Science.gov

Sample records for acid triamine condensate

  1. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Coco acid triamine condensate... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts. (a... coco acid triamine condensate, poly-car-box-ylic acid salts. (PMN P-92-446) is subject to...

  2. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Coco acid triamine condensate... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts. (a... coco acid triamine condensate, poly-car-box-ylic acid salts. (PMN P-92-446) is subject to...

  3. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  4. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  5. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  6. Indirect evidence of intravesical ureterocele on 99mTc-diethylene triamine pentaacetic acid scan

    PubMed Central

    Kumar, Deepa; Sethi, Ravinder Singh; Misra, Ritu; Ali, Md Izhar

    2016-01-01

    Ureterocele is a common ureteric anomaly detected in pediatric population. Ureterocele diagnosis and evaluation need a variety of radiological methods. We report a case of 5-year-old female child sent for 99mTc-diethylene triamine pentaacetic acid scan for evaluation of glomerular filtration rate and excretory function of kidneys in view of right-sided hydroureteronephrosis and pyonephrosis with percutaneous tube in situ. Incidental photopenia was noted in the urinary bladder. On ultrasonography of abdomen cause of this photopenia was found to be an intravesical ureterocele. PMID:27095867

  7. Iron chelation using subcutaneous infusions of diethylene triamine penta-acetic acid (DTPA).

    PubMed

    Pippard, M J; Jackson, M J; Hoffman, K; Petrou, M; Modell, C B

    1986-05-01

    The iron chelating ability and potential toxicity of subcutaneous infusions of the calcium and zinc salts of diethylene triamine penta-acetic acid (DTPA) have been assessed in metabolic balance studies in 2 iron-loaded thalassaemic patients. Infusions of calcium DTPA were locally well tolerated and the drug was as effective as desferrioxamine in mobilising iron. However, daily infusions in the 1st patient also produced symptomatic zinc depletion which could not be controlled by simultaneous oral zinc supplements. Zinc DTPA proved ineffective as an iron chelator, but zinc balance could be maintained in the 2nd patient by combining intermittent (every 4 d) use of calcium DTPA with oral zinc supplements. Combined studies with desferrioxamine and calcium DTPA showed the drugs to have additive effects, probably as a result of the chelation of iron from different body sites. PMID:3738427

  8. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles.

    PubMed

    Dehshahri, Ali; Sadeghpour, Hossein; Keykhaee, Maryam; Khalvati, Bahman; Sheikhsaran, Fatemeh

    2016-05-01

    Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers. PMID:26801817

  9. Use of gadolinium diethylene triamine penta-acetic acid, as measured by ELISA, in the determination of glomerular filtration rates in cats.

    PubMed

    Sox, Erika M; Chiotti, Ruthanne; Goldstein, Richard E

    2010-10-01

    The goal of this study was to evaluate a commercially available assay for gadolinium diethylene triamine penta-acetic acid (Gd-DTPA) for use in estimating glomerular filtration rate (GFR) in cats (Gd-DTPA GFR) with a wide range of GFRs. Eighteen adult cats (11 healthy and seven with chronic kidney disease) were included. Plasma concentrations of Gd-DTPA following intravenous injection were measured with an ELISA kit (FIT-GFR). Results for Gd-DTPA GFR were compared with simultaneously obtained values for plasma clearance of iohexol (iohexol GFR), plasma blood urea nitrogen (BUN) and creatinine concentrations. A negative correlation existed between iohexol GFR and plasma concentrations of BUN and creatinine. A positive correlation existed between Gd-DTPA GFR and iohexol GFR. There was no correlation between Gd-DTPA GFR and plasma concentrations of BUN and creatinine. In this study plasma clearance of Gd-DTPA assayed by FIT-GFR did not appear to provide a sufficiently accurate estimation of GFR in cats when compared with plasma clearance of iohexol, and plasma concentrations of BUN and creatinine. PMID:20724186

  10. [Renal functional reserve in children with a history of hemolytic uremic syndrome through technetium-99m diethylene-triamine-penta-acetic acid clearance].

    PubMed

    Bruno, Guillermo O A; Diéguez, Stella Maris; Voyer, Luis E

    2012-01-01

    Protein loads in normal subjects increase glomerular filtration rate (GFR), which implies a renal functional reserve (RFR). Patients who have suffered a loss in the number of nephrons may show normal values of GFR due to hyperfiltration of remnant nephrons, with subsequent loss of RFR. This could be an early sign of renal damage, and probably a contributory factor to renal damage progress. The objective of this study is to determine the RFR through technetium-99m diethylene-triamine-penta-acetic acid (99m Tc-DTPA) clearance in patients who have recovered from hemolytic uremic syndrome. Renal functional reserve was determined in 33 children from 2 to 16 years old, with normal values of proteinuria, serum creatinine and creatinine clearance after over a year of having suffered hemolitic uremic syndrome. For that purpose 99m Tc-DTPA clearance was determined in basal condition and following protein load. In 17 patients DTPA clearance increased 20% or more after protein load compared to basal condition, and they were considered to have normal RFR, a probably index of totally recovered renal function; in the remaining 16 patients the increases were lower than 20%, and were considered to have no RFR, condition that was postulated as a contributing factor to renal damage progress. There was not significant differences either in age or basal GFR between both groups. Being the test easier than inuline clearance and more accurate than creatinine clearance, it proves particularly useful for early diagnosis of patients that need special follow-up and treatment. PMID:22307424

  11. MINIATURE ACID CONDENSATION SYSTEM: DESIGN AND OPERATION

    EPA Science Inventory

    An extractive source sampling system was designed and constructed. The sampling system measures gaseous sulfuric acid and sulfur dioxide in combustion emissions. The miniature acid condensation system (MACS) includes a high-temperature quartz probe and quartz-filter holder. Since...

  12. Exploitation of the size-exclusion effect of reversed-phase high performance liquid chromatography for the direct analysis of diethylene triamine pentaacetic acid in therapeutic monoclonal antibody formulations.

    PubMed

    Huang, Jason Z; Liao, Karen; Wang, George; Haby, Thomas; Bolgar, Mark S

    2016-07-15

    Monoclonal antibodies (mAb) are being widely studied for the treatment of cancers and other diseases. The mAb is typically in a solution formulation and administered as an intravenous infusion. Ready-to-use solutions are favored for their clinical convenience but they can potentially suffer from a shorter shelf life due to accelerated rates of some forms of degradation such as oxidation, relative to lyophilized formulations. To improve stability, the chelating agent diethylene triamine pentaacetic acid (DTPA) is often used at very low concentrations in biologics formulations to prevent oxidation induced by metal ions. Because of its low concentration and susceptibility to changes in concentration during stability study or processing, the measurement of DTPA levels during formulation and process development is critical. In response to this need we developed a platform reversed-phase HPLC method that allows for the rapid and direct determination of DPTA concentrations which does not require the prior removal of mAbs in formulation samples. The method exploits the "size exclusion effect" of C18 columns with narrow pore sizes (90-120Å) to elute large mAb at the void volume, enabling direct injections of mAb samples for quantitation of DTPA. The method was found to be suitable for the analysis of DTPA in the range of 2-20μg/mL across multiple drug formulations containing different therapeutic mAb and antibody drug conjugates. The method was successfully validated for specificity, precision, accuracy, linearity, and robustness. PMID:27295965

  13. Triamine chelants, their derivatives, complexes and conjugates

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1995-03-07

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula, as shown in the accompanying diagrams, wherein n, m, R, R{sup 1}, R{sup 2} and L are defined in the specification.

  14. Triamine chelants, their derivatives, complexes and conjugates

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1995-01-01

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula: ##STR1## wherein n, m, R, R.sup.1, R.sup.2 and L are defined in the specification.

  15. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  16. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  17. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  18. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  19. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  20. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid polyamine condensate, phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric...

  1. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate, phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric...

  2. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid polyamine condensate, phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric...

  3. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid polyamine condensate, phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric...

  4. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid polyamine condensate, phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric...

  5. Capillary electrochromatography using monoamine- and triamine-bonded silica nanoparticles as pseudostationary phases.

    PubMed

    Takeda, Yuto; Hayashi, Yuka; Utamura, Naonori; Takamoto, Chise; Kinoshita, Mitsuhiro; Yamamoto, Sachio; Hayakawa, Takao; Suzuki, Shigeo

    2016-01-01

    Monoamine- and triamine-bonded silica nanoparticles were prepared using 3-aminopropyltrimethoxysilane and N(1)-(3-trimethoxysilylpropyl)diethylenetriamine, respectively, and used as pseudostationary phases for capillary electrochromatography. The amine-bonded silica nanoparticles were tightly adsorbed on the inner wall of a capillary and generated fast electro-osmotic flow (2.59 × 10(-4) cm(2) V(-1) s(-1)) toward the anode in an electric field. The electro-osmotic velocities obtained with 20 nm triamine-bonded silica were three to five times larger than those generated by a fused silica capillary and two times faster than those for the commercial cationic polymer-modified capillary. Fast electro-osmotic flow enables rapid analysis. This method was applied to hydrophilic interaction chromatography (HILIC) mode separation of various samples including the size separation of glucose oligomer derivatives and the resolution of four nucleic acid bases. PMID:26700155

  6. Triamine-Modified Polyimides Having Improved Processability and Low Melt Flow Viscosity

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor); Nguyen, Baochan N. (Inventor); Eby, Ronald K. (Inventor)

    2001-01-01

    Addition-cured polyimides that contain the reaction product of an aromatic triamine or trianhydride analogue thereof, a reactive end group such as 5-norbornene-2, 3-dicarboxylic acid, ester derivatives of 5-norbornene-2, 3-dicarboxylic acid, anhydride derivatives of 5-norbornene-2, 3-dicarboxylic acid, or 4-phenylethynylphthalic anhydride, an aromatic diamine, and a dialkyl ester of an aromatic tetracarboxylic acid. The resultant starlike polyimides; exhibit lower melt flow viscosity than its linear counterparts, providing for improved processability of the polyimide. Also disclosed are methods for the synthesis of these polyimides as well as composite structures formed using these polyimides.

  7. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  8. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  9. Reactive Transport Modeling of Acid Gas Generation and Condensation

    SciTech Connect

    G. Zhahg; N. Spycher; E. Sonnenthal; C. Steefel

    2005-01-25

    Pulvirenti et al. (2004) recently conducted a laboratory evaporation/condensation experiment on a synthetic solution of primarily calcium chloride. This solution represents one potential type of evaporated pore water at Yucca Mountain, Nevada, a site proposed for geologic storage of high-level nuclear waste. These authors reported that boiling this solution to near dryness (a concentration factor >75,000 relative to actual pore waters) leads to the generation of acid condensate (pH 4.5) presumably due to volatilization of HCl (and minor HF and/or HNO{sub 3}). To investigate the various processes taking place, including boiling, gas transport, and condensation, their experiment was simulated by modifying an existing multicomponent and multiphase reactive transport code (TOUGHREACT). This code was extended with a Pitzer ion-interaction model to deal with high ionic strength. The model of the experiment was set-up to capture the observed increase in boiling temperature (143 C at {approx}1 bar) resulting from high concentrations of dissolved salts (up to 8 m CaCl{sub 2}). The computed HCI fugacity ({approx} 10{sup -4} bars) generated by boiling under these conditions is not sufficient to lower the pH of the condensate (cooled to 80 and 25 C) down to observed values unless the H{sub 2}O mass fraction in gas is reduced below {approx}10%. This is because the condensate becomes progressively diluted by H{sub 2}O gas condensation. However, when the system is modeled to remove water vapor, the computed pH of instantaneous condensates decreases to {approx}1.7, consistent with the experiment (Figure 1). The results also show that the HCl fugacity increases, and calcite, gypsum, sylvite, halite, MgCl{sub 2}4H{sub 2}O and CaCl{sub 2} precipitate sequentially with increasing concentration factors.

  10. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    PubMed

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures. PMID:27511635

  11. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. No Drawings

  12. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes.

  13. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  14. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., polyamine condensate. 721.6220 Section 721.6220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  15. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., polyamine condensate. 721.6220 Section 721.6220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  16. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., polyamine condensate. 721.6220 Section 721.6220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  17. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  18. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  19. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  20. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  1. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  2. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  3. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  4. Synthesis and characterisation of a mesocyclic tripodal triamine ligand.

    PubMed

    Ure, Andrew D; Lázaro, Isabel Abánades; Cotter, Michelle; McDonald, Aidan R

    2016-01-14

    Meso- and macrocyclic polydentate amine ligands have been widely explored in oxidation catalysis and for the stabilization of unstable metal-superoxide, -peroxide, and -oxo intermediates. Herein we report on the design and synthesis of a novel mesocyclic, tripodal, triamine ligand that we believe will be an excellent addition to this field. We explored a number of synthetic procedures towards the mesocyclic asymmetric tetraalkylated ligand 1. We expect that 1 will bind metals in a facially capping manner, yielding complexes that display pseudo-tetrahedral geometry, potentially providing access to unprecedented late transition metal-oxo complexes (metal = Co, Ni, Cu). We describe the preparation of a library of mesocyclic polyamine synthons (8, 16, 17, 18, 19) that are precursors in the synthesis of 1. These synthons will be used to tailor the electronic properties of metal complexes of 1 and derivatives thereof. The X-ray crystal structures of 19 and mono- and di-protonated forms of 1b show that the triamine crystalises in a boat–chair conformation which is undesirable for metal coordination. However, solution (1)H NMR studies show that in solution both 19 and the tetraalkylated derivative 1b are remarkably flexible. 1b reacted with [CuI(NCCH3)4](OTf) yielding a 1:1 copper(I) complex [CuI(NCCH3)(1b)](+). PMID:26488232

  5. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  6. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  7. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  8. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED... fermentation product. Condensed, extracted glutamic acid fermentation product may be safely used in animal feed... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein...

  9. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine.

    PubMed

    Meador, Mary Ann B; Malow, Ericka J; Silva, Rebecca; Wright, Sarah; Quade, Derek; Vivod, Stephanie L; Guo, Haiquan; Guo, Jiao; Cakmak, Miko

    2012-02-01

    Polyimide gels are produced by cross-linking anhydride capped polyamic acid oligomers with aromatic triamine in solution and chemically imidizing. The gels are then supercritically dried to form nanoporous polyimide aerogels with densities as low as 0.14 g/cm(3) and surface areas as high as 512 m(2)/g. To understand the effect of the polyimide backbone on properties, aerogels from several combinations of diamine and dianhydride, and formulated oligomer chain length are examined. Formulations made from 2,2'-dimethylbenzidine as the diamine shrink the least but have among the highest compressive modulus. Formulations made using 4,4'-oxydianiline or 2,2'dimethylbenzidine can be fabricated into continuous thin films using a roll to roll casting process. The films are flexible enough to be rolled or folded back on themselves and recover completely without cracking or flaking, and have tensile strengths of 4-9 MPa. Finally, the highest onset of decomposition (above 600 °C) of the polyimide aerogels was obtained using p-phenylene diamine as the backbone diamine with either dianhydride studied. All of the aerogels are suitable candidates for high-temperature insulation with glass transition temperatures ranging from 270-340 °C and onsets of decomposition from 460-610 °C. PMID:22233638

  10. Metal ion-humic acid nanoparticle interactions: role of both complexation and condensation mechanisms.

    PubMed

    Town, Raewyn M; van Leeuwen, Herman P

    2016-07-21

    Purely Donnan type models for electrostatic binding by humic acid (HA) nanoparticles are shown to be physically incomplete. To describe the extent of ion binding by HA, such models need to invoke parameters that are not consistent with experimental observations. These disparate parameters include anomalously high Donnan potentials, as well as intrinsic affinity constants for electrostatically associating ions such as Ca(2+). In contrast, the recently introduced counterion condensation - Donnan model (CCD) provides a physicochemically realistic description of the electrostatic contribution to metal ion binding by humic acid nanoparticles. The extent of Ca(2+)-HA association can be adequately described solely in terms of electrostatics only, including counterion condensation in the intraparticulate double layer in addition to Donnan partitioning in the remainder of the particle body. The binding of Cd(ii), Pb, (ii) and Cu(ii) by HA also involves inner-sphere complex formation leading to intraparticulate metal species distributions with major proportions of condensed and complexed ions. PMID:27327433

  11. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Condensed, extracted glutamic acid fermentation product. 573.500 Section 573.500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  12. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  13. Laboratory studies of the formation of polar stratospheric clouds: Nitric acid condensation on thin sulfuric acid films

    NASA Astrophysics Data System (ADS)

    Iraci, Laura T.; Middlebrook, Ann M.; Tolbert, Margaret A.

    1995-10-01

    Thin sulfuric acid films were exposed to 5 × 10-8 - 8 × 10-7 torr HNO3 and 2 - 3 × 10-4 torr H2O and cooled to temperatures near the ice frost point. Fourier transform infrared (FTIR) spectroscopy was used to probe the condensed-phase species during isothermal experiments, and gas pressures were monitored with mass spectrometry. Supercooled liquid sulfuric acid films exposed to HNO3 (6 ≤ SNAT ≤ 114) showed indications of HNO3 uptake to form ternary solutions of approximately 4 wt % HNO3, 38 wt % H2SO4, and 59 wt % H2O, followed by crystallization of nitric acid trihydrate (NAT). NAT crystallization did not initiate significant crystallization of the supercooled H2SO4, but the H2SO4 often crystallized to sulfuric acid tetrahydrate (SAT) upon warming. In contrast, when crystalline SAT films were exposed to HNO3 and water, NAT did not condense within several hours, even at HNO3 saturation ratios of 30 or higher. Calculations of the contact parameter from experimental data indicate that m <0.76 for NAT on SAT. Our film studies suggest that crystalline polar stratospheric cloud (PSC) growth is most easily accomplished when stratospheric sulfate aerosols (SSAs) remain liquid, absorb HNO3, and produce crystalline nitric acid trihydrate via heterogeneous nucleation. If SSAs crystallize to SAT at some point during the winter, nitric acid condensation is hindered, and PSC formation could become more difficult.

  14. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 19: Condensation of phthalic and substituted phthalic anhydrides with benzoylacetic ester

    NASA Technical Reports Server (NTRS)

    Rotberg, Y. T.; Oshkaya, V. P.

    1985-01-01

    Phthalylbenzoylacetic ester and its nitro and halogen derivatives were prepared through condensation of phthalic anhydride, nitrophthalic anhydride, and phthalic halide anhydride with benzoylacetic ester in a solution of acetic anhydride and triethylamine. The condensation of hemipinic acid anhydride proceeds similarly, but under more drastic conditions. Derivatives of indan-1,3-dione are also formed, with a small yield, in the reaction of nitrophthalic anhydrides with benzoylacetic ester in the presence of increased quantities of triethylamine.

  15. A Condensing Enzyme from the Seeds of Lesquerella fendleri That Specifically Elongates Hydroxy Fatty Acids1

    PubMed Central

    Moon, Hangsik; Smith, Mark A.; Kunst, Ljerka

    2001-01-01

    Lesquerella fendleri seed oil contains up to 60% hydroxy fatty acids, nearly all of which is the 20-carbon hydroxy fatty acid lesquerolic acid (d-14-hydroxyeicos-cis-11-enoic acid). Previous work suggested that lesquerolic acid in L. fendleri was formed by the elongation of the 18-carbon hydroxy fatty acid, ricinoleic acid. To identify a gene encoding the enzyme involved in hydroxy fatty acid elongation, an L. fendleri genomic DNA library was screened using the coding region of the Arabidopsis Fatty Acid Elongation1 gene as a probe. A gene, LfKCS3, with a high sequence similarity to known very long-chain fatty acid condensing enzymes, was isolated. LfKCS3 has a 2,062-bp open reading frame interrupted by two introns, which encodes a polypeptide of 496 amino acids. LfKCS3 transcripts accumulated only in the embryos of L. fendleri and first appeared in the early stages of development. Fusion of the LfKCS3 promoter to the uidA reporter gene and expression in transgenic Arabidopsis resulted in a high level of β-glucuronidase activity exclusively in developing embryos. Seeds of Arabidopsis plants transformed with LfKCS3 showed no change in their very long-chain fatty acid content. However, when these Arabidopsis plants were crossed with the transgenic plants expressing the castor oleate 12-hydroxylase, significant amounts of 20-carbon hydroxy fatty acids accumulated in the seed, indicating that the LfKCS3 condensing enzyme specifically catalyzes elongation of 18-carbon hydroxy fatty acids. PMID:11743108

  16. Formation of cloud condensation nuclei by oxidative processing: Unsaturated fatty acids

    NASA Astrophysics Data System (ADS)

    Broekhuizen, Keith E.; Thornberry, Troy; Kumar, P. Pradeep; Abbatt, Jonathan P. D.

    2004-12-01

    The ability of submicron oleic acid and linoleic acid particles, or condensation nuclei (CN), to act as cloud condensation nuclei (CCN) has been investigated using a tandem differential mobility analyzer (TDMA) coupled to a flow tube reactor and a thermal gradient diffusion chamber (TGDC). The size change and CCN properties of pure oleic acid, mixed oleic acid/methanol, and pure linoleic acid particles have been investigated as a function of exposure to ozone. Pure oleic and linoleic acid particles were CCN inactive for all particle diameters (≤300 nm) and supersaturations (≤1%) studied. The mixed oleic acid/methanol particles, however, had a critical activation diameter of 188 nm for an experimental water supersaturation of 0.6%. Under low ozone exposures (<1 × 10-4 atm s), both the oleic acid and linoleic acid particles decreased in size. In particular, oleic acid particles lost 25% of their initial volume, consistent with the loss of nonanal, a volatile reaction product. However, no increase in CCN activity was observed at these exposures. Under conditions of much higher ozone exposure, e.g., 0.42 atm s, the pure oleic acid particles became CCN active, with a critical activation diameter of 161 nm at 0.6% supersaturation. CCN activity for the linoleic acid particles was never observed, even under these high ozone exposures not typically observed in the atmosphere. By contrast, the mixed oleic acid/methanol particles showed enhanced activation under atmospherically relevant ozone exposures (<1 × 10-4 atm s). These results suggest that the products of the ozone plus unsaturated fatty acid reaction do promote the CCN activity of the particles; however, the degree of activity is dependent on both the level of ozone exposure and the chemical nature of the particle. These results are the first to demonstrate that the CCN properties of pure organic aerosols can be modified through oxidative processing.

  17. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  18. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.

    PubMed

    Gao, Ru-Shan; Gierczak, Tomasz; Thornberry, Troy D; Rollins, Andrew W; Burkholder, James B; Telg, Hagen; Voigt, Christiane; Peter, Thomas; Fahey, David W

    2016-03-10

    A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region. PMID:26447682

  19. Heat transfer, erosion and acid condensation characteristics for novel H-type finned oval tube

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhao, X.; Tang, G.

    2015-09-01

    Low efficiency of heat transfer, acid corrosion and erosion of economizers affect the economy and security in coal-fired power plants significantly. The H-type finned oval tube is proposed to alleviate these problems. Based on the H-type finned oval tube, we investigated three novel types of fins, including bleeding dimples, longitudinal vortex generators (LVGs), and compound dimple-LVG. We considered the three aspects together, and obtained the heat transfer, acid condensation rate and erosion loss. The results show that the tube bank with the new structured fins can improve the performance on the three aspects, and the compound dimple-LVG performs the highest comprehensive effect.

  20. Polymers from amino acids: development of dual ester-urethane melt condensation approach and mechanistic aspects.

    PubMed

    Anantharaj, S; Jayakannan, M

    2012-08-13

    A new dual ester-urethane melt condensation methodology for biological monomers-amino acids was developed to synthesize new classes of thermoplastic polymers under eco-friendly and solvent-free polymerization approach. Naturally abundant L-amino acids were converted into dual functional ester-urethane monomers by tailor-made synthetic approach. Direct polycondensation of these amino acid monomers with commercial diols under melt condition produced high molecular weight poly(ester-urethane)s. The occurrence of the dual ester-urethane process and the structure of the new poly(ester-urethane)s were confirmed by (1)H and (13)C NMR. The new dual ester-urethane condensation approach was demonstrated for variety of amino acids: glycine, β-alanine, L-alanine, L-leucine, L-valine, and L-phenylalanine. MALDI-TOF-MS end group analysis confirmed that the amino acid monomers were thermally stable under the melt polymerization condition. The mechanism of melt process and the kinetics of the polycondensation were studied by model reactions and it was found that the amino acid monomer was very special in the sense that their ester and urethane functionality could be selectively reacted by polymerization temperature or catalyst. The new polymers were self-organized as β-sheet in aqueous or organic solvents and their thermal properties such as glass transition temperature and crystallinity could be readily varied using different l-amino acid monomers or diols in the feed. Thus, the current investigation opens up new platform of research activates for making thermally stable and renewable engineering thermoplastics from natural resource amino acids. PMID:22713137

  1. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; Christensen, L. E.; Baumgardner, D. G.; Voigt, C.; Kaercher, B.; Wilson, J. C.; Mahoney, M. J.; Jensen, E. J.; Bui, T. P.

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  2. Multi-shell model of ion-induced nucleic acid condensation.

    PubMed

    Tolokh, Igor S; Drozdetski, Aleksander V; Pollack, Lois; Baker, Nathan A; Onufriev, Alexey V

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregationfree energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregationfree energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNAcondensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NAcondensation lends support to proposed NAcondensation picture based on the multivalent "ion binding shells

  3. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    NASA Technical Reports Server (NTRS)

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  4. Ammonium nitrate evaporation and nitric acid condensation in DMT CCN counters

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2014-05-01

    The effect of inorganic semivolatile aerosol compounds on the cloud condensation nucleus (CCN) activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big a fraction of semivolatiles is evaporated from particles after entering but before particle activation in the DMT-CCN counter? (2) How much can the CCN activity be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? Both experimental and modelling results show that the evaporation of ammonia and nitric acid from ammonium nitrate particles causes a 10 to 15 nm decrease to the critical particle size in supersaturations between 0.1% and 0.7%. On the other hand, the modelling results also show that condensation of nitric acid or similar vapour can increase the CCN activity of nonvolatile aerosol particles, but a very high gas phase concentration (as compared to typical ambient conditions) would be needed. Overall, it is more likely that the CCN activity of semivolatile aerosol is underestimated than overestimated in the measurements conducted in ambient conditions.

  5. Effect of metal ions in a heated nitric acid solution on the corrosion behavior of a titanium-5% tantalum alloy in the hot nitric acid condensate

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Takeuchi, M.; Nakajima, Y.; Hirano, H.; Uchiyama, G.; Nojima, Y.; Fujine, S.; Matsumoto, S.

    2013-01-01

    For evaluating the application of titanium and its alloys as components of equipment for storing nitric acid condensate in spent nuclear fuel reprocessing plants, the corrosion behavior of titanium-5% tantalum alloy (Ti-5Ta) in a continuously renewed hot nitric acid condensate, and particularly the effect of metal ions in the heated nitric acid solution, was investigated. Corrosion experiments in an apparatus designed to renew the condensate at regular intervals showed that the corrosion rate of Ti-5Ta in the condensate increased linearly with the nitric acid concentration. The surface morphology of Ti-5Ta coupons after the corrosion experiments indicated uniform corrosion under any condition. The oxide film on the coupons had nearly constant thickness, and it was composed of mainly lower Ti oxides, such as TiO and Ti2O3, regardless of the nitric acid concentration in the condensate. The experimental results also showed that the addition of metal ions into the heated nitric acid solution increased the nitric acid concentration in the condensate, which resulted in a higher corrosion rate of Ti-5Ta. The corrosion rate increased noticeably as the valence of the metal ion increased and its ionic radius decreased. This effect of metal ions in the heated nitric acid solution on the corrosion rate of Ti-5Ta in the condensate was evaluated quantitatively based on the Gibbs free energy of hydration of the metal ions, and the calculated corrosion rates of Ti-5Ta in the condensate were found to be in good agreement with the experimental values.

  6. Kinetics of Acid-Catalyzed Aldol Condensation Reactions of Aliphatic Aldehydes

    NASA Astrophysics Data System (ADS)

    Elrod, M. J.; Casale, M. T.; Richman, A. R.; Beaver, M. R.; Garland, R. M.; Tolbert, M. A.

    2006-12-01

    While it is well established that organic compounds compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, ultraviolet-visible (UV-Vis) spectroscopy was used to monitor the kinetics of formation of the products of the aldol condensation reaction of a range of aliphatic aldehydes (C2-C8) The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature.

  7. Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, P.; Broekhuizen, K.; Abbatt, J. P. D.

    2003-05-01

    The ability of sub-micron-sized organic acid particles to act as cloud condensation nuclei (CCN) has been examined at room temperature using a newly constructed continuous-flow, thermal-gradient diffusion chamber (TGDC). The organic acids studied were: oxalic, malonic, glutaric, oleic and stearic. The CCN properties of the highly soluble acids - oxalic, malonic and glutaric - match very closely Köhler theory predictions which assume full dissolution of the dry particle and a surface tension of the growing droplet equal to that of water. In particular, for supersaturations between 0.3 and 0.6, agreement between the dry particle diameter which gives 50% activation and that calculated from Köhler theory is to within 3nm on average. In the course of the experiments, considerable instability of glutaric acid particles was observed as a function of time and there is evidence that they fragment to some degree to smaller particles. Stearic acid and oleic acid, which are both highly insoluble in water, did not activate at supersaturations of 0.6% with dry diameters up to 140nm. Finally, to validate the performance of the TGDC, we present results for the activation of ammonium sulfate particles that demonstrate good agreement with Köhler theory if solution non-ideality is considered. Our findings support earlier studies in the literature that showed highly soluble organics to be CCN active but insoluble species to be largely inactive.

  8. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  9. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids.

    PubMed

    Dienstmaier, Jürgen F; Medina, Dana D; Dogru, Mirjam; Knochel, Paul; Bein, Thomas; Heckl, Wolfgang M; Lackinger, Markus

    2012-08-28

    On-surface self-condensation of 1,4-benzenediboronic acid was previously shown to yield extended surface-supported, long-range-ordered two-dimensional covalent organic frameworks (2D COFs). The most important prerequisite for obtaining high structural quality is that the polycondensation (dehydration) reaction is carried out under slightly reversible reaction conditions, i.e., in the presence of water. Only then can the subtle balance between kinetic and thermodynamic control of the polycondensation be favorably influenced, and defects that are unavoidable during growth can be corrected. In the present study we extend the previously developed straightforward preparation protocol to a variety of para-diboronic acid building blocks with the aim to tune lattice parameters and pore sizes of 2D COFs. Scanning tunneling microscopy is employed for structural characterization of the covalent networks and of noncovalently self-assembled structures that form on the surface prior to the thermally activated polycondensation reaction. PMID:22775491

  10. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  11. Core acid treatment influence on well reservoir properties in Kazan oil-gas condensate field

    NASA Astrophysics Data System (ADS)

    Janishevskii, A.; Ezhova, A.

    2015-11-01

    The research involves investigation of the influence of hydrochloric acid (HCI-12%) and mud acid (mixture: HCl - 10% and HF - 3%) treatment on the Upper-Jurassic reservoir properties in Kazan oil-gas condensate field wells. The sample collection included three lots of core cylinders from one and the same depth (all in all 42). Two lots of core cylinders were distributed as following: first lot - reservoir properties were determined, and, then thin sections were cut off from cylinder faces; second lot- core cylinders were exposed to hydrochloric acid treatment, then, after flushing the reservoir properties were determined, and thin sections were prepared. Based on the quantitative petrographic rock analysis, involvin 42 thin sections, the following factors were determined: granulometric mineral composition, cement content, intergranular contacts and pore space structure. According to the comparative analysis of initial samples, the following was determined: content decrease of feldspar, clay and mica fragments, mica, clay and carbonate cement; increase of pore spaces while in the investigated samples- on exposure of rocks to acids effective porosity and permeability value range is ambiguous.

  12. Adsorption and condensation of amino acids and nucleotides with soluble mineral salts

    NASA Technical Reports Server (NTRS)

    Orenberg, J.; Lahav, N.

    1986-01-01

    The directed synthesis of biopolymers in an abiotic environment is presumably a cyclic sequence of steps which may be realized in a fluctuating environment such as a prebiotic pond undergoing wetting-drying cycles. Soluble mineral salts have been proposed as an essential component of this fluctuating environment. The following sequence may be considered as a most primitive mechanism of information transfer in a fluctuating environment: (1) adsorption of a biomolecule onto a soluable mineral salt surface to act as an adsorbed template; (2) specific adsorption of biomonomers onto the adsorbed template; (3) condensation of the adsorbed biomonomers; and (4) desorption of the elongated oligomer. In this investigation, the salts selected for study were CaSO4.2H2O(gypsum), SrSO4, and several other metal sulfates and chlorides. Adsorption of the monomeric species, gly, 5'AMP 5'GMP, and 5'CMP was investigated. The adsorbed template biopolymers used were Poly-A, Poly-G, Poly-C, and Poly-U. The results of studies involving these experimental participants, the first two steps of the proposed primitive information transfer mechanism, and condensation of amino acids to form oligomers in a fluctuating environment are to be reported.

  13. Nitric acid in polar stratospheric clouds: Similar temperature of nitric acid condensation and cloud formation

    SciTech Connect

    Pueschel, R.F.; Snetsinger, K.G. ); Hamill, P.; Goodman, J.K. ); McCormick, M.P. )

    1990-03-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds both form below similar threshold temperatures. This supports the idea that the polar stratospheric cloud (PSC) particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is inertial impaction of nitric acid aerosols using an ER-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a first appearance temperature T{sub fa} = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a first appearance temperature T{sub fa} = 198 K was found for the Antarctic samples.

  14. Delayed production of sulfuric acid condensation nuclei in the polar stratosphere from El Chichon volcanic vapors

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Gringel, W.

    1985-01-01

    It is pointed out that measurements of the vertical profiles of atmospheric condensation nuclei (CN) have been conducted since 1973. Studies with a new instrument revealed that the CN concentration undergoes a remarkable annual variation in the 30-km region characterized by a large increase in the late winter/early spring period with a subsequent decay during the remainder of the year. The event particles are observed to be volatile at 150 C, suggesting a sulfuric acid-water composition similar to that found in the normal 20 km aerosol layer. The development of about 10 to the 7th metric tons of sulfuric acid aerosol following the injection of sulfurous gases by El Chichon in April 1982, prompted Hofmann and Rosen (1983) to predict a very large CN event for 1983. The present investigation is concerned with the actual observation of the predicted event. Attention is given to the observation of a very large increase of what appear to be small sulfuric acid droplets at 30-km altitude in January 1983 over Laramie, WY, in January 1983.

  15. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil.

    PubMed

    Bharathan, M; Schingoethe, D J; Hippen, A R; Kalscheur, K F; Gibson, M L; Karges, K

    2008-07-01

    Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 x 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 x 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages. PMID:18565937

  16. Breath condensate hydrogen peroxide correlates with both airway cytology and epithelial lining fluid ascorbic acid concentration in the horse.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Smith, Ken C; Newton, Richard J; Gower, Susan M; Cade, Susan M; Roberts, Colin A; Harris, Pat A; Schroter, Robert C; Kelly, Frank J

    2004-02-01

    The relationship between hydrogen peroxide (H2O2) concentration in expired breath condensate (EBC) and cytology of the respiratory tract obtained from tracheal wash (TW) or bronchoalveolar lavage (BAL), and epithelial lining fluid (ELF) antioxidant status is unknown. To examine this we analysed the concentration of H2O2 in breath condensate from healthy horses and horses affected by recurrent airway obstruction (RAO), a condition considered to be an animal model of human asthma. The degree of airway inflammation was determined by assessing TW inflammation as mucus, cell density and neutrophil scores, and by BAL cytology. ELF antioxidant status was determined by measurement of ascorbic acid, dehydroascorbate, reduced and oxidised glutathione, uric acid and alpha-tocopherol concentrations. RAO-affected horses with marked airway inflammation had significantly higher concentrations of breath condensate H2O2 than control horses and RAO-affected horses in the absence of inflammation (2.0 +/- 0.5 micromol/l. 0.4 +/- 0.2 micromol/l and 0.9 +/- 0.2 micromol/l H2O2, respectively; p < 0.0001). The concentration of breath condensate H2O2 was related inversely to the concentration of ascorbic acid in ELF (r = -0.80; p < 0.0001) and correlated positively with TW inflammation score (r = 0.76, p < 0.0001) and BAL neutrophil count (r = 0.80, p < 0.0001). We conclude that the concentration of H2O2 in breath condensate influences the ELF ascorbic acid concentration and provides a non-invasive diagnostic indicator of the severity of neutrophilic airway inflammation. PMID:15104214

  17. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Carrère, Séverine; Nampoothiri, K Madhavan; Lesjean, Sarah; Brown, Alistair K; Brennan, Patrick J; Minnikin, David E; Locht, Camille; Besra, Gurdyal S

    2002-06-01

    Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensing assay using purified recombinant KasA, palmitoyl-AcpM and malonyl-AcpM, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys(171), His(311), Lys(340) and His(345) to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulenin, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA. PMID:12023885

  18. Schiff base structured acid-base cooperative dual sites in an ionic solid catalyst lead to efficient heterogeneous knoevenagel condensations.

    PubMed

    Zhang, Mingjue; Zhao, Pingping; Leng, Yan; Chen, Guojian; Wang, Jun; Huang, Jun

    2012-10-01

    An acid-base bifunctional ionic solid catalyst [PySaIm](3)PW was synthesized by the anion exchange of the ionic-liquid (IL) precursor 1-(2-salicylaldimine)pyridinium bromide ([PySaIm]Br) with the Keggin-structured sodium phosphotungstate (Na(3) PW). The catalyst was characterized by FTIR, UV/Vis, XRD, SEM, Brunauer-Emmett-Teller (BET) theory, thermogravimetric analysis, (1)H NMR spectroscopy, ESI-MS, elemental analysis, and melting points. Together with various counterparts, [PySaIm](3)PW was evaluated in Knoevenagel condensation under solvent and solvent-free conditions. The Schiff base structure attached to the IL cation of [PySaIm](3)PW involves acidic salicyl hydroxyl and basic imine, and provides a controlled nearby position for the acid-base dual sites. The high melting and insoluble properties of [PySaIm](3)PW are relative to the large volume and high valence of PW anions, as well as the intermolecular hydrogen-bonding networks among inorganic anions and IL cations. The ionic solid catalyst [PySaIm](3)PW leads to heterogeneous Knoevenagel condensations. In solvent-free condensation of benzaldehyde with ethyl cyanoacetate, it exhibits a conversion of 95.8 % and a selectivity of 100 %; the conversion is even much higher than that (78.2 %) with ethanol as a solvent. The solid catalyst has a convenient recoverability with only a slight decrease in conversion following subsequent recyclings. Furthermore, the new catalyst is highly applicable to many substrates of aromatic aldehydes with activated methylene compounds. On the basis of the characterization and reaction results, a unique acid-base cooperative mechanism within a Schiff base structure is proposed and discussed, which thoroughly explains not only the highly efficient catalytic performance of [PySaIm](3)PW, but also the lower activities of various control catalysts. PMID:22907828

  19. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.

    PubMed

    Bhatt, Apoorva; Molle, Virginie; Besra, Gurdyal S; Jacobs, William R; Kremer, Laurent

    2007-06-01

    Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development. PMID:17555433

  20. Interstellar condensed (icy) amino acids and precursors: theoretical absorption and circular dichroism under UV and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Da Pieve, F.; Avendaño-Franco, G.; De Proft, F.; Geerlings, P.

    2014-05-01

    The photophysics of interstellar ices and condensed molecules adsorbed on grains is of primary importance for studies on the origin of the specific handedness of complex organic molecules delivered to the early Earth and of the homochirality of the building blocks of life. Here, we present quantum mechanical calculations based on time-dependent density functional theory for the absorption and circular dichroism (CD) of isovaline and its chiral precursor 5-ethyl-5-methylhydantoin, both observed in meteoritic findings. The systems are considered in their geometrical conformation as extracted from a full solid (icy) matrix, as a shortcut to understand the behaviour of molecules with fixed orientation, and/or taking into account the full solid matrix. In the context of a possible `condensation-warming plus hydrolysis-recondensation' process, we obtain that: (i) for low-energy excitations, the `condensed' precursor has a stronger CD with respect to the amino acid, suggesting that the handedness of the latter could be biased by asymmetric photolysis of the precursor in cold environments; (ii) enantiomeric excess could in principle be induced more efficiently in both systems for excitation at higher energies (VUV). X-ray absorption near-edge spectroscopy and related CD results could serve as support for future experiments on ionization channels.

  1. N-Picolyl Derivatives of Kemp’s Triamine as Potential Antitumor Agents: A Preliminary Investigation

    PubMed Central

    Regino, Celeste Aida S.; Torti, Suzy V.; Ma, Rong; Yap, Glenn P.A.; Kreisel, Kevin A.; Torti, Frank M.; Planalp, Roy P.; Brechbiel, Martin W.

    2008-01-01

    Pre-organized tripodal ligands such as the N-picolyl derivatives of cis,cis-1,3,5-triamino-cis,cis-1,3,5-trimethylcyclohexane (Kemp’s triamine) were prepared as analogs to N,N’,N”- tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane (tachpyr) in hopes of enhancing the rate of formation and stability of the metal complexes. A tricyclic bisaminal was formed via the reduction of the Schiff base while the tri(picolyl) derivative was synthesized via reductive amination of pyridine carboxaldehyde. Their cytotoxicities to the HeLa cell line were evaluated and directly compared to tachpyr and N,N’,N”- tris(2-pyridylmethyl)-tris(2-aminoethyl)amine (trenpyr). Results indicate that N,N’,N”-tris(2-pyridylmethyl)-cis,cis-1,3,5-triamino-cis,cis-1,3,5-trimethylcyclohexane (Kemp’s pyr) exhibits cytotoxic activity against the HeLa cancer cell line comparable to tachpyr (IC50 ~ 8.0 µM). Both Kemp’s pyr and tachpyr show higher cytotoxic activity over the aliphatic analogue of trenpyr (IC50 ~ 14 µM) suggesting that the major contributor to the activity is the ligand’s ability to form a stable and tight complex and that the equatorial/axial equilibrium impacting the complex formation for the cyclohexane-based ligands is not significant. PMID:16335923

  2. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  3. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  4. The formation of acid rain in the atmosphere, adjacent to the TTP with the joint-condensing of sulfur dioxide and water vapor

    NASA Astrophysics Data System (ADS)

    Gvozdyakov, D. V.; Gubin, V. E.; Matveeva, A. A.

    2014-08-01

    Presents the results of mathematical simulation of the condensation process of sulphur dioxide and water vapor on the condensation nuclei surface under the action of natural factors. Numerical investigations were carried out for the summer at a moderate speed of the wind. The influence of the parameter of condensation on the speed of the process of sulfuric acid drops formation in the air space was analyzed. Time ranges, sufficient for the formation of the acid rain sedimentation in the atmosphere, adjacent to the areas of thermal power station work were established. It is shown that the speed of air masses movement effects on the process of acid anthropogenic admixtures dispersion in the atmosphere. Approbation of the obtained results was carried out by checking the difference scheme conservative and solution of test problems.

  5. Origin of saline, neutral-pH, reduced epithermal waters by reaction of acidic magmatic gas condensates with wall rock

    SciTech Connect

    Reed, M.H. . Dept. of Geological Sciences)

    1993-04-01

    Fluid inclusions in quartz and sphalerite of epithermal veins containing galena, sphalerite and chalcopyrite with silver sulfides and electrum commonly have salinities of 2 to 10 weight percent NaCl equivalent. Examples include Bohemia, OR, Comstock, NV, and Creede, CO. Salinities in such base metal-rich systems are apparently greater than those in gold-adularia, base metal-poor systems such as Sleeper, NV, Republic, WA, and Hishikare, Kyushu. Saline epithermal fluids are commonly assumed to have been derived from saline magmatic brines, from local host formations, as has been suggested for Creede, or from evaporative concentration (boiling) of more dilute meteoric ground water. Another possibility, which may be the most common origin, is reaction of wall rocks with magmatic gas condensates rich in HCl and sulfuric acid. A mixture of one part Augustine Volcanic gas condensate in 10 parts cold ground water has a pH of 0.7 and the dominant cation is H[sup +] by a factor of 10[sup 4]. Calculated reaction of this condensate mixture with andesite at 300 C to a water/rock ratio (w/r) of 4.6 yields an NaCl-dominated fluid with a total salinity of 2.1 wt %. and pH 3.7. Further reaction, to w/r 0.14 yields a fluid salinity of 2.6 wt % and pH of 5.7; this fluid is in equilibrium with a propylitic alteration assemblage. Aqueous sulfide accumulates during the rock reaction as sulfate is reduced to sulfide when ferrous iron is oxidized to ferric iron. Sulfide concentration in the latter fluid is 32 ppm, far exceeding sulfate concentration. In the overall reaction, hydrogen ion is exchanged for base cations (including base metals) and sulfate is reduced to sulfide.

  6. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  7. Discrimination of ionic pollutants except condensation nuclei of acid fog using an ultrasonic humidifier.

    PubMed

    Yoshimura, Keiji; Kikuchi, Ryoei; Kimoto, Takashi; Ozeki, Toru; Imano, Kazuhiko; Kajikawa, Masahiro; Ogawa, Nobuaki

    2006-06-01

    Fog droplets in the atmosphere are first produced by the activation of cloud condensation nuclei (CCN), which are originally some ionic compound. Subsequently, the nuclei grow by vapor diffusion. Fog droplets are polluted through the activation process and successive diffusion growth and residence (post activation). We cannot distinguish the effects of the two pollution processes of natural fog water samples. We found that fog droplets can be produced artificially without CCN using an ultrasonic humidifier. Because the artificial fog droplets are not polluted by CCN, the movement of the fog droplets in natural air will take up some pollutants in the air. Consequently, the two pollution processes of fog (the activation of CCN and the post activation process) can be discriminated using data from field experiments. This sampling analytical method is extremely important for further research regarding fog, clouds and environmental chemistry. PMID:16772683

  8. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-01-01

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups. PMID:26111185

  9. Short communication: assessment of the potential of cinnamaldehyde, condensed tannins, and saponins to modify milk fatty acid composition of dairy cows.

    PubMed

    Benchaar, C; Chouinard, P Y

    2009-07-01

    This study was conducted to determine whether feeding cinnamaldehyde (main component of cinnamon bark essential oil; Cinnamon cassia), condensed tannins from quebracho trees (Schinopsis balansae), or saponins from Yucca schidigera altered the milk fatty acid profile of dairy cows. For this purpose, 4 lactating cows were used in 4 x 4 Latin square design (28-d period) and fed a total mixed ration containing no additive (control), or supplemented with cinnamaldehyde (1 g/d; CIN), quebracho condensed tannin extract (150 g/d; 70% of tannins; QCT), or Yucca schidigera saponin extract (60 g/d; 10% of saponins; YSE). Results revealed no effects of feeding CIN or QCT on milk fatty acid profile. Supplementation with YSE resulted in some modifications of milk fatty acid profile as suggested by the reduced proportions of C6:0 (2.71 vs. 2.95%), C8:0 (1.66 vs. 1.89%), and trans-11 C18:1 (0.92 vs. 1.01%). Results show low potential of cinnamaldehyde, condensed tannins, and saponins to alter ruminal biohydrogenation process and modify the fatty acid profile of milk fat at the feeding rates used in this study. Further investigations are needed to determine the factors that limit the effects of these secondary metabolites on ruminal microbial populations involved in the biohydrogenation processes of unsaturated fatty acids. PMID:19528616

  10. Preparation of a compressible and hierarchically porous polyimide sponge via the sol-gel process of an aliphatic tetracarboxylic dianhydride and an aromatic triamine.

    PubMed

    Lee, Jeongmin; Chang, Ji Young

    2016-08-16

    A compressible and monolithic microporous polyimide sponge was prepared from an aliphatic tetracarboxylic dianhydride and an aromatic triamine. The sponge had a hierarchical pore structure, in which spherical microporous polyimide particles were interconnected to form a macroscopic network. It showed an amphiphilic character, because of the balanced presence of hydrophobic and hydrophilic groups. PMID:27484707

  11. Distribution of two triamines, spermidine and homospermidine, and an aromatic amine, 2-phenylethylamine, within the phylum Bacteroidetes.

    PubMed

    Hosoya, Ryuichi; Hamana, Koei

    2004-10-01

    Cellular polyamines of the newly additional 19 species belonging to the class Bacteroides of the phylum Bacteroidetes were analyzed by HPLC to display polyamine distribution as a chemotaxonomic marker within the total 41 species. Three profiles, the presence of spermidine, the presence of homospermidine and the absence of both triamines, corresponded to their phylogenetical positions within the four families of the class. The occurrence of an aromatic amine, 2-phenylethylamine, extracted into cellular polyamine fraction, was also determined within the 121 species distributed within the phylum. This aromatic amine was found in Cellulophaga lytica, Cytophaga latercula, Tenacibaculum amylolyticum, Tenacibaculum martimum, Tenacibaculum mesophilum and Psychroflexus torquis belonging to the family Flavobacteriaceae of the class Flavobacteria, and Flexibacter flexilis and Microscilla marina belonging to the family Flexibacteraceae of the class Sphingobacteria. PMID:15747230

  12. Ion condensation behavior and dynamics of water molecules surrounding the sodium poly(methacrylic acid) chain in water: a molecular dynamics study.

    PubMed

    Chung, Yung-Ting; Huang, Ching-I

    2012-03-28

    All-atom molecular dynamics simulations are used to study the condensation behavior of monovalent (Na(+)) and multivalent (Ca(2+)) salt counterions associated with the co-ions (Cl(-)) surrounding the charged poly(methacrylic acid) (PMAA) chain in water. The study is extended to the influences on chain conformation, local arrangement, and dynamics of water in the highly diluted aqueous solutions. We find that even when the salt ions are monovalent, they attract more than one charged monomer and act as a bridging agent within the chain, as the multivalent salt ions. In principle, the salt ions bridge between not only the "non-adjacent" but also the "adjacent" charged monomers, leading to a more coil-like and a locally stretched conformation, respectively. With an increase in the salt concentration, the amount of coiled-type condensed ions increase and reach a maximum when the chain conformation becomes the most collapsed; whereas, the stretched-type shows an opposite trend. Our results show that the attractive interactions through the condensed salt ions between the non-adjacent monomers are responsible for the conformational collapse. When the salt concentration increases high enough, a significant increase for the stretched-type condensed ions makes an expansion effect on the chain. These stretched-type salt ions, followed by the adsorption of the co-ions and water molecules, tend to form a multilayer organization outside surrounding the PMAA chain. Thus, the expansion degree of the chain conformation is greatly limited. When only the monovalent Na(+) ions are present in the solutions, water molecules are primarily adsorbed into either the condensed Na(+) ions or the COO(-) groups. These adsorbed water molecules form hydrogen bonds with each other and enhance the local bridging behavior associated with the Na(+) condensation on the resultant chain conformation. With an increase in the amount of multivalent Ca(2+) salt ions, more water molecules are bonded directly

  13. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins.

    PubMed

    Khiaosa-Ard, R; Bryner, S F; Scheeder, M R L; Wettstein, H-R; Leiber, F; Kreuzer, M; Soliva, C R

    2009-01-01

    Effects of condensed tannins (CT), either via extract or plant-bound, and saponin extract on ruminal biohydrogenation of alpha-linolenic acid (ALA) were investigated in vitro. Grass-clover hay served as basal diet (control). The control hay was supplemented with extracts contributing either CT from Acacia mearnsii [7.9% of dietary dry matter (DM)] or saponins from Yucca schidigera (1.1% of DM). The fourth treatment consisted of dried sainfoin (Onobrychis viciifolia), a CT-containing forage legume, in an amount also providing 7.9% CT in dietary DM. All diets were supplemented with linseed oil at a level contributing 60% of total dietary ALA in all treatments. Diets were incubated for 10 d (n = 4) in the rumen simulation technique system, using the last 5 d for statistical evaluation. Fatty acids were analyzed in feed, feed residues, incubation fluid, and its effluent. Data were subjected to ANOVA considering diet and experimental run as main effects. Both CT treatments reduced ruminal fiber and crude protein degradation, and lowered incubation fluid ammonia concentration. Only the CT extract suppressed methane formation and shifted microbial populations toward bacteria at cost of protozoa. The saponin extract remained without clear effects on fermentation characteristics except for increased protozoal counts. The extent of ALA biohydrogenation was 20% less with the CT plant, but this probably resulted from reduced organic matter degradability rather than from an inhibition of biohydrogenation. After incubation analysis of incubation fluid effluent and feed residues showed a considerable proportion of the 3 biohydrogenation intermediates, cis-9, trans-11, cis-15 C18:3, trans-11, cis-15 C18:2, and trans-11 C18:1, which did not occur in the initial feeds. Only the CT-extract diet led to a different profile in the effluent compared with the control diet with trans-11 C18:1 being considerably increased at cost of C18:0. This could have been achieved by suppressing

  14. Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solvent.

    PubMed

    Adachi, Shuji; Kobayashi, Takashi

    2005-02-01

    A lipase-catalyzed condensation reaction in an organic solvent is a promising means of synthesizing esters. Reaction equilibrium constant, which is usually defined on the basis of reactant concentration, is an important parameter for estimating equilibrium yield. It is shown that the constant is markedly, affected by some factors, such as the hydration of a sugar substrate and the interaction of a reactant with a solvent. To reasonably design the reaction system or determine the reaction conditions, attention should be paid to these factors. From the viewpoint of kinetics, substrate selectivity for carboxylic acids also numerically correlates to the electrical and steric properties of these acids. Reactor systems for continuously producing esters through an immobilized-lipase-catalyzed condensation reaction are developed. PMID:16233762

  15. The influence of the form of condensation nucleus on the formation and propagation of acid precipitation near operating TPS

    NASA Astrophysics Data System (ADS)

    Gvozdyakov, D. V.; Gubin, V. E.

    2015-01-01

    The results of numerical studies of condensation on the surface of the air component of atmospheric condensation nuclei of various shapes. Mathematical modeling performed at ambient temperatures typical of summer and winter seasons. It is found that the trajectory of motion of particles of various shapes differ significantly. Numerical studies were carried out at atmospheric parameters corresponding airspace adjacent to the areas of the TPP. Testing results obtained audited conservative difference scheme.

  16. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  17. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  18. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  19. Acidic Condensation of BODIPYs with Aldehydes: A Quick and Versatile Route to Alkenyl-BODIPYs and C(sp(3) )-Connected DYEmers.

    PubMed

    Ahrens, Johannes; Cordes, Birte; Wicht, Richard; Wolfram, Benedikt; Bröring, Martin

    2016-07-18

    The condensation of aldehydes with BODIPY (boron dipyrrin) luminophores was investigated. Formaldehyde can be used to connect two BODIPYs at each of the three pyrrolic C positions (α-, β-, and β'-positions) in a quick and highly selective manner, yielding new DYEmers (di- and oligomeric BODIPY derivatives) with varied photophysical properties. Benzaldehydes form DYEmers only at the β- and the β'-positions. For aliphatic aldehydes the DYEmer formation competes with the elimination of water from a proposed alcohol intermediate, leading to the formation of α- and β-alkenyl-BODIPYs. 2-Phenylacetaldehyde and similar precursors exclusively yield elimination products. These acid-mediated transformations are valuable alternatives to the well-established, base-promoted Knoevenagel condensation protocol that is typically employed in the preparation of BODIPYs with near infrared (NIR)-shifted absorptions. PMID:27140934

  20. CONDENSATION CAN

    DOEpatents

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  1. Localization of neurofibromas by scanning with technetium-99m diethylene triamine-pentacetic acid (Tc-99 DTPA)

    SciTech Connect

    Mandell, G.A.; Herrick, W.C.; Harcke, H.T.; Sharkey, C.; Brooks, K.; MacEwen, G.D.

    1985-05-01

    Tc-99m DTPA is commonly utilized to evaluate renal function. Reports of a uterine myoma and a soft tissue sarcoma accumulating this radiopharmaceutical have also appeared in the literature. The authors have observed the affinity for plexiform as well as well circumscribed soft tissue tumors of neurofibromatosis for Tc-99m DTPA. In a series of 16 patients with clinical stigmata of neurofibromatosis, twenty-eight sites of abnormal soft tissue localization of the isotope were documented by clinical and radiographic (predominantly CT) correlation. The best visualization of the tumors occurred 1 to 3 hours post-injection of the radiopharmaceutical. Multiple images (150,000 to 500,000 counts) of areas suspected of having neurofibromatous involvement were obtained. Several unsuspected lesions were recognized. Similar images obtained in sixteen control patients showed no similar soft tissue localization. The smallest lesion detected was a 1.5-centimeter subcutaneous neurofibroma. The mechanism for selectivity of neurofibroma for Tc-99m DTPA does not appear to be related to hypervascularity or necrosis. Time activity curves of several lesions demonstrate gradual increase in their activity pointing to cellular uptake or stasis within the tumor as possible explanations. The significance of this observation relates to easy mapping of lesions with minimal radiation. Important implications of this discovery include sequential evaluation of tumor growth and detection of unsuspected lesions.

  2. 3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase.

    PubMed Central

    Tai, H; Jaworski, J G

    1993-01-01

    A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals. PMID:8290632

  3. The role of hydroxyl group acidity on the activity of silica-supported secondary amines for the self-condensation of n-butanal.

    PubMed

    Shylesh, Sankaranarayanapillai; Hanna, David; Gomes, Joseph; Canlas, Christian G; Head-Gordon, Martin; Bell, Alexis T

    2015-02-01

    The catalytic activity of secondary amines supported on mesoporous silica for the self-condensation of n-butanal to 2-ethylhexenal can be altered significantly by controlling the Brønsted acidity of M--OH species present on the surface of the support. In this study, M--OH (M=Sn, Zr, Ti, and Al) groups were doped onto the surface of SBA-15, a mesoporous silica, prior to grafting secondary propyl amine groups on to the support surface. The catalytic activity was found to depend critically on the synthesis procedure, the nature and amount of metal species introduced and the spatial separation between the acidic sites and amine groups. DFT analysis of the reaction pathway indicates that, for weak Brønsted acid groups, such as Si--OH, the rate-limiting step is C--C bond formation, whereas for stronger Brønsted acid groups, such as Ti and Al, hydrolysis of iminium species produced upon C--C bond formation is the rate-limiting step. Theoretical analysis shows further that the apparent activation energy decreases with increasing Brønsted acidity of the M--OH groups, consistent with experimental observation. PMID:25314616

  4. Structural basis for the recognition of mycolic acid precursors by KasA, a condensing enzyme and drug target from Mycobacterium tuberculosis.

    PubMed

    Schiebel, Johannes; Kapilashrami, Kanishk; Fekete, Agnes; Bommineni, Gopal R; Schaefer, Christin M; Mueller, Martin J; Tonge, Peter J; Kisker, Caroline

    2013-11-22

    The survival of Mycobacterium tuberculosis depends on mycolic acids, very long α-alkyl-β-hydroxy fatty acids comprising 60-90 carbon atoms. However, despite considerable efforts, little is known about how enzymes involved in mycolic acid biosynthesis recognize and bind their hydrophobic fatty acyl substrates. The condensing enzyme KasA is pivotal for the synthesis of very long (C38-42) fatty acids, the precursors of mycolic acids. To probe the mechanism of substrate and inhibitor recognition by KasA, we determined the structure of this protein in complex with a mycobacterial phospholipid and with several thiolactomycin derivatives that were designed as substrate analogs. Our structures provide consecutive snapshots along the reaction coordinate for the enzyme-catalyzed reaction and support an induced fit mechanism in which a wide cavity is established through the concerted opening of three gatekeeping residues and several α-helices. The stepwise characterization of the binding process provides mechanistic insights into the induced fit recognition in this system and serves as an excellent foundation for the development of high affinity KasA inhibitors. PMID:24108128

  5. Structural Basis for the Recognition of Mycolic Acid Precursors by KasA, a Condensing Enzyme and Drug Target from Mycobacterium Tuberculosis *

    PubMed Central

    Schiebel, Johannes; Kapilashrami, Kanishk; Fekete, Agnes; Bommineni, Gopal R.; Schaefer, Christin M.; Mueller, Martin J.; Tonge, Peter J.; Kisker, Caroline

    2013-01-01

    The survival of Mycobacterium tuberculosis depends on mycolic acids, very long α-alkyl-β-hydroxy fatty acids comprising 60–90 carbon atoms. However, despite considerable efforts, little is known about how enzymes involved in mycolic acid biosynthesis recognize and bind their hydrophobic fatty acyl substrates. The condensing enzyme KasA is pivotal for the synthesis of very long (C38–42) fatty acids, the precursors of mycolic acids. To probe the mechanism of substrate and inhibitor recognition by KasA, we determined the structure of this protein in complex with a mycobacterial phospholipid and with several thiolactomycin derivatives that were designed as substrate analogs. Our structures provide consecutive snapshots along the reaction coordinate for the enzyme-catalyzed reaction and support an induced fit mechanism in which a wide cavity is established through the concerted opening of three gatekeeping residues and several α-helices. The stepwise characterization of the binding process provides mechanistic insights into the induced fit recognition in this system and serves as an excellent foundation for the development of high affinity KasA inhibitors. PMID:24108128

  6. A {sup 13}C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the Bronsted acid sites in H-ZSM-5

    SciTech Connect

    Biaglow, A.I.; Sepa, J.; Gorte, R.J.

    1995-02-01

    Several bimolecular, acid-catalyzed condensation reactions of acetone and acetaldehyde have been examined in H-ZSM-5, along with the adsorption complexes formed by the products, using {sup 13}C NMR. For acetone, the hydrogen-bonded adsorption complex is stable at room temperature and coverages below one molecule per Broensted acid site. Reaction to mesityl oxide occurs only at higher coverages or temperatures, which are necessary to induce site exchange. The adsorption complex exhibits reaction chemistry analogous to that observed in solution phase, forming adsorption complexes of chloroacetone upon exposure to Cl{sub 2} and of imines upon exposure to NH{sub 3} or dimethylamine. The reactions of acetaldehyde to crotonaldehyde and imines are similar, although they occur at a faster rate due to the higher mobility of this molecule. The adsorption complexes formed by acetone, acetaldehyde, and their condensation products can all be described as rigid, hydrogen-bonded complexes at low coverages. Complexes formed from imines and enamines exhibit isotropic chemical shifts nearly identical to those observed in magic acids, indicating that proton transfer is nearly complete for these molecules. The extent of proton transfer for the remaining molecules varies with the proton affinity of the molecule, ranging from close to complete proton transfer for mesityl oxide and crotonaldehyde to almost complete absence of proton transfer for the chloroacetones. The differences and similarities between these reactions in the zeolite and in solution phase are discussed, along with the implications for understanding the primary processes responsible for these reactions in zeolites. 34 refs., 16 figs., 1 tab.

  7. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly

  8. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, BR; Frias, JA; Wackett, LP; Wilmot, CM

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117

  9. Intraparticulate speciation analysis of soft nanoparticulate metal complexes. The impact of electric condensation on the binding of Cd(2+)/Pb(2+)/Cu(2+) by humic acids.

    PubMed

    Town, Raewyn M; van Leeuwen, Herman P

    2016-04-21

    In aqueous dispersions of soft, charged nanoparticles, the physicochemical conditions prevailing within the particle body generally differ substantially from those in the bulk medium. Accordingly it is necessary to define intrinsic descriptors that appropriately reflect the chemical speciation inside the particle's microenvironment. Herein the speciation of divalent metal ions within the body of negatively charged soft nanoparticulate complexants is elaborated for the example case of humic acid association with Cd(ii), Pb(ii) and Cu(ii). The electrostatic effects are described by a two-state model that accounts for counterion condensation in the intraparticulate double layer shell at the particle/medium interface and Donnan partitioning within the bulk of the particle body. Inner-sphere complex formation is defined by an intrinsic binding constant expressed in terms of local reactant concentrations as controlled by the pertinent electrostatic conditions. For the high particle charge density case (Debye length smaller than charged site separation), three distinct intraparticulate metal species are identified, namely free hydrated ions, electrostatically condensed ions, and inner-sphere metal-humic complexes. For all metal ions studied, the electrostatic contribution to the association of the metal ion with the oppositely charged particle is found to account for a substantial fraction of the total metal bound. PMID:27004844

  10. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  11. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  12. The formation and self-assembly of long prebiotic oligomers produced by the condensation of unactivated amino acids on oxide surfaces.

    PubMed

    Martra, Gianmario; Deiana, Chiara; Sakhno, Yuriy; Barberis, Ilvis; Fabbiani, Marco; Pazzi, Marco; Vincenti, Marco

    2014-04-25

    In situ IR and mass spectrometry evidence for the catalytic formation on SiO2 and TiO2 surfaces of glycine oligomers (poly-Gly) up to 16 units long by successive feeding with monomers from the vapor phase is presented. Parallel experiments carried out on hydroxyapatite resulted in the unreactive adsorption of Gly, thus indicating that the oligomerization was specifically catalyzed by the surfaces of SiO2 and TiO2 . Furthermore, the poly-Gly moved on the surface when contacted with H2 O vapor and formed self-assembled aggregates containing both helical and β-sheet-like structural motifs. These results indicate that polypeptides formed by the condensation of amino acids adsorbed on a mineral surface can evolve into structured supramolecular assemblies. PMID:24616011

  13. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  14. Mid-infrared spectral characteristics of lipid molecular structures in Brassica carinata seeds: relationship to oil content, fatty acid and glucosinolate profiles, polyphenols, and condensed tannins.

    PubMed

    Xin, Hangshu; Khan, Nazir A; Falk, Kevin C; Yu, Peiqiang

    2014-08-13

    The objectives of this study were to quantify lipid-related inherent molecular structures using a Fourier transform infrared spectroscopy (FT-IR) technique and determine their relationship to oil content, fatty acid and glucosinolate profile, total polyphenols, and condensed tannins in seeds from newly developed yellow-seeded and brown-seeded Brassica carinata lines. Canola seeds were used as a reference. The lipid-related molecular spectral band intensities were strongly correlated to the contents of oil, fatty acids, glucosinolates, and polyphenols. The regression equations gave relatively high predictive power for the estimation of oil (R² = 0.99); all measured fatty acids (R² > 0.80), except C14:0, C20:3n-3, C22:2n-9, and C22:2n-6; 3-butenyl, 2-OH-3-butenyl, 4-OH-3-CH3-indolyl, and total glucosinolates (R² > 0.686); and total polyphenols (R² = 0.935). However, further study is required to obtain predictive equations based on large numbers of samples from diverse sources to illustrate the general applicability of these regression equations. PMID:25046077

  15. Studies of manufacturing controlled-release graphene acid and catalyzing synthesis of chalcone with Claisen-Schmidt condensation reaction

    NASA Astrophysics Data System (ADS)

    Li, Jihui; Feng, Jia; Li, Mei; Wang, Qiaolian; Su, Yumin; Jia, Zhixin

    2013-07-01

    In the paper, graphene acid (GA) was manufactured, using flake graphite as raw material, and the acidity and the structure of GA were characterized as well as. Then, chalcone was synthesized in the presence of GA, using acetophenone and benzaldehyde as the reactant. The results showed that the acidity of GA was for pH = 1.12 in aqueous solution, and it was structured by the graphene sheets with the spaces between the graphene sheet and the graphene sheet and sulfuric acid (H2SO4) and acetic acid (CH3CO2H) inside the spaces. At the same time, the results also exhibited that the chalcone yield was able to reach 60.36% when GA dosage was 5 g, and the chalcone yields could attain apart 60.36, 52.05 and 31.16% when 5 g of GA was used thrice. This shows that GA is not only a high-performance catalyst, but also a controlled-release catalyst.

  16. The fate of ingested glyceran esters of condensed castor oil fatty acids [polyglycerol polyricinoleate (PGPR)] in the rat.

    PubMed

    Howes, D; Wilson, R; James, C T

    1998-01-01

    Samples of the emulsifier polyglycerol polyricinoleate (PGPR) were synthesized using the radiolabelled precursors [1-14C]glycerol ([14C]polyglycerol PGPR), [9,10-3H] or [12-3H]ricinoleic acid ([3H] PGPR) or [1-14C]stearic acid ([14C]stearyl PGPR). The absorption, tissue distribution, metabolism and excretion of these 14C- or tritium-labelled PGPR samples administered to rats was studied. The effects of intestinal and porcine pancreatic lipases on PGPR preparations were examined. Rats were dosed with [1-14C]glycerol, [14C]polyglycerol and ([14C]polyglycerol)PGPR by gavage and their urine. faeces and expired CO2 monitored for 14C. The results from the [1-14C]glycerol treated animals showed extensive metabolism of glycerol. For [14C]polyglycerols, the lower polyglycerols were preferentially absorbed from the intestine and were excreted unchanged in the urine while the higher polyglycerols were found in the faeces. After 4 days, 93% of the dose of polyglycerols was recovered, of which some 30% was found in the urine and 60% in the faeces. Traces of 14C activity were found in depot fat and liver. The excretory pattern and urinary metabolites from ([14C]polyglycerol) PGPR was very similar to that of [14C]polyglycerol. Analysis of urinary and faecal 14C material indicated that the PGPR polymer was digested to give free polyglycerol and polyricinoleic acid. PGPR was synthesised incorporating [1-14C]stearic into polyricinoleic acid which was then esterified with polyglycerol. The resulting [14C]PGPR or [1-14C] stearic acid in a dietary slurry was administered to groups of fed or starved rats by gavage. The results indicated complete digestion of PGPR and absorption of the fatty acids. The 14C-material absorbed was extensively laid down in depot fat and some metabolism to 14CO2 was demonstrated. The fate of the stearic acid was similar whether dosed alone or incorporated into the PGPR polymer. Samples of PGPR were synthesized containing 3H-labelled ricinoleic acid. The

  17. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions.

    PubMed

    Wang, Yehong; Wang, Feng; Song, Qi; Xin, Qin; Xu, Shutao; Xu, Jie

    2013-01-30

    The use of a heterogeneous Lewis acid catalyst, which is insoluble and easily separable during the reaction, is a promising option for hydrolysis reactions from both environmental and practical viewpoints. In this study, ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260, which is rather high for bulk oxide catalysts, whose TONs are usually less than 100. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and (31)P magic-angle-spinning NMR spectroscopy, Na(+)/H(+) exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO(2)(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. This explains why the ceria catalyst is water-tolerant. PMID:23228093

  18. The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation.

    PubMed

    Molle, Virginie; Brown, Alistair K; Besra, Gurdyal S; Cozzone, Alain J; Kremer, Laurent

    2006-10-01

    Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages. PMID:16873379

  19. A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers

    NASA Astrophysics Data System (ADS)

    Takahama, S.; Russell, L. M.

    2011-01-01

    As the water uptake by particles and clouds influences the radiative balance of the Earth, it is desirable to understand the mechanisms and parameters, which regulate water uptake in these colloidal particles. In this work, molecular dynamics simulations were used to simulate scattering or accommodation of water vapor molecules impinging on a slab of water and slabs of water coated by monomolecular amphiphile films: octanoic acid (C8) at surface densities of 29 and 18 Å2 per molecule and myristic acid (C14) at 29 Å2 per molecule. The mass accommodation coefficient of near unity on a pure water slab is in agreement with values estimated using similar scattering simulations using other potentials for water. The addition of surface-active organic molecules in quantities corresponding to less than 1% of mass in a typical cloud droplet are predicted to reduce this mass accommodation coefficient by 70-100% in similar types of scattering simulations. The mass accommodation coefficient decreased monotonically with projected surface coverage of the hydrocarbon backbones, although the accommodation mechanisms differed by packing density and type of organic molecule. The mechanisms of interaction of the impinging water vapor molecules with the simulated organic films are discussed in the context of their chemical characteristics and physical structures (e.g., fatty acid chain orientation).

  20. Improvement of urinary delta-aminolevulinic acid determination by HPLC and fluorescence detection using condensing reaction with acetylacetone and formaldehyde.

    PubMed

    Endo, Y; Okayama, A; Endo, G; Ueda, T; Nakazono, N; Horiguchi, S

    1994-03-01

    We improved the method for determining urinary delta-aminolevulinic acid (ALA) by HPLC-fluorometer after pre-column derivatization with acetylacetone and formaldehyde, and a stable ALA derivative was obtained without any effect from various urinary components as demonstrated by the complete recovery of ALA (100.9 +/- 5.5%, n = 85) from the urine samples. The modified procedure was as follows: Twenty microliters of urine sample, 5 ml of acetylacetone solution (acetylacetone/ethanol/distilled water containing 4 milligrams of NaCl; 15/10/75), and 0.45 ml of 9.3% formaldehyde solution were mixed and boiled for 15 min. The fluorescent derivative of ALA was separated and analyzed by HPLC with the fluorometer at Ex 246 nm and Em 458 nm. Using a gradient program, the retention time of the ALA derivative was 7.3 min and the analysis could be repeated at 13 min intervals. Concentrations of ALA in urine samples measured by this method were significantly correlated with those measured by the Mauzerall-Granick (M-G) method (n = 85, r = 0.993, p < 0.001). The values obtained by our method were, however, lower than those obtained by the M-G method. Urinary ALA concentrations of 40 non-lead workers ranged from 0.1 to 2.3 mg/g creatinine with the mean +/- SD of 1.1 +/- 0.4 mg/g creatinine as measured by the present method. PMID:8007435

  1. Herbs, thyme essential oil and condensed tannin extracts as dietary supplements for broilers, and their effects on performance, digestibility, volatile fatty acids and organoleptic properties.

    PubMed

    Cross, D E; McDevitt, R M; Acamovic, T

    2011-04-01

    1. Herbs, thyme essential oil (EO) and condensed tannin (CT) extracts were compared for their effects, as dietary supplements, on broiler growth performance, nutrient digestibility and volatile fatty acid (VFA) profiles in the gut. Cooked meat from the birds fed on diets with 4 herbs and an EO extract was compared by a taste panel against those fed on the control treatment, for organoleptic properties in the meat. 2. Female broiler chicks were fed on wheat-soybean meal diets from 0-42 d of age. These chicks were given either the basal diet (control), or the basal diet with one of rosemary, garlic or yarrow herbs, mimosa, cranberry or grapeseed CT's, or thyme EO supplements (8 treatments in total). Body weight (BW) and feed consumption (FC) were measured. 3. The garlic supplement tended to improve growth rate over the first 7 d, while mimosa CT and thyme EO supplements reduced weight gains. The mimosa supplement in diets significantly reduced FC to d 21. Meanwhile, the addition of a cranberry supplement reduced the digestibility of DM, OM and N, compared with the controls. Dietary thyme EO, yarrow, rosemary and garlic supplements modified caecal isovaleric and isobutyric acid proportions (presented as 'Other VFA'; p < 0.05). Dietary herb significantly affected the intensity of meat flavour, and the potential of observing both garlic and abnormal flavours. There were large differences between the consumption of red and white meat samples, while meat temperature affected several flavour attributes. 4. Broiler performance and digestibility for birds given dietary garlic and grapeseed CT supplements were similar to the controls, and these supplements appear suitable for dietary inclusion. Careful choices are necessary when selecting dietary plant extract supplements for broilers, but beneficial effects can be observed. PMID:21491246

  2. Condensation model for the ESBWR passive condensers

    SciTech Connect

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  3. POLLUTION PREVENTION IN INDUSTRIAL CONDENSATION REACTIONS

    EPA Science Inventory

    The objective of this project is to develop heterogeneous acid-base catalysts to increase the economic and environmental performance of the current homogeneous catalysts used to make industrially important condensation products. Such products include methyl isobutyl ketone ...

  4. Effect of Different Inclusion Level of Condensed Distillers Solubles Ratios and Oil Content on Amino Acid Digestibility of Corn Distillers Dried Grains with Solubles in Growing Pigs

    PubMed Central

    Li, P.; Xu, X.; Zhang, Q.; Liu, J. D.; Li, Q. Y.; Zhang, S.; Ma, X. K.; Piao, X. S.

    2015-01-01

    The purpose of this experiment was to determine and compare the digestibility of crude protein (CP) and amino acids (AA) in full-oil (no oil extracted) and de-oiled (oil extracted) corn distillers dried grains with solubles (DDGS) with different condensed distillers solubles (CDS) ratios. Six barrows (29.6±2.3 kg) fitted with ileal T-cannula were allotted into a 6×6 Latin square design. Each period was comprised of a 5-d adaption period followed by a 2-d collection of ileal digesta. The five test diets contained 62% DDGS as the sole source of AA. A nitrogen-free diet was used to measure the basal endogenous losses of CP and AA. Chromic oxide (0.3%) was used as an index in each diet. The results showed that CP and AA were very similar in 5 DDGS, but the standardized ileal digestibility (SID) of lysine (from 56.16% to 71.15%) and tryptophan (from 54.90% to 68.38%) had the lowest values and largest variation within the essential AA, which suggests reduced availability of AA and different levels of Maillard reactions in the five DDGS. The apparent ileal digestibility and SID of CP and most of AA in full-oil DDGS (sources 1 and 2) were greater (p<0.05) than de-oiled DDGS (sources 3, 4, and 5). Comparing the AA SID in the 5 DDGS, full-oil with low CDS ratio DDGS (source 1) had non-significantly higher values (p >0.05) than full-oil with high CDS ratio DDGS (source 2); however, the SID of most AA of de-oiled with low CDS ratios DDGS (source 3) were non-significantly lower (p>0.05) than de-oiled with high CDS ratio DDGS (source 4); and the de-oiled DDGS with middle CDS ratio (source 5) but with different drying processing had the lowest SID AA values. In conclusion, de-oiled DDGS had lower SID of CP and AA than full-oil DDGS; a higher CDS ratio tended to decrease the SID of AA in full-oil DDGS but not in de-oiled DDGS; and compared with CDS ratio, processing, especially drying, may have more of an effect on AA digestibility of DDGS. PMID:25557681

  5. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    PubMed Central

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-01-01

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo. PMID:26694418

  6. Optimizing process vacuum condensers

    SciTech Connect

    Lines, J.R.; Tice, D.W.

    1997-09-01

    Vacuum condensers play a critical role in supporting vacuum processing operations. Although they may appear similar to atmospheric units, vacuum condensers have their own special designs, considerations and installation needs. By adding vacuum condensers, precondensers and intercondensers, system cost efficiency can be optimized. Vacuum-condensing systems permit reclamation of high-value product by use of a precondenser, or reduce operating costs with intercondensers. A precondenser placed between the vacuum vessel and ejector system will recover valuable process vapors and reduce vapor load to an ejector system--minimizing the system`s capital and operating costs. Similarly, an intercondenser positioned between ejector stages can condense motive steam and process vapors and reduce vapor load to downstream ejectors as well as lower capital and operating costs. The paper describes vacuum condenser systems, types of vacuum condensers, shellside condensing, tubeside condensing, noncondensable gases, precondenser pressure drop, system interdependency, equipment installation, and equipment layout.

  7. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  8. Condensates in Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.

  9. Reactions of D-glucose with phenolic amino acids: further insights into the competition between Maillard and Pictet-Spengler condensation pathways.

    PubMed

    Manini, Paola; Napolitano, Alessandra; d'Ischia, Marco

    2005-12-30

    The reactions of 5-S-cysteinyldopa, L-alpha-methyldopa and DL-m-tyrosine with D-glucose were investigated at 90 degrees C in phosphate buffer at pH ranging from 5.0 to 9.0. Whereas gave mainly the double Maillard condensation product N,N'-bis(1''-deoxy-D-fructos-1''-yl)-5-S-cysteinyldopa, as an inseparable mixture of beta-D-fructopyranosyl and alpha,beta-D-fructofuranosyl derivatives, 2 and 3 gave both Maillard and Pictet-Spengler products, although to different extents and with different regio- and stereochemistry. A peculiar pattern of reactivity was displayed by which gave, besides the Maillard product and the expected 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline C-1 diastereoisomeric pairs, the unprecedented 7,8-dihydroxy-1,2,3,4-tetrahydroisoquinoline derivative via the ortho cyclization pathway. Pictet-Spengler cyclization of 2 and 3 proceeded with Felkin-Anh-type asymmetric induction, favouring the 1R isomer throughout the pH range 5.0-9.0. These results, which highlight the first example of carbohydrate-derived 7,8-dihydroxytetrahydroisoquinoline, provide new insights into the factors governing competition between Maillard and Pictet-Spengler condensation pathways. PMID:16229826

  10. Synthesis of multi-functionalized benzofurans through the condensation of ninhydrin and phenols using SSA as a recyclable heterogeneous acid catalyst.

    PubMed

    Kundu, Ashis; Pramanik, Animesh

    2016-08-01

    A simple and efficient one-pot methodology has been developed for the synthesis of biologically important multi-functionalized 3-(2[Formula: see text]-hydroxyaryl)-2-(2[Formula: see text]-carboxyphenyl)benzofurans using silica sulfuric acid (SSA) as a heterogeneous acid catalyst in DMF medium. The significant advantages of this methodology are the use of SSA as a recyclable solid acid catalyst, operational simplicity, easy availability of the starting materials, and good yield of the products with high atom-economy. PMID:26829938

  11. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  12. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  13. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  14. Condensing heat exchangers for maximum boiler efficiency

    SciTech Connect

    Johnson, D.W.; DiVitto, J.G.; Rakocy, M.E.

    1994-12-31

    Until now, boiler efficiency has been limited due to the minimum temperature allowed at the stack. Heat lost up the stack was in exchange for keeping the flue gas temperature above the water vapor dew point. If water vapor was allowed to condense out, rapid deterioration, due to acid corrosion, of the outlet duct and stack would result. With the development of the condensing heat exchanger, boiler efficiency can now exceed 90%. Approximately 1% gain in boiler efficiency can be expected for every 40 F (4.5 C) reduction in flue gas stack temperature. In the CHX{reg_sign} condensing heat exchanger, all gas wetted surfaces are covered with DuPont Teflon{reg_sign}. The Teflon covered heat exchanger surfaces are impervious to all acids normally resulting from the combustion of fossil fuels. This allows the flue gas to be cooled to below the water vapor dew point with no subsequent corrosion of the heat exchanger surfaces.

  15. Alpha Condensates in Atomic Nuclei

    SciTech Connect

    Suzuki, Y.; Matsumura, H.

    2005-11-21

    Recent issues on Bose-Einstein condensation (BEC) of {alpha}-particles in nuclei are reviewed. A candidate of condensates is discussed for some states in 12C and 16O by defining the amount of {alpha} condensation.

  16. Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of Cis/Trans Stereochemistry on Condensed Phase and Monolayer Structure.

    PubMed

    Sorrenti, Alessandro; Illa, Ona; Ortuño, Rosa M; Pons, Ramon

    2016-07-12

    New diastereomeric nonionic amphiphiles, cis- and trans-1, based on an optically pure cyclobutane β-amino ester moiety have been investigated to gain insight into the influence exerted by cis/trans stereochemistry and stereochemical constraints on the physicochemical behavior, molecular organization, and morphology of their Langmuir monolayers and dry solid states. All these features are relevant to the rational design of functional materials. trans-1 showed a higher thermal stability than cis-1. For the latter, a higher fluidity of its monolayers was observed when compared with the films formed by trans-1 whose BAM images revealed the formation of condensed phase domains with a dendritic shape, which are chiral, and all of them feature the same chiral sign. Although the formation of LC phase domains was not observed by BAM for cis-1, compact dendritic crystals floating on a fluid subphase were observed beyond the collapse, which are attributable to multilayered 3D structures. These differences can be explained by the formation of hydrogen bonds between the amide groups of consecutive molecules allowing the formation of extended chains for trans-1 giving ordered arrangements. However, for cis-1, this alignment coexists with another one that allows the simultaneous formation of two hydrogen bonds between the amide and the ester groups of adjacent molecules. In addition, the propensity to form intramolecular hydrogen bonds must be considered to justify the formation of different patterns of hydrogen bonding and, consequently, the formation of less ordered phases. Those characteristics are congruent also with the results obtained from SAXS-WAXS experiments which suggest a more bent configuration for cis-1 than for trans-1. PMID:27327214

  17. DNA pre-condensation with an amino acid-based cationic amphiphile. A viable approach for liposome-based gene delivery.

    PubMed

    Rosa, Mónica; Penacho, Nuno; Simöes, Sérgio; Lima, Maria C P; Lindman, Björn; Miguel, Maria G

    2008-01-01

    A study related to the development and characterization of a new gene delivery system was performed. The approach consists in both the pre-condensation of plasmid DNA with an arginine-based cationic surfactant, arginine-N-lauroyl amide dihydrochloride (ALA), which was found not to be toxic, and the incorporation of the blood protein transferrin (Tf) into the formulations. Two cationic liposome formulations were used, one composed of a mixture of dioleoyl trimethylammoniopropane and cholesterol (DOTAP:Chol) and the other a pH sensitive formulation constituted of DOTAP, Chol, Dioleoyl phosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS). Particles with different ALA/DNA and cationic lipid/DNA charge ratios were produced and a physicochemical characterization of the systems developed was performed. DNA conformational changes in the presence of ALA were studied by Circular Dichroism (CD) and the ALA binding to DNA was followed by surface tension measurements. Insight into the structure and morphology of the various ALA-complexes (complexes composed of ALA, DNA, Tf and liposomes) was obtained by cryogenic-Transmission Electron Microscopy (cryo-TEM) and the sizes of the ALA-complexes were determined through Photon Correlation Spectroscopy (PCS). We found that the transfection capacity of these systems is directly related with the presence of ALA and the lipidic composition. Complexes based on the pH sensitive liposome formulation present better transfection profiles. The correlation between the inner structure, density and size of the ALA-complexes and their biological activity is discussed. Overall, we demonstrate that the presence of ALA improves the transfection efficiency when conjugated with cationic liposome systems. PMID:18097953

  18. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and

  19. VOLATILE COMPONENT RECOVERY FROM SULFITE EVAPORATOR CONDENSATE

    EPA Science Inventory

    This study is on the operation and modification of a demonstration unit to remove sulfur dioxide, methanol, furfural, and acetic acid from its sulfite evaporator condensate. This unit consisted of a steam stripper, vent tank SO2 recovery, activated carbon adsorption columns, and ...

  20. Amino acid digestibility of corn distillers dried grains with solubles, liquid condensed solubles, pulse dried thin stillage, and syrup balls fed to growing pigs.

    PubMed

    Soares, J A; Stein, H H; Singh, V; Shurson, G S; Pettigrew, J E

    2012-04-01

    Distillers dried grains with solubles (DDGS) has low and variable AA digestibility. The variability is often attributed to damage during the heating process, and it has been suggested that the damage happens to the soluble components of DDGS such as reducing sugars. Combining solubles and grains sometimes produces syrup balls (SB); their digestibility is unknown. The objective of this experiment was to identify potential sources of poor and variable AA digestibility in DDGS. Specifically, our objective was to determine whether the problems are associated with the solubles component or with SB. The ingredients evaluated were DDGS, intact SB, ground SB, liquid condensed solubles (LCS), and pulse dried thin stillage (PDTS) obtained from the same ethanol plant. The LCS is produced by evaporation of thin stillage. Each ingredient was used as the only source of AA in an experimental diet. In a duplicate 6 × 6 Latin square design with 7-d adaptation and collection periods, the 6 treatments consisted of an N-free diet and the 5 test ingredients. Pigs had 5 d of adaptation to each diet, and on d 6 and 7 ileal digesta were collected from an ileal cannula for 8 h each day. Both SB treatments had apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA that were similar or greater (P < 0.05) than those of DDGS. The AID and SID values of Lys and a few other AA were similar in LCS (SID Lys: 63.1%) and DDGS (SID Lys: 61.5%), but the digestibility values of most AA in LCS were less than in DDGS (P < 0.05). The low digestibility of AA in LCS was most pronounced for Met (SID: LCS, 41.9% vs. DDGS, 82.8%). The LCS had less (P < 0.05) AID and SID of CP (SID: 67.8%) than intact SB (SID: 85.2%) and ground SB (SID: 85.9%) as well as all AA. The PDTS generally had the least AID and SID and had less (P < 0.05) CP (SID: 55.3%) and several AA, including Lys, compared with LCS. In conclusion, the presence of SB does not decrease AA digestibility of DDGS, and the LCS

  1. Ghost condensate busting

    SciTech Connect

    Bilic, Neven; Tupper, Gary B; Viollier, Raoul D E-mail: gary.tupper@uct.ac.za

    2008-09-15

    Applying the Thomas-Fermi approximation to renormalizable field theories, we construct ghost condensation models that are free of the instabilities associated with violations of the null-energy condition.

  2. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  3. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  4. Condensed phase preparation of 2,3-pentanedione

    DOEpatents

    Miller, Dennis J.; Perry, Scott M.; Fanson, Paul T.; Jackson, James E.

    1998-01-01

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200.degree. to 360.degree. C. for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water.

  5. Condensed phase preparation of 2,3-pentanedione

    DOEpatents

    Miller, D.J.; Perry, S.M.; Fanson, P.T.; Jackson, J.E.

    1998-11-03

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200 to 360 C for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water. 5 figs.

  6. From the X-rays to a reliable “low cost” computational structure of caffeic acid: DFT, MP2, HF and integrated molecular dynamics-X-ray diffraction approach to condensed phases

    NASA Astrophysics Data System (ADS)

    Lombardo, Giuseppe M.; Portalone, Gustavo; Colapietro, Marcello; Rescifina, Antonio; Punzo, Francesco

    2011-05-01

    The ability of caffeic acid to act as antioxidant against hyperoxo-radicals as well as its recently found therapeutic properties in the treatment of hepatocarcinoma, still make this compound, more than 20 years later the refinement of its crystal structure, object of study. It belongs to the vast family of humic substances, which play a key role in the biodegradation processes and easily form complexes with ions widely diffused in the environment. This class of compounds is therefore interesting for potential environmental chemistry applications concerning the possible complexation of heavy metals. Our study focused on the characterization of caffeic acid as a starting necessary step, which will be followed in the future by the application of our findings on the study of the properties of caffeate anion interaction with heavy metal ions. To reach this goal, we applied a low cost approach - in terms of computational time and resources - aimed at the achievement of a high resolution, robust and trustable structure using the X-ray single crystal data, recollected with a higher resolution, as touchstone for a detailed check. A comparison between the calculations carried out with density functional theory (DFT), Hartree-Fock (HF) method and post SCF second order Møller-Plesset perturbation method (MP2), at the 6-31G ** level of the theory, molecular mechanics (MM) and molecular dynamics (MD) was performed. As a consequence we explained on one hand the possible reasons for the pitfalls of the DFT approach and on the other the benefits of using a good and robust force field developed for condensed phases, as AMBER, with MM and MD. The reliability of the latter, highlighted by the overall agreement extended up to the anisotropic displacement parameters calculated by means of MD and the ones gathered by X-ray measurements, makes it very promising for the above-mentioned goals.

  7. Enhanced condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Michel, J. W.; Murphy, R. W.

    1980-07-01

    Work has centered on optimizing the design variables associated with fluted surfaces on vertical tubes and comparing the tube performance with available enhanced tubes either for vertical or horizontal operation. Data with seven fluids including a hydrocarbon, fluorocarbons, and ammonia condensing on up to 30 different tubes were obtained. Data for tubes of different effective lengths (1/2 to 4 ft) and inclination were also obtained. The primary conclusion is that the best fluted tubes can provide an enhancement in condensation coefficient by a factor of approximately 6 over smooth vertical tube performance and a factor of approximately 2 over the best enhanced commercial tubes either operating vertically or horizontally. These data, together with field test data, have formed the basis for designing two prototype condensers, one for the 60 kWe Raft River, Idaho, pilot plant and one for the 500 kWe East Mesa, California, direct contact demonstration plant.

  8. Why double-stranded RNA resists condensation

    PubMed Central

    Tolokh, Igor S.; Pabit, Suzette A.; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V.

    2014-01-01

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes—internal and external—distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode. PMID:25123663

  9. Keeping condensers clean

    SciTech Connect

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  10. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  11. Simple Simulations of DNA Condensation

    SciTech Connect

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  12. Detail of Bright Angel stone vault, containing condenser, Hoffman condensation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of Bright Angel stone vault, containing condenser, Hoffman condensation pump, Jennings vacuum heating pump, and misc. pipes and valves. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  13. BOOK REVIEW: Soft Condensed Matter

    NASA Astrophysics Data System (ADS)

    Jones, Richard A. L.

    2002-11-01

    phenomenologically and formulated through the current percolation model and the Flory-Stockmayer model. The next two chapters consider the molecular order in soft condensed matter. The rich complexity of liquid crystals is emphasized and the Frederiks transition is described in relation to liquid crystal displays. The crystallinity in polymers is discussed and its usual semi-crystallinity presented as a consequence of entanglement and timescales. The next chapter describes the self-assembly of phases and the great importance of the self-assembly phenomenon in solutions of amphiphilic molecules is largely discussed in several specific phenomena. The book ends with a chapter devoted to the description of soft matter realizations in nature. Special attention is paid to the components and structure of life: nucleic acids, proteins, polysaccharides and membranes. There are two appendixes recalling the basic concepts of thermodynamics and statistical mechanics. In each chapter, several problems are included, and solutions to a selection of them are given. The bibliography proposed is pertinent and each chapter gives details of further reading, mostly addressed to known books on the topic. iii) The presentation of the book is good. Throughout the book, the relevant, basic or new concepts of each topic are typed in bold characters and succinctly defined. The figures are abundant and adequately illustrate the text either by plots of experimental data or by computed predictions from models. Many schematic representations of structures, molecular distributions or arrangements are also included. In summary, the author has succeeded in producing a scientifically rigorous book of affordable size (around 200 pages) that is well illustrated (about 120 figures) and written in a fluent style that describes the many different physical phenomena involved in soft condensed matter. N Clavaguera

  14. Inflation from gravitino condensates

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2015-07-01

    We review work on the formation of gravitino condensates via the super-Higgs effect in the early Universe. This is a scenario for both inflating the early universe and breaking local supersymmetry(supergravity), entirely independent of any coupling to external matter. The goldstino mode associated with the breaking of (global) supersymmetry is “eaten” by the gravitino field, which becomes massive (via its own vacuum condensation) and breaks supergravity dynamically. The most natural association of gravitino condensates with inflation proceeds in an indirect way, via a Starobinsky-type inflation, in the massive gravitino phase. This inflationary phase is associated with scalar modes hidden in the higher order curvature corrections of the effective action arising from integrating out massive gravitino degrees of freedom. The scenario is in agreement with Planck data phenomenology in a natural and phenomenologically-relevant range of parameters, namely Grand-Unified-Theory values for the supersymmetry breaking energy scale and dynamically-induced gravitino mass. A hill-top inflation, on the other hand, which could also occur in the model, whereby the role of the inflaton field is played by the gravitino condensate itself, would require significant fine tuning in the inflaton's wave function renormalisation and thus may be discarded on naturalness grounds.

  15. Condensate removal device

    DOEpatents

    Maddox, James W.; Berger, David D.

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  16. Why double-stranded RNA resists condensation

    SciTech Connect

    Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan A.; Pollack, Lois; Onufriev, Alexey

    2014-09-15

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexes with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.

  17. Condensed Acids In Antartic Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; Fong, W.

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  18. Multilayer graphene condenser microphone

    NASA Astrophysics Data System (ADS)

    Todorović, Dejan; Matković, Aleksandar; Milićević, Marijana; Jovanović, Djordje; Gajić, Radoš; Salom, Iva; Spasenović, Marko

    2015-12-01

    Vibrating membranes are the cornerstone of acoustic technology, forming the backbone of modern loudspeakers and microphones. Acoustic performance of a condenser microphone is derived mainly from the membrane’s size, surface mass and achievable static tension. The widely studied and available nickel has been a dominant membrane material for professional microphones for several decades. In this paper we introduce multilayer graphene as a membrane material for condenser microphones. The graphene device outperforms a high end commercial nickel-based microphone over a significant part of the audio spectrum, with a larger than 10 dB enhancement of sensitivity. Our experimental results are supported with numerical simulations, which also show that a 300 layer thick graphene membrane under maximum tension would offer excellent extension of the frequency range, up to 1 MHz.

  19. Gravitational vacuum condensate stars

    PubMed Central

    Mazur, Pawel O.; Mottola, Emil

    2004-01-01

    A new final state of gravitational collapse is proposed. By extending the concept of Bose–Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate pv = -ρv and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness ℓ of fluid with equation of state p = +ρ, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order kBℓMc/, instead of the Bekenstein–Hawking entropy formula, SBH = 4πkBGM2/c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox. PMID:15210982

  20. CW laser light condensation.

    PubMed

    Zhurahov, Michael; Bekker, Alexander; Levit, Boris; Weill, Rafi; Fischer, Baruch

    2016-03-21

    We present a first experimental demonstration of classical CW laser light condensation (LC) in the frequency (mode) domain that verifies its prediction (Fischer and Weill, Opt. Express20, 26704 (2012)). LC is based on weighting the modes in a noisy environment in a loss-gain measure compared to an energy (frequency) scale in Bose-Einstein condensation (BEC). It is characterized by a sharp transition from multi- to single-mode oscillation, occurring when the spectral-filtering (loss-trap) has near the lowest-loss mode ("ground-state") a power-law dependence with an exponent smaller than 1. An important meaning of the many-mode LC system stems from its relation to lasing and photon-BEC. PMID:27136845

  1. Bose-Einstein Condensation

    SciTech Connect

    El-Sherbini, Th.M.

    2005-03-17

    This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.

  2. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  3. Asymmetric condensed dark matter

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Diez-Tejedor, Alberto

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  4. Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA

    NASA Technical Reports Server (NTRS)

    Baeza, Isabel; Ibanez, Miguel; Wong, Carlos; Chavez, Pedro; Gariglio, Patricio; Oro, J.

    1992-01-01

    While DNA which has undergone ionic condensation with Co(3+)(NH3)6 is resistant to the action of the endonuclase DNAse I, in much the same way as DNA condensed with spermidine, it was significantly less active in transcription with the E. coli RNA polymerase than DNA-spermidine condensed forms. Although both compacted forms of DNA were more efficiently encapsulated into neutral liposomes, negatively charged liposomes were seldom formed in the presence of the present, positive ion-condensed DNA; spermidine is accordingly proposed as a plausible prebiotic DNA-condensing agent. Attention is given to the relevance of the polyimide-nucleic acids complexes in the evolution of life.

  5. Effect of spontaneous condensation on condensation heat transfer in the presence of non-condensable gases

    SciTech Connect

    Karl, J.; Hein, D.

    1999-07-01

    The presence of non condensable gases like nitrogen or air reduces the condensation heat transfer during condensation of binary steam mixtures. The non condensable gas accumulates in the vapor phase boundary layer and causes a high heat transfer resistance. Especially with high pressures and low water temperatures spontaneous condensation reduces heat transfer additionally. Fog forms within the steam-nitrogen boundary layer and the steam condenses on the water droplets of the fog layer. The convective mass transfer to the cooling water interface diminishes. Raman spectroscopy and film theory are used to quantify this effect locally. The calculation of overall condensation rates in large steam nitrogen systems requires to use three dimensional CFD codes. The paper presents equations to predict fog formation in the boundary layer which can be implemented in CFD codes.

  6. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  7. Gravitational Condensate Stars

    NASA Astrophysics Data System (ADS)

    Mazur, P.; Mottola, E.

    The issue of the final state of the gravitational collapse will be addressed. Ishall present physical arguments to the effect that the remnant of the gravitationalcollapse of super-massive stars is a cold and dark super-dense object which isthermodynamically and dynamically stable: a Gravitational Condensate Star orQuasi Black Hole (QBH). A QBH is characterized by a huge, but not an infinite,surface redshift. This surface redshift depends universally on the total mass of aQBH and the proper thickness of a thin shell of an exotic matter described bythe Zel'dovich equation of state p = c2 . The velocity of sound in a thin shell isequal to the velocity of light. Hence, this thin shell replaces the event horizon of amathematical black hole ( = 0). Inside a thin shell the zero entropy gravitationalcondensate characterized by the cosmological equation of state p = -c2 resides.A QBH is described by a new static and spherically symmetric solution of Ein-stein's equations supplemented with the proper boundary conditions based on mi-crophysics considerations. The new solution has no singularities and no eventhorizons. Its entropy is maximized under small fluctuations and is given by thestandard hydrodynamic entropy of the thin shell which is proportional to the to-tal mass instead of the Bekenstein-Hawking entropy which is proportional to thesquare of the total mass. This resolves the paradox of an excessively high en-tropy of black holes as compared to their progenitors. The formation of such acold gravitational condensate stellar remnant very likely would require a violentcollapse process with an explosive output of energy. Some observational conse-quences of the formation of gravitational condensate stars will be described.

  8. Expansion in condensates

    SciTech Connect

    Chakrabarti, J.; Sajjad Zahir, M.

    1985-03-01

    We show that the product of local current operators in quantum chromodynamics (QCD), when expanded in terms of condensates, such as psi-barpsi, G/sup a//sub munu/ G/sup a//sub munu/, psi-barGAMMA psipsi-barGAMMApsi, f/sub a/bcG/sup a//sub munu/G/sup b//sub nualpha/ x G/sup c//sub alphamu/, etc., yields a series in Planck's constant. This, however, provides no hint that the higher terms in such an expansion may be less significant.

  9. Confinement Contains Condensates

    SciTech Connect

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  10. Condensed Plasmas under Microgravity

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Thomas, H. M.; Konopka, U.; Rothermel, H.; Zuzic, M.; Ivlev, A.; Goree, J.; Rogers, Rick (Technical Monitor)

    1999-01-01

    Experiments under microgravity conditions were carried out to study 'condensed' (liquid and crystalline) states of a colloidal plasma (ions, electrons, and charged microspheres). Systems with approximately 10(exp 6) microspheres were produced. The observed systems represent new forms of matter--quasineutral, self-organized plasmas--the properties of which are largely unexplored. In contrast to laboratory measurements, the systems under microgravity are clearly three dimensional (as expected); they exhibit stable vortex flows, sometimes adjacent to crystalline regions, and a central 'void,' free of microspheres.

  11. Noble gas trapping by laboratory carbon condensates

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.; Marti, K.

    1982-01-01

    Trapping of noble gases by carbon-rich matter was investigated by synthesizing carbon condensates in a noble gas atmosphere. Laser evaporation of a solid carbon target yielded submicron grains which proved to be efficient noble gas trappers (Xe distribution coefficients up to 13 cu cm STP/g-atm). The carbon condensates are better noble gas trappers than previously reported synthetic samples, except one, but coefficients inferred for meteoritic acid-residues are still orders of magnitude higher. The trapped noble gases are loosely bound and elementally strongly fractionated, but isotopic fractionations were not detected. Although this experiment does not simulate nebular conditions, the results support the evidence that carbon-rich phases in meteorites may be carriers of noble gases from early solar system reservoirs. The trapped elemental noble gas fractionations are remarkably similar to both those inferred for meteorites and those of planetary atmospheres for earth, Mars and Venus.

  12. Gravitational vacuum condensate stars.

    PubMed

    Mazur, Pawel O; Mottola, Emil

    2004-06-29

    A new final state of gravitational collapse is proposed. By extending the concept of Bose-Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate p(v) = -rho(v) and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness l of fluid with equation of state p = +rho, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order k(B)lMc/Planck's over 2 pi, instead of the Bekenstein-Hawking entropy formula, S(BH) = 4 pi k(B)GM(2)/Planck's over 2 pi c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox. PMID:15210982

  13. Cosmic curvature and condensation

    NASA Technical Reports Server (NTRS)

    Harwit, Martin

    1992-01-01

    It is shown that the universe may consist of a patchwork of domains with different Riemann curvature constants k = 0, +/-1. Features of a phase transition in which flat space breaks up in a transition 2k0 - k(-) + k(+) with initial scale factors R(-) = R(+) are postulated and explored. It is shown that such a transition is energetically permitted, has the equivalent of a Curie temperature, and can lead in a natural way to the formation of voids and galaxies. It is predicted that, if the ambient universe on average is well fitted by a purely k(-) space, with only occasional domains of k(+) containing galaxies, a density parameter of (A(z sub c + 1)) super -1 should be expected, where z sub c represents the redshift of the earliest objects to have condensed, and A takes on values ranging from about 5 to 3. Present observations of quasars would suggest a density of about 0.03 or 0.05, respectively, but it could be lower if earlier condensation took place.

  14. Pion condensation in holographic QCD

    SciTech Connect

    Albrecht, Dylan; Erlich, Joshua

    2010-11-01

    We study pion condensation at zero temperature in a hard-wall holographic model of hadrons with isospin chemical potential. We find that the transition from the hadronic phase to the pion condensate phase is first order except in a certain limit of model parameters. Our analysis suggests that immediately across the phase boundary the condensate acts as a stiff medium approaching the Zel'dovich limit of equal energy density and pressure.

  15. O-Alkylated Derivatives of 1,3,5-Triamino-1,3,5-trideoxy-cis-inositol: Triamine Ligands with Unexpectedly High Affinity toward Divalent Transition- and d(10)-Metal Ions.

    PubMed

    Weber, Michael; Kuppert, Dirk; Hegetschweiler, Kaspar; Gramlich, Volker

    1999-03-01

    The ligands all-cis-2,4,6-trimethoxycyclohexane-1,3,5-triamine (tmca) and all-cis-2,4,6-tribenzoxycyclohexane-1,3,5-triamine (tbca) were prepared almost quantitatively by using [Ni(taci)(2)](2+) (taci = 1,3,5-triamino-1,3,5-trideoxy-cis-inositol) as precursor, where Ni(2+) acted as a very efficient protecting group for the nitrogen donors. The structure of tmca in solution was investigated by NMR spectroscopy. A strongly solvent-dependent conformational equilibrium was observed. In CD(3)CN, a chair conformation with three axial amino groups formed exclusively, whereas in D(2)O, the conformation with three equatorial amino groups predominated. This effect, as well as conformational changes in the course of stepwise protonation, is discussed in terms of hydrogen bonding effects. The crystal structure of H(3)tmca(3+) exhibits a chair conformation with three equatorial ammonium groups and three axial methoxy groups. The trihydrochloride hydrate crystallizes in the monoclinic space group P2(1)/n, a = 11.057(5) Å, b = 9.960(6) Å, c = 14.671(6) Å, beta = 93.79(3) degrees, Z = 4 for C(9)Cl(3)H(26)N(3)O(4). A variety of bis complexes [M(tmca)(2)](2+) (M = Ni, Cu, Zn, Cd) and [M(tbca)(2)](2+) (M = Ni, Cu) were prepared and they were isolated as solid, crystalline trinitrate or trichloride salts. Crystal data: [Ni(tmca)(2)](NO(3))(2).4H(2)O, triclinic, space group P&onemacr;, a = 8.919(11) Å, b = 9.293(9) Å, c = 9.942(11) Å, alpha = 96.73(9) degrees, beta = 100.66(9) degrees, gamma = 101.95(9) degrees, Z = 1 for C(18)H(50)N(8)NiO(16); [Cu(tmca)(2)](NO(3))(2), tetragonal, space group P&fourmacr;2(1)c, a = 13.017(6) Å, c = 15.985(10) Å, Z = 4 for C(18)CuH(42)N(8)O(12); [Ni(tbca)(2)](NO(3))(2).MeCN.H(2)O, monoclinic, space group P2(1)/c, a = 12.930(8) Å, b = 19.324(10) Å, c = 22.724(14) Å, beta = 97.21(5) degrees, Z = 4 for C(56)H(71)N(9)NiO(13). The formation constants of [M(tmca)](2+) and [M(tmca)(2)](2+) were determined by means of a series of potentiometric

  16. Black Hole Bose Condensation

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo; Wijewardhana, L. C. R.

    2013-12-01

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.

  17. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  18. 1 and 2 Dimensional Bose Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Vogels, Johnny; Gorlitz, Axel; Raman, Chandra; Gustavson, Todd; Drndic, Marija; Leanhardt, Aaron; Abo-Shaeer, Jamil; Loew, Robert; Ketterle, Wolfgang

    2001-05-01

    We have created condensates in which the zero point motion exceeds the mean field enegy in either 2 (1D-condensate) or 1 dimension (2D-condensate). We describe the optical traps and magnetic traps being used, their limitations, and the regimes that are accessible. Some of our 1D condensates should have limited coherence properties (quasi-condensates).

  19. Amine catalyzed condensation of tetraethylorthosilicate

    NASA Technical Reports Server (NTRS)

    Jones, S.

    2001-01-01

    The catalysis of the condensation of hydrolyzed metal alkoxides by amines has been mentioned in the literature, but there has been no systematic study of their influence on the rate of the condensation reaction of the alkoxide and the microstructure of the resultant gel.

  20. APPARATUS FOR CONDENSATION AND SUBLIMATION

    DOEpatents

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  1. Excitonic condensation in bilayer systems

    NASA Astrophysics Data System (ADS)

    Su, Jung-Jung

    Among the many examples of Bose condensation considered in physics, electron-hole-pair (exciton) condensation has maintained special interest because it has been difficult to realize experimentally, and because of controversy about condensate properties. In this thesis, we studied the various aspects of spontaneous symmetry broken state of exciton in bilayer using mean field theory. We calculated the photoluminescence of excitonic condensation created by laser. We developed a one-dimensional toy model of excitonic supercurrent using mean field theory plus non-equilibrium Green's function (NEGF) which give qualitatively consistent results with experiments. We proposed graphene bilayer as a novel system for excitonic condensation to occur and estimate it to exist even at temperature as high as room temperature.

  2. Potentially Prebiotic Syntheses of Condensed Phosphates

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  3. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  4. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization. PMID:27115446

  5. Water condensation: a multiscale phenomenon.

    PubMed

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid

    2014-02-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented. PMID:24749461

  6. Steam generators, turbines, and condensers. Volume six

    SciTech Connect

    Not Available

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make.), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries).

  7. Coulomb interactions and fermion condensation

    SciTech Connect

    Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )

    1990-08-15

    The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.

  8. Using condenser performance measurements to optimize condenser cleaning

    SciTech Connect

    Wolff, P.J.; March, A.; Pearson, H.S.

    1996-05-01

    Because plant personnel perform condenser monitoring primarily to determine cleaning schedules, the accuracy and repeatability of a technique should be viewed within the context of a condenser cleaning schedule. Lower accuracy is acceptable if the cleaning schedule arising from that system is identical to a cleaning schedule arising from a technique with higher accuracy. Three condenser performance monitors were implemented and compared within the context of a condenser cleaning schedule to determine the relative advantages of different condenser monitoring techniques. These systems include a novel on-line system that consists of an electromagnetic flowmeter and an RTD mounted in a compact waterproof cylinder, an overall on-line system, and routine plant tests. The fouling measurements from each system are used in an optimization program which automatically computes a cleaning schedule that minitrack the combined cost of cleaning and the cost of increased fuel consumption caused by condenser fouling. The cleaning schedules resulting from each system`s measurements are compared. The optimization routine is also used to evaluate the sensitivity of optimal cleaning schedules to fouling rate and of the cost in dollars for non-optimal cleaning.

  9. Selective condensation of aminoacyl adenylates by nucleoproteinoid microparticles.

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1972-01-01

    Microparticles composed of each of four enzymically synthesized homopolynucleotides and the same lysine-rich proteinoid have been found to influence the condensation of the AMP-anhydrides of each of four amino acids. The conditions of preparation of the particles and other variables of the experiments control the types of reaction. When a period set of conditions was identified empirically, the incorporation favored the amino acids whose present-day codons are related to the homopolynucleotide in the particle.

  10. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  11. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  12. Hierarchical condensation near phase equilibrium

    NASA Astrophysics Data System (ADS)

    Olemskoi, A. I.; Yushchenko, O. V.; Borisyuk, V. N.; Zhilenko, T. I.; Kosminska, Yu. O.; Perekrestov, V. I.

    2012-06-01

    A novel mechanism of new phase formation is studied both experimentally and theoretically in the example of quasi-equilibrium stationary condensation in an ion-plasma sputterer. Copper condensates are obtained to demonstrate that a specific network structure is formed as a result of self-assembly in the course of deposition. The fractal pattern related is inherent in the phenomena of diffusion limited aggregation. Condensate nuclei are shown to form statistical ensemble of hierarchically subordinated objects distributed in ultrametric space. The Langevin equation and the Fokker-Planck equation related are found to describe stationary distribution of thermodynamic potential variations at condensation. Time dependence of the formation probability of branching structures is found to clarify the experimental situation.

  13. Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA

    NASA Technical Reports Server (NTRS)

    Baeza, I.; Ibanez, M.; Wong, C.; Chavez, P.; Gariglio, P.; Oro, J.

    1991-01-01

    Some properties of DNA condensed with spermidine have been compared with the properties of DNA condensed with Co3+(NH3)6 to determine whether condensation of DNA with these trivalent cations protects DNA against the action of DNase I and increases transcription and encapsulation of DNA into liposomes. It was shown that DNA condensed with Co3+(NH3)6 was resistant to the action of the endonuclease DNase I such as DNA condensed with spermidine was. However, DNA condensed with Co3+(NH3)6 was significantly less active in transcription with the E. coli RNA polymerase than DNA-spermidine condensed forms. In addition, it was demonstrated that both compacted forms of DNA were more efficiently encapsulated into neutral liposomes; however, negatively, charged liposomes were scarcely formed in the presence of DNA condensed with Co3+(NH3)6. These experiments and the well documented properties of polyamines increasing the resistance to radiations and hydrolysis of nucleic acids, as well as their biological activities, such as replication, transcription, and translation, together with the low concentration of Co3+ in the environment, lead us to propose spermidine as a plausible prebiotic DNA condensing agent rather than Co3+ and the basic proteins proposed by other authors. Then, we consider the possible role and relevance of the polyamine-nucleic acids complexes in the evolution of life.

  14. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  15. 7 CFR 58.925 - Sweetened condensed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Sweetened condensed. 58.925 Section 58.925 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.925 Sweetened condensed. After condensing, the sweetened condensed product should be...

  16. 7 CFR 58.925 - Sweetened condensed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Sweetened condensed. 58.925 Section 58.925 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.925 Sweetened condensed. After condensing, the sweetened condensed product should be...

  17. 7 CFR 58.925 - Sweetened condensed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Sweetened condensed. 58.925 Section 58.925 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.925 Sweetened condensed. After condensing, the sweetened condensed product should be...

  18. 7 CFR 58.925 - Sweetened condensed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Sweetened condensed. 58.925 Section 58.925 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.925 Sweetened condensed. After condensing, the sweetened condensed product should be...

  19. 7 CFR 58.925 - Sweetened condensed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Sweetened condensed. 58.925 Section 58.925 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.925 Sweetened condensed. After condensing, the sweetened condensed product should be...

  20. Generalized Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Mullin, William J.; Sakhel, Asaad R.

    2012-02-01

    Generalized Bose-Einstein condensation (GBEC) involves condensates appearing simultaneously in multiple states. We review examples of the three types in an ideal Bose gas with different geometries. In Type I there is a discrete number of quantum states each having macroscopic occupation; Type II has condensation into a continuous band of states, with each state having macroscopic occupation; in Type III each state is microscopically occupied while the entire condensate band is macroscopically occupied. We begin by discussing Type I or "normal" BEC into a single state for an isotropic harmonic oscillator potential. Other geometries and external potentials are then considered: the "channel" potential (harmonic in one dimension and hard-wall in the other), which displays Type II, the "cigar trap" (anisotropic harmonic potential), and the "Casimir prism" (an elongated box), the latter two having Type III condensations. General box geometries are considered in an appendix. We particularly focus on the cigar trap, which Van Druten and Ketterle first showed had a two-step condensation: a GBEC into a band of states at a temperature T c and another "one-dimensional" transition at a lower temperature T 1 into the ground state. In a thermodynamic limit in which the ratio of the dimensions of the anisotropic harmonic trap is kept fixed, T 1 merges with the upper transition, which then becomes a normal BEC. However, in the thermodynamic limit of Beau and Zagrebnov, in which the ratio of the boundary lengths increases exponentially, T 1 becomes fixed at the temperature of a true Type I phase transition. The effects of interactions on GBEC are discussed and we show that there is evidence that Type III condensation may have been observed in the cigar trap.

  1. Interference of condensed tannin in lignin analyses of dry bean and forage crops.

    PubMed

    Marles, M A Susan; Coulman, Bruce E; Bett, Kirstin E

    2008-11-12

    Legumes with high concentrations of condensed tannin (pinto bean [Phaseolus vulgaris L.], sainfoin [Onobrychis viciifolia Scop.], and big trefoil [Lotus uliginosus Hoff.]), were compared to a selection of forages, with low or zero condensed tannin (smooth bromegrass [ Bromus inermis Leyss], Lotus japonicus [Regel] K. Larsen, and alfalfa [Medicago sativa L.]), using four methods to estimate fiber or lignin. Protocols were validated by using semipurified condensed tannin polymers in adulteration assays that tested low-lignin tissue with polyphenolic-enriched samples. The effect on lignin assay methods by condensed tannin concentration was interpreted using a multivariate analysis. There was an overestimation of fiber or lignin in the presence of condensed tannin in the acid detergent fiber (ADF) and Klason lignin (KL) assays compared to that in the thioglycolic acid (TGA) and acid detergent lignin (ADL) methods. Sulfite reagents (present in TGA lignin method) or sequential acidic digests at high temperatures (ADF followed by ADL) were required to eliminate condensed tannin. The ADF (alone) and KL protocols are not recommended to screen nonwoody plants, such as forages, where condensed tannin has accumulated in the tissue. PMID:18841900

  2. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  3. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  4. Holes in the ghost condensate

    SciTech Connect

    Krotov, D.; Rebbi, C.; Rubakov, V.; Zakharov, V.

    2005-02-15

    In a recently proposed model of 'ghost condensation', spatially homogeneous states may mix, via tunneling, with inhomogeneous states which are somewhat similar to bubbles in the theory of false vacuum decay, the corresponding bubble nucleation rate being exponentially sensitive to the ultraviolet completion of the model. The conservation of energy and charge requires that the energy density is negative and the field is strongly unstable in a part of the nucleated bubble. Unlike in the theory of false vacuum decay, this region does not expand during subsequent real-time evolution. In the outer part, positive energy outgoing waves develop, which eventually form shocks. Behind the outgoing waves and away from the bubble center, the background settles down to its original value. The outcome of the entire process is thus a microscopic region of negative energy and strong field - 'hole in the ghost condensate' - plus a collection of outgoing waves (particles of the ghost condensate field) carrying away finite energy.

  5. Condensed Astatine: Monatomic and Metallic

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Hoffmann, Roald; Ashcroft, N. W.

    2013-09-01

    The condensed matter properties of the nominal terminating element of the halogen group with atomic number 85, astatine, are as yet unknown. In the intervening more than 70 years since its discovery significant advances have been made in substrate cooling and the other techniques necessary for the production of the element to the point where we might now enquire about the key properties astatine might have if it attained a condensed phase. This subject is addressed here using density functional theory and structural selection methods, with an accounting for relativistic physics that is essential. Condensed astatine is predicted to be quite different in fascinating ways from iodine, being already at 1 atm a metal, and monatomic at that, and possibly a superconductor (as is dense iodine).

  6. Condensed astatine: monatomic and metallic.

    PubMed

    Hermann, Andreas; Hoffmann, Roald; Ashcroft, N W

    2013-09-13

    The condensed matter properties of the nominal terminating element of the halogen group with atomic number 85, astatine, are as yet unknown. In the intervening more than 70 years since its discovery significant advances have been made in substrate cooling and the other techniques necessary for the production of the element to the point where we might now enquire about the key properties astatine might have if it attained a condensed phase. This subject is addressed here using density functional theory and structural selection methods, with an accounting for relativistic physics that is essential. Condensed astatine is predicted to be quite different in fascinating ways from iodine, being already at 1 atm a metal, and monatomic at that, and possibly a superconductor (as is dense iodine). PMID:24074111

  7. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    NASA Astrophysics Data System (ADS)

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  8. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    PubMed Central

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  9. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    PubMed

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  10. Condensation in Titan's lower atmosphere

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Griffith, C. A.; Yelle, R. V.

    2011-10-01

    We present a self-consistent description of Titan's aerosols-clouds-gases system and compare our results with the optical properties retrieved from measurements made by the Descent Imager / Spectral Radiometer (DISR) experiment on the Huygens probe [4]. Our calculations include the condensation of methane, ethane and hydrogen cyanide on photochemical aerosols produced in the thermosphere. Our results suggest that the two distinct extinction layers observed by DISR below 80 km are produced by HCN and methane condensation, respectively, while for the Huygens' equatorial conditions simulated here, the contribution of ethane clouds to the total opacity is negligible

  11. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  12. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro.

    PubMed

    Anderson, Robin C; Vodovnik, Maša; Min, Byeng R; Pinchak, William E; Krueger, Nathan A; Harvey, Roger B; Nisbet, David J

    2012-07-01

    Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins. PMID:22528299

  13. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide

  14. Sulphur condensation influence in Claus catalyst performance.

    PubMed

    Mora, R L

    2000-12-01

    The Claus process is an efficient way of removing H(2)S from acid gas streams and this is widely practised in industries such as natural gas processing, oil refining and metal smelting. Increasingly strict pollution control regulations require maximum sulphur recovery from the Claus unit in order to minimise sulphur-containing effluent. The most widely used Claus catalyst in sulphur recovery units is non-promoted spherical activated alumina. Properties associated with optimum non-promoted Claus catalyst performance include high surface area, appropriate pore size distribution and enhanced physical properties. The objective of this paper is to outline a procedure in order to estimate Claus catalyst effectiveness after pore plugging due to sulphur condensation. Catalyst deactivation due to pore plugging by sulphur is modelled employing a Bethe lattice and its corresponding performance is described by means of a modified effectiveness factor. Model results show an improvement in the modified effectiveness factor due to modifications in catalyst porous structure. PMID:11040389

  15. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  16. Theoretical response of condenser microphones

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1978-01-01

    Modifications to prior theory yield expressions for the frequency response and equivalent lumped elements of a condenser microphone in terms of its fundamental geometrical and material properties. Results of the analysis show excellent agreement with experimental data taken on B&K pressure microphone types 4134 and 4146.

  17. Condensing Algebra for Technical Mathematics.

    ERIC Educational Resources Information Center

    Greenfield, Donald R.

    Twenty Algebra-Packets (A-PAKS) were developed by the investigator for technical education students at the community college level. Each packet contained a statement of rationale, learning objectives, performance activities, performance test, and performance test answer key. The A-PAKS condensed the usual sixteen weeks of algebra into a six-week…

  18. Counterion condensation and ionic conductivity

    NASA Astrophysics Data System (ADS)

    Penafiel, L. Miguel; Litovitz, Theodore A.

    1992-02-01

    The occurrence of counterion condensation is demonstrated through measurements of the incremental ionic conductivity of pH buffered Na polyacrylate solutions. pH values were selected to allow variation of the charge density parameter ξ in the range between 0.4 and 2.8, that is, across ξ=1, the theoretical critical level for counterion condensation. The results show two regions where the incremental conductivity, ΔσP, varies differently with ξ. For ξ<1.3, ΔσP remains relatively constant. A sharp drop in ΔσP is observed between ξ=1.3 and ξ=1.7 corresponding to the onset of counterion condensation. It is suggested that this discontinuity reflects a drastic change in the polyion mobility caused by a structural rearrangement of the macromolecule. For ξ≳1.7, ΔσP decreases with approximately constant slope. This latter behavior agrees qualitatively but not quantitatively with the prediction of the counterion condensation model.

  19. Internally drained condenser for spacecraft thermal management

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Drew, Brian C.

    1989-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux condenser for use in two-phase spacecraft thermal management loops. The objective is to obtain a several fold increase in condensation heat transfer coefficient over those which can be achieved with shear-controlled or capillary-wick condensers. The internally drained condenser relies on shaped fins to develop a capillary pressure gradient over the surface of the fins and drive the condensate toward narrow drainage grooves separating the fins. The condensate then flows through a drainage network embedded in the condenser walls. Heat transfer coefficients of up to 8 W/sq cm C were measured in steam, providing a heat transfer enhancement ratio greater than a factor of 8. In the paper the proof-of-concept experiments are described and simplified models to predict the performance of the internally drained condenser are presented.

  20. Luminescent Properties of Terbium Aminobenzoates in Condensed Media

    NASA Astrophysics Data System (ADS)

    Meshkova, S. B.; Doga, P. G.; Kiriyak, A. V.; Kucher, A. A.

    2015-07-01

    The decrease in nonradiative deactivation of the luminescence excitation energy in a series of condensed media (true complex solution, viscous solution of water-soluble polymer, polymer fi lm) was studied using terbium complexes with aminobenzoic acids as examples. It was established that the infl uence of the water-soluble polymer was caused by the coordination of Tb3+ to it and the solution viscosity.

  1. Influence of iodine on the treatment of spacecraft humidity condensate to produce potable water

    NASA Technical Reports Server (NTRS)

    Symons, James M.; Muckle, Susan V.

    1990-01-01

    Several compounds in the ersatz humidity condensate do react with iodine to form iodine-substituted organic compounds (TOI), most notably phenol, acetaldehyde, ethanol, and sodium formate. Iodination of the ersatz humidity condensate produced 3.0 to 3.5 mg/L of TOI within 24 hours. The TOI that was produced by the passage of the ersatz humidity condensate through the first iodinated resin (IR) in the adsorption system was removed by the granular activated carbon that followed. TOI detected in the final effluent was formed by the reaction of the non-adsorbable condensate compounds with the final IR in the treatment series. The activated carbon bed series in the adsorption system performed poorly in its removal of TOC. The rapid breakthrough of TOC was not surprising, as the ersatz humidity condensate contained several highly soluble organic compounds, alcohols and organic acids.

  2. Polariton Condensation in Dynamic Acoustic Lattices

    NASA Astrophysics Data System (ADS)

    Cerda-Méndez, E. A.; Krizhanovskii, D. N.; Wouters, M.; Bradley, R.; Biermann, K.; Guda, K.; Hey, R.; Santos, P. V.; Sarkar, D.; Skolnick, M. S.

    2010-09-01

    We demonstrate that the tunable potential introduced by a surface acoustic wave on a homogeneous polariton condensate leads to fragmentation of the condensate into an array of wires which move with the acoustic velocity. Reduction of the spatial coherence of the condensate emission along the surface acoustic wave direction is attributed to the suppression of coupling between the spatially modulated condensates. Interparticle interactions observed at high polariton densities screen the acoustic potential, partially reversing its effect on spatial coherence.

  3. Bose-Einstein condensation at constant temperature

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Schmaljohann, H.; Kronjäger, J.; Bongs, K.; Sengstock, K.

    2004-09-01

    We present an experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular, the emergence of a new condensate is observed in multicomponent F=1 spinor condensates of Rb87 . Furthermore, we develop a simple rate-equation model for multicomponent Bose-Einstein condensate thermodynamics at finite temperature which well reproduces the measured effects.

  4. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  5. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  6. Analysis of condensates from wood smoke: Components derived from polysaccharides and lignins

    SciTech Connect

    Edye, L.A.; Richards, G.N. )

    1991-06-01

    A feasibility study has been carried out of the analysis of total condensate (at {minus}50C) of smoke from smoldering combustion of wood. All of the phenol and furan components in the aqueous condensate were extracted into methylene chloride and the extract was analyzed by GC/MS. The same homologues of guaiacol and syringol derived from lignin were detected as have been described in earlier studies, but in addition, a series of furan derivatives were found. The latter are believed to arise from pyrolysis of polysaccharides. The carboxylic acids in the condensates were analyzed by titration and subsequent GC/MS. Acetic acid was the dominant volatile acid found, with a trace of propanoic, but no significant formic acid.

  7. Wealth condensation in pareto macroeconomies

    NASA Astrophysics Data System (ADS)

    Burda, Z.; Johnston, D.; Jurkiewicz, J.; Kamiński, M.; Nowak, M. A.; Papp, G.; Zahed, I.

    2002-02-01

    We discuss a Pareto macroeconomy (a) in a closed system with fixed total wealth and (b) in an open system with average mean wealth, and compare our results to a similar analysis in a super-open system (c) with unbounded wealth [J.-P. Bouchaud and M. Mézard, Physica A 282, 536 (2000)]. Wealth condensation takes place in the social phase for closed and open economies, while it occurs in the liberal phase for super-open economies. In the first two cases, the condensation is related to a mechanism known from the balls-in-boxes model, while in the last case, to the nonintegrable tails of the Pareto distribution. For a closed macroeconomy in the social phase, we point to the emergence of a ``corruption'' phenomenon: a sizeable fraction of the total wealth is always amassed by a single individual.

  8. Anderson and Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, T. V.

    The legacy of P. W. Anderson, perhaps the most fertile and influential condensed matter physicist of the second half of the twentieth century, is briefly mentioned here. I note three pervasive values. They are: emergence with its constant tendency to surprise us and to stretch our imagination, the Baconian emphasis on the experimental moorings of modern science, and mechanism as the explanatory core. Out of his work, which is spread over more than six decades and in many ways has charted modern condensed matter physics, nearly a dozen seminal contributions, chosen idiosyncratically, are mentioned at the risk of leaving out many which may also have started subfields. Some of these are: antiferromagnestism and broken symmetry, superexchange and strong electron correlations, localization in disordered systems, gauge invariance and mass, and the resonating valence bond in magnetic systems as well as in high-temperature superconductivity...

  9. Atomistic modeling of dropwise condensation

    NASA Astrophysics Data System (ADS)

    Sikarwar, B. S.; Singh, P. L.; Muralidhar, K.; Khandekar, S.

    2016-05-01

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  10. Confinement from constant field condensates

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Guendelman, Eduardo; Spallucci, Euro

    2007-01-01

    For (2 + 1)- and (3 + 1)-dimensional reformulated SU (2) Yang-Mills theory, we compute the interaction potential within the framework of the gauge-invariant but path-dependent variables formalism. This reformulation is due to the presence of a constant gauge field condensate. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges. This result is equivalent to that of the massive Schwinger model.

  11. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  12. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  13. Condensation on Slippery Asymmetric Bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  14. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  15. Quark and gluon condensates in isospin matter

    SciTech Connect

    He Lianyi; Jiang Yin; Zhuang Pengfei

    2009-04-15

    By applying the Hellmann-Feynman theorem to a charged pion gas, the quark and gluon condensates at low isospin density are determined by precise pion properties. At intermediate density around f{sub {pi}}{sup 2}m{sub {pi}}, from both the estimation for the dilute pion gas and the calculation with the Nambu-Jona-Lasinio model, the quark condensate is strongly and monotonously suppressed, while the gluon condensate is enhanced and can be larger than its vacuum value. This unusual behavior of the gluon condensate is universal for Bose condensed matter of mesons. Our results can be tested by lattice calculations at finite isospin density.

  16. Organic Aerosols as Cloud Condensation Nuclei

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.

    2002-05-01

    The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of

  17. CDW-Exciton Condensate Competition and a Condensate Driven Force

    NASA Astrophysics Data System (ADS)

    Özgün, Ege; Hakioğlu, Tuğrul

    2016-08-01

    We examine the competition between the charge-density wave (CDW) instability and the excitonic condensate (EC) in spatially separated layers of electrons and holes. The CDW and the EC order parameters (OPs), described by two different mechanisms and hence two different transition temperatures TcCDW and TcEC, are self-consistently coupled by a microscopic mean field theory. We discuss the results in our model specifically focusing on the transition-metal dichalcogenides which are considered as the most typical examples of strongly coupled CDW/EC systems with atomic layer separations where the electronic energy scales are large with the critical temperatures in the range TcEC ˜ TcCDW ˜ 100-200 K. An important consequence of this is that the excitonic energy gap, hence the condensed free energy, vary with the layer separation resulting in a new type of force FEC. We discuss the possibility of this force as the possible driver of the structural lattice deformation observed in some TMDCs with a particular attention on the 1T-TiSe2 below 200 K.

  18. Condensing efficiency of the truncated cone condenser and its comparison with the Winston cone condenser in terahertz region

    NASA Astrophysics Data System (ADS)

    Aoki, Makoto; Hiromoto, Norihisa

    2015-01-01

    The angle-dependent condensing efficiency of a truncated cone condenser (TCC) in the terahertz (THz) region has been examined by 2D ray tracing and 3D electromagnetic simulation. The condensing efficiency in the THz region is transferred to that in the optical region by theoretical dispersive reflection from a rough surface, and it is confirmed that the latter is consistent with the measured condensing efficiency in the optical region. Although the TCC has a gradual field of view (FOV) compared with the Winston cone condenser (WCC), we improved the steepness of the FOV by adding a baffle before the input aperture of the TCC. We also proved that the TCC has a high condensing efficiency at around normal incidence in comparison with the WCC in the THz region.

  19. Condensation on slippery asymmetric bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C.; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  20. Condensation on slippery asymmetric bumps.

    PubMed

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach--based on principles derived from Namib desert beetles, cacti, and pitcher plants--that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  1. Condensing osteitis in oral region.

    PubMed

    Holly, D; Jurkovic, R; Mracna, J

    2009-01-01

    Condensing osteitis is defined as pathologic growth of maxillomandibular bones characterized by mild clinical symptoms. The bone thickening reflects the impaired bone rearrangement in response to mild infection of dental pulp. This clinical study describes case reports of patients sent to us with radiological findings and clinical examination that failed to lead to definitive diagnosis. On differential diagnosis, all bone tissue tumors were considered. Based on clinical and radiological findings (bone density and trabeculation of the bone) we settled on the diagnosis of osteitis condensans, which allowed us to remain in conservative therapy in terms of observing the patient (Fig. 3, Ref. 26). Full Text (Free, PDF) www.bmj.sk. PMID:20120441

  2. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  3. Condensing Non-Abelian Quasiparticles

    SciTech Connect

    Hermanns, M.

    2010-02-05

    A most interesting feature of certain fractional quantum Hall states is that their quasiparticles obey non-Abelian fractional statistics. So far, candidate non-Abelian wave functions have been constructed from conformal blocks in cleverly chosen conformal field theories. In this work we present a hierarchy scheme by which we can construct daughter states by condensing non-Abelian quasiparticles (as opposed to quasiholes) in a parent state, and show that the daughters have a non-Abelian statistics that differs from the parent. In particular, we discuss the daughter of the bosonic, spin-polarized Moore-Read state at nu=4/3 as an explicit example.

  4. Predictive thermodynamics for condensed phases.

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2005-10-01

    Thermodynamic information is central to assessment of the stability and reactivity of materials. However, because of both the demanding nature of experimental thermodynamics and the virtually unlimited number of conceivable compounds, experimental data is often unavailable or, for hypothetical materials, necessarily impossible to obtain. We describe simple procedures for thermodynamic prediction for condensed phases, both ionic and organic covalent, principally via formula unit volumes (or density); our volume-based approach (VBT) provides a new thermodynamic tool for such assessment. These methods, being independent of detailed knowledge of crystal structures, are applicable to liquids and amorphous materials as well as to crystalline solids. Examples of their use are provided. PMID:16172676

  5. Velocity Condensation for Magnetotactic Bacteria.

    PubMed

    Rupprecht, Jean-François; Waisbord, Nicolas; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric

    2016-04-22

    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g., active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that Lévy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior. PMID:27152825

  6. Velocity Condensation for Magnetotactic Bacteria

    NASA Astrophysics Data System (ADS)

    Rupprecht, Jean-François; Waisbord, Nicolas; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric

    2016-04-01

    Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We show that the swimming strategy, e.g., active Brownian motion versus run-and-tumble dynamics, strongly affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the phase transition to collective motion, indicating that Lévy run-and-tumble walks can outperform active Brownian processes as strategies to trigger collective behavior.

  7. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    PubMed

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  8. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae

    PubMed Central

    Gong, Zheng; Tang, M. Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A.; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis. PMID:26808268

  9. Origin of Condensation Nuclei in the Springtime Polar Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao, Jingxia; Toon, Owen B.; Turco, Richard P.

    1995-01-01

    An enhanced sulfate aerosol layer has been observed near 25 km accompanying springtime ozone depletion in the Antarctic stratosphere. We use a one-dimensional aerosol model that includes photochemistry, particle nucleation, condensational growth, coagulation, and sedimentation to study the origin of the layer. Annual cycles of sunlight, temperature, and ozone are incorporated into the model. Our results indicate that binary homogeneous nucleation leads to the formation of very small droplets of sulfuric acid and water under conditions of low temperature and production of H2SO4 following polar sunrise. Photodissociation of carbonyl sulfide (OCS) alone, however, cannot provide sufficient SO2 to create the observed condensation nuclei (CN) layer. When subsidence of SO2 from very high altitudes in the polar night vortex is incorporated into the model, the CN layer is reasonably reproduced. The model predictions, based on the subsidence in polar vortex, agree with in situ measurements of particle concentration, vertical distribution, and persistence during polar spring.

  10. Origin of condensation nuclei in the springtime polar stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao, Jingxia; Toon, Owen B.; Turco, Richard P.

    1995-01-01

    An enhanced sulfate aerosol layer has been observed near 25 km accompanying springtime ozone depletion in the Antarctic stratosphere. We use a one-dimensional aerosol model that includes photochemistry, particle nucleation, condensational growth, coagulation, and sedimentation to study the origin of the layer. Annual cycles of sunlight, temperature, and ozone are incorporated into the model. Our results indicate that binary homogeneous nucleation leads to the formation of very small droplets of sulfuric acid and water under conditions of low temperature and production of H2SO4 following polar sunrise. Photodissociation of carbonyl sulfide (OCS) alone, however, cannot provide sufficient SO2 to create the observed condensation nuclei (CN) layer. When subsidence of SO2 from very high altitudes in the polar night vortex is incorporated into the model, the CN layer is reasonably reproduced. The model predictions, based on the subsidence in polar vortex, agree with in situ measurements of particle concentration, vertical distribution, and persistence during polar spring.

  11. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  12. Axions: Bose Einstein condensate or classical field?

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha

    2015-05-01

    The axion is a motivated dark matter candidate, so it would be interesting to find features in Large Scale Structures specific to axion dark matter. Such features were proposed for a Bose Einstein condensate of axions, leading to confusion in the literature (to which I contributed) about whether axions condense due to their gravitational interactions. This note argues that the Bose Einstein condensation of axions is a red herring: the axion dark matter produced by the misalignment mechanism is already a classical field, which has the distinctive features attributed to the axion condensate (BE condensates are described as classical fields). This note also estimates that the rate at which axion particles condense to the field, or the field evaporates to particles, is negligible.

  13. Bose condensation in topologically ordered quantum liquids

    NASA Astrophysics Data System (ADS)

    Neupert, Titus; He, Huan; von Keyserlingk, Curt; Sierra, German; Bernevig, Andrei

    The condensation of bosons can induce transitions between topological quantum field theories (TQFTs). This as been previously investigated through the formalism of Frobenius algebras and with the use of Vertex lifting coefficients. We discuss an alternative, algebraic approach to boson condensation in TQFTs that is physically motivated and computationally efficient. With a minimal set of assumptions, such as commutativity of the condensation with the fusion of anyons, we can prove a number of theorems linking boson condensation in TQFTs with algebra extensions in conformal field theories and with the problem of factorization of completely positive matrices over the positive integers. We propose an algorithm for obtaining a condensed theory fusion algebra and its modular matrices. For example, this formalism can be used to build multi-layer TQFTs which could be a starting point to build three-dimensional topologically ordered phases. Using this formalism, we also give examples of bosons that cannot undergo a condensation transition due to topological obstructions.

  14. The condensate from torus knots

    NASA Astrophysics Data System (ADS)

    Gorsky, A.; Milekhin, A.; Sopenko, N.

    2015-09-01

    We discuss recently formulated instanton-torus knot duality in Ω-deformed 5D SQED on {{R}}^4× {S}^1 focusing at the microscopic aspects of the condensate formation in the instanton ensemble. Using the chain of dualities and geometric transitions we embed the SQED with a surface defect into the SU(2) SQCD with N f = 4 and identify the numbers ( n, m) of the torus T n, m knot as instanton charge and electric charge. The HOMFLY torus knot invariants in the fundamental representation provide entropic factor in the condensate of the massless flavor counting the degeneracy of the instanton-W-boson web with instanton and electric numbers ( n, m) but different spin and flavor content. Using the inverse geometrical transition we explain how our approach is related to the evaluation of the HOMFLY invariants in terms of Wilson loop in 3d CS theory. The reduction to 4D theory is briefly considered and some analogy with baryon vertex is conjectured.

  15. Condensation induced water hammer safety

    SciTech Connect

    Gintner, M.A.

    1997-03-10

    Condensation induced water hammer events in piping systems can cause catastrophic steam system failures which can result in equipment damage, personal injury, and even death. As an industry, we have learned to become accustomed to the ''banging'' that we often hear in our steam piping systems, and complacent in our actions to prevent it. It is unfortunate that lives are lost needlessly, as this type of water hammer event is preventable if one only applies some basic principles when operating and maintaining their steam systems. At the U. S. Department of Energy's Hanford Site where I work, there was one such accident that occurred in 1993 which took the life of a former co-worker and friend of mine. Hanford was established as part of the Manhattan Project during World War II. it is a 560 square mile complex located along the banks of the Columbia River in Southeastern Washington State. For almost 45 years, hanford's mission was to produce weapons grade plutonium for our nations defense programs. Today, Hanford no longer produces plutonium, but is focused on site clean-up and economic diversification. Hanford still uses steam for heating and processing activities, utilizing over 20 miles of piping distribution systems similar to those found in industry. Although these aging systems are still sound, they cannot stand up to the extreme pressure pulses developed by a condensation induced water hammer.

  16. High-temperature condensates in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Grossman, L.

    1977-01-01

    Equilibrium thermodynamic calculations of the sequence of condensation of minerals from a cooling gas of solar composition play an important role in explaining the mineralogy and trace element content of different types of inclusions in carbonaceous chondrites. Group IV B iron meteorites and enstatite chondrites may also be direct condensates from the solar nebula. Condensation theory provides a framework within which chemical fractionations between different classes of chondrites may be understood.

  17. Bose-Einstein condensation of 84Sr.

    PubMed

    Martinez de Escobar, Y N; Mickelson, P G; Yan, M; DeSalvo, B J; Nagel, S B; Killian, T C

    2009-11-13

    We report Bose-Einstein condensation of (84)Sr in an optical dipole trap. Efficient laser cooling on the narrow intercombination line and an ideal s-wave scattering length allow the creation of large condensates (N(0) approximately 3 x 10(5)) even though the natural abundance of this isotope is only 0.6%. Condensation is heralded by the emergence of a low-velocity component in time-of-flight images. PMID:20365965

  18. Increased Availability From Improved Condenser Design

    SciTech Connect

    Harpster, Joseph W.

    2002-07-01

    Performance parameters and flow characteristics on the shell side of surface condensers are becoming better understood. Contributing to this knowledge base is the recent ability to measure the physical properties as well as the quantity of gases being removed from the condenser by air removal equipment. Reviewed here are the commonality of these data from many operating condensers obtained over the past six years and other known condenser measurements, theory and laboratory experiments. These are combined to formulate global theoretical description of condenser dynamics describing the mechanism responsible for aeration and de-aeration, excess back pressure buildup due to air ingress or generation of other noncondensable gases, and the dissolubility of corrosive gases in condensate. The theoretical description supports a dynamic model useful for deciding condenser configuration design and design improvements. Features of design found in many operating condensers that promote aeration and resulting corrosion are presented. The benefits of the model and engineering design modifications to plant life cycle management, improved condenser performance, outage reduction and reliability improvements, lost load recovery and fuel savings are discussed. (author)

  19. Vapor condensation on a turbulent liquid interface

    NASA Technical Reports Server (NTRS)

    Helmick, M. R.; Khoo, B. C.; Sonin, A. A.

    1987-01-01

    An experimental investigation which seeks the fundamental relationship between the interfacial condensation rate and the parameters which control it when the liquid side is turbulent is discussed. The scaling laws for free-surface condensation are discussed for this case. It is argued that the condensation of cryogenic liquids can, in principle, be simulated in experiments using steam and water. Data are presented for the condensation rate in terms of the dimensionless scaling parameters which involve the fluid properties and the liquid-side turbulence velocity and length scales.

  20. Enhanced condensation heat transfer with wettability patterning

    NASA Astrophysics Data System (ADS)

    Sinha Mahapatra, Pallab; Ghosh, Aritra; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Condensation of water vapor on metal surfaces is useful for many engineering applications. A facile and scalable method is proposed for removing condensate from a vertical plate during dropwise condensation (DWC) in the presence of non-condensable gases (NCG). We use wettability-patterned superhydrophilic tracks (filmwise condensing domains) on a mirror-finish (hydrophilic) aluminum surface that promotes DWC. Tapered, horizontal ``collection'' tracks are laid to create a Laplace pressure driven flow, which collects condensate from the mirror-finish domains and sends it to vertical ``drainage tracks'' for gravity-induced shedding. An optimal design is achieved by changing the fractional area of superhydrophilic tracks with respect to the overall plate surface, and augmenting capillary-driven condensate-drainage by adjusting the track spatial layout. The design facilitates pump-less condensate drainage and enhances DWC heat transfer on the mirror-finish regions. The study highlights the relative influences of the promoting and retarding effects of dropwise and filmwise condensation zones on the overall heat transfer improvement on the substrate. The study demonstrated ~ 34% heat transfer improvement on Aluminum surface for the optimized design.

  1. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  2. Advances in modelling of condensation phenomena

    SciTech Connect

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  4. Gravitino condensation in fivebrane backgrounds

    NASA Astrophysics Data System (ADS)

    Kitazawa, Noriaki

    2002-04-01

    We calculate the tension of the D3-brane in the fivebrane background which is described by the exactly solvable SU(2)k×U(1) world-sheet conformal field theory with large Kač-Moody level k. The D3-brane tension is extracted from the amplitude of one closed string exchange between two parallel D3-branes, and the amplitude is calculated by utilizing the open-closed string duality. The tension of the D3-brane in the background does not coincide with the one in the flat space-time even in the flat space-time limit: k-->∞. The finite curvature effect should vanish in the flat space-time limit and only the topological effect can remain. Therefore, the deviation suggests the condensation of the gravitino and/or dilatino which has been expected in the fivebrane background as a gravitational instanton.

  5. Transient nucleation in condensed systems

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Greer, A. L.; Thompson, C. V.

    1983-01-01

    Using classical nucleation theory we consider transient nucleation occurring in a one-component, condensed system under isothermal conditions. We obtain an exact closed-form expression for the time dependent cluster populations. In addition, a more versatile approach is developed: a numerical simulation technique which models directly the reactions by which clusters are produced. This simulation demonstrates the evolution of cluster populations and nucleation rate in the transient regime. Results from the simulation are verified by comparison with exact analytical solutions for the steady state. Experimental methods for measuring transient nucleation are assessed, and it is demonstrated that the observed behavior depends on the method used. The effect of preexisting cluster distributions is studied. Previous analytical and numerical treatments of transient nucleation are compared to the solutions obtained from the simulation. The simple expressions of Kashchiev are shown to give good descriptions of the nucleation behavior.

  6. Tunable Vapor-Condensed Nanolenses

    PubMed Central

    2015-01-01

    Nanostructured optical components, such as nanolenses, direct light at subwavelength scales to enable, among others, high-resolution lithography, miniaturization of photonic circuits, and nanoscopic imaging of biostructures. A major challenge in fabricating nanolenses is the appropriate positioning of the lens with respect to the sample while simultaneously ensuring it adopts the optimal size and shape for the intended use. One application of particular interest is the enhancement of contrast and signal-to-noise ratio in the imaging of nanoscale objects, especially over wide fields-of-view (FOVs), which typically come with limited resolution and sensitivity for imaging nano-objects. Here we present a self-assembly method for fabricating time- and temperature-tunable nanolenses based on the condensation of a polymeric liquid around a nanoparticle, which we apply to the high-throughput on-chip detection of spheroids smaller than 40 nm, rod-shaped particles with diameter smaller than 20 nm, and biofunctionalized nanoparticles, all across an ultralarge FOV of >20 mm2. Previous nanoparticle imaging efforts across similar FOVs have detected spheroids no smaller than 100 nm, and therefore our results demonstrate the detection of particles >15-fold smaller in volume, which in free space have >240 times weaker Rayleigh scattering compared to the particle sizes detected in earlier wide-field imaging work. This entire platform, with its tunable nanolens condensation and wide-field imaging functions, is also miniaturized into a cost-effective and portable device, which might be especially important for field use, mobile sensing, and diagnostics applications, including, for example, the measurement of viral load in bodily fluids. PMID:24979060

  7. Molecular attraction of condensed bodies

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.; Abrikosova, I. I.; Lifshitz, E. M.

    2015-09-01

    From the Editorial Board. As a contribution to commemorating the 100th anniversary of the birth of Evgenii Mikhailovich Lifshitz, it was found appropriate by the Editorial Board of Uspekhi Fizicheskikh Nauk (UFN) [Physics-Uspekhi] journal that the materials of the jubilee-associated Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences published in this issue (pp. 877-905) be augmented by the review paper "Molecular attraction of condensed bodies" reproduced from a 1958 UFN issue. Included in this review, in addition to an account by Evgenii Mikhailovich Lifshitz of his theory of molecular attractive forces between condensed bodies (first published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (ZhETF) in 1955 and in its English translation Journal of Experimental and Theoretical Physics (JETP) in 1956), is a summary of a series of experimental studies beginning in 1949 by Irina Igorevna Abrikosova at the Institute of Physical Chemistry of the Academy of Sciences of the USSR in a laboratory led by Boris Vladimirovich Derjaguin (1902-1994), a Corresponding Member of the USSR Academy of Sciences. In 1958, however, UFN was not yet available in English translation, so the material of the review is insufficiently accessible to the present-day English-speaking reader. This is the reason why the UFN Editorial Board decided to contribute to celebrating the 100th anniversary of E M Lifshitz's birthday by reproducing on the journal's pages a 1958 review paper which contains both E M Lifshitz's theory itself and the experimental data that underpinned it (for an account of how Evgenii Mikhailovich Lifshitz was enlisted to explain the experimental results of I I Abrikosova and B V Derjaguin, see the letter to the editors N P Danilova on page 925 of this jubilee collection of publications).

  8. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  9. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  10. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  11. Bose-Einstein-condensate heating by atomic losses

    SciTech Connect

    Dziarmaga, Jacek; Sacha, Krzysztof

    2003-10-01

    Atomic Bose-Einstein condensate is heated by atomic losses. The losses act as a heat reservoir for the condensate. The condensate is approaching a state of thermal equilibrium with a thermal depletion ranging from 1% for a uniform three-dimensional (3D) condensate to around 13% for a quasi-1D condensate in a harmonic trap.

  12. Quantum metrology with Bose-Einstein condensates

    SciTech Connect

    Boixo, Sergio; Datta, Animesh; Davis, Matthew J.; Flammia, Steven T.; Shaji, Anil; Tacla, Alexandre B.; Caves, Carlton M.

    2009-04-13

    We show how a generalized quantum metrology protocol can be implemented in a two-mode Bose-Einstein condensate of n atoms, achieving a sensitivity that scales better than 1/n and approaches 1/n{sup 3/2} for appropriate design of the condensate.

  13. Dielectric strength of sulfur hexafluoride upon condensation

    SciTech Connect

    Antonov, A.V.; Lyapin, A.G.; Popkov, V.I.

    1983-01-01

    The behavior of sulfur hexafluoride in a sealed high-voltage device has been modeled for cooling to the condensation point of the insulating medium. The temperature dependences of the breakdown voltages of sulfur hexafluoride have been investigated for several interelectrode separations. The dielectric strength has been shown to decrease upon condensation with formation of a bridge of boiling liquid phase between the electrodes.

  14. Alignment and tolerancing of a cardioid condenser

    NASA Astrophysics Data System (ADS)

    Prince, S. M.; McGuigan, W. G.

    2007-09-01

    Design details of a cardioid dark field condenser are shown ranging from the theoretical performance of a cardioid to the best-fit spherical surface. The manufacturing tolerances, fabrication techniques and debug methods are discussed for this condenser. The primary tolerances to be achieved are center thickness of the cardioid element and maintenance of its center of curvature relative to the focal plane.

  15. Fragmentation of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mueller, Erich J.; Ho, Tin-Lun; Ueda, Masahito; Baym, Gordon

    2006-09-01

    We present the theory of bosonic systems with multiple condensates, providing a unified description of various model systems that are found in the literature. We discuss how degeneracies, interactions, and symmetries conspire to give rise to this unusual behavior. We show that as degeneracies multiply, so do the varieties of fragmentation, eventually leading to strongly correlated states with no trace of condensation.

  16. Hydrophilic structures for condensation management in appliances

    DOEpatents

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  17. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  18. Condensation of liquid metals under low pressures

    SciTech Connect

    Elafify, M.M.

    1988-01-01

    The Direct Simulation Monte Carlo (DSMC) method is used to study one-dimensional condensation phenomena for a pure vapor or vapor/gas mixture. The results are fitted to an interpolation formula describing the condensation mass flux to provide a usable engineering correlation. For pure vapor, the DSMC results are compared with the available experimental data for condensation of mercury under low pressure. Results are compared also with some of the theoretical models. The comparison shows that the DSMC method is able to detect the qualitative behavior of the condensation mass flux, although it overestimates the mass flux by 20-30%. Compared with other introduced theoretical models, the DSMC method has the most-consistent representation of the qualitative behavior of the condensation mass flux. The method was also used to represent condensation in the presence of a noncondensable gas. A formal proof for choosing collision partners was introduced and applied in the case of condensation in the presence of a noncondensable gas. The method is applied to condensation of mercury in the presence of different monatomic noncondensable gases at different partial pressures.

  19. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  20. Cooling-Trough Condenser for Sublimation Tubes

    NASA Astrophysics Data System (ADS)

    Eisenbraun, E. J.; Lucas, J. M.

    1995-11-01

    A wrap-around, trough condenser for use with large diameter (2.5") sublimation tubes is described. The design permits attachment of the condenser to the sublimation tube without removing the tube from the heater. It also permits the use of a variety of liquid (tap water, Dry Ice, and alcohol or acetone) or solid (ice or Dry Ice) coolants.

  1. Direct condensation refrigerant recovery and restoration system

    SciTech Connect

    Grant, D.C.H.

    1992-03-10

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

  2. Dual condensate and QCD phase transition

    SciTech Connect

    Zhang Bo; Bruckmann, Falk; Fodor, Zoltan; Szabo, Kalman K.; Gattringer, Christof

    2011-05-23

    The dual condensate is a new QCD phase transition order parameter, which connnects confinement and chiral symmetry breaking as different mass limits. We discuss the relation between the fermion spectrum at general boundary conditions and the dual condensate and show numerical results for the latter from unquenched SU(3) lattice configurations.

  3. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  4. Preliminary design of condenser cleansing schedule

    SciTech Connect

    Warberg, J.; Foraker, E.K.; Civera, A.G.; Daley, M.L.

    1995-04-01

    Analysis of the operations of a fossil power plant for a 5-year period revealed a year-round trend of operating inefficiently due to elevated condenser back pressure, particularly during the summer months. A further 5-month longitudinal study between May and September of an individual condenser unit revealed a positive correlation between increasing inlet-circulating water temperature and above-design condenser back pressure. Moreover, condenser cleansing resulted in a return to approximately the design operating condition. A physical analysis of increased heat-rate and lost power generation from inefficient condenser back pressure was accomplished. Based on these observations and economic analysis, a preliminary cleansing schedule for periods of increasing circulating water temperature was derived. Further studies are planned to validate the proposed cleansing schedule.

  5. Condensed Matter Theories - Volume 22

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Röpke, Gerd; de Llano, Manuel

    2007-09-01

    pt. A. Fermi liquids. Pressure comparison between the spherical cellular model and the Thomas-Fermi model / G.A. Baker, Jr. Pair excitations and vertex corrections in Fermi fluids and the dynamic structure function of two-dimension 3He / H.M. Böhm, H. Godfrin, E. Krotscheck, H.J. Lauter, M. Meschke and M. Panholzer. Condensation of helium in wedges / E.S. Hernádez ... [et al.]. Non-Fermi liquid behavior from the Fermi-liquid approach / V.A. Khodel ... [et al.]. Theory of third sound and stability of thin 3He-4He superfluid films / E. Krotscheck and M.D. Miller. Pairing in asymmetrical Fermi systems / K.F. Quader and R. Liao. Ground-state properties of small 3He drops from quantum Monte Carlo simulations / E. Sola, J. Casulleras and J. Boronat. Ground-state energy and compressibility of a disordered two-dimensional electron gas / Tanatar ... [et al.]. Quasiexcitons in photoluminescence of incompressible quantum liquids / A. Wójs, A.G ladysiewicz and J.J. Quinn -- pt. B. Bose liquids. Quantum Boltzmann liquids / K.A. Gernoth, M L. Ristig and T. Lindenau. Condensate fraction in the dynamic structure function of Bose fluids / M. Saarela, F. Mazzanti and V. Apaja -- pt. C. Strongly-correlated electronic systems. Electron gas in high-field nanoscopic transport: metallic carbon nanotubes / F. Green and D. Neilson. Evolution and destruction of the Kondo effect in a capacitively coupled double dot system / D.E. Logan and M.R. Galpin. The method of increments-a wavefunction-based Ab-Initio correlation method for solids / B. Paulus. Fractionally charged excitations on frustrated lattices / E. Runge, F. Pollmann and P. Fulde. 5f Electrons in actinides: dual nature and photoemission spectra / G. Zwicknagl -- pt. D. Magnetism. Magnetism in disordered two-dimensional Kondo-Necklace / W. Brenig. On the de Haas-can Alphen oscillation in 2D / S. Fujita and D.L. Morabito. Dynamics in one-dimensional spin systems-density matrix reformalization group study / S. Nishimoto and M

  6. Investigation of condensed and early stage gas phase hypergolic reactions

    NASA Astrophysics Data System (ADS)

    Dennis, Jacob Daniel

    Traditional hypergolic propellant combinations, such as those used on the space shuttle orbital maneuvering system first flown in 1981, feature hydrazine based fuels and nitrogen tetroxide (NTO) based oxidizers. Despite the long history of hypergolic propellant implementation, the processes that govern hypergolic ignition are not well understood. In order to achieve ignition, condensed phase fuel and oxidizer must undergo simultaneous physical mixing and chemical reaction. This process generates heat, intermediate condensed phase species, and gas phase species, which then may continue to react and generate more heat until ignition is achieved. The process is not well understood because condensed and gas phase reactions occur rapidly, typically in less than 200 μs, on much faster timescales than traditional diagnostic methods can observe. A detailed understanding of even the gas phase chemistry is lacking, but is critical for model development. Initial research has provided confidence that a study of condensed phase hypergolic reactions is useful and possible. Results obtained using an impinging jet apparatus have shown a critical residence time of 0.3 ms is required for the reaction between monomethylhydrazine (MMH) and red fuming nitric acid (RFNA, ~85% HNO3 + 15% N2O4) to achieve conditions favorable for ignition. This critical residence time spans the time required for liquid phase reactions to occur at the fuel/oxidizer interface and can give some insight into the reaction rates for this propellant combination. Experiments performed in a forced mixing constant volume reactor have demonstrated that the chamber pressurization rate for MMH/RFNA can be significantly reduced by diluting the MMH with deionized water. This result indicates that propellant dilution can slow the chemical reaction rates to occur over observable time scales. The research described in this document consists of two efforts that contribute knowledge to the propulsion community regarding the

  7. 26. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF THE CONDENSING SYSTEM, REUSED BY VIVIANNA WORKS AS THE END OF THEIR CONDENSING SYSTEM, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  8. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF THE CONDENSING SYSTEM, REUSED BY VIVIANNA WORKS AS THE END OF THEIR CONDENSING SYSTEM, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  9. Black holes in the ghost condensate

    SciTech Connect

    Mukohyama, Shinji

    2005-05-15

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u{sup {mu}}=-g{sup {mu}}{sup {nu}}{partial_derivative}{sub {nu}}{phi}. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter.

  10. Critical condensate saturation in porous media

    SciTech Connect

    Wang, X.; Mohanty, K.K.

    1999-06-15

    The understanding of gas and condensate flow in porous media is critical to the optimum exploitation of gas-condensate reservoirs. Critical condensate saturation and relative permeabilities are the key parameters for the evaluation of possible recovery strategies. This work is aimed at developing a mechanistic network model for the critical condensate saturation in which phase trapping and connectivity in the pore corners are critically examined. Porous media are modeled by networks of pore bodies interconnected by pore throats. Bodies and throats are characterized by their connectivity, shapes, and radii distributions. Pore-level laws are identified from micromodel experiments with near-critical fluids. A nonzero critical condensate saturation can be obtained in the absence of contact angle hysteresis due to the converging-diverging nature of the throats. The critical saturation at which the condensate flows is found to be a function of pore geometry, water saturation, and interfacial tension (or the Bond number). The modified sphere-pack model underpredicts the critical condensate saturation of typical sandstones. The cubic model adequately predicts the critical saturation and its experimentally observed trends.

  11. Boson condensation in topologically ordered quantum liquids

    NASA Astrophysics Data System (ADS)

    Neupert, Titus; He, Huan; von Keyserlingk, Curt; Sierra, Germán; Bernevig, B. Andrei

    2016-03-01

    Boson condensation in topological quantum field theories (TQFT) has been previously investigated through the formalism of Frobenius algebras and the use of vertex lifting coefficients. While general, this formalism is physically opaque and computationally arduous: analyses of TQFT condensation are practically performed on a case by case basis and for very simple theories only, mostly not using the Frobenius algebra formalism. In this paper, we provide a way of treating boson condensation that is computationally efficient. With a minimal set of physical assumptions, such as commutativity of lifting and the definition of confined particles, we can prove a number of theorems linking Boson condensation in TQFT with chiral algebra extensions, and with the factorization of completely positive matrices over Z+. We present numerically efficient ways of obtaining a condensed theory fusion algebra and S matrices; and we then use our formalism to prove several theorems for the S and T matrices of simple current condensation and of theories which upon condensation result in a low number of confined particles. We also show that our formalism easily reproduces results existent in the mathematical literature such as the noncondensability of five and ten layers of the Fibonacci TQFT.

  12. Condenser on-line fouling monitor

    SciTech Connect

    Tsou, J.L.; Garey, J.F.; Wiebe, D.H.

    1994-12-31

    Biological and/or chemical fouling in utility condensers is a major cause of reduced efficiency and substantially affects availability and increases operational costs. Performance losses due to water side fouling are difficult to measure and, usually, quantitative assessment of the economic impact of condenser fouling is impossible. Plant operators typically examine steam backpressure and perform complex calculations for condenser cleanliness. These direct estimates are often imprecise due to inadequate instrumentation. In addition, these data provide information on overall condenser performance which may be influenced by a number of parameters which are independent of water side fouling. Indirect (side-stream) methods are also used to isolate/measure biological or chemical fouling in condensers. This approach is extremely useful to document site/seasonal fouling rates, and for the simultaneous evaluation of treatment options. In collaboration with the Electric Power Research Institute, instrumentation has been developed which meets requirements for the direct, on-line measurement of condenser fouling. This monitor may be installed in any location within the condenser, does not interfere with routine plant operations, including on-line mechanical and chemical treatment methods, and provides continuous, real-time readings of the heat transfer efficiency of the instrumented tube. Three prototype assemblies were installed at the New England Power Company, Brayton Point Generating Station in 1993. This paper discusses the design, construction, preliminary test results, and subsequent data collected in 1994 with a redesigned system.

  13. Diquark Bose-Einstein condensation

    SciTech Connect

    Nawa, K.; Nakano, E.; Yabu, H.

    2006-08-01

    Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.

  14. Condensation Processes in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Hill, Hugh G. M.

    2002-01-01

    Astrophysical systems present an intriguing set of challenges for laboratory chemists. Chemistry occurs in regions considered an excellent vacuum by laboratory standards and at temperatures that would vaporize laboratory equipment. Outflows around Asymptotic Giant Branch (AGB) stars have timescales ranging from seconds to weeks depending on the distance of the region of interest from the star and, on the way significant changes in the state variables are defined. The atmospheres in normal stars may only change significantly on several billion-year timescales. Most laboratory experiments carried out to understand astrophysical processes are not done at conditions that perfectly match the natural suite of state variables or timescales appropriate for natural conditions. Experimenters must make use of simple analog experiments that place limits on the behavior of natural systems, often extrapolating to lower-pressure and/or higher-temperature environments. Nevertheless, we argue that well-conceived experiments will often provide insights into astrophysical processes that are impossible to obtain through models or observations. This is especially true for complex chemical phenomena such as the formation and metamorphism of refractory grains under a range of astrophysical conditions. Data obtained in our laboratory has been surprising in numerous ways, ranging from the composition of the condensates to the thermal evolution of their spectral properties. None of this information could have been predicted from first principals and would not have been credible even if it had.

  15. Stellar matter with pseudoscalar condensates

    NASA Astrophysics Data System (ADS)

    Andrianov, A. A.; Andrianov, V. A.; Espriu, D.; Kolevatov, S. S.

    2016-03-01

    In this work we consider how the appearance of gradients of pseudoscalar condensates in dense systems may possibly influence the transport properties of photons in such a medium as well as other thermodynamic characteristics. We adopt the hypothesis that in regions where the pseudoscalar density gradient is large the properties of photons and fermions are governed by the usual lagrangian extended with a Chern-Simons interaction for photons and a constant axial field for fermions. We find that these new pieces in the lagrangian produce non-trivial reflection coefficients both for photons and fermions when entering or leaving a region where the pseudoscalar has a non-zero gradient. A varying pseudoscalar density may also lead to instability of some fermion and boson modes and modify some properties of the Fermi sea. We speculate that some of these modifications could influence the cooling rate of stellar matter (for instance in compact stars) and have other observable consequences. While quantitative results may depend on the precise astrophysical details most of the consequences are quite universal and consideration should be given to this possibility.

  16. Ice-condenser aerosol tests

    SciTech Connect

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. )

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  17. The prebiotic synthesis of deoxythymidine oligonucleotides. II - Comparison of condensing agents

    NASA Technical Reports Server (NTRS)

    Odom, D. G.; Brady, J. T.

    1975-01-01

    A reaction which oligomerizes nucleotides under possible prebiotic conditions has been characterized. Nucleoside monophosphate in the presence of cyanamide at acid pH condenses to form dithymidine pyrophosphate and phosphodiester bonded compounds. Imidazole compounds and activated precursors such as nucleoside triphosphate are not necessary for this oligomerization reaction which produces primarily cyclic oligonucleotides.

  18. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  19. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Astrophysics Data System (ADS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-05-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1 - 3 × 10-4 Torr H2O and 1 - 2.5 × 10-6 Torr HNO3) and subjected to cooling and heating cycles. FTIR spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  20. Orbital diamagnetic susceptibility in excitonic condensation phase

    NASA Astrophysics Data System (ADS)

    Sugimoto, Koudai; Ohta, Yukinori

    2016-08-01

    We study the orbital diamagnetic susceptibility in excitonic condensation phase using the mean-field approximation for a two-band model defined on a square lattice. We find that, in semiconductors, the excitonic condensation acquires a finite diamagnetic susceptibility due to spontaneous hybridization between the valence and the conduction bands, whereas in semimetals, the diamagnetic susceptibility in the normal phase is suppressed by the excitonic condensation. We also study the orbital diamagnetic and Pauli paramagnetic susceptibilities of Ta2NiSe5 using a two-dimensional three-band model and find that the calculated temperature dependence of the magnetic susceptibility is in qualitative agreement with experiment.

  1. Vortices and turbulence in trapped atomic condensates

    PubMed Central

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  2. Bose-Einstein Condensation of Yb atoms

    SciTech Connect

    Takasu, Y.; Maki, K.; Komori, K.; Takano, T.; Honda, K.; Kumakura, M.; Yabuzaki, T.; Takahashi, Y.

    2005-05-05

    We could recently achieve the Bose Einstein condensation (BEC) of Yb atoms. Yb differs from most of the elements that have previously been condensed, because it is a two-electron atom with the singlet S ground state. Furthermore the Bosonic isotopes of Yb, like 174Yb which we succeeded to condensate, has no nuclear spin, so that the ground state is completely spin-less state and hence insensitive to magnetic fields. Thus a new type of atom could join the group of atoms for BEC studies. We would like to report how we could achieve the BEC of Yb atoms.

  3. The Complete Mechanism of an Aldol Condensation.

    PubMed

    Perrin, Charles L; Chang, Kuei-Lin

    2016-07-01

    Although aldol condensation is one of the most important organic reactions, capable of forming new C-C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the C═C bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution. PMID:27281298

  4. Quasihole condensates in quantum Hall liquids

    SciTech Connect

    Suorsa, J.; Viefers, S.; Hansson, T. H.

    2011-06-15

    We develop a formalism to describe quasihole condensates in quantum Hall liquids and thereby extend the conformal field theory approach to the full hierarchy of spin-polarized Abelian states and to several classes of non-Abelian hierarchical states. Most previously proposed spin-polarized quantum Hall wave functions appear as special cases. In this paper we explain the physical motivations for the approach, and exemplify it by explicitly constructing the level-two quasihole condensate state at filling fraction 2/3, and the two level-three states at 5/13 and 5/7 which are built from combinations of quasielectron and quasihole condensates.

  5. Condensed Matter Theories: Volume 25

    NASA Astrophysics Data System (ADS)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    dynamics and density functional theory. Exchange-correlation functionals from the identical-particle Ornstein-Zernike equation: Basic formulation and numerical algorithms / R. Cuevas-Saavedra and P. W. Ayers. Features and catalytic properties of RhCu: A review / S. Gonzalez, C. Sousa and F. Illas. Kinetic energy functionals: Exact ones from analytic model wave functions and approximate ones in orbital-free molecular dynamics / V. V. Karasiev ... [et al.]. Numerical analysis of hydrogen storage in carbon nanopores / C. Wexler ... [et al.] -- pt. F. Superconductivity. Generalized Bose-Einstein condensation in superconductivity / M. de Llano. Kohn anomaly energy in conventional superconductors equals twice the energy of the superconducting gap: How and why? / R. Chaudhury and M. P. Das. Collective excitations in superconductors and semiconductors in the presence of a condensed phase / Z. Koinov. Thermal expansion of ferromagnetic superconductors: Possible application to UGe[symbol] / N. Hatayama and R. Konno. Generalized superconducting gap in a Boson-Fermion model / T. A. Mamedov and M. de Llano. Influence of domain walls in the superconductor/ferromagnet proximity effect / E. J. Patino. Spin singlet and triplet superconductivity induced by correlated hopping interactions / L. A. Perez, J. S. Millan and C. Wang -- pt. G. Statistical mechanics, relativistic quantum mechanics. Boltzmann's ergodic hypothesis: A meeting place for two cultures / M. H. Lee. Electron-electron interaction in the non-relativistic limit / F. B. Malik.

  6. Condensation heat transfer in rotating heat pipes in the presence of a non-condensable gas

    NASA Technical Reports Server (NTRS)

    Daniels, T. C.; Medwell, J. O.; Williams, R. J.

    1977-01-01

    An analysis of condensation problems in rotating heat pipes containing vapors with different concentrations of non-condensable gases is given. In situations such as this, temperature and concentration gradients are set up in the vapor-gas mixture. There is a transport of mass due to temperature gradients accompanied by an energy transport phenomena due to a concentration gradient. A Nusselt type analysis is not suited to this type of problem; however, a boundary layer type approach has successfully been used to analyze stationary condensation systems with non-condensable gases present. The present boundary layer analysis is presented for condensation processes on the inside of a rotating heat pipe in the presence of non-condensable gases.

  7. Simulation of Homogeneous Condensation of Ethanol in High Pressure Supersonic Nozzle Flows using BGK Condensation Model

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Levin, D. A.

    2011-05-01

    In the present work, we have simulated the homogeneous condensation flow of ethanol using the Bhatnagar-Gross-Krook (BGK) based condensation model for the experimental conditions of Wegener et al. [1]. In an earlier work carried out by Gallagher-Rogers et al. [2], it was found not possible to simulate the experimental conditions using the direct simulation Monte-Carlo (DSMC) based condensation model. In this work we use a statistical-BGK approach to model condensation and compare our simulated predictions of the point of condensation onset and the distribution of mass fraction along the nozzle centerline with experiments. The experiments provide data for different cases corresponding to varying amounts of ethanol concentration, compared to air, for total mixture pressures which remains mostly constant for all cases. Our numerical results show good agreement with the experiments, thus validating our BGK based condensation model for high pressure flow applications.

  8. HIGH TEMPERATURE CONDENSED PHASE MASS SPECTROMETRIC ANALYSIS

    EPA Science Inventory

    Our current studies with high temperature ion emitting materials have demonstrated a significant lack of methods for determining chemical species in condensed phase materials in general, and at elevated temperatures in particular. We have developed several new research techniques...

  9. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  10. Quantum theory of multimode polariton condensation

    NASA Astrophysics Data System (ADS)

    Racine, David; Eastham, P. R.

    2014-08-01

    We develop a theory for the dynamics of the density matrix describing a multimode polariton condensate. In such a condensate several single-particle orbitals become highly occupied, due to stimulated scattering from reservoirs of high-energy excitons. A generic few-parameter model for the system leads to a Lindblad equation which includes saturable pumping, decay, and condensate interactions. We show how this theory can be used to obtain the population distributions, and the time-dependent first- and second-order coherence functions, in such a multimode condensate. As a specific application, we consider a polaritonic Josephson junction, formed from a double-well potential. We obtain the population distributions, emission line shapes, and widths (first-order coherence functions), and predict the dephasing time of the Josephson oscillations.

  11. Accretion of Ghost Condensate by Black Holes

    SciTech Connect

    Frolov, A

    2004-06-02

    The intent of this letter is to point out that the accretion of a ghost condensate by black holes could be extremely efficient. We analyze steady-state spherically symmetric flows of the ghost fluid in the gravitational field of a Schwarzschild black hole and calculate the accretion rate. Unlike minimally coupled scalar field or quintessence, the accretion rate is set not by the cosmological energy density of the field, but by the energy scale of the ghost condensate theory. If hydrodynamical flow is established, it could be as high as tenth of a solar mass per second for 10MeV-scale ghost condensate accreting onto a stellar-sized black hole, which puts serious constraints on the parameters of the ghost condensate model.

  12. Condensation and Hydrolysis - An Optical Problem?

    ERIC Educational Resources Information Center

    Kellett, N. C.; Johnstone, A. H.

    1974-01-01

    Recent surveys have shown that pupils find the topics of esterification and condensation difficult. Reasons for the difficulty are not clear. Described is research designed to determine where the difficulties were visual or conceptual in origin. (RH)

  13. Potential Condensed Fuel for the Milky Way

    NASA Astrophysics Data System (ADS)

    Putman, M. E.

    2006-07-01

    Potential condensed clouds of gas in the Galactic halo are examined in the context of the recent models of cooling, fragmenting clouds building up the baryonic mass of the Galaxy. Five hundred and eighty-two high-velocity clouds are defined as the potential condensed clouds, and the sample's spatial and velocity distributions are presented. With the majority of the hydrogen in the clouds ionized (~85%), the clouds at a distribution of distances within 150 kpc, and their individual total masses below 107 Msolar, the total mass in potentially condensed clouds is (1.1-1.4)×109 Msolar. If the tighter distance constraint of <60 kpc is adopted, this mass range drops to (4.5-6.1)×108 Msolar. The implications for the condensing cloud models, as well as feedback and additional accretion methods, are discussed.

  14. Condensation of Chondrules: Conditions for "Fiery Rain"

    NASA Astrophysics Data System (ADS)

    Grossman, L.; Fedkin, A. V.

    2012-09-01

    Equilibrium calculations at total pressures ≥1 bar in systems with CI dust enrichments of 1000 relative to solar composition, yield condensate assemblages whose olivine and coexisting silicate liquid have compositions found in primitive chondrules.

  15. Recent developments in Bose-Einstein condensation

    SciTech Connect

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  16. Cold condensation of dust in the ISM.

    PubMed

    Rouillé, Gaël; Jäger, Cornelia; Krasnokutski, Serge A; Krebsz, Melinda; Henning, Thomas

    2014-01-01

    The condensation of complex silicates with pyroxene and olivine composition under conditions prevailing in molecular clouds has been experimentally studied. For this purpose, molecular species comprising refractory elements were forced to accrete on cold substrates representing the cold surfaces of surviving dust grains in the interstellar medium. The efficient formation of amorphous and homogeneous magnesium iron silicates at temperatures of about 12 K has been monitored by IR spectroscopy. The gaseous precursors of such condensation processes in the interstellar medium are formed by erosion of dust grains in supernova shock waves. In the laboratory, we have evaporated glassy silicate dust analogs and embedded the released species in neon ice matrices that have been studied spectroscopically to identify the molecular precursors of the condensing solid silicates. A sound coincidence between the 10 microm band of the interstellar silicates and the 10 microm band of the low-temperature siliceous condensates can be noted. PMID:25302393

  17. Performance investigation of finned tube condensers

    SciTech Connect

    Mathur, G.D.

    1996-12-31

    A computer program has been developed to optimize the performance of finned tube condensers. The developed program is used to predict the thermal and hydrodynamic performance of finned tube condensers. The model is based on a steady-state finite difference model. The correlations for predicting the heat transfer and pressure drop are used from the literature. In this paper, the performance of a condenser of a 2-1/2 ton residential air conditioning system (split type) is optimized. The working fluid used in this investigation is R-22. ASHRAE`s condition A [Outside 95 F DBT/75 F WBT; Inside 80 F/67 F WBT] is used in this investigation. The predicted performance of the condenser is within {+-}5% of the experimental data.

  18. Kaon condensation in dense stellar matter

    SciTech Connect

    Lee, Chang-Hwan; Rho, M. |

    1995-03-01

    This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 {approx_lt} {rho}/{rho}o {approx_lt} 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter.

  19. Magnons in a box: Condensation and Application

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Olf, Ryan; Wu, Shun; Kadau, Holger; Marti, G. Edward; Stamper-Kurn, Dan

    2016-05-01

    Ultracold gases offer us a remarkable window into the quantum world, allowing direct access to a wide range of manybody and condensed matter phenomena at convenient macroscopic length and time scales. However, producing ultracold gases at ever lower entropy, and measuring statistical properties such as temperature in these low entropy regimes, is a persistent challenge. Magnons, gapless spin excitations of spinor Bose Einstein Condensate (BEC), are expected to behave like free particles. We show that magnons can be used to cool BEC in a deep trap and serve as a thermometer to measure temperatures at extremely low entropy-per-particle. Unlike atoms trapped in a harmonic trap, trapped magnons experience a box potential due to near exact cancellation of the trapping potential by the mean-field interaction within the condensate. We observe the quasi-condensation of magnon excitations within this nature-made box.

  20. Insulate Steam Distribution and Condensate Return Lines

    SciTech Connect

    Not Available

    2006-01-01

    This revised ITP tip sheet on insulating steam distribution and condensate return lines provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Thermal synthesis and hydrolysis of polyglyceric acid. [in orgin of life studying

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Polyglyceric acid was synthesized by thermal condensation of glyceric acid at 80 C in the presence and absence of two mole percent of sulfuric acid catalyst. The acid catalyst accelerated the polymerization over 100-fold and made possible the synthesis of insoluble polymers of both L- and DL-glyceric acid by heating for less than 1 day. Racemization of L-glyceric acid yielded less than 1 percent D-glyceric acid in condensations carried out at 80 C with catalyst for 1 day and without catalyst for 12 days. The condensation of L-glyceric acid yielded an insoluble polymer much more readily than condensation of DL-glyceric acid. Studies of the hydrolysis of poly-DL-glyceric acid revealed that it was considerably more stable under mild acidic conditions compared to neutral pH. The relationship of this study to the origin of life is discussed.

  2. Atomic phase conjugation from a Bose condensate

    SciTech Connect

    Goldstein, E.V.; Plaettner, K.; Meystre, P.

    1996-08-01

    The authors discuss the possibility of observing atomic phase conjugation from Bose condensates, and using it as a diagnostic tool to access the spatial coherence properties and to measure the lifetime of the condensate. They argue that since phase conjugation results from the scattering of a partial matter wave off the spatial grating produced by two other waves, it offers a natural way to directly measure such properties, and as such provides an attractive alternative to the optical methods proposed in the past.

  3. Condensate polishers add operating reliability and flexibility

    SciTech Connect

    Layman, C.M.; Bennett, L.L.

    2008-08-15

    Many of today's advanced steam generators favour either an all-volatile treatment or oxygenated treatment chemistry programme, both of which require strict maintenance of an ultra-pure boiler fedwater ro condensate system. Those requirements are many times at odds with the lower-quality water sources, such as greywater, available for plant makeup and cooling water. Adding a condensate polisher can be a simple, cost-effective solution. 4 figs.

  4. Dynamic simulation recalls condensate piping event

    SciTech Connect

    Farrell, R.J.; Reneberg, K.O. ); Moy, H.C. )

    1994-05-01

    This article describes how experience gained from simulating and reconstructing a condensate piping event will be used by Consolidated Edison to analyze control system problems. A cooperative effort by Con Edison and the Chemical Engineering Department at Polytechnic University used modular modeling system to investigate the probable cause of a Con Edison condensate piping event. Con Edison commissioned the work to serve as a case study for the more general problem of control systems analysis using dynamic simulation and MMS.

  5. Spatial Control of Condensation using Chemical Micropatterns

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.

  6. Dual condensates at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Miao, Qing

    2016-02-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI >mπ / 2 under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temperatures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always rises most steeply at the chiral transition temperature, which is consistent with the previous results in Nambu-Jona-Lasinio (NJL) model and its variants without considering the center symmetry. Since both quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is difficult to clarify the deconfinement transition from the dual condensates in this situation within this model.

  7. Condensation of the air-steam mixture in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2016-03-01

    This paper deals with the condensation of water vapour in the presence of non-condensable air. Experimental and theoretical solutions of this problem are presented here. A heat exchanger for the condensation of industrial waste steam containing infiltrated air was designed. The condenser consists of a bundle of vertical tubes in which the steam condenses as it flows downwards with cooling water flowing outside the tubes in the opposite direction. Experiments with pure steam and with mixtures of steam with added air were carried out to find the dependence of the condensation heat transfer coefficient (HTC) on the air concentration in the steam mixture. The experimental results were compared with the theoretical formulas describing the cases. The theoretical determination of the HTC is based on the Nusselt model of steam condensation on a vertical wall, where the analogy of heat and mass transfer is used to take into account the behaviour of air in a steam mixture during the condensation process. The resulting dependencies obtained from the experiments and obtained from the theoretical model have similar results. The significant decrease in the condensation HTC, which begins at very low air concentrations in a steam mixture, was confirmed.

  8. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    SciTech Connect

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C.

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  9. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total

  10. Condensed tannins from acacia mangium bark: Characterization by spot tests and FTIR

    NASA Astrophysics Data System (ADS)

    Bharudin, Muhammad Azizi; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    This paper describes the adaptation and evaluation of one chemical tests for tannins characterization in acacia mangium bark. Acid butanol test developed to identify respectively condensed tannins is described. The two traditional tests used for tannin characterization namely ferric test and vanillin test were also performed and their functional also discussed. Condensed tannins were extracted from acacia mangium bark using water medium in presence of three different concentration basic reagent of NaOH(5%,10% and 15%) and were characterized by FT-IR spectrometry.

  11. Chemistry and kinetics of I2 loss in urine distillate and humidity condensate

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.

    1992-01-01

    Time-resolved molecular absorption spectrophotometry of iodinated ersatz humidity condensates and iodinated ersatz urine distillates across the UV and visible spectral regions are used to investigate the chemistry and kinetics of I2 loss in urine distillate and humidity condensate. Single contaminant systems at equivalent concentrations are also employed to study rates of iodine. Pseudo-first order rate constants are identified for ersatz contaminant model mixtures and for individual reactive constituents. The second order bimolecular reaction of elemental iodine with formic acid, producing carbon dioxide and iodine anion, is identified as the primary mechanism underlying the decay of residual I2 in ersatz humidity concentrate.

  12. Mitotic chromosome condensation in vertebrates

    SciTech Connect

    Vagnarelli, Paola

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of

  13. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  14. Buckling condensation in constrained growth

    NASA Astrophysics Data System (ADS)

    Dervaux, Julien; Ben Amar, Martine

    2011-03-01

    The multiple complexities inherent to living objects have motivated the search for abiotic substitutes, able to mimic some of their relevant physical properties. Hydrogels provide a highly monitorable counterpart and have thus found many applications in medicine and bioengineering. Recently, it has been recognized that their ability to swell could be used to unravel some of the universal physical processes at work during biological growth. However, it is yet unknown how the microscopic distinctions between swelling and biological growth affect macroscopic changes (shape, stresses) induced by volume variations. To answer this question, we focus on a clinically motivated example of growth. Some solid tumors such as melanoma or glioblastoma undergo a shape transition during their evolution. This bifurcation appears when growth is confined at the periphery of the tumor and is concomitant with the transition from the avascular to the vascular stage of the tumor evolution. To model this phenomenon, we consider in this paper the deformation of an elastic ring enclosing a core of different stiffness. When the volume of the outer ring increases, the system develops a periodic instability. We consider two possible descriptions of the volume variation process: either by imposing a homogeneous volumetric strain (biological growth) or through migration of solvent molecules inside a solid network (swelling). For thin rings, both theories are in qualitative agreement. When the interior is soft, we predict the emergence of a large wavelength buckling. Upon increasing the stiffness of the inner disc, the wavelength of the instability decreases until a condensation of the buckles occurs at the free boundary. This short wavelength pattern is independent of the stiffness of the disc and is only limited by the presence of surface tension. For thicker rings, two scenarios emerge. When a volumetric strain is prescribed, compressive stresses accumulate in the vicinity of the core and the

  15. Infinite statistics condensate as a model of dark matter

    SciTech Connect

    Ebadi, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein E-mail: b.mirza@cc.iut.ac.ir

    2013-11-01

    In some models, dark matter is considered as a condensate bosonic system. In this paper, we prove that condensation is also possible for particles that obey infinite statistics and derive the critical condensation temperature. We argue that a condensed state of a gas of very weakly interacting particles obeying infinite statistics could be considered as a consistent model of dark matter.

  16. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  17. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  18. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  19. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  20. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  1. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    SciTech Connect

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  2. Deepak Condenser Model (DeCoM)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2013-01-01

    Development of the DeCoM comes from the requirement of analyzing the performance of a condenser. A component of a loop heat pipe (LHP), the condenser, is interfaced with the radiator in order to reject heat. DeCoM simulates the condenser, with certain input parameters. Systems Improved Numerical Differencing Analyzer (SINDA), a thermal analysis software, calculates the adjoining component temperatures, based on the DeCoM parameters and interface temperatures to the radiator. Application of DeCoM is (at the time of this reporting) restricted to small-scale analysis, without the need for in-depth LHP component integrations. To efficiently develop a model to simulate the LHP condenser, DeCoM was developed to meet this purpose with least complexity. DeCoM is a single-condenser, single-pass simulator for analyzing its behavior. The analysis is done based on the interactions between condenser fluid, the wall, and the interface between the wall and the radiator. DeCoM is based on conservation of energy, two-phase equations, and flow equations. For two-phase, the Lockhart- Martinelli correlation has been used in order to calculate the convection value between fluid and wall. Software such as SINDA (for thermal analysis analysis) and Thermal Desktop (for modeling) are required. DeCoM also includes the ability to implement a condenser into a thermal model with the capability of understanding the code process and being edited to user-specific needs. DeCoM requires no license, and is an open-source code. Advantages to DeCoM include time dependency, reliability, and the ability for the user to view the code process and edit to their needs.

  3. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry.

  4. Observation of Vortex Phase Singularities in Bose-Einstein Condensates

    SciTech Connect

    Inouye, S.; Gupta, S.; Rosenband, T.; Chikkatur, A. P.; Goerlitz, A.; Gustavson, T. L.; Leanhardt, A. E.; Pritchard, D. E.; Ketterle, W.

    2001-08-20

    We have observed phase singularities due to vortex excitation in Bose-Einstein condensates. Vortices were created by moving a laser beam through a condensate. They were observed as dislocations in the interference fringes formed by the stirred condensate and a second unperturbed condensate. The velocity dependence for vortex excitation and the time scale for re-establishing a uniform phase across the condensate were determined.

  5. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS BETWEEN ASSAYS AND CONDENSATES

    EPA Science Inventory

    What is the study?
    This the first assessment of a set of cigarette smoke condensates from a range of cigarette types in a variety (4) of short-term genotoxicity assays.
    Why was it done?
    No such comparative study of cigarette smoke condensates has been reported. H...

  6. Infrared applications for steam turbine condenser systems

    NASA Astrophysics Data System (ADS)

    Lanius, Mark A.

    2000-03-01

    Infrared inspection of the main steam condensers at the Peach Bottom Atomic Power Station has been utilized successfully in detecting condenser air in-leakage problems. Air in-leakage lowers the condenser's vacuum, thus decreasing the condenser's efficiency. This creates backpressure on the turbine which lowers its efficiency, resulting in fewer megawatts generated. Air in-leakage also creates an increase in off-gas flow which is a radiological concern for both the plant and the public. Inspections are normally performed on the condenser's manway covers and rupture disks prior to an outage during coast down and post outage. The optimum conditions are 100% power and temperature, however, a high radiation field prevents the inspection until reactor power is down to 65% or less. Anomalies are typically indicated by cooling in the effected areas of the air in-leakage. The anomalies are not limited to air in-leakage. Intermittent water out-leakage, due to a heater dump valve cycling, has been detected when visual inspections field nothing.

  7. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  8. The NSF Condensed Matter Physics Program

    NASA Astrophysics Data System (ADS)

    Sokol, Paul

    The Condensed Matter Physics (CMP) program in the NSF Division of Materials Research (DMR) supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems. CMP is the largest Individual Investigator Award program in DMR and supports a broad portfolio of research spanning both hard and soft condensed matter. Representative research areas include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; topological insulators; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, liquid crystals, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields. In this talk I will review the current CMP portfolio and discuss future funding trends for the program. I will also describe recent activities in the program aimed at addressing the challenges facing current and future principal investigators.

  9. Simulation Prediction of Transient Dropwise Condensation

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2014-11-01

    In order to design effective surfaces for large-scale dropwise condensation, an understanding of how surface functionalization affects drop growth and coalescence is needed. The long term technological goal is a set of design conditions to help NASA achieve maximum heat transfer rates of waste heat generated from electronics and habitable environments under microgravity conditions. Prediction of condenser surface heat transfer performance requires accurate simulation and modeling of the evolution of populations of drops in time. At shorter times, drops are primarily isolated and grow mainly by condensation onto the liquid-gas interface. At longer times, drops grow mainly by coalescence with neighbors. Simulation of dropwise condensation on a neutrally wetting surface and comparison with our previous experimental results is reported. A steady-state single drop conduction model is empirically fitted to determine a temperature profile that captures the drop size evolution. The simulation accurately predicts the continuous time evolution of number-density of drops, drop-size distributions, total condensate volume, fractional coverage, and median drop-size for both transient and steady states, all with no free parameters. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.

  10. Rotating trapped Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fetter, A. L.

    2008-01-01

    Trapped Bose-Einstein condensates (BECs) differ considerably from the standard textbook example of a uniform Bose gas. In an isotropic harmonic potential V( r) = ½ Mω2 r 2, the single-particle ground state introduces a new intrinsic scale of length [the ground-state size d = √ ℏ/( Mω)] and energy [the ground-state energy E 0 = frac{3} {2} ℏω]. When the trap rotates at a low angular velocity, the behavior of a single vortex illustrates the crucial role of discrete quantized vorticity. For more rapid rotation, the condensate contains a vortex array. The resulting centrifugal forces expand the condensate radially and shrink it axially; thus, the condensate becomes effectively two dimensional. If the external rotation speed approaches the frequency of the radial harmonic confining potential, the condensate enters the "lowest-Landau-level" regime, and a simple description again becomes possible. Eventually, the system is predicted to make a quantum phase transition to a highly correlated state analogous to the fractional quantum Hall states of electrons in a strong magnetic field.

  11. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  12. Efficient cell migration requires global chromatin condensation

    PubMed Central

    Gerlitz, Gabi; Bustin, Michael

    2010-01-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes. PMID:20530575

  13. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    SciTech Connect

    Enright, R; Miljkovic, N; Alvarado, JL; Kim, K; Rose, JW

    2014-07-23

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-and nanoscale by exploiting advances in surface engineering developed over the last several decades.

  14. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    NASA Technical Reports Server (NTRS)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  15. Helical Structure Determines Different Susceptibilities of dsDNA, dsRNA, and tsDNA to Counterion-Induced Condensation

    PubMed Central

    Kornyshev, Alexei A.; Leikin, Sergey

    2013-01-01

    Recent studies of counterion-induced condensation of nucleic acid helices into aggregates produced several puzzling observations. For instance, trivalent cobalt hexamine ions condensed double-stranded (ds) DNA oligomers but not their more highly charged dsRNA counterparts. Divalent alkaline earth metal ions condensed triple-stranded (ts) DNA oligomers but not dsDNA. Here we show that these counterintuitive experimental results can be rationalized within the electrostatic zipper model of interactions between molecules with helical charge motifs. We report statistical mechanical calculations that reveal dramatic and nontrivial interplay between the effects of helical structure and thermal fluctuations on electrostatic interaction between oligomeric nucleic acids. Combining predictions for oligomeric and much longer helices, we also interpret recent experimental studies of the role of counterion charge, structure, and chemistry. We argue that an electrostatic zipper attraction might be a major or even dominant force in nucleic acid condensation. PMID:23663846

  16. The Effects of Borate Minerals on the Synthesis of Nucleic Acid Bases, Amino Acids and Biogenic Carboxylic Acids from Formamide

    NASA Astrophysics Data System (ADS)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  17. Condensation of gauge interacting massless fermions

    SciTech Connect

    Siringo, Fabio

    2004-09-15

    A single massless fermionic field with an Abelian U(1) gauge interaction (electrodynamics of a massless Dirac fermion) is studied by a variational method. Even without the insertion of any extra interaction the vacuum is shown to be unstable towards a particle-antiparticle condensate. The single particle excitations do acquire a mass and behave as massive Fermi particles. An explicit low-energy gap equation has been derived and numerically solved. Some consequences of condensation and mass generation are discussed in the framework of the standard model.

  18. The antireflective potential of dropwise condensation.

    PubMed

    Tow, Emily W

    2014-03-01

    The transmissivity of fogged glass to visible light incident on the dry side is studied with ray tracing to show that condensation can act as an optically thick antireflective coating. A new simulation method is described that uses symmetry relations and analytical expressions for the intersection of rays and surfaces to include all drop-drop and drop-surface interactions between an infinite number of drops. Angle of incidence, droplet contact angle, and surface coverage are varied. The simulation reveals that in the optimal contact angle range, dropwise condensation can decrease the reflectance of glass to below even that of glass coated with a water film. PMID:24690645

  19. Experimental Investigation of Flow Condensation in Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; Mackey, Jeffery R.

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  20. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  1. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  2. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface. PMID:19905120

  3. An Overview of Tachyon Condensation and SFT

    NASA Astrophysics Data System (ADS)

    Bonora, L.

    2010-07-01

    This is short review of tachyon condensation and open strig field theory. After a brief introduction to open string theory, the SFT action is introduced and illustrated. Next comes tachyon condensation in the level truncation approach, which introduces the main topic: the description of the analytic solution and the proof of the first two conjectures by Sen. The third conjecture is discussed in the framework of vacuum SFT. Finally the subject of open--closed string duality is tackled by commenting about an attempt at showing a more explicit connection between open and closed strings.

  4. Cloud condensation nuclei near marine stratus

    NASA Technical Reports Server (NTRS)

    Hudson, James G.; Frisbie, Paul R.

    1991-01-01

    Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and concentrations of total particles, or condensation nuclei (CN), below, in, and above the stratus cloud decks off the southern California coast point to important aerosol-cloud interactions. Consistently low CCN concentrations below cloud appear to be due to cloud scavenging processes which include Brownian coagulation, nucleation, coalescence, and drizzle. The higher CCN and CN concentrations above cloud are associated with ambient ozone concentrations which suggest a link with continental, probably anthropogenic, sources, even at distances of 500 km from the California coast.

  5. Condensing furnaces: Lessons from a utility

    SciTech Connect

    Beers, J.

    1994-11-01

    for the last several years about 90% of the new natural gas furnaces installed in Wisconsin have been condensing furnaces and a number of lessons have been learned. If you avoid the common mistakes, condensing furnaces typically can deliver heating savings of 20-35 % assuming the old furnace was in the 60% AFUE range. This article describes the common mistakes and how to avoid them: outside air needed 100%; benefits of sealed combustion; follow the installation manual scrupulously; how to avoid potential problems; tips on venting.

  6. Composition of gases vented from a condenser

    SciTech Connect

    Lyon, R.N.

    1980-08-01

    Designers of systems that involve condensers often need to predict the amount of process vapor that accompanies the noncondensable gases that are vented from the condensers. An approximation is given that appears to provide, in many cases, reasonably accurate values for the mole ratio of process vapor to noncondensable gases in the vented mixture. The approximation is particularly applicable to flash and direct-contact power systems for geothermal brines and ocean thermal energy conversion (OTEC). More regorous relationships are available for exceptional cases.

  7. The onset of molecular condensation: hydrogen.

    PubMed

    Morilla, J H; Fernández, J M; Tejeda, G; Montero, S

    2010-10-14

    The very first steps of condensation as studied experimentally in the simplest molecular system (para-H(2)) are reported. The fast time-space evolution of the nascent clusters have been measured using state-of-the-art Raman spectroscopy implemented on cryogenic supersonic jets. The time-dependent onset of condensation is presented in a non-equilibrium pressure-temperature phase diagram. Dimer and trimer formation are found to obey three-body processes whose rates have been determined. PMID:20683514

  8. Double-Stranded RNA Resists Condensation

    NASA Astrophysics Data System (ADS)

    Li, Li; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois

    2011-03-01

    Much attention has been focused on DNA condensation because of its fundamental biological importance. The recent discovery of new roles for RNA duplexes demands efficient packaging of double-stranded RNA for therapeutics. Here we report measurements of short DNA and RNA duplexes in the presence of trivalent ions. Under conditions where UV spectroscopy indicates condensation of DNA duplexes into (insoluble) precipitates, RNA duplexes remain soluble. Small angle x-ray scattering results suggest that the differing surface topologies of RNA and DNA may be crucial in generating the attractive forces that result in precipitation.

  9. Condenser optic with sacrificial reflective surface

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sung Hun

    2007-07-03

    Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  10. Condenser optic with sacrificial reflective surface

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun

    2006-07-25

    Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  11. Chromosome condensation and decondensation during mitosis.

    PubMed

    Antonin, Wolfram; Neumann, Heinz

    2016-06-01

    During eukaryotic cell division, nuclear chromatin undergoes marked changes with respect to shape and degree of compaction. Although already significantly compacted during interphase, upon entry into mitosis chromatin further condenses and individualizes to discrete chromosomes that are captured and moved independently by the mitotic spindle apparatus. Once segregated by the spindle, chromatin decondenses to re-establish its interphase structure competent for DNA replication and transcription. Although cytologically described a long time ago, the underlying molecular mechanisms of mitotic chromatin condensation and decondensation are still ill-defined. Here we summarize our current knowledge of mitotic chromatin restructuring and recent progress in the field. PMID:26895139

  12. QCD quark condensate in external magnetic fields

    NASA Astrophysics Data System (ADS)

    Bali, G. S.; Bruckmann, F.; Endrődi, G.; Fodor, Z.; Katz, S. D.; Schäfer, A.

    2012-10-01

    We present a comprehensive analysis of the light condensates in QCD with 1+1+1 sea quark flavors (with mass-degenerate light quarks of different electric charges) at zero and nonzero temperatures of up to 190 MeV and external magnetic fields B<1GeV2/e. We employ stout smeared staggered fermions with physical quark masses and extrapolate the results to the continuum limit. At low temperatures we confirm the magnetic catalysis scenario predicted by many model calculations while around the crossover the condensate develops a complex dependence on the external magnetic field, resulting in a decrease of the transition temperature.

  13. Signatures for Multi-{alpha}-Condensed States

    SciTech Connect

    Kokalova, Tz.; Wheldon, C.; Itagaki, N.; Oertzen, W. von

    2006-05-19

    An experimental way of testing Bose-Einstein condensation of {alpha} clusters in the atomic nucleus is reported. The enhancement of cluster emission and the multiplicity partition of possible emitted clusters could be direct signatures for the condensed states. The barrier for the emission of clusters, such as {sup 8}Be and {sup 12}C{sup *}(0{sub 2}{sup +}), is calculated and compared with the barrier for the sequential emission of 2 or 3{alpha} particles from the compound nucleus. For the calculations, a simple approach using a folded Woods-Saxon potential is used.

  14. Bose-Einstein condensation. Twenty years after

    SciTech Connect

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D.

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  15. Bose-Einstein Condensation of Strontium

    SciTech Connect

    Stellmer, Simon; Huang Bo; Grimm, Rudolf; Tey, Meng Khoon; Schreck, Florian

    2009-11-13

    We report on the attainment of Bose-Einstein condensation with ultracold strontium atoms. We use the {sup 84}Sr isotope, which has a low natural abundance but offers excellent scattering properties for evaporative cooling. Accumulation in a metastable state using a magnetic-trap, narrowline cooling, and straightforward evaporative cooling in an optical trap lead to pure condensates containing 1.5x10{sup 5} atoms. This puts {sup 84}Sr in a prime position for future experiments on quantum-degenerate gases involving atomic two-electron systems.

  16. Improved plant performance through evaporative steam condensing

    SciTech Connect

    Hutton, D.

    1998-07-01

    Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

  17. Analytical Treatment of Normal Condensation Shock

    NASA Technical Reports Server (NTRS)

    Heybey

    1947-01-01

    The condensation of water vapor in an air consequences: acquisition of heat (liberated heat vaporization; loss of mass on the part of the flowing gas (water vapor is converted to liquid); change in the specific gas constants and of the ratio k of the specific heats (caused by change of gas composition). A discontinuous change of state is therefore connected with the condensation; schlieren photographs of supersonic flows in two-dimensional Laval nozzles show two intersecting oblique shock fronts that in the case of high humidities may merge near the point of intersection into one normal shock front.

  18. Novel insights into mitotic chromosome condensation

    PubMed Central

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division. PMID:27508072

  19. Rayleigh-Taylor instability in binary condensates

    SciTech Connect

    Gautam, S.; Angom, D.

    2010-05-15

    We propose a well-controlled experimental scheme to initiate and examine the Rayleigh-Taylor instability in two-species Bose-Einstein condensates. We identify the {sup 85}Rb-{sup 87}Rb mixture as an excellent candidate to observe experimentally. The instability is initiated by tuning the {sup 85}Rb-{sup 85}Rb interaction through a magnetic Feshbach resonance. We show that the observable signature of the instability is the damping of the radial oscillations. We also propose a semianalytic scheme to determine the stationary state of binary condensates with the Thomas-Fermi approximation for axisymmetric traps.

  20. Experiments on condensation over in-line and staggered condenser tubes in the presence of non-condensable gases

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of the forced film condensation heat transfer of pure steam and steam-air mixture flowing downward a tier of horizontal cylinders is investigated experimentally. An experimental setup was manufactured and mounted at Middle East Technical University workshop. A set of experiments were conducted to observe the condensation heat transfer phenomenon and to verify the theoretical results. The results of the experimental investigation are presented to show the effect of different parameters on the film condensation heat transfer phenomenon over bundle of tubes. These parameters include; free stream velocity, free stream non-condensable gas (air) mass fractions, free stream temperature to wall temperature difference, the angle of inclination. heat transfer coefficients are evaluated at different working conditions for both inline and staggered arrangements. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed when very small amounts of air mass fractions present in the vapor. In addition, it decreases by increasing the temperature difference. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Although some discrepancies are noticed, the present study results are inline and in a reasonable agreement with the theory and experiment in the literature.

  1. Low-cost silica, calcite and metal sulfide scale control through on-site production of sulfurous acid from H{sub 2}S or elemental sulfur

    SciTech Connect

    Gallup, D.L.; Kitz, K.

    1997-12-31

    UNOCAL Corporation currently utilizes brine pH modification technology to control scale deposition. Acids utilized in commercial operations include, sulfuric and hydrochloric. A new process reduces costs by producing acid on-site by burning hydrogen sulfide or elemental sulfur. Hydrogen sulfide in non-condensible gas emissions is reduced by oxidization to sulfurous acid. Brine or condensate is treated with sulfurous acid to control scale deposition, mitigate corrosion and improve gas partitioning in condensers.

  2. Bose-Einstein Condensation and Condensation of q-Particles in Equilibrium and Nonequilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Fidaleo, Francesco

    2016-04-01

    In the setting of the principle of local equilibrium which asserts that the temperature is a function of energy levels of the system, we exhibit plenty of steady states describing condensation of free bosons which are not in thermal equilibrium. The surprising facts are that the condensation can occur both in dimension less than 3 in configuration space, and even in excited energy levels. The investigation relative to nonequilibrium suggests a new approach to the condensation which allows a unified analysis involving also condensation of q-particles, -1 ≤ q ≤ 1, where q = ±1 corresponds to the Bose/Fermi alternative. For such q-particles, it is shown that condensation can occur only if 0 condensation. In this more general approach, completely new and unexpected states exhibiting condensation phenomena naturally occur even in the usual situation of equilibrium thermodynamics involving bosons. The new approach proposed in the present paper for the situation of second quantisation of free particles, is based on the theory of distributions, which might hopefully be extended to more general cases.

  3. Heat Transfer from Condensate Droplets Falling through an Immiscible Layer of Tributyl Phosphate

    SciTech Connect

    Laurinat, James E.

    2005-08-22

    As part of a safety analysis of reactions in two-layer mixtures of nitric acid and tributyl phosphate (TBP), an experiment was conducted to study how steam condensate mixes with the TBP layer when steam passes over a TBP-nitric acid mixture. The experiments showed that the condensate does not form a separate layer on top of the TBP but instead percolates as droplets through the TBP layer. The temperature at the top surface of the TBP layer undergoes a step change increase when the initial condensate droplets reach the surface. Temperatures at the surface and within the TBP and aqueous layers subsequently approach a steady state distribution governed by laminar convection and radiation heat transfer from the vapor space above the two-layer mixture. The rate of temperature increase and the steady state temperature gradient are determined by a characteristic propagation velocity and a streamwise dispersion coefficient for heat transfer. The propagation velocity is the geometric mean of the thermal convection velocities for the organic and aqueous phases, and the dispersion coefficient equals 0.494 times the product of the superficial condensate droplet velocity and the diameter of the test vessel. The value of the dispersion coefficient agrees with the Joshi (1980) correlation for liquid phase backmixing in bubble columns. Transient perturbations occur in the TBP layer temperatures. A Fourier analysis shows that the dominant frequency of these perturbations equals the natural frequency given by the transient heat transfer solution.

  4. Condensable chemical vapors for sterilization of freeze dryers.

    PubMed

    Bardat, A; Schmitthaeusler, R; Renzi, E

    1996-01-01

    Sterilization of freeze dryers is usually performed by subjecting them to saturated steam under pressure by steam (121 degrees C, 2 bar a., 30 minutes). In order to avoid such stressful conditions, another process was designed on the basis of a strong oxidizing mixture of condensable chemical vapors, consisting of ozone and hydrogen peroxide in acidic conditions. This process works at sub-zero temperatures up to 30 degrees C and under negative pressure. 10(6), inoculum of standard biological indicators as well as wild types of bioburden were easely sterilized from 2 minutes up to 10 minutes. Other parameters were studied, in order to optimize the main process conditions: temperature, pressure, concentration of chemicals, type of micro-organisms and their environmental surroundings. PMID:8935775

  5. Integrated flue gas treatment condensing heat exchanger for pollution control

    SciTech Connect

    Johnson, D.W.; Warchol, J.J.; Schulze, K.H.; Carrigan, J.F.

    1994-12-31

    Condensing heat exchangers recover both sensible and latent heat from flue gases. Using Teflon{reg_sign} to cover the heat exchanger tubes and inside surfaces that are exposed to the flue gas ensures adequate material lifetime in the corrosive environment encountered when the flue gas temperature drops below the acid dew point. A recent design improvement, called the integrated flue gas treatment (IFGT) concept, offers the ability to remove pollutants from the flue gas, as well as recover waste heat. It has been shown to remove SO{sub 2}, SO{sub 3}, particulates, and trace emissions. Babcock and Wilcox (B and W) is undertaking an extensive program to optimize this technology for a variety of flue gas applications. This paper summarizes the current status of IFGT technology and the development activities that are in progress.

  6. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  7. Condensate-removal device for heat exchangers

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W.

    1973-01-01

    Device comprises array of perforated tubes manifolded together and connected to a vacuum suction device. Vacuum applied to these tubes pulls mixture of condensate and effluent gas through perforations and along length of tubes to discharge device. Discharge device may be a separator which separates water vapor from effluent air and allows recirculation of both of them.

  8. TREATMENT OF AMMONIA PLANT PROCESS CONDENSATE EFFLUENT

    EPA Science Inventory

    The report gives results of an examination of contaminant content and selected treatment techniques for process condensate from seven different ammonia plants. Field tests were performed and data collected on an in-plant steam stripping column with vapor injection into the reform...

  9. THE COLOR GLASS CONDENSATE, RHIC AND HERA.

    SciTech Connect

    MCLERRAN,L.

    2002-04-30

    In this talk, I discuss a universal form of matter, the Color Glass Condensate. It is this matter which composes the low x part of all hadronic wavefunctions. The experimental programs at RHIC and HERA, and future programs at LHC and eRHIC may allow us to probe and study the properties of this matter.

  10. CLOUD CONDENSATION NUCLEI MEASUREMENTS WITHIN CLOUDS

    EPA Science Inventory

    Measurements of the spectra of cloud condensation nuclei (CCN) within and near the boundaries of clouds are presented. Some of the in-cloud measurements excluded the nuclei within cloud droplets (interstitial CCN) while others included all nuclei inside the cloud (total CCN). The...

  11. MOBILE BED FLUX FORCE/CONDENSATION SCRUBBERS

    EPA Science Inventory

    The report gives results of an experimental determination of fine particle collection in mobile bed scrubbers. Particle collection efficiency increased greatly as the gas-phase pressure drop increased. With no water vapor condensation, the performance capability of a mobile bed s...

  12. Electroweak Symmetry Breaking from Monopole Condensation

    SciTech Connect

    Csaki, Csaba; Shirman, Yuri; Terning, John

    2011-01-28

    We argue that the electroweak symmetry of the standard model (SM) could be broken via condensation of magnetic monopole bilinears. We present an extension of the SM where this could indeed happen, and where the heavy top mass is also a consequence of the magnetic interactions.

  13. A Moment-Based Condensed History Algorithm

    SciTech Connect

    Tolar, D.R.; Larsen, E.W.

    2000-06-15

    ''Condensed History'' algorithms are Monte Carlo models for electron transport problems, They describe the aggregate effect of multiple collisions that occur when an electron travels a path length s{sub 0}. This path length is the distance each Monte Carlo electron travels between Condensed History steps. Conventional Condensed History schemes employ a splitting routine over the range 0 {le} s {le} s{sub 0}. For example, the Random Hinge method splits each path length step into two substeps; one with length {xi}s{sub 0} and one with length (1-{xi})s{sub 0}, where {xi} is a random number from 0 < {xi} < 1. Here we develop a new Condensed History algorithm to improve the accuracy of electron transport simulations by preserving the mean position and the variance in the mean of electrons that have traveled a path length s and are traveling with the direction cosine {mu}. These means and variances are obtained from the zeroth-, first-, and second-order spatial moments of the Boltzmann transport equation. Hence, our method is a Monte Carlo application of the ''Method of Moments''.

  14. Imaging of DNA/Nanosphere Condensates

    NASA Astrophysics Data System (ADS)

    Krishnan, R.

    2005-03-01

    DNA forms condensates in a variety of environments. In chromatin, DNA is condensed around 10-nm-diameter, positively-charged histone complexes. To model chromatin formation in cells, lambda-phage (16 microns long) and herring sperm (0.03 to1 micron) DNAs were mixed with polystyrene nanospheres of diameter 40nm and 930nm containing 1.8x10^4 and 2.6x10^8 positive surface charges, respectively, to form condensates. Sphere concentrations were 1-2 times the isoelectric concentration. Condensation vs time was imaged at various concentrations, pH's, viscosities, and ionic strengths. Bright-field and fluorescence (YOYO-1 dye bound to DNA) images were recorded. In general HS DNA aggregate size increased with time. Except in 0.5-0.8 M KCl, herring sperm DNA formed one huge aggregate (100's of microns) and depleted other areas, both in 10% and 20% glycerol. Phage DNA samples rapidly formed longer, fiber-like aggregates. Within 2 hours it formed ordered structures and in most samples, empty, apparently depleted regions were found in the viewing area. Shapes of the phage-DNA aggregates in 20% glycerol, in contrast, formed small clumps like HS DNA.

  15. Three lectures on the Color Glass Condensate

    SciTech Connect

    Venugopalan, Raju

    2004-12-02

    We summarize the theory and phenomenology of the Color Glass Condensate reviewed previously by E. Iancu and the author in hep-ph/0303204. We discuss some of the subsequent developments in the past year both in theory and in phenomenological applications.

  16. Free convective condensation in a vertical enclosure

    SciTech Connect

    Fox, R.J.; Peterson, P.F.; Corradini, M.L.; Pernsteiner, A.P.

    1995-09-01

    Free convective condensation in a vertical enclosure was studied numerically and the results were compared with experiments. In both the numerical and experimental investigations, mist formation was observed to occur near the cooling wall, with significant droplet concentrations in the bulk. Large recirculation cells near the end of the condensing section were generated as the heavy noncondensing gas collecting near the cooling wall was accelerated downward. Near the top of the enclosure the recirculation cells became weaker and smaller than those below, ultimately disappearing near the top of the condenser. In the experiment the mist density was seen to be highest near the wall and at the bottom of the condensing section, whereas the numerical model predicted a much more uniform distribution. The model used to describe the formation of mist was based on a Modified Critical Saturation Model (MCSM), which allows mist to be generated once the vapor pressure exceeds a critical value. Equilibrium, nonequilibrium, and MCSM calculations were preformed, showing the experimental results to lie somewhere in between the equilibrium and nonequilibrium predictions of the numerical model. A single adjustable constant (indicating the degree to which equilibrium is achieved) is used in the model in order to match the experimental results.

  17. Activity, purification, and analysis of condensed tannins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a class of plant polyphenolic compounds contained in some forages (i.e., sanfoin, big trefoil, birdfoot trefoil), condensed tannins (CTs), also referred to as proanthocyanidins (PAs), exhibit a variety of biological effects on ruminants and on the dairy farm nitrogen cycle. Interest in CTs stems ...

  18. Convection in Condensible-rich Atmospheres

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R. T.

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  19. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1991-12-31

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  20. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B. ); Hughes, E.D. )

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  1. Condensation of topological defects and confinement

    NASA Astrophysics Data System (ADS)

    Gaete, Patricio; Wotzasek, Clovis

    2004-11-01

    We study the static quantum potential for a theory of antisymmetric tensor fields that results from the condensation of topological defects, within the framework of the gauge-invariant but path-dependent variables formalism. Our calculations show that the interaction energy is the sum of a Yukawa and a linear potentials, leading to the confinement of static probe charges.

  2. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  3. Chemical composition of acid fog

    SciTech Connect

    Waldman, J.M.; Munger, J.W.; Jacob, D.J.; Flagan, R.C.; Morgan, J.J.; Hoffmann, M.R.

    1982-11-12

    Fog water collected at three sites in Los Angeles and Bakersfield, California, was found to have higher acidity and higher concentrations of sulfate, nitrate, and ammonium than previously observed in atmospheric water droplets. The pH of the fog water was in the range of 2.2 to 4.0. the dominant processes controlling the fog water chemistry appear to be the condensation and evaporation of water vapor on preexisting aerosol and the scavenging of gas-phase nitric acid.

  4. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  5. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  6. Plate-fin condenser for condensation of low pressure steam in the presence of noncondensable gases

    SciTech Connect

    Panchal, C.B.; Vega, L.; Bell, K.J.

    1997-08-01

    Condensation of steam in the presence of noncondensable gases was carried out in a plate-fin condenser. A three-water pass test unit was designed for the ocean-thermal energy conversion system in Hawaii. A point-wise calculation method was used for the cross-flow arrangement and the local heat- and mass-flux calculation was carried out on the basis of the Colburn-Hougen analysis. The test unit consisted of extruded water passages and finned surface on the steam side. The core unit was bonded with a thermally conductive epoxy (Loctite{reg_sign}) with welded joints along seam lines. The present investigation provides a design basis for the development of plate-fin condensers for condensation of multicomponent vapor mixtures in the process industry.

  7. A Computational Method for Compressible Flows with Condensation in Power Plant Condensers

    NASA Astrophysics Data System (ADS)

    Takahashi, Fumio; Harada, Iwao

    A computational method for compressible flows with condensation was developed. Condensation was formulated by two thermodynamic equations of state for pressure and energy. These equations of state were simultaneously solved with the Euler equation and heat transfer equations. A finite volume method based on an approximate Riemann solver was adopted to solve the Euler equation. The computational method was applied to compressible flows in a condenser and a turbine exhaust hood. The flow regime changed widely from subsonic flow to transonic flow during a small decrease of cooling water temperature. Subcooling temperature from the annulus of the turbine blades to the condensate in the hot well was investigated. Results showed the subcooling temperature could be reduced by using an advanced steam guide which was designed to improve diffuser performance under widely changing conditions.

  8. Polyphenols, condensed tannins, and other natural products in Onobrychis viciifolia (Sainfoin).

    PubMed

    Marais, J P; Mueller-Harvey, I; Brandt, E V; Ferreira, D

    2000-08-01

    An acetone/water extract of the fodder legume Onobrychis viciifolia afforded arbutin, kaempferol, quercetin, rutin, afzelin, the branched quercetin-3-(2(G)-rhamnosylrutinoside), the amino acid L-tryptophan, the inositol (+)-pinitol, and relatively high concentrations of sucrose (ca. 35% of extractable material). Acid-catalyzed cleavage of the condensed tannins with phloroglucinol afforded catechin, epicatechin and gallocatechin as the terminal and extender units, but epigallocatechin was only present in extender units. The condensed tannins in O. viciifolia presumably consist of hetero- and homopolymers containing both procyanidin and prodelphinidin units. Comparison of data from the present study and the literature suggests that sainfoin tannins have a highly variable composition with cis:trans ratios ranging from 47:53 to 90:10 and delphinidin:cyanidin ratios from 36:64 to 93:7. The composition of terminal and extender units in sainfoin tannins seems to be cultivar specific. PMID:10956131

  9. Condensation of water vapor in the gravitational field

    SciTech Connect

    Gorshkov, V. G.; Makarieva, A. M.; Nefiodov, A. V.

    2012-10-15

    Physical peculiarities of water vapor condensation under conditions of hydrostatic equilibrium are considered. The power of stationary dynamic air fluxes and the vertical temperature distribution caused by condensation on large horizontal scales are estimated.

  10. 39. GENERAL VIEW OF VIVIANNA WORKS CONDENSING CHANNEL CONNECTING TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. GENERAL VIEW OF VIVIANNA WORKS CONDENSING CHANNEL CONNECTING TO MARISCAL WORKS STACK BEING REUSED AS FINAL CONDENSER LOOKING EAST, NORTHEAST. STONE STRUCTURE IN FOREGROUND UNKNOWN. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  11. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  12. Greatly Accelerated Condensation of d-Mannose Diacetonide with Aqueous Formaldehyde (Formalin).

    PubMed

    Tan, Dong-Xing; You, Jun; Xu, Mu-Rong; Wu, Yikang

    2016-08-01

    Condensation of d-mannose diacetate with aqueous formaldehyde, a long known quaternary center-generating transformation, was reinvestigated to solve the hidden problem of incomplete conversion, a lasting challenge since 1979 despite many previous efforts. The mysterious cause for the retarded transformation was found to be generation of formic acid by a Cannizzaro reaction. By using additional amounts of base, the reaction time was shortened from 48 h to 100 min and the product was readily isolated in 81% yield. PMID:27355986

  13. Investigation of flow structures during HFE-7100 refrigerant condensation

    NASA Astrophysics Data System (ADS)

    Bohdal, Tadeusz; Sikora, Małgorzata; Widomska, Katarzyna; Radchenko, Andrii M.

    2015-12-01

    The experimental research of environmentally friendly refrigerant HFE-7100 condensation in pipe minichannels was conducted. During the investigations of HFE-7100 condensation in a minichannel with internal diameter 2 mm together with visualization of flow patterns was made. Visualization results were compared with existing flow structure maps. The identification of the range of flow patterns occurrence during the condensation process of low-pressure refrigerant HFE-7100 was made. The tests were performed throughout the whole range of condensation process.

  14. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Yamamoto, Arata

    2015-05-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  15. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  16. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  17. Experimental evidence of condensation-driven airflow

    NASA Astrophysics Data System (ADS)

    Bunyard, P.; Hodnett, M.; Poveda, G.; Burgos Salcedo, J. D.; Peña, C.

    2015-10-01

    The dominant "convection" model of atmospheric circulation is based on the premise that hot air expands and rises, to be replaced by colder air, thereby creating horizontal surface winds. A recent theory put forward by Makarieva and Gorshkov (2007, 2013) maintains that the primary motive force of atmospheric circulation derives from the intense condensation and sharp pressure reduction that is associated with regions where a high rate of evapotranspiration from natural closed-canopy forests provides the "fuel" for cloud formation. The net result of the "biotic pump" theory is that moist air flows from ocean to land, drawn in by the pressure changes associated with a high rate of condensation. To test the physics underpinning the biotic pump theory, namely that condensation of water vapour, at a sufficiently high rate, results in an uni-directional airflow, a 5 m tall experimental apparatus was designed and built, in which a 20 m3 body of atmospheric air is enclosed inside an annular 14 m long space (a "square donut") around which it can circulate freely, allowing for rotary air flows. One vertical side of the apparatus contains some 17 m of copper refrigeration coils, which cause condensation. The apparatus contains a series of sensors measuring temperature, humidity and barometric pressure every five seconds, and air flow every second. The laws of Newtonian physics are used in calculating the rate of condensation inside the apparatus. The results of more than one hundred experiments show a highly significant correlation, with r2 > 0.9, of airflow and the rate of condensation. The rotary air flows created appear to be consistent both in direction and velocity with the biotic pump hypothesis, the critical factor being the rate change in the partial pressure of water vapour in the enclosed body of atmospheric air. Air density changes, in terms of kinetic energy, are found to be orders of magnitude smaller than the kinetic energy of partial pressure change. The

  18. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  19. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  20. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under...

  1. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  2. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  3. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  4. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  5. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  6. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  7. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  8. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  9. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  10. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  11. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  12. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Condensed storage tanks. 58.238 Section 58.238 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which...

  13. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Condensed storage tanks. 58.238 Section 58.238 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which...

  14. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Condensed storage tanks. 58.238 Section 58.238 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which...

  15. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Condensed storage tanks. 58.238 Section 58.238 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which...

  16. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  17. 7 CFR 58.238 - Condensed storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Condensed storage tanks. 58.238 Section 58.238 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.238 Condensed storage tanks. (a) Excess production of condensed product over that which...

  18. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  19. 7 CFR 58.237 - Condensed surge supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Condensed surge supply. 58.237 Section 58.237... Procedures § 58.237 Condensed surge supply. Surge tanks or balance tanks if used between the evaporators and dryer shall be used to hold only the minimum amount of condensed product necessary for a uniform flow...

  20. 21 CFR 886.1380 - Diagnostic condensing lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic condensing lens. 886.1380 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1380 Diagnostic condensing lens. (a) Identification. A diagnostic condensing lens is a device used in binocular indirect ophthalmoscopy (a...

  1. 21 CFR 886.1380 - Diagnostic condensing lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic condensing lens. 886.1380 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1380 Diagnostic condensing lens. (a) Identification. A diagnostic condensing lens is a device used in binocular indirect ophthalmoscopy (a...

  2. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  3. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  4. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  5. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  6. 40 CFR 65.151 - Condensers used as control devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parts per million by volume outlet concentration requirements as specified in § 65.63(a)(2), or 40 CFR... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Condensers used as control devices. 65... System or a Process § 65.151 Condensers used as control devices. (a) Condenser equipment and...

  7. Spatial Dependence of Condensates in Strongly Coupled Gauge Theories

    SciTech Connect

    Brodsky, Stanley J.; Shrock, Robert; /SUNY, Stony Brook

    2008-03-25

    We analyze quark and gluon condensates in quantum chromodynamics. We suggest that these are localized inside hadrons, because the particles whose interactions are responsible for them are confined within these hadrons. This can explain the results of recent studies of gluon condensate contributions to vacuum correlators. We also give a general discussion of condensates in asymptotically free vectorial and chiral gauge theories.

  8. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  9. Characterization and Dessolution Test results for the January 2005 DWPF Off Gas Condensate Tank Samples (U)

    SciTech Connect

    Fellinger, T

    2005-04-08

    The Off Gas Condensate Tank (OGCT) at the Defense Waste Processing Facility (DWPF) collects the condensate from the off-gas system of the melter. The condensate stream contains entrained solids that collect in the OGCT. Water from the OGCT is re-circulated to the Steam Atomized Scrubber and quencher and may provide a mechanism for re-introducing the particulates into the off-gas system. These particulates are thought to be responsible for plugging the downstream High Efficiency Mist Eliminator filters. Therefore, the OGCT needs to be periodically cleaned to remove the build-up of entrained solids. Currently, the OGCT is cleaned by adding nominally 12 wt% nitric acid with agitation to slurry the solids from the tank. Samples from the OGCT were sent to the Savannah River National Lab (SRNL) for characterization and to conduct tests to determine the optimum nitric acid concentration and residence time to allow more effective cleaning of the OGCT. This report summarizes the chemical and radionuclide results and the results from the nitric acid dissolution testing at 50% and 12% obtained for the OGCT sample.

  10. Determination of aminopolycarboxylic acids at ultra-trace levels by means of online coupling ion exchange chromatography and inductively coupled plasma-mass spectrometry with indirect detection via their Pd²⁺-complexes.

    PubMed

    Nette, David; Seubert, Andreas

    2015-07-16

    A new indirect IC-ICP-MS method for the determination of aminopolycarboxylic acids in water samples is described. It is based on the addition of an excess of Pd(II) to water samples. The analytes are forced into very strong and negatively charged palladium complexes, separated by ion exchange chromatography and detected by their palladium content, utilizing an on-line coupled ICP-MS. This method is suitable to determine the concentration of 8 aminopolycarboxylic acids (nitrilotriacetic acid (NTA), (2-carboxyethyl) iminodiacetic acid (β-ADA), methylglycinediacetic acid (MGDA), 2-hydroxyethyl) ethylenediamine triacetic acid (HEDTA), diethylene triamine pentaacetic acid (DTPA), ethylendiamine tetraacetic acid (EDTA), 1,3-diaminopropane tetraacetic acid (1,3-PDTA) and 1,2-diaminopropane tetraacetic acid (1,2-PDTA) at the ng kg(-1) level. The method is faster and easier than the established gas chromatography (GC)-method ISO 16588:2002 and up to two orders of magnitude more sensitive than the ion pair chromatography based method of DIN 38413-8. Analytic performance is superior to ISO 16588:2002 and the comparability is good. PMID:26073818

  11. Abiotic Condensation Synthesis of Glyceride Lipids and Wax Esters Under Simulated Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ∘C to 300 ∘C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ∘C and 250 ∘C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ∘C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ∘C and 250 ∘C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  12. Bose Condensation at He-4 Interfaces

    NASA Technical Reports Server (NTRS)

    Draeger, E. W.; Ceperley, D. M.

    2003-01-01

    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.

  13. Cloud condensation nuclei near marine cumulus

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1993-01-01

    Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and condensation nuclei below, in, between, and above the cumulus clouds near Hawaii point to important aerosol-cloud interactions. Consistent particle concentrations of 200/cu cm were found above the marine boundary layer and within the noncloudy marine boundary layer. Lower and more variable CCN concentrations within the cloudy boundary layer, especially very close to the clouds, appear to be a result of cloud scavenging processes. Gravitational coagulation of cloud droplets may be the principal cause of this difference in the vertical distribution of CCN. The results suggest a reservoir of CCN in the free troposphere which can act as a source for the marine boundary layer.

  14. Transonic flow past an airfoil with condensation

    NASA Technical Reports Server (NTRS)

    Schmidt, B.

    1978-01-01

    In connection with investigations conducted to determine the influence of water vapor on experiments in wind tunnels, the question arose as to what changes due to vapor condensation might be expected in airfoil measurements. Density measurements on circular-arc airfoils aided by an interferometer in choked tunnels with parallel walls show that increasing humidity produces increasing changes in the flow field. The flow becomes nonstationary at high humidity. At the airfoil, however, the influence of the condensation is only felt, inasmuch as the shock bounding the local supersonic region moves upstream with increasing humidity while its intensity decreases. The density distribution upstream of the shock remains unchanged. Even if the flow becomes nonstationary in the vicinity of the airfoil, no changes occur at the airfoil.

  15. Coupling a Bose condensate to micromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kemp, Chandler; Fox, Eli; Flanz, Scott; Vengalattore, Mukund

    2011-05-01

    We describe the construction of a compact apparatus to investigate the interaction of a spinor Bose-Einstein condensate and a micromechanical oscillator. The apparatus uses a double magneto-optical trap, Raman sideband cooling, and evaporative cooling to rapidly produce a 87Rb BEC in close proximity to a high Q membrane. The micromotion of the membrane results in small Zeeman shifts at the location of the BEC due to a magnetic domain attached to the oscillator. Detection of this micromotion by the condensate results in a backaction on the membrane. We investigate prospects of using this backaction to generate nonclassical states of the mechanical oscillator. This work was funded by the DARPA ORCHID program.

  16. Condensation induced water hammer driven sterilization

    DOEpatents

    Kullberg, Craig M.

    2004-05-11

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  17. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  18. Hydrogen behavior in ice condenser containments

    SciTech Connect

    Lundstroem, P.; Hongisto, O.; Theofanous, T.G.

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  19. Geysers advanced direct contact condenser results

    SciTech Connect

    Henderson, J.; Bahning, T.

    1997-12-31

    The world`s first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational at The Geysers Power Plant Unit 11. This major research effort was supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). The project was the first geothermal adaptation of an advanced condenser design originally demonstrated at the Ocean Thermal Energy Conversion (OTEC) plant in Kona, Hawaii. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  20. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  1. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter. PMID:20558713

  2. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  3. Models for water steam condensing flows

    NASA Astrophysics Data System (ADS)

    Wróblewski, Włodzimierz; Dykas, Sławomir; Chmielniak, Tadeusz

    2012-08-01

    The paper presents a description of selected models dedicated to steam condensing flow modelling. The models are implemented into an in-house computational fluid dynamics code that has been successfully applied to wet steam flow calculation for many years now. All models use the same condensation model that has been validated against the majority of available experimental data. The state equations for vapour and liquid water, the physical model as well as the numerical techniques of solution to flow governing equations have been presented. For the single-fluid model, the Reynolds-averaged Navier-Stokes equations for vapour/liquid mixture are solved, whereas the two-fluid model solves separate flow governing equations for the compressible, viscous and turbulent vapour phase and for the compressible and inviscid liquid phase. All described models have been compared with relation to the flow through the Laval nozzle.

  4. Spin-liquid condensate of spinful bosons.

    PubMed

    Lian, Biao; Zhang, Shoucheng

    2014-08-22

    We introduce the concept of a bosonic spin liquid condensate (SLC), where spinful bosons in a lattice form a zero-temperature spin disordered charge condensate that preserves the spin rotation symmetry, but breaks the U(1) symmetry due to a spinless order parameter with charge one. It has an energy gap to all the spin excitations. We show that such SLC states can be realized in a system of spin S ≥ 2 bosons. In particular, we analyze the SLC phase diagram in the spin 2 case using a mean-field variational wave function method. We show there is a direct analogy between the SLC and the resonating-valence-bond state. PMID:25192078

  5. Condensation in hypersonic nitrogen wind tunnels

    NASA Technical Reports Server (NTRS)

    Lederer, Melissa A.; Yanta, William J.; Ragsdale, William C.; Hudson, Susan T.; Griffith, Wayland C.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are given for hypersonic flows of pure nitrogen at M = 10, 14 and 18. Measurements include Pitot pressures, static pressures and laser light scattering experiments. These measurements coupled with a theoretical model indicate a substantial non-equilibrium supercooling of the vapor phase beyond the saturation line. Typical results are presented with implications for the design of hypersonic wind tunnel nozzles.

  6. Condensed matter physicists shrink their horizons.

    PubMed

    Flam, F

    1993-04-01

    In the world of the condensed matter physicist, a micron is a chasm and a millimeter an ocean. At the March American Physical Society meeting in Seattle, some of the 4500 physicists probed the hazards of the micro world, where weird quantum effects can scramble information. Others outlined its opportunities: Molecular engineering that is leading to new information storage materials, and minute structures that could form tethers and containers in some future nanotechnology. PMID:17807173

  7. Spin selective filtering of polariton condensate flow

    SciTech Connect

    Gao, T.; Antón, C.; Martín, M. D.; Liew, T. C. H.; Hatzopoulos, Z.; Viña, L.; Eldridge, P. S.; Savvidis, P. G.

    2015-07-06

    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.

  8. Parton Saturation and the Color Glass Condensate

    NASA Astrophysics Data System (ADS)

    Kovchegov, Yuri V.

    2007-03-01

    We review recent developments in the field of parton saturation and the Color Glass Condensate. We discuss the classical gluon fields of McLerran-Venugopalan model. We explain how small- x non-linear quantum evolution corrections can be included into the total cross section for deep inelastic scattering. We proceed by reviewing saturation physics predictions for the particle production in p( d) A collisions and conclude by demonstrating how such predictions were confirmed by the RHIC experiments.

  9. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  10. Schrodinger Leopards in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Dounas-Frazer, Dimitri R.

    2008-03-01

    We present the complex quantum dynamics of vortices in Bose-Einstein condensates in a double well via exact diagonalization of a discretized Hamiltonian. When the barrier is high, vortices evolve into macroscopic superposition (NOON) states of a vortex in either well -- a Schrodinger cat with spots. Such Schrodinger leopard states are more robust than previously proposed NOON states, which only use two single particle modes of the double well potential.

  11. Interference and isospin of disoriented chiral condensates

    SciTech Connect

    Suzuki, M.

    1995-09-01

    If coherent states describe the disoriented chiral condensates (DCC`s), many states of different chiral orientations should equally contribute to a given hadronic process. However, in the classical field description, we ignore the interference between the different DCC amplitudes. It results in a disregard of isospin invariance. We examine quantitatively how good this approximation is for the DCC`s of a typical size.

  12. Quantum phenomenology for the disoriented chiral condensate

    SciTech Connect

    Amado, R.D. ); Kogan, I.I. )

    1995-01-01

    We consider the quantum state describing the disoriented chiral condensate (DCC), which may be produced in high energy collisions. We show how a mean field treatment of the quantum equations corresponding to the classical linear [sigma] model leads to a squeezed state description of the pions emerging from the DCC. We examine various squeezed and coherent state descriptions of those pions with particular attention to charge and number fluctuations. We also study the phenomenology of multiple DCC domains.

  13. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  14. Diffusion in Condensed Matter: Methods, Materials, Models

    NASA Astrophysics Data System (ADS)

    Heitjans, Paul; Kärger, Jög

    This comprehensive, handbook-style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. It is understood and presented as a phenomenon of crucial relevance for a large variety of processes and materials. In this book, all aspects of the theoretical fundamentals, experimental techniques, highlights of current developments and results for solids, liquids and interfaces are presented.

  15. Promotion of dropwise condensation of ethyl alcohol, methyl alcohol, and acetone by polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Kirby, C. E.

    1972-01-01

    Coating condensing surfaces with thin layer of nonpolar Teflon results in dropwise condensation of polar organic vapor. Greater heat transfer coefficients are produced increasing effectiveness of condensing system. Investigation shows that vapors with strong dipole moment tend to condense dropwise.

  16. The moon as a high temperature condensate

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1972-01-01

    The accretion during condensation mechanism is used to explain the differences in composition of the terrestrial planets and the moon. Many of the properties of the moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The high temperature mineralogy is gehlenite, spinel perovskite, Ca-Al-rich pyroxenes and anorthite. The model is consistent with extensive early melting, shallow melting at 3 A.E. and with presently high speed internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C. The lunar crust is 80 percent gabbroic anorthosite, 20 percent basalt and is about 250-270 km thick. The lunar mantle is probably composed of spinel, merwinite and diopside with a density of 3.4 g/cu cm.

  17. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  18. The moon as a high temperature condensate.

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  19. Condensing osteitis of the clavicle in children

    PubMed Central

    Andreacchio, Antonio; Marengo, Lorenza; Canavese, Federico

    2016-01-01

    AIM To confirm the rarity of this disorder and then to evaluate the effects of antibiotic treatment alone and assess whether this could produce a complete remission of symptoms in children and adolescents. METHODS We made a retrospective review of all cases of condensing osteitis of the clavicle in children and adolescents between January 2007 and January 2016. Outpatient and inpatient medical records, with radiographs, magnetic resonance imaging, triphasic bone scan and computed tomography scans were retrospectively reviewed. All the patients underwent biopsy of the affected clavicle and were treated with intra venous (IV) antibiotics followed by oral antibiotics. RESULTS Seven cases of condensing osteitis of the clavicle were identified. All the patients presented with swelling of the medial end of the clavicle, and 5 out of 7 reported persisting pain. The patients’ mean age at presentation was 11.5 years (range 10.5-13). Biopsy confirmed the diagnosis in all cases. All the patients completed the treatment with IV and oral antibiotics. At last follow-up visit none of the patients complained of residual pain; all had a clinically evident reduction in the swelling of the medial end of the affected clavicle. The mean follow-up was 4 years (range 2-7). CONCLUSION Our findings show that condensing osteitis of the clavicle is a rare condition. Biopsy is needed to confirm diagnosis. The condition should be managed with IV and oral antibiotics. Aggressive surgery should be avoided. PMID:27622150

  20. Geysers advanced direct contact condenser research

    SciTech Connect

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  1. Condenser performance recovery in nuclear power plants

    SciTech Connect

    Saxon, G. Jr.; Putman, R.E.

    1996-12-31

    Fouling of the tubes in the main condenser can have a significant impact on nuclear plant performance. Recent experiences suggest that the effects of fouling have been underestimated and that the results of an effective tube cleaning can be measured in improved unit capacity. In particular two nuclear power plants have reported recovery of 20 and 25 MW respectively. While the types of deposition often vary as they did in these two cases, the deposit elements were accurately identified, the deposits` impact on heat transfer was evaluated and an effective cleaning methodology was developed for successful deposit removal. These experiences have prompted the development of a number of diagnostic monitoring and inspection methods which can be utilized in the field or in the laboratory; to detect, identify and quantify the presence of fouling and its impact on heat transfer, to determine the relative effectiveness of a cleaning method and to evaluate condenser performance as related to MW capacity for both single and multiple compartment condensers.

  2. A 'dry' condensation origin for circumstellar carbonates.

    PubMed

    Toppani, Alice; Robert, François; Libourel, Guy; de Donato, Philippe; Barres, Odile; d'Hendecourt, Louis; Ghanbaja, Jaafar

    2005-10-20

    The signature of carbonate minerals has long been suspected in the mid-infrared spectra of various astrophysical environments such as protostars. Abiogenic carbonates are considered as indicators of aqueous mineral alteration in the presence of CO2-rich liquid water. The recent claimed detection of calcite associated with amorphous silicates in two planetary nebulae and protostars devoid of planetary bodies questions the relevance of this indicator; but in the absence of an alternative mode of formation under circumstellar conditions, this detection remains controversial. The main dust component observed in circumstellar envelopes is amorphous silicates, which are thought to have formed by non-equilibrium condensation. Here we report experiments demonstrating that carbonates can be formed with amorphous silicates during the non-equilibrium condensation of a silicate gas in a H2O-CO2-rich vapour. We propose that the observed astrophysical carbonates have condensed in H2O(g)-CO2(g)-rich, high-temperature and high-density regions such as evolved stellar winds, or those induced by grain sputtering upon shocks in protostellar outflows. PMID:16237436

  3. Condensate removal device for heat exchanger

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W. (Inventor)

    1975-01-01

    A set of perforated tubes disposed at the gas output side of a heat exchanger, in a position not to affect the rate of flow of the air or other gas is described. The tubes are connected to a common manifold which is connected to a sucking device. Where it is necessary to conserve and recirculate the air sucked through the tubes, the output of the manifold is run through a separator to remove the condensate from the gas. The perforations in the slurper tubes are small, lying in the range of 0.010 inch to 0.100 inch. The tubes are disposed in contact with the surfaces of the heat exchanger on which the condensate is precipitated, whether fins or plates, so that the water may be directed to the tube openings by means of surface effects, together with the assistance of the air flow. Only about 5 percent of the air output need be thus diverted, and it effectively removes virtually all of the condensate.

  4. Selective condensation of DNA by aminoglycoside antibiotics.

    PubMed

    Kopaczynska, M; Schulz, A; Fraczkowska, K; Kraszewski, S; Podbielska, H; Fuhrhop, J H

    2016-05-01

    The condensing effect of aminoglycoside antibiotics on the structure of double-stranded DNA was examined. The selective condensation of DNA by small molecules is an interesting approach in biotechnology. Here, we present the interaction between calf thymus DNA and three types of antibiotic molecules: tobramycin, kanamycin, and neomycin. Several techniques were applied to study this effect. Atomic force microscopy, transmission electron microscopy images, and nuclear magnetic resonance spectra showed that the interaction of tobramycin with double-stranded DNA caused the rod, toroid, and sphere formation and very strong condensation of DNA strands, which was not observed in the case of other aminoglycosides used in the experiment. Studies on the mechanisms by which small molecules interact with DNA are important in understanding their functioning in cells, in designing new and efficient drugs, or in minimizing their adverse side effects. Specific interactions between tobramycin and DNA double helix was modeled using molecular dynamics simulations. Simulation study shows the aminoglycoside specificity to bend DNA double helix, shedding light on the origins of toroid formation. This phenomenon may lighten the ototoxicity or nephrotoxicity issues, but also other adverse reactions of aminoglycoside antibiotics in the human body. PMID:26646261

  5. Measuring non-condensable gases in steam

    SciTech Connect

    Doornmalen, J. P. C. M. van; Kopinga, K.

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  6. Measuring non-condensable gases in steam.

    PubMed

    van Doornmalen, J P C M; Kopinga, K

    2013-11-01

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1%) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M(TM) Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation. PMID:24289436

  7. Measuring non-condensable gases in steam

    NASA Astrophysics Data System (ADS)

    van Doornmalen, J. P. C. M.; Kopinga, K.

    2013-11-01

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3MTM Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  8. Majorana fermions in condensed-matter physics

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2016-06-01

    It is an honor and a pleasure to have been invited to give a talk in this conference celebrating the memory of the late Professor Abdus Salam. To my regret, I did not know Professor Salam personally, but I am very aware of his work and of his impact on my area of specialization, condensed matter physics, both intellectually through his ideas on spontaneously broken symmetry and more practically through his foundation of the ICTP. Since I assume that most of this audience are not specialized in condensed-matter physics, I thought I would talk about one topic which to some extent bridges this field and the particle-physics interests of Salam, namely Majorana fermions (M.F.s). However, as we shall see, the parallels which are often drawn in the current literature may be a bit too simplistic. I will devote most of this talk to a stripped-down exposition of the current orthodoxy concerning M.F.s. in condensed-matter physics and their possible applications to topological quantum computing (TQC), and then at the end briefly indicate why I believe this orthodoxy may be seriously misleading.

  9. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation

    NASA Technical Reports Server (NTRS)

    Kelleners, Philip

    2003-01-01

    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  10. Impurity Crystal in a Bose-Einstein Condensate

    SciTech Connect

    Roberts, David C.; Rica, Sergio

    2009-01-16

    We investigate the behavior of impurity fields immersed in a larger condensate field in various dimensions. We discuss the localization of a single impurity field within a condensate and note the effects of surface energy. We derive the functional form of the attractive condensate-mediated interaction between two impurities. Generalizing the analysis to N impurity fields, we show that within various parameter regimes a crystal of impurity fields can form spontaneously in the condensate. Finally, the system of condensate and crystallized impurity structure is shown to have nonclassical rotational inertia, which is characteristic of superfluidity; i.e., the system can be seen to exhibit supersolid behavior.

  11. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble

    SciTech Connect

    Wang Jianhui; He Jizhou; Ma Yongli

    2011-05-15

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  12. Compact heat exchangers for condensation applications: Yesterday, today and tomorrow

    SciTech Connect

    Panchal, C.B.

    1993-07-01

    Compact heat exchangers are being increasingly considered for condensation applications in the process, cryogenic, aerospace, power and refrigeration industries. In this paper, different configurations available for condensation applications are analyzed and the current state-of-the-knowledge for the design of compact condensers is evaluated. The key technical issues for the design and development of compact heat exchangers for condensation applications are analyzed and major advantages are identified. The experimental data and performance prediction methods reported in the literature are analyzed to evaluate the present design capabilities for different compact heat-exchanger configurations. The design flexibility is evaluated for the development of new condensation applications, including integration with other process equipment.

  13. 46. VIEW LOOKING NORTHEAST OF CONDENSER NUMBER 2 (LEFT BACKGROUND) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. VIEW LOOKING NORTHEAST OF CONDENSER NUMBER 2 (LEFT BACKGROUND) AND MOTOR FOR PUMPING CONDENSER HOT WELL (LOWER CENTER OF PHOTOGRAPH). SPENT STEAM EXHAUSTED FROM THE TURBINE WAS CONDENSED BY A SPRAY OF BRACKISH WATER. THIS CREATED A PARTIAL VACUUM WHICH IMPROVED TURBINE EFFICIENCY. THE MIXTURE OF CONDENSED STEAM AND COOL BRACKISH WATER FELL TO THE BOTTOM OF THE CONDENSER INTO A HOT WELL. FROM THE WELL IT WAS PUMPED TO THE MAIN DISCHARGE FLUME. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  14. Molecular recognition of genomic DNA in a condensate with a model surfactant for potential gene-delivery applications.

    PubMed

    Singh, Priya; Choudhury, Susobhan; Chandra, Goutam Kumar; Lemmens, Peter; Pal, Samir Kumar

    2016-04-01

    The functionality of a gene carrying nucleic acid in an artificial gene-delivery system is important for the overall efficiency of the vehicle in vivo. Here, we have studied a well-known artificial gene-delivery system, which is a condensate of calf thymus DNA (CT-DNA) with a model cationic surfactant cetyltrimethylammonium bromide (CTAB) to investigate the molecular recognition of the genomic DNA in the condensate. While dynamic light scattering (DLS) and circular dichroism (CD) reveal structural aspects of the condensate and the constituting DNA respectively, picosecond resolved polarization gated spectroscopy and Förster resonance energy transfer (FRET) reveal molecular recognition of the genomic DNA in the condensate. We have considered ethidium bromide (EB) and crystal violet (CV), which are well known DNA-binding agents through intercalative (specific) and electrostatic (non-specific) interactions, respectively, as model ligands for the molecular recognition studies. A fluorescent cationic surfactant, Nonyl Acridine Orange (NAO) is considered to be a mimic of CTAB in the condensate. The polarization gated fluorescence of NAO at various temperatures has been used to investigate the local microviscosity of the condensate. The excellent spectral overlap of NAO emission and the absorption spectra of both EB and CV allow us to investigate FRET-distances of the ligands with respect to NAO in the condensate at various temperatures and thermal stability of ligand-binding of the genomic DNA. The thermodynamic properties of the molecular recognition have also been explored using Van't Hoff equation. We have also extended our studies to molecular recognition of the genomic DNA in the condensate as dried thin films. This has important implications for its application in bioelectronics. PMID:26907719

  15. Evolutionary games of condensates in coupled birth-death processes

    NASA Astrophysics Data System (ADS)

    Weber, Markus F.; Knebel, Johannes; Krueger, Torben; Frey, Erwin

    2015-03-01

    Condensation phenomena occur in many systems, both in a classical and a quantum mechanical context. Typically, the entities that constitute a system collectively concentrate in one distinct state during condensation. For example, cooling of an equilibrated bosonic gas may lead to condensation into the quantum ground state. Notably, the mathematical theory of this Bose-Einstein condensation is not limited to quantum theory but was also successfully applied to condensation in random networks. In our work, we follow the opposite path. We apply the theory of evolutionary dynamics to describe condensation in a bosonic system that is driven and dissipative. It was shown that the system may condense into multiple quantum states, but into which states has remained elusive. We find that vanishing of relative entropy production determines these states. We illuminate the physical principles underlying the condensation and show that the condensates do not need to be static but may engage in ``evolutionary games'' with exchange of particles. On the mathematical level, the condensation is described by coupled birth-death processes. The generic structure of these processes implies that our results also apply to condensation in other systems, ranging from population biology to chemical kinetics.

  16. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  17. DNA condensation and how it relates to phase equilibrium in solution

    SciTech Connect

    Post, C.B.; Zimm, B.H.

    1980-10-01

    High molecular weight DNA is a randomly coiled polymer usually found to be highly expanded in solution due to its low degree of flexibility. It has been shown, however, that DNA is able to undergo a sudden conformational transition into a highly compacted conformation. The collapse transition or condensation of DNA has been observed to be caused by a number of agents: polyamines, alcohol, acid, and polymer solutions such as polyethylene glycol (PEG) and polyacrylate. In a previous paper we discussed the condensation of single molecules from the point of view of Flory's classical polymer solution theory. In this work we extend the discussion to take account of higher concentrations. Under these conditions the condensation can occur either as a unimolecular phenomenon or as an aggregation of many molecules leading to precipitation of the DNA. Condensation of single molecules and precipitation are thus viewed as two aspects of the effect of reduced solvent power and the accompanying lowering of the free energy of DNA-DNA and solvent-solvent contacts as compared with DNA-solvent contacts.

  18. DIRECT EVIDENCE FOR CONDENSATION IN THE EARLY SOLAR SYSTEM AND IMPLICATIONS FOR NEBULAR COOLING RATES

    SciTech Connect

    Berg, T.; Maul, J.; Schoenhense, G.; Marosits, E.; Hoppe, P.; Ott, U.; Palme, H.

    2009-09-10

    We have identified in an acid resistant residue of the carbonaceous chondrite Murchison a large number (458) of highly refractory metal nuggets (RMNs) that once were most likely hosted by Ca,Al-rich inclusions (CAIs). While osmium isotopic ratios of two randomly selected particles rule out a presolar origin, the bulk chemistry of 88 particles with sizes in the submicron range determined by energy dispersive X-ray (EDX) spectroscopy shows striking agreement with predictions of single-phase equilibrium condensation calculations. Both chemical composition and morphology strongly favor a condensation origin. Particularly important is the presence of structurally incompatible elements in particles with a single-crystal structure, which also suggests the absence of secondary alteration. The metal particles represent the most pristine early solar system material found so far and allow estimation of the cooling rate of the gaseous environment from which the first solids formed by condensation. The resulting value of 0.5 K yr{sup -1} is at least 4 orders of magnitude lower than the cooling rate of molten CAIs. It is thus possible, for the first time, to see through the complex structure of most CAIs and infer the thermal history of the gaseous reservoir from which their components formed by condensation.

  19. Capillary electrophoresis--a new tool for ionic analysis of exhaled breath condensate.

    PubMed

    Kubáň, Petr; Kobrin, Eeva-Gerda; Kaljurand, Mihkel

    2012-12-01

    Exhaled breath condensate has been analyzed for its ionic content by capillary electrophoresis with capacitively coupled contactless conductometric detection. A simple device for collection of small volumes (100-200 μL) of exhaled breath condensate in less than 2 min was developed. A method for simultaneous determination of inorganic cations, inorganic anions and organic anions from the samples using dual-opposite end injection principle with a short fused silica capillary (35 cm, 50 μm I.D.) was developed. A background electrolyte composed of 20mM 2-(N-morpholino)ethanesulfonic acid, 20 mM l-histidine, 30 μM cetyltrimethylammonium bromide and 2mM 18-crown-6 was used. The analysis time was less than 3 min with limits of detection reaching low μM levels for most of the anions and cations. It has been shown that changes of nitrite could be observed in acute inflammation of upper airways and in a person with diagnosed mild chronic obstructive pulmonary disease, while changes of other ions could also be observed. Lactate concentrations could also be monitored and about 4-fold increase of lactate concentration in exhaled breath condensate was determined following an exhaustive cycling exercise. The developed non-invasive sampling of exhaled breath condensate, followed by rapid capillary electrophoretic analysis, could be very useful in lung inflammatory disease screening as well as in monitoring fast metabolic processes such as lactate build-up and removal. PMID:22796027

  20. A macrothermodynamic approach to the limit of reversible capillary condensation.

    PubMed

    Trens, Philippe; Tanchoux, Nathalie; Galarneau, Anne; Brunel, Daniel; Fubini, Bice; Garrone, Edoardo; Fajula, François; Di Renzo, Francesco

    2005-08-30

    The threshold of reversible capillary condensation is a well-defined thermodynamic property, as evidenced by corresponding states treatment of literature and experimental data on the lowest closure point of the hysteresis loop in capillary condensation-evaporation cycles for several adsorbates. The nonhysteretical filling of small mesopores presents the properties of a first-order phase transition, confirming that the limit of condensation reversibility does not coincide with the pore critical point. The enthalpy of reversible capillary condensation can be calculated by a Clausius-Clapeyron approach and is consistently larger than the condensation heat in unconfined conditions. Calorimetric data on the capillary condensation of tert-butyl alcohol in MCM-41 silica confirm a 20% increase of condensation heat in small mesopores. This enthalpic advantage makes easier the overcoming of the adhesion forces by the capillary forces and justifies the disappearing of the hysteresis loop. PMID:16114972