylonas, Nadine T; Endres, Kristina; Grimm, Heike S; Hartmann, Tobias

    2016-01-01

    One of the main characteristics of Alzheimer's disease (AD) is the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). Previously it has been demonstrated that polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are associated with a reduced risk of AD caused by decreased Aβ production. However, in epidemiological studies and nutritional approaches, the outcomes of DHA-dependent treatment were partially controversial. PUFAs are very susceptible to reactive oxygen species and lipid peroxidation, which are increased during disease pathology. In line with published results, lipid peroxidation was elevated in human postmortem AD brains; especially 4-hydroxy-nonenal (HNE) was increased. To investigate whether lipid peroxidation is only a consequence or might also influence the processes leading to AD, we analyzed 7 different oxidized lipid species including 5 oxidized DHA derivatives and the lipid peroxidation products of ω-3 and ω-6 PUFAs, HNE and 4-hydroxy-hexenal, in human neuroblastoma cells and mouse mixed cortical neurons. In the presence of oxidized lipids Aβ and soluble β-secreted APP levels were elevated, whereas soluble α-secreted APP was decreased, suggesting a shift from the nonamyloidogenic to the amyloidogenic pathway of APP processing. Furthermore, β- and γ-secretase activity was increased by oxidized lipids via increased gene expression and additionally by a direct effect on β-secretase activity. Importantly, only 1% oxidized DHA was sufficient to revert the protective effect of DHA and to significantly increase Aβ production. Therefore, our results emphasize the need to prevent DHA from oxidation in nutritional approaches and might help explain the divergent results of clinical DHA studies. PMID:26642316

  10. Treatment of essential telangiectasia: effects of increasing concentrations of polidocanol.

    PubMed

    Norris, M J; Carlin, M C; Ratz, J L

    1989-04-01

    A double-blind, double-paired comparison study was performed to evaluate the effects of increasing concentrations of polidocanol in the sclerotherapy of essential telangiectasias of the legs. Polidocanol 0.25%, 0.50%, 0.75%, and 1.0% were compared with regard to clinical effectiveness, safety, and patient acceptance. All dosages were well tolerated by the patients. There were no allergic reactions to polidocanol and no cases of superficial ulceration nor necrosis. Among those whose veins cleared, there was little difference in time to clearing for the four concentrations, which averaged three to four treatment sessions. No statistically significant differences existed among the four dosages with respect to level of improvement, itching, or neovascularization. Polidocanol 0.75% and 1.0%, however, caused more side effects noted by patients and induced more hyperpigmentation than did the lower concentrations. Polidocanol 0.25% yielded the lowest percentage of patients whose veins cleared. The 0.50% solution was the most effective concentration for total overall clearing of the types of vessels treated in this study. From this information it appears that 0.50% polidocanol may be the sclerosing agent of choice.

  11. Does carbon reduction increase sustainability? A study in wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2015-12-15

    This study investigates the relationships between carbon reduction and sustainability in the context of wastewater treatment, focussing on the impacts of control adjustments, and demonstrates that reducing energy use and/or increasing energy recovery to reduce net energy can be detrimental to sustainability. Factorial sampling is used to derive 315 control options, containing two different control strategies and a range of sludge wastage flow rates and dissolved oxygen setpoints, for evaluation. For each, sustainability indicators including operational costs, net energy and multiple environmental performance measures are calculated. This enables identification of trade-offs between different components of sustainability which must be considered before implementing energy reduction measures. In particular, it is found that the impacts of energy reduction measures on sludge production and nitrogen removal must be considered, as these are worsened in the lowest energy solutions. It also demonstrates that a sufficiently large range of indicators need to be assessed to capture trade-offs present within the environmental component of sustainability. This is because no solutions provided a move towards sustainability with respect to every indicator. Lastly, it is highlighted that improving the energy balance (as may be considered an approach to achieving carbon reduction) is not a reliable means of reducing total greenhouse gas emissions.

  12. Theobromine Inhibits Uric Acid Crystallization. A Potential Application in the Treatment of Uric Acid Nephrolithiasis

    PubMed Central

    Grases, Felix; Rodriguez, Adrian; Costa-Bauza, Antonia

    2014-01-01

    Purpose To assess the capacity of methylxanthines (caffeine, theophylline, theobromine and paraxanthine) to inhibit uric acid crystallization, and to evaluate their potential application in the treatment of uric acid nephrolithiasis. Materials and Methods The ability of methylxathines to inhibit uric acid nucleation was assayed turbidimetrically. Crystal morphology and its modification due to the effect of theobromine were evaluated by scanning electron microscopy (SEM). The ability of theobromine to inhibit uric acid crystal growth on calculi fragments resulting from extracorporeal shock wave lithotripsy (ESWL) was evaluated using a flow system. Results The turbidimetric assay showed that among the studied methylxanthines, theobromine could markedly inhibit uric acid nucleation. SEM images showed that the presence of theobromine resulted in thinner uric acid crystals. Furthermore, in a flow system theobromine blocked the regrowth of post-ESWL uric acid calculi fragments. Conclusions Theobromine, a natural dimethylxanthine present in high amounts in cocoa, acts as an inhibitor of nucleation and crystal growth of uric acid. Therefore, theobromine may be clinically useful in the treatment of uric acid nephrolithiasis. PMID:25333633

  13. [Treatment of hypertriglyceridemia with omega-3 fatty acids].

    PubMed

    Miyoshi, Toru; Ito, Hiroshi

    2013-09-01

    Omega-3 fatty acids such as eicosapentaenoic acid(EPA) and docosahexaenoic acid(DHA) have important biologic functions, including effects on membranes, eicosanoid metabolism, and gene transcription. Studies indicate that the use of EPA and DHA lowered triglyceride levels, which is accomplished by decreasing the production of hepatic triglycerides and increasing the clearance of plasma triglycerides. Recent clinical studies showed that intake of omega-3 fatty acids reduced cardiovascular events. In addition, combination therapy with omega-3 fatty acids and a statin is a safe and effective way to improve lipid levels and cardiovascular prognosis beyond the benefits provided by statin therapy alone. Our focus is to review the potential mechanisms by which these fatty acids reduce cardiovascular disease risk.

  14. Influence of nitric acid treatment in different media on X-ray structural parameters of coal

    SciTech Connect

    Sudip Maity; Ashim Choudhury

    2008-11-15

    The treatment of coal with nitric acid in aqueous and non-aqueous media introduces changes in the chemical and spatial structure of the organic mass. Four coals of different rank have been treated with nitric acid in aqueous and glacial acetic acid media for assessing the changes in the structural parameters by the X-ray diffraction (XRD) technique. Slow-scan XRD has been performed for the raw and treated coals, and X-ray structural parameters (d002, Lc, and Nc) and aromaticity (fa) have been determined by profile-fitting software. Considerable variation of the structural parameters has been observed with respect to the raw coals. The d002 values have decreased in aqueous medium but increased in acetic acid medium; however, Lc, Nc, and fa values have increased in aqueous medium but decreased in acetic acid medium. It is also observed that considerable oxidation takes place during nitric acid treatment in aqueous medium, but nitration is the predominant phenomenon in acetic acid medium. Disordering of the coal structure increases in acetic acid medium, but a reverse trend is observed in the aqueous medium. As a result, structurally modified coals (SMCs) are derived as new coal-derived substances. 15 refs., 6 figs., 3 tabs.

  15. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application. PMID:26258703

  16. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments.

    PubMed

    Hung, Pham Van; Vien, Ngo Lam; Lan Phi, Nguyen Thi

    2016-01-15

    The effects of a combination of acid and heat-moisture treatment on formation of resistant starch (RS) and characteristics of high-amylose, normal and waxy rice starches were investigated in this study. The degrees of polymerization of the rice starches treated with citric acid, lactic acid or acetic acid were significantly reduced as compared to the native starches. The RS contents of acid and heat-moisture treated rice starches were in a range of 30.1-39.0%, significantly higher than those of native rice starches (6.3-10.2%) and those of heat-moisture treated rice starches (18.5-23.9%). The acid and heat-moisture treatments reduced swelling power and viscosity, but increased solubility of the starches, while the crystalline structure did not change. Among the organic acids used, citric acid had the most impact on starch characteristics and RS formation, followed by lactic acid and acetic acid. The results are useful in production of RS for functional food application.

  17. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage. PMID:26213007

  18. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage.

    PubMed

    Zhu, Yuyan; Yu, Jie; Brecht, Jeffrey K; Jiang, Tianjia; Zheng, Xiaolin

    2016-01-01

    Kiwifruit (Actinidia deliciosa cv. Bruno) fruits were sprayed with 5mM oxalic acid (OA) at 130, 137, and 144 days after full blossom, and then harvested at commercial maturity [soluble solid content (SSC) around 10.0%] and stored at room temperature (20 ± 1 °C). Pre-harvest application of OA led to fruit with higher ascorbic acid content at harvest, slowed the decreases in fruit firmness and ascorbic acid content and increase in SSC during storage, and also decreased the natural disease incidence, lesion diameter, and patulin accumulation in fruit inoculated with Penicillium expansum, indicating that the OA treatment increased quality and induced disease resistance in kiwifruit. It was suggested that the increase in activities of defense-related enzymes and in levels of substances related to disease resistance might collectively contribute to resistance in kiwifruit against fungi such as P. expansum in storage.

  19. Treatment of facial molluscum contagiosum with trichloroacetic acid.

    PubMed

    Bard, Susan; Shiman, Michael I; Bellman, Betty; Connelly, Elizabeth Alvarez

    2009-01-01

    Molluscum contagiosum (MC) virus is a common cutaneous infection in the pediatric population, most commonly affecting school-aged children. Spontaneous clearing of lesions usually occurs over time; however, treatment is often sought due to cosmetic significance, pruritus, or concerns of transmission and autoinoculation. Chemical destruction with cantharidin, which is derived from blister beetle extract, is very safe and highly effective, making it the treatment of choice in the pediatric population. However, treatment of facial lesions or those in the diaper area are not recommended with this agent. Trichloroacetic acid is a safe and effective agent frequently utilized in dermatologic practice, most commonly in the treatment of verrucae. We have successfully used topical trichloroacetic acid to treat facial molluscum contagiousum and present the following technique for proper application. PMID:19689517

  20. Increased Biomass Yield of Lactococcus lactis by Reduced Overconsumption of Amino Acids and Increased Catalytic Activities of Enzymes

    PubMed Central

    Adamberg, Kaarel; Seiman, Andrus; Vilu, Raivo

    2012-01-01

    Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome) are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol−1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h−1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h−1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine) until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine) were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus). Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h−1). The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times). Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h−1). Our results show that bioprocesses can be made more efficient (using a balanced metabolism) by varying the growth conditions. PMID:23133574

  1. Effect of Putrescine Treatment on Chilling Injury, Fatty Acid Composition and Antioxidant System in Kiwifruit.

    PubMed

    Yang, Qingzhen; Wang, Feng; Rao, Jingping

    2016-01-01

    We investigated the effects of different concentrations (0, 1, 2 and 4 mM) of putrescine on chilling injury, fruit quality, ethylene production rate, fatty acid composition and the antioxidant system of cold-stored kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hongyang'). We achieved a significant decrease in ethylene production, maintained fruit quality and alleviated chilling injury during storage via treatment with 2 mM putrescine. Furthermore, putrescine treatment inhibited increases in superoxide anion production rate and H2O2 concentration, while maintaining higher membrane lipid unsaturation as well as increased activities of superoxide dismutase and catalase. In addition, putrescine treatment enhanced the activities of antioxidant enzymes related to the ascorbate-glutathione cycle while causing higher levels of ascorbic acid and reduced glutathione. Our results suggest that induced tolerance against chilling injury via putrescine treatment in cold-stored kiwifruit may be due to enhanced antioxidant activity, increased unsaturation of membrane lipids, and inhibited ethylene production. PMID:27607076

  2. Increased α1-3 fucosylation of α-1-acid glycoprotein (AGP) in pancreatic cancer.

    PubMed

    Balmaña, Meritxell; Giménez, Estela; Puerta, Angel; Llop, Esther; Figueras, Joan; Fort, Esther; Sanz-Nebot, Victoria; de Bolós, Carme; Rizzi, Andreas; Barrabés, Sílvia; de Frutos, Mercedes; Peracaula, Rosa

    2016-01-30

    Pancreatic cancer (PDAC) lacks reliable diagnostic biomarkers and the search for new biomarkers represents an important challenge. Previous results looking at a small cohort of patients showed an increase in α-1-acid glycoprotein (AGP) fucosylation in advanced PDAC using N-glycan sequencing. Here, we have analysed AGP glycoforms in a larger cohort using several analytical techniques including mass spectrometry (MS), capillary zone electrophoresis (CZE) and enzyme-linked lectin assays (ELLAs) for determining AGP glycoforms which could be PDAC associated. AGP from 31 serum samples, including healthy controls (HC), chronic pancreatitis (ChrP) and PDAC patients, was purified by immunoaffinity chromatography. Stable isotope labelling of AGP released N-glycans and their analysis by zwitterionic hydrophilic interaction capillary liquid chromatography electrospray MS (μZIC-HILIC-ESI-MS) showed an increase in AGP fucosylated glycoforms in PDAC compared to ChrP and HC. By CZE-UV analysis, relative concentrations of some of the AGP isoforms were found significantly different compared to those in PDAC and HC. Finally, ELLAs using Aleuria aurantia lectin displayed a significant increase in AGP fucosylation, before and after AGP neuraminidase treatment, in advanced PDAC compared to ChrP and HC, respectively. Altogether, these results indicate that α1-3 fucosylated glycoforms of AGP are increased in PDAC and could be potentially regarded as a PDAC biomarker. PMID:26563517

  3. Chronomodulation of topotecan or X-radiation treatment increases treatment efficacy without enhancing acute toxicity

    SciTech Connect

    Mullins, Dana; Proulx, Denise; Saoudi, A.; Ng, Cheng E. . E-mail: cng@ohri.ca

    2005-05-01

    Purpose: Topotecan (TPT), a camptothecin analog, is currently used to treat human ovarian and small-cell lung cancer and is in clinical trials for other tumor sites. However, it is unknown whether chronomodulation of TPT treatment is beneficial. We examined the effects of administering TPT or X-radiation (XR) alone at different times of the day or night. Methods: We treated mice bearing human colorectal tumor xenografts at four different times representing the early rest period (9 AM or 3 HALO [hours after light onset]), late rest period (3 PM or 9 HALO), early active period (9 PM or 15 HALO), and late active period (3 AM or 21 HALO) of the mice. We gave either TPT (12 mg/kg, injected i.p.) or XR (4 Gy, directed to the tumor) twice weekly on Days 0, 4, 7, 10 within 2 weeks. Results: Treatment with either TPT or XR at 3 AM demonstrated the greatest efficacy (measured by a tumor regrowth assay) without significantly increasing acute toxicity (assessed by a decrease in leukocyte counts or body weight). Conversely, treatment at 3 PM, in particular, showed increased toxicity without any enhanced efficacy. Conclusions: Our study provided the first evidence that chronomodulation of TPT treatments, consistent with the findings of other camptothecin analogs, is potentially clinically beneficial. Additionally, our findings suggest that chronomodulation of fractionated XR treatments is also potentially clinically beneficial.

  4. Acid-base status in dietary treatment of phenylketonuria.

    PubMed

    Manz, F; Schmidt, H; Schärer, K; Bickel, H

    1977-10-01

    Blood acid-base status, serum electrolytes, and urine pH were examined in 64 infants and children with phenylketonuria (PKU) treated with three different low phenylalanine protein hydrolyzates (Aponti, Cymogran, AlbumaidXP) and two synthetic amino acid mixtures (Aminogran, PAM). The formulas caused significant differences in acid-base status, serum potassium, and chloride, and in urine pH. In acid-base balance studies in two patients with PKU, Aponti, PAM, and two modifications of PAM (P2 + P3) were given. We observed a change from mild alkalosis to increasing metabolic acidosis from Aponti (serum bicarbonate 25,8 mval/liter) to P3 (24,0Y, P2 (19, 3) and PAM (17,0). Urine pH decreased and renal net acid excretion increased. In the formulas PAM, P2 and P3 differences in renal net acid excretion correlated with differences in chloride and sulfur contents of the diets and of the urines. New modifications of AlbumaidXP and of PAM, prepared according to our recommendations, showed normal renal net acid excretion (1 mEq/kg/24 hr) in a balance study performed in one patient with PKU and normal acid base status in 20 further patients.

  5. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions

    PubMed Central

    2010-01-01

    Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL). These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation. PMID:21092209

  6. Hydrochloric acid-pumice treatment of fluorosis-stained enamel.

    PubMed

    Jagger, R G; al Rayes, S A

    1990-02-01

    The management of dark staining of teeth caused by dental fluorosis is discussed. The results of treatment of 20 patients with dental fluorosis by a hydrochloric acid-pumice technique are described. All patients showed considerable improvement in colour which was maintained for review periods of (up to) two years.

  7. DEVELOPMENT OF SRB TREATMENT SYSTEMS FOR ACID MINE DRAINAGE

    EPA Science Inventory

    Over the past decade, significant advances have been made in the development of sulfate- reducing bacteria (SRB) technology to treat acid mine drainage (AMD), Bench-scale testing, field demonstrations, and engineered applications of SRBs for the treatment of AMD will be presented...

  8. Oleic acid increases intestinal absorption of the BCRP/ABCG2 substrate, mitoxantrone, in mice.

    PubMed

    Aspenström-Fagerlund, Bitte; Tallkvist, Jonas; Ilbäck, Nils-Gunnar; Glynn, Anders W

    2015-09-01

    The efflux transporter breast cancer resistance protein (BCRP/ABCG2) decrease intestinal absorption of many food toxicants. Oleic acid increases absorption of the specific BCRP substrate mitoxantrone (MXR), and also BCRP gene expression in human intestinal Caco-2 cells, suggesting that oleic acid affect the BCRP function. Here, we investigated the effect of oleic acid on intestinal absorption of MXR in mice. Mice were orally dosed with 2.4g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 30, 60, 90 or 120min after exposure, or were exposed to 0.6, 2.4 or 4.8g oleic acid/kg b.w. and 1mg MXR/kg b.w., and sacrificed 90min after exposure. Mice were also treated with Ko143 together with MXR and sacrificed after 60min, as a positive control of BCRP-mediated effects on MXR absorption. Absorption of MXR increased after exposure to oleic acid at all doses, and also after exposure to Ko143. Intestinal BCRP gene expression tended to increase 120min after oleic acid exposure. Our results in mice demonstrate that oleic acid decreases BCRP-mediated efflux, causing increased intestinal MXR absorption in mice. These findings may have implications in humans, concomitantly exposed to oleic acid and food contaminants that, similarly as MXR, are substrates of BCRP.

  9. Dietary Conjugated Linoleic Acid (CLA) increases milk yield without losing body weight in lactating sows.

    PubMed

    Lee, Sung-Hoon; Joo, Young-Kuk; Lee, Jin-Woo; Ha, Young-Joo; Yeo, Joon-Mo; Kim, Wan-Young

    2014-01-01

    This study was conducted to evaluate the effects of dietary conjugated linoleic acid (CLA) on the performance of lactating sows and piglets as well as the immunity of piglets suckling from sows fed CLA. Eighteen multiparous Duroc sows with an average body weight (BW) of 232.0 ± 6.38 kg were randomly selected and assigned to two dietary treatments (n = 9 for each treatment), control (no CLA addition) and 1% CLA supplementation. For the control diet, CLA was replaced with soybean oil. Experimental diets were fed to sows during a 28-day lactation period. Litter size for each sow was standardized to nine piglets by cross-fostering within 24 hours after birth. Sow milk and blood samples were taken from sows and piglets after 21 and 27 days of lactation, respectively. Loss of BW was significantly (p < 0.05) higher in sows fed control diet compared to sows fed CLA diet. Piglet weights at weaning and weight gain during suckling were significantly (p < 0.05) higher in sows fed CLA compared to sows fed control diet. Serum non-esterified fatty acid (NEFA) and urea nitrogen concentrations were significantly (p < 0.05) lower in sows fed CLA than in sows fed soybean oil. IgG concentrations of the groups supplemented with CLA increased by 49% in sow serum (p < 0.0001), 23% in milk (p < 0.05), and 35% in piglet serum (p < 0.05) compared with the control group. Sows fed CLA showed an increase of 10% in milk yield compared with sows fed soybean oil (p < 0.05), even though there was no difference in daily feed intake between the treatments. Milk fat content was significantly (p < 0.05) lower in sows fed CLA than in sows fed soybean oil. Solid-not-fat yield was significantly (p < 0.05) higher in sows supplemented with CLA than in sows fed control diet and also protein-to-fat ratio in milk was significantly (p < 0.05) higher in sows fed CLA compared with the control group. The results show that CLA supplementation to sows increased milk yield without losing BW during

  10. Treatment with endotracheal therapeutics after sarin microinstillation inhalation exposure increases blood cholinesterase levels in guinea pigs.

    PubMed

    Che, Magnus M; Song, Jian; Oguntayo, Samuel; Doctor, Bhupendra P; Rezk, Peter; Perkins, Michael W; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2012-05-01

    Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the blood and tissues of animals that are treated with a number of endotracheally aerosolized therapeutics for protection against inhalation toxicity to sarin. Therapeutics included, aerosolized atropine methyl bromide (AMB), scopolamine or combination of AMB with salbutamol, sphingosine 1-phosphate, keratinocyte growth factor, adenosine A1 receptor antisense oligonucleotide (EPI2010), 2,3-diacetyloxybenzoic acid (2,3 DABA), oxycyte, and survanta. Guinea pigs exposed to 677.4 mg/m(3) or 846.5 mg/m(3) (1.2 LCt(50)) sarin for 4 min using a microinstillation inhalation exposure technique and treated 1 min later with the aerosolized therapeutics. Treatment with all therapeutics significantly increased the survival rate with no convulsions throughout the 24 h study period. Blood AChE activity determined using acetylthiocholine as substrate showed 20% activity remaining in sarin-exposed animals compare to controls. In aerosolized AMB and scopolamine-treated animals the remaining AChE activity was significantly higher (45-60%) compared to sarin-exposed animals (p < 0.05). Similarly, treatment with all the combination therapeutics resulted in significant increase in blood AChE activity in comparison to sarin-exposed animals although the increases varied between treatments (p < 0.05). BChE activity was increased after treatment with aerosolized therapeutics but was lesser in magnitude compared to AChE activity changes. Various tissues showed elevated AChE activity after therapeutic treatment of sarin-exposed animals. Increased AChE and BChE activities in animals treated with nasal therapeutics suggest that enhanced breathing and reduced respiratory toxicity/lung injury possibly contribute to rapid normalization of chemical warfare nerve agent inhibited cholinesterases.

  11. Phytanic acid and docosahexaenoic acid increase the metabolism of all-trans-retinoic acid and CYP26 gene expression in intestinal cells.

    PubMed

    Lampen, A; Meyer, S; Nau, H

    2001-10-31

    Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.

  12. Comparison of clindamycin 1% and benzoyl peroxide 5% gel to a novel composition containing salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid in the treatment of acne vulgaris.

    PubMed

    Baumann, Leslie S; Oresajo, Christian; Yatskayer, Margarita; Dahl, Amanda; Figueras, Kristian

    2013-03-01

    This study evaluated the tolerance and efficacy of 2 facial skin products in subjects with acne using the following acne treatments: 1) treatment A, a combination of salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid, and 2) treatment B (BenzaClin®, clindamycin 1% and benzoyl peroxide 5% gel). The treatment design included the split-face application of treatment A and treatment B and the full-face application of the cleanser, moisturizer, and sunscreen. Data were collected through physician visual assessments, subject irritation questionnaires and assessments, along with clinical photography. Results showed similar tolerance and efficacy for both treatments.

  13. Effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in germinated brown millet.

    PubMed

    Li, Xingfeng; Hao, Jianxiong; Liu, Xianggui; Liu, Haijie; Ning, Yawei; Cheng, Ruhong; Tan, Bin; Jia, Yingmin

    2015-11-01

    The accumulation of γ-aminobutyric acid and the microbial decontamination are concerned increasingly in the production of sprouts. In this work, the effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in the germinated brown millet was evaluated by high performance liquid chromatography during germination. The results showed that slightly acidic electrolyzed water with appropriate available chlorine (15 or 30 mg/L) could promote the accumulation of γ-aminobutyric acid by up to 21% (P < 0.05). However, the treatment with slightly acidic electrolyzed water could not enhance the sprouts growth of the germinated brown millet. The catalase and peroxidase activities of the germinated brown millet during germination were in agreement with the sprouts growth. Our results suggested that the accumulation of γ-aminobutyric acid was independent of the length of sprouts in germinated grains. Moreover, the treatment with slightly acidic electrolyzed water significantly reduced the microbial counts in the germinated millet (P < 0.05) and the treatment with high available chlorine concentration (15 and 30 mg/L) showed stronger anti-infection potential in the germinated brown millet than that of lower available chlorine concentration (5 mg/L). In conclusion, the treatment with slightly acidic electrolyzed water is an available approach to improve the accumulation of γ-aminobutyric acid and anti-infection potential in the germinated brown millet, and it can avoid too long millet sprouts.

  14. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    PubMed Central

    FRAJESE, GIOVANNI VANNI; BENVENUTO, MONICA; FANTINI, MASSIMO; AMBROSIN, ELENA; SACCHETTI, PAMELA; MASUELLI, LAURA; GIGANTI, MARIA GABRIELLA; MODESTI, ANDREA; BEI, ROBERTO

    2016-01-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro. PMID:27313770

  15. Induction heat treatment as a means of increasing production

    SciTech Connect

    Golovin, G.F.; Shamov, A.N.

    1988-01-01

    The economic effectiveness of induction heat treatment was determined by a number of factors, including: saving energy and resources by substituting surface hardening for bulk or casehardening, improving labor productivity by process automation and including induction heat treatment equipment in the production line. Induction heating was found to be quick, does not require protection from oxidation, makes it possible to mechanize and automate the production process, and improves stabilization properties after annealing.

  16. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment.

    PubMed

    Guerra, P; Kim, M; Kinsman, L; Ng, T; Alaee, M; Smyth, S A

    2014-05-15

    This study examined the fate and behaviour of perfluoroalkyl acids (PFAAs) in liquid and solid samples from five different wastewater treatment types: facultative and aerated lagoons, chemically assisted primary treatment, secondary aerobic biological treatment, and advanced biological nutrient removal treatment. To the best of our knowledge, this is the largest data set from a single study available in the literature to date for PFAAs monitoring study in wastewater treatment. Perfluorooctanoic acid (PFOA) was the predominant PFAA in wastewater with levels from 2.2 to 150ng/L (influent) and 1.9 to 140ng/L (effluent). Perfluorooctanesulfonic acid (PFOS) was the predominant compound in primary sludge, waste biological sludge, and treated biosolids with concentrations from 6.4 to 2900ng/g dry weight (dw), 9.7 to 8200ng/gdw, and 2.1 to 17,000ng/gdw, respectively. PFAAs were formed during wastewater treatment and it was dependant on both process temperature and treatment type; with higher rates of formation in biological wastewater treatment plants (WWTPs) operating at longer hydraulic retention times and higher temperatures. PFAA removal by sorption was influenced by different sorption tendencies; median log values of the solid-liquid distribution coefficient estimated from wastewater biological sludge and final effluent were: PFOS (3.73)>PFDA (3.68)>PFNA (3.25)>PFOA (2.49)>PFHxA (1.93). Mass balances confirmed the formation of PFAAs, low PFAA removal by sorption, and high PFAA levels in effluents. PMID:24691135

  17. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice

    PubMed Central

    Zhang, Zhan; Wu, Xinyue; Cao, Shuyuan; Wang, Li; Wang, Di; Yang, Hui; Feng, Yiming; Wang, Shoulin; Li, Lei

    2016-01-01

    Emerging evidence shows that dietary agents and phytochemicals contribute to the prevention and treatment of ulcerative colitis (UC). We first reported the effects of dietary caffeic acid (CaA) on murine experimental colitis and on fecal microbiota. Colitis was induced in C57BL/6 mice by administration of 2.5% dextran sulfate sodium (DSS). Mice were fed a control diet or diet with CaA (1 mM). Our results showed that dietary CaA exerted anti-inflammatory effects in DSS colitis mice. Moreover, CaA could significantly suppress the secretion of IL-6, TNFα, and IFNγ and the colonic infiltration of CD3+ T cells, CD177+ neutrophils and F4/80+ macrophages via inhibition of the activation of NF-κB signaling pathway. Analysis of fecal microbiota showed that CaA could restore the reduction of richness and inhibit the increase of the ratio of Firmicute to Bacteroidetes in DSS colitis mice. And CaA could dramatically increase the proportion of the mucin-degrading bacterium Akkermansia in DSS colitis mice. Thus, CaA could ameliorate colonic pathology and inflammation in DSS colitis mice, and it might be associated with a proportional increase in Akkermansia. PMID:27177331

  18. Rapid acid treatment of Escherichia coli: transcriptomic response and recovery

    PubMed Central

    Kannan, Geetha; Wilks, Jessica C; Fitzgerald, Devon M; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2008-01-01

    Background Many E. coli genes show pH-dependent expression during logarithmic growth in acid (pH 5–6) or in base (pH 8–9). The effect of rapid pH change, however, has rarely been tested. Rapid acid treatment could distinguish between genes responding to external pH, and genes responding to cytoplasmic acidification, which occurs transiently following rapid external acidification. It could reveal previously unknown acid-stress genes whose effects are transient, as well as show which acid-stress genes have a delayed response. Results Microarray hybridization was employed to observe the global gene expression of E. coli K-12 W3110 following rapid acidification of the external medium, from pH 7.6 to pH 5.5. Fluorimetric observation of pH-dependent tetR-YFP showed that rapid external acidification led to a half-unit drop in cytoplasmic pH (from pH 7.6 to pH 6.4) which began to recover within 20 s. Following acid treatment, 630 genes were up-regulated and 586 genes were down-regulated. Up-regulated genes included amino-acid decarboxylases (cadA, adiY, gadA), succinate dehydrogenase (sdhABCD), biofilm-associated genes (bdm, gatAB, and ymgABC), and the Gad, Fur and Rcs regulons. Genes with response patterns consistent with cytoplasmic acid stress were revealed by addition of benzoate, a membrane-permeant acid that permanently depresses cytoplasmic pH without affecting external pH. Several genes (yagU, ygiN, yjeI, and yneI) were up-regulated specifically by external acidification, while other genes (fimB, ygaC, yhcN, yhjX, ymgABC, yodA) presented a benzoate response consistent with cytoplasmic pH stress. Other genes (the nuo operon for NADH dehydrogenase I, and the HslUV protease) showed delayed up-regulation by acid, with expression rising by 10 min following the acid shift. Conclusion Transcriptomic profiling of E. coli K-12 distinguished three different classes of change in gene expression following rapid acid treatment: up-regulation with or without recovery, and

  19. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice.

    PubMed

    Fu, Zidong Donna; Klaassen, Curtis D

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a "dose-response" model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR "dose-dependently" increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum.

  20. Dietary oleic acid increases M2 macrophages in the mesenteric adipose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding in...

  1. Retinoic acid increases the sensitivity of the rat embryo fibroblast transformation assay.

    PubMed Central

    Halazonetis, T D; Daugherty, C; Leder, P

    1988-01-01

    The rat embryo fibroblast focus assay is used to evaluate the transforming potential of several oncogenes. The sensitivity of this assay increased fivefold when retinoic acid was added to tissue culture media. Retinoic acid probably acts by selectively inhibiting the proliferation of nontransformed cells. Images PMID:3380100

  2. Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile.

    PubMed

    Heemskerk, Mattijs M; Dharuri, Harish K; van den Berg, Sjoerd A A; Jónasdóttir, Hulda S; Kloos, Dick-Paul; Giera, Martin; van Dijk, Ko Willems; van Harmelen, Vanessa

    2014-12-01

    Prolonged niacin treatment elicits beneficial effects on the plasma lipid and lipoprotein profile that is associated with a protective CVD risk profile. Acute niacin treatment inhibits nonesterified fatty acid release from adipocytes and stimulates prostaglandin release from skin Langerhans cells, but the acute effects diminish upon prolonged treatment, while the beneficial effects remain. To gain insight in the prolonged effects of niacin on lipid metabolism in adipocytes, we used a mouse model with a human-like lipoprotein metabolism and drug response [female APOE*3-Leiden.CETP (apoE3 Leiden cholesteryl ester transfer protein) mice] treated with and without niacin for 15 weeks. The gene expression profile of gonadal white adipose tissue (gWAT) from niacin-treated mice showed an upregulation of the "biosynthesis of unsaturated fatty acids" pathway, which was corroborated by quantitative PCR and analysis of the FA ratios in gWAT. Also, adipocytes from niacin-treated mice secreted more of the PUFA DHA ex vivo. This resulted in an increased DHA/arachidonic acid (AA) ratio in the adipocyte FA secretion profile and in plasma of niacin-treated mice. Interestingly, the DHA metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-diHDPA) was increased in plasma of niacin-treated mice. Both an increased DHA/AA ratio and increased 19,20-diHDPA are indicative for an anti-inflammatory profile and may indirectly contribute to the atheroprotective lipid and lipoprotein profile associated with prolonged niacin treatment.

  3. Corn starch granules with enhanced load-carrying capacity via citric acid treatment.

    PubMed

    Kim, Jong-Yea; Huber, Kerry C

    2013-01-01

    This research investigated conditions by which maize starch granule porosity and load-carrying capacity (LCC) might be enhanced via treatment with varying citric acid concentrations (0.5-1.5 M), temperatures (40-60 °C), and lengths of treatment (1-8 h). At the lowest temperatures (40 and 50 °C), citric acid treatment induced minimal physicochemical changes to granules. In contrast, both aqueous and oil LCCs of starches treated at 60 °C (0.5 M citric acid, 2 h) were almost doubled (15.69 and 14.48 mL/10 g starch, respectively), recovering 92% of the granular starch after treatment. Such treatment increased starch hydration capacity (0.97-1.91) and reduced gelatinization enthalpy (10.6-7.4 J/g). More severe treatment conditions adversely impacted aqueous LCC (due to excessive granule swelling), but improved oil absorption. The basis for LCC enhancement by citric acid treatment was ascribed to leaching of starch material from granules and partial disruption of the granule crystalline structure, as opposed to starch hydrolysis or chemical substitution.

  4. Chemical fixation increases options for hazardous waste treatment

    SciTech Connect

    Indelicato, G.J.; Tipton, G.A.

    1996-05-01

    The Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) govern the manner in which hazardous materials are managed. Disposing RCRA hazardous wastes on or in the land is no longer an accepted remedial option. This land disposal restriction requires that all listed and characteristic hazardous wastes must be treated according to specified standards before they are disposed. These treatment standards define technologies and concentration limits. Hazardous wastes that do not meet the standards are prohibited from being disposed on land, such as in landfills, surface impoundments, land treatment units, injection wells, and mines or caves.

  5. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.

    PubMed

    Sheng, Ling; Shen, Dandan; Luo, Yi; Sun, Xiaohua; Wang, Jinqiu; Luo, Tao; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2017-02-01

    The loss of organic acids during postharvest storage is one of the major factors that reduces the fruit quality and economic value of citrus. Citrate is the most important organic acid in citrus fruits. Molecular evidence has proved that γ-aminobutyric acid (GABA) shunt plays a key role in citrate metabolism. Here, we investigated the effects of exogenous GABA treatment on citrate metabolism and storage quality of postharvest citrus fruit. The content of citrate was significantly increased, which was primarily attributed to the inhibition of the expression of glutamate decarboxylase (GAD). Amino acids, including glutamate, alanine, serine, aspartate and proline, were also increased. Moreover, GABA treatment decreased the fruit rot rate. The activities of antioxidant enzymes and the content of energy source ATP were affected by the treatment. Our results indicate that GABA treatment is a very effective approach for postharvest quality maintenance and improvement of storage performance in citrus production. PMID:27596402

  6. Dose-dependent consumption of farmed Atlantic salmon (Salmo salar) increases plasma phospholipid n-3 fatty acids differentially

    PubMed Central

    Raatz, Susan K.; Rosenberger, Thad A.; Johnson, LuAnn K.; Wolters, William W.; Burr, Gary S; Picklo, Matthew J.

    2013-01-01

    Enhanced omega-3 fatty acid (n-3) intake benefits cardiovascular disease (CVD) risk reduction. Increasing consumption at a population level may be better addressed by diet than through supplementation. However, limited data are available on the effect of the dose response to fish intake on plasma levels of n-3 fatty acids. To compare the effects of different doses of farmed Atlantic salmon on plasma phospholipid fatty acid (PLFA) proportions and CVD risk biomarkers (glucose, insulin, HOMAIR, hsCRP, and IL-6) in healthy subjects we performed a randomized 3-period cross-over designed trial (4 wk treatment, 4-8 wk washout) to compare the effects of twice/wk consumption of farmed Atlantic salmon at doses of 90, 180, and 270 g in 19 apparently healthy men and women with a mean age of aged 40-65 years and a BMI between 25-34.9 kg/m2. All study visits were conducted at the USDA, ARS Grand Forks Human Nutrition Research Center. EPA and total n-3 were increased (p<0.05) by all treatments in a dose response manner, with total n-3 of 8.03 ± 0.26 and 9.21 ± 0.26 % for 180 and 270 g doses, respectively. Linoleic acid did not change in response to treatment while arachidonic acid (P<0.05) and total omega-6 fatty acids (n-6) decreased dose dependently (<0.0001). The addition of farmed Atlantic salmon to the diet twice/wk for 4 wk at portions of 180g and 270g modifies PLFA proportions of n-3 and n-6 in a level associated with decreased risk for CVD. PMID:23351633

  7. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats.

    PubMed

    Huang, Hui; Morisseau, Christophe; Wang, JingFeng; Yang, Tianxin; Falck, John R; Hammock, Bruce D; Wang, Mong-Heng

    2007-07-01

    Since epoxyeicosatrienoic acids (EETs) affect sodium reabsorption in renal tubules and dilate the renal vasculature, we have examined their effects on renal hemodynamics and sodium balance in male rats fed a high-fat (HF) diet by fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist and an inducer of cytochrome P-450 (CYP) epoxygenases; by N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH), a selective EET biosynthesis inhibitor; and by 12-(3-adamantane-1-yl-ureido)dodecanoic acid (AUDA), a selective inhibitor of soluble epoxide hydrolase. In rats treated with fenofibrate (30 mg.kg(-1).day(-1) ig) or AUDA (50 mg/l in drinking water) for 2 wk, mean arterial pressure, renal vascular resistance, and glomerular filtration rate were lower but renal blood flow was higher than in vehicle-treated control rats. In addition, fenofibrate and AUDA decreased cumulative sodium balance in the HF rats. Treatment with MSPPOH (20 mg.kg(-1).day(-1) iv) + fenofibrate for 2 wk reversed renal hemodynamics and sodium balance to the levels in control HF rats. Moreover, fenofibrate caused a threefold increase in renal cortical CYP epoxygenase activity, whereas the fenofibrate-induced elevation of this activity was attenuated by MSPPOH. Western blot analysis showed that fenofibrate induced the expression of CYP epoxygenases in renal cortex and microvessels and that the induction effect of fenofibrate was blocked by MSPPOH. These results demonstrate that the fenofibrate-induced increase of CYP epoxygenase expression and the AUDA-induced stabilization of EET production in the kidneys cause renal vascular dilation and reduce sodium retention, contributing to the improvement of abnormal renal hemodynamics and hypertension in HF rats.

  8. Effect of 82% Lactic Acid in Treatment of Melasma

    PubMed Central

    Singh, Rashmi; Goyal, Sapna; Ahmed, Qazi Rais; Gupta, Narendra; Singh, Sujata

    2014-01-01

    Melasma is an acquired, chronic, and symmetrical hypermelanosis, characterized by brown patches of variable darkness on sun exposed areas of body. There are numerous modalities of treatment currently in use for this disease, of which the chemical peeling is very commonly used. Therefore, the present work was done to see the effect of 82% lactic acid peel in the treatment of melasma. A total number of 20 patients of either sex attending the OPD of dermatology department with clinically evident melasma were included in the study. 82% Lactic acid peel was applied on the face for 12 weeks in each patient. Patients were evaluated clinically and photographically at various intervals and in follow-up till 24 weeks. Assessment of patient satisfaction and side effects were also noted. All the subjects completed the study. Application of this peel for 12 weeks significantly decreased the melasma area severity index score and also melasma severity scale score. Patient and physician analogue scales also showed the improvement by the treatment. Regarding the adverse effects, burning sensation was the only side effect noted in our study. In conclusion, 82% lactic acid peel is well tolerated and can be used for the treatment of melasma. PMID:27355080

  9. Prolonged treatment with ursodeoxycholic acid for primary biliary cirrhosis.

    PubMed

    Crippa, G; Cagnoni, C; Castelli, A; Concesi, C; Girometta, S; Pancotti, D; Sverzellati, E; Tacchini, G; Pierfranceschi, M G; Carrara, G C

    1995-05-01

    Eighteen patients affected with biopsy-proved primary biliary cirrhosis (PBC) (histological stage III and IV) received ursodeoxicholic acid (UDCA) 600 mg for 1 year. Signs and symptoms and biochemical tests (glutamic and oxalcetic transaminase, glutamic and pyruvic transaminase, bilirubine, gamma-glutamyl transpeptidase, alkaline phosphatase, leucine aminopeptidase, bile acids, plasma proteins electrophoresis, immunoglubulins A, G and M) and antimitochondrial antibodies were evaluated before the treatment and every four months during the treatment. The results were compared with those obtained in 8 untreated patients affected PBC. The control group of patients were comparable (as far as age, histological stage, biochemical tests are concerned) to the group who received UDCA. Bilirubine, ALP, gamma-GT and LAP decreased during the treatment with UDCA and remained lower than baseline values until the end of the observation (12 months), while no changes occurred in the untreated patients. Both in the treated and untreated group plasma protein electrophoresis, serum immunoglubulins A, G and M remained unchanged, as well as anti-mitochondrial antibody. A moderate reduction of transaminases and bile acids was observed in the group of patients receiving UDCA but it did not reach statistical significance. In 16 out of the 18 treated patients pruritus disappeared and resulted diminished in the remaining 2 patients. No significant amelioration of pruritus was observed in the patients who did not receive UDCA. In conclusion, our data show that prolonged treatment with UDCA drastically reduces pruritus and improves cholestasis biochemical tests in patients affected with symptomatic PBC.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Treatment increases stress-corrosion resistance of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Jacobs, A. J.

    1966-01-01

    Overaging during heat treatment of the aluminum alloys immediately followed by moderate plastic deformation, preferably by shock loading achieves near optimum values of both yield strength and resistance to stress corrosion. Similar results may be obtained by substituting a conventional deformation process for the shock loading step.

  11. Palladium nanoparticles synthesized by reducing species generated during a successive acidic/alkaline treatment of sucrose

    NASA Astrophysics Data System (ADS)

    Amornkitbamrung, Lunjakorn; Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2014-03-01

    Uniform spherical palladium nanoparticles with an average particle size of 4.3 ± 0.5 nm were successfully synthesized by reducing H2PdCl4 with intermediates in situ generated during a successive acidic/alkaline treatment of sucrose. A successive acidic/alkaline treatment plays an important role on converting the non-reducing sucrose into efficient reducing species containing aldehyde functionality. The Benedict's test corroborates the development and vanishing of the in situ generated reducing species upon prolonged degradation. An increase in alkalinity drastically improves the reduction efficiency. ATR FT-IR spectroscopy indicated spontaneous development of carboxylate after the alkaline treatment. Under the employed condition, small organic species with carbonyl groups (aldehyde, acid, and acid salt) were generated through the sucrose degradation before being oxidized to carbonate after an hour of the treatment. Sucrose was completely decomposed into carbonate after a 24-h successive acidic/alkaline treatment. The synthesized palladium nanoparticles express a good catalytic activity in the decolorization process of Congo red by sodium borohydride.

  12. Palladium nanoparticles synthesized by reducing species generated during a successive acidic/alkaline treatment of sucrose.

    PubMed

    Amornkitbamrung, Lunjakorn; Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Ekgasit, Sanong

    2014-03-25

    Uniform spherical palladium nanoparticles with an average particle size of 4.3±0.5 nm were successfully synthesized by reducing H2PdCl4 with intermediates in situ generated during a successive acidic/alkaline treatment of sucrose. A successive acidic/alkaline treatment plays an important role on converting the non-reducing sucrose into efficient reducing species containing aldehyde functionality. The Benedict's test corroborates the development and vanishing of the in situ generated reducing species upon prolonged degradation. An increase in alkalinity drastically improves the reduction efficiency. ATR FT-IR spectroscopy indicated spontaneous development of carboxylate after the alkaline treatment. Under the employed condition, small organic species with carbonyl groups (aldehyde, acid, and acid salt) were generated through the sucrose degradation before being oxidized to carbonate after an hour of the treatment. Sucrose was completely decomposed into carbonate after a 24-h successive acidic/alkaline treatment. The synthesized palladium nanoparticles express a good catalytic activity in the decolorization process of Congo red by sodium borohydride. PMID:24309181

  13. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.

  14. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    PubMed

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment. PMID:26413704

  15. Increased brain uptake of gamma-aminobutyric acid in a rabbit model of hepatic encephalopathy

    SciTech Connect

    Bassett, M.L.; Mullen, K.D.; Scholz, B.; Fenstermacher, J.D.; Jones, E.A. )

    1990-03-01

    Transfer of the inhibitory neurotransmitter gamma-aminobutyric acid across the normal blood-brain barrier is minimal. One prerequisite for gamma-aminobutyric acid in plasma contributing to the neural inhibition of hepatic encephalopathy would be that increased transfer of gamma-aminobutyric acid across the blood-brain barrier occurs in liver failure. The aim of the present study was to determine if brain gamma-aminobutyric acid uptake is increased in rabbits with stage II-III (precoma) hepatic encephalopathy due to galactosamine-induced fulminant hepatic failure. A modification of the Oldendorf intracarotid artery-injection technique was applied. (3H) gamma-aminobutyric acid, (14C) butanol, and 113mIn-labeled serum protein (transferrin) were injected simultaneously 4 s before decapitation. The ipsilateral brain uptake index of gamma-aminobutyric acid was determined from measurements of the 3 isotopes in 5 brain regions. Uncorrected or simple brain uptake indices of (3H) gamma-aminobutyric acid and (113mIn) transferrin were calculated using (14C) butanol as the highly extracted reference compound. The (113mIn) transferrin data were also used to correct the brain uptake index of (3H) gamma-aminobutyric acid for intravascular retention of (3H) gamma-aminobutyric acid. The methodology adopted minimized problems attributable to rapid (3H) gamma-aminobutyric acid metabolism, and slow brain washout and recirculation of the radiolabeled tracers. Both the uncorrected and corrected brain uptake indices of gamma-aminobutyric acid as well as the simple brain uptake index of transferrin were significantly increased in both stage II and III hepatic encephalopathy in all brain regions studied. Moreover, these brain uptake indices were significantly greater in stage III hepatic encephalopathy than in stage II hepatic encephalopathy.

  16. Does salicylic acid increase the percutaneous absorption of diflucortolone-21-valerate?

    PubMed

    Täuber, U; Weiss, C; Matthes, H

    1993-01-01

    The percutaneous absorption of diflucortolone-21-valerate (DFV) and its effect on the pituitary adrenal system were investigated during large skin area treatment (20 g ointment twice a day for 8 days) of two groups of healthy volunteers with Nerisona and Nerisalic ointment, respectively. Plasma levels of diflucortolone, cortisol and dehydroepiandrosterone (DHEA) were measured in both groups whereas plasma levels of salicylic acid were measured additionally in volunteers treated with Nerisalic. No differences, neither in percutaneous absorption of DFV nor in effects on cortisol and DHEA were found between the two treatment groups. There was a slight reduction in cortisol levels under both treatments, but the circadian rhythm was not disturbed. Mean salicylic acid plasma levels under high-dose topical Nerisalic treatment were about 50-fold below levels where toxicity may be expected. PMID:8198813

  17. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    SciTech Connect

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  18. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo.

    PubMed

    Chen, Pei-Jen; Padgett, William T; Moore, Tanya; Winnik, Witold; Lambert, Guy R; Thai, Sheau-Fung; Hester, Susan D; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  19. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans.

    PubMed

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms.

  20. Smoking increases the risk of relapse after successful tuberculosis treatment

    PubMed Central

    d’Arc Lyra Batista, Joanna; de Fátima Pessoa Militão de Albuquerque, Maria; de Alencar Ximenes, Ricardo Arraes; Rodrigues, Laura Cunha

    2008-01-01

    Background Recent tobacco smoking has been identified as a risk factor for developing tuberculosis, and two studies which have investigated its association with relapse of tuberculosis after completion of treatment had conflicting results (and did not control for confounding). The objective of this study was to investigate risk factors for tuberculosis relapse, with emphasis on smoking. Methods A cohort of newly diagnosed TB cases was followed up from their discharge after completion of treatment (in 2001–2003) until October 2006 and relapses of tuberculosis ascertained during that period. A case of relapse was defined as a patient who started a second treatment during the follow up. Results Smoking (OR 2.53, 95% CI 1.23–5.21) and living in an area where the family health program was not implemented (OR 3.61, 95% CI 1.46–8.93) were found to be independently associated with relapse of tuberculosis. Conclusions Our results establish that smoking is associated with relapse of tuberculosis even after adjustment for the socioeconomic variables. Smoking cessation support should be incorporated in the strategies to improve effectiveness of Tuberculosis Control Programs. PMID:18556729

  1. [Intracranial pressure targeted treatment in acute bacterial meningitis increased survival].

    PubMed

    Glimåker, Martin; Johansson, Bibi; Halldorsdottir, Halla; Wanecek, Michael; Elmi-Terander, Adrian; Bellander, Bo-Michael

    2014-12-16

    To evaluate the efficacy of intracranial pressure (ICP)-targeted treatment, compared to standard intensive care, in adults with community acquired acute bacterial meningitis (ABM) and severely impaired consciousness, a prospectively designed intervention-control comparison study was performed. Included were patients with confirmed ABM and severely impaired mental status on admission. Fifty-two patients, given ICP-targeted treatment at a neuro-intensive care unit, and 53 control cases, treated with conventional intensive care, were included. All patients received intensive care with me-chanical ventilation, sedation, antibiotics and corticosteroids according to current guidelines. ICP-targeted treatment was performed in the intervention group, aiming at ICP 50 mmHg. The mortality was significantly lower in the intervention group compared to controls, 5/52 (10%) versus 16/53 (30%). Furthermore, only 17 patients (32%) in the control group fully recovered, compared to 28 (54%) in the intervention group. Early neuro-intensive care using ICP-targeted therapy reduces mortality and improves the overall outcome in adult patients with ABM and severely impaired mental status on admission.

  2. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED.

    PubMed

    Liu, Y; Chen, C; Liu, S; Liu, D; Xu, X; Chen, X; Shi, S

    2015-01-01

    Stem cells from exfoliated deciduous teeth (SHED) possess multipotent differentiation and immunomodulatory properties. They have been used for orofacial bone regeneration and autoimmune disease treatment. In this study, we show that acetylsalicylic acid (ASA) treatment is able to significantly improve SHED-mediated osteogenic differentiation and immunomodulation. Mechanistically, ASA treatment upregulates the telomerase reverse transcriptase (TERT)/Wnt/β-catenin cascade, leading to improvement of SHED-mediated bone regeneration, and also upregulates TERT/FASL signaling, leading to improvement of SHED-mediated T-cell apoptosis and ameliorating disease phenotypes in dextran sodium sulfate-induced colitis mice. These data indicate that ASA treatment is a practical approach to improving SHED-based cell therapy.

  3. Usefulness of retinoic acid in the treatment of melasma.

    PubMed

    Pathak, M A; Fitzpatrick, T B; Kraus, E W

    1986-10-01

    Melasma is a circumscribed brown macular hypermelanosis of the areas of the face and neck that are exposed to light. Clinical trials with various depigmenting formulations containing hydroquinone were conducted to determine the ideal concentration of hydroquinone, retinoic acid, and corticosteroids for the treatment of melasma. The compounds were tested with and without the concomitant use of topical sunscreen preparations. Based on the results of the trials and our earlier clinical experience, we conclude that treatment of melasma should involve the following: avoidance of sun exposure, constant use of broad-spectrum sunscreens, and topical application of a cream or lotion containing 2% hydroquinone and 0.05% to 0.1% retinoic acid (tretinoin). Patients should suspend use of oral contraceptives and other agents that promote skin pigmentation. The monobenzyl ether of hydroquinone should never be used in melasma therapy.

  4. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    PubMed Central

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  5. Tracking and Increasing Viability of Topically Injected Fibroblasts Suspended in Hyaluronic Acid Filler.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Rhee, Sung-Mi; Han, Seung-Kyu

    2016-03-01

    A new injectable tissue-engineered soft tissue consisting of a mixture of hyaluronic acid (HA) filler and cultured human fibroblasts have been developed by the authors. To establish this method as a standard treatment, a further study was required to determine whether the injected fibroblasts could stay at the injected place or move to other sites. In addition, effective strategies were needed to increase viability of the injected fibroblasts. The purpose of this study was to track the injected fibroblasts and to determine the effect of adding prostaglandin E1 (PGE1) or vitamin C on the viability of fibroblasts.Human fibroblasts labeled with fluorescence dye were suspended in HA filler and injected into 4 sites on the back of nude mice. The injected bioimplants consisted of one of the 4 followings: HA filler without cells (HA group), fibroblasts suspended in HA filler (HA + FB group), PGE1-supplemented fibroblasts in HA filler (HA + FB + PGE1 group), and vitamin C-supplemented fibroblasts in HA filler (HA + FB + VC group). At 4 weeks after injection, locations and intensities of the fluorescence signals were evaluated using a live imaging system.The fluorescence signals of the fibroblast-containing groups were visible only at the injected sites without dispersing to other sites. The HA +FB + PGE1 group showed a significantly higher fluorescence signal than the HA + FB and the HA + FB +VC groups (P < 0.05, each). There was no statistical difference between the HA + FB and HA + FB +VC groups (P = 0.69).The results of the current study collectively suggest that injected fibroblasts suspended in HA filler stay at the injected place without moving to other sites. In addition, PGE1 treatment may increase the remaining rhodamine B isothiocynanate dye at the injected site of the human dermal fibroblasts. PMID:26854786

  6. Tracking and Increasing Viability of Topically Injected Fibroblasts Suspended in Hyaluronic Acid Filler.

    PubMed

    You, Hi-Jin; Namgoong, Sik; Rhee, Sung-Mi; Han, Seung-Kyu

    2016-03-01

    A new injectable tissue-engineered soft tissue consisting of a mixture of hyaluronic acid (HA) filler and cultured human fibroblasts have been developed by the authors. To establish this method as a standard treatment, a further study was required to determine whether the injected fibroblasts could stay at the injected place or move to other sites. In addition, effective strategies were needed to increase viability of the injected fibroblasts. The purpose of this study was to track the injected fibroblasts and to determine the effect of adding prostaglandin E1 (PGE1) or vitamin C on the viability of fibroblasts.Human fibroblasts labeled with fluorescence dye were suspended in HA filler and injected into 4 sites on the back of nude mice. The injected bioimplants consisted of one of the 4 followings: HA filler without cells (HA group), fibroblasts suspended in HA filler (HA + FB group), PGE1-supplemented fibroblasts in HA filler (HA + FB + PGE1 group), and vitamin C-supplemented fibroblasts in HA filler (HA + FB + VC group). At 4 weeks after injection, locations and intensities of the fluorescence signals were evaluated using a live imaging system.The fluorescence signals of the fibroblast-containing groups were visible only at the injected sites without dispersing to other sites. The HA +FB + PGE1 group showed a significantly higher fluorescence signal than the HA + FB and the HA + FB +VC groups (P < 0.05, each). There was no statistical difference between the HA + FB and HA + FB +VC groups (P = 0.69).The results of the current study collectively suggest that injected fibroblasts suspended in HA filler stay at the injected place without moving to other sites. In addition, PGE1 treatment may increase the remaining rhodamine B isothiocynanate dye at the injected site of the human dermal fibroblasts.

  7. Increased Cytochrome P4502E1 Expression and Altered Hydroxyeicosatetraenoic Acid Formation Mediate Diabetic Vascular Dysfunction

    PubMed Central

    Schäfer, Andreas; Galuppo, Paolo; Fraccarollo, Daniela; Vogt, Christian; Widder, Julian D.; Pfrang, Julia; Tas, Piet; Barbosa-Sicard, Eduardo; Ruetten, Hartmut; Ertl, Georg; Fleming, Ingrid; Bauersachs, Johann

    2010-01-01

    OBJECTIVE We investigated the mechanisms underlying vascular endothelial and contractile dysfunction in diabetes as well as the effect of HMR1766, a novel nitric oxide (NO)-independent activator of soluble guanylyl cyclase (sGC). RESEARCH DESIGN AND METHODS Two weeks after induction of diabetes by streptozotocin, Wistar rats received either placebo or HMR1766 (10 mg/kg twice daily) for another 2 weeks; thereafter, vascular function was assessed. RESULTS Endothelial function and contractile responses were significantly impaired, while vascular superoxide formation was increased in the aortae from diabetic versus healthy control rats. Using RNA microarrays, cytochrome P4502E1 (CYP2E1) was identified as the highest upregulated gene in diabetic aorta. CYP2E1 protein was significantly increased (16-fold) by diabetes, leading to a reduction in levels of the potent vasoconstrictor 20-hydroxy-eicosatetraenoic acid (20-HETE). Induction of CYP2E1 expression in healthy rats using isoniazide mimicked the diabetic noncontractile vascular response while preincubation of aortae from STZ-diabetic rats in vitro with 20-HETE rescued contractile function. Chronic treatment with the sGC activator HMR1766 improved NO sensitivity and endothelial function, reduced CYP2E1 expression and superoxide formation, enhanced 20-HETE levels, and reversed the contractile deficit observed in the diabetic rats that received placebo. CONCLUSIONS Upregulation of CYP2E1 is essentially involved in diabetic vascular dysfunction. Chronic treatment with the sGC activator HMR1766 reduced oxidative stress, decreased CYP2E1 levels, and normalized vasomotor function in diabetic rats. PMID:20522591

  8. Holmium:YAG laser: effects of various treatments on root surface topography and acid resistance

    NASA Astrophysics Data System (ADS)

    Holt, Raleigh A.; Nordquist, Robert E.

    1996-04-01

    The effects of Holmium:YAG laser energy with and without a topical fluoride mixture (resin to NaF) was compared with two types of topical fluorides on surface topography and resistance to acid destruction of root surfaces. Scanning electron microscopy (SEM) was used to evaluate the effects of the selected treatments on surface topography before acid exposure. Toluidine blue dye was used to test the permeability of root surfaces after acid exposures. SEM examinations of the dentinal root surfaces showed consistently smooth surfaces with tubule closures when using topical resin to fluoride and HO:YAG laser treatment; in contrast, HO:YAG laser energy treatment alone exhibited increased roughness of root surfaces. Topical fluoride applications alone presented surfaces similar to untreated control sites. Toluidine blue dye penetration into root surfaces of the fluoride/laser-treated root surfaces showed significantly less dye penetration after acid exposures than controls and other treatment protocols. The results of this study indicate that the resin-fluoride application and holmium:YAG irradiation effectively produced increased smoothness and increased resistance to destruction of root surfaces in human extracted teeth under these in vitro conditions.

  9. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination.

    PubMed

    Cai, Yun; Zhang, Zhenhua; Jiang, Shanshan; Yu, Miao; Huang, Caihuan; Qiu, Ruixia; Zou, Yueyu; Zhang, Qirui; Ou, Shiyi; Zhou, Hua; Wang, Yong; Bai, Weibing; Li, Yiqun

    2014-03-15

    This research was aimed to investigate why chlorogenic acid, presents at high concentrations in some food raw material, influences acrylamide formation. In the asparagine/glucose Maillard reaction system (pH=6.8), addition of chlorogenic acid significantly increased acrylamide formation and inhibited its elimination. In contrast, the quinone derivative of chlorogenic acid decreased acrylamide formation. Three mechanisms may be involved for increasing acrylamide formation by chlorogenic acid. Firstly, it increased the formation of HMF, which acts as a more efficient precursor than glucose to form acrylamide. Secondly, it decreased activation energy for conversion of 3-aminopropionamide (3-APA) to acrylamide (from 173.2 to 136.6kJ/mol), and enhances deamination from 3-APA. And thirdly, it prevented attack of the produced acrylamide from free radicals by keeping high redox potential during the Maillard reaction.

  10. Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans.

    PubMed

    Steck, Susan E; Chalecki, Allison M; Miller, Paul; Conway, Jason; Austin, Gregory L; Hardin, James W; Albright, Craig D; Thuillier, Philippe

    2007-05-01

    Conjugated linoleic acid (CLA) alters body composition in animal models, but few studies have examined the effects of CLA supplementation on body composition and clinical safety measures in obese humans. In the present study, we performed a randomized, double-blind, placebo-controlled trial to examine the changes in body composition and clinical laboratory values following CLA (50:50 ratio of cis-9, trans-11 and trans-10, cis-12 isomers) supplementation for 12 wk in otherwise healthy obese humans. Forty-eight participants (13 males and 35 females) were randomized to receive placebo (8 g safflower oil/d), 3.2 g/d CLA, or 6.4 g/d CLA for 12 wk. Changes in body fat mass and lean body mass were determined by dual-energy X-ray absorptiometry. Resting energy expenditure was assessed by indirect calorimetry. Clinical laboratory values and adverse-event reporting were used to monitor safety. Lean body mass increased by 0.64 kg in the 6.4 g/d CLA group (P < 0.05) after 12 wk of intervention. Significant decreases in serum HDL-cholesterol and sodium, hemoglobin, and hematocrit, and significant increases in serum alkaline phosphatase, C-reactive protein, and IL-6, and white blood cells occurred in the 6.4 g/d CLA group, although all values remained within normal limits. The intervention was well tolerated and no severe adverse events were reported, although mild gastrointestinal adverse events were reported in all treatment groups. In conclusion, whereas CLA may increase lean body mass in obese humans, it may also increase markers of inflammation in the short term.

  11. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    SciTech Connect

    Fu, Zidong Donna; Klaassen, Curtis D.

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  12. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. PMID:26226334

  13. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium.

  14. Genistein treatment increases bone mass in obese, hyperglycemic mice

    PubMed Central

    Michelin, Richard M; Al-Nakkash, Layla; Broderick, Tom L; Plochocki, Jeffrey H

    2016-01-01

    Background Obesity and type 2 diabetes mellitus are associated with elevated risk of limb bone fracture. Incidences of these conditions are on the rise worldwide. Genistein, a phytoestrogen, has been shown by several studies to demonstrate bone-protective properties and may improve bone health in obese type 2 diabetics. Methods In this study, we test the effects of genistein treatment on limb bone and growth plate cartilage histomorphometry in obese, hyperglycemic ob/ob mice. Six-week-old ob/ob mice were divided into control and genistein-treated groups. Genistein-treated mice were fed a diet containing 600 mg genistein/kg for a period of 4 weeks. Cross-sectional geometric and histomorphometric analyses were conducted on tibias. Results Genistein-treated mice remained obese and hyperglycemic. However, histomorphometric comparisons show that genistein-treated mice have greater tibial midshaft diameters and ratios of cortical bone to total tissue area than the controls. Genistein-treated mice also exhibit decreased growth plate thickness of the proximal tibia. Conclusion Our results indicate that genistein treatment affects bone of the tibial midshaft in the ob/ob mouse, independent of improvements in the hyperglycemic state and body weight. PMID:27042131

  15. Increased intestinal amino-acid retention from the addition of carbohydrates to a meal.

    PubMed

    Deutz, N E; Ten Have, G A; Soeters, P B; Moughan, P J

    1995-12-01

    Carbohydrates, added to a protein meal, are known to enhance the efficiency of dietary protein utilisation. However, the respective roles of the gut and liver in relation to this enhanced efficiency are not known. Therefore, we studied amino-acid, ammonia, urea, glucose and lactate fluxes for 6 h across the portal drained viscera and liver in conscious, multi-catheterised pigs of approximately 25 kg body weight after receiving a protein meal with added carbohydrates, a pure protein meal or a control meal. Additional carbohydrate caused a net glucose efflux in the portal drained viscera and increased arterial blood insulin levels. The appearance of amino-acids in the portal blood declined by some 30%, in spite of the dietary true amino-acid digestibility being approximately 95%. Liver uptake of most amino-acids was lower and there was a lower liver urea production. Finally, there was a smaller postprandial increase in the arterial blood concentration for most of the amino-acids. The results of this study suggest that inclusion of maltodextrin in the diet increases the net retention of meal-derived amino-acids in the portal drained viscera. The lower urea production and liver amino-acid uptake suggest a lower nitrogen loss. The gut could be an important site for nitrogen retention induced by the addition of carbohydrates to a protein meal.

  16. Does simulated acid rain increase the leaching of cadmium from wood ash to toxic levels to coniferous forest humus microbes?

    PubMed

    Perkiömäki, Jonna; Fritze, Hannu

    2003-05-01

    Abstract Wood ash contains Cd in concentrations not permitted for fertilization use in agriculture (>3 mg kg(-1)). It has been shown that spiking ash with Cd to concentrations of 1000 mg kg(-1) induced no further changes in humus microbial activity and community structure as ash alone. To accelerate the weathering process and thus to liberate the spiked Cd from the ash, three treatments - wood ash (A), Cd spiked wood ash (ACd, 1000 mg Cd kg(-1) ash), both applied at a fertilization rate of 5000 kg ha(-1), together with a control (C) - were performed in microcosms and incubated in field condition under two types of irrigation - water and simulated acid rain. During the incubation period of one growing season the simulated acid rain plots received a sulfur load of 3.64 g S m(-2), which was 15 times more than the S deposition on the water irrigated plots. The treatments resulted in a mean Cd increase of the humus from 0.23 mg kg(-1) of the C treatment to 0.52 and 39.5 mg kg(-1) of the A and ACd treatments, respectively. The irrigation had no further effect on the result. The microbial activity, measured as soil basal respiration, and the microbial community structure, measured as humus phospholipid fatty acid and 16S and 18S polymerase chain reaction/denaturing gradient gel electrophoresis patterns, changed only due to the ash (A and ACd treatments) fertilization irrespective of the irrigation. The bacterial biosensor, emitting light in the presence of bioavailable Cd, did not react to any of the treatments. This result shows that Cd in ash was not leached into the humus due to increased deposition of acidified rain.

  17. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options.

    PubMed

    Weintraub, Howard

    2013-10-01

    Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy.

  18. Ligand-directed stearic acid grafted chitosan micelles to increase therapeutic efficacy in hepatic cancer.

    PubMed

    Yang, Yuan; Yuan, Sheng-Xian; Zhao, Ling-Hao; Wang, Chao; Ni, Jun-Sheng; Wang, Zhen-Guang; Lin, Chuan; Wu, Meng-Chao; Zhou, Wei-Ping

    2015-02-01

    Targeted delivery system would be an interesting platform to enhance the therapeutic effect and to reduce the side effects of anticancer drugs. In this study, we have developed lactobionic acid (LA)-modified chitosan-stearic acid (CS-SA) (CSS-LA) to deliver doxorubicin (DOX) to hepatic cancer cells. The average particle size of CSS-LA/DOX was ∼100 nm with a high entrapment efficiency of >95%. Drug release studies showed that DOX release from pH-sensitive micelles is significantly faster at pH 5.0 than at pH 7.4. The LA conjugated micelles showed enhanced cellular uptake in HepG2 and BEL-7402 liver cancer cells than free drug and unconjugated micelles. Consistently, CSS-LA/DOX showed enhanced cell cytotoxicity in these two cell lines. Annexin-V/FITC and PI based apoptosis assay showed that the number of living cells greatly reduced in this group with marked presence of necrotic and apoptotic cells. LA-conjugated carrier induced typical chromatic condensation of cells; membrane blebbing and apoptotic bodies began to appear. In vivo, CSS-LA/DOX showed an excellent tumor regression profile with no toxic side effects. The active targeting moiety, long circulation profile, and EPR effect contributed to its superior anticancer effect in HepG2 based tumor. Our results showed that polymeric micelles conjugated with LA increased the therapeutic availability of DOX in the liver cancer cell based solid tumor without any toxic side effects. The active targeting ligand conjugated nanoparticulate system could be a promising therapeutic strategy in the treatment of hepatic cancers.

  19. Short communication: retinoic acid plus prolactin to synergistically increase specific casein gene expression in MAC-T cells.

    PubMed

    Lee, H Y; Heo, Y T; Lee, S E; Hwang, K C; Lee, H G; Choi, S H; Kim, N H

    2013-06-01

    Mammary alveolar (MAC-T) cells, an established bovine mammary epithelial cell line, are frequently used to investigate differentiation. A lactogenic phenotype in these cells is induced by treatment with a combination of hydrocortisone, insulin, and prolactin (PRL). The effect of the vitamin A derivative retinoic acid (RA), which induces differentiation in many cells, has not been studied in MAC-T cells. The objective of this study was to evaluate the differentiation potential of RA (1 μM) in MAC-T cells and to examine the effect of combined treatment with RA (1 μM) and PRL (5 μg/mL). Although RA treatment alone inhibited MAC-T cell proliferation, co-treatment of RA with PRL increased cell growth compared with the control group (treated with 1 μg/mL hydrocortisone and 5 μg/mL insulin). The ratio of Bcl to Bax mRNA was decreased in the RA treatment compared with RA+PRL or control. Retinoic acid-induced differentiation of MAC-T cells was associated with an increase in the mRNA expression of αS1-casein (3.9-fold), αS2-casein (4.5-fold), and β-casein (4.4-fold) compared with the control group. Expression of αS1-casein, αS2-casein, and β-casein was increased 12.9-fold, 11.9-fold, and 19.3-fold, respectively, following treatment with RA and PRL combined compared with the control group. These results demonstrate that RA induces differentiation of MAC-T cells and acts synergistically with PRL to increase specific casein gene expression.

  20. Efficacy of omega-3 fatty acids in the treatment of borderline personality disorder: a study of the association with valproic acid.

    PubMed

    Bellino, Silvio; Bozzatello, Paola; Rocca, Giuseppe; Bogetto, Filippo

    2014-02-01

    Omega-3 fatty acids have received increasing interest due to their effects in stabilizing plasmatic membranes and regulating cell signaling. The efficacy of omega-3 fatty acids in psychiatric disorders, in particular mood disorders, has been studied. There have been two trials on eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) in the treatment of borderline personality disorder (BPD). The present 12-week controlled trial aimed to assess the efficacy of the association of EPA and DHA with valproic acid, compared to single valproic acid, in 43 consecutive BPD outpatients. Participants were evaluated at baseline and after 12 weeks with: Clinical Global Impression - Severity (CGI-S), Hamilton Scales for depression and anxiety (HAM-D, HAM-A), Social and Occupational Functioning Assessment Scale (SOFAS), borderline personality disorder severity index (BPDSI), Barratt Impulsiveness Scale - version 11 (BIS-11), Modified Overt Aggression Scale (MOAS), Self-Harm Inventory (SHI) and Dosage Record Treatment Emergent Symptom Scale (DOTES). PMID:24196948

  1. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    PubMed

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers. PMID:24799232

  2. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    PubMed

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers.

  3. Cathepsin K in treatment monitoring following intravenous zoledronic acid

    PubMed Central

    JAHN, OLIVER; WEX, THOMAS; KLOSE, SILKE; KROPF, SIEGFRIED; ADOLF, DANIELA; PIATEK, STEFAN

    2014-01-01

    Cathepsin K (CatK) is mainly expressed by osteoclasts and plays an important role in bone resorption. As CatK is expressed and secreted by osteoclasts during active bone resorption, it may be a useful and specific biochemical marker of osteoclastic activity. Therefore, CatK serum levels were studied for monitoring the treatment of females with postmenopausal osteoporosis by zoledronic acid. The serum CatK levels were determined in nine postmenopausal females before and after 3, 6 and 12 months of treatment. The levels were significantly reduced after 3 and 6 months (P<0.05), whereas they returned to baseline after 1 year. Taken together, the serum level of CatK may be suitable for monitoring anti-osteoporotic therapy in association with treatment response. PMID:25279169

  4. Infantile Refsum Disease: Influence of Dietary Treatment on Plasma Phytanic Acid Levels.

    PubMed

    Sá, Maria João Nabais; Rocha, Júlio C; Almeida, Manuela F; Carmona, Carla; Martins, Esmeralda; Miranda, Vasco; Coutinho, Miguel; Ferreira, Rita; Pacheco, Sara; Laranjeira, Francisco; Ribeiro, Isaura; Fortuna, Ana Maria; Lacerda, Lúcia

    2016-01-01

    Infantile Refsum disease (IRD) is one of the less severe of Zellweger spectrum disorders (ZSDs), a group of peroxisomal biogenesis disorders resulting from a generalized peroxisomal function impairment. Increased plasma levels of very long chain fatty acids (VLCFA) and phytanic acid are biomarkers used in IRD diagnosis. Furthermore, an increased plasma level of phytanic acid is known to be associated with neurologic damage. Treatment of IRD is symptomatic and multidisciplinary.The authors report a 3-year-old child, born from consanguineous parents, who presented with developmental delay, retinitis pigmentosa, sensorineural deafness and craniofacial dysmorphisms. While the relative level of plasma C26:0 was slightly increased, other VLCFA were normal. Thus, a detailed characterization of the phenotype was essential to point to a ZSD. Repeatedly increased levels of plasma VLCFA, along with phytanic acid and pristanic acid, deficient dihydroxyacetone phosphate acyltransferase activity in fibroblasts and identification of the homozygous pathogenic mutation c.2528G>A (p.Gly843Asp) in the PEX1 gene, confirmed this diagnosis. Nutritional advice and follow-up was proposed aiming phytanic acid dietary intake reduction. During dietary treatment, plasma levels of phytanic acid decreased to normal, and the patient's development evaluation showed slow progressive acquisition of new competences.This case report highlights the relevance of considering a ZSD in any child with developmental delay who manifests hearing and visual impairment and of performing a systematic biochemical investigation, when plasma VLCFA are mildly increased. During dietary intervention, a biochemical improvement was observed, and the long-term clinical effect of this approach needs to be evaluated.

  5. Concentrations of unmetabolized folic acid and primary folate forms in plasma after folic acid treatment in older adults.

    PubMed

    Obeid, Rima; Kirsch, Susanne H; Kasoha, Mariz; Eckert, Rudolf; Herrmann, Wolfgang

    2011-05-01

    Folate deficiency can cause age-related disease. Folic acid (FA) has been used in studies aiming at disease prevention. Recently, unmetabolized FA in plasma raised public health concerns; but numerous studies used FA for disease prevention. Concentrations of the folate forms FA, 5-methyltetrahydrofolate (5-MTHF), and tetrahydrofolate (THF) were measured before and after 3-week placebo or FA 5 mg, vitamin B6 40 mg, and cyanocobalamin 2 mg per day administrated to 74 older adults (median age, 82 years). Concentrations of 5-MTHF and total homocysteine (tHcy) (r = -0.392) and S-adenosylmethionine (r = 0.329) were correlated at baseline. Twenty-six percent of the elderly subjects had unmetabolized FA in plasma at the start, and concentrations of FA were increased after 3 weeks of FA treatment (median FA = 0.08 nmol/L at baseline and 15.3 nmol/L at the end of the treatment in the vitamin group). Folic acid caused a 10- and a 5-fold increase in 5-MTHF and THF, respectively, and lowered tHcy (median tHcy = 17.2 μmol/L at baseline vs 9.0 μmol/L after treatment). Concentrations of unmetabolized FA were positively related to those of 5-MTHF and THF. People showed wide variations in folate forms at baseline, but these were reduced after FA treatment. Folic acid given to older adults is mostly converted to THF and 5-MTHF and lowered concentrations of tHcy, but caused a substantial increase in unmetabolized FA in the plasma.

  6. Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    PubMed Central

    Oraldi, Manuela; Trombetta, Antonella; Biasi, Fiorella; Canuto, Rosa A.; Maggiora, Marina; Muzio, Giuliana

    2009-01-01

    Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s). Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis. PMID:19841681

  7. Ascorbic Acid may Exacerbate Aspirin-Induced Increase in Intestinal Permeability.

    PubMed

    Sequeira, Ivana R; Kruger, Marlena C; Hurst, Roger D; Lentle, Roger G

    2015-09-01

    Ascorbic acid in combination with aspirin has been used to prevent aspirin-induced oxidative GI damage. We aimed to determine whether ascorbic acid reduces or prevents aspirin-induced changes in intestinal permeability over a 6-hr period using saccharidic probes mannitol and lactulose. The effects of administration of 600 mg aspirin alone, 500 mg ascorbic acid alone and simultaneous dosage of both agents were compared in a cross-over study in 28 healthy female volunteers. These effects were also compared with that of a placebo. The ability of ascorbic acid to mitigate the effects of aspirin when administered either half an hour before or after dosage with aspirin was also assessed in 19 healthy female volunteers. The excretion of lactulose over the 6-hr period was augmented after consumption of either aspirin or ascorbic acid compared with that after consumption of placebo. Dosage with ascorbic acid alone augmented the excretion of lactulose more than did aspirin alone. Simultaneous dosage with both agents augmented the excretion of lactulose in an additive manner. The timing of dosage with ascorbic acid in relation to that with aspirin had no significant effect on the excretion of the two sugars. These findings indicate that ascorbic acid does not prevent aspirin-induced increase in gut permeability rather that both agents augment it to a similar extent. The additive effect on simultaneous dosage with both agents in augmenting the absorption of lactulose suggests that each influences paracellular permeability by different pathways.

  8. Modification of polylactic acid surface using RF plasma discharge with sputter deposition of a hydroxyapatite target for increased biocompatibility

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, S. I.; Bolbasov, E. N.; Shesterikov, E. V.; Antonova, L. V.; Golovkin, A. S.; Matveeva, V. G.; Petlin, D. G.; Anissimov, Y. G.

    2015-02-01

    Surface modification of polylactic acid (PLLA) by plasma of radio-frequency magnetron discharge with hydroxyapatite target sputtering was investigated. Increased biocompatibility was demonstrated using studies with bone marrow multipotent mesenchymal stromal cells. Atomic force microscopy demonstrates that the plasma treatment modifies the surface morphology of PLLA to produce rougher surface. Infrared spectroscopy and X-ray diffraction revealed that changes in the surface morphology are caused by the processes of PLLA crystallization. Fluorescent X-ray spectroscopy showed that the plasma treatment also changes the chemical composition of PLLA, enriching it with ions of the sputtered target: calcium, phosphorus and oxygen. It is hypothesized that these surface modifications increase biocompatibility of PLLA without increasing toxicity.

  9. A West Nile virus mutant with increased resistance to acid-induced inactivation.

    PubMed

    Martín-Acebes, Miguel A; Saiz, Juan-Carlos

    2011-04-01

    West Nile virus (WNV) is a mosquito-borne flavivirus responsible for epidemics of febrile illness, meningitis, encephalitis and flaccid paralysis. WNV gains entry into host cells through endocytosis. The acid pH inside endosomes triggers rapid conformational rearrangements of the flavivirus envelope (E) glycoprotein that result in fusion of the endosomal membrane with the virion envelope. Conformational rearrangements of the E glycoprotein can be induced by acid exposure in solution in the absence of target membranes, thus causing a loss of infectivity. Following a genetic approach to study this process, a WNV mutant with increased resistance to acid-induced inactivation was isolated and its complete genome was sequenced. A single amino acid substitution, T70I, in the E glycoprotein was found to be responsible for the increased acid resistance, which was linked to an increase in the sensitivity of infection to the chemical rise of endosomal pH, suggesting that the mutant required a more acid pH inside the endosomes for fusion. No alterations in viral infection kinetics, plaque size or induced mortality rates in mice of the mutant were noted. However, by means of virus competition assays, a reduction in viral fitness under standard culture conditions was observed for the mutant. These results provide new evidence of the adaptive flexibility to environmental factors--pH variation in this case--of WNV populations. Implications of the T70I replacement on the E glycoprotein structure-function relationship are discussed.

  10. Treatment with iron increases weight gain and psychomotor development.

    PubMed Central

    Aukett, M A; Parks, Y A; Scott, P H; Wharton, B A

    1986-01-01

    Previous work at this hospital and elsewhere has shown that anaemia in toddlers is common and is associated with psychomotor delay. It seemed unclear, however, whether this association was cause and effect or merely due to the same underprivileged environment. A double blind randomised intervention study was, therefore, performed. After an initial assessment 97 children with anaemia (haemoglobin 8-11 g/dl) aged 17-19 months received either iron and vitamin C or vitamin C only (control group) for two months and were then reassessed. The children who received the iron had an increased rate of weight gain and more of them achieved the expected rate of development. While iron deficiency anaemia is unlikely to be the only factor in the slower development of children living in underprivileged circumstances, it can at least be easily identified and treated. Routine child health surveillance in such areas should include a haemoglobin determination. PMID:2429622

  11. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids.

  12. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  13. CO₂ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations.

    PubMed

    Becker, Christine; Kläring, Hans-Peter

    2016-05-15

    Carbon dioxide (CO2) enrichment is a common practice in greenhouses to increase crop yields up to 30%. Yet, reports on the effect on foliar phenolic compounds vary. We studied the effect on two red leaf lettuce cultivars, grown for 25 days in growth chambers at CO2 concentrations of 200 or 1,000 ppm, with some plants exchanged between treatments after 11 days. As expected, head mass increased with higher CO2 concentration. Regression analysis, corrected for head mass, showed increased concentrations of most flavonoid glycosides at high CO2 concentrations while only some caffeic acid derivatives were increased, and not uniformly in both cultivars. Sugar concentrations increased with CO2 concentration. Generally, conditions in the 10 days before harvest determined concentrations. We suspect that phenolic compounds were mainly accumulated because plenty of precursors were available. The results indicate that CO2 enrichment can result in high yields of red leaf lettuce rich in phenolic compounds.

  14. CO₂ enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations.

    PubMed

    Becker, Christine; Kläring, Hans-Peter

    2016-05-15

    Carbon dioxide (CO2) enrichment is a common practice in greenhouses to increase crop yields up to 30%. Yet, reports on the effect on foliar phenolic compounds vary. We studied the effect on two red leaf lettuce cultivars, grown for 25 days in growth chambers at CO2 concentrations of 200 or 1,000 ppm, with some plants exchanged between treatments after 11 days. As expected, head mass increased with higher CO2 concentration. Regression analysis, corrected for head mass, showed increased concentrations of most flavonoid glycosides at high CO2 concentrations while only some caffeic acid derivatives were increased, and not uniformly in both cultivars. Sugar concentrations increased with CO2 concentration. Generally, conditions in the 10 days before harvest determined concentrations. We suspect that phenolic compounds were mainly accumulated because plenty of precursors were available. The results indicate that CO2 enrichment can result in high yields of red leaf lettuce rich in phenolic compounds. PMID:26776031

  15. Omacor and omega-3 fatty acids for treatment of coronary artery disease and the pleiotropic effects.

    PubMed

    Kar, Subrata

    2014-01-01

    Omega-3 polyunsaturated fatty acids are found in fish oil and they have been shown to mitigate the risk of cardiovascular disease. Omega-3 fatty acids are essential fatty acids because they cannot be synthesized de novo and must be consumed from dietary sources such as marine fish. It reduces fatal and nonfatal myocardial infarction, stroke, coronary artery disease, sudden cardiac death, and all-cause mortality. It also has beneficial effects in mortality reduction after a myocardial infarction. Omacor is a highly potent form of Omega-3 fatty acids that lowers plasma triglycerides. In patients with severe hypertriglyceridemia who are refractory to statins, it helps augment triglyceride reduction. Omacor also increases high-density lipoprotein and decreases low-density lipoprotein levels. It is well tolerated with minimal adverse effects and no known interactions causing rhabdomyolysis. In high doses, Omacor has pronounced cardiovascular benefits with improvement of triglycerides and various lipid parameters. Omega-3 fatty acids have also been shown to have beneficial effects on arrhythmias, inflammation, and heart failure. It may also decrease platelet aggregation and induce vasodilation. Omega-3 fatty acids also reduce atherosclerotic plaque formation and stabilize plaques preventing plaque rupture leading to acute coronary syndrome. Moreover, omega-3 fatty acids may have antioxidant properties that improve endothelial function and may contribute to its antiatherosclerotic benefits. In this review, we sought to provide the current literature on the use of omega-3 fatty acids and the potent formulation Omacor in the treatment of coronary artery disease.

  16. Omacor and omega-3 fatty acids for treatment of coronary artery disease and the pleiotropic effects.

    PubMed

    Kar, Subrata

    2014-01-01

    Omega-3 polyunsaturated fatty acids are found in fish oil and they have been shown to mitigate the risk of cardiovascular disease. Omega-3 fatty acids are essential fatty acids because they cannot be synthesized de novo and must be consumed from dietary sources such as marine fish. It reduces fatal and nonfatal myocardial infarction, stroke, coronary artery disease, sudden cardiac death, and all-cause mortality. It also has beneficial effects in mortality reduction after a myocardial infarction. Omacor is a highly potent form of Omega-3 fatty acids that lowers plasma triglycerides. In patients with severe hypertriglyceridemia who are refractory to statins, it helps augment triglyceride reduction. Omacor also increases high-density lipoprotein and decreases low-density lipoprotein levels. It is well tolerated with minimal adverse effects and no known interactions causing rhabdomyolysis. In high doses, Omacor has pronounced cardiovascular benefits with improvement of triglycerides and various lipid parameters. Omega-3 fatty acids have also been shown to have beneficial effects on arrhythmias, inflammation, and heart failure. It may also decrease platelet aggregation and induce vasodilation. Omega-3 fatty acids also reduce atherosclerotic plaque formation and stabilize plaques preventing plaque rupture leading to acute coronary syndrome. Moreover, omega-3 fatty acids may have antioxidant properties that improve endothelial function and may contribute to its antiatherosclerotic benefits. In this review, we sought to provide the current literature on the use of omega-3 fatty acids and the potent formulation Omacor in the treatment of coronary artery disease. PMID:21975796

  17. Increased acid responsiveness in vagal sensory neurons in a guinea pig model of eosinophilic esophagitis.

    PubMed

    Hu, Youtian; Liu, Zhenyu; Yu, Xiaoyun; Pasricha, Pankaj J; Undem, Bradley J; Yu, Shaoyong

    2014-07-15

    Eosinophilic esophagitis (EoE) is characterized with eosinophils and mast cells predominated allergic inflammation in the esophagus and present with esophageal dysfunctions such as dysphagia, food impaction, and heartburn. However, the underlying mechanism of esophageal dysfunctions is unclear. This study aims to determine whether neurons in the vagal sensory ganglia are modulated in a guinea pig model of EoE. Animals were actively sensitized by ovalbumin (OVA) and then challenged with aerosol OVA inhalation for 2 wk. This results in a mild esophagitis with increases in mast cells and eosinophils in the esophageal wall. Vagal nodose and jugular neurons were disassociated, and their responses to acid, capsaicin, and transient receptor potential vanilloid type 1 (TRPV1) antagonist AMG-9810 were studied by calcium imaging and whole cell patch-clamp recording. Compared with naïve animals, antigen challenge significantly increased acid responsiveness in both nodose and jugular neurons. Their responses to capsaicin were also increased after antigen challenge. AMG-9810, at a concentration that blocked capsaicin-evoked calcium influx, abolished the increase in acid-induced activation in both nodose and jugular neurons. Vagotomy strongly attenuated those increased responses of nodose and jugular neurons to both acid and capsaicin induced by antigen challenge. These data for the first time demonstrated that prolonged antigen challenge significantly increases acid responsiveness in vagal nodose and jugular ganglia neurons. This sensitization effect is mediated largely through TRPV1 and initiated at sensory nerve endings in the peripheral tissues. Allergen-induced enhancement of responsiveness to noxious stimulation by acid in sensory nerve may contribute to the development of esophageal dysfunctions such as heartburn in EoE.

  18. Production of Siderophores Increases Resistance to Fusaric Acid in Pseudomonas protegens Pf-5

    PubMed Central

    Ruiz, Jimena A.; Bernar, Evangelina M.; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  19. Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5.

    PubMed

    Ruiz, Jimena A; Bernar, Evangelina M; Jung, Kirsten

    2015-01-01

    Fusaric acid is produced by pathogenic fungi of the genus Fusarium, and is toxic to plants and rhizobacteria. Many fluorescent pseudomonads can prevent wilt diseases caused by these fungi. This study was undertaken to evaluate the effect of fusaric acid on P. protegens Pf-5 and elucidate the mechanisms that enable the bacterium to survive in the presence of the mycotoxin. The results confirm that fusaric acid negatively affects growth and motility of P. protegens. Moreover, a notable increase in secretion of the siderophore pyoverdine was observed when P. protegens was grown in the presence of fusaric acid. Concomitantly, levels of enzymes involved in the biosynthesis of pyoverdine and enantio-pyochelin, the second siderophore encoded by P. protegens, increased markedly. Moreover, while similar levels of resistance to fusaric acid were observed for P. protegens mutants unable to synthesize either pyoverdine or enanto-pyochelin and the wild type strain, a double mutant unable to synthesize both kinds of siderophores showed a dramatically reduced resistance to this compound. This reduced resistance was not observed when this mutant was grown under conditions of iron excess. Spectrophotometric titrations revealed that fusaric acid binds not only Fe2+ and Fe3+, but also Zn2+, Mn2+ and Cu2+, with high affinity. Our results demonstrate that iron sequestration accounts at least in part for the deleterious effect of the mycotoxin on P. protegens. PMID:25569682

  20. The sonodegradation of caffeic acid under ultrasound treatment: relation to stability.

    PubMed

    Sun, Yujing; Qiao, Liping; Ye, Xingqian; Liu, Donghong; Zhang, Xianzhong; Huang, Haizhi

    2013-01-01

    The degradation of caffeic acid under ultrasound treatment in a model system was investigated. The type of solvent and temperature were important factors in determining the outcome of the degradation reactions. Liquid height, ultrasonic intensity and duty cycle only affected degradation rate, but did not change the nature of the degradation. The degradation rate of caffeic acid decreased with increasing temperature. Degradation kinetics of caffeic acid under ultrasound fitted a zero-order reaction from -5 to 25 °C. Caffeic acid underwent decomposition and oligomerization reactions under ultrasound. The degradation products were tentatively identified by FT-IR and HPLC-UV-ESIMS to include the corresponding decarboxylation products and their dimers. PMID:23292325

  1. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant.

  2. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. PMID:26225744

  3. Influence of Fenofibrate Treatment on Triacylglycerides, Diacylglycerides and Fatty Acids in Fructose Fed Rats

    PubMed Central

    Kopf, Thomas; Schaefer, Hans-Ludwig; Troetzmueller, Martin; Koefeler, Harald; Broenstrup, Mark; Konovalova, Tatiana; Schmitz, Gerd

    2014-01-01

    Fenofibrate (FF) lowers plasma triglycerides via PPARα activation. Here, we analyzed lipidomic changes upon FF treatment of fructose fed rats. Three groups with 6 animals each were defined as control, fructose-fed and fructose-fed/FF treated. Male Wistar Unilever Rats were subjected to 10% fructose-feeding for 20 days. On day 14, fenofibrate treatment (100 mg/kg p.o.) was initiated and maintained for 7 days. Lipid species in serum were analyzed using mass spectrometry (ESI-MS/MS; LC-FT-MS, GC-MS) on days 0, 14 and 20 in all three groups. In addition, lipid levels in liver and intestine were determined. Short-chain TAGs increased in serum and liver upon fructose-feeding, while almost all TAG-species decreased under FF treatment. Long-chain unsaturated DAG-levels (36:1, 36:2, 36:4, 38:3, 38:4, 38:5) increased upon FF treatment in rat liver and decreased in rat serum. FAs, especially short-chain FAs (12:0, 14:0, 16:0) increased during fructose-challenge. VLDL secretion increased upon fructose-feeding and together with FA-levels decreased to control levels during FF treatment. Fructose challenge of de novo fatty acid synthesis through fatty acid synthase (FAS) may enhance the release of FAs ≤16:0 chain length, a process reversed by FF-mediated PPARα-activation. PMID:25198467

  4. [PREPARATIONS OF PAMIDRONOVIC ACID IN COMPLEX TREATMENT ON OSTEOGENESIS IMPERFECTA].

    PubMed

    Zyma, A M; Guk, Yu M; Magomedov, O M; Gayko, O G; Kincha-Polishchuk, T A

    2015-07-01

    Modern view of drug therapy in the complex treatment of orthopedic manifestations of osteogenesis imperfecta (OI) was submitted. Developed and tested system of drug correction of structural and functional state of bone tissue (BT) using drugs pamidronovic acid, depending on osteoporosis severity and type of disease. Such therapy is appropriate to apply both independently and in conjunction with surgery to correct deformations of long bones of the lower extremities. Effectiveness and feasibility of the proposed methods of drug therapy was proved, most patients resume features walking and support. PMID:26591224

  5. Nitric-phosphoric acid treatment of TRU wastes

    SciTech Connect

    Smith, J.R.; Pierce, R.A.; Sturcken, E.F.

    1993-09-30

    A general process is being developed for the treatment of solid TRU and hazardous organic waste. Experimental data indicates that 100 lb/hr of aliphatic organic (plastics) and 1,000 lb/hr of non-aliphatic organic compounds can be quantitatively oxidized in a 1,000 gallon reaction vessel. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allows oxidation at temperatures up to 200{degrees}C and is relatively non-corrosive on 304-L stainless steel, especially at room temperature. Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution. Addition of 0.001M Pd{sup 2+} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. Polyethylene is quantitatively oxidized in 1.0M HNO{sub 3}/13.8M H{sub 3}PO{sub 4} solution while contained in pressure vessels heated with microwave energy. This is probably due to the high concentrations of NO{sub 2}{center_dot} obtained in the reaction environment.

  6. Increased dopaminergic and 5-hydroxytryptaminergic activities in male rat brain following long-term treatment with anabolic androgenic steroids

    PubMed Central

    Thiblin, Ingemar; Finn, Anja; Ross, Svante B; Stenfors, Carina

    1999-01-01

    The effects of treating groups of rats with four different anabolic androgenic steroids (AAS) (testosterone, nandrolone, methandrostenolone, and oxymetholone) on 5-hydroxytryptamine (5-HT) and dopamine (DA) neurones in different brain regions were examined. The AAS was injected six times with 1 week's interval and the rats were sacrificed 2 days after the final injection. 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured. The effect on DA and 5-HT synthesis rate was analysed as the accumulation of 3,4-dihydroxyphenyl-alanine (DOPA) and 5-hydroxytryptophan (5-HTP), respectively, after inhibition of the amino acid decarboxylase with NSD-1015 (3-hydroxy-benzylhydrazine dihydrochloride). Additionally, the monoamine oxidase (MAO) activity was analysed in the hypothalamus. The DOPAC+HVA/DA ratio was increased in the striatum in all treatment groups. However, the synthesis rate of DA was significantly increased only in the methandrostenolone treated group. The 5-HIAA/5-HT ratio was increased in all treatment groups in the hippocampus, in the frontal cortex in the methandrostenolone-treated animals and in the hypothalamus in the testosterone- and oxymetholone-treated rats, while the 5-HT synthesis rate was not affected by the AAS-treatments. The MAO-A activity was increased in the oxymetholone-treated rats while the other treatment groups were unaffected. The MAO-B activity was not changed. The results indicate that relatively high doses of AAS increase dopaminergic and 5-hydroxytryptaminergic metabolism in male rat brain, probably due to enhanced turnover in these monaminergic systems. PMID:10217522

  7. Increased dopaminergic and 5-hydroxytryptaminergic activities in male rat brain following long-term treatment with anabolic androgenic steroids.

    PubMed

    Thiblin, I; Finn, A; Ross, S B; Stenfors, C

    1999-03-01

    1. The effects of treating groups of rats with four different anabolic androgenic steroids (AAS) (testosterone, nandrolone, methandrostenolone, and oxymetholone) on 5-hydroxytryptamine (5-HT) and dopamine (DA) neurones in different brain regions were examined. The AAS was injected six times with 1 week's interval and the rats were sacrificed 2 days after the final injection. 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured. The effect on DA and 5-HT synthesis rate was analysed as the accumulation of 3,4-dihydroxyphenyl-alanine (DOPA) and 5-hydroxytryptophan (5-HTP), respectively, after inhibition of the amino acid decarboxylase with NSD-1015 (3-hydroxy-benzylhydrazine dihydrochloride). Additionally, the monoamine oxidase (MAO) activity was analysed in the hypothalamus. 2. The DOPAC + HVA/DA ratio was increased in the striatum in all treatment groups. However, the synthesis rate of DA was significantly increased only in the methandrostenolone treated group. 3. The 5-HIAA/5-HT ratio was increased in all treatment groups in the hippocampus, in the frontal cortex in the methandrostenolone-treated animals and in the hypothalamus in the testosterone- and oxymetholone-treated rats, while the 5-HT synthesis rate was not affected by the AAS-treatments. 4. The MAO-A activity was increased in the oxymetholone-treated rats while the other treatment groups were unaffected. The MAO-B activity was not changed. 5. The results indicate that relatively high doses of AAS increase dopaminergic and 5-hydroxytryptaminergic metabolism in male rat brain, probably due to enhanced turnover in these monaminergic systems. PMID:10217522

  8. Mechanism of chlorogenic acid treatment on femoral head necrosis and its protection of osteoblasts

    PubMed Central

    ZHANG, MINGJUAN; HU, XIANDA

    2016-01-01

    The aim of the present study was to investigate the therapeutic effect of chlorogenic acid on hormonal femoral head necrosis and its protection of osteoblasts. The study established a femoral head necrosis model in Wistar rats using Escherichia coli endotoxin and prednisolone acetate. The rats were divided into five groups and were treated with different concentrations of chlorogenic acid (1, 10 and 20 mg/kg). The main detected indicators were the blood rheology, bone mineral density, and the hydroxyproline and hexosamine (HOM) contents. At a cellular level, osteoblasts were cultured and treated by drug-containing serum. Subsequently, cell proliferation and the osteoblast cycle were measured using flow cytometry, and the protein expression levels of Bax and B-cell lymphoma 2 (Bcl-2) were detected using western blotting. Chlorogenic acid at a concentration of 20 mg/kg (high-dose) enhanced the bone mineral density of the femoral head and femoral neck following ischemia. Simultaneously, blood flow following the injection of prednisolone acetate was significantly improved, and the HOM contents of the high-dose chlorogenic acid group were significantly different. The results from the flow cytometry analysis indicated that chlorogenic acid can efficiently ameliorate hormone-induced necrosis. The osteoblasts were isolated and cultured. The MTT colorimetric assay showed that chlorogenic acid at different densities can increase the proliferation capabilities of osteoblasts and accelerate the transition process of G0/G1 phase to S phase, as well as enhance mitosis and the regeneration of osteoblasts. Western blotting detection indicated that chlorogenic acid may prohibit the decrease of Bcl-2 and the increase of Bax during apoptosis, thereby inhibiting osteoblast apoptosis and preventing the deterioration of femoral head necrosis. In conclusion, chlorogenic acid at the density of 20 mg/kg is effective in the treatment of hormonal femoral head necrosis, which may be

  9. Using CD-ROM technology to increase folic acid knowledge among physician assistant students.

    PubMed

    Morgan, Christine; Klein, Diane Austrin; Selbst, Melissa

    2004-01-01

    The purpose of this study was to examine the effectiveness of incorporating CD-ROM technology to increase the knowledge of folic acid among physician assistant students. Participants included 76 first-year physician assistant students enrolled in a Women's Health course. A pretest and posttest was used to evaluate the knowledge gain after viewing the CD-ROM over a 2-week period. Of the 76 students in the course, 73 completed the pretest and the post-test. Posttest scores were significantly better than pretest scores (t = -11.83; p < or = 0.001), with means 68.63% and 46.18%. Knowledge scores increased by 22.45% from pre-test to posttest. Student evaluation results suggested that the CD-ROM (1) provided folic acid information in a clear and effective manner, (2) adequately covered the folic acid information, (3) increased student awareness and knowledge about folic acid, and (4) may promote early commitment by students to recommend daily folic acid intake to their patients.

  10. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr−/− transgenic mice

    PubMed Central

    Zaman, Munir M.; Martin, Camilia R.; Andersson, Charlotte; Bhutta, Abdul Q.; Cluette-Brown, Joanne E.; Laposata, Michael

    2010-01-01

    Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o− sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr−/− transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE2, and PGF2α secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr−/− Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators. PMID:20656894

  11. The impact of acid treatment on soilwater chemistry at the Humex site

    SciTech Connect

    Vogt, R.D.; Ranneklev, S.B.; Mykkelbost, T.C. )

    1994-01-01

    The effects of acid treatment on soil water dissolved organic carbon (DOC) and inorganic chemistry are being monitored at the Humic Lake Acidification Experiment (HUMEX) in western Norway. The HUMEX project involves artificial acidification of half of a dystrophic lake and the corresponding drainage basin. Soil water chemistry data were collected from 30 monitoring lysimeters and 130 grid lysimeters. The samples from the monitoring lysimeters were collected before and, for a period of two years, after the onset of acid treatment. Operationally-defined functional fractions of DOC showed that hydrophilic (HPI) and hydrophobic (HPO) acids account for 60% to 90% of the DOC. In soils rich in DOC, the HPO acids were dominant, whereas in mineral soil horizons low in DOC, the HPI acid fractions were highest. The amount of DOC relative to labile aluminum and iron may determine the HPO/HPI acid ratio. The sulphate concentration has increased more in the treated than in the reference side. Coincident decreases in DOC and organically complexes aluminum (Al[sub 0]) concentrations were observed for surface histosol locations. The temporal and spatial variations in c(Al[sub 0]) were mainly explained by variation in c(DOC). 26 refs., 5 figs., 3 tabs.

  12. Acidic retinoids in small amounts promote retinyl ester formation in neonatal lung, with transient increases in retinoid homeostatic gene expression

    PubMed Central

    2013-01-01

    Background Mixing a small proportion, 10%, of retinoic acid (RA) into an oral dose of vitamin A (VA) has been shown to markedly increase retinol uptake and retinyl ester (RE) formation in the neonatal lung, as compared to VA given alone. Concomitantly, several retinoid homeostatic genes, lecithin:retinol acyltransferase (LRAT), RA-4-hydroxylase (CYP26B1), and stimulated by retinoic acid gene-6 (STRA6) were upregulated. However, whether multiple doses may act accumulatively and whether less than 10% RA can be used has not been determined. Methods Neonatal rats were treated once on postnatal day (PD) 4 or PD14 with VA alone or VA combined with 10% RA (VARA10%) or a stable analog, Am580 (VAAm10%), or they were treated with multiple doses on PD4, 7, 11, and 14. Results RE increased cumulatively with multiple dosing. However, LRAT, CYP26B1 and STRA6 mRNA levels were similar for single and multiple treatments, indicating a transient noncumulative impact on gene expression. Lung RE was elevated with as little as 0.5% RA (P < 0.05) in a single dosing study. Whereas all concentrations of VARA elevated lung RE in single dosing studies, only 10% RA increased lung RE after multiple dosing, suggesting an attenuation of RA action with repeated dosing. In contrast, VAAm10%, 2%, and 1% all significantly increased lung RE after multiple doses (P < 0.05), while also increasing the expression of LRAT and CYP26B1. Conclusions These results indicate that the neonatal lung is very sensitive to acidic retinoid exposure and suggest that a VA combined with a very small fraction of acidic retinoid could be effective in increasing the lung’s storage pool of VA. PMID:24351038

  13. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma

    PubMed Central

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133− populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133− cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2’-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  14. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  15. Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma.

    PubMed

    Khalil, Mohamed Ashraf; Hraběta, Jan; Groh, Tomáš; Procházka, Pavel; Doktorová, Helena; Eckschlager, Tomáš

    2016-01-01

    Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible

  16. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.

    PubMed

    Horowitz, J F; Klein, S

    2000-12-01

    We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.

  17. Treatment of vinasse from tequila production using polyglutamic acid.

    PubMed

    Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli

    2012-03-01

    Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable.

  18. Treatment of vinasse from tequila production using polyglutamic acid.

    PubMed

    Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli

    2012-03-01

    Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable. PMID:21600690

  19. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  20. Increased Serum Uric Acid Levels Blunt the Antihypertensive Efficacy of Lifestyle Modifications in Children at Cardiovascular Risk.

    PubMed

    Viazzi, Francesca; Rebora, Paola; Giussani, Marco; Orlando, Antonina; Stella, Andrea; Antolini, Laura; Valsecchi, Maria Grazia; Pontremoli, Roberto; Genovesi, Simonetta

    2016-05-01

    Primary hypertension is a growing concern in children because of the obesity epidemic largely attributable to western lifestyles. Serum uric acid is known to be influenced by dietary habits, correlates with obesity, and could represent a risk factor for hypertension. Preliminary studies in children highlighted uric acid as a potentially modifiable risk factor for the prevention and treatment of hypertension. The effect of lifestyle changes (increase of physical activity and dietary modifications) on blood pressure values, weight status, and serum uric acid levels in a cohort of 248 children referred for cardiovascular risk assessment were evaluated over a mean 1.5-year follow-up. At baseline, 48% of children were obese and 50% showed blood pressure values >90th percentile. At follow-up, a significant improvement in weight class (24% obese;P<0.0001) and blood pressure category (22% >90th percentile;P<0.0001) was found. Systolic blood pressure z-score (P<0.0001), uric acid value (P=0.0056), and puberty at baseline (P=0.0048) were independently associated with higher systolic blood pressure z-score at follow-up, whereas a negative association was observed with body mass index z-score decrease during follow-up (P=0.0033). The risk of hypertension at follow-up was associated with body mass index (P=0.0025) and systolic blood pressure (P<0.0001) z-score at baseline and inversely related to delta body mass index (P=0.0002), whereas the risk of showing hypertension ≥99th percentile was more than doubled for each baseline 1 mg/dL increase of serum uric acid (P=0.0130). Uric acid is a powerful determinant of blood pressure over time, independent of lifestyle modifications. PMID:27021006

  1. Recovery of Acid Production in Streptococcus mutans Biofilms after Short-Term Fluoride Treatment.

    PubMed

    Dang, Minh-Huy; Jung, Ji-Eun; Lee, Dae-Woo; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2016-01-01

    Fluoride is commonly used as an ingredient of topical oral hygiene measures. Despite the anti-acidogenic activities of fluoride against cariogenic biofilms, the recovery of the biofilms from fluoride damage is unclear. Herein, we investigated the recovery of acid production in Streptococcus mutans biofilms after short-term or during periodic 1-min fluoride treatments. For this study, 46-hour-old S. mutans biofilms were treated with fluoride (0-2,000 ppm F-) for 1-8 min and then incubated in saliva for 0-100 min. The 74-hour-old biofilms were also periodically treated with the fluoride concentration during biofilm formation (1 min/treatment). Changes in acidogenicity and viability were determined via pH drop and colony-forming unit assays, respectively. In this study, acid production after a 1-min fluoride treatment was recovered as saliva incubation time increased, which followed a linear pattern of concentration dependence (R = 0.99, R2 = 0.98). The recovery pattern was in a biphasic pattern, with an initial rapid rate followed by a second slow recovery. Furthermore, recovery from fluoride damage was retarded in a concentration-dependent manner as treatment time increased. In periodic 1-min fluoride treatments, acid production in the biofilms was not diminished during the non-fluoride treatment period; however, it was reduced in a concentration-dependent manner during the fluoride treatment period. The viability of the biofilm cells did not change, even at high fluoride concentrations. Collectively, our results suggest that brief fluoride treatment does not sustain anti-acidogenic activity against S. mutans in biofilms since the damage is recoverable with time. PMID:27355469

  2. Increased susceptibility to hippocampal and amygdala kindling following intrahippocampal kainic acid.

    PubMed

    Feldblum, S; Ackermann, R F

    1987-08-01

    The effects of unilateral intrahippocampal injection of kainic acid, a potent neuroexcitant and neurotoxin, on subsequent susceptibility to kindling of the contralateral hippocampus or contralateral amygdala were investigated in albino rats. At the chosen doses (0.20 to 1.25 micrograms dissolved in physiologic saline), the kainic acid-induced lesion was confined to the injected hippocampus and in two cases the ipsilateral entorhinal cortex; never were there contralateral lesions. Approximately 2 to 6 weeks post-injection, each animal received daily afterdischarge-producing electrical stimulations until stage 5 kindled limbic seizures occurred. Kindling in pretreated animals was significantly accelerated compared with controls; the hippocampal kindling rate decreased from 13.2 stimulations to 3.7, the amygdala kindling rate from 7.8 stimulations to 3.0. Many treated animals had first-stimulation stage 5 seizures, compared with none for controls. Importantly, this facilitation of kindling was not reversed by suppression of the acute, induced seizures with the anticonvulsants, diazepam and phenobarbital, which have repeatedly been demonstrated to effectively suppress limbic kindling. Such results, considered together with findings from the literature, suggest that partial kindling does not occur during kainic acid-induced seizures, and that the observed susceptibility to kindling and other epileptogenic agents subsequent to kainic acid treatment may in fact be related to neurophysiologic and neurochemical consequences of kainic acid-induced lesions.

  3. Acid treatment of melanoma cells selects for invasive phenotypes.

    PubMed

    Moellering, Raymond E; Black, Kvar C; Krishnamurty, Chetan; Baggett, Brenda K; Stafford, Phillip; Rain, Matthew; Gatenby, Robert A; Gillies, Robert J

    2008-01-01

    Solid tumors become acidic due to hypoxia and upregulated glycolysis. We have hypothesized that this acidosis leads to more aggressive invasive behavior during carcinogenesis (Nature Reviews Cancer 4:891-899, 2004). Previous work on this subject has shown mixed results. While some have observed an induction of metastasis and invasion with acid treatments, others have not. To investigate this, human melanoma cells were acclimated to low pH growth conditions. Significant cell mortality occurred during acclimation, suggesting that acidosis selected for resistant phenotypes. Cells maintained under acidic conditions exhibited a greater range of motility, a reduced capacity to form flank tumors in SCID mice and did not invade more rapidly in vitro, compared to non-selected control cells. However, re-acclimation of these selected cells to physiological pH gave rise to stable populations with significantly higher in vitro invasion. These re-acclimated cells maintained higher invasion and higher motility for multiple generations. Transcriptomic analyses of these three phenotypes revealed significant differences, including upregulation of relevant pathways important for tissue remodeling, cell cycle control and proliferation. These results reinforce the hypothesis that acidosis promotes selection of stable, more invasive phenotypes, rather than inductive changes, which would be reversible.

  4. Does Integrated Trauma-Informed Substance Abuse Treatment Increase Treatment Retention?

    ERIC Educational Resources Information Center

    Amaro, Hortensia; Chernoff, Miriam; Brown, Vivian; Arevalo, Sandra; Gatz, Margaret

    2007-01-01

    This article presents findings from a quasi-experimental, nonrandomized group design study that explored whether trauma-enhanced substance abuse treatment results in longer residential treatment stays and improved outcomes compared with treatment-as-usual. We used a subsample (N = 461) of participants in the Women, Co-Occurring Disorders and…

  5. Polyunsaturated fatty acid content is increased in the milk of women with pregnancy associated breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Pregnancy associated breast cancer (PABC) is aggressive and difficult to diagnose. High intake of most types of dietary fat is thought to increase breast cancer risk, however results in humans supporting this premise remain equivocal. Fatty acid (FA) concentrations in the body comprise b...

  6. Betulinic Acid Selectively Increases Protein Degradation and Enhances Prostate Cancer-Specific Apoptosis: Possible Role for Inhibition of Deubiquitinase Activity

    PubMed Central

    Reiner, Teresita; Parrondo, Ricardo; de las Pozas, Alicia; Palenzuela, Deanna; Perez-Stable, Carlos

    2013-01-01

    Inhibition of the ubiquitin-proteasome system (UPS) of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA) is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent. Our results in prostate cancer suggested that BA inhibited multiple deubiquitinases (DUBs), which resulted in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In normal fibroblasts, however, BA did not inhibit DUB activity nor increased total poly-ubiquitinated proteins, which was associated with a lack of effect on cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg) inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein. BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, our data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy. PMID:23424652

  7. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    SciTech Connect

    Luo, Yi Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  8. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.

    PubMed

    Schäff, C; Börner, S; Hacke, S; Kautzsch, U; Sauerwein, H; Spachmann, S K; Schweigel-Röntgen, M; Hammon, H M; Kuhla, B

    2013-10-01

    The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The

  9. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.

  10. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes. PMID:24718336

  11. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  12. Memantine increases brain production of kynurenic acid via protein kinase A-dependent mechanism.

    PubMed

    Kloc, Renata; Luchowska, Elzbieta; Wielosz, Marian; Owe-Larsson, Bjorn; Urbanska, Ewa M

    2008-04-18

    We describe a novel aspect of action of memantine ex vivo, in the brain cortical slices and in vitro, in mixed glial cultures. The drug potently increased the production of kynurenic acid, an endogenous tryptophan metabolite blocking N-methyl-D-aspartate (NMDA) and nicotinic alpha7 receptors. In cortical slices memantine, an open-channel NMDA blocker (100-150 microM), but not the competitive NMDA receptor antagonist, LY235959 increased the production of kynurenic acid. Neither SCH23390, D1 receptor antagonist (50 microM) nor raclopride, D2 receptor antagonist (10 microM) changed the memantine-induced effects. Propranolol (100 microM) has partially reduced its action. Selective cAMP-dependent protein kinase (PKA) inhibitor, KT5720 (1 microM), but not selective protein kinase C (PKC) inhibitor, NPC15437 (30 microM) totally reversed the action of memantine. In mixed glial cultures, 2-24 h incubation with memantine (2-50 microM) enhanced the production of kynurenic acid. Memantine (up to 0.5 mM) has not affected the activity of kynurenic acid biosynthetic enzymes. The obtained data suggest that memantine enhances the production of kynurenic acid in PKA-mediated way. This effect may partially contribute to the therapeutic actions of memantine and be of a potential clinical importance.

  13. Effect of dietary antioxidant and increasing corn oil inclusion on milk fat yield and fatty acid composition in dairy cattle.

    PubMed

    Boerman, J P; Preseault, C L; Lock, A L

    2014-12-01

    The objective of this study was to examine the effect of a dietary synthetic antioxidant on feed intake, yields of milk and milk components and milk fatty acids (FA), in combination with increasing concentrations of dietary corn oil to provide increasing rumen unsaturated fatty acid load (RUFAL) challenges. Twenty-six Holstein cows (177 ± 57 d in milk; mean ± standard deviation) were assigned to treatment in a randomized complete block design. Treatments were a control diet (CON; n=13 cows) or the same diet supplemented with a synthetic antioxidant (AOX; 6.1g/d; dry blend of ethoxyquin and propyl gallate, Novus International Inc., St. Charles, MO; n=13 cows). In period 1 (21 d), no supplemental corn oil was fed; in periods 2, 3, and 4 (14 d each), corn oil was supplemented at 0.7, 1.4, and 2.8% of the diet [dry matter (DM) basis] to incrementally increase RUFAL. For all variables measured, no significant interactions were detected between treatment and period, indicating no differences between the CON and AOX treatments at all levels of oil inclusion. Intake of DM was lower for AOX compared with CON but AOX had no effect on milk yield or milk fat concentration and yield. Milk protein yield and feed efficiency (energy-corrected milk/DM intake) tended to be greater for AOX compared with CON. Increasing dietary corn oil concentration (RUFAL) decreased DM intake, milk yield, milk fat concentration and yield, and feed efficiency. The AOX treatment increased the concentration and yield of 16-carbon milk FA, with no effect on de novo (<16 carbon) or preformed (>16 carbon) milk FA. Milk FA concentration of trans-10 C18:1, trans-10,cis-12 C18:2, and trans-9,cis-11 C18:2 were unaffected by AOX but increased with increasing RUFAL. In conclusion, supplementation with AOX did not overcome the dietary-induced milk fat depression caused by increased RUFAL.

  14. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. PMID:27185346

  15. Homologous electron transport components fail to increase fatty acid hydroxylation in transgenic Arabidopsis thaliana.

    PubMed

    Wayne, Laura L; Browse, John

    2013-01-01

    Ricinoleic acid, a hydroxylated fatty acid (HFA) present in castor ( Ricinus communis) seeds, is an important industrial commodity used in products ranging from inks and paints to polymers and fuels. However, due to the deadly toxin ricin and allergens also present in castor, it would be advantageous to produce ricinoleic acid in a different agricultural crop. Unfortunately, repeated efforts at heterologous expression of the castor fatty acid hydroxylase (RcFAH12) in the model plant Arabidopsis thaliana have produced only 17-19% HFA in the seed triacylglycerols (TAG), whereas castor seeds accumulate up to 90% ricinoleic acid in the endosperm TAG. RcFAH12 requires an electron supply from NADH:cytochrome b5 reductase (CBR1) and cytochrome b5 (Cb5) to synthesize ricinoleic acid. Previously, our laboratory found a mutation in the Arabidopsis CBR1 gene, cbr1-1, that caused an 85% decrease in HFA levels in the RcFAH12 Arabidopsis line. These results raise the possibility that electron supply to the heterologous RcFAH12 may limit the production of HFA. Therefore, we hypothesized that by heterologously expressing RcCb5, the reductant supply to RcFAH12 would be improved and lead to increased HFA accumulation in Arabidopsis seeds. Contrary to this proposal, heterologous expression of the top three RcCb5 candidates did not increase HFA accumulation. Furthermore, coexpression of RcCBR1 and RcCb5 in RcFAH12 Arabidopsis also did not increase in HFA levels compared to the parental lines. These results demonstrate that the Arabidopsis electron transfer system is supplying sufficient reductant to RcFAH12 and that there must be other bottlenecks limiting the accumulation of HFA.

  16. Elimination of African onchocerciasis: modeling the impact of increasing the frequency of ivermectin mass treatment.

    PubMed

    Coffeng, Luc E; Stolk, Wilma A; Hoerauf, Achim; Habbema, Dik; Bakker, Roel; Hopkins, Adrian D; de Vlas, Sake J

    2014-01-01

    The African Programme for Onchocerciasis Control (APOC) is currently shifting its focus from morbidity control to elimination of infection. To enhance the likelihood of elimination and speed up its achievement, programs may consider to increase the frequency of ivermectin mass treatment from annual to 6-monthly or even higher. In a computer simulation study, we examined the potential impact of increasing the mass treatment frequency for different settings. With the ONCHOSIM model, we simulated 92,610 scenarios pertaining to different assumptions about transmission conditions, history of mass treatment, the future mass treatment strategy, and ivermectin efficacy. Simulation results were used to determine the minimum remaining program duration and number of treatment rounds required to achieve 99% probability of elimination. Doubling the frequency of treatment from yearly to 6-monthly or 3-monthly was predicted to reduce remaining program duration by about 40% or 60%, respectively. These reductions come at a cost of additional treatment rounds, especially in case of 3-monthly mass treatment. Also, aforementioned reductions are highly dependent on maintained coverage, and could be completely nullified if coverage of mass treatment were to fall in the future. In low coverage settings, increasing treatment coverage is almost just as effective as increasing treatment frequency. We conclude that 6-monthly mass treatment may only be worth the effort in situations where annual treatment is expected to take a long time to achieve elimination in spite of good treatment coverage, e.g. because of unfavorable transmission conditions or because mass treatment started recently. PMID:25545677

  17. Elimination of African Onchocerciasis: Modeling the Impact of Increasing the Frequency of Ivermectin Mass Treatment

    PubMed Central

    Coffeng, Luc E.; Stolk, Wilma A.; Hoerauf, Achim; Habbema, Dik; Bakker, Roel; Hopkins, Adrian D.; de Vlas, Sake J.

    2014-01-01

    The African Programme for Onchocerciasis Control (APOC) is currently shifting its focus from morbidity control to elimination of infection. To enhance the likelihood of elimination and speed up its achievement, programs may consider to increase the frequency of ivermectin mass treatment from annual to 6-monthly or even higher. In a computer simulation study, we examined the potential impact of increasing the mass treatment frequency for different settings. With the ONCHOSIM model, we simulated 92,610 scenarios pertaining to different assumptions about transmission conditions, history of mass treatment, the future mass treatment strategy, and ivermectin efficacy. Simulation results were used to determine the minimum remaining program duration and number of treatment rounds required to achieve 99% probability of elimination. Doubling the frequency of treatment from yearly to 6-monthly or 3-monthly was predicted to reduce remaining program duration by about 40% or 60%, respectively. These reductions come at a cost of additional treatment rounds, especially in case of 3-monthly mass treatment. Also, aforementioned reductions are highly dependent on maintained coverage, and could be completely nullified if coverage of mass treatment were to fall in the future. In low coverage settings, increasing treatment coverage is almost just as effective as increasing treatment frequency. We conclude that 6-monthly mass treatment may only be worth the effort in situations where annual treatment is expected to take a long time to achieve elimination in spite of good treatment coverage, e.g. because of unfavorable transmission conditions or because mass treatment started recently. PMID:25545677

  18. The Fatty Acid Signaling Molecule cis-2-Decenoic Acid Increases Metabolic Activity and Reverts Persister Cells to an Antimicrobial-Susceptible State

    PubMed Central

    Morozov, Aleksey; Planzos, Penny; Zelaya, Hector M.

    2014-01-01

    Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state. PMID:25192989

  19. Bread enriched with microencapsulated tuna oil increases plasma docosahexaenoic acid and total omega-3 fatty acids in humans.

    PubMed

    Yep, Yolande L; Li, Duo; Mann, Neil J; Bode, Ortwin; Sinclair, Andrew J

    2002-01-01

    The aim of this study was to determine the acute and chronic effects of low doses of long chain (LC) n-3 polyunsaturated fatty acids (PUFA) (<100 mg per day) on plasma LC n-3 PUFA levels using a novel delivery form; bread containing microencapsulated tuna oil (MTO). Six omnivores (three men and three women) participated in the acute study, which involved ingesting a prototype MTO bread containing approximately 80 mg of LC n-3 PUFA/four slices. Plasma triacylglycerol fatty acid compositions were measured after an overnight fast and postprandially at 2 and 4 h. In the chronic study, 10 vegetarian subjects (nine men and one woman) consumed MTO bread at six to eight slices/day (comprising 60 mg of LC n-3 PUFA) as the only dietary source of these PUFA for three weeks. Fasting plasma total and phospholipid fatty acid compositions were measured at baseline and endpoint. In the acute study, the proportions of 22:6 n-3 and total n-3 PUFA in plasma triacylglycerol were significantly increased (P < 0.05). In the chronic study, the proportions of 20:5 n-3, 22:5 n-3, 22:6 n-3, total n-3 PUFA in plasma, and 22:6 n-3 and total n-3 PUFA in plasma phospholipid fractions were significantly increased (P < 0.05) at the endpoint compared with the baseline. This study showed that a low dose of LC n-3 PUFA, consumed as MTO-enriched bread, was bioavailable, as measured by an increase in LC n-3 PUFA levels in the plasma of human subjects.

  20. Differences in phosphatidic acid signalling and metabolism between ABA and GA treatments of barley aleurone cells.

    PubMed

    Villasuso, Ana Laura; Di Palma, Maria A; Aveldaño, Marta; Pasquaré, Susana J; Racagni, Graciela; Giusto, Norma M; Machado, Estela E

    2013-04-01

    Phosphatidic acid (PA) is the common lipid product in abscisic acid (ABA) and gibberellic acid (GA) response. In this work we investigated the lipid metabolism in response to both hormones. We could detect an in vivo phospholipase D activity (PLD, EC 3.1.4.4). This PLD produced [(32)P]PA (phosphatidic acid) rapidly (minutes) in the presence of ABA, confirming PA involvement in signal transduction, and transiently, indicating rapid PA removal after generation. The presence of PA removal by phosphatidate phosphatase 1 and 2 isoforms (E.C. 3.1.3.4) was verified in isolated aleurone membranes in vitro, the former but not the latter being specifically responsive to the presence of GA or ABA. The in vitro DGPP phosphatase activity was not modified by short time incubation with GA or ABA while the in vitro PA kinase - that allows the production of 18:2-DGPP from 18:2-PA - is stimulated by ABA. The long term effects (24 h) of ABA or GA on lipid and fatty acid composition of aleurone layer cells were then investigated. An increase in PC and, to a lesser extent, in PE levels is the consequence of both hormone treatments. ABA, in aleurone layer cells, specifically activates a PLD whose product, PA, could be the substrate of PAP1 and/or PAK activities. Neither PLD nor PAK activation can be monitored by GA treatment. The increase in PAP1 activity monitored after ABA or GA treatment might participate in the increase in PC level observed after 24 h hormone incubation.

  1. Prolonged infusion of amino acids increases leucine oxidation in fetal sheep.

    PubMed

    Maliszewski, Anne M; Gadhia, Monika M; O'Meara, Meghan C; Thorn, Stephanie R; Rozance, Paul J; Brown, Laura D

    2012-06-15

    Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ∼12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min(-1)·kg(-1), P < 0.05). Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min(-1)·kg(-1) in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min(-1)·kg(-1) in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min(-1)·kg(-1) in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg(-1)·min(-1), P < 0.05). The glucose-O(2) quotient also decreased over time in the AA group (P < 0.05). Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P < 0.05), and norepinephrine (NE) also tended to increase in the AA group (785 ± 181 vs. 419 ± 76 pg/ml, P = 0.06). Net fetal glucose uptake rates were inversely proportional to fetal glucagon (r(2) = 0.38, P < 0.05), cortisol (r(2) = 0.31, P < 0.05), and NE (r(2) = 0.59, P < 0.05) concentrations. Expressions of components in the mammalian target of rapamycin signaling pathway in fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids. PMID:22454287

  2. Incremental amounts of ground flaxseed decrease milk yield but increase n-3 fatty acids and conjugated linoleic acids in dairy cows fed high-forage diets(1).

    PubMed

    Resende, T L; Kraft, J; Soder, K J; Pereira, A B D; Woitschach, D E; Reis, R B; Brito, A F

    2015-07-01

    The objective of this study was to investigate the effect of incremental amounts of ground flaxseed (GFX) on milk yield and concentrations and yields of milk components, milk fatty acids (FA) profile, ruminal metabolism, and nutrient digestibility in dairy cows fed high-forage diets. Twelve multiparous Jersey cows averaging (mean ± SD) 112±68d in milk and 441±21kg of body weight and 8 primiparous Jersey cows averaging 98±43d in milk and 401±43kg of body weight were randomly assigned to treatment sequences in a replicated 4×4 Latin square design. Each period lasted 21d with 14d for diet adaptation and 7d for data and sample collection. Treatments were fed as a total mixed ration (63:37 forage-to-concentrate ratio) with corn meal and soybean meal replaced by incremental levels (i.e., 0, 5, 10, or 15% diet dry matter) of GFX. The ruminal molar proportions of acetate and butyrate decreased linearly with GFX supplementation, whereas the ruminal molar proportion of propionate increased linearly resulting in decreased acetate-to-propionate ratio. Apparent total-tract digestibilities of nutrients either decreased (dry matter) or tended to decrease (organic matter, neutral detergent fiber, acid detergent fiber) linearly in cows fed GFX. Milk yield decreased linearly in cows fed increasing amounts of GFX, which is explained by the linear reduction in dry matter intake. Except for the concentrations of milk protein and urea N, which decreased linearly with GFX supplementation, no other changes in the concentration of milk components were observed. However, yields of milk protein and fat decreased linearly with GFX supplementation. The linear decrease in the yields of milk fat and protein are explained by reduced milk yield, whereas that in milk urea N is explained by decreased crude protein intake. No treatment effects were observed for plasma urea N and nonesterified fatty acids, serum cortisol, and body weight change. Milk odd- and branched-chain FA and saturated FA

  3. Incremental amounts of ground flaxseed decrease milk yield but increase n-3 fatty acids and conjugated linoleic acids in dairy cows fed high-forage diets(1).

    PubMed

    Resende, T L; Kraft, J; Soder, K J; Pereira, A B D; Woitschach, D E; Reis, R B; Brito, A F

    2015-07-01

    The objective of this study was to investigate the effect of incremental amounts of ground flaxseed (GFX) on milk yield and concentrations and yields of milk components, milk fatty acids (FA) profile, ruminal metabolism, and nutrient digestibility in dairy cows fed high-forage diets. Twelve multiparous Jersey cows averaging (mean ± SD) 112±68d in milk and 441±21kg of body weight and 8 primiparous Jersey cows averaging 98±43d in milk and 401±43kg of body weight were randomly assigned to treatment sequences in a replicated 4×4 Latin square design. Each period lasted 21d with 14d for diet adaptation and 7d for data and sample collection. Treatments were fed as a total mixed ration (63:37 forage-to-concentrate ratio) with corn meal and soybean meal replaced by incremental levels (i.e., 0, 5, 10, or 15% diet dry matter) of GFX. The ruminal molar proportions of acetate and butyrate decreased linearly with GFX supplementation, whereas the ruminal molar proportion of propionate increased linearly resulting in decreased acetate-to-propionate ratio. Apparent total-tract digestibilities of nutrients either decreased (dry matter) or tended to decrease (organic matter, neutral detergent fiber, acid detergent fiber) linearly in cows fed GFX. Milk yield decreased linearly in cows fed increasing amounts of GFX, which is explained by the linear reduction in dry matter intake. Except for the concentrations of milk protein and urea N, which decreased linearly with GFX supplementation, no other changes in the concentration of milk components were observed. However, yields of milk protein and fat decreased linearly with GFX supplementation. The linear decrease in the yields of milk fat and protein are explained by reduced milk yield, whereas that in milk urea N is explained by decreased crude protein intake. No treatment effects were observed for plasma urea N and nonesterified fatty acids, serum cortisol, and body weight change. Milk odd- and branched-chain FA and saturated FA

  4. Caffeic acid-coated multifunctional magnetic nanoparticles for the treatment and bimodal imaging of tumours.

    PubMed

    Lee, Jun; Kim, Kyoung Sub; Na, Kun

    2016-07-01

    Accurate theragnosis of tumour is essential for improving the life rate of tumour patients. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as both diagnostic and therapeutic agents. However, their application is often limited because of a lack of water solubility, lack of cancer treatment efficacy, and ineffective targeting of tumour cells. In this report, a double ligand (caffeic acid-polyethylene glycol-folic acid; FA-PEG-CA, caffeic acid-polyethylene glycol-pheophorbide-a; PheoA-PEG-CA) coated iron oxide nanoparticle has been fabricated that overcomes the limitations of conventional SPION. Photosensitizer and tumour targeting ligands were coated on SPION using a ligand-substitution method. We confirmed the successful substitution of oleic acid ligands with FA-PEG-CA and PheoA-PEG-CA ligands by FT-IR spectroscopy. The caffeic acid coated iron oxide nanoparticles (CAMNPs) also demonstrated high water solubility in an aqueous environment and folate-mediated active tumour targeting. The water solubility of CAMNPs was evaluated by DLS measurement and TEM images. The cytotoxicity of CAMNPs increased two-fold in MDA-MB-231 cells at a laser irradiation condition. The fabricated CAMNPs retained their ability to function as both MRI diagnostic and tumour-selective therapeutic agents. These results suggest that these efficient characteristics of CAMNPs can be incorporated into applications, thus enhancing the efficacy of clinical cancer treatment. PMID:27107705

  5. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury.

    PubMed

    Rocamonde, B; Paradells, S; Barcia, J M; Barcia, C; García Verdugo, J M; Miranda, M; Romero Gómez, F J; Soria, J M

    2012-11-01

    After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.

  6. Depletion of Retinoic Acid Receptors Initiates a Novel Positive Feedback Mechanism that Promotes Teratogenic Increases in Retinoic Acid

    PubMed Central

    D'Aniello, Enrico; Rydeen, Ariel B.; Anderson, Jane L.; Mandal, Amrita; Waxman, Joshua S.

    2013-01-01

    Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA) signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1), a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM) specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA. PMID:23990796

  7. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.

    PubMed

    Wang, Changhui; Wang, Ziyuan; Lin, Lu; Tian, Binghui; Pei, Yuansheng

    2012-02-15

    Effects of low molecular weight organic acids (LMWOAs; citric acid, oxalic acid and tartaric acid) on phosphorus (P) adsorption by ferric-alum water treatment residuals (FARs) were studied. Both batch and column experiments indicated that the effects of LMWOAs on P adsorption were closely related to adsorption time. Initially, all acids presented inhibitory function on P adsorption. The inhibition became weaker with time, eventually promoting P adsorption for citric acid and tartaric acid. In the column experiment with a 61-day duration, high P adsorption rates (>55%) were observed for the test groups containing citric acid and tartaric acid. Interestingly, higher pH likely enhanced P adsorption with the effects of LMWOAs and a distinct relationship between LMWOAs' effects on P adsorption and their concentrations was not observed. Moreover, fractionation of the adsorbed P from the FARs demonstrated that oxalic acid reduced P adsorption capacity, while citric acid and tartaric acid increased. Based on the forms of Fe and Al existing in the FARs and Fourier transform infrared spectroscopy analyses, LMWOAs can promote P adsorption through activating crystalline Fe/Al and preventing crystallization of amorphous Fe/Al to increase P adsorption sites, and can also inhibit P adsorption by competition with adsorption sites.

  8. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain.

    PubMed

    Eschauzier, Christian; Beerendonk, Erwin; Scholte-Veenendaal, Petra; De Voogt, Pim

    2012-02-01

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, dune passage, aeration, rapid sand filtration, ozonation, pellet softening, granular activated carbon (GAC) filtration, slow sand filtration, and finished drinking water. In the intake water taken from the Lek canal (a tributary of the river Rhine), the most abundant PFAA were PFBA (perfluorobutanoic acid), PFBS (perfluorobutane sulfonate), PFOS (perfluorooctane sulfonate), and PFOA (perfluorooctanoic acid). During treatment, longer chain PFAA such as PFNA (perfluorononanoic acid) and PFOS were readily removed by the GAC treatment step and their GAC effluent concentrations were reduced to levels below the limits of quantitation (LOQ) (0.23 and 0.24 ng/L for PFOS and PFNA, respectively). However, more hydrophilic shorter chain PFAA (especially PFBA and PFBS) were not removed by GAC and their concentrations remained constant through treatment. A decreasing removal capacity of the GAC was observed with increasing carbon loading and with decreasing carbon chain length of the PFAAs. This study shows that none of the treatment steps, including softening processes, are effective for PFAA removal, except for GAC filtration. GAC can effectively remove certain PFAA from the drinking water cycle.The enrichment of branched PFOS and PFOA isomers relative to non branched isomers during GAC filtration was observed during treatment. The finished water contained 26 and 19 ng/L of PFBA and PFBS. Other PFAAs were present in concentrations below 4.2 ng/L The concentrations of PFAA observed in finished waters are no reason for concern for human health as margins to existing guidelines are sufficiently large.

  9. Increased Fatty Acid β-Oxidation after Glucose Starvation in Maize Root Tips

    PubMed Central

    Dieuaide, Martine; Brouquisse, Renaud; Pradet, Alain; Raymond, Philippe

    1992-01-01

    The effects of glucose starvation on the oxidation of fatty acids were studied in excised maize (Zea mays L.) root tips. After 24 hours of glucose starvation, the rate of oxidation of palmitic acid to CO2 by the root tips was increased 2.5-fold. Different enzyme activities were tested in a crude particulate fraction from nonstarved root tips and those starved for 24 hours. The activities of the β-oxidation enzymes crotonase, hydroxyacyl-coenzyme A (CoA) dehydrogenase, and thiolase and those of catalase, malate synthase, and peroxisomal citrate synthase were higher after starvation. However, no isocitrate lyase activity was detected, thus suggesting that the glyoxylate cycle does not operate. The overall β-oxidation activity was assayed as the formation of [14C]acetyl-CoA from [14C]palmitic acid after high-performance liquid chromatography analysis of the CoA derivatives. An activity was detected in sugar-fed root tips, and it was increased by two-to fivefold in starved roots. Because the recovery of enzyme activities is only marginally better in starved roots compared with nonstarved roots, these results indicate that the β-oxidation activity in the tissues is increased during sugar starvation. This increase is probably an essential part of the response to a situation in which lipids and proteins replace carbohydrates as the major respiratory substrates. These results are discussed in relation to the metabolic changes observed in senescing plant tissues. PMID:16668928

  10. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.

    PubMed

    Brown, Stephen H; Bashkirova, Lena; Berka, Randy; Chandler, Tyler; Doty, Tammy; McCall, Keith; McCulloch, Michael; McFarland, Sarah; Thompson, Sheryl; Yaver, Debbie; Berry, Alan

    2013-10-01

    Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.

  11. Polarographic determination of metyrosine through treatment with nitrous acid.

    PubMed

    Aly, F A; Belal, F; el-Brashy, A

    1993-10-15

    A simple and sensitive polarographic method is described for the determination of metyrosine through treatment with nitrous acid. The different experimental parameters affecting the derivatization process, as well as the polarographic analysis were studied. The derivatization product was found to be reducible at the dropping mercury electrode over the whole pH range in Britton Robinson buffers. At pH 5, a well-defined diffusion-controlled cathodic wave was produced. The limiting current versus the concentration plot was linear over the range 8-80 mumol/l in the direct current mode with a detection limit of 0.2 mumol/l. The method was then applied to the determination of metyrosine capsules, and the results obtained were in good agreement with those given by the USP method.

  12. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  13. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  14. Effect of Putrescine Treatment on Chilling Injury, Fatty Acid Composition and Antioxidant System in Kiwifruit

    PubMed Central

    Yang, Qingzhen; Wang, Feng; Rao, Jingping

    2016-01-01

    We investigated the effects of different concentrations (0, 1, 2 and 4 mM) of putrescine on chilling injury, fruit quality, ethylene production rate, fatty acid composition and the antioxidant system of cold-stored kiwifruit (Actinidia chinensis Planch. var. chinensis ‘Hongyang’). We achieved a significant decrease in ethylene production, maintained fruit quality and alleviated chilling injury during storage via treatment with 2 mM putrescine. Furthermore, putrescine treatment inhibited increases in superoxide anion production rate and H2O2 concentration, while maintaining higher membrane lipid unsaturation as well as increased activities of superoxide dismutase and catalase. In addition, putrescine treatment enhanced the activities of antioxidant enzymes related to the ascorbate–glutathione cycle while causing higher levels of ascorbic acid and reduced glutathione. Our results suggest that induced tolerance against chilling injury via putrescine treatment in cold-stored kiwifruit may be due to enhanced antioxidant activity, increased unsaturation of membrane lipids, and inhibited ethylene production. PMID:27607076

  15. In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: increased damage after multiple irradiations.

    PubMed

    van der Veen, N; van Leengoed, H L; Star, W M

    1994-11-01

    The kinetics of fluorescence in tumour (TT) and subcutaneous tissue (ST) and the vascular effects of photodynamic therapy (PDT) were studied using protoporphyrin IX (PpIX), endogenously generated after i.v. administration of 100 and 200 mg kg-1 5-aminolaevulinic acid (ALA). The experimental model was a rat skinfold observation chamber containing a thin layer of ST in which a small syngeneic mammary tumour grows in a sheet-like fashion. Maximum TT and ST fluorescence following 200 mg kg-1 ALA was twice the value after 100 mg kg-1 ALA, but the initial increase with time was the same for the two doses in both TT and ST. The fluorescence increase in ST was slower and the maximum fluorescence was less and appeared later than in TT. Photodynamic therapy was applied using green argon laser light (514.5 nm, 100 J cm-2). Three groups received a single light treatment at different intervals after administration of 100 or 200 mg kg-1 ALA. In these groups no correlation was found between the fluorescence intensities and the vascular damage following PDT. A fourth group was treated twice and before the second light treatment some fluorescence had reappeared after photobleaching due to the first treatment. Only with the double light treatment was lasting TT necrosis achieved, and for the first time with any photosensitiser in this model this was accomplished without complete ST necrosis.

  16. Increasing intake of essential fatty acids from milk replacer benefits performance, immune responses, and health of preweaned Holstein calves.

    PubMed

    Garcia, M; Shin, J H; Schlaefli, A; Greco, L F; Maunsell, F P; Thatcher, W W; Santos, J E P; Staples, C R

    2015-01-01

    The objective was to evaluate the effect of feeding increasing amounts of essential fatty acids (FA) in milk replacer (MR) during the first 60 d of life on growth, health, and immunity of Holstein calves. Calves were born from dams fed low concentrations of total and essential FA during the lasT2 mo of pregnancy. Newborn calves were blocked by sex and parity of the dam and assigned randomly to receive 1 of 4 MR treatments (T). Hydrogenated coconut oil and soybean oil were mixed with emulsifier and commercial MR powder to prepare the following 4 MR containing 0.119 and 0.007 (T1), 0.187 and 0.017 (T2), 0.321 and 0.036 (T3), and 0.593 and 0.076 (T4) g of intake per kg of metabolic body weight (BW(0.75)) of linoleic acid and α-linolenic acid, respectively. At 30 d of life, concentrations of essential FA (linoleic acid and α-linolenic acid) in liver increased, whereas concentrations of C12:0, C14:0, C16:0, and C20:3n-9 decreased linearly with increasing intake of essential FA. Body weight gain and feed efficiency were optimized when male calves consumed T2, whereas gain by female calves tended to increase linearly with increasing intake of essential FA during the first 30 d of age. However, these responses to treatment were not maintained after initiation of concentrate feeding at 31 d of life. Over the 60-d preweaning period, wither and hip heights were improved in both sexes as intake of essential FA increased up to T3. Some measures of health and immunity were affected by replacing some coconut oil with soybean oil. Severity of diarrhea tended to decrease linearly; plasma concentrations of haptoglobin during diarrhea were lower in T2, T3, and T4; phagocytosis by blood neutrophils tended to peak for calves fed T2; in vitro proliferation of stimulated blood lymphocytes was greater for calves fed T2; in vitro stimulated blood cells produced more IFN-γ (up to T3 for males and T2 for females), concentrations of serum IgG against ovalbumin injections were increased in

  17. Increasing intake of essential fatty acids from milk replacer benefits performance, immune responses, and health of preweaned Holstein calves.

    PubMed

    Garcia, M; Shin, J H; Schlaefli, A; Greco, L F; Maunsell, F P; Thatcher, W W; Santos, J E P; Staples, C R

    2015-01-01

    The objective was to evaluate the effect of feeding increasing amounts of essential fatty acids (FA) in milk replacer (MR) during the first 60 d of life on growth, health, and immunity of Holstein calves. Calves were born from dams fed low concentrations of total and essential FA during the lasT2 mo of pregnancy. Newborn calves were blocked by sex and parity of the dam and assigned randomly to receive 1 of 4 MR treatments (T). Hydrogenated coconut oil and soybean oil were mixed with emulsifier and commercial MR powder to prepare the following 4 MR containing 0.119 and 0.007 (T1), 0.187 and 0.017 (T2), 0.321 and 0.036 (T3), and 0.593 and 0.076 (T4) g of intake per kg of metabolic body weight (BW(0.75)) of linoleic acid and α-linolenic acid, respectively. At 30 d of life, concentrations of essential FA (linoleic acid and α-linolenic acid) in liver increased, whereas concentrations of C12:0, C14:0, C16:0, and C20:3n-9 decreased linearly with increasing intake of essential FA. Body weight gain and feed efficiency were optimized when male calves consumed T2, whereas gain by female calves tended to increase linearly with increasing intake of essential FA during the first 30 d of age. However, these responses to treatment were not maintained after initiation of concentrate feeding at 31 d of life. Over the 60-d preweaning period, wither and hip heights were improved in both sexes as intake of essential FA increased up to T3. Some measures of health and immunity were affected by replacing some coconut oil with soybean oil. Severity of diarrhea tended to decrease linearly; plasma concentrations of haptoglobin during diarrhea were lower in T2, T3, and T4; phagocytosis by blood neutrophils tended to peak for calves fed T2; in vitro proliferation of stimulated blood lymphocytes was greater for calves fed T2; in vitro stimulated blood cells produced more IFN-γ (up to T3 for males and T2 for females), concentrations of serum IgG against ovalbumin injections were increased in

  18. Maleic acid treatment of biologically detoxified corn stover liquor.

    PubMed

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. PMID:27262718

  19. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment.

    PubMed

    Holmes, Eric H; Devalapally, Harikrishna; Li, Libin; Perdue, Michael L; Ostrander, Gary K

    2013-01-01

    We have demonstrated that simple formulations composed of the parent drug in combination with generally regarded as safe (GRAS) permeability enhancers are capable of dramatically increasing the absolute bioavailability of zanamivir. This has the advantage of not requiring modification of the drug structure to promote absorption, thus reducing the regulatory challenges involved in conversion of an inhaled to oral route of administration of an approved drug. Absolute bioavailability increases of up to 24-fold were observed when Capmul MCM L8 (composed of mono- and diglycerides of caprylic/capric acids in glycerol) was mixed with 1.5 mg of zanamivir and administered intraduodenally to rats. Rapid uptake (t(max) of 5 min) and a C(max) of over 7200 ng/mL was achieved. Variation of the drug load or amount of enhancer demonstrated a generally linear variation in absorption, indicating an ability to optimize a formulation for a desired outcome such as a targeted C(max) for enzyme saturation. No absorption enhancement was observed when the enhancer was given 2 hr prior to drug administration, indicating, in combination with the observed tmax, that absorption enhancement is temporary. This property is significant and aligns well with therapeutic applications to limit undesirable drug-drug interactions, potentially due to the presence of other poorly absorbed polar drugs. These results suggest that optimal human oral dosage forms of zanamivir should be enteric-coated gelcaps or softgels for intraduodenal release. There continues to be a strong need and market for multiple neuraminidase inhibitors for influenza treatment. Creation of orally available formulations of inhibitor drugs that are currently administered intravenously or by inhalation would provide a significant improvement in treatment of influenza. The very simple GRAS formulation components and anticipated dosage forms would require low manufacturing costs and yield enhanced convenience. These results are being

  20. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment.

    PubMed

    Holmes, Eric H; Devalapally, Harikrishna; Li, Libin; Perdue, Michael L; Ostrander, Gary K

    2013-01-01

    We have demonstrated that simple formulations composed of the parent drug in combination with generally regarded as safe (GRAS) permeability enhancers are capable of dramatically increasing the absolute bioavailability of zanamivir. This has the advantage of not requiring modification of the drug structure to promote absorption, thus reducing the regulatory challenges involved in conversion of an inhaled to oral route of administration of an approved drug. Absolute bioavailability increases of up to 24-fold were observed when Capmul MCM L8 (composed of mono- and diglycerides of caprylic/capric acids in glycerol) was mixed with 1.5 mg of zanamivir and administered intraduodenally to rats. Rapid uptake (t(max) of 5 min) and a C(max) of over 7200 ng/mL was achieved. Variation of the drug load or amount of enhancer demonstrated a generally linear variation in absorption, indicating an ability to optimize a formulation for a desired outcome such as a targeted C(max) for enzyme saturation. No absorption enhancement was observed when the enhancer was given 2 hr prior to drug administration, indicating, in combination with the observed tmax, that absorption enhancement is temporary. This property is significant and aligns well with therapeutic applications to limit undesirable drug-drug interactions, potentially due to the presence of other poorly absorbed polar drugs. These results suggest that optimal human oral dosage forms of zanamivir should be enteric-coated gelcaps or softgels for intraduodenal release. There continues to be a strong need and market for multiple neuraminidase inhibitors for influenza treatment. Creation of orally available formulations of inhibitor drugs that are currently administered intravenously or by inhalation would provide a significant improvement in treatment of influenza. The very simple GRAS formulation components and anticipated dosage forms would require low manufacturing costs and yield enhanced convenience. These results are being

  1. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes.

    PubMed

    Chen, Lihong; Yao, Xiaozhou; Young, Andrew; McNulty, Judi; Anderson, Don; Liu, Yaping; Nystrom, Christopher; Croom, Dallas; Ross, Sean; Collins, Jon; Rajpal, Deepak; Hamlet, Kimberly; Smith, Chari; Gedulin, Bronislava

    2012-01-01

    Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.

  2. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid.

    PubMed

    Rubentheren, V; Ward, Thomas A; Chee, Ching Yern; Nair, Praveena; Salami, Erfan; Fearday, Christopher

    2016-04-20

    This article presents an analysis of the influence of heat treatment on chitosan nanocomposite film. A series of samples comprising: pure chitosan film, chitosan film embedded with nanocrystalline cellulose (NCC), chitosan film crosslinked with tannic acid and chitosan film with a blend of NCC and tannic acid were heat treated using a convection oven. Fourier-transform-infrared spectroscopy (FTIR) and X-ray diffraction test (XRD) shows the changes in chemical interaction of the heat treated films. The heat treated films show significant improvements in moisture absorption. Tensile strength and Young's Modulus were increased up to 7MPa and 259MPa, respectively when the samples were subjected to heat treatment. For the NCC particles, a transmission electron microscope (TEM) was used to inspect the structural properties of cellulose particle in suspension form.

  3. Treatment of cereal products with a tailored preparation of trichoderma enzymes increases the amount of soluble dietary fiber.

    PubMed

    Napolitano, Aurora; Lanzuise, Stefania; Ruocco, Michelina; Arlotti, Guido; Ranieri, Roberto; Knutsen, Svein Halvor; Lorito, Matteo; Fogliano, Vincenzo

    2006-10-01

    Nutritionists recommend increasing the intake of soluble dietary fiber (SDF), which is very low in most cereal-based products. Conversion of insoluble DF (IDF) into SDF can be achieved by chemical treatments, but this affects the sensorial properties of the products. In this study, the possibility of getting a substantial increase of SDF from cereal products using a tailored preparation of Trichoderma enzymes is reported. Enzymes were produced cultivating Trichoderma using durum wheat fiber (DWF) and barley spent grain (BSG) as unique carbon sources. Many Trichoderma strains were screened, and the hydrolysis conditions able to increase by enzymatic treatment the amount of SDF in DWF and BSG were determined. Results demonstrate in both products that it is possible to triple the amount of SDF without a marked decrease of total DF. The enzymatic treatment also causes the release of hydroxycinnamic acids, mainly ferulic acid, that are linked to the polysaccharides chains. This increases the free phenolic concentration, the water-soluble antioxidant activity, and, in turn, the phenol compounds bioavailability.

  4. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Fina, Alberto; Venturello, Alberto; Geobaldo, Francesco

    2013-10-01

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  5. TREATMENT OF ACID MINE DRAINAGE USING FISHBONE APATITE IITM

    SciTech Connect

    Neal A. Yancey

    2006-10-01

    ABSTRACT. In 2000, a reactive barrier was installed on the East Fork of Ninemile Creek near Wallace, Idaho to treat acid mine discharge. The barrier was filled with fishbone derived Apatite IITM to remove the contaminants of concern (Zn, Pb, and Cd) and raise the pH of the acidic mine discharge. Metal removal has been achieved by a combination of chemical, biological, and physical precipitation. Flow for the water ranges from 5 to 35 gallons per minute. The water is successfully being treated, but the system experienced varying degrees of plugging. In 2002, gravel was mixed with the Apatite IITM to help control plugging. In 2003 the Idaho National Laboratory was ask to provide technical support to the Coeur d’Alene Basin Commission to help identify a remedy to the plugging issue. Air sparging was employed to treat the plugging issues. Plastic packing rings were added in the fall of 2005, which have increased the void space in the media and increased flows during the 10 months of operation since the improvements were made.

  6. Vitamin B(12) deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid.

    PubMed

    Vaes, Bart L T; Lute, Carolien; Blom, Henk J; Bravenboer, Nathalie; de Vries, Teun J; Everts, Vincent; Dhonukshe-Rutten, Rosalie A; Müller, Michael; de Groot, Lisette C P G M; Steegenga, Wilma T

    2009-05-01

    The risk of nutrient deficiencies increases with age in our modern Western society, and vitamin B(12) deficiency is especially prevalent in the elderly and causes increased homocysteine (Hcy) and methylmalonic acid (MMA) levels. These three factors have been recognized as risk factors for reduced bone mineral density and increased fracture risk, though mechanistic evidence is still lacking. In the present study, we investigated the influence of B(12), Hcy, and MMA on differentiation and activity of bone cells. B(12) deficiency did not affect the onset of osteoblast differentiation, maturation, matrix mineralization, or adipocyte differentiation from human mesenchymal stem cells (hMSCs). B(12) deficiency caused an increase in the secretion of Hcy and MMA into the culture medium by osteoblasts, but Hcy and MMA appeared to have no effect on hMSC osteoblast differentiation. We further studied the effect of B(12), Hcy, and MMA on the formation of multinucleated tartrate-resistant acid phosphatase-positive osteoclasts from mouse bone marrow. We observed that B(12) did not show an effect on osteoclastogenesis. However, Hcy as well as MMA were found to induce osteoclastogenesis in a dose-dependent manner. On the basis of these results, we conclude that B(12) deficiency may lead to decreased bone mass by increased osteoclast formation due to increased MMA and Hcy levels.

  7. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells

    PubMed Central

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D’Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-01-01

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA. PMID:26864323

  8. Effects of small temperature increase and subchronic acid stress on juvenile rainbow trout during winter

    SciTech Connect

    D`Cruz, L.M.; Morgan, I.J.; Wood, C.M.

    1995-12-31

    Increasing water temperatures, as predicted by global warming are potentially problematic to freshwater fish, whose body temperature is set by their environment. In addition, fish living in softwater lakes face the detrimental effects of acid rain. To determine the cost of living in a warmer climate, two ninety day exposures were conducted during the winter in softwater. In the first exposure, fish were fed to satiation twice daily, while in the second exposure, fish were fed 1% of their wet body weight every four days. Monthly sampling was conducted to determine while body energy reserves: protein, lipids and carbohydrates, and changes in plasma Na and Cl concentrations. Oxygen consumption and nitrogen waste excretion rates were also measured. Fish exposed to acid and fed to satiation showed no ionoregulatory disturbances, an atypical result. Moreover, fish exposed to pH 5.2 had increased appetites, resulting in increased growth. In comparison, fish in the second exposure that were fed a limited ration and exposed to pH 5.2 had a greater mortality rate and lower plasma Na and Cl concentrations, with greater detrimental effects observed in fish exposed to +2 C above ambient. The findings suggest that NaCl present in commercial fish food may compensate for bronchial ion loss during acid exposure, as a result of a stimulation of appetite.

  9. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Roldán, A

    2009-01-01

    Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity. PMID:18954889

  10. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Roldán, A

    2009-01-01

    Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity.

  11. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs

    PubMed Central

    Zhou, Lufang; Cabrera, Marco E; Huang, Hazel; Yuan, Celvie L; Monika, Duda K; Sharma, Naveen; Bian, Fang; Stanley, William C

    2007-01-01

    Steady state concentrations of ATP and ADP in vivo are similar at low and high cardiac workloads; however, the mechanisms that regulate the activation of substrate metabolism and oxidative phosphorylation that supports this stability are poorly understood. We tested the hypotheses that (1) there is parallel activation of mitochondrial and cytosolic dehydrogenases in the transition from low to high workload, which increases NADH/NAD+ ratio in both compartments, and (2) this response does not require an increase in fatty acid oxidation (FAO). Anaesthetized pigs were subjected to either sham treatment, or an abrupt increase in cardiac workload for 5 min with dobutamine infusion and aortic constriction. Myocardial oxygen consumption and FAO were increased 3- and 2-fold, respectively, but ATP and ADP concentrations did not change. NADH-generating pathways were rapidly activated in both the cytosol and mitochondria, as seen in a 40% depletion in glycogen stores, a 3.6-fold activation of pyruvate dehydrogenase, and a 50% increase in tissue NADH/NAD+. Simulations from a multicompartmental computational model of cardiac energy metabolism predicted that parallel activation of glycolysis and mitochondrial metabolism results in an increase in the NADH/NAD+ ratio in both cytosol and mitochondria. FAO was blocked by 75% in a third group of pigs, and a similar increase in and the NAHD/NAD+ ratio was observed. In conclusion, in the transition to a high cardiac workload there is rapid parallel activation of substrate oxidation that results in an increase in the NADH/NAD+ ratio. PMID:17185335

  12. Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats.

    PubMed

    van Wijk, Nick; Balvers, Martin; Cansev, Mehmet; Maher, Timothy J; Sijben, John W C; Broersen, Laus M

    2016-07-01

    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2-3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined. PMID:27038174

  13. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    PubMed

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  14. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions.

    PubMed

    de Ollas, Carlos; Hernando, Bárbara; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2013-03-01

    Phytohormones are central players in sensing and signaling numerous environmental conditions like drought stress. In this work, an experimental system based on severe drought was established and hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonic acid (JA) biosynthesis was studied in roots of citrumelo CPB 4475 (a commercial citrus rootstock) plants. JA concentration transiently increased after a few hours of stress, returning to control levels 30 h after the onset of the condition. A more progressive ABA accumulation was observed, with the onset of this increase at the same time or right after the JA transient accumulation. Molecular data suggested that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also pointed to a possible involvement of JA on ABA biosynthesis under stress. To test this hypothesis, JA and ABA biosynthesis were chemically inhibited and subsequently phenotypes rescued by the addition of exogenous hormones. Results showed that the early JA accumulation was necessary for the subsequent ABA increase in roots under stress whereas the opposite could not be stated. The model includes a burst of JA in roots of citrus under severe drought stress conditions that leads to a more progressive ABA accumulation that will induce later plant responses. The present work adds a new level of interaction between JA and ABA at the biosynthetic level that together with the previously described interaction between signal transduction cascades of the two hormones would allow plants to fine-tune specific responses to different stimuli.

  15. Modification and improvement of proton-exchange membrane fuel cells via treatment using peracetic acid

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang; Qi, Zhigang; Kaufman, Arthur

    Electrodes and catalyst-coated membranes (CCMs) were treated using peracetic acid. After such a treatment, the properties and performance of these electrodes and CCMs were changed in several aspects. First, their catalytic activity was increased compared to the untreated counterparts. Second, their ability to hold water within the catalyst layers was increased so that the cathode did not need to be humidified. Third, if the cathode was humidified together with the anode, some of the electrodes were more readily to be flooded than the untreated counterparts.

  16. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice

    PubMed Central

    Bocco, B.M.; Fernandes, G.W.; Lorena, F.B.; Cysneiros, R.M.; Christoffolete, M.A.; Grecco, S.S.; Lancellotti, C.L.; Romoff, P.; Lago, J.H.G.; Bianco, A.C.; Ribeiro, M.O.

    2016-01-01

    Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model. PMID:26840707

  17. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.

  18. Use of sulfate reducing bacteria in acid mine drainage treatment

    SciTech Connect

    Powers, T.J.

    1995-10-01

    The environmental impacts caused by Acid Mine Drainage (AMD) were first recorded in 1556 by Georgius Agricola. In the United States 10,000 miles of streams and 29,000 surface acres of impoundments are estimated to be seriously affected by AMD. Abandoned surface mines are estimated to contribute about 15% of the drainage, while active mines (40%) and shaft and drift mines (45%) contribute the remainder. AMD results when metal sulfide minerals, particularly pyrite (FeS{sub 2}), come in contact with oxygen and water. Acid generation occurs when metal sulfide minerals are oxidized according to the Initiator Reaction: FeS{sub 2}(pyrite) + 3 1/2O{sub 2} + H{sub 2}O {yields} Fe{sup 2+} + 2SO{sub 4}{sup 2-} + 2H{sup +}. This reaction is one of many that results in increased metal mobility and increased acidity (lowered pH) of the mine water. The oxidation of ferrous sulfate is accelerated by bacterial action of Thiobacillus ferrooxidans, a naturally occurring bacterium that at pH 3.5 or less, can rapidly accelerate the conversion of dissolved Fe{sup 2+} (ferrous iron) to Fe{sup 3+} (ferric iron), and can act as an oxidant for the oxidation of pyrite. Ferric ions, as well as other metal ions, and the sulfuric acid have a deleterious influence on the biota of streams receiving AMD. The Lilly/Orphan Boy Mine, located in the Elliston Mining District of Powell County, Montana, was selected as the Sulfate Reducing Bacteria (SRB) technology demonstration site. The mine is situated on a patented claim on Deerlodge National Forest Land about 11 miles south of Elliston, Montana. This abandoned mining operation consists of a 250-foot shaft, four horizontal workings, and some stopping. The shaft is flooded with AMD to the 74-foot level and is discharging about 3 gallons per minute (gpm) at a pH of 3.0 from the adit associated with this level.

  19. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus.

    PubMed

    Wei, Yunxiao; Liu, Zhenfeng; Su, Yujing; Liu, Donghong; Ye, Xingqian

    2011-03-01

    The effects of salicylic acid (SA) on the quality and antioxidant activity of asparagus stored at 18 ± 2 °C were investigated by analyzing the color, chlorophyll, shear force, and the activity of antioxidant compounds such as ascorbic acid, phenolics, flavonoids, 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity ferric reducing antioxidant power (FRAP), and polyamines (PAs). The results showed that SA improved the color and maintained the chlorophyll, phenolic, flavonoid, and ascorbic acid content of asparagus. High concentrations of SA caused a deterioration in asparagus would harm to color and had no effect on shear force within 6 d. SA induced the maximum concentration of phenolics in postharvest asparagus, promoted the increase in total flavonoids before 6 to 9 d, affected the antioxidant activity positively as indicated by the resultant increase in FRAP concentration; however, SA was only active with regard to DPPH scavenging activity within 6 d of treatment. Spermidine (Spd) is the most common form of PA in asparagus, and free putrescine (Put) contents increased over the first 3 d following harvest and then decreased. Spd and Spm concentrations evolved in a similar way and decreased during storage. Higher Spd and Spm contents in the SA pre-treatment Put was inhabited and its peaks appeared later.

  20. Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution.

    PubMed

    Ai, Chenbing; McCarthy, Samuel; Eckrich, Valerie; Rudrappa, Deepak; Qiu, Guanzhou; Blum, Paul

    2016-10-01

    Extremely thermoacidophilic members of the Archaea such as the lithoautotroph, Metallosphaera sedula, are among the most acid resistant forms of life and are of great relevance in bioleaching. Here, adaptive laboratory evolution was used to enhance the acid resistance of this organism while genomics and transcriptomics were used in an effort to understand the molecular basis for this trait. Unlike the parental strain, the evolved derivative, M. sedula SARC-M1, grew well at pH of 0.90. Enargite (Cu3AsS4) bioleaching conducted at pH 1.20 demonstrated SARC-M1 leached 23.78 % more copper relative to the parental strain. Genome re-sequencing identified two mutations in SARC-M1 including a nonsynonymous mutation in Msed_0408 (an amino acid permease) and a deletion in pseudogene Msed_1517. Transcriptomic studies by RNA-seq of wild type and evolved strains at various low pH values demonstrated there was enhanced expression of genes in M. sedula SARC-M1 encoding membrane complexes and enzymes that extrude protons or that catalyze proton-consuming reactions. In addition, M. sedula SARC-M1 exhibited reduced expression of genes encoding enzymes that catalyze proton-generating reactions. These unique genomic and transcriptomic features support a model for increased acid resistance arising from enhanced control over cytoplasmic pH. PMID:27520549

  1. Dietary fatty acid enrichment increases egg size and quality of yellow seahorse Hippocampus kuda.

    PubMed

    Saavedra, M; Masdeu, M; Hale, P; Sibbons, C M; Holt, W V

    2014-02-01

    Seahorses populations in the wild have been declining and to restore them a better knowledge of seahorse reproduction is required. This study examines the effect of dietary quality on seahorse fecundity and egg quality. Two different diets were tested with Hippocampus kuda females: frozen mysis (control) and frozen mysis enriched with a liposome spray containing essential fatty acids. Diets were given to females (two groups of five) over a seven week period. After this period, males (fed the control diet) and females were paired and the eggs dropped by the females were collected. Fatty acid profile were analysed and eggs were counted and measured. Results showed that females fed on enriched mysis had larger eggs and that these had a higher content of total polyunsaturated fatty acids. The size of the egg was especially affected in the first spawn, where egg size for females fed the enriched diet was significantly higher than the egg size from control females. This effect was reduced in the following spawning where no significant differences were found. Egg size is an important quality descriptor as seahorse juveniles originating from smaller eggs and/or eggs of poor quality will have less chances of overcoming adverse conditions in the wild and consequently have lower survival and growth rates. This study shows that enriching frozen mysis with polyunsaturated fatty acids increases egg size and egg quality of H. kuda.

  2. Increased sensitivity and variability of phytotoxicity responses in Arctic soils to a reference toxicant, boric acid.

    PubMed

    Anaka, Alison; Wickstrom, Mark; Siciliano, Steven Douglas

    2008-03-01

    Industrial and human activities in the Arctic regions may pose a risk to terrestrial Arctic ecosystem functions. One of the most common terrestrial toxicological end points, primary productivity, typically is assessed using a plant phytotoxicity test. Because of cryoturbation, a soil mixing process common in polar regions, we hypothesized that phytotoxicity test results in Arctic soils would be highly variable compared to other terrestrial ecosystems. The variability associated with phytotoxicity tests was evaluated using Environment Canada's standardized plant toxicity test in three cryoturbated soils from Canada's Arctic exposed to a reference toxicant, boric acid. Northern wheatgrass (Elymus lanceolatus) not only was more sensitive to toxicants in Arctic soils, its response to toxicants was more variable compared to that in temperate soils. The phytotoxicity of boric acid in cryosols was much greater than commonly reported in other soils, with a boric acid concentration of less than 150 microg/g soil needed to inhibit root and shoot growth by 20%. Large variability also was found in the phytotoxicity test results, with coefficients of variation for 10 samples ranging from 160 to 79%. The increased toxicity of boric acid in cryosols and variability in test response was not explained by soil properties. Based on our admittedly limited data set of three different Arctic soils, we recommend that more than 30 samples be taken from each control and potentially impacted area to accurately assess contaminant effects at sites in northern Canada. Such intensive sampling will insure that false-negative results for toxicant impacts in Arctic soils are minimized.

  3. Dietary flavonoids increase plasma very long-chain (n-3) fatty acids in rats.

    PubMed

    Toufektsian, Marie-Claire; Salen, Patricia; Laporte, François; Tonelli, Chiara; de Lorgeril, Michel

    2011-01-01

    Flavonoids probably contribute to the health benefits associated with the consumption of fruit and vegetables. However, the mechanisms by which they exert their effects are not fully elucidated. PUFA of the (n-3) series also have health benefits. Epidemiological and clinical studies have suggested that wine flavonoids may interact with the metabolism of (n-3) PUFA and increase their blood and cell levels. The present studies in rats were designed to assess whether flavonoids actually increase plasma levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the main very long-chain (n-3) PUFA. Rats were fed a corn-derived anthocyanin (ACN)-rich (ACN-rich) or ACN-free diet with constant intakes of plant and marine (n-3) PUFA for 8 wk (Expt. 1). Plasma fatty acids were measured by GC. The ACN-rich diet contained ~0.24 ± 0.01 mg of ACN/g pellets. There were no significant differences between groups in the main saturated, monounsaturated, and (n-6) fatty acids. In contrast, plasma EPA and DHA were greater in the ACN-rich diet group than in the ACN-free diet group (P < 0.05). We obtained similar results in 2 subsequent experiments in which rats were administered palm oil (80 μL/d) and consumed the ACN-rich or ACN-free diet (Expt. 2) or were supplemented with fish oil (60 mg/d, providing 35 mg DHA and 12 mg EPA) and consumed the ACN-rich or ACN-free diet (Expt. 3). In both experiments, plasma EPA and DHA were significantly greater in the ACN-rich diet group. These studies demonstrate that the consumption of flavonoids increases plasma very long-chain (n-3) PUFA levels. These data confirm previous clinical and epidemiological studies and provide new insights into the health benefits of flavonoids.

  4. Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali.

    PubMed

    Sun, Yong-Gang; Ma, Yu-Long; Wang, Li-Qiong; Wang, Feng-Zhi; Wu, Qian-Qian; Pan, Guan-Yu

    2015-03-01

    The aim of this study was to evaluate comparatively the effects of different pretreatments including steam explosion, acid, and alkali, alone or in combination, on the structural properties and thermal stability of corn stalk. All of the treated treatments decreased the contents of hemicellulose and lignin and thereby increased the content of cellulose in corn stalks. But the combined treatments with alkali and steam explosion under 0.4-0.6 MPa were better as compared with other treatments based on the removals of hemicellulose and lignin, and about 71.58-79.59% of hemicellulose and 64.32-71.83% of lignin were removed. Treatment with steam explosion coupled with acid or alkali changed the bonding distribution and surface morphology and increased the crystallinity and thermal stability of corn stalks, and the degradation temperature reached over 350 °C. These results suggest that steam explosion coupled with alkali is a better method for the depolymerization of corn stalk polymer. PMID:25498662

  5. Coffee component 3-caffeoylquinic acid increases antioxidant capacity but not polyphenol content in experimental cerebral infarction.

    PubMed

    Ruiz-Crespo, Silvia; Trejo-Gabriel-Galan, Jose M; Cavia-Saiz, Monica; Muñiz, Pilar

    2012-05-01

    Although coffee has antioxidant capacity, it is not known which of its bioactive compounds is responsible for it, nor has it been analyzed in experimental cerebral infarction. We studied the effect one of its compounds, 3-caffeoylquinic acid (3-CQA), at doses of 4, 25 and 100 μg on plasma antioxidant capacity and plasma polyphenol content, measuring the differences before and after inducing a cerebral infarction in an experimental rat model. We compared them with 3-caffeoylquinic-free controls. The increase in total antioxidant capacity was only higher than in controls in 3-CQA treated animals with the highest dose. This increase in antioxidant capacity was not due to an increase in polyphenols. No differences between the experimental and control group were found regarding polyphenol content and cerebral infarction volume. In conclusion, this increase in antioxidant capacity in the group that received the highest dose of 3-CQA was not able to reduce experimental cerebral infarction.

  6. The effect of limestone treatments on the rate of acid generation from pyritic mine gangue.

    PubMed

    Burt, R A; Caruccio, F T

    1986-09-01

    Surface water enters the Haile Gold Mine, Lancaster County, South Carolina by means of a small stream and is ponded behind a dam and in an abandoned pit. This water is affected by acidic drainage. In spite of the large exposures of potentially acid producing pyritic rock, the flux of acid to the water is relatively low. Nevertheless, the resulting pH values of the mine water are low (around 3.5) due to negligible buffering capacity. In view of the observed low release of acidity, the potential for acid drainage abatement by limestone ameliorants appears feasible.This study investigated the effects of limestone treatment on acid generation rates of the Haile mine pyritic rocks through a series of leaching experiments. Below a critical alkalinity threshold value, solutions of dissolved limestone were found consistently to accelerate the rate of pyrite oxidation by varying degrees. The oxidation rates were further accelerated by admixing solid limestone with the pyritic rock. However, after a period of about a month, the pyrite oxidation rate of the admixed samples declined to a level lower than that of untreated pyrite. Leachates produced by the pyrite and limestone mixtures contained little if any iron. Further, in the mixtures, an alteration of the pyrite surface was apparent.The observed behaviour of the treated pyrite appears to be related to the immersion of the pyrite grains within a high alkalinity/high pH environment. The high pH increases the rate of oxidation of ferrous iron which results in a higher concentration of ferric iron at the pyrite surface. This, in turn, increases the rate of pyrite oxidation. Above a threshold alkalinity value, the precipitation of hydrous iron oxides at the pyrite surface eventually outpaces acid generation and coats the pyrite surface, retarding the rate of pyrite oxidation. PMID:24214013

  7. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    PubMed

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes. PMID:26167409

  8. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency.

    PubMed

    Roy, Marc; Leclerc, Daniel; Wu, Qing; Gupta, Sapna; Kruger, Warren D; Rozen, Rima

    2008-10-01

    Valproate (VPA) treatment in pregnancy leads to congenital anomalies, possibly by disrupting folate or homocysteine metabolism. Since methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of folate interconversion and homocysteine metabolism, we addressed the possibility that VPA might have different teratogenicity in Mthfr(+/+) and Mthfr(+/-) mice and that VPA might interfere with folate metabolism through MTHFR modulation. Mthfr(+/+) and Mthfr(+/-) pregnant mice were injected with VPA on gestational day 8.5; resorption rates and occurrence of neural tube defects (NTDs) were examined on gestational day 14.5. We also examined the effects of VPA on MTHFR expression in HepG2 cells and on MTHFR activity and homocysteine levels in mice. Mthfr(+/+) mice had increased resorption rates (36%) after VPA treatment, compared to saline treatment (10%), whereas resorption rates were similar in Mthfr(+/-) mice with the two treatments (25-27%). NTDs were only observed in one group (VPA-treated Mthfr(+/+)). In HepG2 cells, VPA increased MTHFR promoter activity and MTHFR mRNA and protein (2.5- and 3.7-fold, respectively). Consistent with cellular MTHFR upregulation by VPA, brain MTHFR enzyme activity was increased and plasma homocysteine was decreased in VPA-treated pregnant mice compared to saline-treated animals. These results underscore the importance of folate interconversion in VPA-induced teratogenicity, since VPA increases MTHFR expression and has lower teratogenic potential in MTHFR deficiency. PMID:18615588

  9. Trifluoperazine increases fatty acid turnover in phospholipids in cultured human fibroblasts.

    PubMed

    Mazière, C; Mazière, J C; Mora, L; Auclair, M; Polonovski, J

    1988-05-01

    A 24-hr pretreatment of cultured human fibroblasts with trifluoperazine induced a marked increase in incorporation of saturated (stearic, palmitic) and unsaturated (oleic, arachidonic) fatty acids into phospholipids (1.5- to 2-fold for 5.10(-5) M trifluoperazine). Concomitantly, incorporation into cholesteryl esters was strongly inhibited (20% of control for 5.10(-5) M trifluoperazine). The drug did not change the phospholipid composition of treated cells. The effect of trifluoperazine on oleic acid incorporation into phospholipids was time-dependent and reached a maximum after a six-hr preincubation with the drug. Trifluoperazine also induced an increase in the rate of chase of oleic acid from the different phospholipid classes. In vitro preincubation of cell-free extracts with trifluoperazine resulted in activation of phospholipid acyltransferases, whereas cholesterol acyltransferase activity was decreased. The rapid effect of trifluoperazine together with its effect on a cell-free system suggests a direct action of this amphiphilic drug on the acyltransferase activities, probably by modification of the structural organization of cellular membranes.

  10. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance

    PubMed Central

    Yew Tan, Chong; Virtue, Samuel; Murfitt, Steven; Robert, Lee D.; Phua, Yi Hui; Dale, Martin; Griffin, Julian L.; Tinahones, Francisco; Scherer, Philipp E.; Vidal-Puig, Antonio

    2015-01-01

    The non-essential fatty acids, C18:1n9, C16:0, C16:1n7, C18:0 and C18:1n7 account for over 75% of fatty acids in white adipose (WAT) triacylglycerol (TAG). The relative composition of these fatty acids (FA) is influenced by the desaturases, SCD1-4 and the elongase, ELOVL6. In knock-out models, loss of SCD1 or ELOVL6 results in reduced Δ9 desaturated and reduced 18-carbon non-essential FA respectively. Both Elovl6 KO and SCD1 KO mice exhibit improved insulin sensitivity. Here we describe the relationship between WAT TAG composition in obese mouse models and obese humans stratified for insulin resistance. In mouse models with increasing obesity and insulin resistance, there was an increase in scWAT Δ9 desaturated FAs (SCD ratio) and FAs with 18-carbons (Elovl6 ratio) in mice. Data from mouse models discordant for obesity and insulin resistance (AKT2 KO, Adiponectin aP2-transgenic), suggested that scWAT TAG Elovl6 ratio was associated with insulin sensitivity, whereas SCD1 ratio was associated with fat mass. In humans, a greater SCD1 and Elovl6 ratio was found in metabolically more harmful visceral adipose tissue when compared to subcutaneous adipose tissue. PMID:26679101

  11. Protracted treatment with diazepam increases the turnover of putative endogenous ligands for the benzodiazepine/. beta. -carboline recognition site

    SciTech Connect

    Miyata, M.; Mocchetti, I.; Ferrarese, C.; Guidotti, A.; Costa, E.

    1987-03-01

    DBI (diazepam-binding inhibitor) is a putative neuromodulatory peptide isolated from rat brain that acts on ..gamma..-aminobutyric acid-benzodiazepine-Cl/sup -/ ionosphore receptor complex inducing ..beta..-carboline-like effects. The authors used a cDNA probe complementary to DBI mRNA and a specific antibody for rat DBI to study in rat brain how the dynamic state of DBI can be affected after protected (three times a day for 10 days) treatment with diazepam and chlordiazepoxide by oral gavage. Both the content of DBI and DBI mRNA increased in the cerebellum and cerebral cortex but failed to change in the hippocampus and striatum of rats receiving this protracted benzodiazepine treatment. Acute treatment with diazepam did not affect the dynamic state of brain DBI. An antibody was raised against a biologically active octadecaneuropeptide derived from the tryptic digestion of DBI. The combined HPLC/RIA analysis of rat cerebellar extracts carried out with this antibody showed that multiple molecular forms of the octadecaneuropeptide-like reactivity are present and all of them are increased in rats receiving repeated daily injections of diazepam. It is inferred that tolerance to benzodiazepines in associated with an increase in the turnover rate of DBI, which may be responsible for the ..gamma..-aminobutyric acid receptor desensitization that occurs after protracted benzodiazepine administration.

  12. Febuxostat and Increased Dialysis as a Treatment for Severe Tophaceous Gout in a Hemodialysis Patient

    PubMed Central

    Frassetto, Lynda Ann; Gibson, Suzanne

    2016-01-01

    Uric acid accumulates in renal failure and is thought to be a uremic toxin—that is, higher levels of uric acid are more damaging to the kidneys. Urate crystals can precipitate in the kidney tubules, cause urate stones, and promote inflammatory changes in the renal interstitium and vascular endothelium. Uric acid is also a small non-protein-bound molecule and therefore easily dialyzable. Here, we present the case of an anuric hemodialysis patient with severe tophaceous gout who regained some renal function and whose gout burden significantly decreased resulting in marked improvement in functional status using a new gout medication, febuxostat, and increased frequency of dialysis. PMID:27200198

  13. Febuxostat and Increased Dialysis as a Treatment for Severe Tophaceous Gout in a Hemodialysis Patient.

    PubMed

    Frassetto, Lynda Ann; Gibson, Suzanne

    2016-01-01

    Uric acid accumulates in renal failure and is thought to be a uremic toxin-that is, higher levels of uric acid are more damaging to the kidneys. Urate crystals can precipitate in the kidney tubules, cause urate stones, and promote inflammatory changes in the renal interstitium and vascular endothelium. Uric acid is also a small non-protein-bound molecule and therefore easily dialyzable. Here, we present the case of an anuric hemodialysis patient with severe tophaceous gout who regained some renal function and whose gout burden significantly decreased resulting in marked improvement in functional status using a new gout medication, febuxostat, and increased frequency of dialysis. PMID:27200198

  14. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge

    NASA Astrophysics Data System (ADS)

    Vinitnantharat, Soydoa; Kositchaiyong, Sriwilai; Chiarakorn, Siriluk

    2010-06-01

    This paper reports the use of a pellet of adsorbent made from water treatment sludge (S) and acid activated water treatment sludge (SH) for removal of fluoride in the batch equilibration technique. The influence of pH, adsorbent dosage, temperature and effect of other ions were employed to find out the feasibility of acid activated adsorbent to remove fluoride to the permissible concentration of 0.7 mg/L. The results from the adsorption isotherm followed both Langmuir and Freundlich models and the highest fluoride removal was found for adsorbent activated with acetic acid at 2.0 mol/L. The optimum adsorbent dosage was found at 40 g/L, 0.01 mol/L acid activated adsorbent which was able to adsorb fluoride from 10 down to 0.11 mg/L. The adsorption capacity was decreased when the temperature increased. This revealed that the adsorption of fluoride on SH was exothermic. In the presence of nitrate and carbonate ions in the aqueous solution, fluoride removal efficiency of SH decreased from 94.4% to 86.6% and 90.8%, respectively. However, there is no significant effect in the presence of sulfate and chloride ions.

  15. Biological treatment of heavy metals in acid mine drainage using sulfate reducing bioreactors.

    PubMed

    Sierra-Alvarez, R; Karri, S; Freeman, S; Field, J A

    2006-01-01

    The uncontrolled release of acid mine drainage (AMD) from abandoned mines and tailing piles threatens water resources in many sites worldwide. AMD introduces elevated concentrations of sulfate ions and dissolved heavy metals as well as high acidity levels to groundwater and receiving surface water. Anaerobic biological processes relying on the activity of sulfate reducing bacteria are being considered for the treatment of AMD and other heavy metal containing effluents. Biogenic sulfides form insoluble complexes with heavy metals resulting in their precipitation. The objective of this study was to investigate the remediation of AMD in sulfate reducing bioreactors inoculated with anaerobic granular sludge and fed with an influent containing ethanol. Biological treatment of an acidic (pH 4.0) synthetic AMD containing high concentrations of heavy metals (100 mg Cu(2+)l(-1); 10 mg Ni(2+)l(-1), 10 mg Zn(2+)l(-1)) increased the effluent pH level to 7.0-7.2 and resulted in metal removal efficiencies exceeding 99.2%. The highest metal precipitation rates attained for Cu, Ni and Zn averaged 92.5, 14.6 and 15.8 mg metal l(-1) of reactor d(-1). The results of this work demonstrate that an ethanol-fed sulfidogenic reactor was highly effective to remove heavy metal contamination and neutralized the acidity of the synthetic wastewater.

  16. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology.

  17. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. PMID:26539712

  18. Vitamin A increases nerve growth factor and retinoic acid receptor beta and improves diabetic neuropathy in rats.

    PubMed

    Hernández-Pedro, Norma; Granados-Soto, Vinicio; Ordoñez, Graciela; Pineda, Benjamin; Rangel-López, Edgar; Salazar-Ramiro, Aleli; Arrieta, Oscar; Sotelo, Julio

    2014-09-01

    All-trans retinoic acid (ATRA) promotes the endogenous expression of both nerve growth factor (NGF) and retinoic acid receptor beta (RAR-β). We have previously shown that the administration of ATRA partly reverts the damage induced by diabetic neuropathy (DN). In this investigation, we evaluated the effects of vitamin A, a commercial, inexpensive compound of retinoic acid, on the therapy of DN. A total of 70 rats were randomized into 4 groups. Group A was the control, and groups B, C, and D received a total dose of 60 mg/kg streptozotocin intraperitoneally. When signs of DN developed, groups C and D were treated either with vitamin A (20,000 IU) or with ATRA 25 mg/kg for 60 days. Plasma glucose, contents of NGF, thermal and nociceptive tests, and RAR-β expression were evaluated. All diabetic rats developed neuropathy. The treatment with vitamin A and ATRA reverted similarly the sensorial disturbances, which was associated with increased contents of NGF and RAR-β expression. Our results indicate that the administration of vitamin A has the same therapeutic effect as ATRA on peripheral neuropathy and suggest its potential therapeutic use in patients with diabetes.

  19. Twice-weekly consumption of farmed Atlantic salmon increases plasma content of phospholipid n-3 fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated intake of the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is related to risk reduction of cardiovascular and other diseases. Increased consumption of seafood such as farmed Atlantic salmon is an effective way to consume n-3 but there is a paucity of data as ...

  20. Somatostatin prevents the postoperative increases in plasma amino acid clearance and urea synthesis after elective cholecystectomy.

    PubMed Central

    Heindorff, H; Billesbølle, P; Pedersen, S L; Hansen, R; Vilstrup, H

    1995-01-01

    The importance of glucagon on postoperative changes in hepatic amino-nitrogen conversion were investigated in six patients undergoing elective cholecystectomy for uncomplicated gall stones. Patients were given infusions of somatostatin (bolus of 6 micrograms/kg followed by continuous infusion of 6 micrograms/kg/h) from induction of anaesthesia to the end of investigation, the first postoperative day (30 hours). Controls were 16 patients undergoing the same procedures omitting the somatostatin infusion. In all patients blood concentration and plasma clearance of total alpha-amino-nitrogen, and amino acid stimulated rate of urea synthesis were measured. Elective cholecystectomy decreased blood alpha-amino-nitrogen concentration from mean (SEM) 2.9 (0.2) to 2.4 (0.1) mmol/l (p < 0.05), increased the clearance of total alpha-amino-nitrogen from 5.2 (0.3) to 6.6 (0.3) ml/s (p < 0.05), and increased the rate of amino acid stimulated urea synthesis from 27 (1) to 37 (2) mumol/s (p < 0.05) pointing to increased hepatic removal of amino-nitrogen at expense of plasma amino-nitrogen. Infusion of somatostatin prevented increase of glucagon for 24 hours after surgery, and prevented the negative changes in postoperative nitrogen homeostasis resulting from the postoperative changes in hepatic nitrogen conversion, suggesting glucagon as mediator. The exact mechanism remains in doubt, however, because of the multiple effects of somatostatin. PMID:7797129

  1. Increased Glutamate and Homocysteine and Decreased Glutamine Levels in Autism: A Review and Strategies for Future Studies of Amino Acids in Autism

    PubMed Central

    Ghanizadeh, Ahmad

    2013-01-01

    There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids. PMID:24167375

  2. Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism.

    PubMed

    Ghanizadeh, Ahmad

    2013-01-01

    There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids. PMID:24167375

  3. Arundic acid attenuates retinal ganglion cell death by increasing glutamate/aspartate transporter expression in a model of normal tension glaucoma

    PubMed Central

    Yanagisawa, M; Aida, T; Takeda, T; Namekata, K; Harada, T; Shinagawa, R; Tanaka, K

    2015-01-01

    Glaucoma is the second leading cause of blindness worldwide and is characterized by gradual visual impairment owing to progressive loss of retinal ganglion cells (RGCs) and their axons. Glutamate excitotoxicity has been implicated as a mechanism of RGC death in glaucoma. Consistent with this claim, we previously reported that glutamate/aspartate transporter (GLAST)-deficient mice show optic nerve degeneration that is similar to that observed in glaucoma. Therefore, drugs that upregulate GLAST may be useful for neuroprotection in glaucoma. Although many compounds are known to increase the expression of another glial glutamate transporter, EAAT2/GLT1, few compounds are shown to increase GLAST expression. Arundic acid is a glial modulating agent that ameliorates delayed ischemic brain damage by attenuating increases in extracellular glutamate. We hypothesized that arundic acid neuroprotection involves upregulation of GLAST. To test this hypothesis, we examined the effect of arundic acid on GLAST expression and glutamate uptake. We found that arundic acid induces GLAST expression in vitro and in vivo. In addition, arundic acid treatment prevented RGC death by upregulating GLAST in heterozygous (GLAST+/−) mice. Furthermore, arundic acid stimulates the human GLAST ortholog, EAAT1, expression in human neuroglioblastoma cells. Thus, discovering compounds that can enhance EAAT1 expression and activity may be a novel strategy for therapeutic treatment of glaucoma. PMID:25789968

  4. What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids--Daily vs. Weekly Administration of Fish Oil?

    PubMed

    Ghasemifard, Samaneh; Sinclair, Andrew J; Kaur, Gunveen; Lewandowski, Paul; Turchini, Giovanni M

    2015-07-01

    The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) vary from eating oily fish ("once to twice per week") to consuming specified daily amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ("250-500 mg per day"). It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment), representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment), representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA), for six weeks. The whole body, tissues and faeces were analysed for fatty acid content. The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA) + DHA) was towards catabolism (β-oxidation) accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were β-oxidised when originating from the Constant treatment (84% of dose), compared with the Spike treatment (75% of dose). Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose), than from the Constant treatment (15% of dose). These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.

  5. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  6. Effect of increased protein intake on renal acid load and renal hemodynamic responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; van Baak, Marleen A

    2016-03-01

    Increased protein intake versus maltodextrin intake for 4 weeks lowers blood pressure. Concerns exist that high-protein diets reduce renal function. Effects of acute and 4-week protein intake versus maltodextrin intake on renal acid load, glomerular filtration rate and related parameters were compared in this study. Seventy-nine overweight individuals with untreated elevated blood pressure and normal kidney function were randomized to consume a mix of protein isolates (60 g/day) or maltodextrin (60 g/day) for 4 weeks in energy balance. Twenty-four-hour urinary potential renal acid load (uPRAL) was compared between groups. A subgroup (maltodextrin N = 27, protein mix N = 25) participated in extra test days investigating fasting levels and postprandial effects of meals supplemented with a moderate protein- or maltodextrin-load on glomerular filtration rate, effective renal plasma flow, plasma renin, aldosterone, pH, and bicarbonate. uPRAL was significantly higher in the protein group after 4 weeks (P ≤ 0.001). Postprandial filtration fraction decreased further after the protein-supplemented breakfast than after the maltodextrin-supplemented breakfast after 4 weeks of supplementation (P ≤ 0.001). Fasting and postprandial levels of glomerular filtration rate, effective renal plasma flow, renin, aldosterone, angiotensin-converting enzyme, pH and bicarbonate did not differ between groups. In conclusion, 4 weeks on an increased protein diet (25% of energy intake) increased renal acid load, but did not affect renal function. Postprandial changes, except for filtration fraction, also did not differ between groups. These data suggest that a moderate increase in protein intake by consumption of a protein mix for 4 weeks causes no (undesirable) effects on kidney function in overweight and obese individuals with normal kidney function. PMID:26997623

  7. Effect of increased protein intake on renal acid load and renal hemodynamic responses.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; van Baak, Marleen A

    2016-03-01

    Increased protein intake versus maltodextrin intake for 4 weeks lowers blood pressure. Concerns exist that high-protein diets reduce renal function. Effects of acute and 4-week protein intake versus maltodextrin intake on renal acid load, glomerular filtration rate and related parameters were compared in this study. Seventy-nine overweight individuals with untreated elevated blood pressure and normal kidney function were randomized to consume a mix of protein isolates (60 g/day) or maltodextrin (60 g/day) for 4 weeks in energy balance. Twenty-four-hour urinary potential renal acid load (uPRAL) was compared between groups. A subgroup (maltodextrin N = 27, protein mix N = 25) participated in extra test days investigating fasting levels and postprandial effects of meals supplemented with a moderate protein- or maltodextrin-load on glomerular filtration rate, effective renal plasma flow, plasma renin, aldosterone, pH, and bicarbonate. uPRAL was significantly higher in the protein group after 4 weeks (P ≤ 0.001). Postprandial filtration fraction decreased further after the protein-supplemented breakfast than after the maltodextrin-supplemented breakfast after 4 weeks of supplementation (P ≤ 0.001). Fasting and postprandial levels of glomerular filtration rate, effective renal plasma flow, renin, aldosterone, angiotensin-converting enzyme, pH and bicarbonate did not differ between groups. In conclusion, 4 weeks on an increased protein diet (25% of energy intake) increased renal acid load, but did not affect renal function. Postprandial changes, except for filtration fraction, also did not differ between groups. These data suggest that a moderate increase in protein intake by consumption of a protein mix for 4 weeks causes no (undesirable) effects on kidney function in overweight and obese individuals with normal kidney function.

  8. Hot topic: Early postpartum treatment of commercial dairy cows with nonsteroidal antiinflammatory drugs increases whole-lactation milk yield.

    PubMed

    Carpenter, A J; Ylioja, C M; Vargas, C F; Mamedova, L K; Mendonça, L G; Coetzee, J F; Hollis, L C; Gehring, R; Bradford, B J

    2016-01-01

    Previous research has shown that postpartum administration of the nonsteroidal antiinflammatory drug (NSAID) sodium salicylate can increase 305-d milk yield in older dairy cattle (parity 3 and greater). However, in this prior work, sodium salicylate was delivered to cows via the drinking water, a method that does not align well with current grouping strategies on commercial dairy farms. The objective of the current study was to replicate these results on a commercial dairy farm with a simplified treatment protocol and to compare sodium salicylate with another NSAID, meloxicam. Dairy cattle in their second lactation and greater (n=51/treatment) were alternately assigned to 1 of 3 treatments at parturition, with treatments lasting for 3d. Experimental treatments began 12 to 36 h after parturition and were (1) 1 placebo bolus on the first day and 3 consecutive daily drenches of sodium salicylate (125 g/cow per day; SAL); (2) 1 bolus of meloxicam (675 mg/cow) and 3 drenches of an equal volume of water (MEL); or (3) 1 placebo bolus and 3 drenches of water (CON). Blood samples were collected on the first day of treatment, immediately following the last day of treatment, and 7d after the last day of treatment; plasma was analyzed for glucose, β-hydroxybutyrate (BHB), free fatty acids, haptoglobin, and paraoxonase. Milk production, body condition score, reproductive status, and retention in the herd were monitored for 365 d posttreatment, and effects of treatment, parity, days in milk, and interactions were evaluated in mixed effects models. Significance was declared at P<0.05. Whole-lactation milk and protein yields were greater in NSAID-treated cows, although 305-d fat production was not affected. There was a significant interaction of treatment and parity for plasma glucose concentration; MEL increased plasma glucose concentrations compared with CON and SAL in older cows. Sodium salicylate decreased plasma BHB concentration compared with MEL at 7d posttreatment

  9. Controlling for sugar and ascorbic acid, a mixture of flavonoids matching navel oranges significantly increases human postprandial serum antioxidant capacity.

    PubMed

    Snyder, Shannon M; Reber, Josh D; Freeman, Brenner L; Orgad, Kfir; Eggett, Dennis L; Parker, Tory L

    2011-07-01

    Fruit and vegetable consumption reduces the risk for cardiovascular disease development. The postprandial state is an important contributor to chronic disease development. Orange flavonoids may reduce postprandial oxidation. It was hypothesized that a mixture of orange flavonoids would reduce postprandial oxidation better than a single orange flavonoid or orange sugar and ascorbic acid, but not as well as orange juice, when consumed with a typical breakfast. A placebo-controlled crossover trial (16 male and female participants, 4 treatments, 4 visits) was carried out. Treatments were placebo (ascorbic acid and sugar equivalent to orange juice); placebo plus hesperidin; placebo plus hesperidin, luteolin, and naringenin (mixture; found to have synergistic antioxidant properties in vitro in previous work); and orange juice (positive control). Serum oxygen radical absorbance capacity (ORAC), total plasma phenolics (TP), and serum lipoprotein oxidation (LO) were measured after a 12-hour baseline fast and at 1, 2, and 3 hours after sample consumption. The placebo plus mixture and orange juice groups were significantly increased in ORAC and LO lag time. Data for TP were inconsistent with ORAC and LO. Contrary to previous studies attributing the protective postprandial effect to fructose and ascorbate in other fruit trials, orange phenolic compounds contribute directly to the postprandial oxidative protection of serum, despite an inconsistent change in serum TP.

  10. A Sustainable Approach for Acid Rock Drainage Treatment using Clinoptilolite

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Xu, W.; Grace, J. R.

    2009-04-01

    Problems related to acid rock drainage (ARD) occur along many highways of British Columbia. The ARD problem at Pennask Creek along Highway 97C in the Thompson-Okanagan region is an ideal site for pilot study to investigate a possible remediation solution. The highway was opened in 1991. An ARD problem was identified in 1997. Both sides of Highway 97C are producing acidified runoff from both cut rock surface and a fractured ditch. This runoff eventually enters Pennask Creek, the largest spawning source of rainbow trout in British Columbia. The current remediation technique using limestone for ARD treatment appears to be unnecessarily expensive, to generate additional solid waste and to not be optimally effective. A soil mineral natural zeolite - clinoptilolite - which is inexpensive and locally available, has a high metal adsorption capacity and a significant buffering capacity. Moreover, the clinoptilolite materials could be back-flushed and reused on site. An earlier batch adsorption study from our laboratory demonstrated that clinoptilolite has a high adsorption capacity for Cu, Zn, Al, with adsorption concentrations 131, 158 and 215 mg/kg clinoptilolite, respectively, from ARD of pH 3.3. Removal of metals from the loaded clinoptilolite by back-flushing was found to depend on the pH, with an optimum pH range for extraction of 2.5 to 4.0 for a contact time of one hour. The rank of desorption effectiveness was EDTA > NaCl > NaNO3 > NaOAC > NaHCO3 > Na2CO3 > NaOH > Ca(OH)2. A novel process involving cyclic adsorption on clinoptilolite followed by regeneration of the sorbent by desorption is examined for the removal of heavy metals from acid rock drainage. Experimental results show that the adsorption of zinc and copper depends on the pH and on external mass transfer. Desorption is assisted by adding NaCl to the water. A slurry bubble column was able to significantly reduce the time required for both adsorption and desorption in batch tests. XRD analysis indicated

  11. Regulating acidity, porosity, and morphology of hierarchical SAPO-11 zeolite by aging treatment.

    PubMed

    Liu, Yuxiang; Xu, Lu; Lv, Yuchao; Liu, Xinmei

    2016-10-01

    A facile method to modify pore structure, acidic character, and morphology of SAPO-11 molecular sieve was proposed. Aging treatment (e.g., microwave irradiation or lyophilization) is introduced in the preparation of dry gel. It regulates the kinetics of zeolitic nucleation and growth. X-ray diffraction, scanning electron microscopy, N2-adsorption, temperature programmed desorption, laser particle analyzer, and (29)Si MAS NMR were employed to investigate the effects of aging treatments on SAPO-11 products. The experimental results indicate that depolymerization reaction of silicon species is enhanced aged by microwave irradiation with a higher temperature (90°C). Ratio of SM 3 to SM 2 substituting mode increases producing more strong Brønsted acid sites. Lyophilization technology, as another aging method, was employed to control the morphology of SAPO-11. Nano-sized hierarchical SAPO-11 molecular sieve (200nm in length) is obtained with an oriented growth. Activity of hydroisomerization catalysts is regulated by aging treatment. Cracking reaction attributes to a high conversion nearly 87wt% for M90. The hydroisomerization reaction is enhanced for M40 due to a large proportion of moderate acid sites. PMID:27362909

  12. [Characteristics of acid red 3R wastewater treatment by ozone microbubbles].

    PubMed

    Zhang, Jing; Du, Ya-Wei; Liu, Xiao-Jing; Zhou, Yu-Wen; Liu, Chun; Yang, Jing-Liang; Zhang, Lei

    2015-02-01

    The application of microbubble technology for ozonation wastewater treatment could enhance ozone mass transfer, improve ozonation performance and increase ozone utilization efficiency. The ozone microbubbles were used to treat synthetic acid red 3R wastewater in the present study, and compared to ozone conventional bubbles. The ozone mass transfer and ozonation characteristics of acid red 3R were investigated when ozone microbubbles and ozone conventional bubbles were applied. The results confirmed the enhanced ozone mass transfer using microbubbles. The ozone mass transfer coefficient using microbubbles was 3.6 times higher than that using conventional bubbles under the same conditions. Simultaneously, the ozone decomposition coefficient using microbubbles was 6.2 times higher than that using conventional bubbles, which would be favorable for *OH generation. The ozonation rate and mineralization efficiency of acid red 3R could be improved significantly using ozone microbubbles. A TOC removal efficiency of 78.0% was achieved using ozone microbubbles, which was about 2 times higher than that using ozone conventional bubbles. The ozone utilization efficiency using microbubbles was much higher that using conventional bubbles during ozonation treatment of acid red 3R. The average ozone utilization efficiencies were 97.8% and 69.3% when microbubbles and conventional bubbles were used, respectively. The oxidative ability of ozone microbubbles could be increased by enhancing *OH generation, and as a result, the oxidative reaction of degradation intermediates was accelerated by ozone microbubbles. Especially, the mineralization ability of small organic acid intermediates using ozone microbubbles was about 1.6 times higher than that using ozone conventional bubbles.

  13. Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    PubMed Central

    Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M.

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness. PMID:22745735

  14. Increased fatty acid β-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers.

    PubMed

    Leng, Zhixian; Fu, Qin; Yang, Xue; Ding, Liren; Wen, Chao; Zhou, Yanmin

    2016-08-01

    Two hundred and forty 1-day-old male Arbor Acres broiler chickens were randomly assigned to five dietary treatments with six replicates of eight chickens per replicate cage for a 42-day feeding trial. Broiler chickens were fed a basal diet supplemented with 0 (control), 250, 500, 750 or 1000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine decreased the absolute and relative weight of abdominal fat (linear P < 0.05, quadratic P < 0.01), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and total cholesterol (TC) (linear P < 0.05), and increased concentration of nonesterified fatty acid (NEFA) (linear P = 0.038, quadratic P = 0.003) in serum of broilers. Moreover, incremental levels of betaine increased linearly (P < 0.05) the proliferator-activated receptor alpha (PPARα), the carnitine palmitoyl transferase-I (CPT-I) and 3-hydroxyacyl-coenzyme A dehydrogenase (HADH) messenger RNA (mRNA) expression, but decreased linearly (P < 0.05) the fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl-CoA (HMGR) mRNA expression in liver of broilers. In conclusion, this study indicated that betaine supplementation did not affect growth performance of broilers, but was effective in reducing abdominal fat deposition in a dose-dependent manner, which was probably caused by combinations of a decrease in fatty acid synthesis and an increase in β-oxidation.

  15. Increased fatty acid β-oxidation as a possible mechanism for fat-reducing effect of betaine in broilers.

    PubMed

    Leng, Zhixian; Fu, Qin; Yang, Xue; Ding, Liren; Wen, Chao; Zhou, Yanmin

    2016-08-01

    Two hundred and forty 1-day-old male Arbor Acres broiler chickens were randomly assigned to five dietary treatments with six replicates of eight chickens per replicate cage for a 42-day feeding trial. Broiler chickens were fed a basal diet supplemented with 0 (control), 250, 500, 750 or 1000 mg/kg betaine, respectively. Growth performance was not affected by betaine. Incremental levels of betaine decreased the absolute and relative weight of abdominal fat (linear P < 0.05, quadratic P < 0.01), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and total cholesterol (TC) (linear P < 0.05), and increased concentration of nonesterified fatty acid (NEFA) (linear P = 0.038, quadratic P = 0.003) in serum of broilers. Moreover, incremental levels of betaine increased linearly (P < 0.05) the proliferator-activated receptor alpha (PPARα), the carnitine palmitoyl transferase-I (CPT-I) and 3-hydroxyacyl-coenzyme A dehydrogenase (HADH) messenger RNA (mRNA) expression, but decreased linearly (P < 0.05) the fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl-CoA (HMGR) mRNA expression in liver of broilers. In conclusion, this study indicated that betaine supplementation did not affect growth performance of broilers, but was effective in reducing abdominal fat deposition in a dose-dependent manner, which was probably caused by combinations of a decrease in fatty acid synthesis and an increase in β-oxidation. PMID:27071487

  16. [Gamma-hydroxybutyric acid (GHB) dependence and the GHB withdrawal syndrome: diagnosis and treatment].

    PubMed

    van Noorden, Martijn S; Kamal, Rama; de Jong, Cor A J; Vergouwen, A C M Ton; Zitman, Frans G

    2010-01-01

    Gamma-hydroxybutyric acid (GHB) is a neurotransmitter that occurs naturally in the brain and is increasingly being used as a 'party drug' because of its relaxing and euphoria-inducing effects. GHB has a limited medical use in the treatment of narcolepsy. GHB-intoxications occur often in non-medical use, and generally result in a coma of short duration. GHB use several times a day can lead to tolerance and dependence. After sudden cessation or reduction of intensive GHB use, a severe withdrawal syndrome may occur with symptoms varying from tremor, anxiety and agitation to autonomic instability, hallucinations and delirium. Treatment of the GHB withdrawal syndrome consists of supportive care and benzodiazepines, often in high doses. The controlled detoxification of GHB using pharmaceutical GHB in an adjusted dose is currently being investigated in the Netherlands. There is no literature concerning the treatment of patients following GHB intoxication or after detoxification.

  17. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2013-05-01

    Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420°C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440°C.

  18. Increasing the efficacy of cue exposure treatment in preventing relapse of addictive behavior.

    PubMed

    Havermans, Remco C; Jansen, Anita T M

    2003-07-01

    Theoretically, cue exposure treatment should be able to prevent relapse by extinguishing conditioned drug responding (e.g. cue-elicited craving). According to contemporary learning theory, though, extinction does not eliminate conditioned responding. Analogous cue exposure with response prevention (CERP) as a treatment of addictive behavior might not eliminate the learned relation between drug-related cues and drug use. This does not necessarily mean that cue exposure cannot successfully prevent relapse. Various suggestions for increasing the efficacy of cue exposure treatment are being discussed from a contemporary learning theory perspective. It is suggested that cue exposure treatment incorporating retrieval cues can be a beneficial treatment in preventing relapse of addictive behavior.

  19. Evidence for field cancerisation treatment of actinic keratoses with topical diclofenac in hyaluronic acid.

    PubMed

    Ulrich, Martina; Pellacani, Giovanni; Ferrandiz, Carlos; Lear, John T

    2014-01-01

    Actinic keratosis (AK) is a common skin disease seen in daily practice. It is associated with a risk of progression to invasive squamous cell carcinoma and can be regarded as a marker of increased risk for non-melanoma skin cancer. The use of a field-directed treatment approach reflects the need to initiate early treatment over an affected area to prevent tumour development and local recurrence. Candidate field-directed treatments require a mechanism of action compatible with an effect on field cancerisation, immediate and long-term efficacy against visible lesions and efficacy against subclinical AK. Applicability to large treatment areas, tolerability compatible with long-term use, utility in organ transplant patients and, ideally, evidence of extended long-term activity may also be desirable. We review the evidence of a role for topical diclofenac sodium 3% administered in a 2.5% hyaluronic acid gel (diclofenac/HA) as field-directed treatment. Diclofenac/HA directly targets AK pathophysiology through multiple mechanisms, including induction of apoptosis, inhibition of angiogenesis and reduced inflammation. Clearance of visible field cancerisation is safely and rapidly achieved with a 90-day treatment course in patients with affected areas of up to 50 cm(2) and is associated with a ≥75% reduction in target lesion number score in 85% and 91% of patients, respectively, at 30 days and 1 year post-treatment. Following treatment of AK in high-risk transplant patients, 45% remained free of lesions in the treatment area at 2 years post-treatment. We conclude that diclofenac/HA fulfils most criteria necessary to be considered an appropriate candidate for a field-directed treatment in AK.

  20. Obesity increases free thyroxine proportionally to nonesterified fatty acid concentrations in adult neutered female cats.

    PubMed

    Ferguson, D C; Caffall, Z; Hoenig, M

    2007-08-01

    The obese cat is a model for the study of the progression toward type 2 diabetes. In this study, the impact of obesity on the hypothalamic-pituitary-thyroid axis was examined in 21 domestic shorthair cats before and after the development of obesity, which significantly increased body mass index (BMI), % body fat (BF), and girth (P<0.0001 for all). Serum total thyroxine (TT(4)), tri-iodothyronine, free T(4) (FT(4)) by direct dialysis, nonesterified fatty acids (NEFA), and leptin were measured, and FT(4) fraction (FFT(4)) was calculated. Serum thyrotropin (TSH) concentrations were measured in nine animals by validating a heterologous canine TSH assay with recombinant feline TSH as a standard. FT(4), FFT(4), NEFAs, and leptin were significantly higher in obese cats. FT(4) had the strongest positive correlation with obesity indices BF, BMI, girth, NEFA, and leptin. Fatty acids oleate and palmitate were shown to inhibit T(4) binding to pooled cat serum in vitro, suggesting the possibility that this mechanism was also relevant in vivo. Serum TT(4) and TSH did not rise significantly. The implications for thyroid hormone (TH) action are not yet clear, but fatty acids have been proposed to inhibit the cellular uptake of TH and/or pituitary TH receptor binding, leading to TH resistance. Increased leptin may also alter sensitivity to negative feedback of TH. In conclusion, feline obesity is associated with a significant increase in FT(4) within the normal range; future investigation into the cellular thyroid status will be necessary to establish cause and effect in this obesity model.

  1. Alpha-Linolenic Acid-Induced Increase in Neurogenesis is a Key Factor in the Improvement in the Passive Avoidance Task After Soman Exposure.

    PubMed

    Piermartiri, Tetsade C B; Pan, Hongna; Chen, Jun; McDonough, John; Grunberg, Neil; Apland, James P; Marini, Ann M

    2015-09-01

    Exposure to organophosphorous (OP) nerve agents such as soman inhibits the critical enzyme acetylcholinesterase (AChE) leading to excessive acetylcholine accumulation in synapses, resulting in cholinergic crisis, status epilepticus and brain damage in survivors. The hippocampus is profoundly damaged after soman exposure leading to long-term memory deficits. We have previously shown that treatment with three sequential doses of alpha-linolenic acid, an essential omega-3 polyunsaturated fatty acid, increases brain plasticity in naïve animals. However, the effects of this dosing schedule administered after a brain insult and the underlying molecular mechanisms in the hippocampus are unknown. We now show that injection of three sequential doses of alpha-linolenic acid after soman exposure increases the endogenous expression of mature BDNF, activates Akt and the mammalian target of rapamycin complex 1 (mTORC1), increases neurogenesis in the subgranular zone of the dentate gyrus, increases retention latency in the passive avoidance task and increases animal survival. In sharp contrast, while soman exposure also increases mature BDNF, this increase did not activate downstream signaling pathways or neurogenesis. Administration of the inhibitor of mTORC1, rapamycin, blocked the alpha-linolenic acid-induced neurogenesis and the enhanced retention latency but did not affect animal survival. Our results suggest that alpha-linolenic acid induces a long-lasting neurorestorative effect that involves activation of mTORC1 possibly via a BDNF-TrkB-mediated mechanism. PMID:25920465

  2. Low ascorbic acid and increased oxidative stress in gulo(-/-) mice during development.

    PubMed

    Harrison, Fiona E; Meredith, M Elizabeth; Dawes, Sean M; Saskowski, Jeanette L; May, James M

    2010-08-19

    Vitamin C (ascorbic acid, AA) depletion during prenatal and postnatal development can lead to oxidative stress in the developing brain and other organs. Such damage may lead to irreversible effects on later brain function. We studied the relationship between AA deficiency and oxidative stress during development in gulonolactone oxidase (gulo) knockout mice that are unable to synthesize their own ascorbic acid. Heterozygous gulo(+/-) mice can synthesize AA and typically have similar tissue levels to wild-type mice. Gulo(+/-) dams were mated with gulo(+/-) males to provide offspring of each possible genotype. Overall, embryonic day 20 (E20) and postnatal day 1 (P1) pups were protected against oxidative stress by sufficient AA transfer during pregnancy. On postnatal day 10 (P10) AA levels were dramatically lower in liver and cerebellum in gulo(-/-) mice and malondialdehyde (MDA) levels were significantly increased. In postnatal day 18 pups (P18) AA levels decreased further in gulo(-/-) mice and oxidative stress was observed in the accompanying elevations in MDA in liver, and F(2)-isoprostanes in cortex. Further, total glutathione levels were higher in gulo(-/-) mice in cortex, cerebellum and liver, indicating that a compensatory antioxidant system was activated. These data show a direct relationship between AA level and oxidative stress in the gulo(-/-) mice. They reinforce the critical role of ascorbic acid in preventing oxidative stress in the developing brain in animals that, like humans, cannot synthesize their own AA.

  3. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    PubMed

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  4. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.

    PubMed

    Panja, Subrata; Santiago-Frangos, Andrew; Schu, Daniel J; Gottesman, Susan; Woodson, Sarah A

    2015-11-01

    Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs.

  5. Increased excretion of c4-carnitine species after a therapeutic acetylsalicylic Acid dose: evidence for an inhibitory effect on short-chain Fatty Acid metabolism.

    PubMed

    Mels, Catharina M C; Jansen van Rensburg, Peet; van der Westhuizen, Francois H; Pretorius, Pieter J; Erasmus, Elardus

    2011-01-01

    Acetylsalicylic acid and/or its metabolites are implicated to have various effects on metabolism and, especially, on mitochondrial function. These effects include both inhibitory and stimulatory effects. We investigated the effect of both combined and separate oral acetylsalicylic acid and acetaminophen administration at therapeutic doses on the urinary metabolite profile of human subjects. In this paper, we provided in vivo evidence, in human subjects, of a statistically significant increase in isobutyrylcarnitine after the administration of a therapeutic dose of acetylsalicylic acid. We, therefore, propose an inhibitory effect of acetylsalicylic acid on the short-chain fatty acid metabolism, possibly at the level of isobutyryl-CoA dehydrogenase.

  6. Treatment of acne vulgaris with the retinoic acid derivative Ro 11-1430. A controlled clinical trial against retinoic acid.

    PubMed

    Christiansen, J; Holm, P; Reymann, F

    1976-01-01

    In a double-blind, randomized, group-comparative clinical trial, 31 patients with acne vulgaris received topical treatment for 6-8 weeks with a lotion containing either 0.05% retinoic acid or 0.1% of the retinoic acid derivative Ro 11-1430. The side-effects erythema, desquamation and burning were significantly less frequent with Ro 11-1430 than with retinoic acid. The treatments appeared to be approximately equally effective in reducing the number of acne elements, but due to the limited number of patients studied, the trial was admittedly not sufficient to detect differences with regard to therapeutic efficacy.

  7. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria

    PubMed Central

    2013-01-01

    Background Secondary hyperoxaluria either based on increased intestinal absorption of oxalate (enteric), or high oxalate intake (dietary), is a major risk factor of calcium oxalate urolithiasis. Oxalate-degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Methods Twenty healthy subjects were studied initially while consuming a diet normal in oxalate. Study participants were then placed on a controlled oxalate-rich diet for a period of 6 weeks. Starting with week 2 of the oxalate-rich diet, participants received 2.6 g/day of a lactic acid bacteria preparation for 5 weeks. Finally, subjects were examined 4 weeks after treatment while consuming again a normal-oxalate diet. Participants provided weekly 24-hour urine specimens. Analyses of blood samples were performed before and at the end of treatment. Results Urinary oxalate excretion increased significantly from 0.354 ± 0.097 at baseline to 0.542 ± 0.163 mmol/24 h under the oxalate-rich diet and remained elevated until the end of treatment, as did relative supersaturation of calcium oxalate. Plasma oxalate concentration was significantly higher after 5 weeks of treatment compared to baseline. Four weeks after treatment, urinary oxalate excretion and relative supersaturation of calcium oxalate fell to reach initial values. Conclusions Persistent dietary hyperoxaluria and increased plasma oxalate concentration can already be induced in healthy subjects without disorders of oxalate metabolism. The study preparation neither reduced urinary oxalate excretion nor plasma oxalate concentration. The preparation may be altered to select for lactic acid bacteria strains with the highest oxalate-degrading activity. PMID:24330782

  8. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2014-03-15

    The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons.

  9. The effect of dilute acid pre-treatment process in bioethanol production from durian (Durio zibethinus) seeds waste

    NASA Astrophysics Data System (ADS)

    Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.

    2016-03-01

    Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.

  10. Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome.

    PubMed

    Sheedy, John R; Wettenhall, Richard E H; Scanlon, Denis; Gooley, Paul R; Lewis, Donald P; McGregor, Neil; Stapleton, David I; Butt, Henry L; DE Meirleir, Kenny L

    2009-01-01

    Patients with chronic fatigue syndrome (CFS) are affected by symptoms of cognitive dysfunction and neurological impairment, the cause of which has yet to be elucidated. However, these symptoms are strikingly similar to those of patients presented with D-lactic acidosis. A significant increase of Gram positive facultative anaerobic faecal microorganisms in 108 CFS patients as compared to 177 control subjects (p<0.01) is presented in this report. The viable count of D-lactic acid producing Enterococcus and Streptococcus spp. in the faecal samples from the CFS group (3.5 x 10(7) cfu/L and 9.8 x 10(7) cfu/L respectively) were significantly higher than those for the control group (5.0 x 10(6) cfu/L and 8.9 x 10(4) cfu/L respectively). Analysis of exometabolic profiles of Enterococcus faecalis and Streptococcus sanguinis, representatives of Enterococcus and Streptococcus spp. respectively, by NMR and HPLC showed that these organisms produced significantly more lactic acid (p<0.01) from (13)C-labeled glucose, than the Gram negative Escherichia coli. Further, both E. faecalis and S. sanguinis secrete more D-lactic acid than E. coli. This study suggests a probable link between intestinal colonization of Gram positive facultative anaerobic D-lactic acid bacteria and symptom expressions in a subgroup of patients with CFS. Given the fact that this might explain not only neurocognitive dysfunction in CFS patients but also mitochondrial dysfunction, these findings may have important clinical implications.

  11. Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force.

    PubMed

    Xu, Y J; Panagia, V; Shao, Q; Wang, X; Dhalla, N S

    1996-08-01

    Although phosphatidic acid (PA) is mainly formed due to the hydrolysis of phosphatidylcholine by myocardial phospholipase D, its functional significance in the heart is not fully understood. The present study was designed to determine the effects of PA on intracellular free Ca2+ level ([Ca2+]i) in freshly isolated adult rat cardiomyocytes by using fura 2-acextoxmethylester and free fura 2 technique. Addition of PA at concentrations of 1-200 microM produced a concentration-dependent increase in [Ca2+]i from the basal level of 117 +/- 8 nM; maximal increase in [Ca2+]i was 233 +/- 50 nM, whereas median effective concentration (EC50) for PA was 45 +/- 1.2 microM. This increase in [Ca2+]i was abolished by the removal of extracellular Ca2+ with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and was partially attenuated by Ca2+ channel blockers, verapamil or diltiazem. Preincubation of cardiomyocytes with cyclopiazonic acid and thapsigargin or with ryanodine [to deplete sarcoplasmic reticulum (SR) Ca2+] attenuated the PA-induced increase in [Ca2+]i by 66, 37, and 43%, respectively. Furthermore, the response of [Ca2+]i to PA was blunted by 2-nitro-4 carboxyphenylcarbonate, an inhibitor of phospholipase C, but was unaffected by staurosporine, a protein kinase C inhibitor. PA was also observed to induce Ca2+ efflux from the myocytes. In addition, an injection of PA (0.34 microgram/100 g body wt i.v.) in rats produced a significant increase of the left ventricular developed pressure as well as the maximum rates of cardiac contraction and relaxation within 5 min. These data suggest that the PA-induced increase in [Ca2+]i in cardiomyocytes is a consequence of both Ca2+ influx from the extracellular source and Ca2+ release from the intracellular SR stores. Furthermore, these in vitro data suggest the possibility that PA may regulate [Ca2+]i and contractile parameters in the heart.

  12. Laminaria japonica increases plasma exposure of glycyrrhetinic acid following oral administration of Liquorice extract in rats.

    PubMed

    Zhao, Wei-Man; Jiang, Shu-Wen; Chen, Yang; Zhong, Ze-Yu; Wang, Zhong-Jian; Zhang, Mian; Li, Ying; Xu, Ping; Liu, Li; Liu, Xiao-Dong

    2015-07-01

    The present study was designed to investigate the effects of Laminaria japonica (Laminaria) on pharmacokinetics of glycyrrhetinic acid (GA) following oral administration of Liquorice extract in rats. Following oral administrations of single-dose and multi-dose Liquorice extract and Liquorice-Laminaria extract, respectively, plasma samples were obtained at various times and the concentrations of GA, liquiritigenin, and isoliquiritigenin were measured by LC-MS. The effects of Laminaria extract on pharmacokinetics of GA were also investigated, following single-dose and multidose of glycyrrhizic acid (GL). The effects of Laminaria extract on intestinal absorption of GA and GL were studied using the in situ single-pass intestinal perfusion model. The metabolism of GL to GA in the contents of small and large intestines was also studied. The results showed Liquorice-Laminaria extract markedly increased the plasma concentration of GA, accompanied by a shorter Tmax. Similar alteration was observed following multidose administration. However, pharmacokinetics of neither liquiritigenin nor isoliquiritigenin was affected by Laminaria. Similarly, Laminaria markedly increased concentration and decreased Tmax of GA following oral GL were observed. The data from the intestinal perfusion model showed that Laminaria markedly increased GL absorption in duodenum and jejunum, but did not affect the intestinal absorption of GA. It was found that Laminaria enhanced the metabolism of GL to GA in large intestine. In conclusion, Laminaria increased plasma exposures of GA following oral administration of liquorice or GL, which partly resulted from increased intestinal absorption of GL and metabolism of GL to GA in large intestine.

  13. Increase in norepinephrine-induced formation of phosphatidic acid in rat vas deferens after denervation.

    PubMed

    Takenawa, T; Masaki, T; Goto, K

    1983-01-01

    Surgical denervation of rat vas deferens causes supersensitivity in that the tissue sensitivity and the maximum response to a variety of agonists increase. To understand the molecular mechanism of supersensitivity in smooth muscle, norepinephrine(NE)-induced alteration in phospholipid metabolism was studied using control and denervated vasa deferentia. When the tissue was stimulated by NE, only [32P]Pi incorporation into phosphatidic acid(PA) was increased in proportion to the increase in NE concentration without any significant effect on that into other phospholipids. This PA labeling was significantly accelerated by denervation. In the denervated tissue, PA labeling was stimulated by lower concentrations of NE and the maximum response to NE was increased compared to the control. The breakdown of phosphatidylinositol 4-monophosphate(DPI) and phosphatidylinositol 4,5-diphosphate (TPI) was also accelerated by NE. But the influence of denervation on this NE-induced DPI and TPI was not marked. Therefore, it is likely that denervation clearly enhanced NE-induced PA labeling without an appreciable effect on that of the other phospholipids. Furthermore, the absolute amount of PA was also increased by NE, and this increase was exaggerated by denervation. Considering that PA can behave as a Ca2+ ionophore in the plasma membrane, these results suggest that the stimulated accumulation of PA plays an important role in receptor-linked supersensitivity in smooth muscle.

  14. Increased expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats.

    PubMed

    Tomassoni, Daniele; Avola, Roberto; Di Tullio, Maria Antonietta; Sabbatini, Maurizio; Vitaioli, Lucia; Amenta, Francesco

    2004-05-01

    Astrogliosis, consisting in astroglial proliferation and increased expression of the specific cytoskeletal protein glial fibrillary acid protein (GFAP) is common in several situations of brain damage. Arterial hypertension, which induces cerebrovascular changes, can cause also brain damage, neurodegeneration and dementia (vascular dementia). This study was designed to assess astroglial reaction in different brain areas (frontal cortex, occipital cortex, hippocampus and striatum) of spontaneously hypertensive rats (SHR) in the pre-hypertensive phase (2 months of age), in the developing phase of hypertension (4 months of age) and in established hypertension (6 months of age). SHR were compared to age-matched normotensive Wistar-Kyoto (WKY) rats. Analysis included reverse transcription-polymerase chain reaction (RT-PCR) of GFAP mRNA, GFAP immunochemistry (Western blot analysis) and immunohistochemistry. A significant increase of GFAP mRNA and an increase of GFAP immunoreactivity were noticeable in different brain areas of SHR compared to normotensive WKY rats at 6, but not at 2 or 4 months of age. Immunohistochemistry revealed a numerical augmentation (hyperplasia) and an increase in size (hypertrophy) of GFAP-immunoreactive astrocytes in frontal cortex, occipital cortex and striatum of SHR. In the hippocampus of SHR only a numerical increase of GFAP-immunoreactive astrocytes was found. These finding demonstrating the occurrence of astrogliosis in the brain of SHR with established hypertension suggest that hypertension induces a condition of brain suffering enough to increase biosynthesis and expression of GFAP similarly as reported in several neurodegenerative disorders and in brain ischemia.

  15. A gall-inducing caterpillar species increases essential fatty acid content of its host plant without concomitant increases in phytohormone levels.

    PubMed

    Tooker, John F; De Moraes, Consuelo M

    2009-05-01

    Gall-inducing insects are accomplished plant parasites that can profoundly influence host-plant physiology. We recently reported that the caterpillar Gnorimoschema gallaesolidaginis failed to significantly alter emissions of host-plant volatiles that often recruit natural enemies of insect herbivores, and demonstrated that a caterpillar species feeding on linolenate-deficient plant tissues avoids inducing some of the indirect defenses of its host plant. Here, we investigate whether absence of volatile responses to the galler G. gallaesolidaginis could similarly be explained by a lack of linolenate in galls. We screened interior and exterior tissue of galls and control stems of Solidago altissima for free linolenate, linoleate, 12-oxo-phytodienoate, jasmonate, and salicylate. We found, unexpectedly, that G. gallaesolidaginis strongly increased amounts of linolenic and linoleic acids inside galls without associated increases in two downstream products, 12-oxo-phytodienoic or jasmonic acid. In contrast, the generalist caterpillar Heliothis virescens induced elevated levels of linolenic, linoleic, 12-oxo-phytodienoic, and jasmonic acids in S. altissima. Moreover, these two fatty acids and 12-oxo-phytodienoate were significantly and positively associated with jasmonic acid, suggesting that increased levels of these precursors can lead directly to greater amounts of jasmonic acid. Taken together, these findings suggest that gall insects may be able to nutritionally enhance their food source without inducing concomitant increases in phytohormones and associated defense responses.

  16. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    PubMed

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  17. Effects of acid treatment duration and sulfuric acid molarity on purification of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyedeh Z.; Novinrooz, Abdul J.; Reyhani, Ali; Mirershadi, Soghra

    2010-12-01

    Multi-walled carbon nanotubes were synthesized using a Fe-Ni bimetallic catalyst supported by MgO using thermal chemical vapor deposition. Purification processes to remove unwanted carbon structures and other metallic impurities were carried out by boiling in sulfuric acid solution. Various analytical techniques such as TGA/DSC, Raman spectroscopy, SEM, HRTEM and EDAX were employed to investigate the morphology, graphitization and quality of the carbon nanotubes. The obtained results reveal the molarity of sulfuric acid and immersed time of the carbon nanotubes in the acid solution is very effective at purifying multi-walled carbon nanotubes. It was also found that 5 M concentration of boiling sulfuric acid for a 3 h treatment duration led to the highest removal of the impurities with the least destructive effect. Moreover, it was observed that acid treatment results in decreasing of CNTs’ diameter.

  18. Effects of acid treatment duration and sulfuric acid molarity on purification of multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mortazavi, Seyedeh; Novinrooz, Abdul; Reyhani, Ali; Mirershadi, Soghra

    2010-12-01

    Multi-walled carbon nanotubes were synthesized using a Fe-Ni bimetallic catalyst supported by MgO using thermal chemical vapor deposition. Purification processes to remove unwanted carbon structures and other metallic impurities were carried out by boiling in sulfuric acid solution. Various analytical techniques such as TGA/DSC, Raman spectroscopy, SEM, HRTEM and EDAX were employed to investigate the morphology, graphitization and quality of the carbon nanotubes. The obtained results reveal the molarity of sulfuric acid and immersed time of the carbon nanotubes in the acid solution is very effective at purifying multi-walled carbon nanotubes. It was also found that 5 M concentration of boiling sulfuric acid for a 3 h treatment duration led to the highest removal of the impurities with the least destructive effect. Moreover, it was observed that acid treatment results in decreasing of CNTs' diameter.

  19. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    PubMed

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.

  20. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  1. Increased sodium and fluctuations in minerals in acid limes expressing witches' broom symptoms.

    PubMed

    Al-Ghaithi, Aisha G; Hanif, Muhammad Asif; Al-Busaidi, Walid M; Al-Sadi, Abdullah M

    2016-01-01

    Witches' broom disease of lime (WBDL), caused by 'Candidatus Phytoplasma aurantifolia', is a very serious disease of acid limes. The disease destroyed more than one million lime trees in the Middle East. WBDL results in the production of small, clustered leaves in some branches of lime trees. Branches develop symptoms with time and become unproductive, until the whole tree collapses within 4-8 years of first symptom appearance. This study was conducted to investigate differences in minerals between symptomatic and asymptomatic leaves of infected lime trees. The study included one set of leaves from uninfected trees and two sets of infected leaves: symptomatic leaves and asymptomatic leaves obtained from randomly selected acid lime trees. Nested polymerase chain reaction detected phytoplasma in the symptomatic and asymptomatic leaves from the six infected trees, but not from the uninfected trees. Phylogenetic analysis showed that all phytoplasmas belong to the 16S rRNA group II-B. Mineral analysis revealed that the level of Na significantly increased by four times in the symptomatic leaves compared to the non-symptomatic leaves and to the uninfected leaves. In addition, symptom development resulted in a significant increase in the levels of P and K by 1.6 and 1.5 times, respectively, and a significant decrease in the levels of Ca and B by 1.2 and 1.8 times, respectively. There was no significant effect of WBDL on the levels of N, Cu, Zn, and Fe. The development of witches' broom disease symptoms was found to be associated with changes in some minerals. The study discusses factors and consequences of changes in the mineral content of acid limes infected by phytoplasma.

  2. Effect of increased methionine level on performance and apparent ileal digestibility of amino acids in ducks.

    PubMed

    Jamroz, D; Wiliczkiewicz, A; Lemme, A; Orda, J; Skorupińska, J; Wertelecki, T

    2009-10-01

    The experiment was conducted with 960 one-day-old ducklings fed mixtures (I control - 0.28% methionine) additionally supplemented with DL-methionine (DL-Met) at amounts: 0.03% (group II), 0.07% (III), 0.12% (IV) and 0.18% (V). The performance, carcass quality and apparent ileal digestibility of amino acids as the criterions of methionine (Met) effectivity were considered. The analysis of growth and development of ducks as an effect of diversified DL-Met supplements indicate that increased content of this amino acid in the diets has not affected clearly the performance parameters. The body weight of 21-day-old ducklings was significantly affected only by the level of 0.12% of added Met in comparison to control group. On day 42, the differences among groups were negligible; only the addition of 0.12% DL-Met has increased the body weight by 2.4% when compared with control (p > 0.05). Feed conversion estimated for a period of 1-42 days has not been influenced by Met supplementation. The indistinct, however, visible tendency of better ileal amino acids' apparent digestibility (for Asp.a.,Thr, Ser, Glu, Lys) was noted in the groups fed supplemented diets. Application of 0.07% and 0.18% of DL-met, has significantly (p < 0.05) improved the coefficient of cysteine (Cys) apparent ileal digestibility; however, the improvement of Met apparent ileal digestibility has been achieved by the addition of 0.18% Met. The mortality of ducklings in the experiment was very low and varied between 3.15% (II) and 0.0% (groups I and III). In general, application of 0.12% of DL-Met to mixture containing 0.28% Met had positive effect on the productive output of birds and also improved the apparent ileal digestibility of Cys and Met.

  3. Increased Missense Mutation Burden of Fatty Acid Metabolism Related Genes in Nunavik Inuit Population

    PubMed Central

    Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V.; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A.; Rouleau, Guy A.

    2015-01-01

    Background Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Methods Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Results Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. Conclusion The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit. PMID:26010953

  4. Thermal treatment for increasing magnetostrictive response of rare earth-iron alloy rods

    DOEpatents

    Verhoeven, J.D.; McMasters, O.D.

    1989-07-18

    Magnetostrictive rods formed from rare earth-iron alloys are subjected to a short time heat treatment to increase their magnetostrictive response under compression. The heat treatment is preferably carried out at a temperature of from 900 to 1,000 C for 20 minutes to six hours.

  5. Thermal treatment for increasing magnetostrictive response of rare earth-iron alloy rods

    DOEpatents

    Verhoeven, John D.; McMasters, O. D.

    1989-07-18

    Magnetostrictive rods formed from rare earth-iron alloys are subjected to a short time heat treatment to increase their Magnetostrictive response under compression. The heat treatment is preferably carried out at a temperature of from 900.degree. to 1000.degree. C. for 20 minutes to six hours.

  6. Nicotinic acid increases the lipid content of rat brain synaptosomes. [Ethanol effects

    SciTech Connect

    Basilio, C.; Flores, M.

    1989-02-09

    Chronic administration of nicotinic acid (NA) increase hepatic lipids and potentiates a similar effect induced by ethanol. The amethystic properties of NA promoted us to study its effects on the lipid content of brain synaptosomes of native and ethanol treated rats. Groups of 10 Sprague-Dawley female rats received i.p. either saline, ethanol (4g/kg), NA (50mg/kg), or a mixture of both compounds once a week during 3 weeks. The sleeping time (ST) of the animals receiving ethanol was recorded, brain synaptosomes of all groups were prepared and total lipids (TL) and cholesterol (Chol) content were determined. NA, ethanol and ethanol + NA markedly increased both TL and Chol of synaptosomes. Animals treated with ethanol or ethanol + NA developed tolerance. The group treated with ethanol-NA showed the highest Chol content and slept significantly less than the one treated with ethanol alone indicating that the changes induced by NA favored the appearance of tolerance.

  7. Hyaluronic acid is increased in the skin and urine in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Imai, T.; Yamauchi, M.; Nagao, K.

    1996-01-01

    We performed morphological studies of skin and measured glycosaminoglycans in the urine from patients with sporadic amyotrophic lateral sclerosis (ALS) and control subjects. The wide spaces separating collagen bundles reacted strongly with alcian blue stain in ALS patients and stained more markedly as ALS progressed. Staining with alcian blue was virtually eliminated by Streptomyces hyaluronidase. The urinary excretion of hyaluronic acid (HA) (mg/day) was significantly increased (P < 0.01) in ALS patients compared with that of control subjects, and there was a significant positive correlation between the excreted amount of HA and the duration of illness in advanced ALS patients with a duration of more than 2 years from clinical onset (r = 0.72, P < 0.02). We suggest that sporadic ALS includes a metabolic disorder of HA in which an accumulation of HA in the skin is linked to an increased urinary excretion of HA.

  8. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism.

    PubMed

    Grassian, Alexandra R; Parker, Seth J; Davidson, Shawn M; Divakaruni, Ajit S; Green, Courtney R; Zhang, Xiamei; Slocum, Kelly L; Pu, Minying; Lin, Fallon; Vickers, Chad; Joud-Caldwell, Carol; Chung, Franklin; Yin, Hong; Handly, Erika D; Straub, Christopher; Growney, Joseph D; Vander Heiden, Matthew G; Murphy, Anne N; Pagliarini, Raymond; Metallo, Christian M

    2014-06-15

    Oncogenic mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in several types of cancer, but the metabolic consequences of these genetic changes are not fully understood. In this study, we performed (13)C metabolic flux analysis on a panel of isogenic cell lines containing heterozygous IDH1/2 mutations. We observed that under hypoxic conditions, IDH1-mutant cells exhibited increased oxidative tricarboxylic acid metabolism along with decreased reductive glutamine metabolism, but not IDH2-mutant cells. However, selective inhibition of mutant IDH1 enzyme function could not reverse the defect in reductive carboxylation activity. Furthermore, this metabolic reprogramming increased the sensitivity of IDH1-mutant cells to hypoxia or electron transport chain inhibition in vitro. Lastly, IDH1-mutant cells also grew poorly as subcutaneous xenografts within a hypoxic in vivo microenvironment. Together, our results suggest therapeutic opportunities to exploit the metabolic vulnerabilities specific to IDH1 mutation.

  9. Composition of acid tars from sulfuric acid treatment of petroleum oils

    SciTech Connect

    Frolov, A.F.; Denisova, T.L.; Karpova, I.V.; Titova, T.S.

    1986-01-01

    This paper examines the composition of freshly produced acid tars and pond tars, gives an analysis of the acid part of the tars, and obtains data on the change in composition of the acid tar in the course of storage--data that are needed in developing methods for utilizing the tar. The acid-pond tars consist of a mixture of hydrocarbons with a very low content of acids, whereas the freshly produced acid tars consist mainly of sulfuric acid, sulfonic acids, and carboxylic acids. In the course of storage, hardening of acid tars in the volume proceeds through reactions of polymerization, condensation, and oxidation of the surface layer that is in contact with air.

  10. Safflower oil consumption does not increase plasma conjugated linoleic acid concentrations in humans.

    PubMed

    Herbel, B K; McGuire, M K; McGuire, M A; Shultz, T D

    1998-02-01

    Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid (LA) with conjugated double bonds. CLA has anticarcinogenic properties and has been identified in human tissues, dairy products, meats, and certain vegetable oils. A variety of animal products are good sources of CLA, but plant oils contain much less. However, plant oils are a rich source of LA, which may be isomerized to CLA by intestinal microorganisms in humans. To investigate the effect of triacylglycerol-esterified LA consumption on plasma concentrations of esterified CLA in total lipids, a dietary intervention (6 wk) was conducted with six men and six women. During the intervention period a salad dressing containing 21 g safflower oil providing 16 g LA/d was added to the subjects' daily diets. Three-day diet records and fasting blood were obtained initially and during dietary and postdietary intervention periods. Although LA intake increased significantly during the dietary intervention, plasma CLA concentrations were not affected. Plasma total cholesterol and LDL-cholesterol concentrations were significantly lower after addition of safflower oil to the diet. In summary, consumption of triacylglycerol-esterified LA in safflower oil did not increase plasma concentrations of esterified CLA in total lipids.

  11. Effects of increasing acidity on metal(loid) bioprecipitation in groundwater: column studies.

    PubMed

    Davis, Alexander C; Patterson, Bradley M; Grassi, Michelle E; Robertson, Blair S; Prommer, Henning; McKinley, Allan J

    2007-10-15

    Large-scale column experiments were carried out over a period of 545 days to assess the effect of increasing acidity on bacterial denitrification, sulfate reduction, and metal(loid) bioprecipitation in groundwater affected by acid mine drainage. At a groundwater pH of 5.5, denitrification and Cu2+ removal, probably via malachite (Cu2(OH)2CO3) precipitation, were observed in the ethanol-amended column. Sulfate reduction, sulfide production, and Zn2+ removal were also observed, with Zn2+ removal observed in the zone of sulfate reduction, indicating likely precipitation as sphalerite (ZnS). Se6+ removal was also observed in the sulfate reducing zone, probably as direct bioreduction to elemental selenium via ethanol/acetate oxidation or sulfide oxidation precipitating elemental sulfur. A step decrease in groundwater pH from 5.5 to 4.25 resulted in increased denitrification and sulfate reduction half-lives, migration of both these redox zones along the ethanol-amended column, and the formation of an elevated Cu2+ plume. Additionally, an elevated Zn2+ plume formed in the previous sulfate reducing zone of the ethanol-amended column, suggesting dissolution of precipitated sphalerite as a result of the reduction in groundwater pH. As Cu2+ passed through the zone of sphalerite dissolution, SEM imaging and EDS detection suggested that Cu2+ removal had occurred via chalcocite (Cu2S) or covellite (CuS) precipitation.

  12. Improving D-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport.

    PubMed

    Shiue, Eric; Prather, Kristala L J

    2014-03-01

    D-glucaric acid has been explored for a myriad of potential uses, including biopolymer production and cancer treatment. A biosynthetic route to produce D-glucaric acid from glucose has been constructed in Escherichia coli (Moon et al., 2009b), and analysis of the pathway revealed myo-inositol oxygenase (MIOX) to be the least active enzyme. To increase pathway productivity, we explored protein fusion tags for increased MIOX solubility and directed evolution for increased MIOX activity. An N-terminal SUMO fusion to MIOX resulted in a 75% increase in D-glucaric acid production from myo-inositol. While our directed evolution efforts did not yield an improved MIOX variant, our screen isolated a 941 bp DNA fragment whose expression led to increased myo-inositol transport and a 65% increase in D-glucaric acid production from myo-inositol. Overall, we report the production of up to 4.85 g/L of D-glucaric acid from 10.8 g/L myo-inositol in recombinant E. coli.

  13. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers.

  14. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers. PMID:21410712

  15. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  16. Maternal dietary omega-3 fatty acid intake increases resolvin and protectin levels in the rat placenta

    PubMed Central

    Jones, Megan L.; Mark, Peter J.; Keelan, Jeffrey A.; Barden, Anne; Mas, Emilie; Mori, Trevor A.; Waddell, Brendan J.

    2013-01-01

    Placental inflammation is associated with several pregnancy disorders. Inflammation is limited by anti-inflammatory and proresolving mechanisms, the latter partly mediated by resolvins and protectins derived from omega-3 polyunsaturated fatty acids (n-3PUFA). We examined effects of dietary n-3PUFAs on levels of resolvins, protectins, and lipoxygenase (ALOX) enzymes in the rat placenta. Rats consumed standard (Std) or high n-3PUFA (Hn3) diets from day 1 of pregnancy; tissues were collected on day 17 or 22 (term = day 23). Maternal Hn3 diet increased resolvin and protectin precursors, 18R/S-HEPE (P < 0.001), and 17R/S-HDHA (P < 0.01) at both days. Resolvins (17R-RvD1 and RvD1) increased at day 22 (P < 0.001) after Hn3 consumption, coincident with higher Alox15b and Alox5 mRNA expression, while RvD2 increased at both days (P < 0.05). Protectins, PD1, and 10S,17S-DiHDHA increased over late gestation (P < 0.001), coincident with higher Alox15 mRNA expression (P < 0.001) and further increased with Hn3 diet (P < 0.05). Maternal systemic and placental proinflammatory mediators were not suppressed by Hn3 diet; systemic IL1β, placental Il1β, and Il6 mRNA expression increased marginally with Hn3 at day 22 (P < 0.001), while Ptgs1 (Cox1) expression increased both days (P < 0.05). Our data indicate that maternal n-3PUFA supplementation enhances expression of enzymes in the n-3PUFA metabolic pathway and increases placental levels of resolvins and protectins. PMID:23723388

  17. Lipid-Encapsulated Echium Oil (Echium plantagineum) Increases the Content of Stearidonic Acid in Plasma Lipid Fractions and Milk Fat of Dairy Cows.

    PubMed

    Bainbridge, Melissa L; Lock, Adam L; Kraft, Jana

    2015-05-20

    The objective of this study was to evaluate the impact of feeding lipid-encapsulated echium oil (EEO) on animal performance and milk fatty acid profile. Twelve Holstein dairy cows were used in a 3 × 3 Latin Square design with 14 day periods. Treatments were a control diet (no supplemental fat), 1.5% dry matter (DM) as EEO and 3.0% DM as EEO. Treatments had no negative effect on animal performance (dry matter intake, milk yield, and fat yield). The milk fat content of total n-3 fatty acids and stearidonic acid (SDA) increased with EEO supplementation (P < 0.001). The proportion of SDA increased in all plasma lipid fractions with EEO supplementation (P < 0.001). Transfer of SDA from EEO into milk fat was 3.4 and 3.2% for the 1.5 and 3% EEO treatments, respectively. In conclusion, EEO increases the content of n-3 fatty acids in milk fat; however, the apparent transfer efficiency was low.

  18. High-Dose Testosterone Treatment Increases Serotonin Transporter Binding in Transgender People

    PubMed Central

    Kranz, Georg S.; Wadsak, Wolfgang; Kaufmann, Ulrike; Savli, Markus; Baldinger, Pia; Gryglewski, Gregor; Haeusler, Daniela; Spies, Marie; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    Background Women are two times more likely to be diagnosed with depression than men. Sex hormones modulating serotonergic transmission are proposed to partly underlie these epidemiologic findings. Here, we used the cross-sex steroid hormone treatment of transsexuals seeking sex reassignment as a model to investigate acute and chronic effects of testosterone and estradiol on serotonin reuptake transporter (SERT) binding in female-to-male and male-to-female transsexuals. Methods Thirty-three transsexuals underwent [11C]DASB positron emission tomography before start of treatment, a subset of which underwent a second scan 4 weeks and a third scan 4 months after treatment start. SERT nondisplaceable binding potential was quantified in 12 regions of interest. Treatment effects were analyzed using linear mixed models. Changes of hormone plasma levels were correlated with changes in regional SERT nondisplaceable binding potential. Results One and 4 months of androgen treatment in female-to-male transsexuals increased SERT binding in amygdala, caudate, putamen, and median raphe nucleus. SERT binding increases correlated with treatment-induced increases in testosterone levels, suggesting that testosterone increases SERT expression on the cell surface. Conversely, 4 months of antiandrogen and estrogen treatment in male-to-female transsexuals led to decreases in SERT binding in insula, anterior, and mid-cingulate cortex. Increases in estradiol levels correlated negatively with decreases in regional SERT binding, indicating a protective effect of estradiol against SERT loss. Conclusions Given the central role of the SERT in the treatment of depression and anxiety disorders, these findings may lead to new treatment modalities and expand our understanding of the mechanism of action of antidepressant treatment properties. PMID:25497691

  19. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    DOEpatents

    Jin, Song; Fallgren, Paul H.; Morris, Jeffrey M.

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  20. Application of acid-activated Bauxsol for wastewater treatment with high phosphate concentration: Characterization, adsorption optimization, and desorption behaviors.

    PubMed

    Ye, Jie; Cong, Xiangna; Zhang, Panyue; Zeng, Guangming; Hoffmann, Erhard; Liu, Yang; Wu, Yan; Zhang, Haibo; Fang, Wei; Hahn, Hermann H

    2016-02-01

    Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration. PMID:26606195

  1. Application of acid-activated Bauxsol for wastewater treatment with high phosphate concentration: Characterization, adsorption optimization, and desorption behaviors.

    PubMed

    Ye, Jie; Cong, Xiangna; Zhang, Panyue; Zeng, Guangming; Hoffmann, Erhard; Liu, Yang; Wu, Yan; Zhang, Haibo; Fang, Wei; Hahn, Hermann H

    2016-02-01

    Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration.

  2. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA

    PubMed Central

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D.; Hahn, Andreas; Schebb, Nils Helge

    2014-01-01

    Introduction Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. Subjects and methods In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48 h of fish oil (1008 mg EPA and 672 mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC–MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. Results All EPA-derived oxylipin levels were significantly increased 6 h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48 h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Discussion and conclusions Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. PMID:24667634

  3. Ascorbic acid: Chemistry, biology and the treatment of cancer☆

    PubMed Central

    Du, Juan; Cullen, Joseph J.; Buettner, Garry R.

    2013-01-01

    Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH− an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H2O2). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H2O2 to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer. PMID:22728050

  4. Plasma-chemical waste treatment of acid gases

    SciTech Connect

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  5. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  6. Early dietary treatments with Lorenzo's oil and docosahexaenoic acid for neurological development in a case with Zellweger syndrome.

    PubMed

    Tanaka, Kyoko; Shimizu, Toshiaki; Ohtsuka, Yoshikazu; Yamashiro, Yuichiro; Oshida, Kyoichi

    2007-10-01

    We treated a girl with Zellweger syndrome using a special infant formula supplemented with middle chain triglyceride (MCT) milk, docosahexaenoic acid (DHA), Lorenzo's oil, and Lunaria oil, which is rich in nervonic acid (C24:1). We examined the fatty acid contents of the plasma and red blood cell (RBC) membrane. Neurological development was evaluated using Denver developmental screening test and auditory brainstem response (ABR). Her delayed neurological development, liver dysfunction, and cholestasis were all improved 2 weeks after starting the dietary treatment. DHA level in RBC membranes was increased and very long chain fatty acid (VLCFA,C26:0) levels were decreased. Our findings suggest that the dietary treatment with combination of MCT milk, DHA, Lorenzo's oil, and Lunaria oil in the patients with Zellweger syndrome bring some benefits for neurological development.

  7. The effect of high moisture heat-acid treatment on the structure and digestion property of normal maize starch.

    PubMed

    Liu, Huan; Liang, Rong; Antoniou, John; Liu, Fei; Shoemaker, Charles F; Li, Yue; Zhong, Fang

    2014-09-15

    The objective of this study was to analyze the influence of thermal-acid treatment on the formation of resistant starch (RS). The maximum RS content in citric acid-heat treated starches (CAHT) reached 36.55%, which was 7 times higher of that in native starch. According to HPSEC-MALLS-RI analysis, amylopectin was more susceptible to hydrolysis than amylose during citric acid-heat treatment (CAH). X-ray measurement revealed that even though the starch crystalline pattern was changed from A-type to a more resistant B-type after CAH, the fraction of crystalline region decreased from 21.16% to 8.37%. The hydroxyls on the starch chains were substituted by the citric acid anhydrides during CAH according to FT-IR analysis, which led to the formation of ester bond cross-linking structures in starch granules, and it could be the main contribution to the increase of RS content in CAHT samples.

  8. Nucleic acid labeling with ( sup 3 H)orotic acid and nucleotide profile in rats in protein deprivation, enteral and parenteral essential amino acid administration, and 5-fluorouracil treatment

    SciTech Connect

    Jakobsson, B.; el Hag, I.A.; Andersson, M.; Christensson, P.I.; Stenram, U. )

    1990-09-01

    Rats were fed a 0% casein diet for 1 week, with or without enteral or parenteral administration of essential amino acids, or a 25% casein diet, in one group supplemented with 5-fluorouracil treatment. Ninety minutes before sacrifice the rats were given a tracer of (3H)orotic acid. Incorporation into the acid soluble fraction, RNA, and DNA was determined in liver, small intestine, bone marrow, and kidney. Nucleotide profile was examined in liver and intestine. Protein deficiency caused inter alia a decrease in body weight; a decrease in RNA/DNA ratio and an increase in the specific RNA labeling in liver and kidney; an altered nucleotide profile in the liver; an increase in the nucleotide/DNA and RNA/DNA ratios and a decrease in the specific labeling of the acid soluble fraction, RNA, and DNA in the bone marrow. These changes were prevented to the same extent by giving essential amino acids, either orally or intravenously. The minor changes in intestinal nucleotide profile in protein deprivation were prevented to a slightly larger extent by amino acids orally than parenterally. 5-Fluorouracil treatment gave a decrease in the RNA/DNA ratio in the liver and kidney but an increase in the nucleotide/DNA and RNA/DNA ratios in the bone marrow. Nucleotide profiles were unaltered. The amount of DNA per gram of tissue decreased in bone marrow and increased in kidney. Parenteral administration per se resulted in almost no changes.

  9. Novel passive co-treatment of acid mine drainage and municipal wastewater.

    PubMed

    Strosnider, William H J; Winfrey, Brandon K; Nairn, Robert W

    2011-01-01

    A laboratory-scale, four-stage continuous-flow reactor system was constructed to test the viability of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) passive co-treatment. Synthetic AMD of pH 2.6 and acidity of 1870 mg L(-1) as CaCO3 equivalent containing a mean 46, 0.25, 2.0, 290, 55, 1.2, and 390 mg L(-1) of Al, As, Cd, Fe, Mn, Pb, and Zn, respectively, was added at a 1:2 ratio with raw MWW from the City of Norman, OK, to the system which had a total residence time of 6.6 d. During the 135-d experiment, dissolved Al, As, Cd, Fe, Mn, Pb, and Zn concentrations were consistently decreased by 99.8, 87.8, 97.7, 99.8, 13.9, 87.9, and 73.4%, respectively, pH increased to 6.79, and net acidic influent was converted to net alkaline effluent. At a wasting rate of 0.69% of total influent flow, the system produced sludge with total Al, As, Cd, Cr, Cu, Fe, Pb, and Zn concentrations at least an order of magnitude greater than the influent mix, which presents a metal reclamation opportunity. Results indicate that AMD and MWW passive co-treatment is a viable approach to use wastes as resources to improve water quality with minimal use of fossil fuels and refined materials. PMID:21488509

  10. Enhanced charge transport in highly conducting PEDOT-PSS films after acid treatment

    NASA Astrophysics Data System (ADS)

    Shiva, V. Akshaya; Bhatia, Ravi; Menon, Reghu

    The high electrical conductivity, good stability, high strength, flexibility and good transparency of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), make it useful for many applications including polymeric anodes for organic photovoltaics, light-emitting diodes, flexible electrodes, supercapacitors, electrochromic devices, field-effect transistors and antistatic-coatings. However, the electrical conductivity of PEDOT-PSS has to be increased significantly for replacement of indium tin oxide (ITO) as the transparent electrode in optoelectronic devices. The as prepared (pristine) PEDOT-PSS film prepared from the PEDOT-PSS aqueous solution usually has conductivity below 1Scm-1, remarkably lower than ITO. Significant conductivity enhancement has been observed on transparent and conductive PEDOT-PSS films after a treatment with inorganic acids. Our study investigates the charge transport in pristine and H2SO4, HNO3, HCl treated PEDOT-PSS films. We have treated the films with various concentrations of acids to probe the effect of the acid treatment on the conduction mechanism. The study includes the measurement of dc and electric field dependent conductivity of films in the temperature range of 4.2K-300K. We have also performed magneto-resistance measurements in the range of 0-5T. An enhancement by a factor of~103 has been observed in the room temperature conductivity. The detailed magneto-transport studies explain the various mechanisms for the conductivity enhancement observed.

  11. Effect of electric field treatment on unsaturated fatty acid in crude avocado oil.

    PubMed

    Ariza-Ortega, José Alberto; Ramírez-Moreno, Esther; Díaz-Reyes, Joel; Cruz-Cansino, Nelly del Socorro

    2014-09-01

    The objective of this study was to evaluate the stability of the fatty acids in avocado oil when the product is subjected to different conditions of electric field treatment (voltage: 5 kV cm(-1); frequency: 720 Hz; treatment time: 5, 10, 15, 20, and 25 min). Fatty acids were analyzed by Fourier transform infrared spectroscopy in the mid-infrared region. Electric field is a suitable method to preserve the oil quality and composition with minimal modifications in unsaturated fatty acids.

  12. Combined ultrasonication and thermal pre-treatment of sewage sludge for increasing methane production.

    PubMed

    Trzcinski, Antoine Prandota; Tian, Xinbo; Wang, Chong; Lin, Li Leonard; Ng, Wun Jern

    2015-01-01

    This article focuses on the combination of ultrasonic and thermal treatment of sewage sludge (SS). The combination involved ultrasonicating a fraction of the sludge and thermal treatment at various temperatures and this resulted in solubilization of proteins and carbohydrates, and so contributing to increased COD solubilization. During the treatment, SCOD, soluble proteins and carbohydrates increased from 760 mg L(-1) to 10,200 mg L(-1), 110 mg L(-1) to 2,900 mg L(-1) and 60 mg L(-1) to 630 mg L(-1), respectively. It was found ultrasonication of only a fraction of the sludge (>20%) followed by thermal treatment led to significant improvement compared to thermal and ULS treatments applied on their own. At 65°C, the kinetic of solubilization was improved and the hyper-thermophilic treatment time could be reduced to a few hours when ultrasonication was used first. A linear correlation (R(2) = 95%) was found between the SCOD obtained after ultrasonication pre-treatment and anaerobic biodegradability. The combined treatment resulted in 20% increase in biogas production during the anaerobic digestion of the pre-treated sludge.

  13. Increased adhesion between neutral lipid bilayers: interbilayer bridges formed by tannic acid.

    PubMed

    Simon, S A; Disalvo, E A; Gawrisch, K; Borovyagin, V; Toone, E; Schiffman, S S; Needham, D; McIntosh, T J

    1994-06-01

    Tannic acid (TA) is a naturally occurring polyphenolic compound that aggregates membranes and neutral phosolipid vesicles and precipitates many proteins. This study analyzes TA binding to lipid membranes and the ensuing aggregation. The optical density of dispersions of phosphatidylcholine (PC) vesicles increased upon the addition of TA and electron micrographs showed that TA caused the vesicles to aggregate and form stacks of tightly packed disks. Solution calorimetry showed that TA bound to PC bilayers with a molar binding enthalpy of -8.3 kcal/mol and zeta potential measurements revealed that TA imparted a small negative charge to PC vesicles. Monolayer studies showed that TA bound to PC with a dissociation constant of 1.5 microM and reduced the dipole potential by up to 250 mV. Both the increase in optical density and decrease in dipole potential produced by TA could be reversed by the addition of polyvinylpyrrolidone, a compound that chelates TA by providing H-bond acceptor groups. NMR, micropipette aspiration, and x-ray diffraction experiments showed that TA incorporated into liquid crystalline PC membranes, increasing the area per lipid molecule and decreasing the bilayer thickness by 2 to 4%. 2H-NMR quadrupole splitting measurements also showed that TA associated with a PC molecule for times much less than 10(-4) s. In gel phase bilayers, TA caused the hydrocarbon chains from apposing monolayers to fully interdigitate. X-ray diffraction measurements of both gel and liquid crystalline dispersions showed that TA, at a critical concentration of about 1 mM, reduced the fluid spacing between adjacent bilayers by 8-10 A. These data place severe constraints on how TA can pack between adjacent bilayers and cause vesicles to adhere. We conclude that TA promotes vesicle aggregation by reducing the fluid spacing between bilayers by the formation of transient interbilayer bridges by inserting its digallic acid residues into the interfacial regions of adjacent bilayers

  14. Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch.

    PubMed

    Yunus, Robiah; Salleh, Shanti Faridah; Abdullah, Nurhafizah; Biak, Dyg Radiah Awg

    2010-12-01

    Various pre-treatment techniques change the physical and chemical structure of the lignocellulosic biomass and improve hydrolysis rates. The effect of ultrasonic pre-treatment on oil palm empty fruit bunch (OPEFB) fibre prior to acid hydrolysis has been evaluated. The main objective of this study was to determine if ultrasonic pre-treatment could function as a pre-treatment method for the acid hydrolysis of OPEFB fibre at a low temperature and pressure. Hydrolysis at a low temperature was studied using 2% sulphuric acid; 1:25 solid liquid ratio and 100 degrees C operating temperature. A maximum xylose yield of 58% was achieved when the OPEFB fibre was ultrasonicated at 90% amplitude for 45min. In the absence of ultrasonic pre-treatment only 22% of xylose was obtained. However, no substantial increase of xylose formation was observed for acid hydrolysis at higher temperatures of 120 and 140 degrees C on ultrasonicated OPEFB fibre. The samples were then analysed using a scanning electron microscope (SEM) to describe the morphological changes of the OPEFB fibre. The SEM observations show interesting morphological changes within the OPEFB fibre for different acid hydrolysis conditions. PMID:20719502

  15. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids.

    PubMed

    Lachmandas, Ekta; van den Heuvel, Corina N A M; Damen, Michelle S M A; Cleophas, Maartje C P; Netea, Mihai G; van Crevel, Reinout

    2016-01-01

    Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10. This anti-inflammatory effect was independent of butyrate's well-characterised inhibition of HDAC activity and was not accompanied by changes in Toll-like receptor signalling pathways, the eicosanoid pathway, or cellular metabolism. In contrast blocking IL-10 activity reversed the effects of butyrate on Mtb-induced inflammation. Alteration of the gut microbiota, thereby increasing butyrate concentrations, can reduce insulin resistance and obesity, but further studies are needed to determine how this affects susceptibility to tuberculosis. PMID:27057552

  16. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.

    PubMed

    Hénique, Carole; Mansouri, Abdelhak; Vavrova, Eliska; Lenoir, Véronique; Ferry, Arnaud; Esnous, Catherine; Ramond, Elodie; Girard, Jean; Bouillaud, Frédéric; Prip-Buus, Carina; Cohen, Isabelle

    2015-06-01

    Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function. PMID:25713059

  17. Diabetes Mellitus and Increased Tuberculosis Susceptibility: The Role of Short-Chain Fatty Acids

    PubMed Central

    Lachmandas, Ekta; van den Heuvel, Corina N. A. M.; Damen, Michelle S. M. A.; Cleophas, Maartje C. P.; Netea, Mihai G.; van Crevel, Reinout

    2016-01-01

    Type 2 diabetes mellitus confers a threefold increased risk for tuberculosis, but the underlying immunological mechanisms are still largely unknown. Possible mediators of this increased susceptibility are short-chain fatty acids, levels of which have been shown to be altered in individuals with diabetes. We examined the influence of physiological concentrations of butyrate on cytokine responses to Mycobacterium tuberculosis (Mtb) in human peripheral blood mononuclear cells (PBMCs). Butyrate decreased Mtb-induced proinflammatory cytokine responses, while it increased production of IL-10. This anti-inflammatory effect was independent of butyrate's well-characterised inhibition of HDAC activity and was not accompanied by changes in Toll-like receptor signalling pathways, the eicosanoid pathway, or cellular metabolism. In contrast blocking IL-10 activity reversed the effects of butyrate on Mtb-induced inflammation. Alteration of the gut microbiota, thereby increasing butyrate concentrations, can reduce insulin resistance and obesity, but further studies are needed to determine how this affects susceptibility to tuberculosis. PMID:27057552

  18. Maternal diabetes increases the risk of caudal regression caused by retinoic acid.

    PubMed

    Chan, Billy W H; Chan, Kwok-Siu; Koide, Tsuyoshi; Yeung, Sau-Man; Leung, Maran B W; Copp, Andrew J; Loeken, Mary R; Shiroishi, Toshihiko; Shum, Alisa S W

    2002-09-01

    Maternal diabetes increases the risk of congenital malformations in the offspring of affected pregnancies. This increase arises from the teratogenic effect of the maternal diabetic milieu on the developing embryo, although the mechanism of this action is poorly understood. In the present study, we examined whether the vitamin A metabolite retinoic acid (RA), a common drug with well-known teratogenic properties, may interact with maternal diabetes to alter the incidence of congenital malformations in mice. Our results show that when treated with RA, embryos of diabetic mice are significantly more prone than embryos of nondiabetic mice to develop caudal regression, a defect that is highly associated with diabetic pregnancy in humans. By studying the vestigial tail (Wnt-3a(vt)) mutant, we provide evidence that Wnt-3a, a gene that controls the development of the caudal region, is directly involved in the pathogenic pathway of RA-induced caudal regression. We further show that the molecular basis of the increased susceptibility of embryos of diabetic mice to RA involves enhanced downregulation of Wnt-3a expression. This positive interaction between RA and maternal diabetes may have implications for humans in suggesting increased susceptibility to environmental teratogens during diabetic pregnancy.

  19. Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow.

    PubMed

    Ma, Shuang; Zhu, Xiaoxue; Zhang, Jing; Zhang, Lirong; Che, Rongxiao; Wang, Fang; Liu, Hanke; Niu, Haishan; Wang, Shiping; Cui, Xiaoyong

    2015-09-01

    Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with (13)C-(15)N-enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO 3-N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming. PMID:26442646

  20. n-3 fatty acids increase postischemic blood flow but do not reduce myocardial necrosis.

    PubMed

    Force, T; Malis, C D; Guerrero, J L; Varadarajan, G S; Bonventre, J V; Weber, P C; Leaf, A

    1989-10-01

    The effects of a fish oil-supplemented diet on infarct size and regional myocardial blood flow were examined in a rat model of acute ischemia followed by reperfusion. Thirty-five rats were fed a diet containing 20% by weight: fish oil (FO), rich in n-3 polyunsaturated fatty acids; corn oil (CO), with predominantly n-6 polyunsaturated fatty acids; or beef tallow (BT), containing large amounts of saturated fatty acids. After 6-12 wk on the diet, animals underwent 40 min of left coronary artery occlusion followed by 2 h of reperfusion. Regional transmural myocardial blood flow was determined with radioactive microspheres at 30 min of occlusion and again 30 min after reperfusion. Infarct size was determined with triphenyltetrazolium chloride. Blood flow was virtually undetectable within the ischemic zone in all groups during occlusion. With reperfusion, however, ischemic zone absolute blood flow and relative flow (normalized to nonischemic zone flow) were significantly greater in the fish oil group [2.4 +/- 0.25 ml.min-1.g-1, 44 +/- 4% vs. 1.7 +/- 0.3, 29 +/- 5% for CO (P less than 0.05 vs. FO), and 1.4 +/- 0.3, 29 +/- 5% for BT (P less than 0.05 vs. FO)]. Despite differences in reperfusion blood flow, average percent transmural extent of infarction was nearly identical (68 +/- 4, 68 +/- 5, and 64 +/- 3%) and overall infarct size was similar (38 +/- 3, 36 +/- 4, and 29 +/- 3%) for FO, CO, and BT groups, respectively. In conclusion, dietary supplementation with fish oils increases postischemic blood flow but has no effect on extent of myocardial infarction in this ischemia-reperfusion model in rats.

  1. Effect of increasing the level of omega-3 fatty acids on rat skeletal muscle sarcoplasmic reticulum.

    PubMed

    Stubbs, C D; Kisielewski, A E

    1990-09-01

    The effect of dietary supplementation with fish oil as compared to corn oil on the lipid dynamics and calcium ATPase activity of rat skeletal sarcoplasmic reticulum was examined. After four-week supplementation with fish oil, the levels of eicosapentaenoic (20:5 omega 3), docosapentaenoic (22:5 omega 3) and docosahexaenoic (22:6 omega 3) acids in the total lipids were 5.3, 5.5 and 28.1% of the total fatty acids, respectively. In contrast, with corn oil only 22:6 was found (8.9%). The level of these fatty acids in phosphatidylethanolamine from the membranes of animals fed fish oil was 4.2 (20:5), 5.4 (22:5) and 49.1% (22:6); and for phosphatidylcholine it was 5.4 (20:5), 4.6 (22:5) and 17.4% (22:6). Again, in corn oil fed animals, only 22:6 was found in appreciable amounts, namely 28.3% in phosphatidylethanolamine and 1.8% in phosphatidylcholine. The steady state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess lipid order and was found to be only slightly less for membranes from animals supplemented with fish oil (0.120) as compared to those supplemented with corn oil (0.124). The calcium ATPase was found to be unaffected by supplementation consistent with the observed modest changes in lipid order as well as with suggestions that the enzyme is relatively insensitive to the level of unsaturation. It could be argued that if large increases in fatty acyl polyunsaturation in mammalian cell membranes would lead to marked alterations in bulk membrane lipid motional properties, this may not be in the interest of preserving physiological function.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs. PMID:23770357

  3. Prescription omega-3-acid ethyl esters for the treatment of very high triglycerides.

    PubMed

    Sadovsky, Richard; Kris-Etherton, Penny

    2009-07-01

    Triglyceride (TG) levels can increase for numerous reasons, including a sedentary lifestyle, an unhealthy diet, especially one rich in refined carbohydrates, and comorbidities. According to the National Cholesterol Education Program (NCEP), the normal TG level is < 150 mg/dL. Patients with very high TG (VHTG) levels (> or = 500 mg/dL) should be promptly managed and treated to reach lipid treatment goals, as determined by the NCEP. Lowering TG levels is the primary management goal in these patients, while lowering low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol levels are secondary goals. Therapeutic lifestyle changes are often recommended initially for patients with elevated TGs; however, concomitant drug therapy is often required. Data show that intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can significantly decrease serum TGs, along with plasma concentrations of certain lipoproteins. Omega-3-acid ethyl esters are available by prescription or as dietary supplements. Clinical trials in adult patients with VHTGs show that four 1 g capsules of prescription omega-3 fatty acids, which contain 465 mg of EPA and 375 mg of DHA per capsule, can effectively decrease TG levels by up to 45%, and is generally well tolerated. PMID:19641280

  4. Adaptation of in vivo amino acid kinetics facilitates increased amino acid availability for fetal growth in adolescent and adult pregnancies alike

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During pregnancy, adult women with a normal BMI synthesize extra amino acids after an overnight fast by increasing body protein breakdown and decreasing amino acid oxidation. It is not known whether adolescent girls can make these adaptations during pregnancy. The present study aimed to measure and ...

  5. PASSIVE TREATMENT OF ACID ROCK DRAINAGE FROM A SUBSURFACE MINE

    EPA Science Inventory

    Acidic, metal-contaminated drainages are a critical problem facing many areas of the world. Acid rock drainage results when metal sulfide minerals, particularly pyrite, are oxidized by exposure to oxygen and water. The deleterious effects of these drainages on receiving streams a...

  6. TNF-α-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment.

    PubMed

    Moretti, Morgana; Budni, Josiane; Freitas, Andiara Espíndola; Neis, Vivian Binder; Ribeiro, Camille Mertins; de Oliveira Balen, Grasiela; Rieger, Débora Kurrle; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2015-06-01

    We investigated the effects of ascorbic acid on depressive-like behavior induced by tumor necrosis factor (TNF-α) in mice. Additionally, we examined the effects of combined administration of ascorbic acid and antidepressants, MK-801 and 7-nitroindazole in mice exposed or not to TNF-α and the capacity of TNF-α and ascorbic acid to modulate hippocampal and cerebrocortical phosphorylation of extracellular signal-regulated kinase (ERK), p38(MAPK) and c-Jun N-terminal kinase (JNK). In control animals, ascorbic acid reduced the immobility time in the tail suspension test (TST). Unilateral intracerebroventricular administration of TNF-α produced a depressive-like behavior in the TST, and the treatment with ascorbic acid prevented this effect. Sub-effective dose of ascorbic acid combined with sub-effective doses of fluoxetine, imipramine, bupropion, MK-801 or 7-nitroindazole produced a synergistic antidepressant-like effect in mice exposed or not to TNF-α. No treatment caused significant alterations in the locomotor activity of mice. Administration of TNF-α increased the phosphorylation of p38(MAPK) in hippocampus and cerebral cortex, and the treatment with ascorbic acid prevented this effect. Ascorbic acid increased phosphorylation of ERK1 in the hippocampus of saline- and TNF-α-treated animals, however it did not produce alterations in the cerebral cortex. No effects on phosphorylation of ERK2 or JNK were found. The observed effect of ascorbic acid seems to be associated, at least partially, with a reduced p38(MAPK) phosphorylation, activation of the monoaminergic systems as well as inhibition of N-methyl-D-aspartate (NMDA) receptors and nitric oxide (NO) synthesis.

  7. GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Baek, Seung-Ho; Kwon, Eunice Y.; Kim, Seon-Young; Hahn, Ji-Sook

    2016-01-01

    Improving lactic acid (LA) tolerance is important for cost-effective microbial production of LA under acidic fermentation conditions. Previously, we generated LA-tolerant D-LA-producing S. cerevisiae strain JHY5310 by laboratory adaptive evolution of JHY5210. In this study, we performed whole genome sequencing of JHY5310, identifying four loss-of-function mutations in GSF2, SYN8, STM1, and SIF2 genes, which are responsible for the LA tolerance of JHY5310. Among the mutations, a nonsense mutation in GSF2 was identified as the major contributor to the improved LA tolerance and LA production in JHY5310. Deletion of GSF2 in the parental strain JHY5210 significantly improved glucose uptake and D-LA production levels, while derepressing glucose-repressed genes including genes involved in the respiratory pathway. Therefore, more efficient generation of ATP and NAD+ via respiration might rescue the growth defects of the LA-producing strain, where ATP depletion through extensive export of lactate and proton is one of major reasons for the impaired growth. Accordingly, alleviation of glucose repression by deleting MIG1 or HXK2 in JHY5210 also improved D-LA production. GSF2 deletion could be applied to various bioprocesses where increasing biomass yield or respiratory flux is desirable. PMID:27708428

  8. Select microtubule inhibitors increase lysosome acidity and promote lysosomal disruption in acute myeloid leukemia (AML) cells.

    PubMed

    Bernard, Dannie; Gebbia, Marinella; Prabha, Swayam; Gronda, Marcela; MacLean, Neil; Wang, Xiaoming; Hurren, Rose; Sukhai, Mahadeo A; Cho, Eunice E; Manolson, Morris F; Datti, Alessandro; Wrana, Jeffrey; Minden, Mark D; Al-Awar, Rima; Aman, Ahmed; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D

    2015-07-01

    To identify new biological vulnerabilities in acute myeloid leukemia, we screened a library of natural products for compounds cytotoxic to TEX leukemia cells. This screen identified the novel small molecule Deoxysappanone B 7,4' dimethyl ether (Deox B 7,4), which possessed nanomolar anti-leukemic activity. To determine the anti-leukemic mechanism of action of Deox B 7,4, we conducted a genome-wide screen in Saccharomyces cerevisiae and identified enrichment of genes related to mitotic cell cycle as well as vacuolar acidification, therefore pointing to microtubules and vacuolar (V)-ATPase as potential drug targets. Further investigations into the mechanisms of action of Deox B 7,4 and a related analogue revealed that these compounds were reversible microtubule inhibitors that bound near the colchicine site. In addition, Deox B 7,4 and its analogue increased lysosomal V-ATPase activity and lysosome acidity. The effects on microtubules and lysosomes were functionally important for the anti-leukemic effects of these drugs. The lysosomal effects were characteristic of select microtubule inhibitors as only the Deox compounds and nocodazole, but not colchicine, vinca alkaloids or paclitaxel, altered lysosome acidity and induced lysosomal disruption. Thus, our data highlight a new mechanism of action of select microtubule inhibitors on lysosomal function. PMID:25832785

  9. Nicotinic Acid Increases Adiponectin Secretion from Differentiated Bovine Preadipocytes through G-Protein Coupled Receptor Signaling

    PubMed Central

    Kopp, Christina; Hosseini, Afshin; Singh, Shiva P.; Regenhard, Petra; Khalilvandi-Behroozyar, Hamed; Sauerwein, Helga; Mielenz, Manfred

    2014-01-01

    The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum) is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA) is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A) ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX) to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001) and the mRNA abundances of GPR109A (p ≤ 0.05) and chemerin (p ≤ 0.01). Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001). The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows. PMID:25411802

  10. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes

    PubMed Central

    Oxenkrug, Gregory F

    2015-01-01

    About 350 million people worldwide have type 2 diabetes (T2D). The major risk factor of T2D is impaired glucose tolerance (pre-diabetes) with 10% of pre-diabetes subjects develop T2D every year. Understanding of mechanisms of development of T2D from pre-diabetes is important for prevention and treatment of T2D. Chronic stress and chronic low grade inflammation are prominent risk factors for T2D development in pre-diabetic subjects. However, molecular mechanisms mediating effect of stress and inflammation on development of T2D from pre-diabetes remain unknown. One of such mechanisms might involve kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism. We suggested that chronic stress- or chronic low grade inflammation-induced upregulation of formation of upstream KTP metabolites, KYN and 3-hydroxyKYN, combined with chronic stress or chronic low grade inflammation-induced deficiency of pyridoxal 5'-phosphate, a cofactor of downstream enzymes of KTP, triggers overproduction of diabetogenic downstream KYN metabolites, kynurenic acid (KYNA) and 3-hydroxyKYNA (also known as xanthurenic acid (XA)). As the initial assessment of our working hypothesis, we evaluated plasma levels of up- and down-stream KP metabolites in the same samples of T2D patients. KYN, XA and KYNA levels in plasma samples of T2D patients were higher than in samples of non-diabetic subjects. Our results provide further support of “kynurenine hypothesis of insulin resistance and its progression to T2D” that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress- or chronic low grade inflammation, is one of the mechanisms promoting development of T2D from pre-diabetes. Downstream metabolites of KP might serve as biomarkers of T2D and targets for clinical intervention. PMID:26055228

  11. Increase of Eicosapentaenoic Acid in Thraustochytrids through Thraustochytrid Ubiquitin Promoter-Driven Expression of a Fatty Acid Δ5 Desaturase Gene▿†

    PubMed Central

    Kobayashi, Takumi; Sakaguchi, Keishi; Matsuda, Takanori; Abe, Eriko; Hama, Yoichiro; Hayashi, Masahiro; Honda, Daiske; Okita, Yuji; Sugimoto, Shinichi; Okino, Nozomu; Ito, Makoto

    2011-01-01

    Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C16:0), n − 6 docosapentaenoic acid (DPA) (C22:5n − 6), and docosahexaenoic acid (DHA) (C22:6n − 3), with eicosapentaenoic acid (EPA) (C20:5n − 3) and arachidonic acid (AA) (C20:4n − 6) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C20:4n − 3) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C20:3n − 6) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs. PMID:21478316

  12. Increase of eicosapentaenoic acid in thraustochytrids through thraustochytrid ubiquitin promoter-driven expression of a fatty acid {delta}5 desaturase gene.

    PubMed

    Kobayashi, Takumi; Sakaguchi, Keishi; Matsuda, Takanori; Abe, Eriko; Hama, Yoichiro; Hayashi, Masahiro; Honda, Daiske; Okita, Yuji; Sugimoto, Shinichi; Okino, Nozomu; Ito, Makoto

    2011-06-01

    Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C(16:0)), n - 6 docosapentaenoic acid (DPA) (C(22:5)(n) (- 6)), and docosahexaenoic acid (DHA) (C(22:6)(n) (- 3)), with eicosapentaenoic acid (EPA) (C(20:5)(n) (- 3)) and arachidonic acid (AA) (C(20:4)(n) (- 6)) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C(20:4)(n) (- 3)) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C(20:3)(n) (- 6)) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs.

  13. High energy neutron treatment for pelvic cancers: study stopped because of increased mortality.

    PubMed Central

    Errington, R D; Ashby, D; Gore, S M; Abrams, K R; Myint, S; Bonnett, D E; Blake, S W; Saxton, T E

    1991-01-01

    OBJECTIVE--To compare high energy fast neutron treatment with conventional megavoltage x ray treatment in the management of locally advanced pelvic carcinomas (of the cervix, bladder, prostate, and rectum). DESIGN--Randomised study from February 1986; randomisation to neutron treatment or photon treatment was unstratified and in the ratio of 3 to 1 until January 1988, when randomisation was in the ratio 1 to 1 and stratified by site of tumour. SETTING--Mersey regional radiotherapy centre at Clatterbridge Hospital, Wirral. PATIENTS--151 patients with locally advanced, non-metastatic pelvic cancer (27 cervical, 69 of the bladder, seven prostatic, and 48 of the rectum). INTERVENTION--Randomisation to neutron treatment was stopped in February 1990. MAIN OUTCOME MEASURES--Patient survival and causes of death in relation to the development of metastatic disease and treatment related morbidity. RESULTS--In the first phase of the trial 42 patients were randomised to neutron treatment and 14 to photon treatment, and in the second phase 48 to neutron treatment and 47 to photon treatment. The relative risk of mortality for photons compared with neutrons was 0.66 (95% confidence interval 0.40 to 1.10) after adjustment for site of tumour and other important prognostic factors. Short term and long term complications were similar in both groups. CONCLUSIONS--The trial was stopped because of the increased mortality in patients with cancer of the cervix, bladder, or rectum treated with neutrons. PMID:1903663

  14. DMSO triggers the generation of ROS leading to an increase in artemisinin and dihydroartemisinic acid in Artemisia annua shoot cultures

    PubMed Central

    Mannan, Abdul; Liu, Chunzhao; Arsenault, Patrick R.; Towler, Melissa J.; Vail, Dan R.; Lorence, Argelia

    2010-01-01

    The antimalarial sesquiterpene, artemisinin, is in short supply; demand is not being met, and the role of artemisinin in the plant is not well established. Prior work showed that addition of dimethyl sulfoxide (DMSO) to seedlings increased artemisinin in their shoots and this study further investigated that serendipitous observation. When in vitro-cultured Artemisia annua rooted shoots were fed different amounts of DMSO (0–2.0% v/v), artemisinin levels doubled and showed biphasic optima at 0.25 and 2.0% DMSO. Both artemisinin and its precursor, dihydroartemisinic acid, increased with the former continuing 7 days after DMSO treatment. There was no stimulation of artemisinin production in DMSO-treated unrooted shoots. The first gene in the artemisinin biosynthetic pathway, amorphadiene synthase, showed no increase in transcript level in response to DMSO compared to controls. In contrast, the second gene in the pathway, CYP71AV1, did respond to DMSO but at a level of transcripts inverse to artemisinin levels. When rooted shoots were stained for the reactive oxygen species (ROS), H2O2, ROS increased with increasing DMSO concentration; unrooted shoots produced no ROS in response to DMSO. Both the increases in DMSO-induced ROS response and corresponding artemisinin levels were inhibited by addition of vitamin C. Together these data show that at least in response to DMSO, artemisinin production and ROS increase and that when ROS is reduced, so also is artemisinin suggesting that ROS may play a role in artemisinin production in A. annua. PMID:20084379

  15. A review of treatment strategies for hydrofluoric acid burns: current status and future prospects.

    PubMed

    Wang, Xingang; Zhang, Yuanhai; Ni, Liangfang; You, Chuangang; Ye, Chunjiang; Jiang, Ruiming; Liu, Liping; Liu, Jia; Han, Chunmao

    2014-12-01

    Hydrofluoric acid (HF), a dangerous inorganic acid, can cause severe corrosive effects and systemic toxicity. HF enters the human body via where it contacts, such as skin and mucosa, alimentary and respiratory tracts, and ocular surfaces. In the recent years, the incidence of HF burn has tended to increase over time. The injury mechanism of HF is associated primarily with the massive absorption of HF and the release of hydrogen ions. Correct diagnosis and timely treatment are especially important for HF burns. The critical procedure to treat HF burn is to prevent on-going HF absorption, and block the progressive destruction caused by fluoride ions. Due to the distinct characteristics of HF burns, the topical treatment, as well as systemic support, has been emphasised. Whereas, management of patients with HF burns remains a great challenge in some situations. To date, there has been no widely accepted protocol for the rescue of HF burns, partly due to the diversity of HF burns. This paper overviews the current status and problems of treatment strategies for HF burns, for the purpose of promoting the future researches and improvement.

  16. A review of treatment strategies for hydrofluoric acid burns: current status and future prospects.

    PubMed

    Wang, Xingang; Zhang, Yuanhai; Ni, Liangfang; You, Chuangang; Ye, Chunjiang; Jiang, Ruiming; Liu, Liping; Liu, Jia; Han, Chunmao

    2014-12-01

    Hydrofluoric acid (HF), a dangerous inorganic acid, can cause severe corrosive effects and systemic toxicity. HF enters the human body via where it contacts, such as skin and mucosa, alimentary and respiratory tracts, and ocular surfaces. In the recent years, the incidence of HF burn has tended to increase over time. The injury mechanism of HF is associated primarily with the massive absorption of HF and the release of hydrogen ions. Correct diagnosis and timely treatment are especially important for HF burns. The critical procedure to treat HF burn is to prevent on-going HF absorption, and block the progressive destruction caused by fluoride ions. Due to the distinct characteristics of HF burns, the topical treatment, as well as systemic support, has been emphasised. Whereas, management of patients with HF burns remains a great challenge in some situations. To date, there has been no widely accepted protocol for the rescue of HF burns, partly due to the diversity of HF burns. This paper overviews the current status and problems of treatment strategies for HF burns, for the purpose of promoting the future researches and improvement. PMID:24946967

  17. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  18. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.

    2004-01-01

    In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.

  19. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds.

    PubMed

    Gao, R S; Popp, P J; Fahey, D W; Marcy, T P; Herman, R L; Weinstock, E M; Baumgardner, D G; Garrett, T J; Rosenlof, K H; Thompson, T L; Bui, P T; Ridley, B A; Wofsy, S C; Toon, O B; Tolbert, M A; Kärcher, B; Peter, Th; Hudson, P K; Weinheimer, A J; Heymsfield, A J

    2004-01-23

    In situ measurements of the relative humidity with respect to ice (RHi) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RHi values show a sharp increase to average values of over 130% in both cloud types. These enhanced RHi values are attributed to the presence of a new class of HNO3-containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor. PMID:14739457

  20. Azetidine-2-carboxylic acid resistant mutants of Arabidopsis thaliana with increased salt tolerance

    SciTech Connect

    Lehle, F.R.; Murphy, M.A.; Khan, R.A. )

    1989-04-01

    Nineteen mutant Arabidopsis families resistant to the proline analog azetidine-2-carboxylic acid (ACA) were characterized in terms of NaCl tolerance and proline content. Mutants were selected from about 64,000 progeny of about 16,000 self-pollinated Columbia parents which had been mutated with ethyl methane sulfonate during seed imbibition. Selections were performed during seed germination on aseptic agar medium containing 0.2 to 0.25 mM ACA. Nineteen mutant families, 12 clearly independent, retained resistance to ACA in the M{sub 4} generation. Based on germination on 150 mM NaCl, 13 of the mutant families were more tolerant than the wild type. Two mutants of intermediate resistance to ACA were markedly more salt tolerant than the others. Four mutant families appeared to overproduce proline. Of these, only 3 showed slight increases in salt tolerance.

  1. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice.

    PubMed

    Strong, Randy; Miller, Richard A; Astle, Clinton M; Floyd, Robert A; Flurkey, Kevin; Hensley, Kenneth L; Javors, Martin A; Leeuwenburgh, Christiaan; Nelson, James F; Ongini, Ennio; Nadon, Nancy L; Warner, Huber R; Harrison, David E

    2008-10-01

    The National Institute on Aging's Interventions Testing Program was established to evaluate agents that are purported to increase lifespan and delay the appearance of age-related disease in genetically heterogeneous mice. Up to five compounds are added to the study each year and each compound is tested at three test sites (The Jackson Laboratory, University of Michigan, and University of Texas Health Science Center at San Antonio). Mice in the first cohort were exposed to one of four agents: aspirin, nitroflurbiprofen, 4-OH-alpha-phenyl-N-tert-butyl nitrone, or nordihydroguaiaretic acid (NDGA). Sample size was sufficient to detect a 10% difference in lifespan in either sex,with 80% power, using data from two of the three sites. Pooling data from all three sites, a log-rank test showed that both NDGA (p=0.0006) and aspirin (p=0.01) led to increased lifespan of male mice. Comparison of the proportion of live mice at the age of 90% mortality was used as a surrogate for measurement of maximum lifespan;neither NDGA (p=0.12) nor aspirin (p=0.16) had a significant effect in this test. Measures of blood levels of NDGA or aspirin and its salicylic acid metabolite suggest that the observed lack of effects of NDGA or aspirin on life span in females could be related to gender differences in drug disposition or metabolism. Further studies are warranted to find whether NDGA or aspirin, over a range of doses,might prove to postpone death and various age-related outcomes reproducibly in mice. PMID:18631321

  2. Effects of increasing acidity on metal(loid) bioprecipitation in groundwater: column studies

    SciTech Connect

    Alexander C. Davis; Bradley M. Patterson; Michelle E. Grassi; Blair S. Robertson; Henning Prommer; Allan J. McKinley

    2007-10-15

    Large-scale column experiments were carried out over a period of 545 days to assess the effect of increasing acidity on bacterial denitrification, sulfate reduction, and metal(loid) bioprecipitation in groundwater affected by acid mine drainage. At a groundwater pH of 5.5, denitrification and Cu{sup 2+} removal, probably via malachite (Cu{sub 2}(OH){sub 2}CO{sub 3}) precipitation, were observed in the ethanol-amended column. Sulfate reduction, sulfide production, and Zn{sup 2+} removal were also observed, with Zn{sup 2+} removal observed in the zone of sulfate reduction, indicating likely precipitation as sphalerite (ZnS). Se{sup 6+} removal was also observed in the sulfate reducing zone, probably as direct bioreduction to elemental selenium via ethanol/acetate oxidation or sulfide oxidation precipitating elemental sulfur. A step decrease in groundwater pH from 5.5 to 4.25 resulted in increased denitrification and sulfate reduction half-lives, migration of both these redox zones along the ethanol-amended column, and the formation of an elevated Cu{sup 2+} plume. Additionally, an elevated Zn{sup 2+} plume formed in the previous sulfate reducing zone of the ethanol-amended column, suggesting dissolution of precipitated sphalerite as a result of the reduction in groundwater pH. As Cu{sup 2+} passed through the zone of sphalerite dissolution, SEM imaging and EDS detection suggested that Cu{sup 2+} removal had occurred via chalcocite (Cu{sub 2}S) or covellite (CuS) precipitation. 23 refs., 8 figs.

  3. Drought-Induced Increases in Abscisic Acid Levels in the Root Apex of Sunflower 1

    PubMed Central

    Robertson, J. Mason; Pharis, Richard P.; Huang, Yan Y.; Reid, David M.; Yeung, Edward C.

    1985-01-01

    Abscisic acid (ABA) levels in 3-mm apical root segments of slowly droughted sunflower plants (Helianthus annuus L. cv Russian Giant) were analyzed as the methyl ester by selected ion monitoring gas chromatography-mass spectrometry using characteristic ions. An internal standard, hexadeuterated ABA (d6ABA) was used for quantitative analysis. Sunflower seedlings, grown in aeroponic chambers, were slowly droughted over a 7-day period. Drought stress increased ABA levels in the root tips at 24, 72, and 168 hour sample times. Control plants had 57 to 106 nanograms per gram ABA dry weight in the root tips (leaf water potential, −0.35 to −0.42 megapascals). The greatest increase in ABA, about 20-fold, was found after 72 hours of drought (leaf water potential, −1.34 to −1.47 megapascals). Levels of ABA also increased (about 7− to 54-fold) in 3-mm apical root segments which were excised and then allowed to dessicate for 1 hour at room temperature. PMID:16664535

  4. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol.

    PubMed

    Zhang, Chongben; Hwarng, Gwen; Cooper, Daniel E; Grevengoed, Trisha J; Eaton, James M; Natarajan, Viswanathan; Harris, Thurl E; Coleman, Rosalind A

    2015-02-01

    Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.

  5. Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases during Tricarboxylic Acid Cycle Stress

    PubMed Central

    Vuong, Cuong; Kidder, Joshua B.; Jacobson, Erik R.; Otto, Michael; Proctor, Richard A.; Somerville, Greg A.

    2005-01-01

    Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production. PMID:15838022

  6. Effect of dietary Lorenzo's oil and docosahexaenoic acid treatment for Zellweger syndrome.

    PubMed

    Arai, Yasuhiro; Kitamura, Yohei; Hayashi, Masaharu; Oshida, Kyoichi; Shimizu, Toshiaki; Yamashiro, Yuichiro

    2008-12-01

    We investigated the possible therapeutic effect of decreasing plasma levels of very-long-chain fatty acids (C26:0) with a synthetic oil containing trioleate and trielucate (Lorenzo's oil) as well as increasing docosahexaenoic acid (DHA) in red blood cells (RBC) with DHA ethyl ester in four patients with Zellweger syndrome. We investigated serial changes of plasma C26:0 levels and DHA levels in RBC membranes by gas-liquid chromatography/mass spectrometry (GC/MS). After death, the fatty acid composition of each patient's cerebrum and liver was studied. Dietary administration of Lorenzo's oil diminished plasma C26:0 levels. Earlier administration of Lorenzo's oil was more effective and the response did not depend on the duration of administration. DHA was incorporated into RBC membrane lipids when administrated orally, and its level increased for several months. The final DHA level was correlated with the duration of administration and was not related to the timing of initiation of treatment. DHA levels in the brains and livers of treated patients were higher than in untreated patients. Early initiation of Lorenzo's oil and the long-term administration of DHA may be useful for patients with Zellweger syndrome.

  7. Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status.

    PubMed

    Figueras, Maite; Olivan, Mireia; Busquets, Sílvia; López-Soriano, Francisco J; Argilés, Josep M

    2011-02-01

    In addition to decreased insulin sensitivity, diabetes is a pathological condition associated with increased inflammation. The ω-3 fatty acids have been proposed as anti-inflammatory agents. Thus, the major goal of this study was to analyze the effects of fatty acid supplementation on both insulin sensitivity and inflammatory status in an animal model of type 2 diabetes. Diabetic rats (Goto-Kakizaki model) were treated with eicosapentaenoic acid (EPA) or linoleic acid at 0.5 g/kg body weigh (bw) dose. In vivo incorporation of (14)C-triolein into adipose tissue was improved by the ω-3 administration. In vitro incubations of adipose tissue slices from EPA-treated rats showed an increase in (14)C-palmitate incorporation into the lipid fraction. These observations were linked with a decreased rate of fatty acid oxidation. EPA treatment resulted in a decreased fatty acid oxidation in incubated strips from extensor digitorum longus (EDL) muscles. The changes in lipid utilization were associated with a decrease in insulin plasma concentration, suggesting an improvement in insulin sensitivity. These changes in lipid metabolism were associated with an activation of AMP-activated protein kinase (AMPK) in white adipose tissue. In addition, EPA treatment resulted in a decreased content of peroxisome proliferator-activated receptor-α (PPARα) and PPARδ and in increased GLUT4 expression in skeletal muscle. Moreover, EPA increased 2-deoxy-D-[(14)C]glucose (2-DOG) uptake in C2C12 myotubes, suggesting an improvement in glucose metabolism. Concerning the inflammatory status, EPA treatment resulted in a decreased gene expression for both tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) both in skeletal muscle and adipose tissue. The data suggest that EPA treatment to diabetic rats clearly improves lipid metabolism although the evidences on insulin sensitization are less clear. PMID:20885391

  8. Effects of eicosapentaenoic acid (EPA) treatment on insulin sensitivity in an animal model of diabetes: improvement of the inflammatory status.

    PubMed

    Figueras, Maite; Olivan, Mireia; Busquets, Sílvia; López-Soriano, Francisco J; Argilés, Josep M

    2011-02-01

    In addition to decreased insulin sensitivity, diabetes is a pathological condition associated with increased inflammation. The ω-3 fatty acids have been proposed as anti-inflammatory agents. Thus, the major goal of this study was to analyze the effects of fatty acid supplementation on both insulin sensitivity and inflammatory status in an animal model of type 2 diabetes. Diabetic rats (Goto-Kakizaki model) were treated with eicosapentaenoic acid (EPA) or linoleic acid at 0.5 g/kg body weigh (bw) dose. In vivo incorporation of (14)C-triolein into adipose tissue was improved by the ω-3 administration. In vitro incubations of adipose tissue slices from EPA-treated rats showed an increase in (14)C-palmitate incorporation into the lipid fraction. These observations were linked with a decreased rate of fatty acid oxidation. EPA treatment resulted in a decreased fatty acid oxidation in incubated strips from extensor digitorum longus (EDL) muscles. The changes in lipid utilization were associated with a decrease in insulin plasma concentration, suggesting an improvement in insulin sensitivity. These changes in lipid metabolism were associated with an activation of AMP-activated protein kinase (AMPK) in white adipose tissue. In addition, EPA treatment resulted in a decreased content of peroxisome proliferator-activated receptor-α (PPARα) and PPARδ and in increased GLUT4 expression in skeletal muscle. Moreover, EPA increased 2-deoxy-D-[(14)C]glucose (2-DOG) uptake in C2C12 myotubes, suggesting an improvement in glucose metabolism. Concerning the inflammatory status, EPA treatment resulted in a decreased gene expression for both tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) both in skeletal muscle and adipose tissue. The data suggest that EPA treatment to diabetic rats clearly improves lipid metabolism although the evidences on insulin sensitization are less clear.

  9. Dietary supplementation with aromatic amino acids increases protein synthesis in children with severe acute malnutrition.

    PubMed

    Hsu, Jean W; Badaloo, Asha; Wilson, Lorraine; Taylor-Bryan, Carolyn; Chambers, Bentley; Reid, Marvin; Forrester, Terrence; Jahoor, Farook

    2014-05-01

    Although 2 earlier studies reported that aromatic amino acid (AAA) supplementation of children with severe acute malnutrition (SAM) improved whole-body protein anabolism during the early postadmission (maintenance) phase of rehabilitation, it is not known whether this positive effect was maintained during the catch-up growth and recovery phases of treatment. This study aimed to determine whether supplementation with an AAA cocktail (330 mg · kg(-1) · d(-1)) vs. isonitrogenous Ala would improve measures of protein kinetics in 22 children, aged 4-31 mo, during the catch-up growth and recovery phases of treatment for SAM. Protein kinetics were assessed by measuring leucine, phenylalanine, and urea kinetics with the use of standard stable isotope tracer methods in the fed state. Supplementation started at the end of the maintenance period when the children were clinically/metabolically stable and continued up to full nutritional recovery. Three experiments were performed: at the end of maintenance (at ∼13 d postadmission), at mid-catch-up growth (at ∼23 d post- admission when the children had replenished 50% of their weight deficit), and at recovery (at ∼48 d postadmission when they had achieved at least 90% weight for length). Children in the AAA group had significantly faster protein synthesis compared with those in the Ala group at mid-catch-up growth (101 ± 10 vs. 72 ± 7 μmol phenylalanine · kg(-1) · h(-1); P < 0.05) and better protein balance at mid-catch-up growth (49 ± 5 vs. 30 ± 2 μmol phenylalanine · kg(-1) · h(-1); P < 0.05) and at recovery (37 ± 8 vs. 11 ± 3 μmol phenylalanine · kg(-1) · h(-1); P < 0.05). We conclude that dietary supplementation with AAA accelerates net protein synthesis in children during nutritional rehabilitation for SAM.

  10. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5'AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle.

    PubMed

    Tsuda, Satoshi; Egawa, Tatsuro; Ma, Xiao; Oshima, Rieko; Kurogi, Eriko; Hayashi, Tatsuya

    2012-11-01

    Chlorogenic acid is an ester of caffeic and quinic acids, and is one of the most widely consumed polyphenols because it is abundant in foods, especially coffee. We explored whether chlorogenic acid and its metabolite, caffeic acid, act directly on skeletal muscle to stimulate 5'-adenosine monophosphate-activated protein kinase (AMPK). Incubation of rat epitrochlearis muscles with Krebs buffer containing caffeic acid (≥0.1 mM, ≥30 min) but not chlorogenic acid increased the phosphorylation of AMPKα Thr(172), an essential step for kinase activation, and acetyl CoA carboxylase Ser(79), a downstream target of AMPK, in a dose- and time-dependent manner. Analysis of isoform-specific AMPK activity revealed that AMPKα2 activity increased significantly, whereas AMPKα1 activity did not change. This enzyme activation was associated with a reduction in phosphocreatine content and an increased rate of 3-O-methyl-d-glucose transport activity in the absence of insulin. These results suggest that caffeic acid but not chlorogenic acid acutely stimulates skeletal muscle AMPK activity and insulin-independent glucose transport with a reduction of the intracellular energy status. PMID:22227267

  11. Increased microsomal interaction with iron and oxygen radical generation after chronic acetone treatment.

    PubMed

    Puntarulo, S; Cederbaum, A I

    1988-01-12

    In vivo administration of acetone influences a variety of reactions catalyzed by rat liver microsomes. The effect of chronic treatment with acetone (1% acetone in the water for 10-12 days) on interaction with iron and subsequent oxygen radical generation by liver microsomes was evaluated. Microsomes from the acetone-treated rats displayed elevated rates of H2O2 generation, an increase in iron-dependent lipid peroxidation, and enhanced chemiluminescence upon the addition of t-butylhydroperoxide. The ferric EDTA-catalyzed production of formaldehyde from DMSO or of ethylene from 2-keto-4-thiomethylbutyrate was increased 2-fold after acetone treatment. This increase in hydroxyl radical generation was accompanied by a corresponding increase in NADPH utilization and was sensitive to inhibition by catalase and a competitive scavenger, ethanol, but not to superoxide dismutase. In vitro addition of acetone to microsomes had no effect on oxygen radical generation. Associated with the chronic acetone treatment was a 2-fold increase in the microsomal content of cytochrome P-450 and in the activity of NADPH-cytochrome-P-450 reductase. It appears that increased oxygen radical generation by microsomes after chronic acetone treatment reflects the increase in the major enzyme components which comprise the mixed-function oxidase system.

  12. Critical appraisal of omega-3 fatty acids in attention-deficit/hyperactivity disorder treatment

    PubMed Central

    Königs, Anja; Kiliaan, Amanda J

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. The classical treatment of ADHD where stimulant medication is used has revealed severe side effects and intolerance. Consequently, the demand to search for alternative treatment has increased rapidly. When comparing levels of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in ADHD patients with those in age-matching controls, lower levels are found in ADHD patients’ blood. ω-3 PUFAs are essential nutrients and necessary for a proper brain function and development. Additionally, there are strong indications that ω-3 PUFA supplements could have beneficial effects on ADHD. However, the results of ω-3 PUFA supplementation studies show a high variability. Therefore, we reviewed recent studies published between 2000 and 2015 to identify effective treatment combinations, the quality of design, and safety and tolerability of ω-3-containing food supplements. We searched the databases MEDLINE, PubMed, and Web of Science with keywords such as “ADHD” and “ω-3/6 PUFA” and identified 25 studies that met the inclusion and exclusion criteria. The results of these ω-3 PUFA studies are contradictory but, overall, show evidence for a successful treatment of ADHD symptoms. Tolerability of the given supplements was high, and only mild side effects were reported. In conclusion, there is evidence that a ω-3 PUFA treatment has a positive effect on ADHD. It should be added that treatment could be more effective in patients with mild forms of ADHD. Moreover, the dosage of stimulant medication could be reduced when used in combination with ω-3 PUFA supplements. Further studies are necessary to investigate underlying mechanisms that can lead to a reduction of ADHD symptoms due to ω-3 PUFA treatments and also to determine the optimal concentrations of ω-3 PUFAs, whether used as single treatment or in combination with other medication. PMID:27555775

  13. Critical appraisal of omega-3 fatty acids in attention-deficit/hyperactivity disorder treatment.

    PubMed

    Königs, Anja; Kiliaan, Amanda J

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. The classical treatment of ADHD where stimulant medication is used has revealed severe side effects and intolerance. Consequently, the demand to search for alternative treatment has increased rapidly. When comparing levels of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in ADHD patients with those in age-matching controls, lower levels are found in ADHD patients' blood. ω-3 PUFAs are essential nutrients and necessary for a proper brain function and development. Additionally, there are strong indications that ω-3 PUFA supplements could have beneficial effects on ADHD. However, the results of ω-3 PUFA supplementation studies show a high variability. Therefore, we reviewed recent studies published between 2000 and 2015 to identify effective treatment combinations, the quality of design, and safety and tolerability of ω-3-containing food supplements. We searched the databases MEDLINE, PubMed, and Web of Science with keywords such as "ADHD" and "ω-3/6 PUFA" and identified 25 studies that met the inclusion and exclusion criteria. The results of these ω-3 PUFA studies are contradictory but, overall, show evidence for a successful treatment of ADHD symptoms. Tolerability of the given supplements was high, and only mild side effects were reported. In conclusion, there is evidence that a ω-3 PUFA treatment has a positive effect on ADHD. It should be added that treatment could be more effective in patients with mild forms of ADHD. Moreover, the dosage of stimulant medication could be reduced when used in combination with ω-3 PUFA supplements. Further studies are necessary to investigate underlying mechanisms that can lead to a reduction of ADHD symptoms due to ω-3 PUFA treatments and also to determine the optimal concentrations of ω-3 PUFAs, whether used as single treatment or in combination with other medication.

  14. Critical appraisal of omega-3 fatty acids in attention-deficit/hyperactivity disorder treatment.

    PubMed

    Königs, Anja; Kiliaan, Amanda J

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. The classical treatment of ADHD where stimulant medication is used has revealed severe side effects and intolerance. Consequently, the demand to search for alternative treatment has increased rapidly. When comparing levels of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in ADHD patients with those in age-matching controls, lower levels are found in ADHD patients' blood. ω-3 PUFAs are essential nutrients and necessary for a proper brain function and development. Additionally, there are strong indications that ω-3 PUFA supplements could have beneficial effects on ADHD. However, the results of ω-3 PUFA supplementation studies show a high variability. Therefore, we reviewed recent studies published between 2000 and 2015 to identify effective treatment combinations, the quality of design, and safety and tolerability of ω-3-containing food supplements. We searched the databases MEDLINE, PubMed, and Web of Science with keywords such as "ADHD" and "ω-3/6 PUFA" and identified 25 studies that met the inclusion and exclusion criteria. The results of these ω-3 PUFA studies are contradictory but, overall, show evidence for a successful treatment of ADHD symptoms. Tolerability of the given supplements was high, and only mild side effects were reported. In conclusion, there is evidence that a ω-3 PUFA treatment has a positive effect on ADHD. It should be added that treatment could be more effective in patients with mild forms of ADHD. Moreover, the dosage of stimulant medication could be reduced when used in combination with ω-3 PUFA supplements. Further studies are necessary to investigate underlying mechanisms that can lead to a reduction of ADHD symptoms due to ω-3 PUFA treatments and also to determine the optimal concentrations of ω-3 PUFAs, whether used as single treatment or in combination with other medication. PMID:27555775

  15. Polymeric nanoparticles modified with fatty acids encapsulating betamethasone for anti-inflammatory treatment.

    PubMed

    Silva, Catarina Oliveira; Rijo, Patrícia; Molpeceres, Jesús; Figueiredo, Isabel Vitória; Ascensão, Lia; Fernandes, Ana Sofia; Roberto, Amílcar; Reis, Catarina Pinto

    2015-09-30

    Topical glucocorticosteroids were incorporated into nanocarrier-based formulations, to overcome side effects of conventional formulations and to achieve maximum skin deposition. Nanoparticulate carriers have the potential to prolong the anti-inflammatory effect and provide higher local concentration of drugs, offering a better solution for treating dermatological conditions and improving patient compliance. Nanoparticles were formulated with poly-ϵ-caprolactone as the polymeric core along with stearic acid as the fatty acid, for incorporation of betamethasone-21-acetate. Oleic acid was applied as the coating fatty acid. Improvement of the drug efficacy, and reduction in drug degradation with time in the encapsulated form was examined, while administering it locally through controlled release. Nanoparticles were spherical with mean size of 300 nm and negatively charged surface. Encapsulation efficiency was 90%. Physicochemical stability in aqueous media of the empty and loaded nanoparticles was evaluated for six months. Drug degradation was reduced compared to free drug, after encapsulation into nanoparticles, avoiding the potency decline and promoting a controlled drug release over one month. Fourier transform infrared spectroscopy and thermal analysis confirmed drug entrapment, while cytotoxicity studies performed in vitro on human keratinocytes, Saccharomyces cerevisiae models and Artemia salina, showed a dose-response relationship for nanoparticles and free drug. In all models, drug loaded nanoparticles had a greater inhibitory effect. Nanoparticles increased drug permeation into lipid membranes in vitro. Preliminary safety and permeation studies conducted on rats, showed betamethasone-21-acetate in serum after 48 h application of a gel containing nanoparticles. No skin reactions were observed. In conclusion, the developed nanoparticles may be applied as topical treatment, after encapsulation of betamethasone-21-acetate, as nanoparticles promote prolonged drug

  16. Dual effects of slightly acidic electrolyzed water (SAEW)