Science.gov

Sample records for acid triamine condensate

  1. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  2. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  3. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  4. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  5. 40 CFR 721.2086 - Coco acid triamine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Coco acid triamine condensate, polycarboxylic acid salts. 721.2086 Section 721.2086 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2086 Coco acid triamine condensate, polycarboxylic acid salts....

  6. Indirect evidence of intravesical ureterocele on 99mTc-diethylene triamine pentaacetic acid scan

    PubMed Central

    Kumar, Deepa; Sethi, Ravinder Singh; Misra, Ritu; Ali, Md Izhar

    2016-01-01

    Ureterocele is a common ureteric anomaly detected in pediatric population. Ureterocele diagnosis and evaluation need a variety of radiological methods. We report a case of 5-year-old female child sent for 99mTc-diethylene triamine pentaacetic acid scan for evaluation of glomerular filtration rate and excretory function of kidneys in view of right-sided hydroureteronephrosis and pyonephrosis with percutaneous tube in situ. Incidental photopenia was noted in the urinary bladder. On ultrasonography of abdomen cause of this photopenia was found to be an intravesical ureterocele. PMID:27095867

  7. Drinking influences exhaled breath condensate acidity.

    PubMed

    Kullmann, Tamás; Barta, Imre; Antus, Balázs; Horváth, Ildikó

    2008-01-01

    Exhaled breath condensate analysis is a developing method for investigating airway pathology. Impact of food and drink on breath condensate composition has not been systematically addressed. The aim of the study was to follow exhaled breath condensate pH after drinking an acidic and a neutral beverage. Breath condensate, capillary blood, and urine of 12 healthy volunteers were collected before and after drinking either 1 l of coke or 1 l of mineral water. The pH of each sample was determined with a blood gas analyzer. The mean difference between the pH of two breath condensate samples collected within 15 min before drinking was 0.13+/-0.03. Condensate pH decreased significantly from 6.29+/-0.02 to 6.24+/-0.02 (p<0.03) after drinking coke and from 6.37+/-0.03 to 6.22+/-0.04 (p<0.003) after drinking water. Drinking coke induced significant changes in blood and urine pH as well. Drinking influences exhaled breath condensate composition and may contribute to the variability of exhaled breath condensate pH.

  8. Triamine chelants, their derivatives, complexes and conjugates

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1995-03-07

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula, as shown in the accompanying diagrams, wherein n, m, R, R{sup 1}, R{sup 2} and L are defined in the specification.

  9. Triamine chelants, their derivatives, complexes and conjugates

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1995-01-01

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. The chelants are of the formula: ##STR1## wherein n, m, R, R.sup.1, R.sup.2 and L are defined in the specification.

  10. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  11. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  12. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  13. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  14. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate, polycarboxylic acid salts. 721.3620 Section 721.3620 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts....

  15. Triamine-Modified Polyimides Having Improved Processability and Low Melt Flow Viscosity

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor); Nguyen, Baochan N. (Inventor); Eby, Ronald K. (Inventor)

    2001-01-01

    Addition-cured polyimides that contain the reaction product of an aromatic triamine or trianhydride analogue thereof, a reactive end group such as 5-norbornene-2, 3-dicarboxylic acid, ester derivatives of 5-norbornene-2, 3-dicarboxylic acid, anhydride derivatives of 5-norbornene-2, 3-dicarboxylic acid, or 4-phenylethynylphthalic anhydride, an aromatic diamine, and a dialkyl ester of an aromatic tetracarboxylic acid. The resultant starlike polyimides; exhibit lower melt flow viscosity than its linear counterparts, providing for improved processability of the polyimide. Also disclosed are methods for the synthesis of these polyimides as well as composite structures formed using these polyimides.

  16. Condensation of acetol and acetic acid vapor with sprayed liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cellulose-derived fraction of biomass pyrolysis vapor was simulated by evaporating acetol and acetic acid (AA) from flasks on a hot plate. The liquid in the flasks was infused with heated nitrogen. The vapor/nitrogen stream was superheated in a tube oven and condensed by contact with a cloud of ...

  17. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, D.E.; John, C.S.; Pillai, M.R.A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes. No Drawings

  18. Triamines and their derivatives as bifunctional chelating agents

    DOEpatents

    Troutner, David E.; John, Christy S.; Pillai, Maroor R. A.

    1992-03-31

    A group of functionalized triamine chelants and their derivatives that form complexes with radioactive metal ions are disclosed. The complexes can be covalently attached to a protein or an antibody or antibody fragment and used for therapeutic and/or diagnostic purposes.

  19. Pyrophosphate-condensing activity linked to nucleic acid synthesis.

    PubMed Central

    Volloch, V Z; Rits, S; Tumerman, L

    1979-01-01

    In some preparations of DNA dependent RNA polymerase a new enzymatic activity has been found which catalyzes the condensation of two pyrophosphate molecules, liberated in the process of RNA synthesis, to one molecule of orthophosphate and one molecule of Mg (or Mn) - chelate complex with trimetaphosphate. This activity can also cooperate with DNA-polymerase, on condition that both enzymes originate from the same cells. These results point to two general conclusions. First, energy is conserved in the overall process of nucleic acid synthesis and turnover, so that the process does not require an energy influx from the cell's general resources. Second, the synthesis of nucleic acids is catalyzed by a complex enzyme system which contains at least two separate enzymes, one responsible for nucleic acid polymerization and the other for energy conservation via pyrophosphate condensation. Images PMID:88040

  20. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  1. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  2. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  3. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  4. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  5. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  6. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  7. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  8. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  9. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  10. 40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject...

  11. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  12. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  13. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  14. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  15. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol,...

  16. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.500 Condensed, extracted glutamic acid... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Condensed, extracted glutamic acid...

  17. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.500 Condensed, extracted glutamic acid... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Condensed, extracted glutamic acid...

  18. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.500 Condensed, extracted glutamic acid... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Condensed, extracted glutamic acid...

  19. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.500 Condensed, extracted glutamic acid... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Condensed, extracted glutamic acid...

  20. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine.

    PubMed

    Meador, Mary Ann B; Malow, Ericka J; Silva, Rebecca; Wright, Sarah; Quade, Derek; Vivod, Stephanie L; Guo, Haiquan; Guo, Jiao; Cakmak, Miko

    2012-02-01

    Polyimide gels are produced by cross-linking anhydride capped polyamic acid oligomers with aromatic triamine in solution and chemically imidizing. The gels are then supercritically dried to form nanoporous polyimide aerogels with densities as low as 0.14 g/cm(3) and surface areas as high as 512 m(2)/g. To understand the effect of the polyimide backbone on properties, aerogels from several combinations of diamine and dianhydride, and formulated oligomer chain length are examined. Formulations made from 2,2'-dimethylbenzidine as the diamine shrink the least but have among the highest compressive modulus. Formulations made using 4,4'-oxydianiline or 2,2'dimethylbenzidine can be fabricated into continuous thin films using a roll to roll casting process. The films are flexible enough to be rolled or folded back on themselves and recover completely without cracking or flaking, and have tensile strengths of 4-9 MPa. Finally, the highest onset of decomposition (above 600 °C) of the polyimide aerogels was obtained using p-phenylene diamine as the backbone diamine with either dianhydride studied. All of the aerogels are suitable candidates for high-temperature insulation with glass transition temperatures ranging from 270-340 °C and onsets of decomposition from 460-610 °C.

  1. Interactions of nucleic acids with fluorescent dyes: spectral properties of condensed complexes.

    PubMed

    Kapuscinski, J

    1990-09-01

    Interaction of cations with nucleic acids (NA) often results in condensation of the product. The driving force of aromatic cation-induced condensation is the cooperative interaction between ligand and single-stranded (ss) NA. This type of reaction is highly specific with regard to the primary and secondary structure of NA, and results in destabilization of the latter. The spectral properties of fluorescent intercalating and non-intercalating ligands [acridine orange, pyronin Y(G), DAPI, Hoechst 33258, and Hoechst 33342]-NA complexes were studied in both the relaxed and condensed form. The changes in absorption, excitation, and fluorescence emission spectra and fluorescence yield that followed the condensation were examined. Although some of these effects can be explained by changes in solvation of the fluorophore and its interaction with NA bases and the solvent, the overall effect of condensation on spectral properties of the complex is unpredictable. In particular, no correlation was found between these effects and the ds DNA binding mode of these ligands. Nevertheless, the spectral data associated with polymer condensation can yield information about the composition and structure of NA and can explain some nonspecific interactions of these probes.

  2. Multi-shell model of ion-induced nucleic acid condensation

    NASA Astrophysics Data System (ADS)

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-01

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes induced by trivalent cobalt(iii) hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into "external" and "internal" ion binding shells distinguished by the proximity to duplex helical axis. In the aggregated phase the shells overlap, which leads to significantly increased attraction of CoHex ions in these overlaps with the neighboring duplexes. The duplex aggregation free energy is decomposed into attractive and repulsive components in such a way that they can be represented by simple analytical expressions with parameters derived from molecular dynamic simulations and numerical solutions of Poisson equation. The attractive term depends on the fractions of bound ions in the overlapping shells and affinity of CoHex to the "external" shell of nearly neutralized duplex. The repulsive components of the free energy are duplex configurational entropy loss upon the aggregation and the electrostatic repulsion of the duplexes that remains after neutralization by bound CoHex ions. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA condensation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. An appreciable CoHex mediated RNA-RNA attraction requires closer inter-duplex separation to engage CoHex ions (bound mostly in the "internal" shell of RNA) into short-range attractive interactions. The model also predicts that longer NA fragments will condense more readily than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation lends support to proposed NA condensation picture based on the multivalent "ion binding

  3. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 19: Condensation of phthalic and substituted phthalic anhydrides with benzoylacetic ester

    NASA Technical Reports Server (NTRS)

    Rotberg, Y. T.; Oshkaya, V. P.

    1985-01-01

    Phthalylbenzoylacetic ester and its nitro and halogen derivatives were prepared through condensation of phthalic anhydride, nitrophthalic anhydride, and phthalic halide anhydride with benzoylacetic ester in a solution of acetic anhydride and triethylamine. The condensation of hemipinic acid anhydride proceeds similarly, but under more drastic conditions. Derivatives of indan-1,3-dione are also formed, with a small yield, in the reaction of nitrophthalic anhydrides with benzoylacetic ester in the presence of increased quantities of triethylamine.

  4. Numerical Simulation of Condensation of Sulfuric Acid and Water in a Large Two-stroke Marine Diesel Engine

    NASA Astrophysics Data System (ADS)

    Walther, J. H.; Karvounis, N.; Pang, K. M.

    2016-11-01

    We present results from computational fluid dynamics simulations of the condensation of sulfuric acid (H2SO 4) and water (H2 O) in a large two-stroke marine diesel engine. The model uses a reduced n-heptane skeletal chemical mechanism coupled with a sulfur subset to simulate the combustion process and the formation of SOx and H2SO 4 . Condensation is modeled using a fluid film model coupled with the Eulerian in-cylinder gas phase. The fluid film condensation model is validated against both experimental and numerical results. The engine simulations reveal that the fluid film has a significant effect on the sulfuric acid gas phase. A linear correlation is found between the fuel sulfur content and the sulfuric acid condensation rate. The initial in-cylinder water content is found not to affect the sulfuric acid condensation but it has a high impact on water condensation. The scavenging pressure level shows an inverse correlation between pressure and condensation rate due to change in the flame propagation speed. Finally, increasing the cylinder liner temperature significantly decreases water condensation but has a negligible influence on the condensation of sulfuric acid.

  5. Multi-shell model of ion-induced nucleic acid condensation

    SciTech Connect

    Tolokh, Igor S.; Drozdetski, Aleksander V.; Pollack, Lois; Baker, Nathan A.; Onufriev, Alexey V.

    2016-04-21

    We present a semi-quantitative model of condensation of short nucleic acid (NA) duplexes in- duced by tri-valent cobalt hexammine (CoHex) ions. The model is based on partitioning of bound counterion distribution around single NA duplex into “external” and “internal” ion binding shells distinguished by the proximity to duplex helical axis. The duplex aggregation free energy is de- composed into attraction and repulsion components represented by simple analytic expressions. The source of the short-range attraction between NA duplexes in the aggregated phase is the in- teraction of CoHex ions in the overlapping regions of the “external” shells with the oppositely charged duplexes. The attraction depends on CoHex binding affinity to the “external” shell of nearly neutralized duplex and the number of ions in the shell overlapping volume. For a given NA duplex sequence and structure, these parameters are estimated from molecular dynamics simula- tion. The attraction is opposed by the residual repulsion of nearly neutralized duplexes as well as duplex configurational entropy loss upon aggregation. The estimates of the aggregation free energy are consistent with the experimental range of NA duplex condensation propensities, including the unusually poor condensation of RNA structures and subtle sequence effects upon DNA conden- sation. The model predicts that, in contrast to DNA, RNA duplexes may condense into tighter packed aggregates with a higher degree of duplex neutralization. The model also predicts that longer NA fragments will condense easier than shorter ones. The ability of this model to explain experimentally observed trends in NA condensation, lends support to proposed NA condensation picture based on the multivalent “ion binding shells”.

  6. Persistent Water-Nitric Acid Condensate with Saturation Water Vapor Pressure Greater than That of Hexagonal Ice.

    PubMed

    Gao, Ru-Shan; Gierczak, Tomasz; Thornberry, Troy D; Rollins, Andrew W; Burkholder, James B; Telg, Hagen; Voigt, Christiane; Peter, Thomas; Fahey, David W

    2016-03-10

    A laboratory chilled mirror hygrometer (CMH), exposed to an airstream containing water vapor (H2O) and nitric acid (HNO3), has been used to demonstrate the existence of a persistent water-nitric acid condensate that has a saturation H2O vapor pressure greater than that of hexagonal ice (Ih). The condensate was routinely formed on the mirror by removing HNO3 from the airstream following the formation of an initial condensate on the mirror that resembled nitric acid trihydrate (NAT). Typical conditions for the formation of the persistent condensate were a H2O mixing ratio greater than 18 ppm, pressure of 128 hPa, and mirror temperature between 202 and 216 K. In steady-state operation, a CMH maintains a condensate of constant optical diffusivity on a mirror through control of only the mirror temperature. Maintaining the persistent condensate on the mirror required that the mirror temperature be below the H2O saturation temperature with respect to Ih by as much as 3 K, corresponding to up to 63% H2O supersaturation with respect to Ih. The condensate was observed to persist in steady state for up to 16 h. Compositional analysis of the condensate confirmed the co-condensation of H2O and HNO3 and thereby strongly supports the conclusion that the Ih supersaturation is due to residual HNO3 in the condensate. Although the exact structure or stoichiometry of the condensate could not be determined, other known stable phases of HNO3 and H2O are excluded as possible condensates. This persistent condensate, if it also forms in the upper tropical troposphere, might explain some of the high Ih supersaturations in cirrus and contrails that have been reported in the tropical tropopause region.

  7. Heat transfer, erosion and acid condensation characteristics for novel H-type finned oval tube

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhao, X.; Tang, G.

    2015-09-01

    Low efficiency of heat transfer, acid corrosion and erosion of economizers affect the economy and security in coal-fired power plants significantly. The H-type finned oval tube is proposed to alleviate these problems. Based on the H-type finned oval tube, we investigated three novel types of fins, including bleeding dimples, longitudinal vortex generators (LVGs), and compound dimple-LVG. We considered the three aspects together, and obtained the heat transfer, acid condensation rate and erosion loss. The results show that the tube bank with the new structured fins can improve the performance on the three aspects, and the compound dimple-LVG performs the highest comprehensive effect.

  8. Chiral and structural discrimination in binding of polypeptides with condensed nucleic acid structures.

    PubMed

    Reich, Z; Ittah, Y; Weinberger, S; Minsky, A

    1990-04-05

    In biological systems nucleic acids are invariably found in highly compact forms. These rather intricate forms raise questions of basic importance which are related to the various factors involved in the condensation processes, the chemical, physical, and structural features revealed by the packed species, and the effects of the extremely tight packaging upon interactions of the DNA molecules with proteins and drugs. A means for addressing these questions on a molecular level is provided by various procedures known to induce in vitro condensation of DNA molecules into highly compact species which, in turn, may serve as a model for the in vivo physical organization of nucleic acids. A study of the optical properties of the tightly packed DNA molecules indicates that the interactions of these species with polypeptides are characterized by distinct, hitherto unobserved, chiral and structural discrimination. Specifically, the polypeptides found to be selected against are composed of those amino acids that are not normally used in protein biosynthesis, such as D-lysine or ornithine. These findings provide new clues to long debated topics such as the specific universal chirality of amino acids in proteins or the correlation between conformational flexibility of polypeptides and their ability to form stable compact complexes with nucleic acids.

  9. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; Christensen, L. E.; Baumgardner, D. G.; Voigt, C.; Kaercher, B.; Wilson, J. C.; Mahoney, M. J.; Jensen, E. J.; Bui, T. P.

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  10. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    NASA Technical Reports Server (NTRS)

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  11. Ammonium nitrate evaporation and nitric acid condensation in DMT CCN counters

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Jaatinen, A.; Laaksonen, A.; Nenes, A.; Raatikainen, T.

    2014-05-01

    The effect of inorganic semivolatile aerosol compounds on the cloud condensation nucleus (CCN) activity of aerosol particles was studied by using a computational model for a DMT-CCN counter, a cloud parcel model for condensation kinetics and experiments to quantify the modelled results. Concentrations of water vapour and semivolatiles as well as aerosol trajectories in the CCN column were calculated by a computational fluid dynamics model. These trajectories and vapour concentrations were then used as an input for the cloud parcel model to simulate mass transfer kinetics of water and semivolatiles between aerosol particles and the gas phase. Two different questions were studied: (1) how big a fraction of semivolatiles is evaporated from particles after entering but before particle activation in the DMT-CCN counter? (2) How much can the CCN activity be increased due to condensation of semivolatiles prior to the maximum water supersaturation in the case of high semivolatile concentration in the gas phase? Both experimental and modelling results show that the evaporation of ammonia and nitric acid from ammonium nitrate particles causes a 10 to 15 nm decrease to the critical particle size in supersaturations between 0.1% and 0.7%. On the other hand, the modelling results also show that condensation of nitric acid or similar vapour can increase the CCN activity of nonvolatile aerosol particles, but a very high gas phase concentration (as compared to typical ambient conditions) would be needed. Overall, it is more likely that the CCN activity of semivolatile aerosol is underestimated than overestimated in the measurements conducted in ambient conditions.

  12. Role of Amino Acid Insertions on Intermolecular Forces between Arginine Peptide Condensed DNA Helices

    PubMed Central

    DeRouchey, Jason E.; Rau, Donald C.

    2011-01-01

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads. PMID:21994948

  13. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  14. Cloud Condensation Nucleus Activity of calcite and calcite coated with model humic and fulvic acids

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Gierlus, K. M.; Schuttlefield, J. D.; Grassian, V. H.

    2007-12-01

    Many recent studies have shown that organics can alter the water adsorption and cloud condensation nuclei (CCN) activity of common deliquescent species in the Earth's atmosphere. However, very little is known about the effect of organics on water adsorption and CCN activity of common inactive cloud nuclei, such as mineral aerosol. As many studies have shown that a large fraction of unidentified organic material in aerosol particles is composed of polycarboxylic acids resembling humic substances, the presence of these large molecular weight Humic-Like Substances (HULIS) may also alter the water adsorption and CCN activity of mineral aerosol. Thus, we have measured the water adsorption and CCN activity of model humic and fulvic acids. Additionally, the water adsorption and CCN activity of mineral aerosol particles coated with humic and fulvic acids have been studied. We find that humic and fulvic acids show continual multilayer water adsorption as the relative humidity is raised. Additionally, we find that calcite particles mixed with humic and fulvic acids take up more water by mass, by a factor of two, compared to the uncoated calcite particles at approximately 70% RH. CCN measurements also indicate that internally mixed calcite-humic or fulvic acid aerosols are more CCN active than the otherwise inactive, uncoated calcite particles. Our results suggest that mineral aerosol particles coated with high molecular weight organic materials will take up more water and become more efficient CCN in the Earth's atmosphere than single-component mineral aerosol.

  15. Syntheses of biodiesel precursors: sulfonic acid catalysts for condensation of biomass-derived platform molecules.

    PubMed

    Balakrishnan, Madhesan; Sacia, Eric R; Bell, Alexis T

    2014-04-01

    Synthesis of transportation fuel from lignocellulosic biomass is an attractive solution to the green alternative-energy problem. The production of biodiesel, in particular, involves the process of upgrading biomass-derived small molecules to diesel precursors containing a specific carbon range (C11 -C23). Herein, a carbon-upgrading process utilizing an acid-catalyzed condensation of furanic platform molecules from biomass is described. Various types of sulfonic acid catalysts have been evaluated for this process, including biphasic and solid supported catalysts. A silica-bound alkyl sulfonic acid catalyst has been developed for promoting carbon-carbon bond formation of biomass-derived carbonyl compounds with 2-methylfuran. This hydrophobic solid acid catalyst exhibits activity and selectivity that are comparable to those of a soluble acid catalyst. The catalyst can be readily recovered and recycled, possesses appreciable hydrolytic stability in the presence of water, and retains its acidity over multiple reaction cycles. Application of this catalyst to biomass-derived platform molecules led to the synthesis of a variety of furanic compounds, which are potential biodiesel precursors.

  16. Energetics of oxo- and thio-dipeptide formation via amino acid condensation: a systematic computational analysis.

    PubMed

    Torsello, Mauro; Orian, Laura; De Zotti, Marta; Saini, Roberta; Formaggio, Fernando; Polimeno, Antonino

    2014-09-07

    Oxo-dipeptides and thio-dipeptides are built via condensation between couples of amino acids and amino thioacids, the latter with the carbonyl oxygen replaced by an sp(2) sulfur. We explored via in silico methods (PBE0/6-31G(d,p) and PBE0/6-311G(d,p)) all the possible combinations and built 800 dipeptides, whose structures were fully optimized. Maps of condensation energies are presented to highlight optimal partners leading to stable dipeptides and critical situations for which lower stability or instability is predicted in terms of Gibbs reaction free energies. To validate the feasibility of our computational investigation, we synthesized and compared the stabilities of two thionated dimers, namely -Gly[Ψ(CSNH)]Gly- and -Phe[Ψ(CSNH)]Phe-, characterized by diverging physico-chemical properties. To the best of our knowledge, this is the first systematic analysis reported for dipeptides built from natural amino acids as well as for their corresponding thio-analogs.

  17. ESR study of some gamma irradiated amino acids and condensed 1,4-dihydropyridines

    NASA Astrophysics Data System (ADS)

    Aydın, Murat; Şimşek, Rahime; Gündüz, Miyase Gözde; Şafak, Cihat; Osmanoğlu, Y. Emre

    2013-03-01

    L-alanine methyl ester hydrochloride, 2-aminoisobutyric acid and some condensed 1,4-dihydropyridine derivatives (Compounds R1-R4) were gamma irradiated, the induced free radicals was investigated at room temperature by electron spin resonance techniques. The observed paramagnetic species of amino acids compounds were attributed to the CH3ĊHCOOCH3 and (CH3)2ĊCOOH radicals, respectively. The observed spectra of the 1,4-dihydropyridine derivatives interpreted in terms of some type of amine radical fragments. The spectra were computer simulated and the g values of the radicals and the hyperfine structure constants of the unpaired electron with nearby protons and 14N nucleus were determined. In this study, the observed paramagnetic species were found to be stable at room temperature more than 2 months.

  18. Core acid treatment influence on well reservoir properties in Kazan oil-gas condensate field

    NASA Astrophysics Data System (ADS)

    Janishevskii, A.; Ezhova, A.

    2015-11-01

    The research involves investigation of the influence of hydrochloric acid (HCI-12%) and mud acid (mixture: HCl - 10% and HF - 3%) treatment on the Upper-Jurassic reservoir properties in Kazan oil-gas condensate field wells. The sample collection included three lots of core cylinders from one and the same depth (all in all 42). Two lots of core cylinders were distributed as following: first lot - reservoir properties were determined, and, then thin sections were cut off from cylinder faces; second lot- core cylinders were exposed to hydrochloric acid treatment, then, after flushing the reservoir properties were determined, and thin sections were prepared. Based on the quantitative petrographic rock analysis, involvin 42 thin sections, the following factors were determined: granulometric mineral composition, cement content, intergranular contacts and pore space structure. According to the comparative analysis of initial samples, the following was determined: content decrease of feldspar, clay and mica fragments, mica, clay and carbonate cement; increase of pore spaces while in the investigated samples- on exposure of rocks to acids effective porosity and permeability value range is ambiguous.

  19. Adsorption kinetics and equilibrium studies for removal of acid azo dyes by aniline formaldehyde condensate

    NASA Astrophysics Data System (ADS)

    Terangpi, Praisy; Chakraborty, Saswati

    2016-12-01

    Adsorption of two acid dyes named Acid orange 8 (AO8) and Acid violet 7 (AV7) by amine based polymer aniline formaldehyde condensate (AFC) was studied. Adsorption of both dyes was favored at acidic pH. Electrostatic attraction between protonated amine group (NH3 +) of AFC and anionic sulfonate group (SO3 -) of dye molecule along with hydrogen bond formation and interaction between aromatic group of dye and AFC were responsible mechanisms for dye uptake. Isotherm of AO8 was Type I and followed Langmuir isotherm model. AV7 isotherm on AFC was of Type III and followed Freundlich model. Kinetics study showed that external mass transfer was the rate limiting step followed by intraparticle diffusion. Maximum adsorption capacities of AO8 and AV7 were observed as 164 and 68 mg/g. AO8 dye being smaller in molecular size was adsorbed more due to higher diffusion rate and higher dye: AFC ratio, which enhanced the interaction between dye and polymer.

  20. Adsorption and condensation of amino acids and nucleotides with soluble mineral salts

    NASA Technical Reports Server (NTRS)

    Orenberg, J.; Lahav, N.

    1986-01-01

    The directed synthesis of biopolymers in an abiotic environment is presumably a cyclic sequence of steps which may be realized in a fluctuating environment such as a prebiotic pond undergoing wetting-drying cycles. Soluble mineral salts have been proposed as an essential component of this fluctuating environment. The following sequence may be considered as a most primitive mechanism of information transfer in a fluctuating environment: (1) adsorption of a biomolecule onto a soluable mineral salt surface to act as an adsorbed template; (2) specific adsorption of biomonomers onto the adsorbed template; (3) condensation of the adsorbed biomonomers; and (4) desorption of the elongated oligomer. In this investigation, the salts selected for study were CaSO4.2H2O(gypsum), SrSO4, and several other metal sulfates and chlorides. Adsorption of the monomeric species, gly, 5'AMP 5'GMP, and 5'CMP was investigated. The adsorbed template biopolymers used were Poly-A, Poly-G, Poly-C, and Poly-U. The results of studies involving these experimental participants, the first two steps of the proposed primitive information transfer mechanism, and condensation of amino acids to form oligomers in a fluctuating environment are to be reported.

  1. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  2. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    NASA Astrophysics Data System (ADS)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  3. Computational model of abiogenic amino acid condensation to obtain a polar amino acid profile.

    PubMed

    Polanco, Carlos; Buhse, Thomas; Samaniego, José Lino; Castañón González, Jorge Alberto; Arias Estrada, Miguel

    2014-01-01

    In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.

  4. Delayed production of sulfuric acid condensation nuclei in the polar stratosphere from El Chichon volcanic vapors

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Gringel, W.

    1985-01-01

    It is pointed out that measurements of the vertical profiles of atmospheric condensation nuclei (CN) have been conducted since 1973. Studies with a new instrument revealed that the CN concentration undergoes a remarkable annual variation in the 30-km region characterized by a large increase in the late winter/early spring period with a subsequent decay during the remainder of the year. The event particles are observed to be volatile at 150 C, suggesting a sulfuric acid-water composition similar to that found in the normal 20 km aerosol layer. The development of about 10 to the 7th metric tons of sulfuric acid aerosol following the injection of sulfurous gases by El Chichon in April 1982, prompted Hofmann and Rosen (1983) to predict a very large CN event for 1983. The present investigation is concerned with the actual observation of the predicted event. Attention is given to the observation of a very large increase of what appear to be small sulfuric acid droplets at 30-km altitude in January 1983 over Laramie, WY, in January 1983.

  5. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  6. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil.

    PubMed

    Bharathan, M; Schingoethe, D J; Hippen, A R; Kalscheur, K F; Gibson, M L; Karges, K

    2008-07-01

    Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 x 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 x 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages.

  7. Sequential assessment of pulmonary epithelial diethylene triamine penta-acetate clearance and intrapulmonary transferrin accumulation during Escherichia coli peritonitis

    SciTech Connect

    Ishizaka, A.; Stephens, K.E.; Segall, G.M.; Hatherill, J.R.; McDougall, I.R.; Wu, Z.; Raffin, T.A. )

    1990-03-01

    The individual roles of pulmonary capillary endothelial and alveolar epithelial permeability in the pathogenesis of the adult respiratory distress syndrome (ARDS) are unclear. We developed a method for the sequential assessment of pulmonary macromolecule accumulation and small solute clearance in vivo using a gamma camera. We measured the exponential clearance coefficient of 111In-labeled diethylene triamine penta-acetate (111In-DTPA) to assess airway clearance of small solutes. We also calculated the exponential equilibration coefficient of 111In-labeled transferrin (111In-TF) to assess intrapulmonary accumulation of transferrin. We determined these parameters in guinea pigs with Escherichia coli peritonitis and compared them with a saline-treated control group, oleic-acid-treated groups, and a group treated with low molecular weight dextran Ringer solution. The pulmonary DTPA clearance and the intrapulmonary transferrin accumulation were significantly increased in the peritonitis group (29.4 +/- 8.2 x 10(-3) min-1, p less than 0.02, and 15.1 +/- 3.1 x 10(-3) min-1, p less than 0.02) when compared with the control group (3.1 +/- 0.8 x 10(-3) min-1 and 4.5 +/- 0.5 x 10(-3) min-1). These changes developed within 5.5 h of the initial insult. Neither increased extravascular lung water nor elevated pulmonary artery and left atrial pressures were detected in the peritonitis group. The low molecular weight dextran Ringer group did not show a significant increase in the pulmonary DTPA clearance and the intrapulmonary transferrin accumulation.

  8. Coupling of triamines with diisocyanates on Au(111) leads to the formation of polyurea networks.

    PubMed

    Jensen, Sean; Früchtl, Herbert; Baddeley, Christopher J

    2009-11-25

    The surface-confined coupling reaction between melamine (1,3,5-triazine-2,4,6-triamine) and 1,4-phenylene diisocyanate has been investigated on Au(111) by scanning tunneling microscopy. Diisocyanate species are stabilized at the edges of melamine arrays and coupling reactions to form small urea oligomers may be initiated at room temperature. These oligomers are incorporated into the two-dimensional melamine array. Annealing accelerates the formation of larger oligomers with multiple urea linkages. The oligomers can themselves form ordered 2-D structures stabilized by intermolecular H-bonding. At higher annealing temperatures, oligomers containing as many as seven or eight urea linkages were identified. These oligomers were able to form 2-D porous structures via interoligomer H-bonding interactions. We discuss the composition of all of the phases observed and identify how covalent and noncovalent interactions stabilize each phase.

  9. Acid-base properties, deactivation, and in situ regeneration of condensation catalysts for synthesis of methyl methacrylate

    SciTech Connect

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1996-12-31

    Condensation reaction of a propionate with formaldehyde is a novel route for synthesis of methyl methacrylate (MMA). The reaction mechanism involves a proton abstraction from the propionate on the basic sites and activation of the aliphatic aldehyde on the acidic sites of the catalyst. The acid-base properties of ternary V-Si-P oxide catalysts and their relation to the NWA yield in the vapor phase condensation of formaldehyde with propionic anhydride has been studied for the first time. Five different V-Si-P catalysts with different atomic ratios of vanadium, silicon, and phosphorous were synthesized, characterized, and tested in a fixed-bed microreactor system. A V-Si-P 1:10:2.8 catalyst gave the maximum condensation yield of 56% based on HCHO fed at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h. A parameter called the ``q-ratio`` has been defined to correlate the condensation yields to the acid-base properties. The correlation of q-ratio with the condensation yield shows that higher q-ratios are more desirable. The long-term deactivation studies on the V-Si-P 1: 10:2.8 catalyst at 300{degrees}C and 2 atm and at a space velocity of 290 cc/g cat{center_dot}h show that the catalyst activity drops by a factor of nearly 20 over a 180 h period. The activity can be restored to about 78% of the initial activity by a mild oxidative regeneration at 300{degrees}C and 2 atm. The performance of V-Si-P catalyst has been compared to a Ta/SiO{sub 2} catalyst. The Ta- catalyst is more stable and has a higher on-stream catalyst life.

  10. An Investigation of the Solid-State Condensation Polymerization Reaction in Vapor-Deposited Poly(amic acid)

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Letts, Stephan A.; Day, Katherine; Cook, Robert C.; Gies, Anthony P.; Nonidez, William K.

    2004-03-01

    The condensation polymerization reaction of 4,4'-oxydianiline (ODA) with pyromellitic dianhydride (PMDA) to form poly(amic acid) and the subsequent imidization reaction to form polyimide were investigated for films prepared using vapor deposition polymerization techniques. Fourier-transform infrared spectroscopy (FTIR), thermal analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of films prepared at different temperatures indicate that additional solid-state polymerization occurs prior to imidization reactions. Experiments suggest that poly(amic acid) oligomers form upon vapor-deposition and have a number-average molecular weights of about 1500 Daltons. Between 100-130 °C these chains undergo additional condensation reactions to form slightly higher molecular weight oligomers. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  11. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers.

    PubMed

    Maksin, Danijela D; Nastasović, Aleksandra B; Milutinović-Nikolić, Aleksandra D; Suručić, Ljiljana T; Sandić, Zvjezdana P; Hercigonja, Radmila V; Onjia, Antonije E

    2012-03-30

    Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70°C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q(max), at pH 1.8 and 25°C was 143 mg g(-1) for PGME2-deta (sample with the highest amino group concentration) while at 70°C Q(max) reached the high value of 198 mg g(-1). Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta.

  12. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  13. Utilization of condensed distillers solubles as nutrient supplement for production of nisin and lactic acid from whey.

    PubMed

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W

    2007-04-01

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  14. Water adsorption and cloud condensation nuclei activity of calcite and calcite coated with model humic and fulvic acids

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Gierlus, Kelly M.; Schuttlefield, Jennifer D.; Grassian, Vicki H.

    Recent studies have shown that organics can alter the water adsorption and cloud condensation nuclei (CCN) activity of common deliquescent species in the Earth's atmosphere. However, very little is known about the effect of organics on water adsorption and CCN activity of insoluble nuclei, such as mineral dust aerosol. A large fraction of unidentified organic material in aerosol particles is composed of poly-acidic compounds resembling humic substances. The presence of these humic-like substances (HULIS) can alter the water adsorption and CCN activity of mineral dust aerosol. We have measured the CCN activity of model humic and fulvic acids and of mineral dust particles coated with these substances in the laboratory. We find that coatings of humic and fulvic acids on calcite particles significantly increases water adsorption compared to uncoated particles. CCN measurements indicate that humic- or fulvic acid-coated calcite particles are more CCN active than uncoated calcite particles. Additionally, thicker coatings of humic or fulvic acids appear to result in more efficient CCN activity. Thus, mineral dust particles coated with high molecular weight organic materials will take up more water and become more efficient CCN in the atmosphere than uncoated mineral dust particles, potentially altering the effect of mineral dust on the Earth's climate. In addition to the experimental results, we have explored a newly modified Köhler theory for predicting the CCN activity of insoluble, wettable particles based on multi layer water adsorption measurements of calcite.

  15. Origin of saline, neutral-pH, reduced epithermal waters by reaction of acidic magmatic gas condensates with wall rock

    SciTech Connect

    Reed, M.H. . Dept. of Geological Sciences)

    1993-04-01

    Fluid inclusions in quartz and sphalerite of epithermal veins containing galena, sphalerite and chalcopyrite with silver sulfides and electrum commonly have salinities of 2 to 10 weight percent NaCl equivalent. Examples include Bohemia, OR, Comstock, NV, and Creede, CO. Salinities in such base metal-rich systems are apparently greater than those in gold-adularia, base metal-poor systems such as Sleeper, NV, Republic, WA, and Hishikare, Kyushu. Saline epithermal fluids are commonly assumed to have been derived from saline magmatic brines, from local host formations, as has been suggested for Creede, or from evaporative concentration (boiling) of more dilute meteoric ground water. Another possibility, which may be the most common origin, is reaction of wall rocks with magmatic gas condensates rich in HCl and sulfuric acid. A mixture of one part Augustine Volcanic gas condensate in 10 parts cold ground water has a pH of 0.7 and the dominant cation is H[sup +] by a factor of 10[sup 4]. Calculated reaction of this condensate mixture with andesite at 300 C to a water/rock ratio (w/r) of 4.6 yields an NaCl-dominated fluid with a total salinity of 2.1 wt %. and pH 3.7. Further reaction, to w/r 0.14 yields a fluid salinity of 2.6 wt % and pH of 5.7; this fluid is in equilibrium with a propylitic alteration assemblage. Aqueous sulfide accumulates during the rock reaction as sulfate is reduced to sulfide when ferrous iron is oxidized to ferric iron. Sulfide concentration in the latter fluid is 32 ppm, far exceeding sulfate concentration. In the overall reaction, hydrogen ion is exchanged for base cations (including base metals) and sulfate is reduced to sulfide.

  16. Analytical applications of condensed phosphoric acid-III Iodometric determination of sulphur after reduction of sulphate with sodium hypophosphite and either tin metal or potassium iodide in condensed phosphoric acid.

    PubMed

    Mizoguchi, T; Iwahori, H; Ishii, H

    1980-06-01

    Novel methods for the reduction of sulphate to hydrogen sulphide with hypophosphite-tin metal or hypophosphite-iodide in condensed phosphoric acid (CPA) are proposed. The reduction of sulphate with hypophosphite alone does not proceed quantitatively. Sulphate, however, is quantitatively decomposed with hypophosphite when tin metal or potassium iodide is used together with it. The determination of sulphur by the hypophosphite-tin metal-CPA and tin(II)-CPA methods is interfered with by copper on account of the stabilization of copper(I) sulphide, but this interference can be eliminated by adding iodide, e.g. potassium and lead salts. Alum and barytes are quantitatively decomposed within 15 min at 140 and 280 degrees , respectively. The hydrogen sulphide evolved is absorbed in zinc acetate solution at pH 4.5 and then determined by iodometry.

  17. Discrimination of ionic pollutants except condensation nuclei of acid fog using an ultrasonic humidifier.

    PubMed

    Yoshimura, Keiji; Kikuchi, Ryoei; Kimoto, Takashi; Ozeki, Toru; Imano, Kazuhiko; Kajikawa, Masahiro; Ogawa, Nobuaki

    2006-06-01

    Fog droplets in the atmosphere are first produced by the activation of cloud condensation nuclei (CCN), which are originally some ionic compound. Subsequently, the nuclei grow by vapor diffusion. Fog droplets are polluted through the activation process and successive diffusion growth and residence (post activation). We cannot distinguish the effects of the two pollution processes of natural fog water samples. We found that fog droplets can be produced artificially without CCN using an ultrasonic humidifier. Because the artificial fog droplets are not polluted by CCN, the movement of the fog droplets in natural air will take up some pollutants in the air. Consequently, the two pollution processes of fog (the activation of CCN and the post activation process) can be discriminated using data from field experiments. This sampling analytical method is extremely important for further research regarding fog, clouds and environmental chemistry.

  18. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  19. Exhaled breath condensate appears to be an unsuitable specimen type for the detection of influenza viruses with nucleic acid-based methods

    PubMed Central

    St. George, Kirsten; Fuschino, Meghan E.; Mokhiber, Katharine; Triner, Wayne; Spivack, Simon D.

    2013-01-01

    Exhaled breath condensate is an airway-derived specimen type that has shown significant promise in the diagnosis of asthma, cancer, and other disorders. The presence of human genomic DNA in this sample type has been proven, but there have been no reports on its utility for the detection of respiratory pathogens. The suitability of exhaled breath condensate for the detection of influenza virus was investigated, as an indication of its potential as a specimen type for respiratory pathogen discovery work. Matched exhaled condensates and nasopharyngeal swabs were collected from 18 adult volunteers. Eleven cases were positive for influenza A virus, and one was positive for influenza B virus. All swab samples tested positive in real-time amplification assays, but only one exhaled condensate, an influenza A positive sample with a very high viral load, tested positive in the real-time RT-PCR assay. Most of the positive nasopharyngeal swab samples inoculated for virus culture also tested positive, whereas influenza virus was not grown from any of the exhaled condensate specimens. It was concluded that influenza viruses are not readily detectable with culture or nucleic acid-based techniques in this sample type, and that exhaled breath condensate may not be suitable for respiratory pathogen investigations with molecular methods. PMID:19733195

  20. Exhaled breath condensate appears to be an unsuitable specimen type for the detection of influenza viruses with nucleic acid-based methods.

    PubMed

    St George, Kirsten; Fuschino, Meghan E; Mokhiber, Katharine; Triner, Wayne; Spivack, Simon D

    2010-01-01

    Exhaled breath condensate is an airway-derived specimen type that has shown significant promise in the diagnosis of asthma, cancer, and other disorders. The presence of human genomic DNA in this sample type has been proven, but there have been no reports on its utility for the detection of respiratory pathogens. The suitability of exhaled breath condensate for the detection of influenza virus was investigated, as an indication of its potential as a specimen type for respiratory pathogen discovery work. Matched exhaled condensates and nasopharyngeal swabs were collected from 18 adult volunteers. Eleven cases were positive for influenza A virus, and one was positive for influenza B virus. All swab samples tested positive in real-time amplification assays, but only one exhaled condensate, an influenza A positive sample with a very high viral load, tested positive in the real-time RT-PCR assay. Most of the positive nasopharyngeal swab samples inoculated for virus culture also tested positive, whereas influenza virus was not grown from any of the exhaled condensate specimens. It was concluded that influenza viruses are not readily detectable with culture or nucleic acid-based techniques in this sample type, and that exhaled breath condensate may not be suitable for respiratory pathogen investigations with molecular methods.

  1. 21 CFR 573.500 - Condensed, extracted glutamic acid fermentation product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... glutamic acid. (b) It is used or intended for use as follows: (1) In poultry feed as a source of protein in an amount not to exceed 5 percent of the total ration. (2) In cattle feed as a source of protein...

  2. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  3. Fatty acid derivative, chemokine, and cytokine profiles in exhaled breath condensates can differentiate adult and children paucibacillary tuberculosis patients.

    PubMed

    Mosquera-Restrepo, Sergio Fabián; Caro, Ana Cecilia; García, Luis F; Peláez-Jaramillo, Carlos Alberto; Rojas, Mauricio

    2017-01-09

    The anti-mycobacterial immune response in adults and children with tuberculosis (TB), as well as the response in bacteriologically positive and negative patients, is different. However, knowledge of the immunological events occurring in the lungs in these clinical situations remains scarce. Exhaled breath condensate (EBC) samples may be useful for studying the inflammatory environment of the lower airways in TB patients. The fatty acid, cytokine, and chemokine profiles in EBC from healthy adults; smear-positive and smear-negative adult patients; and healthy, asthmatic, and TB children were determined using gas chromatography and LUMINEX, respectively. Unsaturated fatty acids, particularly oleate, were increased in TB adults and children compared with healthy individuals. Elevated levels of IL-17 were characteristic of paucibacillary patients (adults and children), whereas elevated MCP-1 (monocyte chemotactic protein-1) levels were characteristic of adult patients (smear-positive and smear-negative). The levels of all of the molecules were comparable to the controls after anti-TB treatment, suggesting that changes in the levels of the molecules detected in the EBC samples were the result of the active pulmonary TB. EBC samples may be an important tool for the detection of potential early biomarkers in the different clinical manifestations of pulmonary TB and a useful tool for the diagnosis of TB, particularly in children.

  4. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    SciTech Connect

    Yu Xiaofang; Yu Xiaobo; Wu Shujie; Liu Bo; Liu Heng; Guan Jingqi; Kan Qiubin

    2011-02-15

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N{sub 2} adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization. -- Graphical abstract: Proximal-C-A-SBA-15 with a proximal acid-base distance and maximum-C-A-SBA-15 with a maximum acid-base distance were synthesized by immobilizing lysine onto carboxyl-SBA-15. Display Omitted Research highlights: {yields} Proximal-C-A-SBA-15 with a proximal acid-base distance. {yields} Maximum-C-A-SBA-15 with a maximum acid-base distance. {yields} Compared to maximum-C-A-SBA-15, proximal-C-A-SBA-15 was more active toward aldol condensation reaction between acetone and various aldehydes.

  5. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  6. The effect of cottonseed condensed tannins on the ileal digestibility of amino acids in casein and cottonseed kernel.

    PubMed

    Yu, F; Moughan, P J; Barry, T N

    1996-05-01

    The effect of adding cottonseed hulls to casein- and cottonseed-kernel-based diets on the apparent and true ileal digestibility of N and amino acids, and the proportion of this effect accounted for by condensed tannin (CT), were determined using the growing rat. Sixty rats were allocated randomly to ten semipurified diets, containing either casein (four diets) or purified unheated solvent-extracted cottonseed kernel (six diets) as the sole protein source, with Cr2O3 added as an indigestible marker. Two of the casein diets contained no hulls whilst the remaining two diets contained 70 g cottonseed hulls/kg. Two of the cottonseed-kernel-based diets contained no hulls, with two containing 23 g hulls/kg and the remaining two containing 46 g hulls/kg. For each pair of diets, PEG was either included or excluded. The effect of CT was quantified by comparing control rats (-PEG; CT acting) with PEG-supplemented rats (+PEG; CT inactivated) at each level of dietary hulls. The rats were given their respective experimental diets for 14 d. Each rat was given the food ad libitum for 10 min hourly from 08.00 to 18.00 hours. On day 14, samples of digesta were collected at death from the terminal 150 mm of ileum at 7 h from the first meal. Apparent and true ileal digestibilities were calculated for DM, N and the individual amino acids. The principal finding was that the inclusion of hulls depressed the apparent and true ileal digestibilities of N and amino acids, but with the response differing between diets. With the casein-based diet the mean apparent and true ileal amino acid digestibilities were significantly depressed from 0.89 and 0.96 to 0.85 and 0.92 respectively, by the inclusion of 70 g hulls/kg in the diet, and addition of PEG then restored these to 0.89 and 0.95. All of the depression could be explained by the CT content of the hulls. However, with the cottonseed-kernel-based diet the responses fell into three categories. The apparent and true ileal digestibilities of

  7. CONDENSATION CAN

    DOEpatents

    Booth, E.T. Jr.; Pontius, R.B.; Jacobsohn, B.A.; Slade, C.B.

    1962-03-01

    An apparatus is designed for condensing a vapor to a solid at relatively low back pressures. The apparatus comprises a closed condensing chamber, a vapor inlet tube extending to the central region of the chamber, a co-axial tubular shield surrounding the inlet tube, means for heating the inlet tube at a point outside the condensing chamber, and means for refrigeratirg the said chamber. (AEC)

  8. The influence of the form of condensation nucleus on the formation and propagation of acid precipitation near operating TPS

    NASA Astrophysics Data System (ADS)

    Gvozdyakov, D. V.; Gubin, V. E.

    2015-01-01

    The results of numerical studies of condensation on the surface of the air component of atmospheric condensation nuclei of various shapes. Mathematical modeling performed at ambient temperatures typical of summer and winter seasons. It is found that the trajectory of motion of particles of various shapes differ significantly. Numerical studies were carried out at atmospheric parameters corresponding airspace adjacent to the areas of the TPP. Testing results obtained audited conservative difference scheme.

  9. Nucleic acid binding properties of a helix stabilising nucleoid protein from the thermoacidophilic archaeon Sulfolobus acidocaldarius that condenses DNA into compact structures.

    PubMed

    Celestina, F; Suryanarayana, T

    1995-12-01

    Helix stabilising nucleoid protein (HSNP-C') from an acidothermophilic archaeon Sulfolobus acidocaldarius has been characterised with respect to interaction with nucleic acids by gel retardation assay, binding to nucleic acid columns, fluorescence titrations and electron microscopy. The protein exists in solution as very large multimeric aggregates as indicated by cross-linking studies. The protein binds strongly and co-operatively to double stranded DNA. Electron microscopy of the complexes of the protein with DNA shows compact structures suggesting that the protein condenses DNA.

  10. Acidic Condensation of BODIPYs with Aldehydes: A Quick and Versatile Route to Alkenyl-BODIPYs and C(sp(3) )-Connected DYEmers.

    PubMed

    Ahrens, Johannes; Cordes, Birte; Wicht, Richard; Wolfram, Benedikt; Bröring, Martin

    2016-07-18

    The condensation of aldehydes with BODIPY (boron dipyrrin) luminophores was investigated. Formaldehyde can be used to connect two BODIPYs at each of the three pyrrolic C positions (α-, β-, and β'-positions) in a quick and highly selective manner, yielding new DYEmers (di- and oligomeric BODIPY derivatives) with varied photophysical properties. Benzaldehydes form DYEmers only at the β- and the β'-positions. For aliphatic aldehydes the DYEmer formation competes with the elimination of water from a proposed alcohol intermediate, leading to the formation of α- and β-alkenyl-BODIPYs. 2-Phenylacetaldehyde and similar precursors exclusively yield elimination products. These acid-mediated transformations are valuable alternatives to the well-established, base-promoted Knoevenagel condensation protocol that is typically employed in the preparation of BODIPYs with near infrared (NIR)-shifted absorptions.

  11. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  12. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach.

    PubMed

    Palaskar, Dnyaneshwar V; Boyer, Aurélie; Cloutet, Eric; Alfos, Carine; Cramail, Henri

    2010-05-10

    Polyurethane (PU) from methyl oleate (derived from sunflower oil) and ricinoleic acid (derived from castor oil) was synthesized using the AB-type self-polycondensation approach for the first time. In the present work, three novel AB-type monomers, namely, a mixture of 10-hydroxy-9-methoxyoctadecanoyl azide/9-hydroxy-10-methoxyoctadecanoyl azide (HMODAz), 12-hydroxy-9-cis-octadecenoyl azide (HODEAz) and methyl-N-11-hydroxy-9-cis-heptadecen carbamate (MHHDC) were synthesized from methyl oleate and ricinoleic acid using simple reaction steps. Out of these, HMODAz and HODEAz monomers were polymerized by the acyl-azido and hydroxyl AB-type self-condensation approach, while MHHDC monomer was polymerized through AB-type self-condensation via transurethane reaction. The acyl-azido and hydroxyl self-condensations were carried out at various temperatures (50, 60, 80. and 110 degrees C) in bulk with and without catalyst. A FTIR study of the polymerization, using HMODAz at 80 degrees C without catalyst, indicates in situ formation of an intermediate isocyanate group in the first 15-30 min, and further onward, the molar mass increases as observed by SEC analysis. In the case of the MHHDC monomer, a transurethane reaction was used to obtain a similar PU (which was obtained by AB-type acyl-azido and hydroxyl self-condensation of HODEAz) in the presence of titanium tetrabutoxide as a catalyst at 130 degrees C. HMODAz, HODEAz, MHHDC, and corresponding polyurethanes were characterized by FTIR, (1)H NMR, (13)C NMR, and MALDI-TOF mass spectroscopy. Differential scanning calorimetric analysis of polyurethanes derived from HMODAz, HODEAz, and MHHDC showed two different glass transition temperatures for soft segments (at lower temperature) and hard segments (at higher temperature), indicating phase-separated morphology.

  13. Localization of neurofibromas by scanning with technetium-99m diethylene triamine-pentacetic acid (Tc-99 DTPA)

    SciTech Connect

    Mandell, G.A.; Herrick, W.C.; Harcke, H.T.; Sharkey, C.; Brooks, K.; MacEwen, G.D.

    1985-05-01

    Tc-99m DTPA is commonly utilized to evaluate renal function. Reports of a uterine myoma and a soft tissue sarcoma accumulating this radiopharmaceutical have also appeared in the literature. The authors have observed the affinity for plexiform as well as well circumscribed soft tissue tumors of neurofibromatosis for Tc-99m DTPA. In a series of 16 patients with clinical stigmata of neurofibromatosis, twenty-eight sites of abnormal soft tissue localization of the isotope were documented by clinical and radiographic (predominantly CT) correlation. The best visualization of the tumors occurred 1 to 3 hours post-injection of the radiopharmaceutical. Multiple images (150,000 to 500,000 counts) of areas suspected of having neurofibromatous involvement were obtained. Several unsuspected lesions were recognized. Similar images obtained in sixteen control patients showed no similar soft tissue localization. The smallest lesion detected was a 1.5-centimeter subcutaneous neurofibroma. The mechanism for selectivity of neurofibroma for Tc-99m DTPA does not appear to be related to hypervascularity or necrosis. Time activity curves of several lesions demonstrate gradual increase in their activity pointing to cellular uptake or stasis within the tumor as possible explanations. The significance of this observation relates to easy mapping of lesions with minimal radiation. Important implications of this discovery include sequential evaluation of tumor growth and detection of unsuspected lesions.

  14. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme.

    PubMed Central

    Micanovic, R; Bailey, C A; Brink, L; Gerber, L; Pan, Y C; Hulmes, J D; Udenfriend, S

    1988-01-01

    A carboxyl-terminal chymotryptic peptide from mature human placental alkaline phosphatase was purified by HPLC and monitored by a specific RIA. Sequencing and amino acid assay showed that the carboxyl terminus of the peptide was aspartic acid, representing residue 484 of the proenzyme as deduced from the corresponding cDNA. Further analysis of the peptide showed it to be a peptidoglycan containing one residue of ethanolamine, one residue of glucosamine, and two residues of neutral hexose. The inositol glycan is apparently linked to the alpha carboxyl group of the aspartic acid through the ethanolamine. Location of the inositol glycan on Asp-484 of the proenzyme indicates that a 29-residue peptide is cleaved from the nascent protein during the post-translational condensation with the phosphatidylinositol-glycan. PMID:3422741

  15. Protection by uridine diphosphoglucuronic acid and DT-diaphorase against the cytotoxicity of polycyclic aromatic hydrocarbons isolated from a complex coal gasification condensate.

    PubMed

    Swanson, M S; Haugen, D A; Reilly, C A; Stamoudis, V C

    1986-06-30

    The cytotoxicities of polycyclic aromatic hydrocarbon (PAH) subclasses isolated from a complex organic mixture (coal gasification condensate) were studied in vitro in Chinese hamster ovary cells, in the presence of rat liver microsomes from animals pretreated with Aroclor. Toxicity was enhanced by microsomal metabolism and was inversely related to aromatic ring number. Rat liver cytosol, semipurified DT-diaphorase, and uridine diphosphoglucuronic acid decreased the cytotoxicity of a variety of PAH mixtures and representative PAH, as well as individual PAH metabolites. The results indicate that the in vitro toxicity of complex PAH mixtures is caused primarily by hydroxy-PAH and quinone metabolites of the predominant, nonmutagenic two- and three-ring PAHs.

  16. Fingerprints of the hydrogen bond in the photoemission spectra of croconic acid condensed phase: An x-ray photoelectron spectroscopy and ab-initio study

    SciTech Connect

    Bisti, F.; Stroppa, A.; Picozzi, S.; Ottaviano, L.

    2011-05-07

    The electronic structure of Croconic Acid in the condensed phase has been studied by comparing core level and valence band x-ray photoelectron spectroscopy experiments and first principles density functional theory calculations using the Heyd-Scuseria-Ernzerhof screened hybrid functional and the GW approximation. By exploring the photoemission spectra for different deposition thicknesses, we show how the formation of the hydrogen bond network modifies the O 1s core level lineshape. Moreover, the valence band can be explained only if the intermolecular interactions are taken into account in the theoretical approach.

  17. Role of amino acid insertions on intermolecular forces between arginine peptide condensed DNA helices: implications for protamine-DNA packaging in sperm.

    PubMed

    DeRouchey, Jason E; Rau, Donald C

    2011-12-09

    In spermatogenesis, chromatin histones are replaced by arginine-rich protamines to densely compact DNA in sperm heads. Tight packaging is considered necessary to protect the DNA from damage. To better understand the nature of the forces condensing protamine-DNA assemblies and their dependence on amino acid content, the effect of neutral and negatively charged amino acids on DNA-DNA intermolecular forces was studied using model peptides containing six arginines. We have previously observed that the neutral amino acids in salmon protamine decrease the net attraction between protamine-DNA helices compared with the equivalent homo-arginine peptide. Using osmotic stress coupled with x-ray scattering, we have investigated the component attractive and repulsive forces that determine the net attraction and equilibrium interhelical distance as a function of the chemistry, position, and number of the amino acid inserted. Neutral amino acids inserted into hexa-arginine increase the short range repulsion while only slightly affecting longer range attraction. The amino acid content alone of salmon protamine is enough to rationalize the forces that package DNA in sperm heads. Inserting a negatively charged amino acid into hexa-arginine dramatically weakens the net attraction. Both of these observations have biological implications for protamine-DNA packaging in sperm heads.

  18. Condensation polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1989-01-01

    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application.

  19. The role of hydroxyl group acidity on the activity of silica-supported secondary amines for the self-condensation of n-butanal.

    PubMed

    Shylesh, Sankaranarayanapillai; Hanna, David; Gomes, Joseph; Canlas, Christian G; Head-Gordon, Martin; Bell, Alexis T

    2015-02-01

    The catalytic activity of secondary amines supported on mesoporous silica for the self-condensation of n-butanal to 2-ethylhexenal can be altered significantly by controlling the Brønsted acidity of M--OH species present on the surface of the support. In this study, M--OH (M=Sn, Zr, Ti, and Al) groups were doped onto the surface of SBA-15, a mesoporous silica, prior to grafting secondary propyl amine groups on to the support surface. The catalytic activity was found to depend critically on the synthesis procedure, the nature and amount of metal species introduced and the spatial separation between the acidic sites and amine groups. DFT analysis of the reaction pathway indicates that, for weak Brønsted acid groups, such as Si--OH, the rate-limiting step is C--C bond formation, whereas for stronger Brønsted acid groups, such as Ti and Al, hydrolysis of iminium species produced upon C--C bond formation is the rate-limiting step. Theoretical analysis shows further that the apparent activation energy decreases with increasing Brønsted acidity of the M--OH groups, consistent with experimental observation.

  20. 3-Ketoacyl-acyl carrier protein synthase III from spinach (Spinacia oleracea) is not similar to other condensing enzymes of fatty acid synthase.

    PubMed Central

    Tai, H; Jaworski, J G

    1993-01-01

    A cDNA clone encoding spinach (Spinacia oleracea) 3-ketoacyl-acyl carrier protein synthase III (KAS III), which catalyzes the initial condensing reaction in fatty acid biosynthesis, was isolated. Based on the amino acid sequence of tryptic digests of purified spinach KAS III, degenerate polymerase chain reaction (PCR) primers were designed and used to amplify a 612-bp fragment from first-strand cDNA of spinach leaf RNA. A root cDNA library was probed with the PCR fragment, and a 1920-bp clone was isolated. Its deduced amino acid sequence matched the sequences of the tryptic digests obtained from the purified KAS III. Northern analysis confirmed that it was expressed in both leaf and root. The clone contained a 1218-bp open reading frame coding for 405 amino acids. The identity of the clone was confirmed by expression in Escherichia coli BL 21 as a glutathione S-transferase fusion protein. The deduced amino acid sequence was 48 and 45% identical with the putative KAS III of Porphyra umbilicalis and KAS III of E. coli, respectively. It also had a strong local homology to the plant chalcone synthases but had little homology with other KAS isoforms from plants, bacteria, or animals. PMID:8290632

  1. A {sup 13}C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the Bronsted acid sites in H-ZSM-5

    SciTech Connect

    Biaglow, A.I.; Sepa, J.; Gorte, R.J.

    1995-02-01

    Several bimolecular, acid-catalyzed condensation reactions of acetone and acetaldehyde have been examined in H-ZSM-5, along with the adsorption complexes formed by the products, using {sup 13}C NMR. For acetone, the hydrogen-bonded adsorption complex is stable at room temperature and coverages below one molecule per Broensted acid site. Reaction to mesityl oxide occurs only at higher coverages or temperatures, which are necessary to induce site exchange. The adsorption complex exhibits reaction chemistry analogous to that observed in solution phase, forming adsorption complexes of chloroacetone upon exposure to Cl{sub 2} and of imines upon exposure to NH{sub 3} or dimethylamine. The reactions of acetaldehyde to crotonaldehyde and imines are similar, although they occur at a faster rate due to the higher mobility of this molecule. The adsorption complexes formed by acetone, acetaldehyde, and their condensation products can all be described as rigid, hydrogen-bonded complexes at low coverages. Complexes formed from imines and enamines exhibit isotropic chemical shifts nearly identical to those observed in magic acids, indicating that proton transfer is nearly complete for these molecules. The extent of proton transfer for the remaining molecules varies with the proton affinity of the molecule, ranging from close to complete proton transfer for mesityl oxide and crotonaldehyde to almost complete absence of proton transfer for the chloroacetones. The differences and similarities between these reactions in the zeolite and in solution phase are discussed, along with the implications for understanding the primary processes responsible for these reactions in zeolites. 34 refs., 16 figs., 1 tab.

  2. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, BR; Frias, JA; Wackett, LP; Wilmot, CM

    2012-05-22

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acylcoenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short beta-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117 beta) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117

  3. Crystal Structures of Xanthomonas campestris OleA Reveal Features That Promote Head-to-Head Condensation of Two Long-Chain Fatty Acids

    SciTech Connect

    Goblirsch, Brandon R.; Frias, Janice A.; Wackett, Lawrence P.; Wilmot, Carrie M.

    2012-10-25

    OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short {beta}-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117{beta}) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly

  4. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  5. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  6. Epimerization in peptide thioester condensation.

    PubMed

    Teruya, Kenta; Tanaka, Takeyuki; Kawakami, Toru; Akaji, Kenichi; Aimoto, Saburo

    2012-11-01

    Peptide segment couplings are now widely utilized in protein chemical synthesis. One of the key structures for the strategy is the peptide thioester. Peptide thioester condensation, in which a C-terminal peptide thioester is selectively activated by silver ions then condensed with an amino component, is a powerful tool. But the amino acid adjacent to the thioester is at risk of epimerization. During the preparation of peptide thioesters by the Boc solid-phase method, no substantial epimerization of the C-terminal amino acid was detected. Epimerization was, however, observed during a thioester-thiol exchange reaction and segment condensation in DMSO in the presence of a base. In contrast, thioester-thiol exchange reactions in aqueous solutions gave no epimerization. The epimerization during segment condensation was significantly suppressed with a less polar solvent that is applicable to segments in thioester peptide condensation. These results were applied to a longer peptide thioester condensation. The epimer content of the coupling product of 89 residues was reduced from 27% to 6% in a condensation between segments of 45 and 44 residues for the thioester and the amino component, respectively.

  7. Acid-catalyzed condensed-phase reactions of limonene and terpineol and their impacts on gas-to-particle partitioning in the formation of organic aerosols.

    PubMed

    Li, Yong Jie; Cheong, Gema Y L; Lau, Arthur P S; Chan, Chak K

    2010-07-15

    We investigated the condensed-phase reactions of biogenic VOCs with C double bond C bonds (limonene, C(10)H(16), and terpineol, C(10)H(18)O) catalyzed by sulfuric acid by both bulk solution (BS) experiments and gas-particle (GP) experiments using a flow cell reactor. Product analysis by gas chromatography-mass spectrometry (GC-MS) showed that cationic polymerization led to dimeric and trimeric product formation under conditions of relative humidity (RH) <20% (in the GP experiments) and a sulfuric acid concentration of 57.8 wt % (in the BS experiments), while hydration occurred under conditions of RH > 20% (in the GP experiments) and sulfuric acid concentrations of 46.3 wt % or lower (in the BS experiments). Apparent partitioning coefficients (K(p,rxn)) were estimated from the GP experiments by including the reaction products. Only under extremely low RH conditions (RH < 5%) did the values of K(p,rxn) ( approximately 5 x 10(-6) m(3)/microg for limonene and approximately 2 x 10(-5) m(3)/microg for terpineol) substantially exceed the physical partitioning coefficients (K(p) = 6.5 x 10(-8) m(3)/microg for limonene and =2.3 x 10(-6) m(3)/microg for terpineol) derived from the absorptive partitioning theory. At RH higher than 5%, the apparent partitioning coefficients (K(p,rxn)) of both limonene and terpineol were in the same order of magnitude as the K(p) values derived from the absorptive partitioning theory. Compared with other conditions including VOC concentration and degree of neutralization (by ammonium) of acidic particles, RH is a critical parameter that influences both the reaction mechanisms and the uptake ability (K(p,rxn) values) of these processes. The finding suggests that RH needs to be considered when taking the effects of acid-catalyzed reactions into account in estimating organic aerosol formation from C double bond C containing VOCs.

  8. Studies of manufacturing controlled-release graphene acid and catalyzing synthesis of chalcone with Claisen-Schmidt condensation reaction

    NASA Astrophysics Data System (ADS)

    Li, Jihui; Feng, Jia; Li, Mei; Wang, Qiaolian; Su, Yumin; Jia, Zhixin

    2013-07-01

    In the paper, graphene acid (GA) was manufactured, using flake graphite as raw material, and the acidity and the structure of GA were characterized as well as. Then, chalcone was synthesized in the presence of GA, using acetophenone and benzaldehyde as the reactant. The results showed that the acidity of GA was for pH = 1.12 in aqueous solution, and it was structured by the graphene sheets with the spaces between the graphene sheet and the graphene sheet and sulfuric acid (H2SO4) and acetic acid (CH3CO2H) inside the spaces. At the same time, the results also exhibited that the chalcone yield was able to reach 60.36% when GA dosage was 5 g, and the chalcone yields could attain apart 60.36, 52.05 and 31.16% when 5 g of GA was used thrice. This shows that GA is not only a high-performance catalyst, but also a controlled-release catalyst.

  9. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions.

    PubMed

    Wang, Yehong; Wang, Feng; Song, Qi; Xin, Qin; Xu, Shutao; Xu, Jie

    2013-01-30

    The use of a heterogeneous Lewis acid catalyst, which is insoluble and easily separable during the reaction, is a promising option for hydrolysis reactions from both environmental and practical viewpoints. In this study, ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260, which is rather high for bulk oxide catalysts, whose TONs are usually less than 100. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and (31)P magic-angle-spinning NMR spectroscopy, Na(+)/H(+) exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO(2)(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. This explains why the ceria catalyst is water-tolerant.

  10. Endogenous Levels of Five Fatty Acid Metabolites in Exhaled Breath Condensate to Monitor Asthma by High-Performance Liquid Chromatography: Electrospray Tandem Mass Spectrometry

    PubMed Central

    Nording, Malin L.; Yang, Jun; Hegedus, Christine M.; Bhushan, Abhinav; Kenyon, Nicholas J.; Davis, Cristina E.; Hammock, Bruce D.

    2010-01-01

    Airway inflammation characterizing asthma and other airway diseases may be monitored through biomarker analysis of exhaled breath condensate (EBC). In an attempt to discover novel EBC biomarkers, a high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method was used to analyze EBC from ten control non-asthmatics and one asthmatic individual for five fatty acid metabolites: 9,12,13-trihydroxyoctadecenoic acid (9,12,13-TriHOME), 9,10,13-TriHOME, 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME), 12-hydroxyeicosatetraenoic acid (12-HETE), and 12(13)-epoxyoctadecenoic acid (12(13)-EpOME). The method was shown to be sensitive, with an on-column limit of quatitation (LOQ) in the pg range (corresponding to pM concentrations in EBC), and linear over several orders of magnitude for each analyte in the calibrated range. Analysis of EBC spiked with the five fatty acid metabolites was within 81%–119% with only a few exceptions. Endogenous levels in EBC exhibited intra- and inter-assay precision of 10%–22%, and 12%–36%, respectively. EBC from the healthy subjects contained average analyte levels between 15 and 180 pM with 12-HETE present above the LOQ in only one of the subjects at a concentration of 240 pM. Exposure of the asthmatic subject to allergen led to increased EBC concentrations of 9,12,13-TriHOME, 9,10,13-TriHOME, 12,13-DiHOME, and 12(13)-EpOME when compared to levels in EBC collected prior to allergen exposure (range =40–510 pM). 12,13-DiHOME was significantly increased (Student's t-test, p < 0.05). In conclusion, we have developed a new HPLC-ESI-MS/MS method for the analysis of five fatty acid metabolites in EBC, which are potential biomarkers for asthma monitoring and diagnosis. PMID:21103452

  11. The effect of condensed tannins from heated and unheated cottonseed on the ileal digestibility of amino acids for the growing rat and pig.

    PubMed

    Yu, F; Moughan, P J; Barry, T N; McNabb, W C

    1996-09-01

    The effect of condensed tannins (CT) from heated and unheated cottonseed on the apparent ileal digestibility of amino acids for the growing rat and pig was determined. In Expt 1, twenty-four rats were allocated to four semi-purified diets which contained cottonseed kernel and hulls as the only protein source. Two of the diets contained unheated solvent-extracted cottonseed kernel and hulls, while the remaining two diets contained similar material but which had been heat-treated by autoclaving at 110 degrees for 120 min. In Expt 2, twelve rats and twelve pigs were fed on four semi-purified diets containing commercial cottonseed meal (CSM) as the only protein source. Cr2O3 was added to all diets as an indigestible marker. For each pair of diets in both experiments, PEG was either included or excluded. The effect of CT was assessed by comparing control animals (-PEG; CT acting) with PEG-supplemented animals (+PEG; CT inactivated). Ileal contents from the terminal 150 and 450 mm of ileum were collected at slaughter, 7 h from the start of feeding, for the rats and pigs respectively. Apparent ileal amino acid digestibility for rats fed on the diet containing cottonseed kernel and hulls was significantly depressed by the heat treatment, particularly for lysine and threonine. On average, apparent ileal amino acid digestibility in the diets without PEG was decreased from 0.80 to 0.70 by heat treatment. Dietary cottonseed CT depressed apparent ileal protein digestibility in the pig and in the rat. The addition of PEG to the diets significantly increased the apparent ileal digestibility of N and some amino acids for the pigs and the rats. The mean increase in apparent ileal digestibility due to PEG addition for the fourteen amino acids was 2 percentage units in both species fed on the commercial CSM diets, and 2 or 4 percentage units in rats fed on the unheated or the heated cottonseed kernel and hull diets respectively. The effect of PEG was similar in the heated and

  12. Occurrence of 2-methylthiazolidine-4-carboxylic acid, a condensation product of cysteine and acetaldehyde, in human blood as a consequence of ethanol consumption.

    PubMed

    Reischl, Roland J; Bicker, Wolfgang; Keller, Thomas; Lamprecht, Günther; Lindner, Wolfgang

    2012-10-01

    Acetaldehyde is a strongly electrophilic compound that is endogenously produced as a first intermediate in oxidative ethanol metabolism. Its high reactivity towards biogenic nucleophiles has toxicity as a consequence. Acetaldehyde readily undergoes a non-enzymatic condensation reaction and consecutive ring formation with cysteine to form 2-methylthiazolidine-4-carboxylic acid (MTCA). For analytical purposes, N-acetylation of MTCA was required for stabilization and to enable its quantification by reversed-phase chromatography combined with electrospray ionization-tandem mass spectrometry. Qualitative screening of post mortem blood samples with negative blood alcohol concentration (BAC) mostly showed low basal levels of MTCA. In BAC-positive post mortem samples, but not in corresponding urine specimens, strongly increased levels were present. To estimate the association between ethanol consumption and the occurrence of MTCA in human blood, the time curves of BAC and MTCA concentration were determined after a single oral dose of 0.5 g ethanol per kilogram of body weight. The blood elimination kinetics of MTCA was slower than that of ethanol. The peak concentration of MTCA (12.6 mg L(-1)) was observed 4 h after ethanol intake (BAC 0.07‰) and MTCA was still detectable after 13 h. Although intermediary acetaldehyde scavenging by formation of MTCA is interesting from a toxicological point of view, lack of hydrolytic stability under physiological conditions may hamper the use of MTCA as a quantitative marker of acetaldehyde exposure, such as resulting from alcohol consumption.

  13. Stereocomplexity and stereoselective synthesis of triamine molecules bearing four chiral carbon centers: Stereodifferentiated preparation of all 10 stereoisomers of 2,6-bis[1-(1-phenylethylamino)ethyl]pyridines.

    PubMed

    Uenishi, Jun'ichi; Aburatani, Sachiko; Takami, Taro

    2007-01-05

    Compounds (S,S)-2,6-bis(1-hydroxyethyl)pyridine, (R,R)-2,6-bis(1-acetoxyethyl)pyridine, and (1R,1'S)-2-(1-acetoxyethyl)-6-(1'-hydroxyethyl)pyridine were obtained by lipase-catalyzed kinetic acetylation of 2,6-bis(1-hydroxyethyl)pyridine as enantiomerically pure forms. The stereospecific replacement of hydroxy groups with (R)-phenylethylamine or (S)-phenylethylamine via its methanesulfonate or toluenesulfonate simultaneously or stepwise afforded all the stereoisomers of 1. Stereospecific preparation of all the 10 possible stereoisomers of 2,6-bis[1-(1-phenylethylamino)ethyl]pyridines 1a-f was achieved. Triamine 1b reacted with ZnCl2 to form Zn-triamine complex 16, the structure of which was determined by X-ray crystallographic analysis.

  14. Condensation model for the ESBWR passive condensers

    SciTech Connect

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-07-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  15. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM.

    PubMed

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-12-18

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r₁) values about four times higher than that of clinically used Gd-DTPA (Magnevist(®), Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (K(a)) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The K(a) values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  16. The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L.

    PubMed

    Waghorn, G C; Ulyatt, M J; John, A; Fisher, M T

    1987-01-01

    Sheep were used to evaluate the nutritional consequences of a low condensed-tannin concentration (22 g/kg dry matter (DM)) in lotus (Lotus corniculatus L.) (control group) compared with lotus given to sheep receiving intraruminal polyethylene glycol (PEG) infusion (PEG group). PEG selectively binds to tannins and prevents tannins from binding proteins. DM intakes (1430 (SE 28) g/d) and digestibility of energy (663 (SE 4.5) kJ/MJ intake) were similar for both groups but the apparent digestion of nitrogen was lower in the control sheep (0.70) than in the PEG sheep (0.78; P less than 0.001). The proportion of N apparently digested before the abomasum (i.e. in the rumen) was lower (P less than 0.05) in control sheep (0.12) than in PEG sheep (0.21; P less than 0.05). Rumen ammonia concentrations were lower (P less than 0.001) in control sheep than in PEG sheep. The proportion of neutral-detergent fibre (NDF) digested in the rumen was similar for both groups (0.48 (SE 0.012)) but less energy was digested in the rumen of the control (0.42) than of the PEG sheep (0.47; P less than 0.05). The flux of essential amino acids (EAA) through the abomasum of control sheep was 50% greater than that in PEG sheep; flux of non-essential amino acids (NEAA) was 14% higher in control than in PEG sheep. Apparent digestibility of EAA in the small intestine was similar for both treatments (0.67), but NEAA were less well digested in the control (0.55) than in the PEG sheep (0.69). The presence of tannins in the control group increased net apparent absorption of threonine (57%), valine (89%), isoleucine (94%), leucine (30%), tyrosine (41%), phenylalanine (93%), histidine (90%) and lysine (59%), and reduced NEAA absorption by 10%, compared with PEG sheep.

  17. New technology in condensate polishing

    SciTech Connect

    Kunin, R.; Salem, E.; Libutti, B. . Water Div.)

    1992-08-01

    Sulfonic acid ion exchange resins. when carried into a boiler or steam generator, thermally decompose releasing large amounts of corrosive, sulfates. Replacement of the sulfonic acid resin with a carboxylic acid resin would eliminate this source of contamination. The sulfonic acid resin is a strong acid: the carboxylic acid resin is a weak acid. The carboxylic acid resin alone is not capable of splitting salts which limits its use to mixed resin beds or to its use in single or individual beds with feeds of high alkalinity or high pH values. Laboratory, pilot plant and full scale plant tests compared the two resins in precoat filters. When the resins in mixed beds were in the acid form, the weakly acid resin was almost as effective in removing sodium ion as the strongly acid resin. In the ammonium form. the weakly acid resin was generally more effective in removing sodium than the strongly acid resin. Condensate polishing reduced the sodium ion to a few parts per billion (ppB). Complete resin separation before regeneration is more important for the weakly acid resin than for the strongly acid resin. Another development found that the hydrazine reaction with oxygen could be catalyzed by powdered activated carbon combined with microfibers on a Powdex substrate. The carbon should be thoroughly washed to reduce its residual sodium content. In plant tests, the carbon reduced the oxygen concentration in condensate about 50% during startup. In preliminary tests believed to be typical, carbon lowered the oxygen concentration below 10 ppB in about 6 hours compared to 18 hours without the carbon. Oxygen is also reduced during normal operation.

  18. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  19. Synthesis of novel dendritic 2,2'-bipyridine ligands and their application to Lewis acid-catalyzed diels-alder and three-component condensation reactions.

    PubMed

    Muraki, Takahito; Fujita, Ken-ichi; Kujime, Masato

    2007-10-12

    A series of dendritic ligands with a 2,2'-bipyridine core was synthesized through the coupling of 4,4'-dihydroxy-2,2'-bipyridine with poly(aryl ether) dendrons. The corresponding dendritic Cu(OTf)2 catalysts were used for Diels-Alder and three-component condensation reactions. The dendritic Cu(OTf)2-catalyzed Diels-Alder reaction proceeded smoothly, and these dendritic catalysts could be recycled without deactivation by reprecipitation. Three-component condensation reactions such as Mannich-type reactions also proceeded not only in dichloromethane but also in water. Furthermore, a positive dendritic effect on chemical yields was observed in both Diels-Alder reactions and aqueous-media three-component condensation reactions.

  20. Effect of different inclusion level of condensed distillers solubles ratios and oil content on amino Acid digestibility of corn distillers dried grains with solubles in growing pigs.

    PubMed

    Li, P; Xu, X; Zhang, Q; Liu, J D; Li, Q Y; Zhang, S; Ma, X K; Piao, X S

    2015-01-01

    The purpose of this experiment was to determine and compare the digestibility of crude protein (CP) and amino acids (AA) in full-oil (no oil extracted) and de-oiled (oil extracted) corn distillers dried grains with solubles (DDGS) with different condensed distillers solubles (CDS) ratios. Six barrows (29.6±2.3 kg) fitted with ileal T-cannula were allotted into a 6×6 Latin square design. Each period was comprised of a 5-d adaption period followed by a 2-d collection of ileal digesta. The five test diets contained 62% DDGS as the sole source of AA. A nitrogen-free diet was used to measure the basal endogenous losses of CP and AA. Chromic oxide (0.3%) was used as an index in each diet. The results showed that CP and AA were very similar in 5 DDGS, but the standardized ileal digestibility (SID) of lysine (from 56.16% to 71.15%) and tryptophan (from 54.90% to 68.38%) had the lowest values and largest variation within the essential AA, which suggests reduced availability of AA and different levels of Maillard reactions in the five DDGS. The apparent ileal digestibility and SID of CP and most of AA in full-oil DDGS (sources 1 and 2) were greater (p<0.05) than de-oiled DDGS (sources 3, 4, and 5). Comparing the AA SID in the 5 DDGS, full-oil with low CDS ratio DDGS (source 1) had non-significantly higher values (p >0.05) than full-oil with high CDS ratio DDGS (source 2); however, the SID of most AA of de-oiled with low CDS ratios DDGS (source 3) were non-significantly lower (p>0.05) than de-oiled with high CDS ratio DDGS (source 4); and the de-oiled DDGS with middle CDS ratio (source 5) but with different drying processing had the lowest SID AA values. In conclusion, de-oiled DDGS had lower SID of CP and AA than full-oil DDGS; a higher CDS ratio tended to decrease the SID of AA in full-oil DDGS but not in de-oiled DDGS; and compared with CDS ratio, processing, especially drying, may have more of an effect on AA digestibility of DDGS.

  1. Condensates in Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.

  2. Stratospheric condensation nuclei variations may relate to solar activity

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1982-01-01

    Observations of increases of stratospheric condensation nuclei suggest a photo-initiated sulphuric acid vapour formation process in spring in polar regions. It is proposed that the sulphuric acid rapidly forms condensation nuclei through attachment to negatively charged multi-ion complexes and that the process may be modulated through variations in solar activity.

  3. Novel synthesis of a series of spiro 1,3-indanedione-fused dihydropyridines through the condensation of a tetrone with N-aryl/alkylenamines in presence of solid support silica sulfuric acid.

    PubMed

    Kundu, Ashis; Pramanik, Animesh

    2015-08-01

    A convenient protocol for the library synthesis of biologically important 1-aryl-2',6-spiro(1',3'-indanedione)-1H-indeno[1,2-b]quinoline-5,7-diones has been developed. In this one-pot reaction protocol a tetrone is condensed with various N-aryl/alkylenamines of 1,3-cyclohexadiones on the surface of a solid-supported acid catalyst silica sulfuric acid under solvent-free condition. The significant advantages of this methodology are the use of solvent-free reaction conditions, operational simplicity of the reaction, good yield of the products with high atom economy, and employment of a recyclable catalyst. All these favorable factors make the present method convenient, economic, and 'benign by design'.

  4. EPRI condensate polisher guidelines

    SciTech Connect

    Larkin, B.A.; Webb, L.C.; Sawochka, S.G.; Crits, G.J.; Pocock, F.J.; Wirth, L.

    1995-01-01

    Cycle chemistry is one of the most important contributors to the loss of availability of generating units. Condensate polishing can significantly improve cycle chemistry by improving cycle water quality and minimizing the transport of contaminants in the power cycle. The EPRI-funded project described in this paper developed comprehensive guidelines for condensate polishing based upon information gathered from utility surveys, equipment vendors, and resin suppliers. Existing literature was also surveyed for pertinent input. Comprehensive guidelines which outline guidance for design, operation, maintenance, surveillance, management, and retrofitting of condensate polishing systems were developed. Economics of condensate polishing were evaluated and a roadmap for economic evaluation for utilities to follow was produced.

  5. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  6. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  7. Synthesis of pyrazole containing α-amino acids via a highly regioselective condensation/aza-Michael reaction of β-aryl α,β-unsaturated ketones.

    PubMed

    Gilfillan, Lynne; Artschwager, Raik; Harkiss, Alexander H; Liskamp, Rob M J; Sutherland, Andrew

    2015-04-21

    A synthetic approach for the preparation of a new class of highly conjugated unnatural α-amino acids bearing a 5-arylpyrazole side-chain has been developed. Horner-Wadsworth-Emmons reaction of an aspartic acid derived β-keto phosphonate ester with a range of aromatic aldehydes gave β-aryl α,β-unsaturated ketones. Treatment of these with phenyl hydrazine followed by oxidation allowed the regioselective synthesis of pyrazole derived α-amino acids. As well as evaluating the fluorescent properties of the α-amino acids, their synthetic utility was also explored with the preparation of a sulfonyl fluoride derivative, a potential probe for serine proteases.

  8. Sedimentary condensation and authigenesis

    NASA Astrophysics Data System (ADS)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin (< 1m) beds, which were accumulated during extremely long time periods (> 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and

  9. Condensation of chondrules

    NASA Technical Reports Server (NTRS)

    Blander, M.

    1983-01-01

    Analysis of current experimental results concerned with the kinetic constraints on chondrule formation showed that the major physical properties of chondrules could have been produced by direct condensation of metastable liquid silicates droplets from a hot gas in the primordial nebula. It is argued that such a condensation process would have to be followed by crystallization, accretion, and partial comminution of the droplets. The chemical mechanisms driving this process are described, including: nucleation constraints on comminution and crystallization; slow transformations and chemical reactions in chain silicates; and the slow diffusion of ions. It is shown that the physical mechanisms for chondrule condensation are applicable to a broad spectrum of chondrule sources.

  10. Key condenser failure mechanisms

    SciTech Connect

    Buecker, B.

    2009-04-15

    Eight practical lessons highlight many of the factors that can influence condenser tube corrosion at coal-fired utilities and the effects contaminant in-leakage can have on steam generating units. 1 ref., 4 figs.

  11. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  12. Molecular equilibrium with condensation

    NASA Astrophysics Data System (ADS)

    Sharp, C. M.; Huebner, W. F.

    1990-02-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  13. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  14. [Effects of alcoholic beverages on the fatty acid spectrum of the expired air condensate lipids in patients with tuberculosis of the respiratory organs].

    PubMed

    Pikas, O B

    2000-01-01

    Results are highlighted of the study into the pulmonary surfactant in healthy subjects. as well as in those afflicted with pulmonary tuberculosis who abused alcoholic drinks, with the aid of the chromotography techniques. It has been ascertained that activity of the pulmonary surfactant is dependent upon the clinical form of tuberculosis, its extension and presence of alcoholism. The lipid polyunsaturated fatty acids, with the linoleic (C18:2) and arachidonic (C20:4) acids being the most sensitive ones to the process of lipid peroxidation (LPO), and the study into the spectrum of lipid fatty acids in the expired air consensate suggest intencity of LPO in the pulmonary surfactant and permit carrying out its correction in a timely fashion during the process of treatment.

  15. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts

    NASA Astrophysics Data System (ADS)

    Li, She-Qiang; Fu, Xing-Qiu; Hu, Bing; Deng, Jia-Jun; Chen, Lei

    2009-11-01

    The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7V, respectively. A specific surface area activity of 1.76 mA·cm-2 at 0.4 V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.

  16. Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of Cis/Trans Stereochemistry on Condensed Phase and Monolayer Structure.

    PubMed

    Sorrenti, Alessandro; Illa, Ona; Ortuño, Rosa M; Pons, Ramon

    2016-07-12

    New diastereomeric nonionic amphiphiles, cis- and trans-1, based on an optically pure cyclobutane β-amino ester moiety have been investigated to gain insight into the influence exerted by cis/trans stereochemistry and stereochemical constraints on the physicochemical behavior, molecular organization, and morphology of their Langmuir monolayers and dry solid states. All these features are relevant to the rational design of functional materials. trans-1 showed a higher thermal stability than cis-1. For the latter, a higher fluidity of its monolayers was observed when compared with the films formed by trans-1 whose BAM images revealed the formation of condensed phase domains with a dendritic shape, which are chiral, and all of them feature the same chiral sign. Although the formation of LC phase domains was not observed by BAM for cis-1, compact dendritic crystals floating on a fluid subphase were observed beyond the collapse, which are attributable to multilayered 3D structures. These differences can be explained by the formation of hydrogen bonds between the amide groups of consecutive molecules allowing the formation of extended chains for trans-1 giving ordered arrangements. However, for cis-1, this alignment coexists with another one that allows the simultaneous formation of two hydrogen bonds between the amide and the ester groups of adjacent molecules. In addition, the propensity to form intramolecular hydrogen bonds must be considered to justify the formation of different patterns of hydrogen bonding and, consequently, the formation of less ordered phases. Those characteristics are congruent also with the results obtained from SAXS-WAXS experiments which suggest a more bent configuration for cis-1 than for trans-1.

  17. Condensed phase preparation of 2,3-pentanedione

    DOEpatents

    Miller, Dennis J.; Perry, Scott M.; Fanson, Paul T.; Jackson, James E.

    1998-01-01

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200.degree. to 360.degree. C. for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water.

  18. Condensed phase preparation of 2,3-pentanedione

    DOEpatents

    Miller, D.J.; Perry, S.M.; Fanson, P.T.; Jackson, J.E.

    1998-11-03

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200 to 360 C for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water. 5 figs.

  19. New technology in condensate polishing. Final report

    SciTech Connect

    Kunin, R.; Salem, E.; Libutti, B.

    1992-08-01

    Sulfonic acid ion exchange resins. when carried into a boiler or steam generator, thermally decompose releasing large amounts of corrosive, sulfates. Replacement of the sulfonic acid resin with a carboxylic acid resin would eliminate this source of contamination. The sulfonic acid resin is a strong acid: the carboxylic acid resin is a weak acid. The carboxylic acid resin alone is not capable of splitting salts which limits its use to mixed resin beds or to its use in single or individual beds with feeds of high alkalinity or high pH values. Laboratory, pilot plant and full scale plant tests compared the two resins in precoat filters. When the resins in mixed beds were in the acid form, the weakly acid resin was almost as effective in removing sodium ion as the strongly acid resin. In the ammonium form. the weakly acid resin was generally more effective in removing sodium than the strongly acid resin. Condensate polishing reduced the sodium ion to a few parts per billion (ppB). Complete resin separation before regeneration is more important for the weakly acid resin than for the strongly acid resin. Another development found that the hydrazine reaction with oxygen could be catalyzed by powdered activated carbon combined with microfibers on a Powdex substrate. The carbon should be thoroughly washed to reduce its residual sodium content. In plant tests, the carbon reduced the oxygen concentration in condensate about 50% during startup. In preliminary tests believed to be typical, carbon lowered the oxygen concentration below 10 ppB in about 6 hours compared to 18 hours without the carbon. Oxygen is also reduced during normal operation.

  20. Keeping condensers clean

    SciTech Connect

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  1. Why double-stranded RNA resists condensation.

    PubMed

    Tolokh, Igor S; Pabit, Suzette A; Katz, Andrea M; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan; Pollack, Lois; Onufriev, Alexey V

    2014-01-01

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes--internal and external--distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode.

  2. Simple simulations of DNA condensation.

    PubMed Central

    Stevens, M J

    2001-01-01

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored coulombic structure is a charge-ordered state. Condensation is a generic phenomenon and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong. PMID:11159388

  3. Simple Simulations of DNA Condensation

    SciTech Connect

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  4. Detail of Bright Angel stone vault, containing condenser, Hoffman condensation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of Bright Angel stone vault, containing condenser, Hoffman condensation pump, Jennings vacuum heating pump, and misc. pipes and valves. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  5. Condensate removal device

    DOEpatents

    Maddox, James W.; Berger, David D.

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  6. Exhaled breath condensate pH assays.

    PubMed

    Davis, Michael D; Hunt, John

    2012-08-01

    Airway pH is central to the physiologic function and cellular biology of the airway. The causes of airway acidification include (1) hypopharyngeal gastric acid reflux with or without aspiration through the vocal cords, (2) inhalation of acid fog or gas (such as chlorine), and (3) intrinsic airway acidification caused by altered airway pH homeostasis in infectious and inflammatory disease processes. The recognition that relevant airway pH deviations occur in lung diseases is opening doors to new simple and inexpensive therapies. This recognition has resulted partly from the ability to use exhaled breath condensate as a window on airway acid-base balance.

  7. Nanostructure-induced DNA condensation

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Llizo, Axel; Wang, Chen; Xu, Guiying; Yang, Yanlian

    2013-08-01

    The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.

  8. Feshbach-Einstein Condensates

    SciTech Connect

    Rousseau, V. G.; Denteneer, P. J. H.

    2009-01-09

    We investigate the phase diagram of a two-species Bose-Hubbard model describing atoms and molecules on a lattice, interacting via a Feshbach resonance. We identify a region where the system exhibits an exotic super-Mott phase and regions with phases characterized by atomic and/or molecular condensates. Our approach is based on a recently developed exact quantum Monte Carlo algorithm: the stochastic Green function algorithm with tunable directionality. We confirm some of the results predicted by mean-field studies, but we also find disagreement with these studies. In particular, we find a phase with an atomic but no molecular condensate, which is missing in all mean-field phase diagrams.

  9. Gravity triggered neutrino condensates

    SciTech Connect

    Barenboim, Gabriela

    2010-11-01

    In this work we use the Schwinger-Dyson equations to study the possibility that an enhanced gravitational attraction triggers the formation of a right-handed neutrino condensate, inducing dynamical symmetry breaking and generating a Majorana mass for the right-handed neutrino at a scale appropriate for the seesaw mechanism. The composite field formed by the condensate phase could drive an early epoch of inflation. We find that to the lowest order, the theory does not allow dynamical symmetry breaking. Nevertheless, thanks to the large number of matter fields in the model, the suppression by additional powers in G of higher order terms can be compensated, boosting them up to their lowest order counterparts. This way chiral symmetry can be broken dynamically and the infrared mass generated turns out to be in the expected range for a successful seesaw scenario.

  10. Gravitational vacuum condensate stars

    PubMed Central

    Mazur, Pawel O.; Mottola, Emil

    2004-01-01

    A new final state of gravitational collapse is proposed. By extending the concept of Bose–Einstein condensation to gravitational systems, a cold, dark, compact object with an interior de Sitter condensate pv = -ρv and an exterior Schwarzschild geometry of arbitrary total mass M is constructed. These regions are separated by a shell with a small but finite proper thickness ℓ of fluid with equation of state p = +ρ, replacing both the Schwarzschild and de Sitter classical horizons. The new solution has no singularities, no event horizons, and a global time. Its entropy is maximized under small fluctuations and is given by the standard hydrodynamic entropy of the thin shell, which is of the order kBℓMc/, instead of the Bekenstein–Hawking entropy formula, SBH = 4πkBGM2/c. Hence, unlike black holes, the new solution is thermodynamically stable and has no information paradox. PMID:15210982

  11. Why double-stranded RNA resists condensation

    SciTech Connect

    Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.; Chen, Yujie; Drozdetski, Aleksander; Baker, Nathan A.; Pollack, Lois; Onufriev, Alexey

    2014-09-15

    The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexes with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.

  12. Sidestream condensate polishing for PWRs

    SciTech Connect

    Shor, S.W.W.; Yim, S.L.; Rios, J.; Liu, J.

    1986-06-01

    Condensate polishers are used in power plant condensate system to remove both particulate matter and ionized corrodents. Their conventional location is just downstream of the hotwell pumps (condensate pumps). Most polisher installations have enough flow capacity to polish 100% of the condensate. This inline configuration has some disadvantage, including a flow that varies with unit load and tends to disturb the polisher beds and reduce their effectiveness, and a potential for interrupting flow to the feedwater pumps. An alternate arrangement where water is extracted from either the condenser or the condensate system, polished and returned to the system, has been used in a few plants. Three different ways of doing this have been used: divide the condenser hotwell into two parts, one of which receives condensate from the tube bundles and the other of which is sheltered. Take unpolished condensate from the first part, purify it and return it to the other part from which the condensate pumps take suction; take unpolished condensate from one end of a divided header on the suction side of the hotwell pumps and after polishing it return it to the other end; and take unpolished condensate from a header on the discharge side of the condensate pumps, purify it and return it to the condensate system a short distance downstream. The three variants are analyzed in this report. It is concluded that the variant where the connections are on the discharge side of the condensate pumps is the most desirable for retrofitting, in all cases being far easier to retrofit than an inline polisher. In many cases it will be most desirable for new construction.

  13. Bose-Einstein Condensation

    SciTech Connect

    El-Sherbini, Th.M.

    2005-03-17

    This article gives a brief review of Bose-Einstein condensation. It is an exotic quantum phenomenon that was observed in dilute atomic gases for the first time in 1995. It exhibits a new state of matter in which a group of atoms behaves as a single particle. Experiments on this form of matter are relevant to many different areas of physics- from atomic clocks and quantum computing to super fluidity, superconductivity and quantum phase transition.

  14. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  15. Asymmetric condensed dark matter

    SciTech Connect

    Aguirre, Anthony; Diez-Tejedor, Alberto E-mail: alberto.diez@fisica.ugto.mx

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  16. Spermine Condenses DNA, but Not RNA Duplexes

    SciTech Connect

    Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2017-01-01

    Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 base pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.

  17. Effect of spontaneous condensation on condensation heat transfer in the presence of non-condensable gases

    SciTech Connect

    Karl, J.; Hein, D.

    1999-07-01

    The presence of non condensable gases like nitrogen or air reduces the condensation heat transfer during condensation of binary steam mixtures. The non condensable gas accumulates in the vapor phase boundary layer and causes a high heat transfer resistance. Especially with high pressures and low water temperatures spontaneous condensation reduces heat transfer additionally. Fog forms within the steam-nitrogen boundary layer and the steam condenses on the water droplets of the fog layer. The convective mass transfer to the cooling water interface diminishes. Raman spectroscopy and film theory are used to quantify this effect locally. The calculation of overall condensation rates in large steam nitrogen systems requires to use three dimensional CFD codes. The paper presents equations to predict fog formation in the boundary layer which can be implemented in CFD codes.

  18. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Biberian, Jean-Paul

    2006-02-01

    1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research

  19. Nanocarbon condensation in detonation

    NASA Astrophysics Data System (ADS)

    Bastea, Sorin

    2017-02-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions.

  20. Condensed Plasmas under Microgravity

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Thomas, H. M.; Konopka, U.; Rothermel, H.; Zuzic, M.; Ivlev, A.; Goree, J.; Rogers, Rick (Technical Monitor)

    1999-01-01

    Experiments under microgravity conditions were carried out to study 'condensed' (liquid and crystalline) states of a colloidal plasma (ions, electrons, and charged microspheres). Systems with approximately 10(exp 6) microspheres were produced. The observed systems represent new forms of matter--quasineutral, self-organized plasmas--the properties of which are largely unexplored. In contrast to laboratory measurements, the systems under microgravity are clearly three dimensional (as expected); they exhibit stable vortex flows, sometimes adjacent to crystalline regions, and a central 'void,' free of microspheres.

  1. Nanocarbon condensation in detonation

    PubMed Central

    Bastea, Sorin

    2017-01-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. PMID:28176827

  2. Confinement Contains Condensates

    SciTech Connect

    Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.

    2012-03-12

    Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.

  3. Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA

    NASA Technical Reports Server (NTRS)

    Baeza, Isabel; Ibanez, Miguel; Wong, Carlos; Chavez, Pedro; Gariglio, Patricio; Oro, J.

    1992-01-01

    While DNA which has undergone ionic condensation with Co(3+)(NH3)6 is resistant to the action of the endonuclase DNAse I, in much the same way as DNA condensed with spermidine, it was significantly less active in transcription with the E. coli RNA polymerase than DNA-spermidine condensed forms. Although both compacted forms of DNA were more efficiently encapsulated into neutral liposomes, negatively charged liposomes were seldom formed in the presence of the present, positive ion-condensed DNA; spermidine is accordingly proposed as a plausible prebiotic DNA-condensing agent. Attention is given to the relevance of the polyimide-nucleic acids complexes in the evolution of life.

  4. Cosmic curvature and condensation

    NASA Technical Reports Server (NTRS)

    Harwit, Martin

    1992-01-01

    It is shown that the universe may consist of a patchwork of domains with different Riemann curvature constants k = 0, +/-1. Features of a phase transition in which flat space breaks up in a transition 2k0 - k(-) + k(+) with initial scale factors R(-) = R(+) are postulated and explored. It is shown that such a transition is energetically permitted, has the equivalent of a Curie temperature, and can lead in a natural way to the formation of voids and galaxies. It is predicted that, if the ambient universe on average is well fitted by a purely k(-) space, with only occasional domains of k(+) containing galaxies, a density parameter of (A(z sub c + 1)) super -1 should be expected, where z sub c represents the redshift of the earliest objects to have condensed, and A takes on values ranging from about 5 to 3. Present observations of quasars would suggest a density of about 0.03 or 0.05, respectively, but it could be lower if earlier condensation took place.

  5. Condensed Acids In Antartic Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Snetsinger, K. G.; Toon, O. B.; Ferry, G. V.; Starr, W. L.; Oberbeck, V. R.; Chan, K. R.; Goodman, J. K.; Livingston, J. M.; Verma, S.; Fong, W.

    1992-01-01

    Report dicusses nitrate, sulfate, and chloride contents of stratospheric aerosols during 1987 Airborne Antarctic Ozone Experiment. Emphasizes growth of HNO3*3H2O particles in polar stratospheric clouds. Important in testing theories concerning Antarctic "ozone hole".

  6. Pion condensation in holographic QCD

    SciTech Connect

    Albrecht, Dylan; Erlich, Joshua

    2010-11-01

    We study pion condensation at zero temperature in a hard-wall holographic model of hadrons with isospin chemical potential. We find that the transition from the hadronic phase to the pion condensate phase is first order except in a certain limit of model parameters. Our analysis suggests that immediately across the phase boundary the condensate acts as a stiff medium approaching the Zel'dovich limit of equal energy density and pressure.

  7. Condensation heat transfer in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chow, L. C.; Parish, R. C.

    1986-01-01

    In the present treatment of the condensation heat transfer process in a microgravity environment, two mechanisms for condensate removal are analyzed in light of two problems: (1) film condensation on a flat, porous plate, with condensate being removed by wall suction; and (2) the analytical prediction of the heat transfer coefficient of condensing annular flows, where the condensate film is driven by vapor shear. Both suction and vapor shear can effectively drain the condensate, ensuring continuous operation in microgravity.

  8. Noble gas trapping by laboratory carbon condensates

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.; Marti, K.

    1982-01-01

    Trapping of noble gases by carbon-rich matter was investigated by synthesizing carbon condensates in a noble gas atmosphere. Laser evaporation of a solid carbon target yielded submicron grains which proved to be efficient noble gas trappers (Xe distribution coefficients up to 13 cu cm STP/g-atm). The carbon condensates are better noble gas trappers than previously reported synthetic samples, except one, but coefficients inferred for meteoritic acid-residues are still orders of magnitude higher. The trapped noble gases are loosely bound and elementally strongly fractionated, but isotopic fractionations were not detected. Although this experiment does not simulate nebular conditions, the results support the evidence that carbon-rich phases in meteorites may be carriers of noble gases from early solar system reservoirs. The trapped elemental noble gas fractionations are remarkably similar to both those inferred for meteorites and those of planetary atmospheres for earth, Mars and Venus.

  9. Condenser for photolithography system

    DOEpatents

    Sweatt, William C.

    2004-03-02

    A condenser for a photolithography system, in which a mask image from a mask is projected onto a wafer through a camera having an entrance pupil, includes a source of propagating radiation, a first mirror illuminated by the radiation, a mirror array illuminated by the radiation reflected from said first mirror, and a second mirror illuminated by the radiation reflected from the array. The mirror array includes a plurality of micromirrors. Each of the micromirrors is selectively actuatable independently of each other. The first mirror and the second mirror are disposed such that the source is imaged onto a plane of the mask and the mirror array is imaged into the entrance pupil of the camera.

  10. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  11. Amine catalyzed condensation of tetraethylorthosilicate

    NASA Technical Reports Server (NTRS)

    Jones, S.

    2001-01-01

    The catalysis of the condensation of hydrolyzed metal alkoxides by amines has been mentioned in the literature, but there has been no systematic study of their influence on the rate of the condensation reaction of the alkoxide and the microstructure of the resultant gel.

  12. APPARATUS FOR CONDENSATION AND SUBLIMATION

    DOEpatents

    Schmidt, R.J.; Fuis, F. Jr.

    1958-10-01

    An apparatus is presented for the sublimation and condensation of uranium compounds in order to obtain an improved crystalline structure of this material. The apparatus comprises a vaporizing chamber and condensing structure connected thereto. There condenser is fitted with a removable liner having a demountable baffle attached to the liner by means of brackets and a removable pin. The baffle is of spiral cross-section and is provided with cooling coils disposed between the surfaces of the baffle for circulation of a temperature controlling liquid within the baffle. The cooling coll provides for controlllng the temperature of the baffle to insure formatlon of a satisfactory condensate, and the removable liner facilitates the removal of condensate formed during tbe sublimation process.

  13. Chromatin condensation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Yang, Jing; Ji, Peng

    2016-09-02

    Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.

  14. Formation of activated biomolecules by condensation on mineral surfaces--a comparison of peptide bond formation and phosphate condensation.

    PubMed

    Georgelin, Thomas; Jaber, Maguy; Bazzi, Houssein; Lambert, Jean-François

    2013-10-01

    Many studies have reported condensation reactions of prebiotic molecules, such as the formation of peptide bonds between amino acids, to occur to some degree on mineral surfaces. We have studied several such reactions on the same divided silica. When drying steps are applied, the equilibria of peptide formation from glycine, and polyphosphate formation from monophosphate, are displaced to the right because these reactions are dehydrating condensations, accompanied by the emission of water. In contrast, the equilibrium of AMP dismutation is not significantly favored by drying. The silica surface plays little role (if any) in the thermochemistry of the condensation reactions, but is does play a significant kinetic role by acting as a catalyst, lowering the condensation temperatures with respect to bulk solids. Of course, the surface also catalyzes the inverse hydrolysis reactions.

  15. Potentially Prebiotic Syntheses of Condensed Phosphates

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  16. Characterization of spacecraft humidity condensate

    NASA Technical Reports Server (NTRS)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  17. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  18. Water condensation: a multiscale phenomenon.

    PubMed

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund; Gurevich, Leonid

    2014-02-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address the shortcomings of the thermodynamic theory in describing the nucleation and emphasize the importance of nanoscale effects. This leads to the description of condensation from a molecular viewpoint. Also presented is how the nucleation can be simulated by use of molecular models, and how the condensation process is simulated on the macroscale using computational fluid dynamics. Finally, examples of hybrid models combining molecular and macroscale models for the simulation of condensation on a surface are presented.

  19. Steam condenser thermal design theories

    NASA Astrophysics Data System (ADS)

    Davidson, B. J.

    Test data and prediction methods for condensation in steam condenser tube banks are reviewed. Standards for thermal rating; effect of vapor velocity; vapor shear and inundation in tube banks; correction factors to the Nusselt equation; and equations for the combined effect of vapor shear and inundation are discussed. Effects of noncondensible gases; tube side heat transfer; and expressions for combined tube side and shell side heat transfer are considered. Frictional, gravitational, momentum, and pressure drop trends; and the role of access lanes to reduce pressure drop are outlined. Computer models of condensers, including algebraic representations of the field equations, are summarized.

  20. Condensation heat transfer under a microgravity environment

    NASA Technical Reports Server (NTRS)

    Chow, L. C.

    1986-01-01

    A description of the condensation heat transfer process in microgravity is given. A review of the literature is also reported. The most essential element of condensation heat transfer in microgravity is the condensate removal mechanism. Two mechanisms for condensate removal are analyzed by looking into two problems. The first problem is concerned with film condensation on a flat porous plate with the condensate being removed by suction at the wall. The second problem is an analytical prediction of the heat transfer coefficient for condensing annular flows with the condensate film driven by the vapor shear. It is concluded that both suction and vapor shear can effectively drain the condensate to ensure continuous operation of the condensers operated under a microgravity environment. It is recommended that zero-g flight experiments be carried out to verify the prediction made in the present report. The results contained in this report should also aid in the design of future space condensers.

  1. Monitoring by Control Technique - Condensers

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about condenser control techniques used to reduce pollutant emissions.

  2. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  3. Anaerobic batch conversion of pine wood torrefaction condensate.

    PubMed

    Doddapaneni, Tharaka Rama Krishna C; Praveenkumar, Ramasamy; Tolvanen, Henrik; Palmroth, Marja R T; Konttinen, Jukka; Rintala, Jukka

    2017-02-01

    Organic compound rich torrefaction condensate, owing to their high water content and acidic nature, have yet to be exploited for practical application. In this study, microbial conversion of torrefaction condensate from pine wood through anaerobic batch digestion (AD) to produce methane was evaluated. Torrefaction condensate exhibited high methane potentials in the range of 430-492mL/g volatile solids (VS) and 430-460mL/gVS under mesophilic and thermophilic conditions, respectively. Owing to the changes in the composition, the methane yields differed with the torrefaction condensates produced at different temperatures (225, 275 and 300°C), with a maximum of 492±18mL/gVS with the condensate produced at 300°C under mesophilic condition. The cyclic batch AD experiments showed that 0.1VSsubstrate:VSinoculum is optimum, whereas the higher substrate loading (0.2-0.5) resulted in a reversible inhibition of the methane production. The results suggest that torrefaction condensate could be practically valorized through AD.

  4. Condensed Matter Nuclear Science

    NASA Astrophysics Data System (ADS)

    Takahashi, Akito; Ota, Ken-Ichiro; Iwamura, Yashuhiro

    Preface -- 1. General. Progress in condensed matter nuclear science / A. Takahashi. Summary of ICCF-12 / X. Z. Li. Overview of light water/hydrogen-based low-energy nuclear reactions / G. H. Miley and P. J. Shrestha -- 2. Excess heat and He detection. Development of "DS-reactor" as the practical reactor of "cold fusion" based on the "DS-cell" with "DS-cathode" / Y. Arata and Y.-C. Zhang. Progress in excess of power experiments with electrochemical loading of deuterium in palladium / V. Violante ... [et al.]. Anomalous energy generation during conventional electrolysis / T. Mizuno and Y. Toriyabe. "Excess heat" induced by deuterium flux in palladium film / B. Liu ... [et al.]. Abnormal excess heat observed during Mizuno-type experiments / J.-F. Fauvarque, P. P. Clauzon and G. J.-M. Lallevé. Seebeck envelope calorimetry with a Pd|D[symbol]O + H[symbol]SO[symbol] electrolytic cell / W.-S. Zhang, J. Dash and Q. Wang. Observation and investigation of nuclear fusion and self-induced electric discharges in liquids / A. I. Koldamasov ... [et al.]. Description of a sensitive seebeck calorimeter used for cold fusion studies / E. Storms. Some recent results at ENEA / M. Apicella ... [et al.]. Heat measurement during plasma electrolysis / K. Iizumi ... [et al.]. Effect of an additive on thermal output during electrolysis of heavy water with a palladium cathode / Q. Wang and J. Dash. Thermal analysis of calorimetric systems / L. D'Aulerio ... [et al.]. Surface plasmons and low-energy nuclear reactions triggering / E. Castagna ... [et al.]. Production method for violent TCB jet plasma from cavity / F. Amini. New results and an ongoing excess heat controversy / L. Kowalski ... [et al.] -- 3. Transmutation. Observation of surface distribution of products by X-ray fluorescence spectrometry during D[symbol] gas permeation through Pd Complexes / Y. Iwamura ... [et al.]. Discharge experiment using Pd/CaO/Pd multi-layered cathode / S. Narita ... [et al.]. Producing transmutation

  5. Possible prebiotic significance of polyamines in the condensation, protection, encapsulation, and biological properties of DNA

    NASA Technical Reports Server (NTRS)

    Baeza, I.; Ibanez, M.; Wong, C.; Chavez, P.; Gariglio, P.; Oro, J.

    1991-01-01

    Some properties of DNA condensed with spermidine have been compared with the properties of DNA condensed with Co3+(NH3)6 to determine whether condensation of DNA with these trivalent cations protects DNA against the action of DNase I and increases transcription and encapsulation of DNA into liposomes. It was shown that DNA condensed with Co3+(NH3)6 was resistant to the action of the endonuclease DNase I such as DNA condensed with spermidine was. However, DNA condensed with Co3+(NH3)6 was significantly less active in transcription with the E. coli RNA polymerase than DNA-spermidine condensed forms. In addition, it was demonstrated that both compacted forms of DNA were more efficiently encapsulated into neutral liposomes; however, negatively, charged liposomes were scarcely formed in the presence of DNA condensed with Co3+(NH3)6. These experiments and the well documented properties of polyamines increasing the resistance to radiations and hydrolysis of nucleic acids, as well as their biological activities, such as replication, transcription, and translation, together with the low concentration of Co3+ in the environment, lead us to propose spermidine as a plausible prebiotic DNA condensing agent rather than Co3+ and the basic proteins proposed by other authors. Then, we consider the possible role and relevance of the polyamine-nucleic acids complexes in the evolution of life.

  6. Advances in shell side condensation for refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube condensers used in air conditioning and refrigeration applications is discussed. The geometry of interest involves condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for condensation on the shell side. The heat transfer is removed by water on the tube side, which typically have tube side enhancement. Single tube and row effect condensation data are presented. Thermal design methods for sizing of the condenser are outlined.

  7. Bose-Einstein condensate strings

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lake, Matthew J.

    2015-02-01

    We consider the possible existence of gravitationally bound general relativistic strings consisting of Bose-Einstein condensate (BEC) matter which is described, in the Newtonian limit, by the zero temperature time-dependent nonlinear Schrödinger equation (the Gross-Pitaevskii equation), with repulsive interparticle interactions. In the Madelung representation of the wave function, the quantum dynamics of the condensate can be formulated in terms of the classical continuity equation and the hydrodynamic Euler equations. In the case of a condensate with quartic nonlinearity, the condensates can be described as a gas with two pressure terms, the interaction pressure, which is proportional to the square of the matter density, and the quantum pressure, which is without any classical analogue, though, when the number of particles in the system is high enough, the latter may be neglected. Assuming cylindrical symmetry, we analyze the physical properties of the BEC strings in both the interaction pressure and quantum pressure dominated limits, by numerically integrating the gravitational field equations. In this way we obtain a large class of stable stringlike astrophysical objects, whose basic parameters (mass density and radius) depend sensitively on the mass and scattering length of the condensate particle, as well as on the quantum pressure of the Bose-Einstein gas.

  8. Polariton condensates at room temperature

    NASA Astrophysics Data System (ADS)

    Guillet, Thierry; Brimont, Christelle

    2016-10-01

    We review the recent developments of the polariton physics in microcavities featuring the exciton-photon strong coupling at room temperature, and leading to the achievement of room-temperature polariton condensates. Such cavities embed active layers with robust excitons that present a large binding energy and a large oscillator strength, i.e. wide bandgap inorganic or organic semiconductors, or organic molecules. These various systems are compared, in terms of figures of merit and of common features related to their strong oscillator strength. The various demonstrations of polariton laser are compared, as well as their condensation phase diagrams. The room-temperature operation indeed allows a detailed investigation of the thermodynamic and out-of-equilibrium regimes of the condensation process. The crucial role of the spatial dynamics of the condensate formation is discussed, as well as the debated issue of the mechanism of stimulated relaxation from the reservoir to the condensate under non-resonant excitation. Finally the prospects of polariton devices are presented.

  9. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  10. Condensed Astatine: Monatomic and Metallic

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Hoffmann, Roald; Ashcroft, N. W.

    2013-09-01

    The condensed matter properties of the nominal terminating element of the halogen group with atomic number 85, astatine, are as yet unknown. In the intervening more than 70 years since its discovery significant advances have been made in substrate cooling and the other techniques necessary for the production of the element to the point where we might now enquire about the key properties astatine might have if it attained a condensed phase. This subject is addressed here using density functional theory and structural selection methods, with an accounting for relativistic physics that is essential. Condensed astatine is predicted to be quite different in fascinating ways from iodine, being already at 1 atm a metal, and monatomic at that, and possibly a superconductor (as is dense iodine).

  11. Condensed astatine: monatomic and metallic.

    PubMed

    Hermann, Andreas; Hoffmann, Roald; Ashcroft, N W

    2013-09-13

    The condensed matter properties of the nominal terminating element of the halogen group with atomic number 85, astatine, are as yet unknown. In the intervening more than 70 years since its discovery significant advances have been made in substrate cooling and the other techniques necessary for the production of the element to the point where we might now enquire about the key properties astatine might have if it attained a condensed phase. This subject is addressed here using density functional theory and structural selection methods, with an accounting for relativistic physics that is essential. Condensed astatine is predicted to be quite different in fascinating ways from iodine, being already at 1 atm a metal, and monatomic at that, and possibly a superconductor (as is dense iodine).

  12. Neuroamine condensations in human subjects.

    PubMed

    Collins, M A

    1980-01-01

    Non-enzymatic products of neuroamines and endogenous carbonyl compounds are apparent "normal" products in human metabolism, and their levels become increased during pathological conditions. DA condensation products--salsolinol, its O-methylated derivative, and methylated derivatives of 1-carboxyl-THP--are found normally in human urine, and the last TIQ is in human brain. Potential beta-carboline condensation products also occur in (aging) human lens tissue. Chronic drinking in alcoholics causes significant increases in urinary salsolinol and O-methyl-salsolinol, presumably due to the increased AcH which is made available. L-DOPA therapy (in Parkinson's disease) elevates urinary and tissue levels of the carboxylated THP derivatives, as well as of salsolinol and THP itself; hyperphenylalaninemia during PKU also increases tissue levels of a DA/phenylpyruvate-derived TIQ and an imine condensate of phenylethylamine and vitamin B6. These unusual products may interfere with neural dynamic processes, and produce cytotoxic metabolites.

  13. Introduction. Cosmology meets condensed matter.

    PubMed

    Kibble, T W B; Pickett, G R

    2008-08-28

    At first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them. This interplay has been the subject of a very successful European Science Foundation (ESF) programme entitled COSLAB ('Cosmology in the Laboratory') that ran from 2001 to 2006, itself built on an earlier ESF network called TOPDEF ('Topological Defects: Non-equilibrium Field Theory in Particle Physics, Condensed Matter and Cosmology'). The articles presented in this issue of Philosophical Transactions A are based on talks given at the Royal Society Discussion Meeting 'Cosmology meets condensed matter', held on 28 and 29 January 2008. Many of the speakers had participated earlier in the COSLAB programme, but the strength of the field is illustrated by the presence also of quite a few new participants.

  14. Scrutinizing the pion condensed phase

    NASA Astrophysics Data System (ADS)

    Carignano, Stefano; Lepori, Luca; Mammarella, Andrea; Mannarelli, Massimo; Pagliaroli, Giulia

    2017-02-01

    When the isospin chemical potential exceeds the pion mass, charged pions condense in the zero-momentum state forming a superfluid. Chiral perturbation theory provides a very powerful tool for studying this phase. However, the formalism that is usually employed in this context does not clarify various aspects of the condensation mechanism and makes the identification of the soft modes problematic. We re-examine the pion condensed phase using different approaches within the chiral perturbation theory framework. As a first step, we perform a low-density expansion of the chiral Lagrangian valid close to the onset of the Bose-Einstein condensation. We obtain an effective theory that can be mapped to a Gross-Pitaevskii Lagrangian in which, remarkably, all the coefficients depend on the isospin chemical potential. The low-density expansion becomes unreliable deep in the pion condensed phase. For this reason, we develop an alternative field expansion deriving a low-energy Lagrangian analog to that of quantum magnets. By integrating out the "radial" fluctuations we obtain a soft Lagrangian in terms of the Nambu-Goldstone bosons arising from the breaking of the pion number symmetry. Finally, we test the robustness of the second-order transition between the normal and the pion condensed phase when next-to-leading-order chiral corrections are included. We determine the range of parameters for turning the second-order phase transition into a first-order one, finding that the currently accepted values of these corrections are unlikely to change the order of the phase transition.

  15. On the onset of surface condensation: formation and transition mechanisms of condensation mode

    PubMed Central

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-01-01

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071

  16. On the onset of surface condensation: formation and transition mechanisms of condensation mode.

    PubMed

    Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng

    2016-08-02

    Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.

  17. Condensed Matter Physics - Biology Resonance

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    The field of condensed matter physics had its genesis this century and it has had a remarkable evolution. A closer look at its growth reveals a hidden aim in the collective consciousness of the field - a part of the development this century is a kind of warm up exercise to understand the nature of living condensed matter, namely the field of biology, by a growing new breed of scientists in the coming century. Through some examples the vitality of this interaction will be pointed out.

  18. Tripol condensate polishing - operational experience

    SciTech Connect

    Swainsbury, D.

    1995-01-01

    This paper gives a brief outline of the Mission Energy Management Australia Company who operate and maintain the Loy Yang B Power Station in the Latrobe Valley, Victoria, Australia. Details of the plant configuration, the water/steam circuit and cycle chemistry are discussed. The arrangement of the TRIPOL Condensate Polishing Plant and it`s operational modes are examined. Results of the first twelve months operation of the TRIPOL plant are detailed. Levels of crud removal during early commissioning phases employing the pre-filter are presented. Typical parameters achieved during a simulated condenser leak and an operational run beyond the ammonia break point are also documented.

  19. Andreev Reflection in Bosonic Condensates

    SciTech Connect

    Zapata, I.; Sols, F.

    2009-05-08

    We study the bosonic analog of Andreev reflection at a normal-superfluid interface where the superfluid is a boson condensate. We model the normal region as a zone where nonlinear effects can be neglected. Against the background of a decaying condensate, we identify a novel contribution to the current of reflected atoms. The group velocity of this Andreev reflected component differs from that of the normally reflected one. For a three-dimensional planar or two-dimensional linear interface Andreev reflection is neither specular nor conjugate.

  20. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide

  1. Visualization of early chromosome condensation

    PubMed Central

    Kireeva, Natashe; Lakonishok, Margot; Kireev, Igor; Hirano, Tatsuya; Belmont, Andrew S.

    2004-01-01

    Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIα and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150–200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200–300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial “glue.” PMID:15353545

  2. Magnetofermionic condensate in two dimensions

    PubMed Central

    Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.

    2016-01-01

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations. PMID:27848969

  3. Linker DNA destabilizes condensed chromatin.

    PubMed

    Green, G R; Ferlita, R R; Walkenhorst, W F; Poccia, D L

    2001-01-01

    The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.

  4. Magnetofermionic condensate in two dimensions.

    PubMed

    Kulik, L V; Zhuravlev, A S; Dickmann, S; Gorbunov, A V; Timofeev, V B; Kukushkin, I V; Schmult, S

    2016-11-16

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations.

  5. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  6. Magnetofermionic condensate in two dimensions

    NASA Astrophysics Data System (ADS)

    Kulik, L. V.; Zhuravlev, A. S.; Dickmann, S.; Gorbunov, A. V.; Timofeev, V. B.; Kukushkin, I. V.; Schmult, S.

    2016-11-01

    Coherent condensate states of particles obeying either Bose or Fermi statistics are in the focus of interest in modern physics. Here we report on condensation of collective excitations with Bose statistics, cyclotron magnetoexcitons, in a high-mobility two-dimensional electron system in a magnetic field. At low temperatures, the dense non-equilibrium ensemble of long-lived triplet magnetoexcitons exhibits both a drastic reduction in the viscosity and a steep enhancement in the response to the external electromagnetic field. The observed effects are related to formation of a super-absorbing state interacting coherently with the electromagnetic field. Simultaneously, the electrons below the Fermi level form a super-emitting state. The effects are explicable from the viewpoint of a coherent condensate phase in a non-equilibrium system of two-dimensional fermions with a fully quantized energy spectrum. The condensation occurs in the space of vectors of magnetic translations, a property providing a completely new landscape for future physical investigations.

  7. Bactericidal effect of hydrolysable and condensed tannin extracts on Campylobacter jejuni in vitro.

    PubMed

    Anderson, Robin C; Vodovnik, Maša; Min, Byeng R; Pinchak, William E; Krueger, Nathan A; Harvey, Roger B; Nisbet, David J

    2012-07-01

    Strategies are sought to reduce intestinal colonisation of food-producing animals by Campylobacter jejuni, a leading bacterial cause of human foodborne illness worldwide. Presently, we tested the antimicrobial activity of hydrolysable-rich blackberry, cranberry and chestnut tannin extracts and condensed tannin-rich mimosa, quebracho and sorghum tannins (each at 100 mg/mL) against C. jejuni via disc diffusion assay in the presence of supplemental casamino acids. We found that when compared to non-tannin-treated controls, all tested tannins inhibited the growth of C. jejuni and that inhibition by the condensed tannin-rich mimosa and quebracho extracts was mitigated in nutrient-limited medium supplemented with casamino acids. When tested in broth culture, both chestnut and mimosa extracts inhibited growth of C. jejuni and this inhibition was much greater in nutrient-limited than in full-strength medium. Consistent with observations from the disc diffusion assay, the inhibitory activity of the condensed tannin-rich mimosa extracts but not the hydrolysable tannin-rich chestnut extracts was mitigated by casamino acid supplementation to the nutrient-limited medium, likely because the added amino acids saturated the binding potential of the condensed tannins. These results demonstrate the antimicrobial activity of various hydrolysable and condensed tannin-rich extracts against C. jejuni and reveal that condensed tannins may be less efficient than hydrolysable tannins in controlling C. jejuni in gut environments containing high concentrations of amino acids and soluble proteins.

  8. Internally drained condenser for spacecraft thermal management

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Drew, Brian C.

    1989-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux condenser for use in two-phase spacecraft thermal management loops. The objective is to obtain a several fold increase in condensation heat transfer coefficient over those which can be achieved with shear-controlled or capillary-wick condensers. The internally drained condenser relies on shaped fins to develop a capillary pressure gradient over the surface of the fins and drive the condensate toward narrow drainage grooves separating the fins. The condensate then flows through a drainage network embedded in the condenser walls. Heat transfer coefficients of up to 8 W/sq cm C were measured in steam, providing a heat transfer enhancement ratio greater than a factor of 8. In the paper the proof-of-concept experiments are described and simplified models to predict the performance of the internally drained condenser are presented.

  9. Synthesis, structure and properties of tetrachlorido[N2,N2,N4,N4,N6,N6-hexakis((pyridin-2-yl)methyl)-1,3,5-triazine-2,4,6-triamine]dicopper(II) bis(acetonitrile), [Cu2Cl4(L)]·2CH3CN

    NASA Astrophysics Data System (ADS)

    Uma Maheswari, Palanisamy; van Albada, Gerard A.; Modec, Barbara; Kozlevčar, Bojan; Reedijk, Jan

    2012-04-01

    The bisadduct of Cu(II) chloride with the potential nonadentate ligand N2,N2,N4,N4,N6,N6-hexakis((pyridin-2-yl)methyl)-1,3,5-triazine-2,4,6-triamine, [Cu2Cl4(L)]·2CH3CN, is described. Each of the 2 Cu(II) ions is in a 5-coordinate geometry, intermediate between square pyramidal and tetragonal pyramidal, comprising a CuN3Cl2 chromophore. The intramolecular Cu-Cu distance of 7.511(2) Å is too large for a significant magnetic interaction, as confirmed by EPR spectroscopy. All Cu-N and Cu-Cl distances are as commonly found. An acetonitrile solvent molecule is filling a lattice cavity. Packing interactions also appear as normal and intermolecular Cu-Cu contacts are 8.773(2) and 9.991(2) Å.

  10. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1992-01-01

    Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.

  11. Proceedings: 2000 Workshop on Condensate Polishing

    SciTech Connect

    2001-06-01

    Condensate polishing maintains control of impurities in the nuclear power plant and allows the unit to operate more reliably. This report presents proceedings of EPRI's 2000 Workshop on Condensate Polishing, where 30 papers were presented on current issues and utility experience involving condensate polishing at both pressurized water reactor (PWR) and boiling water reactor (BWR) plants.

  12. Exciton-polaritons condensate in a microwire

    NASA Astrophysics Data System (ADS)

    Kamoun, O.; Jaziri, S.

    2013-12-01

    Recently, polariton condensation has been claimed in microwires. Numerical solutions of the time-dependent Gross-Pitaevskii equation that describes the behavior of the condensate in a trap and exciton-polariton interaction, have been obtained. In this work we study theoretically exciton-polariton one dimensional condensation in several quantized states.

  13. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    It is always exciting when developments in one branch of physics turn out to have relevance in a quite different branch. It would be hard to find two branches farther apart in terms of energy scales than early-universe cosmology and low-temperature condensed matter physics. Nevertheless ideas about the formation of topological defects during rapid phase transitions that originated in the context of the very early universe have proved remarkably fruitful when applied to a variety of condensed matter systems. The mathematical frameworks for describing these systems can be very similar. This interconnection has led to a deeper understanding of the phenomena in condensed matter systems utilizing ideas from cosmology. At the same time, one can view these condensed matter analogues as providing, at least in a limited sense, experimental access to the phenomena of the early universe for which no direct probe is possible. As this special issue well illustrates, this remains a dynamic and exciting field. The basic idea is that when a system goes through a rapid symmetry-breaking phase transition from a symmetric phase into one with spontaneously broken symmetry, the order parameter may make different choices in different regions, creating domains that when they meet can trap defects. The scale of those domains, and hence the density of defects, is constrained by the rate at which the system goes through the transition and the speed with which order parameter information propagates. This is what has come to be known as the Kibble-Zurek mechanism. The resultant scaling laws have now been tested in a considerable variety of different systems. The earliest experiments illustrating the analogy between cosmology and condensed matter were in liquid crystals, in particular on the isotropic-to-nematic transition, primarily because it is very easy to induce the phase transition (typically at room temperature) and to image precisely what is going on. This field remains one of the

  14. Polymer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Castellanos, E.; Chacón-Acosta, G.

    2013-05-01

    In this work we analyze a non-interacting one-dimensional polymer Bose-Einstein condensate in a harmonic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the polymer quantization that arises in loop quantum gravity. We calculate the number of particles in order to obtain the critical temperature. The Bose-Einstein functions are replaced by series, whose high order terms are related to powers of the polymer length. It is shown that the condensation temperature presents a shift respect to the standard case, for small values of the polymer scale. In typical experimental conditions, it is possible to establish a bound for λ2 up to ≲10-16 m2. To improve this bound we should decrease the frequency of the trap and also decrease the number of particles.

  15. Influence of iodine on the treatment of spacecraft humidity condensate to produce potable water

    NASA Technical Reports Server (NTRS)

    Symons, James M.; Muckle, Susan V.

    1990-01-01

    Several compounds in the ersatz humidity condensate do react with iodine to form iodine-substituted organic compounds (TOI), most notably phenol, acetaldehyde, ethanol, and sodium formate. Iodination of the ersatz humidity condensate produced 3.0 to 3.5 mg/L of TOI within 24 hours. The TOI that was produced by the passage of the ersatz humidity condensate through the first iodinated resin (IR) in the adsorption system was removed by the granular activated carbon that followed. TOI detected in the final effluent was formed by the reaction of the non-adsorbable condensate compounds with the final IR in the treatment series. The activated carbon bed series in the adsorption system performed poorly in its removal of TOC. The rapid breakthrough of TOC was not surprising, as the ersatz humidity condensate contained several highly soluble organic compounds, alcohols and organic acids.

  16. Luminescent Properties of Terbium Aminobenzoates in Condensed Media

    NASA Astrophysics Data System (ADS)

    Meshkova, S. B.; Doga, P. G.; Kiriyak, A. V.; Kucher, A. A.

    2015-07-01

    The decrease in nonradiative deactivation of the luminescence excitation energy in a series of condensed media (true complex solution, viscous solution of water-soluble polymer, polymer fi lm) was studied using terbium complexes with aminobenzoic acids as examples. It was established that the infl uence of the water-soluble polymer was caused by the coordination of Tb3+ to it and the solution viscosity.

  17. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  18. Condensation on Slippery Asymmetric Bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  19. Condensation on Slippery Asymmetric Bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  20. Condensation shocks in hypersonic nitrogen tunnels

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Griffith, Wayland C.; Lederer, Melissa; Ragsdale, William C.; Yanta, William J.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are provided for hypersonic flows of pure nitrogen at M = 10, 14, and 18. A method for analyzing the thermodynamic and flow properties of a partially condensed mixture from known supply conditions and measured Pitot pressure yields the local static pressure and temperature, mass fraction of the nitrogen condensed, and the Mach number of the partially condensed flow based on frozen sound speed. The transition between partially condensed-supercooled flow is found to occur at 22-25 K isobaric supercooling with the corresponding mass fraction condensed being 12-14 percent over a range of two orders of magnitude in local static pressure. The heat released and vapor mass removed during condensation ultimately raise the local pressure and temperature and reduce the flow Mach number.

  1. Disruption of human vigilin impairs chromosome condensation and segregation.

    PubMed

    Wei, Ling; Xie, Xiaoyan; Li, Junhong; Li, Ran; Shen, Wenyan; Duan, Shuwang; Zhao, Rongce; Yang, Wenli; Liu, Qiuying; Fu, Qiang; Qin, Yang

    2015-11-01

    Appropriate packaging and condensation are critical for eukaryotic chromatin's accommodation and separation during cell division. Human vigilin, a multi-KH-domain nucleic acid-binding protein, is associated with alpha satellites of centromeres. DDP1, a vigilin's homolog, is implicated with chromatin condensation and segregation. The expression of vigilin was previously reported to elevate in highly proliferating tissues and increased in a subset of hepatocellular carcinoma patients. Other studies showed that vigilin interacts with CTCF, contributes to regulation of imprinted genes Igf2/H19, and colocalizes with HP1α on heterochromatic satellite 2 and β-satellite repeats. These studies indicate that human vigilin might be involved in chromatin remodeling and regular cell growth. To investigate the potential role of human vigilin in cell cycle, the correlations between vigilin and chromosomal condensation and segregation were studied. Depletion of human vigilin by RNA interference in HepG2 cells resulted in chromosome undercondensation and various chromosomal defects during mitotic phase, including chromosome misalignments, lagging chromosomes, and chromosome bridges. Aberrant polyploid nucleus in telophase was also observed. Unlike the abnormal staining pattern of chromosomes, the shape of spindle was normal. Furthermore, the chromatin showed a greater sensitivity to MNase digestion. Collectively, our findings show that human vigilin apparently participates in chromatin condensation and segregation.

  2. Analysis of condensates from wood smoke: Components derived from polysaccharides and lignins

    SciTech Connect

    Edye, L.A.; Richards, G.N. )

    1991-06-01

    A feasibility study has been carried out of the analysis of total condensate (at {minus}50C) of smoke from smoldering combustion of wood. All of the phenol and furan components in the aqueous condensate were extracted into methylene chloride and the extract was analyzed by GC/MS. The same homologues of guaiacol and syringol derived from lignin were detected as have been described in earlier studies, but in addition, a series of furan derivatives were found. The latter are believed to arise from pyrolysis of polysaccharides. The carboxylic acids in the condensates were analyzed by titration and subsequent GC/MS. Acetic acid was the dominant volatile acid found, with a trace of propanoic, but no significant formic acid.

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  4. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  5. Condensing efficiency of the truncated cone condenser and its comparison with the Winston cone condenser in terahertz region

    NASA Astrophysics Data System (ADS)

    Aoki, Makoto; Hiromoto, Norihisa

    2015-01-01

    The angle-dependent condensing efficiency of a truncated cone condenser (TCC) in the terahertz (THz) region has been examined by 2D ray tracing and 3D electromagnetic simulation. The condensing efficiency in the THz region is transferred to that in the optical region by theoretical dispersive reflection from a rough surface, and it is confirmed that the latter is consistent with the measured condensing efficiency in the optical region. Although the TCC has a gradual field of view (FOV) compared with the Winston cone condenser (WCC), we improved the steepness of the FOV by adding a baffle before the input aperture of the TCC. We also proved that the TCC has a high condensing efficiency at around normal incidence in comparison with the WCC in the THz region.

  6. Condensation on slippery asymmetric bumps.

    PubMed

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C; Aizenberg, Joanna

    2016-03-03

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach--based on principles derived from Namib desert beetles, cacti, and pitcher plants--that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  7. Condensation on slippery asymmetric bumps

    NASA Astrophysics Data System (ADS)

    Park, Kyoo-Chul; Kim, Philseok; Grinthal, Alison; He, Neil; Fox, David; Weaver, James C.; Aizenberg, Joanna

    2016-03-01

    Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be

  8. Marine Steam Condenser Design Optimization.

    DTIC Science & Technology

    1983-12-01

    Rerf . 61. !kS 2XLI: Those parametars which the opti heztion proqran ms--faitted to change in order to improre’the esign. Pesin variablis appear oely on...subroutine SEC& LC is called. 5. jZ.~ This subroutine determines all the parameters of each of the sectors in the condenser by row. The first...force the pressure losses to converge to a single value. Once steam flow to the sectors has been adjusted, the sector and row analysis in SEC& LC is

  9. Direct condensation by humid air

    NASA Astrophysics Data System (ADS)

    Schwab, S.; Schiebelsberger, B.

    1980-12-01

    The practicability of direct condensation with humid air (DKFL) for waste heat removal from thermal power plants was investigated with regard to technical, economical and environmental aspects. The adjustment of a uniform trickling-water film was examined. A vertical test tube was erected to study the phenomenon of a trickling-water film. A pilot plant with a vertical tube-bundle was installed to evaluate the main process parameters. The applicability of the cooling system is judged. A theoretical model was derived for the design of a DKFL apparatus. A vertical geometry for the test tube has essential operational and economical advantages in comparison with a horizontal one.

  10. Turbulent Distortion of Condensate Accretion

    NASA Technical Reports Server (NTRS)

    Hazoume, R.; Orou Chabi, J.; Johnson, J. A., III

    1997-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. Considerable interest exists in the accretion rate for condensates in nonequilibrium flow with icing and the potential role which reactant accretion can play in nonequilibrium exothermic reactant processes. Turbulence is thought to play an important role in such flows. It has already been experimentally determined that turbulence influences the sizes of droplets in the heterogeneous nucleation of supersaturated vapors. This paper addresses the issue of the possible influence of turbulence on the accretion rate of droplets.

  11. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  12. DNA condensation in one dimension

    NASA Astrophysics Data System (ADS)

    Pardatscher, Günther; Bracha, Dan; Daube, Shirley S.; Vonshak, Ohad; Simmel, Friedrich C.; Bar-Ziv, Roy H.

    2016-12-01

    DNA can be programmed to assemble into a variety of shapes and patterns on the nanoscale and can act as a template for hybrid nanostructures such as conducting wires, protein arrays and field-effect transistors. Current DNA nanostructures are typically in the sub-micrometre range, limited by the sequence space and length of the assembled strands. Here we show that on a patterned biochip, DNA chains collapse into one-dimensional (1D) fibres that are 20 nm wide and around 70 µm long, each comprising approximately 35 co-aligned chains at its cross-section. Electron beam writing on a photocleavable monolayer was used to immobilize and pattern the DNA molecules, which condense into 1D bundles in the presence of spermidine. DNA condensation can propagate and split at junctions, cross gaps and create domain walls between counterpropagating fronts. This system is inherently adept at solving probabilistic problems and was used to find the possible paths through a maze and to evaluate stochastic switching circuits. This technique could be used to propagate biological or ionic signals in combination with sequence-specific DNA nanotechnology or for gene expression in cell-free DNA compartments.

  13. Enantioselective DNA condensation induced by heptameric lanthanum helical supramolecular enantiomers.

    PubMed

    Bao, Fei-Fei; Xu, Xin-Xin; Zhou, Wen; Pang, Chun-Yan; Li, Zaijun; Gu, Zhi-Guo

    2014-09-01

    DNA condensation induced by a pair of heptameric La(III) helical enantiomers M-[La7(S-L)6(CO3)(NO3)6(OCH3)(CH3OH)7]·2CH3OH·5H2O and P-[La7(R-L)6(CO3)(NO3)6(OCH3)(CH3OH)5(H2O)2]·2CH3OH·4H2O (M-La and P-La, L=2-(2-hydroxybenzylamino)-3-carbamoylpropanoic acid) has been investigated by UV/vis spectroscopy, fluorescence spectroscopy, CD spectroscopy, EMSA, RALS, DLS, and SEM. The enantiomers M-La and P-La could induce CT-DNA condensation at a low concentration as observed in UV/vis spectroscopy. DNA condensates possessed globular nanoparticles with nearly homogeneous sizes in solid state determined by SEM (ca. 250 nm for M-La and ca. 200 nm for P-La). The enantiomers bound to DNA through electrostatic attraction and hydrogen bond interactions in a major groove, and rapidly condensed free DNA into its compact state. DNA decompaction has been acquired by using EDTA as disassembly agent, and analyzed by UV/vis spectroscopy, CD spectroscopy and EMSA. Moreover, the enantiomers M-La and P-La displayed discernible discrimination in DNA interaction and DNA condensation, as well as DNA decondensation. Our study suggested that lanthanum(III) enantiomers M-La and P-La were efficient DNA packaging agents with potential applications in gene delivery.

  14. Ultra-low threshold polariton condensation

    NASA Astrophysics Data System (ADS)

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin; Snoke, David W.; Pfeiffer, Loren N.; West, Ken; Mascarenhas, Angelo

    2017-03-01

    We demonstrate condensation of microcavity polaritons with a very sharp threshold occuring at two orders of magnitude lower pump intensity than previous demonstrations of condensation. The long cavity-lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at lower threshold than traditional lasing, and these results suggest methods to bring this threshold even lower.

  15. High-temperature condensates in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Grossman, L.

    1977-01-01

    Equilibrium thermodynamic calculations of the sequence of condensation of minerals from a cooling gas of solar composition play an important role in explaining the mineralogy and trace element content of different types of inclusions in carbonaceous chondrites. Group IV B iron meteorites and enstatite chondrites may also be direct condensates from the solar nebula. Condensation theory provides a framework within which chemical fractionations between different classes of chondrites may be understood.

  16. Ultra-low threshold polariton condensation.

    PubMed

    Steger, Mark; Fluegel, Brian; Alberi, Kirstin; Snoke, David W; Pfeiffer, Loren N; West, Ken; Mascarenhas, Angelo

    2017-03-15

    We demonstrate the condensation of microcavity polaritons with a very sharp threshold occurring at a two orders of magnitude pump intensity lower than previous demonstrations of condensation. The long cavity lifetime and trapping and pumping geometries are crucial to the realization of this low threshold. Polariton condensation, or "polariton lasing" has long been proposed as a promising source of coherent light at a lower threshold than traditional lasing, and these results indicate some considerations for optimizing designs for lower thresholds.

  17. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns

    PubMed Central

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-01-01

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis. PMID:27834896

  18. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns.

    PubMed

    Itoh, Toshio; Miwa, Toshio; Tsuruta, Akihiro; Akamatsu, Takafumi; Izu, Noriya; Shin, Woosuck; Park, Jangchul; Hida, Toyoaki; Eda, Takeshi; Setoguchi, Yasuhiro

    2016-11-10

    Various volatile organic compounds (VOCs) in breath exhaled by patients with lung cancer, healthy controls, and patients with lung cancer who underwent surgery for resection of cancer were analyzed by gas condenser-equipped gas chromatography-mass spectrometry (GC/MS) for development of an exhaled breath monitoring prototype system involving metal oxide gas sensors, a gas condenser, and gas chromatography columns. The gas condenser-GC/MS analysis identified concentrations of 56 VOCs in the breath exhaled by the test population of 136 volunteers (107 patients with lung cancer and 29 controls), and selected four target VOCs, nonanal, acetoin, acetic acid, and propanoic acid, for use with the condenser, GC, and sensor-type prototype system. The prototype system analyzed exhaled breath samples from 101 volunteers (74 patients with lung cancer and 27 controls). The prototype system exhibited a level of performance similar to that of the gas condenser-GC/MS system for breath analysis.

  19. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.

    PubMed

    Chiva, M; Saperas, N; Ribes, E

    2011-12-01

    In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and

  20. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  1. Evaporative condensing minimizes system power requirements

    SciTech Connect

    Knebel, D.E.

    1997-04-01

    Evaporative condensing is a heat-rejection technology widely applied with industrial refrigeration. When employed with HVAC systems it can reduce electrical energy and demand consumption of an HVAC system by 20 to 40%, depending on location, compared to air-cooled condensing. Evaporative condensing allows direct-expansion (DX) systems to achieve energy and demand consumption comparable to the most efficient chilled water central plant systems. As the industry focuses its attention on solving the problems of energy conservation, demand reduction, and global warming, high-efficiency air conditioning systems utilizing evaporative condensing provide a reliable and cost-effective solution today. This article addresses the advantages of evaporative condensing over air-cooled and water-cooled condensing in DX packaged systems as well as chiller/cooling tower systems. A review of condensing methods and standard system operating characteristics will be used as examples to illustrate the thermodynamic benefits of evaporative condensing. Requirements for successful operation of evaporative condensers will be discussed.

  2. Vapor condensation on a turbulent liquid interface

    NASA Technical Reports Server (NTRS)

    Helmick, M. R.; Khoo, B. C.; Sonin, A. A.

    1987-01-01

    An experimental investigation which seeks the fundamental relationship between the interfacial condensation rate and the parameters which control it when the liquid side is turbulent is discussed. The scaling laws for free-surface condensation are discussed for this case. It is argued that the condensation of cryogenic liquids can, in principle, be simulated in experiments using steam and water. Data are presented for the condensation rate in terms of the dimensionless scaling parameters which involve the fluid properties and the liquid-side turbulence velocity and length scales.

  3. Advances in modelling of condensation phenomena

    SciTech Connect

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  4. Combined boiler feed and condensate pump

    SciTech Connect

    Paul Cooper, Titusville, N.J.

    1993-06-01

    A pump for drawing the condensate from a condenser and feeding it to a steam boiler is described, the combination comprising: an elongate casing adapted to be connected in a pipeline having an inlet for receiving the condensate from a steam condenser and an outlet for feeding the condensate to a steam boiler; a pump shaft mounted in said casing rotating in a pair of bearings spaced along said shaft and fixed in said casing; an electric motor mounted in said casing connected to one end of said shaft for driving it; control means for operating said electric motor; an inducer pump mounted at the other end of said shaft, driven by said shaft; a multiple stage centrifugal feed pump located in said casing driven by said shaft and receiving condensate from the inducer pump, pumping said condensate to a higher pressure suitable for feeding a steam boiler and delivering said condensate to the outlet of said pump, the multiple stage centrifugal feed pump being located adjacent said inducer pump; and said inducer pump being of the type to produce sufficient positive pressure for properly feeding condensate to said feed pump.

  5. Origin of Condensation Nuclei in the Springtime Polar Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao, Jingxia; Toon, Owen B.; Turco, Richard P.

    1995-01-01

    An enhanced sulfate aerosol layer has been observed near 25 km accompanying springtime ozone depletion in the Antarctic stratosphere. We use a one-dimensional aerosol model that includes photochemistry, particle nucleation, condensational growth, coagulation, and sedimentation to study the origin of the layer. Annual cycles of sunlight, temperature, and ozone are incorporated into the model. Our results indicate that binary homogeneous nucleation leads to the formation of very small droplets of sulfuric acid and water under conditions of low temperature and production of H2SO4 following polar sunrise. Photodissociation of carbonyl sulfide (OCS) alone, however, cannot provide sufficient SO2 to create the observed condensation nuclei (CN) layer. When subsidence of SO2 from very high altitudes in the polar night vortex is incorporated into the model, the CN layer is reasonably reproduced. The model predictions, based on the subsidence in polar vortex, agree with in situ measurements of particle concentration, vertical distribution, and persistence during polar spring.

  6. Origin of condensation nuclei in the springtime polar stratosphere

    NASA Technical Reports Server (NTRS)

    Zhao, Jingxia; Toon, Owen B.; Turco, Richard P.

    1995-01-01

    An enhanced sulfate aerosol layer has been observed near 25 km accompanying springtime ozone depletion in the Antarctic stratosphere. We use a one-dimensional aerosol model that includes photochemistry, particle nucleation, condensational growth, coagulation, and sedimentation to study the origin of the layer. Annual cycles of sunlight, temperature, and ozone are incorporated into the model. Our results indicate that binary homogeneous nucleation leads to the formation of very small droplets of sulfuric acid and water under conditions of low temperature and production of H2SO4 following polar sunrise. Photodissociation of carbonyl sulfide (OCS) alone, however, cannot provide sufficient SO2 to create the observed condensation nuclei (CN) layer. When subsidence of SO2 from very high altitudes in the polar night vortex is incorporated into the model, the CN layer is reasonably reproduced. The model predictions, based on the subsidence in polar vortex, agree with in situ measurements of particle concentration, vertical distribution, and persistence during polar spring.

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  8. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    NASA Technical Reports Server (NTRS)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  9. An Experimental Study of Filmwise Condensation on Horizontal Enhanced Condenser Tubing.

    DTIC Science & Technology

    1979-12-01

    with a 51 mm thick sheet of Johns - Manville Aerotube insulation. 22 D. CONDENSATE AND FEEDWATER SYSTEMS The condensate and feedwater systems are shown...desuperheater. The condensate and feedwater lines are insulated with 25.4 mm thick Johns - Manville Aerotube insulation. E. COOLING WATER SYSTEM The cooling

  10. Counterion condensation on heparin oligomers.

    PubMed

    Minsky, Burcu Baykal; Atmuri, Anand; Kaltashov, Igor A; Dubin, Paul L

    2013-04-08

    The electropherogram of native heparin shows a broad distribution of mobilities μ, which truncates abruptly at a notably high μ = 4.7 × 10(-4) cm(2) V(-1) s(-1). This highly skewed mobility distribution is also found for the 20-saccharide chain, which shows from mass spectrometry a more uniform (symmetrical) with respect to sulfation level. Since a partially degraded heparin exhibits oligomer peaks with μ> 5 × 10(-4) cm(2) V(-1) s(-1) (appearing to escape the limitation of the mobility value for native heparin), we examined the electrophoretic behavior of chain-length monodisperse heparin oligomers. Their mobilities varied inversely with the logarithm of the contour length, L, for L from 3 to 10 nm and reached an asymptotic limit for L > 20 nm. The generality of this effect was indicated by similar behavior for oligomers of poly(styrene sulfonate). A recent theory of polyelectrolyte end effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), in which chain termini exhibit reduced counterion condensation was found to quantitatively account for these results. A qualitative explanation for the anomalously high value of μ of native heparin, 10-20% higher than those seen for synthetic polyelectrolytes of higher linear charge density, is suggested on the basis of similar junction effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), which reduce counterion condensation at the interfaces of regions of high and low sulfation. We suggest that these effects should be considered in models for the biofunctionality of the regulated high and low sulfation (NS/NA) domains of heparan sulfate.

  11. Tunable Vapor-Condensed Nanolenses

    PubMed Central

    2015-01-01

    Nanostructured optical components, such as nanolenses, direct light at subwavelength scales to enable, among others, high-resolution lithography, miniaturization of photonic circuits, and nanoscopic imaging of biostructures. A major challenge in fabricating nanolenses is the appropriate positioning of the lens with respect to the sample while simultaneously ensuring it adopts the optimal size and shape for the intended use. One application of particular interest is the enhancement of contrast and signal-to-noise ratio in the imaging of nanoscale objects, especially over wide fields-of-view (FOVs), which typically come with limited resolution and sensitivity for imaging nano-objects. Here we present a self-assembly method for fabricating time- and temperature-tunable nanolenses based on the condensation of a polymeric liquid around a nanoparticle, which we apply to the high-throughput on-chip detection of spheroids smaller than 40 nm, rod-shaped particles with diameter smaller than 20 nm, and biofunctionalized nanoparticles, all across an ultralarge FOV of >20 mm2. Previous nanoparticle imaging efforts across similar FOVs have detected spheroids no smaller than 100 nm, and therefore our results demonstrate the detection of particles >15-fold smaller in volume, which in free space have >240 times weaker Rayleigh scattering compared to the particle sizes detected in earlier wide-field imaging work. This entire platform, with its tunable nanolens condensation and wide-field imaging functions, is also miniaturized into a cost-effective and portable device, which might be especially important for field use, mobile sensing, and diagnostics applications, including, for example, the measurement of viral load in bodily fluids. PMID:24979060

  12. Molecular attraction of condensed bodies

    NASA Astrophysics Data System (ADS)

    Derjaguin, B. V.; Abrikosova, I. I.; Lifshitz, E. M.

    2015-09-01

    From the Editorial Board. As a contribution to commemorating the 100th anniversary of the birth of Evgenii Mikhailovich Lifshitz, it was found appropriate by the Editorial Board of Uspekhi Fizicheskikh Nauk (UFN) [Physics-Uspekhi] journal that the materials of the jubilee-associated Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences published in this issue (pp. 877-905) be augmented by the review paper "Molecular attraction of condensed bodies" reproduced from a 1958 UFN issue. Included in this review, in addition to an account by Evgenii Mikhailovich Lifshitz of his theory of molecular attractive forces between condensed bodies (first published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (ZhETF) in 1955 and in its English translation Journal of Experimental and Theoretical Physics (JETP) in 1956), is a summary of a series of experimental studies beginning in 1949 by Irina Igorevna Abrikosova at the Institute of Physical Chemistry of the Academy of Sciences of the USSR in a laboratory led by Boris Vladimirovich Derjaguin (1902-1994), a Corresponding Member of the USSR Academy of Sciences. In 1958, however, UFN was not yet available in English translation, so the material of the review is insufficiently accessible to the present-day English-speaking reader. This is the reason why the UFN Editorial Board decided to contribute to celebrating the 100th anniversary of E M Lifshitz's birthday by reproducing on the journal's pages a 1958 review paper which contains both E M Lifshitz's theory itself and the experimental data that underpinned it (for an account of how Evgenii Mikhailovich Lifshitz was enlisted to explain the experimental results of I I Abrikosova and B V Derjaguin, see the letter to the editors N P Danilova on page 925 of this jubilee collection of publications).

  13. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  14. Dynamic Condensation of Mass and Stiffness Matrices

    NASA Astrophysics Data System (ADS)

    Zhang, N.

    1995-12-01

    Details are given of a procedure for condensing the mass and stiffness matrices of a structure for dynamic analysis. The condensed model is based on choosing ncnatural frequencies and the corresponding modes of original model. The model is constructed so that (1) it has ncnatural frequencies equal to those of the original model, (2) the modes φ ifcless than i,j = 1, 2, . . . , ncare the same as those for the master co-ordinates in the corresponding modes of the original and (3) the responses of the condensed system at the co-ordinates Xcdue to forces at these co-ordinates, at one particular chosen frequency, are the same as those of the original system. The natural frequencies, the corresponding modes and the dynamic responses used for the condensation can be obtained from finite element analysis of the original structure. The method has been applied to the modelling of two common structures to examine its applicability. Comparisons between the performance of the condensed models obtained by means of the dynamic condensation method and that of the models obtained by the Guyan method have been conducted. The results of the example show that the condensed models determined by the dynamic condensation method retain the natural frequencies and modal shapes and perform better in describing the dynamic responses of the structures than do the corresponding models obtained by the Guyan method.

  15. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  16. Nephron induction revisited: from caps to condensates.

    PubMed

    Sariola, Hannu

    2002-01-01

    Conversion of mesenchyme to epithelium in the metanephric kidney is clearly a multimolecular, multistep and partly redundant process. The present short review focuses on a neglected morphological aspect of kidney differentiation: the development of two transitory mesenchymal condensations that precede epithelial differentiation of nephrons. The first appearing condensate covers the tips of the collecting ducts and is termed a cap condensate. In the early kidney rudiment this structure has been referred to as a primary or early condensate. A few cells of the cap condensate (maybe only four to six cells), situated at the lateral edge of the cap, start proliferating rapidly and form a pretubular aggregate (or pretubular condensate), which converts to secretory nephron epithelia and finally segregates to different tubule segments. Throughout nephrogenesis, the cap condensates and pretubular aggregates are clearly distinguishable structures that show only partly overlapping gene expression profiles. Apart from being the source for the pretubular aggregates, the role of the cap condensate is unknown. It is now proposed that the cap regulates ureteric branching morphogenesis.

  17. Proceedings: 2002 Workshop on Condensate Polishing

    SciTech Connect

    2002-06-01

    Condensate polishing aims to control impurities in a nuclear power plant, thus allowing the unit to operate more reliably. This report contains the work presented at EPRI's 2002 Workshop on Condensate Polishing, where 36 papers were presented on current issues, research, and utility experiences involving polishing issues at both pressurized water reactor (PWR) and boiling water reactor (BWR) units.

  18. Fragmentation of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mueller, Erich J.; Ho, Tin-Lun; Ueda, Masahito; Baym, Gordon

    2006-09-01

    We present the theory of bosonic systems with multiple condensates, providing a unified description of various model systems that are found in the literature. We discuss how degeneracies, interactions, and symmetries conspire to give rise to this unusual behavior. We show that as degeneracies multiply, so do the varieties of fragmentation, eventually leading to strongly correlated states with no trace of condensation.

  19. Enhancement of Condensation on a Vertical Plate

    NASA Astrophysics Data System (ADS)

    Chu, Rencai; Hatanaka, Tsutomu; Nishio, Shigefumi

    In previous study, the characteristic of the condensation heat transfer on the dispersed vertical surface were investigated experimentally for the application of the finned surface to the thermoelectric generator utilizing boiling and condensation as the electrodes of the thermoelectric module. A prediction model for this diapered finned surface was proposed, based on Adamek-Webb model of the condensation on a finned tube. In this study, a condensation heat transfer experiment on a vertical dispersed finned surfaces using FC5312 was carried out, in order to enhance the condensation heat transfer coefficient by optimizing the fin size on a dispersed heat transfer surface. Experimental parameters were the fin width, thickness, height and the dispersed fin length. As the results, it was found from the experiment there was a dispersed fin length corresponding to the condensation at the maximum and its value was 1.75 mm. As the characteristic, the condensation changed from slowly increasing to rapidly increasing and then decreasing at a steep grade, with decreasing the dispersed fin length. In addition, the fin height did not affect this optimum dispersed fin length and the dispersed fin length affects the dependence of the condensation on different fin thickness. Further, the prediction values have a good agreement with the experimental data except the case of short dispersed fin length.

  20. Hydrophilic structures for condensation management in appliances

    DOEpatents

    Kuehl, Steven John; Vonderhaar, John J.; Wu, Guolian; Wu, Mianxue

    2016-02-02

    An appliance that includes a cabinet having an exterior surface; a refrigeration compartment located within the cabinet; and a hydrophilic structure disposed on the exterior surface. The hydrophilic structure is configured to spread condensation. The appliance further includes a wicking structure located in proximity to the hydrophilic structure, and the wicking structure is configured to receive the condensation.

  1. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  2. Cloud condensation nuclei activation of limited solubility organic aerosol

    NASA Astrophysics Data System (ADS)

    Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.

    The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.

  3. Discovery of novel bacterial elongation condensing enzyme inhibitors by virtual screening.

    PubMed

    Zheng, Zhong; Parsons, Joshua B; Tangallapally, Rajendra; Zhang, Weixing; Rock, Charles O; Lee, Richard E

    2014-06-01

    The elongation condensing enzymes in the bacterial fatty acid biosynthesis pathway represent desirable targets for the design of novel, broad-spectrum antimicrobial agents. A series of substituted benzoxazolinones was identified in this study as a novel class of elongation condensing enzyme (FabB and FabF) inhibitors using a two-step virtual screening approach. Structure activity relationships were developed around the benzoxazolinone scaffold showing that N-substituted benzoxazolinones were most active. The benzoxazolinone scaffold has high chemical tractability making this chemotype suitable for further development of bacterial fatty acid synthesis inhibitors.

  4. Film condensation in a horizontal rectangular duct

    NASA Technical Reports Server (NTRS)

    Lu, Qing; Suryanarayana, N. V.

    1993-01-01

    Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.

  5. Condensed Matter Theories - Volume 22

    NASA Astrophysics Data System (ADS)

    Reinholz, Heidi; Röpke, Gerd; de Llano, Manuel

    2007-09-01

    pt. A. Fermi liquids. Pressure comparison between the spherical cellular model and the Thomas-Fermi model / G.A. Baker, Jr. Pair excitations and vertex corrections in Fermi fluids and the dynamic structure function of two-dimension 3He / H.M. Böhm, H. Godfrin, E. Krotscheck, H.J. Lauter, M. Meschke and M. Panholzer. Condensation of helium in wedges / E.S. Hernádez ... [et al.]. Non-Fermi liquid behavior from the Fermi-liquid approach / V.A. Khodel ... [et al.]. Theory of third sound and stability of thin 3He-4He superfluid films / E. Krotscheck and M.D. Miller. Pairing in asymmetrical Fermi systems / K.F. Quader and R. Liao. Ground-state properties of small 3He drops from quantum Monte Carlo simulations / E. Sola, J. Casulleras and J. Boronat. Ground-state energy and compressibility of a disordered two-dimensional electron gas / Tanatar ... [et al.]. Quasiexcitons in photoluminescence of incompressible quantum liquids / A. Wójs, A.G ladysiewicz and J.J. Quinn -- pt. B. Bose liquids. Quantum Boltzmann liquids / K.A. Gernoth, M L. Ristig and T. Lindenau. Condensate fraction in the dynamic structure function of Bose fluids / M. Saarela, F. Mazzanti and V. Apaja -- pt. C. Strongly-correlated electronic systems. Electron gas in high-field nanoscopic transport: metallic carbon nanotubes / F. Green and D. Neilson. Evolution and destruction of the Kondo effect in a capacitively coupled double dot system / D.E. Logan and M.R. Galpin. The method of increments-a wavefunction-based Ab-Initio correlation method for solids / B. Paulus. Fractionally charged excitations on frustrated lattices / E. Runge, F. Pollmann and P. Fulde. 5f Electrons in actinides: dual nature and photoemission spectra / G. Zwicknagl -- pt. D. Magnetism. Magnetism in disordered two-dimensional Kondo-Necklace / W. Brenig. On the de Haas-can Alphen oscillation in 2D / S. Fujita and D.L. Morabito. Dynamics in one-dimensional spin systems-density matrix reformalization group study / S. Nishimoto and M

  6. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF THE CONDENSING SYSTEM, REUSED BY VIVIANNA WORKS AS THE END OF THEIR CONDENSING SYSTEM, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  7. 26. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL VIEW OF MARISCAL WORKS CONDENSER STACK, THE END OF THE CONDENSING SYSTEM, REUSED BY VIVIANNA WORKS AS THE END OF THEIR CONDENSING SYSTEM, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  8. A solution study of silica condensation and speciation with relevance to in vitro investigations of biosilicification.

    PubMed

    Belton, David J; Deschaume, Olivier; Patwardhan, Siddharth V; Perry, Carole C

    2010-08-12

    Requiring mild synthesis conditions and possessing a high level of organization and functionality, biosilicas constitute a source of wonder and inspiration for both materials scientists and biologists. In order to understand how such biomaterials are formed and to apply this knowledge to the generation of novel bioinspired materials, a detailed study of the materials, as formed under biologically relevant conditions, is required. In this contribution, data from a detailed study of silica speciation and condensation using a model bioinspired silica precursor (silicon catechol complex, SCC) is presented. The silicon complex quickly and controllably dissociates under neutral pH conditions to well-defined, metastable solutions of orthosilicic acid. The formation of silicomolybdous (blue) complexes was used to monitor and study different stages of silicic acid condensation. In parallel, the rates of silicomolybdic (yellow) complex formation, with mathematical modeling of the species present, was used to follow the solution speciation of polysilicic acids. The results obtained from the two assays correlate well. Monomeric silicic acid, trimeric silicic acids, and different classes of oligomeric polysilicic acids and silica nuclei can be identified and their periods of stability during the early stages of silica condensation measured. For experiments performed at a range of temperatures (273-323 K), an activation energy of 77 kJ.mol(-1) was obtained for the formation of trimers. The activation energies for the forward and reverse condensation reactions for addition of monomers to polysilicic acids (273-293 +/- 1 K) were 55.0 and 58.6 kJ.mol(-1), respectively. For temperatures above 293 K, these energies were reduced to 6.1 and 7.3 kJ.mol(-1), indicating a probable change in the prevailing condensation mechanism. The impact of pH on the rates of condensation were measured. There was a direct correlation between the apparent third-order rate constant for trimer formation

  9. Enhancing dropwise condensation through bioinspired wettability patterning.

    PubMed

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-04

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  10. Boson condensation in topologically ordered quantum liquids

    NASA Astrophysics Data System (ADS)

    Neupert, Titus; He, Huan; von Keyserlingk, Curt; Sierra, Germán; Bernevig, B. Andrei

    2016-03-01

    Boson condensation in topological quantum field theories (TQFT) has been previously investigated through the formalism of Frobenius algebras and the use of vertex lifting coefficients. While general, this formalism is physically opaque and computationally arduous: analyses of TQFT condensation are practically performed on a case by case basis and for very simple theories only, mostly not using the Frobenius algebra formalism. In this paper, we provide a way of treating boson condensation that is computationally efficient. With a minimal set of physical assumptions, such as commutativity of lifting and the definition of confined particles, we can prove a number of theorems linking Boson condensation in TQFT with chiral algebra extensions, and with the factorization of completely positive matrices over Z+. We present numerically efficient ways of obtaining a condensed theory fusion algebra and S matrices; and we then use our formalism to prove several theorems for the S and T matrices of simple current condensation and of theories which upon condensation result in a low number of confined particles. We also show that our formalism easily reproduces results existent in the mathematical literature such as the noncondensability of five and ten layers of the Fibonacci TQFT.

  11. Diquark Bose-Einstein condensation

    SciTech Connect

    Nawa, K.; Nakano, E.; Yabu, H.

    2006-08-01

    Bose-Einstein condensation of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasichemical equilibrium theory at a relatively low-density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic framework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in the bound/resonant state. We obtained T{sub C}{approx}60-80 MeV for constituent quarks and T{sub C}{approx}130 MeV for current quarks at a moderate density ({rho}{sub b}{approx}3{rho}{sub 0}). The method is also developed to include interdiquark interactions into the quasichemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by {approx}50%.

  12. Condensation Processes in Astrophysical Environments

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Hill, Hugh G. M.

    2002-01-01

    Astrophysical systems present an intriguing set of challenges for laboratory chemists. Chemistry occurs in regions considered an excellent vacuum by laboratory standards and at temperatures that would vaporize laboratory equipment. Outflows around Asymptotic Giant Branch (AGB) stars have timescales ranging from seconds to weeks depending on the distance of the region of interest from the star and, on the way significant changes in the state variables are defined. The atmospheres in normal stars may only change significantly on several billion-year timescales. Most laboratory experiments carried out to understand astrophysical processes are not done at conditions that perfectly match the natural suite of state variables or timescales appropriate for natural conditions. Experimenters must make use of simple analog experiments that place limits on the behavior of natural systems, often extrapolating to lower-pressure and/or higher-temperature environments. Nevertheless, we argue that well-conceived experiments will often provide insights into astrophysical processes that are impossible to obtain through models or observations. This is especially true for complex chemical phenomena such as the formation and metamorphism of refractory grains under a range of astrophysical conditions. Data obtained in our laboratory has been surprising in numerous ways, ranging from the composition of the condensates to the thermal evolution of their spectral properties. None of this information could have been predicted from first principals and would not have been credible even if it had.

  13. Ice-condenser aerosol tests

    SciTech Connect

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. )

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  14. [Total synthesis of nordihydroguaiaretic acid].

    PubMed

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized.

  15. Catalytic, oxidative condensation of CH4 to CH3COOH in one step via CH activation.

    PubMed

    Periana, Roy A; Mironov, Oleg; Taube, Doug; Bhalla, Gaurav; Jones, C J

    2003-08-08

    Acetic acid is an important petrochemical that is currently produced from methane (or coal) in a three-step process based on carbonylation of methanol. We report a direct, selective, oxidative condensation of two methane molecules to acetic acid at 180 degrees C in liquid sulfuric acid. Carbon-13 isotopic labeling studies show that both carbons of acetic acid originate from methane. The reaction is catalyzed by palladium, and the results are consistent with the reaction occurring by tandem catalysis, involving methane C-H activation to generate Pd-CH3 species, followed by efficient oxidative carbonylation with methanol, generated in situ from methane, to produce acetic acid.

  16. 12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ANGLED VIEW OF THE SCOTT FURNACE WITH PRIMARY CONDENSER AND SOUTH SECONDARY CONDENSER IN BACKGROUND, LOOKING SOUTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  17. Dropwise condensation dynamics in humid air

    NASA Astrophysics Data System (ADS)

    Castillo Chacon, Julian Eduardo

    Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity

  18. Vortices and turbulence in trapped atomic condensates

    PubMed Central

    White, Angela C.; Anderson, Brian P.; Bagnato, Vanderlei S.

    2014-01-01

    After more than a decade of experiments generating and studying the physics of quantized vortices in atomic gas Bose–Einstein condensates, research is beginning to focus on the roles of vortices in quantum turbulence, as well as other measures of quantum turbulence in atomic condensates. Such research directions have the potential to uncover new insights into quantum turbulence, vortices, and superfluidity and also explore the similarities and differences between quantum and classical turbulence in entirely new settings. Here we present a critical assessment of theoretical and experimental studies in this emerging field of quantum turbulence in atomic condensates. PMID:24704880

  19. Heterogeneous Vapor Condensation in Boundary Layers

    SciTech Connect

    Bonilla, L. L.; Carpio, A.; Neu, J. C.

    2008-09-01

    We consider heterogeneous condensation of vapors mixed with a carrier gas in stagnation point boundary layer flow near a cold wall in the presence of solid particles much larger than the mean free path of vapor particles. The supersaturated vapor condenses on the particles by diffusion, particles and droplets are thermophoretically attracted to the wall. We sketch three asymptotic theories of the condensation process, calculate the flow-induced shift in the dew point interface, vapor density profile and deposition rates at the wall, and compare them to direct numerical simulation.

  20. Microscopic theory of equilibrium polariton condensates

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wu, Fengcheng; Xie, Ming; Su, Jung-Jung; MacDonald, A. H.

    2016-12-01

    We present a microscopic theory of the equilibrium polariton condensate state of a semiconductor quantum well in a planar optical cavity. The theory accounts for the adjustment of matter excitations to the presence of a coherent photon field, predicts effective polariton-polariton interaction strengths that are weaker and condensate exciton fractions that are smaller than in the commonly employed exciton-photon model, and yields effective Rabi coupling strengths that depend on the detuning of the cavity-photon energy relative to the bare exciton energy. The dressed quasiparticle bands that appear naturally in the theory provide a mechanism for electrical manipulation of polariton condensates.

  1. Gas-phase acid-base properties of melamine and cyanuric acid.

    PubMed

    Mukherjee, Sumit; Ren, Jianhua

    2010-10-01

    The thermochemical properties of melamine and cyanuric acid were characterized using mass spectrometry measurements along with computational studies. A triple-quadrupole mass spectrometer was employed with the application of the extended Cooks kinetic method. The proton affinity (PA), gas-phase basicity (GB), and protonation entropy (Δ(p)S) of melamine were determined to be 226.2 ± 2.0 kcal/mol, 218.4 ± 2.0 kcal/mol, and 26.2 ± 2.0 cal/mol K, respectively. The deprotonation enthalpy (Δ(acid)H), gas-phase acidity (Δ(acid)G), and deprotonation entropy (Δ(acid)S) of cyanuric acid were determined to be 330.7 ± 2.0 kcal/mol, 322.9 ± 2.0 kcal/mol, and 26.1 ± 2.0 cal/mol K, respectively. The geometries and energetics of melamine, cyanuric acid, and related ionic species were calculated at the B3LYP/6-31+G(d) level of theory. The computationally predicted proton affinity of melamine (225.9 kcal/mol) and gas-phase deprotonation enthalpy of cyanuric acid (328.4 kcal/mol) agree well with the experimental results. Melamine is best represented as the imide-like triazine-triamine form and the triazine nitrogen is more basic than the amino group nitrogen. Cyanuric acid is best represented as the keto-like tautomer and the N-H group is the most probable proton donor.

  2. An HPLC-DAD and LC-MS study of condensation oscillations with S(+)-ketoprofen dissolved in acetonitrile.

    PubMed

    Sajewicz, Mieczysław; Gontarska, Monika; Kronenbach, Dorota; Berry, Etienne; Kowalska, Teresa

    2012-03-01

    In our earlier studies, a spontaneous chiral conversion of the selected low-molecular-weight carboxylic acids (i.e., amino acids, hydroxy acids, and profen drugs) dissolved in aqueous ethanol medium, running in vitro was described. Then it became clear that this spontaneous chiral conversion is accompanied by the spontaneous condensation of the discussed compounds. With several acids, it was established that this condensation is also oscillatory in nature. The theoretical models were developed aiming to give a rough explanation of the observed non-linear processes. In this paper, the results of these studies on the dynamics of condensation with S(+)-ketoprofen, a very popular profen drug, when stored for certain amount of time dissolved in a non-aqueous medium (i.e., acetonitrile) is presented. These investigations were carried out with the aid of two independent high-performance liquid chromatographic systems with the diode array detection and of a third high-performance liquid chromatographic system equipped with mass spectrometric detection. In one cycle of chromatographic measurements, it was possible to monitor condensation of S(+)-ketoprofen in 25-min intervals for 30 h, thus obtaining kinetic information on the progress of this process. Mass spectrometric detection confirmed the presence of new species in the stored solution with molecular weights much higher than that of S(+)-ketoprofen, which can be attributed to the condensation products. The obtained data show that condensation of S(+)-ketoprofen dissolved in acetonitrile progresses in a rapid manner, and that the observed oscillatory concentration changes with S(+)-ketoprofen and with the main condensation product characterize with an irregularity and shallow amplitudes. A theoretical model was referenced that jointly describes the oscillatory chiral conversion and the oscillatory condensation with the low-molecular-weight chiral carboxylic acids.

  3. Condensed Matter Theories: Volume 25

    NASA Astrophysics Data System (ADS)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    dynamics and density functional theory. Exchange-correlation functionals from the identical-particle Ornstein-Zernike equation: Basic formulation and numerical algorithms / R. Cuevas-Saavedra and P. W. Ayers. Features and catalytic properties of RhCu: A review / S. Gonzalez, C. Sousa and F. Illas. Kinetic energy functionals: Exact ones from analytic model wave functions and approximate ones in orbital-free molecular dynamics / V. V. Karasiev ... [et al.]. Numerical analysis of hydrogen storage in carbon nanopores / C. Wexler ... [et al.] -- pt. F. Superconductivity. Generalized Bose-Einstein condensation in superconductivity / M. de Llano. Kohn anomaly energy in conventional superconductors equals twice the energy of the superconducting gap: How and why? / R. Chaudhury and M. P. Das. Collective excitations in superconductors and semiconductors in the presence of a condensed phase / Z. Koinov. Thermal expansion of ferromagnetic superconductors: Possible application to UGe[symbol] / N. Hatayama and R. Konno. Generalized superconducting gap in a Boson-Fermion model / T. A. Mamedov and M. de Llano. Influence of domain walls in the superconductor/ferromagnet proximity effect / E. J. Patino. Spin singlet and triplet superconductivity induced by correlated hopping interactions / L. A. Perez, J. S. Millan and C. Wang -- pt. G. Statistical mechanics, relativistic quantum mechanics. Boltzmann's ergodic hypothesis: A meeting place for two cultures / M. H. Lee. Electron-electron interaction in the non-relativistic limit / F. B. Malik.

  4. The condensation of water on adsorbed viruses.

    PubMed

    Alonso, José María; Tatti, Francesco; Chuvilin, Andrey; Mam, Keriya; Ondarçuhu, Thierry; Bittner, Alexander M

    2013-11-26

    The wetting and dewetting behavior of biological nanostructures and to a greater degree single molecules is not well-known even though their contact with water is the basis for all biology. Here, we show that environmental electron microscopy (EM) can be applied as a means of imaging the condensation of water onto viruses. We captured the formation of submicrometer water droplets and filaments on single viral particles by environmental EM and by environmental transmission EM. The condensate structures are compatible with capillary condensation between adsorbed virus particles and with known droplet shapes on patterned surfaces. Our results confirm that such droplets exist down to <50 nm. The viruses preserved their shape after a condensation/evaporation cycle as expected from their stability in air and water. Moreover we developed procedures that overcome problems of beam damage and of resolving structures with a low atomic number.

  5. Nonlinear interactions in an organic polariton condensate.

    PubMed

    Daskalakis, K S; Maier, S A; Murray, R; Kéna-Cohen, S

    2014-03-01

    Under the right conditions, cavity polaritons form a macroscopic condensate in the ground state. The fascinating nonlinear behaviour of this condensate is largely dictated by the strength of polariton-polariton interactions. In inorganic semiconductors, these result principally from the Coulomb interaction between Wannier-Mott excitons. Such interactions are considerably weaker for the tightly bound Frenkel excitons characteristic of organic semiconductors and were notably absent in the first reported demonstration of organic polariton lasing. In this work, we demonstrate the realization of an organic polariton condensate, at room temperature, in a microcavity containing a thin film of 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene. On reaching threshold, we observe the spontaneous formation of a linearly polarized condensate, which exhibits a superlinear power dependence, long-range order and a power-dependent blueshift: a clear signature of Frenkel polariton interactions.

  6. Scanning Tunneling Microscopy Observation of Phonon Condensate.

    PubMed

    Altfeder, Igor; Voevodin, Andrey A; Check, Michael H; Eichfeld, Sarah M; Robinson, Joshua A; Balatsky, Alexander V

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.

  7. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  8. Ferromagnetic properties of charged vector boson condensate

    SciTech Connect

    Dolgov, Alexander D.; Lepidi, Angela; Piccinelli, Gabriella E-mail: lepidi@fe.infn.it

    2010-08-01

    Bose-Einstein condensation of W bosons in the early universe is studied. It is shown that, in the broken phase of the standard electroweak theory, the condensed W bosons form a ferromagnetic state with aligned spins. In this case the primeval plasma may be spontaneously magnetized inside macroscopically large domains and form magnetic fields which may be the seeds for the observed today galactic and intergalactic fields. However, in a modified theory, e.g. in a theory with stronger quartic self interactions of gauge bosons e.g. due to a smaller value of the weak mixing angle, antiferromagnetic condensation is possible. In the latter case W bosons form scalar condensate with macroscopically large electric charge density i.e. with a large average value of the bilinear product of W-vector fields but with microscopically small average value of the field itself.

  9. Kaon condensation in dense stellar matter

    SciTech Connect

    Lee, Chang-Hwan; Rho, M. |

    1995-03-01

    This article combines two talks given by the authors and is based on Works done in collaboration with G.E. Brown and D.P. Min on kaon condensation in dense baryonic medium treated in chiral perturbation theory using heavy-baryon formalism. It contains, in addition to what was recently published, astrophysical backgrounds for kaon condensation discussed by Brown and Bethe, a discussion on a renormalization-group analysis to meson condensation worked out together with H.K. Lee and S.J. Sin, and the recent results of K.M. Westerberg in the bound-state approach to the Skyrme model. Negatively charged kaons are predicted to condense at a critical density 2 {approx_lt} {rho}/{rho}o {approx_lt} 4, in the range to allow the intriguing new phenomena predicted by Brown and Bethe to take place in compact star matter.

  10. Ghost Condensation in N=1 Supergravity

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt

    We present the theory of an N=1 supersymmetric ghost condensate coupled to supergravity using a general formalism for constructing locally supersymmetric higher-derivative chiral superfield actions. The theory admits a ghost condensate vacuum in de Sitter spacetime. Expanded around this vacuum, the scalar sector is shown to be ghost-free with no spatial gradient instabilities. The fermion sector is found to consist of a massless chiral fermion and a massless gravitino. The ghost condensate vacuum spontaneously breaks local supersymmetry with the chiral field as the Goldstone fermion. Although potentially able to get a mass through the super-Higgs effect, the vanishing superpotential in the ghost condensate theory renders the gravitino massless.

  11. Condensation and Hydrolysis - An Optical Problem?

    ERIC Educational Resources Information Center

    Kellett, N. C.; Johnstone, A. H.

    1974-01-01

    Recent surveys have shown that pupils find the topics of esterification and condensation difficult. Reasons for the difficulty are not clear. Described is research designed to determine where the difficulties were visual or conceptual in origin. (RH)

  12. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  13. Condensed-matter trio scoop Dirac prize

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2012-09-01

    Three condensed-matter physicists, who have advanced our understanding of a strange type of material known as a "topological insulator", have won this year's Dirac medal from the International Centre for Theoretical Physics (ICTP) in Trieste, Italy.

  14. Recent developments in Bose-Einstein condensation

    SciTech Connect

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  15. Passive control of unsteady condensation shock wave

    NASA Astrophysics Data System (ADS)

    Setoguchi, Toshiaki; Matsuo, Shigeru; Shimamoto, Katsumi; Yasugi, Shinichi; Yu, Shen

    2000-12-01

    A rapid expansion of moist air or steam in a supersonic nozzle gives rise to nonequilibrium condensation phenomena. Thereby, if the heat released by condensation of water vapour exceeds a certain quantity, the flow will become unstable and periodic flow oscillations of the unsteady condensation shock wave will occur. For the passive control of shock-boundary layer interaction using the porous wall with a plenum underneath, many papers have been presented on the application of the technique to transonic airfoil flows. In this paper, the passive technique is applied to three types of oscillations of the unsteady condensation shock wave generated in a supersonic nozzle in order to suppress the unsteady behavior. As a result, the effects of number of slits and length of cavity on the aspect of flow field have been clarified numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second-order fractional-step for time integration.

  16. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  17. The possible role of solid surface area in condensation reactions during chemical evolution: reevaluation.

    PubMed

    Lahav, N; Chang, S

    1976-12-30

    Published data on adsorption and condensation of amino acids, purine and pyrimidine bases, sugars, nucleosides, and nucleotides are analyzed in connection with Bernal's hypothesis that clays and other minerals may have provided the most likely surface for adsorption and condensation of these molecules in prebiotic times. Using surface concentration and reaction rate as the main criteria for the feasibility of condensation reactions, four types of prebiotic environments were analyzed: (1) an ocean-sediment system, (2) a dehydrated lagoon bed produced by evaporation, (3) the surface of a frozen sediment, and (4) a fluctuating system where hydration (rainstorms, tidal variations, flooding) and dehysration (evaporation) take place in a cyclic manner. With the possible exception of nucleotides, low adsorption of organomonomers on sediment surfaces of a prebiotic ocean (pH 8) is expected, and significant condensation is considered unlikely. In dehydrated and frozen systems, high surface concentrations are probable and condensation is more likely. In fluctuating environments, condensation rates will be enhanced and the size distribution of the oligomers formed during dehydration may be influenced by a "redistribution mechanism" in which adsorbed oligomers and monomers are desorbed and redistributed on the solid surface during the next hydration-dehydration cycle.

  18. Molecular equilibrium with condensation. [in astrophysics

    NASA Technical Reports Server (NTRS)

    Sharp, C. M.; Huebner, W. F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  19. Condensate polishers add operating reliability and flexibility

    SciTech Connect

    Layman, C.M.; Bennett, L.L.

    2008-08-15

    Many of today's advanced steam generators favour either an all-volatile treatment or oxygenated treatment chemistry programme, both of which require strict maintenance of an ultra-pure boiler fedwater ro condensate system. Those requirements are many times at odds with the lower-quality water sources, such as greywater, available for plant makeup and cooling water. Adding a condensate polisher can be a simple, cost-effective solution. 4 figs.

  20. Dynamic simulation recalls condensate piping event

    SciTech Connect

    Farrell, R.J.; Reneberg, K.O. ); Moy, H.C. )

    1994-05-01

    This article describes how experience gained from simulating and reconstructing a condensate piping event will be used by Consolidated Edison to analyze control system problems. A cooperative effort by Con Edison and the Chemical Engineering Department at Polytechnic University used modular modeling system to investigate the probable cause of a Con Edison condensate piping event. Con Edison commissioned the work to serve as a case study for the more general problem of control systems analysis using dynamic simulation and MMS.

  1. Enhancement of Condensation on a Vertical Plate

    NASA Astrophysics Data System (ADS)

    Chu, Rencai; Hatanaka, Tsutomu; Nishio, Shigefumi

    In previous study, the characteristic of the condensation heat transfer on the dispersed vertical surface were investigated experimentally for the application of the finned surface to the thermoelectric generator utilizing boiling and condensation as the electrodes of the thermoelectric module. A prediction model for this diapered finned surface was proposed, based on Adamek-Webb model of the condensation on a finned tube. In this study, a condensation heat transfer experiment on a vertical dispersed finned surfaces using FC5312 was carried out, in order to enhance the condensation heat transfer coefficient by optimizing the fin size on a dispersed heat transfer surface. The object of the experiment was limited to the rectangular fin with the height of 3 mm. Experimental parameters were the temperature difference, the fin groove width, the fin thickness and the dispersing size on the vertical direction. As the results, it was found from the experiment that the dependence of the condensation heat transfer coefficient on the dispersed size is controlled by the fin groove width. That is, the condensation heat transfer coefficient will increase for a smaller fin groove width and will decrease for a larger fin groove width, with decreasing of the dispersing size. Moreover, there is an optimum fin thickness at which the condensation heat transfer coefficient becomes the maximum in the case of constant fin groove width for both size of the fin groove width. This effect of the fin thickness is more significant for the smaller fin groove width. Further, the prediction values exhibit a good agreement with the experimental data in the present experiment.

  2. Dual condensates at finite isospin chemical potential

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Miao, Qing

    2016-02-01

    The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential μI in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for μI >mπ / 2 under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with T is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with T at low temperatures due to the influence of pion condensate. We also find that the dressed Polyakov-loop always rises most steeply at the chiral transition temperature, which is consistent with the previous results in Nambu-Jona-Lasinio (NJL) model and its variants without considering the center symmetry. Since both quantities are strongly affected by the chiral symmetry and pion condensation, we conclude that it is difficult to clarify the deconfinement transition from the dual condensates in this situation within this model.

  3. Interstitial Condensation Risk at Thermal Rehabilitated Buildings

    NASA Astrophysics Data System (ADS)

    Baran, I.; Bliuc, I.; Iacob, A.; Dumitrescu, L.; Pescaru, R. A.; Helepciuc, C.

    2016-11-01

    The increasing thermal insulation degree of existing residential buildings, aiming to reduce the energy requirements for ensuring the indoor comfort, has as expected effect the elimination of condensation risk. However, in some cases this phenomenon occurs, both on the inner surface of the closing element and also in its structure. The surface condensation causes can be identified and can be easily removed. Instead, the causes and even the presence of interstitial condensation are more difficult to be observed. But the moistening of the insulation materials and the reduction of thermal insulation capacity or even its total degradation, contravene into a large extent or totally to the main purpose of the additional thermal protection. To avoid such situations, it is necessary to respect some principles concerning the structure, resulted from the knowledge of the water vapour diffusion behaviour of various materials. It is known that condensation vulnerability is higher for the additional thermal protection solutions by disposing the insulating material on the inside surface of the closing element. But practice has shown that the condensation phenomenon is not totally excluded neither in the case of outside thermal insulation - which is the current solution applied to the rehabilitation works - if the principles mentioned above are not known and respected. In this paper two models are compared on which the risk of interstitial condensation can be checked. The analysis made on two structures of exterior walls with thermal insulation demonstrates the need for additional verifications before proposing a solution for thermal rehabilitation of the envelope elements.

  4. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  5. Condensation of the air-steam mixture in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2016-03-01

    This paper deals with the condensation of water vapour in the presence of non-condensable air. Experimental and theoretical solutions of this problem are presented here. A heat exchanger for the condensation of industrial waste steam containing infiltrated air was designed. The condenser consists of a bundle of vertical tubes in which the steam condenses as it flows downwards with cooling water flowing outside the tubes in the opposite direction. Experiments with pure steam and with mixtures of steam with added air were carried out to find the dependence of the condensation heat transfer coefficient (HTC) on the air concentration in the steam mixture. The experimental results were compared with the theoretical formulas describing the cases. The theoretical determination of the HTC is based on the Nusselt model of steam condensation on a vertical wall, where the analogy of heat and mass transfer is used to take into account the behaviour of air in a steam mixture during the condensation process. The resulting dependencies obtained from the experiments and obtained from the theoretical model have similar results. The significant decrease in the condensation HTC, which begins at very low air concentrations in a steam mixture, was confirmed.

  6. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    SciTech Connect

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C.

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  7. Semisynthesis of sperm whale myoglobin by fragment condensation.

    PubMed

    Simmerman, H K; Wang, C C; Horwitz, E M; Berzofsky, J A; Gurd, F R

    1982-12-01

    Reconstruction of the sperm whale myoglobin structure was accomplished by a series of aqueous condensations of suitably protected synthetic myoglobin fragments to a large fragment prepared from the native protein. Reaction of N alpha,N epsilon 19-acetimidomyoglobin with 3-bromo-2-(2-nitrophenylsulfenyl)skatole (BNPS-skatole) yielded the fragment corresponding to residues 15-153. The covalent structure was reformed by sequential coupling of the N-hydroxysuccinimide esters of o-nitrophenylsulfenyl-L-tryptophan (residue 14) and selectively protected peptides corresponding to residues 1-5 and 6-13, which were synthesized by the solid-phase method and removed from the resin by methoxide-catalyzed methanolysis. A mixed aqueous solvent system containing methanol and N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine/trifluoroacetic acid buffer (Quadrol) solubilized the peptide and protein fragments during the condensations. Replacement of the heme moiety and immunoaffinity chromatography made possible the isolation and purification of the reconstructed native molecule. The development of this nondestructive synthetic procedure allows investigation of the structural and functional significance of individual residues by isotopic enrichment or selective amino acid substitutions.

  8. Reversible condensation of mast cell secretory products in vitro.

    PubMed Central

    Fernandez, J M; Villalón, M; Verdugo, P

    1991-01-01

    We have investigated the mechanisms responsible for the condensation and decondensation of secretory products that occur in mast cell secretion. We show here that the hydrated matrix of an exocytosed secretory granule can be recondensed to its original volume by exposure to acidic solutions containing histamine at concentrations that mimic those found in vivo. Recondensation by acidic histamine began in the range of 1-10 mM with a dose response curve that was accurately predicted by a Hill type equation with four highly cooperative binding sites and a half maximum concentration of [Hi++] = 3.9 mM. Recondensation by histamine showed a sigmoidal dependency on pH (critical range pH 5.5-6.5) and was fully reversible. These experiments suggest that histamine, possibly by binding to anionic sites in the protein-heparin complex of the granule matrix, triggers a change in the polymeric structures of the granule matrix from an extended coil to a collapsed globular state. This may be a useful model for understanding the condensation of secretory products into dense core granules and their subsequent decondensation upon exocytosis. Images FIGURE 1 FIGURE 4 PMID:1868152

  9. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    It is widely believed that the materials making up the solar system were derived from a nebular gas and dust cloud that went through an early high-temperature stage during which virtually all of the material was in the gas phase. At one time, it was thought that the entire inner solar nebula was hot, but it is now believed that most material was processed through regions where high temperatures were achieved. Certainly some material, such as presolar grains (cf., Mendybaev et al., 2002a), has never been exposed to high temperatures. As the system cooled, solids and perhaps liquids began to condense, but at some point the partially condensed materials became isolated from the remaining gas. Various lines of evidence support this view. At the largest scale, there is the observation that the Earth, Moon, Mars, and all chondritic meteorites except for the CI chondrites are depleted to varying degrees in the abundances of moderately volatile elements relative to bulk solar system composition. The CI chondrites reflect the bulk composition of the solar system for all but hydrogen, carbon, nitrogen, oxygen, and the rare gases, the most volatile elements (see Chapter 1.03; Palme et al., 1988; McDonough and Sun, 1995; Humayun and Cassen, 2000). The depletions in moderately volatile elements are, to a significant degree, correlated with condensation temperature, suggesting progressive removal of gas as condensation proceeded ( Cassen, 1996). Additional observations that can be explained by partial condensation are that various particularly primitive components of meteorites (e.g., calcium-, aluminum-rich refractory inclusions, and certain metal grains) have mineralogy and/or details of their chemical composition that are remarkably similar to what is calculated for equilibrium condensates from a solar composition gas. For example, the calcium-, aluminum-rich inclusions (CAIs) in chondritic meteorites have compositions very similar to that calculated for the first 5% of total

  10. Mitotic chromosome condensation in vertebrates

    SciTech Connect

    Vagnarelli, Paola

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of

  11. Improved Cloud Condensation Nucleus Spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2010-01-01

    An improved thermal-gradient cloud condensation nucleus spectrometer (CCNS) has been designed to provide several enhancements over prior thermal- gradient counters, including fast response and high-sensitivity detection covering a wide range of supersaturations. CCNSs are used in laboratory research on the relationships among aerosols, supersaturation of air, and the formation of clouds. The operational characteristics of prior counters are such that it takes long times to determine aerosol critical supersaturations. Hence, there is a need for a CCNS capable of rapid scanning through a wide range of supersaturations. The present improved CCNS satisfies this need. The improved thermal-gradient CCNS (see Figure 1) incorporates the following notable features: a) The main chamber is bounded on the top and bottom by parallel thick copper plates, which are joined by a thermally conductive vertical wall on one side and a thermally nonconductive wall on the opposite side. b) To establish a temperature gradient needed to establish a supersaturation gradient, water at two different regulated temperatures is pumped through tubes along the edges of the copper plates at the thermally-nonconductive-wall side. Figure 2 presents an example of temperature and supersaturation gradients for one combination of regulated temperatures at the thermally-nonconductive-wall edges of the copper plates. c) To enable measurement of the temperature gradient, ten thermocouples are cemented to the external surfaces of the copper plates (five on the top plate and five on the bottom plate), spaced at equal intervals along the width axis of the main chamber near the outlet end. d) Pieces of filter paper or cotton felt are cemented onto the interior surfaces of the copper plates and, prior to each experimental run, are saturated with water to establish a supersaturation field inside the main chamber. e) A flow of monodisperse aerosol and a dilution flow of humid air are introduced into the main

  12. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  13. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  14. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  15. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  16. 46 CFR 56.50-35 - Condensate pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Condensate pumps. 56.50-35 Section 56.50-35 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-35 Condensate pumps. Two means shall be provided for discharging the condensate from the main condenser, one of which shall be...

  17. Infinite statistics condensate as a model of dark matter

    SciTech Connect

    Ebadi, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein E-mail: b.mirza@cc.iut.ac.ir

    2013-11-01

    In some models, dark matter is considered as a condensate bosonic system. In this paper, we prove that condensation is also possible for particles that obey infinite statistics and derive the critical condensation temperature. We argue that a condensed state of a gas of very weakly interacting particles obeying infinite statistics could be considered as a consistent model of dark matter.

  18. Enhanced tubes for steam condensers. Volume 1, Summary of condensation and fouling; Volume 2, Detailed study of steam condensation

    SciTech Connect

    Webb, R.L.; Chamra, L.; Jaber, H.

    1992-02-01

    Electric utility steam condensers typically use plain tubes made of titanium, stainless steel, or copper alloys. Approximately two-thirds of the total thermal resistance is on the water side of the plain tube. This program seeks to conceive and develop a tube geometry that has special enhancement geometries on the tube (water) side and the steam (shell) side. This ``enhanced`` tube geometry, will provide increased heat transfer coefficients. The enhanced tubes will allow the steam to condense at a lower temperature. The reduced condensing temperature will reduce the turbine heat rate, and increase the plant peak load capability. Water side fouling and fouling control is a very important consideration affecting the choice of the tube side enhancement. Hence, we have consciously considered fouling potential in our selection of the tube side surface geometry. Using appropriate correlations and theoretical models, we have designed condensation and water side surface geometries that will provide high performance and be cleanable using sponge ball cleaning. Commercial tube manufacturers have made the required tube geometries for test purposes. The heat transfer test program includes measurement of the condensation and water side heat transfer coefficients. Fouling tests are being run to measure the waterside fouling resistance, and to the test the ability of the sponge ball cleaning system to clean the tubes.

  19. Nanoscopic structure of DNA condensed for gene delivery.

    PubMed Central

    Dunlap, D D; Maggi, A; Soria, M R; Monaco, L

    1997-01-01

    Scanning force microscopy was used to examine DNA condensates prepared with varying stoichiometries of lipospermine or polyethylenimine in physiological solution. For the first time, individual DNA strands were clearly visualized in incomplete condensates without drying. Using lipospermine at sub-saturating concentrations, discrete nuclei of condensation were observed often surrounded by folded loops of DNA. Similar packing of DNA loops occurred for polyethylenimine-induced condensation. Increasing the amount of the condensing agent led to the progressive coalescence or aggregation of initial condensation nuclei through folding rather than winding the DNA. At over-saturating charge ratios of the cationic lipid or polymer to DNA, condensates had sizes smaller than or equal to those measured previously in electron micrographs. Polyethylenimine condensates were more compact than lipospermine condensates and both produced more homogeneously compacted plasmids when used in a 2-4-fold charge excess. The size and morphology of the condensates may affect their efficiency in transfection. PMID:9224610

  20. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS BETWEEN ASSAYS AND CONDENSATES

    EPA Science Inventory

    What is the study?
    This the first assessment of a set of cigarette smoke condensates from a range of cigarette types in a variety (4) of short-term genotoxicity assays.
    Why was it done?
    No such comparative study of cigarette smoke condensates has been reported. H...

  1. Condensed tannins from acacia mangium bark: Characterization by spot tests and FTIR

    NASA Astrophysics Data System (ADS)

    Bharudin, Muhammad Azizi; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    This paper describes the adaptation and evaluation of one chemical tests for tannins characterization in acacia mangium bark. Acid butanol test developed to identify respectively condensed tannins is described. The two traditional tests used for tannin characterization namely ferric test and vanillin test were also performed and their functional also discussed. Condensed tannins were extracted from acacia mangium bark using water medium in presence of three different concentration basic reagent of NaOH(5%,10% and 15%) and were characterized by FT-IR spectrometry.

  2. Chemistry and kinetics of I2 loss in urine distillate and humidity condensate

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Wheeler, Richard R., Jr.; Olivadoti, J. T.; Sauer, Richard L.

    1992-01-01

    Time-resolved molecular absorption spectrophotometry of iodinated ersatz humidity condensates and iodinated ersatz urine distillates across the UV and visible spectral regions are used to investigate the chemistry and kinetics of I2 loss in urine distillate and humidity condensate. Single contaminant systems at equivalent concentrations are also employed to study rates of iodine. Pseudo-first order rate constants are identified for ersatz contaminant model mixtures and for individual reactive constituents. The second order bimolecular reaction of elemental iodine with formic acid, producing carbon dioxide and iodine anion, is identified as the primary mechanism underlying the decay of residual I2 in ersatz humidity concentrate.

  3. Structure of vacuum Cu–Ta condensates

    NASA Astrophysics Data System (ADS)

    Zubkov, A. I.; Zubarev, E. N.; Sobol', O. V.; Hlushchenko, M. A.; Lutsenko, E. V.

    2017-02-01

    The structure of vacuum condensate foils (separated from substrates) of the binary Cu-Ta system has been investigated both in the initial condensed state and after annealings at temperatures of up to 1000°C. It has been shown that the alloying of a vapor flow of the matrix metal (copper) with tantalum to 0.5 at % makes it possible to reduce the grain size from 3 μm to 50 nm. Depending on the tantalum concentration, condensates exhibit a broad spectrum of structural states, i.e., single- and two-phase, a supersaturated solution of tantalum in the fcc lattice of copper, etc. The structure of the objects possesses a high thermal stability. The temperature of the start of grain growth in the copper matrix depends on the tantalum content and can reach 900°C. The dispersion of the structure of copper condensates and its thermal stability is due to the formation of segregates of tantalum atoms at the boundaries of grains of the copper matrix both in the process of condensation and upon subsequent annealing.

  4. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  5. Infrared applications for steam turbine condenser systems

    NASA Astrophysics Data System (ADS)

    Lanius, Mark A.

    2000-03-01

    Infrared inspection of the main steam condensers at the Peach Bottom Atomic Power Station has been utilized successfully in detecting condenser air in-leakage problems. Air in-leakage lowers the condenser's vacuum, thus decreasing the condenser's efficiency. This creates backpressure on the turbine which lowers its efficiency, resulting in fewer megawatts generated. Air in-leakage also creates an increase in off-gas flow which is a radiological concern for both the plant and the public. Inspections are normally performed on the condenser's manway covers and rupture disks prior to an outage during coast down and post outage. The optimum conditions are 100% power and temperature, however, a high radiation field prevents the inspection until reactor power is down to 65% or less. Anomalies are typically indicated by cooling in the effected areas of the air in-leakage. The anomalies are not limited to air in-leakage. Intermittent water out-leakage, due to a heater dump valve cycling, has been detected when visual inspections field nothing.

  6. The NSF Condensed Matter Physics Program

    NASA Astrophysics Data System (ADS)

    Sokol, Paul

    The Condensed Matter Physics (CMP) program in the NSF Division of Materials Research (DMR) supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems. CMP is the largest Individual Investigator Award program in DMR and supports a broad portfolio of research spanning both hard and soft condensed matter. Representative research areas include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; topological insulators; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, liquid crystals, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields. In this talk I will review the current CMP portfolio and discuss future funding trends for the program. I will also describe recent activities in the program aimed at addressing the challenges facing current and future principal investigators.

  7. Dropwise condensation over superhydrophobic aluminium surfaces

    NASA Astrophysics Data System (ADS)

    Parin, R.; Del, D., Col; Bortolin, S.; Martucci, A.

    2016-09-01

    Superhydrophobic aluminum surfaces have been analyzed being a promising solution to promote dropwise condensation. Superhydrophobicity has been obtained on an aluminum substrate by etching it with two different reagents and by depositing a fluorosilane film over them to lower the surface energy. The samples are characterized by means of contact angle measurements and Scanning Electron Microscopy (SEM). Experimental tests of pure steam condensation have been carried out on the samples and DWC has been visualized. Images of the dropwise condensation have been captured with high speed camera and, furthermore, the phenomenon of the jumping droplets has been observed. A heat transfer coefficient higher than 50 kW m-2 K-1 has been measured over the samples.

  8. Vector meson condensation in a pion superfluid

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Huang, Xu-Guang

    2016-11-01

    We revisit the suggestion that charged ρ -mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that ρ -meson condensation is either avoided or postponed to isospin chemical potentials much higher than the ρ -meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and ρ -mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.

  9. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  10. Quantum Langevin model for nonequilibrium condensation

    NASA Astrophysics Data System (ADS)

    Chiocchetta, Alessio; Carusotto, Iacopo

    2014-08-01

    We develop a quantum model for nonequilibrium Bose-Einstein condensation of photons and polaritons in planar microcavity devices. The model builds on laser theory and includes the spatial dynamics of the cavity field, a saturation mechanism, and some frequency dependence of the gain: quantum Langevin equations are written for a cavity field coupled to a continuous distribution of externally pumped two-level emitters with a well-defined frequency. As an example of application, the method is used to study the linearized quantum fluctuations around a steady-state condensed state. In the good-cavity regime, an effective equation for the cavity field only is proposed in terms of a stochastic Gross-Pitaevskii equation. Perspectives in view of a full quantum simulation of the nonequilibrium condensation process are finally sketched.

  11. DROPWISE CONDENSATION ON MICRO- AND NANOSTRUCTURED SURFACES

    SciTech Connect

    Enright, R; Miljkovic, N; Alvarado, JL; Kim, K; Rose, JW

    2014-07-23

    In this review we cover recent developments in the area of surface-enhanced dropwise condensation against the background of earlier work. The development of fabrication techniques to create surface structures at the micro-and nanoscale using both bottom-up and top-down approaches has led to increased study of complex interfacial phenomena. In the heat transfer community, researchers have been extensively exploring the use of advanced surface structuring techniques to enhance phase-change heat transfer processes. In particular, the field of vapor-to-liquid condensation and especially that of water condensation has experienced a renaissance due to the promise of further optimizing this process at the micro-and nanoscale by exploiting advances in surface engineering developed over the last several decades.

  12. Synthesis of homogeneous glycopeptides and their utility as DNA condensing agents.

    PubMed

    Collard, W T; Evers, D L; McKenzie, D L; Rice, K G

    2000-01-12

    Two glycopeptides were synthesized by attaching purified glycosylamines (N-glycans) to a 20 amino acid peptide. Triantennary and Man9 Boc-tyrosinamide N-glycans were treated with trifluoroacetic acid to remove the Boc group and expose a tyrosinamide amine. The amine group was coupled with iodoacetic acid to produce N-iodoacetyl-oligosaccharides. These were reacted with the sulfhydryl group of a cysteine-containing peptide (CWK18), resulting in the formation of glycopeptides in good yield that were characterized by 1H NMR and ESIMS. Both glycopeptides were able to bind to plasmid DNA and form DNA condensates of approximately 110 nm mean diameter with zeta potential of +31 mV. The resulting homogeneous glycopeptide DNA condensates will be valuable as receptor-mediated gene-delivery agents.

  13. Condensation of gauge interacting massless fermions

    SciTech Connect

    Siringo, Fabio

    2004-09-15

    A single massless fermionic field with an Abelian U(1) gauge interaction (electrodynamics of a massless Dirac fermion) is studied by a variational method. Even without the insertion of any extra interaction the vacuum is shown to be unstable towards a particle-antiparticle condensate. The single particle excitations do acquire a mass and behave as massive Fermi particles. An explicit low-energy gap equation has been derived and numerically solved. Some consequences of condensation and mass generation are discussed in the framework of the standard model.

  14. Condenser optic with sacrificial reflective surface

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sung Hun

    2007-07-03

    Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  15. Condenser optic with sacrificial reflective surface

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun

    2006-07-25

    Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.

  16. Colored condensates deep inside neutron stars

    NASA Astrophysics Data System (ADS)

    Blaschke, David

    2014-09-01

    It is demonstrated how in the absence of solutions for QCD under conditions deep inside compact stars an equation of state can be obtained within a model that is built on the basic symmetries of the QCD Lagrangian, in particular chiral symmetry and color symmetry. While in the vacuum the chiral symmetry is spontaneously broken, it gets restored at high densities. Color symmetry, however, gets broken simultaneously by the formation of colorful diquark condensates. It is shown that a strong diquark condensate in cold dense quark matter is essential for supporting the possibility that such states could exist in the recently observed pulsars with masses of 2 Mʘ.

  17. Dynamic condensation blocking in cryogenic refueling

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Muratov, C. B.

    2008-12-01

    We demonstrate that a negative feedback between vapor pressure and condensation rate may be established in two-phase systems during vapor compression with rates of practical importance. As a result, dynamic condensation blocking occurs. The effect is studied numerically in the case of filling a no-vent insulated tank by liquid hydrogen. It is shown that the filling dynamics quite sensitively depends on the filling rate, and for sufficiently fast filling rates consist of a fast stage dominated by gas compression and a slow stage governed by heat conduction in the liquid.

  18. Bose-Einstein condensation. Twenty years after

    DOE PAGES

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; ...

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  19. Geometric approach to condensates in holographic QCD

    SciTech Connect

    Hirn, Johannes; Rius, Nuria; Sanz, Veronica

    2006-04-15

    An SU(N{sub f})xSU(N{sub f}) Yang-Mills theory on an extra-dimensional interval is considered, with appropriate symmetry-breaking boundary conditions on the IR brane. UV-brane to UV-brane correlators at high energies are compared with the OPE of two-point functions of QCD quark currents. Condensates correspond to departure from the AdS metric of the (different) metrics felt by vector and axial combinations, away from the UV brane. Their effect on hadronic observables is studied: the extracted condensates agree with the signs and orders of magnitude expected from QCD.

  20. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  1. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  2. Atomic Phase Conjugation From a Bose Condensate

    PubMed Central

    Goldstein, Elena V.; Plättner, Katja; Meystre, Pierre

    1996-01-01

    We discuss the possibility of observing atomic phase conjugation from Bose condensates, and using it as a diagnostic tool to access the spatial coherence properties and to measure the lifetime of the condensate. We argue that since phase conjugation results from the scattering of a partial matter wave off the spatial grating produced by two other waves, it offers a natural way to directly measure such properties, and as such provides an attractive alternative to the optical methods proposed in the past. PMID:27805111

  3. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  4. Experimental Investigation of Flow Condensation in Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; Mackey, Jeffery R.

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to

  5. Experiments on condensation over in-line and staggered condenser tubes in the presence of non-condensable gases

    NASA Astrophysics Data System (ADS)

    Ramadan, Abdulghani; Yamali, Cemil

    2013-12-01

    The problem of the forced film condensation heat transfer of pure steam and steam-air mixture flowing downward a tier of horizontal cylinders is investigated experimentally. An experimental setup was manufactured and mounted at Middle East Technical University workshop. A set of experiments were conducted to observe the condensation heat transfer phenomenon and to verify the theoretical results. The results of the experimental investigation are presented to show the effect of different parameters on the film condensation heat transfer phenomenon over bundle of tubes. These parameters include; free stream velocity, free stream non-condensable gas (air) mass fractions, free stream temperature to wall temperature difference, the angle of inclination. heat transfer coefficients are evaluated at different working conditions for both inline and staggered arrangements. Results show that; a remarked reduction in the vapor side heat transfer coefficient is noticed when very small amounts of air mass fractions present in the vapor. In addition, it decreases by increasing the temperature difference. On the other hand, it increases by increasing the free stream velocity (Reynolds number). Average heat transfer coefficient at the middle and the bottom cylinders increases by increasing the angle of inclination, whereas, no significant change is observed for that of the upper cylinder. Although some discrepancies are noticed, the present study results are inline and in a reasonable agreement with the theory and experiment in the literature.

  6. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    NASA Technical Reports Server (NTRS)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  7. Slag condensation kinetics in the channel of an MHD generator: Explosive condensation

    SciTech Connect

    Zhukhovitskii, D.I.; Khrapak, A.G.; Yakubov, I.T.

    1983-09-01

    A study has been made of the bulk condensation of the inorganic part of combustion products in the channel of an MHD generator. An analytic solution has been obtained to the equations describing the process. A physical interpretation is given for the various stages. It is known that the condensation consists of several slightly overlapping stages. First there is the explosive formation of nuclei, which then grow rapidly, and a quasistationary stage of condensation sets in. A calculation is performed for particular conditions in an MHD generator.

  8. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  9. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    PubMed

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  10. Dropwise condensation on a cold gradient substrate

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2012-11-01

    Distributions of drops that arise from dropwise condensation evolve by nucleation, growth, and coalescence of drops. An understanding of how surface-energy gradients applied to the substrate affect drop growth and coalescence is needed for design of effective surfaces for large-scale dropwise condensation. Transient dropwise condensation from a vapor phase onto a cold and chemically treated surface is reported. The surfaces were treated to deliver either a uniform contact-angle or a gradient of contact-angles by silanization. The time evolution of drop-size and number-density distributions is reported. For a typical condensation experiment, the drop distributions advance through two stages: an increase in drop density as a result of nucleation and a decrease in drop density as a result of larger scale coalescence events. Because the experiment is transient in nature, the shape of the distribution can be used to predict the number of drop generations and their stage of development. Preliminary results for gradient surfaces will be discussed and compared against observations of behavior on uniformly coated surfaces. NASA Space Technology Research Fellowship (NSTRF).

  11. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    SciTech Connect

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  12. Ultrafine Condensation Particle Counter Instrument Handbook

    SciTech Connect

    Kuang, C.

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  13. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  14. Condensate-removal device for heat exchangers

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W.

    1973-01-01

    Device comprises array of perforated tubes manifolded together and connected to a vacuum suction device. Vacuum applied to these tubes pulls mixture of condensate and effluent gas through perforations and along length of tubes to discharge device. Discharge device may be a separator which separates water vapor from effluent air and allows recirculation of both of them.

  15. Tachyon condensation and black hole entropy.

    PubMed

    Dabholkar, Atish

    2002-03-04

    String propagation on a cone with deficit angle 2pi(1-1 / N) is considered for the purpose of computing the entropy of a large mass black hole. The entropy computed using the recent results on condensation of twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking entropy.

  16. Orientation Dependence of Jumping Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Berrier, Austin; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    On nanostructured superhydrophobic surfaces, microscopic condensate exhibits out-of-plane jumping that minimizes the average droplet size for maximal phase-change heat transfer. This jumping-droplet phenomenon occurs independently of gravity and is due to surface energy being partially converted to kinetic energy upon coalescence events. Although the initial departure of the jumping droplets is independent of gravity, the subsequent trajectories exhibit a dependence upon the orientation of the substrate. The drop size distribution of jumping-droplet condensation growing on a superhydrophobic substrate was characterized for both horizontal and vertical surface orientations. With the horizontal orientation, jumping condensate returns to the substrate by gravity. While this can result in chain reactions with other droplets to trigger further jumping events, eventually the rebounding droplets become too large to jump and are stuck on the surface. In contrast, droplets jumping off a vertically oriented surface do not return to the substrate. For this reason, the maximum droplet diameters during condensation growth were found to be significantly larger on the horizontally oriented superhydrophobic surface than on the vertical orientation.

  17. Capillary condensation as a morphological transition.

    PubMed

    Kornev, Konstantin G; Shingareva, Inna K; Neimark, Alexander V

    2002-02-25

    The process of capillary condensation/evaporation in cylindrical pores is considered within the idea of symmetry breaking. Capillary condensation/evaporation is treated as a morphological transition between the wetting film configurations of different symmetry. We considered two models: (i) the classical Laplace theory of capillarity and (ii) the Derjaguin model which takes into account the surface forces expressed in terms of the disjoining pressure. Following the idea of Everett and Haynes, the problem of condensation/evaporation is considered as a transition from bumps/undulations to lenses. Using the method of phase portraits, we discuss the mathematical mechanisms of this transition hidden in the Laplace and Derjaguin equations. Analyzing the energetic barriers of the bump and lens formation, it is shown that the bump formation is a prerogative of capillary condensation: for the vapor-liquid transition in a pore, the bump plays the same role as the spherical nucleus in a bulk fluid. We show also that the Derjaguin model admits a variety of interfacial configurations responsible for film patterning at specific conditions.

  18. Condensing Organic Aerosols in a Microphysical Model

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  19. Convection in Condensible-rich Atmospheres

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R. T.

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  20. Free convective condensation in a vertical enclosure

    SciTech Connect

    Fox, R.J.; Peterson, P.F.; Corradini, M.L.; Pernsteiner, A.P.

    1995-09-01

    Free convective condensation in a vertical enclosure was studied numerically and the results were compared with experiments. In both the numerical and experimental investigations, mist formation was observed to occur near the cooling wall, with significant droplet concentrations in the bulk. Large recirculation cells near the end of the condensing section were generated as the heavy noncondensing gas collecting near the cooling wall was accelerated downward. Near the top of the enclosure the recirculation cells became weaker and smaller than those below, ultimately disappearing near the top of the condenser. In the experiment the mist density was seen to be highest near the wall and at the bottom of the condensing section, whereas the numerical model predicted a much more uniform distribution. The model used to describe the formation of mist was based on a Modified Critical Saturation Model (MCSM), which allows mist to be generated once the vapor pressure exceeds a critical value. Equilibrium, nonequilibrium, and MCSM calculations were preformed, showing the experimental results to lie somewhere in between the equilibrium and nonequilibrium predictions of the numerical model. A single adjustable constant (indicating the degree to which equilibrium is achieved) is used in the model in order to match the experimental results.

  1. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B. ); Hughes, E.D. )

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  2. Condensation in a two-phase pool

    SciTech Connect

    Duffey, R.B.; Hughes, E.D.

    1991-12-31

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases.

  3. Counterion condensation and release in micellar solutions

    NASA Astrophysics Data System (ADS)

    Hsiao, Chin Chieh; Wang, Tzu-Yu; Tsao, Heng-Kwong

    2005-04-01

    Counterion condensation and release in micellar solutions are investigated by direct measurement of counterion concentration with ion-selective electrode. Monte Carlo simulations based on the cell model are also performed to analyze the experimental results. The degree of counterion condensation is indicated by the concentration ratio of counterions in the bulk to the total ionic surfactant added, α⩽1. The ionic surfactant is completely dissociated below the critical micelle concentration (cmc). However, as cmc is exceeded, the free counterion ratio α declines with increasing the surfactant concentration and approaches an asymptotic value owing to counterion condensation to the surface of the highly charged micelles. Micelle formation leads to much stronger electrostatic attraction between the counterion and the highly charged sphere in comparison to the attraction of single surfactant ion with its counterion. A simple model is developed to obtain the true degree of ionization, which agrees with our Monte Carlo results. Upon addition of neutral polymer or monovalent salts, some of the surfactant counterions are released to the bulk. The former is due to the decrease of the intrinsic charge (smaller aggregation number) and the degree of ionization is increased. The latter is attributed to competitive counterion condensation, which follows the Hefmeister series. This consequence indicates that the specific ion effect plays an important role next to the electrostatic attraction.

  4. Activity, purification, and analysis of condensed tannins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a class of plant polyphenolic compounds contained in some forages (i.e., sanfoin, big trefoil, birdfoot trefoil), condensed tannins (CTs), also referred to as proanthocyanidins (PAs), exhibit a variety of biological effects on ruminants and on the dairy farm nitrogen cycle. Interest in CTs stems ...

  5. Condensation in Saturn's Stratospheric Haze Layers

    NASA Astrophysics Data System (ADS)

    Barth, Erika L.; Moses, Julianne I.

    2016-10-01

    Haze particles in Saturn's stratosphere can be seen in the visible limb images of Cassini's Imaging Science Subsystem (ISS). These hazes are likely a mix of particles, including solid organics formed as a result of methane photolysis and electron deposition, as well as the condensation of water and hydrocarbon ices. We have examined data from both Cassini and Voyager to study the detailed vertical structure of absorbing/scattering particulates in Saturn's stratosphere and developed a Saturn version of the Community Aerosol and Radiation Model for Atmospheres (CARMA), adding a large database of hydrocarbons that are observed or expected to be present in Saturn's atmosphere.Our modeling indicates that water ice condenses independently of the hydrocarbons to form a thin layer above the 0.1 mbar pressure level. Between about 5 and 50 mbar, the hydrocarbons reach their condensation levels (in order of increasing pressure level): C6H6, C5H12, C4H2, C4H10, and C2H2. Because of the proximity of their condensation levels and due to the gravitational settling of the particles, the hydrocarbons are likely condensing on one another and forming a thicker layer of mixed composition. Interestingly, butane (C4H10) has a triple point around 135 K which is much lower than most of the other condensing species we've explored. Given an approximate condensation level of 10 mbar and the observed temperature changes at this pressure level following the December 2010 northern-hemisphere storm (stratospheric temperatures were elevated by as much as 50-70 K in a region near 40° N latitude.), melting and further nucleation of droplets could be occurring.A number of factors including temperature profile, vapor pressure equation, volatile abundance, nucleation critical saturation, and coagulation efficiency will affect the altitudes of the individual ice layers. We will present a summary of results following the nucleation and growth of compounds in order to quantify the likely size and

  6. Homogeneous cosmologies as group field theory condensates

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2014-06-01

    We give a general procedure, in the group field theory (GFT) formalism for quantum gravity, for constructing states that describe macroscopic, spatially homogeneous universes. These states are close to coherent (condensate) states used in the description of Bose-Einstein condensates. The condition on such states to be (approximate) solutions to the quantum equations of motion of GFT is used to extract an effective dynamics for homogeneous cosmologies directly from the underlying quantum theory. The resulting description in general gives nonlinear and nonlocal equations for the `condensate wavefunction' which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates. We show the general form of the effective equations for current quantum gravity models, as well as some concrete examples. We identify conditions under which the dynamics becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces the classical Friedmann equation in vacuum with positive spatial curvature. We show how the formalism can be consistently extended from Riemannian signature to Lorentzian signature models, and discuss the addition of matter fields, obtaining the correct coupling of a massless scalar in the Friedmann equation from the most natural extension of the GFT action. We also outline the procedure for extending our condensate states to include cosmological perturbations. Our results form the basis of a general programme for extracting effective cosmological dynamics directly from a microscopic non-perturbative theory of quantum gravity.

  7. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability

  8. Model Condensation for Non-Classically Damped SYSTEMS—PART i: Static Condensation

    NASA Astrophysics Data System (ADS)

    Qu, Z.-Q.; Jung, Y.; Selvam, R. P.

    2003-09-01

    Three condensation methods for the model reduction of non-classically damped systems are presented. One is defined in the displacement space and the other two are defined in the state space. Since the damping and inertia forces on all degrees of freedom of the full model are ignored, these algorithms are considered as the static condensation. One advantage of these condensation methods is that the explicit forms of the reduced stiffness, mass, and damping matrices can be directly obtained from the reduced model. These explicit reduced system matrices are very useful in further dynamic analyses. These approaches are compared from the assumptions, condensation matrices, computational work and the reduced system matrices. With the introduction of the generalised inverse of matrix, the method defined in the displacement space is extended and one variant is derived. Numerical examples, one three-degree-of-freedom discrete system and one floating raft isolation system, are applied to demonstrate the features of these methods.

  9. The effect of condensate inundation on steam condensation heat transfer to wire-wrapped tubing

    NASA Astrophysics Data System (ADS)

    Kanakis, G. D.

    1983-06-01

    Steam condensation heat transfer measurements were made in a 5-tube test condenser having an additional perforated tube to simulate up to 30 active tubes. Results were obtained for smooth tubes and roped tubes wrapped with wire. A Sieder-Tate equation was used to correlate the inside heat-transfer coefficient. For smooth tubes, a leading coefficient of 0.029 was found, while it was 0.061 for the roped tubes. The average condensing coefficient measured for 30 smooth tubes was 0.59 times the Nusselt coefficient calculated for the first tube. When the smooth tubes were wrapped with wire, this ratio increased up to 0.86. Further, roped tubes without wire experienced a ratio of 0.63, while roped tubes wrapped with wire resulted in a ratio of 0.86. These preliminary data show that wire-wrapped tubes may lead to a significant reduction in condenser surface area.

  10. Condensation of water vapor in the gravitational field

    SciTech Connect

    Gorshkov, V. G.; Makarieva, A. M.; Nefiodov, A. V.

    2012-10-15

    Physical peculiarities of water vapor condensation under conditions of hydrostatic equilibrium are considered. The power of stationary dynamic air fluxes and the vertical temperature distribution caused by condensation on large horizontal scales are estimated.

  11. 39. GENERAL VIEW OF VIVIANNA WORKS CONDENSING CHANNEL CONNECTING TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. GENERAL VIEW OF VIVIANNA WORKS CONDENSING CHANNEL CONNECTING TO MARISCAL WORKS STACK BEING REUSED AS FINAL CONDENSER LOOKING EAST, NORTHEAST. STONE STRUCTURE IN FOREGROUND UNKNOWN. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  12. Thermal synthesis and hydrolysis of polyglyceric acid. [in orgin of life studying

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1989-01-01

    Polyglyceric acid was synthesized by thermal condensation of glyceric acid at 80 C in the presence and absence of two mole percent of sulfuric acid catalyst. The acid catalyst accelerated the polymerization over 100-fold and made possible the synthesis of insoluble polymers of both L- and DL-glyceric acid by heating for less than 1 day. Racemization of L-glyceric acid yielded less than 1 percent D-glyceric acid in condensations carried out at 80 C with catalyst for 1 day and without catalyst for 12 days. The condensation of L-glyceric acid yielded an insoluble polymer much more readily than condensation of DL-glyceric acid. Studies of the hydrolysis of poly-DL-glyceric acid revealed that it was considerably more stable under mild acidic conditions compared to neutral pH. The relationship of this study to the origin of life is discussed.

  13. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  14. Spatial dynamics, thermalization, and gain clamping in a photon condensate

    NASA Astrophysics Data System (ADS)

    Keeling, Jonathan; Kirton, Peter

    2016-01-01

    We study theoretically the effects of pump-spot size and location on photon condensates. By exploring the inhomogeneous molecular excitation fraction, we make clear the relation between spatial equilibration, gain clamping, and thermalization in a photon condensate. This provides a simple understanding of several recent experimental results. We find that as thermalization breaks down, gain clamping is imperfect, leading to "transverse spatial hole burning" and multimode condensation. This opens the possibility of engineering the gain profile to control the condensate structure.

  15. Experimental evidence of condensation-driven airflow

    NASA Astrophysics Data System (ADS)

    Bunyard, P.; Hodnett, M.; Poveda, G.; Burgos Salcedo, J. D.; Peña, C.

    2015-10-01

    The dominant "convection" model of atmospheric circulation is based on the premise that hot air expands and rises, to be replaced by colder air, thereby creating horizontal surface winds. A recent theory put forward by Makarieva and Gorshkov (2007, 2013) maintains that the primary motive force of atmospheric circulation derives from the intense condensation and sharp pressure reduction that is associated with regions where a high rate of evapotranspiration from natural closed-canopy forests provides the "fuel" for cloud formation. The net result of the "biotic pump" theory is that moist air flows from ocean to land, drawn in by the pressure changes associated with a high rate of condensation. To test the physics underpinning the biotic pump theory, namely that condensation of water vapour, at a sufficiently high rate, results in an uni-directional airflow, a 5 m tall experimental apparatus was designed and built, in which a 20 m3 body of atmospheric air is enclosed inside an annular 14 m long space (a "square donut") around which it can circulate freely, allowing for rotary air flows. One vertical side of the apparatus contains some 17 m of copper refrigeration coils, which cause condensation. The apparatus contains a series of sensors measuring temperature, humidity and barometric pressure every five seconds, and air flow every second. The laws of Newtonian physics are used in calculating the rate of condensation inside the apparatus. The results of more than one hundred experiments show a highly significant correlation, with r2 > 0.9, of airflow and the rate of condensation. The rotary air flows created appear to be consistent both in direction and velocity with the biotic pump hypothesis, the critical factor being the rate change in the partial pressure of water vapour in the enclosed body of atmospheric air. Air density changes, in terms of kinetic energy, are found to be orders of magnitude smaller than the kinetic energy of partial pressure change. The

  16. 40 CFR 65.151 - Condensers used as control devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Condensers used as control devices. 65... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.151 Condensers used as control devices. (a) Condenser equipment and...

  17. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  18. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  19. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  20. 21 CFR 886.1380 - Diagnostic condensing lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic condensing lens. 886.1380 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1380 Diagnostic condensing lens. (a) Identification. A diagnostic condensing lens is a device used in binocular indirect ophthalmoscopy (a...

  1. 21 CFR 886.1380 - Diagnostic condensing lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic condensing lens. 886.1380 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1380 Diagnostic condensing lens. (a) Identification. A diagnostic condensing lens is a device used in binocular indirect ophthalmoscopy (a...

  2. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  3. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  4. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  5. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  6. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN...

  7. Electric field enhanced dropwise condensation on hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Baratian, Davood; Hoek, Harmen; van den Ende, Dirk; Mugele, Frieder; Physics of Complex Fluids Team

    2016-11-01

    Dropwise condensation occurs when vapor condenses on a low surface energy surface, and the substrate is just partially wetted by the condensate. Dropwise condensation has attracted significant attention due to its reported superior heat transfer performance compared to filmwise condensation. Extensive research efforts are focused on how to promote, and enhance dropwise condensation by considering both physical and chemical factors. We have studied electrowetting-actuated condensation on hydrophobic surfaces, aiming for enhancement of heat transfer in dropwise condensation. The idea is to use suitably structured patterns of micro-electrodes that generate a heterogeneous electric field at the interface and thereby promote both the condensation itself and the shedding of condensed drops. Comforting the shedding of droplets on electrowetting-functionalized surfaces allows more condensing surface area for re-nucleation of small droplets, leading to higher condensation rates. Possible applications of this innovative concept include heat pipes for (micro) coolers in electronics as well as in more efficient heat exchangers. We acknowledge financial support by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), within the VICI program.

  8. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  9. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  10. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  11. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  12. 40 CFR 721.5713 - Phenol - biphenyl polymer condensate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phenol - biphenyl polymer condensate... Specific Chemical Substances § 721.5713 Phenol - biphenyl polymer condensate (generic). (a) Chemical... as a phenol - biphenyl polymer condensate (PMN P-00-1220) is subject to reporting under this...

  13. 21 CFR 131.120 - Sweetened condensed milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sweetened condensed milk. 131.120 Section 131.120... FOR HUMAN CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.120 Sweetened condensed milk. (a) Description. Sweetened condensed milk is the food obtained by partial...

  14. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  15. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  16. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  17. Coupling a Bose condensate to micromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kemp, Chandler; Fox, Eli; Flanz, Scott; Vengalattore, Mukund

    2011-05-01

    We describe the construction of a compact apparatus to investigate the interaction of a spinor Bose-Einstein condensate and a micromechanical oscillator. The apparatus uses a double magneto-optical trap, Raman sideband cooling, and evaporative cooling to rapidly produce a 87Rb BEC in close proximity to a high Q membrane. The micromotion of the membrane results in small Zeeman shifts at the location of the BEC due to a magnetic domain attached to the oscillator. Detection of this micromotion by the condensate results in a backaction on the membrane. We investigate prospects of using this backaction to generate nonclassical states of the mechanical oscillator. This work was funded by the DARPA ORCHID program.

  18. Solitonic vortices in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tylutki, M.; Donadello, S.; Serafini, S.; Pitaevskii, L. P.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.

    2015-04-01

    We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongated quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.

  19. Cloud condensation nuclei near marine cumulus

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1993-01-01

    Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and condensation nuclei below, in, between, and above the cumulus clouds near Hawaii point to important aerosol-cloud interactions. Consistent particle concentrations of 200/cu cm were found above the marine boundary layer and within the noncloudy marine boundary layer. Lower and more variable CCN concentrations within the cloudy boundary layer, especially very close to the clouds, appear to be a result of cloud scavenging processes. Gravitational coagulation of cloud droplets may be the principal cause of this difference in the vertical distribution of CCN. The results suggest a reservoir of CCN in the free troposphere which can act as a source for the marine boundary layer.

  20. Review on aluminum electrolytic condensers development

    NASA Astrophysics Data System (ADS)

    Shiota, Shigeo; Nakao, Masahiro; Nakai, Muneaki; Shimizu, Akira

    1992-08-01

    An overview of the design, trial production and test, and reliability evaluation test of aluminum electrolytic condensers is presented. Material design was established after conducting various evaluation tests and analyses, such as life tests (6,000 hours at 125 C) and evaluation of the generated gases on components produced in material design implemented until previous fiscal year. Trial production and evaluation on two structural designs which are deemed to give better operability satisfying safety design requirements among five designs proposed previous fiscal year were conducted and the one with best operability was determined. The condensers produced after the design determined by the above evaluation were tested and evaluated for resistance against environments, such as vibration, shock, radiation, and thermal shock.

  1. Hydrogen behavior in ice condenser containments

    SciTech Connect

    Lundstroem, P.; Hongisto, O.; Theofanous, T.G.

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  2. Formation of Protein Condensed Phases: Nucleation Mechanisms.

    PubMed

    Vekilov, Peter G

    2012-04-04

    Proteins in solution form a number of condensed phases. Even omitting the amyloid structures formed after partial protein unfolding, these phases include crystals, polymers, and other solid aggregates, as well as dense liquids and gels. Some of these condensed phases underlie pathological conditions, others play a crucial role in the biological function of the respective protein or are an essential part of its laboratory or industrial processing. In this review, we summarize the fundamentals and recent findings on the kinetics of nucleation of dense liquid droplets and crystals. We define the transition from nucleation to spinodal decomposition for these two phase transitions. We review the two-step mechanism of protein crystal nucleation, in which mesoscopic metastable protein clusters serve as precursors to the ordered crystal nuclei. The concepts and mechanisms reviewed here provide powerful tools for control of the nucleation process by varying the solution thermodynamic parameters.

  3. Bose Condensation at He-4 Interfaces

    NASA Technical Reports Server (NTRS)

    Draeger, E. W.; Ceperley, D. M.

    2003-01-01

    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T = 0:77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9, before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. A surface dispersion relation was calculated from imaginary-time density-density correlations. Similar calculations of the superfluid density throughout He-4 droplets doped with linear impurities (HCN)(sub n) are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the first solvation layer. This effective normal fluid exhibits temperature dependence similar to that of a two-dimensional helium system.

  4. Condensation induced water hammer driven sterilization

    DOEpatents

    Kullberg, Craig M.

    2004-05-11

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  5. Epigenetic countermarks in mitotic chromosome condensation.

    PubMed

    van Wely, Karel H M; Mora Gallardo, Carmen; Vann, Kendra R; Kutateladze, Tatiana G

    2017-01-03

    Mitosis in metazoans is characterized by abundant phosphorylation of histone H3 and involves the recruitment of condensin complexes to chromatin. The relationship between the 2 phenomena and their respective contributions to chromosome condensation in vivo remain poorly understood. Recent studies have shown that H3T3 phosphorylation decreases binding of histone readers to methylated H3K4 in vitro and is essential to displace the corresponding proteins from mitotic chromatin in vivo. Together with previous observations, these data provide further evidence for a role of mitotic histone H3 phosphorylation in blocking transcriptional programs or preserving the 'memory' PTMs. Mitotic protein exclusion can also have a role in depopulating the chromatin template for subsequent condensin loading. H3 phosphorylation thus serves as an integral step in the condensation of chromosome arms.

  6. C 3-symmetric opioid scaffolds are pH-responsive DNA condensation agents

    PubMed Central

    McStay, Natasha; Molphy, Zara; Coughlan, Alan; Cafolla, Attilio; McKee, Vickie; Gathergood, Nicholas; Kellett, Andrew

    2017-01-01

    Herein we report the synthesis of tripodal C3-symmetric opioid scaffolds as high-affinity condensation agents of duplex DNA. Condensation was achieved on both supercoiled and canonical B-DNA structures and identified by agarose electrophoresis, viscosity, turbidity and atomic force microscopy (AFM) measurements. Structurally, the requirement of a tris-opioid scaffold for condensation is demonstrated as both di- (C2-symmetric) and mono-substituted (C1-symmetric) mesitylene-linked opioid derivatives poorly coordinate dsDNA. Condensation, observed by toroidal and globule AFM aggregation, arises from surface-binding ionic interactions between protonated, cationic, tertiary amine groups on the opioid skeleton and the phosphate nucleic acid backbone. Indeed, by converting the 6-hydroxyl group of C3-morphine (MC3) to methoxy substituents in C3-heterocodeine (HC3) and C3-oripavine (OC3) molecules, dsDNA compaction is retained thus negating the possibility of phosphate—hydroxyl surface-binding. Tripodal opioid condensation was identified as pH dependent and strongly influenced by ionic strength with further evidence of cationic amine-phosphate backbone coordination arising from thermal melting analysis and circular dichroism spectroscopy, with compaction also witnessed on synthetic dsDNA co-polymers poly[d(A-T)2] and poly[d(G-C)2]. On-chip microfluidic analysis of DNA condensed by C3-agents provided concentration-dependent protection (inhibition) to site-selective excision by type II restriction enzymes: BamHI, HindIII, SalI and EcoRI, but not to the endonuclease DNase I. PMID:27899572

  7. C 3-symmetric opioid scaffolds are pH-responsive DNA condensation agents.

    PubMed

    McStay, Natasha; Molphy, Zara; Coughlan, Alan; Cafolla, Attilio; McKee, Vickie; Gathergood, Nicholas; Kellett, Andrew

    2017-01-25

    Herein we report the synthesis of tripodal C3-symmetric opioid scaffolds as high-affinity condensation agents of duplex DNA. Condensation was achieved on both supercoiled and canonical B-DNA structures and identified by agarose electrophoresis, viscosity, turbidity and atomic force microscopy (AFM) measurements. Structurally, the requirement of a tris-opioid scaffold for condensation is demonstrated as both di- (C2-symmetric) and mono-substituted (C1-symmetric) mesitylene-linked opioid derivatives poorly coordinate dsDNA. Condensation, observed by toroidal and globule AFM aggregation, arises from surface-binding ionic interactions between protonated, cationic, tertiary amine groups on the opioid skeleton and the phosphate nucleic acid backbone. Indeed, by converting the 6-hydroxyl group of C3-morphine ( MC3: ) to methoxy substituents in C3-heterocodeine ( HC3: ) and C3-oripavine ( OC3: ) molecules, dsDNA compaction is retained thus negating the possibility of phosphate-hydroxyl surface-binding. Tripodal opioid condensation was identified as pH dependent and strongly influenced by ionic strength with further evidence of cationic amine-phosphate backbone coordination arising from thermal melting analysis and circular dichroism spectroscopy, with compaction also witnessed on synthetic dsDNA co-polymers poly[d(A-T)2] and poly[d(G-C)2]. On-chip microfluidic analysis of DNA condensed by C3-agents provided concentration-dependent protection (inhibition) to site-selective excision by type II restriction enzymes: BamHI, HindIII, SalI and EcoRI, but not to the endonuclease DNase I.

  8. Bose-Einstein condensates in rotating lattices.

    PubMed

    Bhat, Rajiv; Holland, M J; Carr, L D

    2006-02-17

    Strongly interacting bosons in a two-dimensional rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.

  9. THE COLOUR GLASS CONDENSATE: AN INTRODUCTION

    SciTech Connect

    IANCU,E.; LEONIDOV,A.; MCLERRAN,L.

    2001-08-06

    In these lectures, the authors develop the theory of the Colour Glass Condensate. This is the matter made of gluons in the high density environment characteristic of deep inelastic scattering or hadron-hadron collisions at very high energy. The lectures are self contained and comprehensive. They start with a phenomenological introduction, develop the theory of classical gluon fields appropriate for the Colour Glass, and end with a derivation and discussion of the renormalization group equations which determine this effective theory.

  10. Condensing Hybrid Water Heater Monitoring Field Evaluation

    SciTech Connect

    Maguire, J.; Earle, L.; Booten, C.; Hancock, C. E.

    2011-10-01

    This paper summarizes the Mascot home, an abandoned property that was extensively renovated. Several efficiency upgrades were integrated into this home, of particular interest, a unique water heater (a Navien CR240-A). Field monitoring was performed to determine the in-use efficiency of the hybrid condensing water heater. The results were compared to the unit's rated efficiency. This unit is Energy Star qualified and one of the most efficient gas water heaters currently available on the market.

  11. Schrodinger Leopards in Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.; Dounas-Frazer, Dimitri R.

    2008-03-01

    We present the complex quantum dynamics of vortices in Bose-Einstein condensates in a double well via exact diagonalization of a discretized Hamiltonian. When the barrier is high, vortices evolve into macroscopic superposition (NOON) states of a vortex in either well -- a Schrodinger cat with spots. Such Schrodinger leopard states are more robust than previously proposed NOON states, which only use two single particle modes of the double well potential.

  12. Atomic Phase Conjugation From a Bose Condensate

    DTIC Science & Technology

    1996-07-01

    Schrödinger equation that we use in this paper is not the Gross - Pitaevskii nonlinear Schrödinger equation familiar in the description of Bose conden...dipole- dipole interaction as local, so that our nonlinear Schrödinger equation is itself local, just like the Gross - Pitaevskii equation. However, the...dynamics of a Bose condensate is described by the Gross - Pitaevskii nonlinear Schrödinger equation [15], in which the nonlinearity results from short

  13. Condensation in hypersonic nitrogen wind tunnels

    NASA Technical Reports Server (NTRS)

    Lederer, Melissa A.; Yanta, William J.; Ragsdale, William C.; Hudson, Susan T.; Griffith, Wayland C.

    1990-01-01

    Experimental observations and a theoretical model for the onset and disappearance of condensation are given for hypersonic flows of pure nitrogen at M = 10, 14 and 18. Measurements include Pitot pressures, static pressures and laser light scattering experiments. These measurements coupled with a theoretical model indicate a substantial non-equilibrium supercooling of the vapor phase beyond the saturation line. Typical results are presented with implications for the design of hypersonic wind tunnel nozzles.

  14. Spin selective filtering of polariton condensate flow

    SciTech Connect

    Gao, T.; Antón, C.; Martín, M. D.; Liew, T. C. H.; Hatzopoulos, Z.; Viña, L.; Eldridge, P. S.; Savvidis, P. G.

    2015-07-06

    Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.

  15. Novel Quantum Condensates in Excitonic Matter

    NASA Astrophysics Data System (ADS)

    Littlewood, P. B.; Keeling, J. M. J.; Simons, B. D.; Eastham, P. R.; Marchetti, F. M.; Szymańska, M. H.

    2009-08-01

    These lectures interleave discussion of a novel physical problem of a new kind of condensate with teaching of the fundamental theoretical tools of quantum condensed matter field theory. Polaritons and excitons are light mass composite bosons that can be made inside solids in a number of different ways. As bosonic particles, they are liable to make a phase coherent ground state—generically called a Bose-Einstein condensate (BEC)—and these lectures present some models to describe that problem, as well as general approaches to the theory. The focus is very much to explain how mean-field-like approximations that are often presented heuristically can be derived in a systematic fashion by path integral methods. Going beyond the mean field theory then produces a systematic approach to calculation of the excitation energies, and the derivation of effective low energy theories that can be generalised to more complex dynamical and spatial situations than is practicable for the full theory, as well as to study statistical properties beyond the semi-classical regime. in particular, for the polariton problem, it allows one to connect the regimes of equilibrium BEC and non-equilibrium laser. The lectures are self-sufficient, but not highly detailed. The methodological aspects are covered in standard quantum field theory texts and the presentation here is deliberately cursory: the approach will be closest to the book of Altland and Simons [1]. Since these lectures concern a particular type of condensate, reference should also be made to texts on BEC, for example by Pitaevskii and Stringari [2]. A recent theoretically focussed review of polariton systems is [3] covers many of the technical issues associated with the polariton problem in greater depth and provides many further references.

  16. Bouncing cosmologies from quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Sindoni, Lorenzo; Wilson-Ewing, Edward

    2017-02-01

    We show how the large-scale cosmological dynamics can be obtained from the hydrodynamics of isotropic group field theory condensate states in the Gross–Pitaevskii approximation. The correct Friedmann equations are recovered in the classical limit for some choices of the parameters in the action for the group field theory, and quantum gravity corrections arise in the high-curvature regime causing a bounce which generically resolves the big-bang and big-crunch singularities.

  17. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Wang, Hua Sheng

    2016-10-01

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.

  18. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances.

    PubMed

    Sun, Jie; Wang, Hua Sheng

    2016-10-10

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.

  19. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances

    PubMed Central

    Sun, Jie; Wang, Hua Sheng

    2016-01-01

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases. PMID:27721397

  20. Selective counterion condensation in ionic micellar solutions

    NASA Astrophysics Data System (ADS)

    Aswal, V. K.; Goyal, P. S.

    2003-05-01

    Small-angle neutron scattering experiments have been carried out on micellar solutions of cationic surfactants of cetyltrimethylammonium bromide (CTABr) and chloride (CTACl) in the presence of varying concentrations of salts KBr and KCl. In these systems, while the size of micelles strongly increases with the addition of KBr, the effect of addition of KCl in comparison is much less pronounced. It is found that in equimolar surfactant to salt micellar solutions of CTABr/KCl and CTACl/KBr, the micellar sizes are larger in CTACl/KBr than those in CTABr/KCl. The measurements have been done for different equimolar surfactant to salt concentrations and at different temperatures. We explain these results in terms of selective counterion condensation on the micelles. That is, while the condensation of Cl- counterions on the CTABr micelles in CTABr/KCl takes place around the condensed Br- counterions of CTABr, the Cl- counterions of CTACl in CTACl/KBr are replaced by Br- counterions of the salt. Similar results have also been obtained on micellar solutions of anionic surfactants of sodium dodecyl sulfate and lithium dodecyl sulfate in the presence of salts LiBr and NaBr, respectively.

  1. Selective counterion condensation in ionic micellar solutions.

    PubMed

    Aswal, V K; Goyal, P S

    2003-05-01

    Small-angle neutron scattering experiments have been carried out on micellar solutions of cationic surfactants of cetyltrimethylammonium bromide (CTABr) and chloride (CTACl) in the presence of varying concentrations of salts KBr and KCl. In these systems, while the size of micelles strongly increases with the addition of KBr, the effect of addition of KCl in comparison is much less pronounced. It is found that in equimolar surfactant to salt micellar solutions of CTABr/KCl and CTACl/KBr, the micellar sizes are larger in CTACl/KBr than those in CTABr/KCl. The measurements have been done for different equimolar surfactant to salt concentrations and at different temperatures. We explain these results in terms of selective counterion condensation on the micelles. That is, while the condensation of Cl- counterions on the CTABr micelles in CTABr/KCl takes place around the condensed Br- counterions of CTABr, the Cl- counterions of CTACl in CTACl/KBr are replaced by Br- counterions of the salt. Similar results have also been obtained on micellar solutions of anionic surfactants of sodium dodecyl sulfate and lithium dodecyl sulfate in the presence of salts LiBr and NaBr, respectively.

  2. Measuring non-condensable gases in steam

    NASA Astrophysics Data System (ADS)

    van Doornmalen, J. P. C. M.; Kopinga, K.

    2013-11-01

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3MTM Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  3. Premature chromatin condensation upon accumulation of NIMA.

    PubMed Central

    O'Connell, M J; Norbury, C; Nurse, P

    1994-01-01

    The NIMA protein kinase of Aspergillus nidulans is required for the G2/M transition of the cell cycle. Mutants lacking NIMA arrest without morphological characteristics of mitosis, but they do contain an activated p37nimX kinase (the Aspergillus homologue of p34cdc2). To gain a better understanding of NIMA function we have investigated the effects of expressing various NIMA constructs in Aspergillus, fission yeast and human cells. Our experiments have shown that the instability of the NIMA protein requires sequences in the non-catalytic C-terminus of the protein. Removal of this domain results in a stable protein that, once accumulated, promotes a lethal premature condensation of chromatin without any other aspects of mitosis. Similar effects were also observed in fission yeast and human cells accumulating Aspergillus NIMA. This phenotype is independent of cell cycle progression and does not require p34cdc2 kinase activity. As gain of NIMA function by accumulation results in premature chromatin condensation, and loss of NIMA function results in an inability to enter mitosis, we propose that NIMA functions in G2 to promote the condensation of chromatin normally associated with entry into mitosis. Images PMID:7957060

  4. Condensate removal device for heat exchanger

    NASA Technical Reports Server (NTRS)

    Trusch, R. B.; Oconnor, E. W. (Inventor)

    1975-01-01

    A set of perforated tubes disposed at the gas output side of a heat exchanger, in a position not to affect the rate of flow of the air or other gas is described. The tubes are connected to a common manifold which is connected to a sucking device. Where it is necessary to conserve and recirculate the air sucked through the tubes, the output of the manifold is run through a separator to remove the condensate from the gas. The perforations in the slurper tubes are small, lying in the range of 0.010 inch to 0.100 inch. The tubes are disposed in contact with the surfaces of the heat exchanger on which the condensate is precipitated, whether fins or plates, so that the water may be directed to the tube openings by means of surface effects, together with the assistance of the air flow. Only about 5 percent of the air output need be thus diverted, and it effectively removes virtually all of the condensate.

  5. The moon as a high temperature condensate

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1972-01-01

    The accretion during condensation mechanism is used to explain the differences in composition of the terrestrial planets and the moon. Many of the properties of the moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The high temperature mineralogy is gehlenite, spinel perovskite, Ca-Al-rich pyroxenes and anorthite. The model is consistent with extensive early melting, shallow melting at 3 A.E. and with presently high speed internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C. The lunar crust is 80 percent gabbroic anorthosite, 20 percent basalt and is about 250-270 km thick. The lunar mantle is probably composed of spinel, merwinite and diopside with a density of 3.4 g/cu cm.

  6. The moon as a high temperature condensate.

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  7. Condensing osteitis of the clavicle in children

    PubMed Central

    Andreacchio, Antonio; Marengo, Lorenza; Canavese, Federico

    2016-01-01

    AIM To confirm the rarity of this disorder and then to evaluate the effects of antibiotic treatment alone and assess whether this could produce a complete remission of symptoms in children and adolescents. METHODS We made a retrospective review of all cases of condensing osteitis of the clavicle in children and adolescents between January 2007 and January 2016. Outpatient and inpatient medical records, with radiographs, magnetic resonance imaging, triphasic bone scan and computed tomography scans were retrospectively reviewed. All the patients underwent biopsy of the affected clavicle and were treated with intra venous (IV) antibiotics followed by oral antibiotics. RESULTS Seven cases of condensing osteitis of the clavicle were identified. All the patients presented with swelling of the medial end of the clavicle, and 5 out of 7 reported persisting pain. The patients’ mean age at presentation was 11.5 years (range 10.5-13). Biopsy confirmed the diagnosis in all cases. All the patients completed the treatment with IV and oral antibiotics. At last follow-up visit none of the patients complained of residual pain; all had a clinically evident reduction in the swelling of the medial end of the affected clavicle. The mean follow-up was 4 years (range 2-7). CONCLUSION Our findings show that condensing osteitis of the clavicle is a rare condition. Biopsy is needed to confirm diagnosis. The condition should be managed with IV and oral antibiotics. Aggressive surgery should be avoided. PMID:27622150

  8. Geysers advanced direct contact condenser research

    SciTech Connect

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  9. Capillary condensation of short-chain molecules.

    PubMed

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  10. Majorana fermions in condensed-matter physics

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2016-06-01

    It is an honor and a pleasure to have been invited to give a talk in this conference celebrating the memory of the late Professor Abdus Salam. To my regret, I did not know Professor Salam personally, but I am very aware of his work and of his impact on my area of specialization, condensed matter physics, both intellectually through his ideas on spontaneously broken symmetry and more practically through his foundation of the ICTP. Since I assume that most of this audience are not specialized in condensed-matter physics, I thought I would talk about one topic which to some extent bridges this field and the particle-physics interests of Salam, namely Majorana fermions (M.F.s). However, as we shall see, the parallels which are often drawn in the current literature may be a bit too simplistic. I will devote most of this talk to a stripped-down exposition of the current orthodoxy concerning M.F.s. in condensed-matter physics and their possible applications to topological quantum computing (TQC), and then at the end briefly indicate why I believe this orthodoxy may be seriously misleading.

  11. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  12. Brownian dynamics simulation of DNA condensation.

    PubMed Central

    Sottas, P E; Larquet, E; Stasiak, A; Dubochet, J

    1999-01-01

    DNA condensation observed in vitro with the addition of polyvalent counterions is due to intermolecular attractive forces. We introduce a quantitative model of these forces in a Brownian dynamics simulation in addition to a standard mean-field Poisson-Boltzmann repulsion. The comparison of a theoretical value of the effective diameter calculated from the second virial coefficient in cylindrical geometry with some experimental results allows a quantitative evaluation of the one-parameter attractive potential. We show afterward that with a sufficient concentration of divalent salt (typically approximately 20 mM MgCl(2)), supercoiled DNA adopts a collapsed form where opposing segments of interwound regions present zones of lateral contact. However, under the same conditions the same plasmid without torsional stress does not collapse. The condensed molecules present coexisting open and collapsed plectonemic regions. Furthermore, simulations show that circular DNA in 50% methanol solutions with 20 mM MgCl(2) aggregates without the requirement of torsional energy. This confirms known experimental results. Finally, a simulated DNA molecule confined in a box of variable size also presents some local collapsed zones in 20 mM MgCl(2) above a critical concentration of the DNA. Conformational entropy reduction obtained either by supercoiling or by confinement seems thus to play a crucial role in all forms of condensation of DNA. PMID:10512808

  13. Observations of anthropogenic cloud condensation nuclei

    NASA Technical Reports Server (NTRS)

    Hudson, James G.

    1990-01-01

    Cloud Condensation Nuclei (CCN) concentrations and spectral measurements obtained with the DRI instantaneous CCN spectrometer (Hudson, 1989) over the last few years are presented. The climatic importance of cloud microphysics has been pointed out. The particles which affect cloud microphysics are cloud condensation nuclei (CCN). The commonly-observed order of magnitude difference in cloud droplet concentrations between maritime and continental air masses (i.e., Squires, 1958) was determined to be caused by systematic differences in the concentrations of CCN between continental and maritime air masses (e.g., Twomey and Wojciechowski, 1969). Twomey (1977) first pointed out that cloud microphysics also affects the radiative properties of clouds. Thus continental and anthropogenic CCN could affect global temperature. Resolution of this Twomey effect requires answers to two questions - whether antropogenic CCN are a significant contribution to atmospheric CCN, and whether they are actually affecting cloud microphysics to an extent which is of climatic importance. The reasons for the contrast between continental and maritime CCN concentration are not understood. The question of the relative importance of anthropogenic CCN is addressed. These observations should shed light on this complex question although further research is being conducted in order to produce more quantitative answers. Accompanying CN measurements made with a TSI 3020 condensation nucleus (CN) counter are also presented.

  14. Measuring non-condensable gases in steam

    SciTech Connect

    Doornmalen, J. P. C. M. van; Kopinga, K.

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  15. 40 CFR 405.90 - Applicability; description of the condensed milk subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... skim milk, sweetened condensed milk and condensed buttermilk. ... condensed milk subcategory. 405.90 Section 405.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Condensed...

  16. Promotion of dropwise condensation of ethyl alcohol, methyl alcohol, and acetone by polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Kirby, C. E.

    1972-01-01

    Coating condensing surfaces with thin layer of nonpolar Teflon results in dropwise condensation of polar organic vapor. Greater heat transfer coefficients are produced increasing effectiveness of condensing system. Investigation shows that vapors with strong dipole moment tend to condense dropwise.

  17. 46. VIEW LOOKING NORTHEAST OF CONDENSER NUMBER 2 (LEFT BACKGROUND) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. VIEW LOOKING NORTHEAST OF CONDENSER NUMBER 2 (LEFT BACKGROUND) AND MOTOR FOR PUMPING CONDENSER HOT WELL (LOWER CENTER OF PHOTOGRAPH). SPENT STEAM EXHAUSTED FROM THE TURBINE WAS CONDENSED BY A SPRAY OF BRACKISH WATER. THIS CREATED A PARTIAL VACUUM WHICH IMPROVED TURBINE EFFICIENCY. THE MIXTURE OF CONDENSED STEAM AND COOL BRACKISH WATER FELL TO THE BOTTOM OF THE CONDENSER INTO A HOT WELL. FROM THE WELL IT WAS PUMPED TO THE MAIN DISCHARGE FLUME. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  18. Competition between Bose-Einstein Condensation and Spin Dynamics.

    PubMed

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  19. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble.

    PubMed

    Wang, Jianhui; He, Jizhou; Ma, Yongli

    2011-05-01

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  20. Condensate fluctuations of interacting Bose gases within a microcanonical ensemble

    SciTech Connect

    Wang Jianhui; He Jizhou; Ma Yongli

    2011-05-15

    Based on counting statistics and Bogoliubov theory, we present a recurrence relation for the microcanonical partition function for a weakly interacting Bose gas with a finite number of particles in a cubic box. According to this microcanonical partition function, we calculate numerically the distribution function, condensate fraction, and condensate fluctuations for a finite and isolated Bose-Einstein condensate. For ideal and weakly interacting Bose gases, we compare the condensate fluctuations with those in the canonical ensemble. The present approach yields an accurate account of the condensate fluctuations for temperatures close to the critical region. We emphasize that the interactions between excited atoms turn out to be important for moderate temperatures.

  1. Compact heat exchangers for condensation applications: Yesterday, today and tomorrow

    SciTech Connect

    Panchal, C.B.

    1993-07-01

    Compact heat exchangers are being increasingly considered for condensation applications in the process, cryogenic, aerospace, power and refrigeration industries. In this paper, different configurations available for condensation applications are analyzed and the current state-of-the-knowledge for the design of compact condensers is evaluated. The key technical issues for the design and development of compact heat exchangers for condensation applications are analyzed and major advantages are identified. The experimental data and performance prediction methods reported in the literature are analyzed to evaluate the present design capabilities for different compact heat-exchanger configurations. The design flexibility is evaluated for the development of new condensation applications, including integration with other process equipment.

  2. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation

    NASA Technical Reports Server (NTRS)

    Kelleners, Philip

    2003-01-01

    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  3. Intranuclear DNA density affects chromosome condensation in metazoans.

    PubMed

    Hara, Yuki; Iwabuchi, Mari; Ohsumi, Keita; Kimura, Akatsuki

    2013-08-01

    Chromosome condensation is critical for accurate inheritance of genetic information. The degree of condensation, which is reflected in the size of the condensed chromosomes during mitosis, is not constant. It is differentially regulated in embryonic and somatic cells. In addition to the developmentally programmed regulation of chromosome condensation, there may be adaptive regulation based on spatial parameters such as genomic length or cell size. We propose that chromosome condensation is affected by a spatial parameter called the chromosome amount per nuclear space, or "intranuclear DNA density." Using Caenorhabditis elegans embryos, we show that condensed chromosome sizes vary during early embryogenesis. Of importance, changing DNA content to haploid or polyploid changes the condensed chromosome size, even at the same developmental stage. Condensed chromosome size correlates with interphase nuclear size. Finally, a reduction in nuclear size in a cell-free system from Xenopus laevis eggs resulted in reduced condensed chromosome sizes. These data support the hypothesis that intranuclear DNA density regulates chromosome condensation. This suggests an adaptive mode of chromosome condensation regulation in metazoans.

  4. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  5. Quantification of chromatin condensation level by image processing.

    PubMed

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation.

  6. Scalable graphene coatings for enhanced condensation heat transfer.

    PubMed

    Preston, Daniel J; Mafra, Daniela L; Miljkovic, Nenad; Kong, Jing; Wang, Evelyn N

    2015-05-13

    Water vapor condensation is commonly observed in nature and routinely used as an effective means of transferring heat with dropwise condensation on nonwetting surfaces exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings that either have challenges with chemical stability or are so thick that any potential heat transfer improvement is negated due to the added thermal resistance of the coating. In this work, we show the effectiveness of ultrathin scalable chemical vapor deposited (CVD) graphene coatings to promote dropwise condensation while offering robust chemical stability and maintaining low thermal resistance. Heat transfer enhancements of 4× were demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was superior to typical hydrophobic monolayer coatings. Our results indicate that graphene is a promising surface coating to promote dropwise condensation of water in industrial conditions with the potential for scalable application via CVD.

  7. Theoretical analysis of condensation in the presence of noncondensable gases as applied to open cycle OTEC condensers

    NASA Astrophysics Data System (ADS)

    Panchal, C. B.; Bell, K. J.

    The open cycle ocean thermal energy conversion condenser was analyzed from a theoretical standpoint. Interfacial temperature profiles and gas concentrations in the axial direction were determined, and their effects on the rate of condensation studied. For the analysis, the vapor phase was modeled using diffusion equations for simultaneous heat and mass transfer processes, while the liquid phase was modeled using a falling film analysis. This analysis was then applied to a plate fin condenser, and the effect of varying the fin density along the condenser lengths was investigated. General engineering aspects of heat exchanger design are discussed for condensation of vapor mixtures in the presence of noncondensable gases.

  8. Molecular recognition of genomic DNA in a condensate with a model surfactant for potential gene-delivery applications.

    PubMed

    Singh, Priya; Choudhury, Susobhan; Chandra, Goutam Kumar; Lemmens, Peter; Pal, Samir Kumar

    2016-04-01

    The functionality of a gene carrying nucleic acid in an artificial gene-delivery system is important for the overall efficiency of the vehicle in vivo. Here, we have studied a well-known artificial gene-delivery system, which is a condensate of calf thymus DNA (CT-DNA) with a model cationic surfactant cetyltrimethylammonium bromide (CTAB) to investigate the molecular recognition of the genomic DNA in the condensate. While dynamic light scattering (DLS) and circular dichroism (CD) reveal structural aspects of the condensate and the constituting DNA respectively, picosecond resolved polarization gated spectroscopy and Förster resonance energy transfer (FRET) reveal molecular recognition of the genomic DNA in the condensate. We have considered ethidium bromide (EB) and crystal violet (CV), which are well known DNA-binding agents through intercalative (specific) and electrostatic (non-specific) interactions, respectively, as model ligands for the molecular recognition studies. A fluorescent cationic surfactant, Nonyl Acridine Orange (NAO) is considered to be a mimic of CTAB in the condensate. The polarization gated fluorescence of NAO at various temperatures has been used to investigate the local microviscosity of the condensate. The excellent spectral overlap of NAO emission and the absorption spectra of both EB and CV allow us to investigate FRET-distances of the ligands with respect to NAO in the condensate at various temperatures and thermal stability of ligand-binding of the genomic DNA. The thermodynamic properties of the molecular recognition have also been explored using Van't Hoff equation. We have also extended our studies to molecular recognition of the genomic DNA in the condensate as dried thin films. This has important implications for its application in bioelectronics.

  9. DIRECT EVIDENCE FOR CONDENSATION IN THE EARLY SOLAR SYSTEM AND IMPLICATIONS FOR NEBULAR COOLING RATES

    SciTech Connect

    Berg, T.; Maul, J.; Schoenhense, G.; Marosits, E.; Hoppe, P.; Ott, U.; Palme, H.

    2009-09-10

    We have identified in an acid resistant residue of the carbonaceous chondrite Murchison a large number (458) of highly refractory metal nuggets (RMNs) that once were most likely hosted by Ca,Al-rich inclusions (CAIs). While osmium isotopic ratios of two randomly selected particles rule out a presolar origin, the bulk chemistry of 88 particles with sizes in the submicron range determined by energy dispersive X-ray (EDX) spectroscopy shows striking agreement with predictions of single-phase equilibrium condensation calculations. Both chemical composition and morphology strongly favor a condensation origin. Particularly important is the presence of structurally incompatible elements in particles with a single-crystal structure, which also suggests the absence of secondary alteration. The metal particles represent the most pristine early solar system material found so far and allow estimation of the cooling rate of the gaseous environment from which the first solids formed by condensation. The resulting value of 0.5 K yr{sup -1} is at least 4 orders of magnitude lower than the cooling rate of molten CAIs. It is thus possible, for the first time, to see through the complex structure of most CAIs and infer the thermal history of the gaseous reservoir from which their components formed by condensation.

  10. Capillary electrophoresis--a new tool for ionic analysis of exhaled breath condensate.

    PubMed

    Kubáň, Petr; Kobrin, Eeva-Gerda; Kaljurand, Mihkel

    2012-12-07

    Exhaled breath condensate has been analyzed for its ionic content by capillary electrophoresis with capacitively coupled contactless conductometric detection. A simple device for collection of small volumes (100-200 μL) of exhaled breath condensate in less than 2 min was developed. A method for simultaneous determination of inorganic cations, inorganic anions and organic anions from the samples using dual-opposite end injection principle with a short fused silica capillary (35 cm, 50 μm I.D.) was developed. A background electrolyte composed of 20mM 2-(N-morpholino)ethanesulfonic acid, 20 mM l-histidine, 30 μM cetyltrimethylammonium bromide and 2mM 18-crown-6 was used. The analysis time was less than 3 min with limits of detection reaching low μM levels for most of the anions and cations. It has been shown that changes of nitrite could be observed in acute inflammation of upper airways and in a person with diagnosed mild chronic obstructive pulmonary disease, while changes of other ions could also be observed. Lactate concentrations could also be monitored and about 4-fold increase of lactate concentration in exhaled breath condensate was determined following an exhaustive cycling exercise. The developed non-invasive sampling of exhaled breath condensate, followed by rapid capillary electrophoretic analysis, could be very useful in lung inflammatory disease screening as well as in monitoring fast metabolic processes such as lactate build-up and removal.

  11. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    PubMed

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  12. Preparation of N-alkylbis(3-aminopropyl)amines by the catalytic hydrogenation of N-alkylbis(cyanoethyl)amines.

    PubMed

    Denton, Travis T; Joyce, Abigail S; Kiely, Donald E

    2007-06-22

    An improved process for the preparation of N-alkylbis(3-aminopropyl)amines is described. These triamines are of interest as monomers for the condensation polymerization with esterified carbohydrate diacids (aldaric acids) to generate the corresponding poly(4-alkyl-4-azaheptamethylene aldaramides). The triamine synthesis is comprised of two efficient steps and requires no chromatographic purification. Bisconjugate addition of alkylamines to acrylonitrile followed by catalytic hydrogenation of the N-alkylbis(cyanoethyl)amines over Raney nickel yields the target N-alkylbis(3-aminopropyl)amines. Much less solvent was used in the bisconjugate addition step then previously reported, and in the second step, a relatively low-pressure catalytic hydrogenation (50 psi of hydrogen) was employed using Raney nickel as the catalyst in a 7 N methanolic ammonia solvent system to afford the N-alkylbis(3-aminopropyl)amines of high purity in nearly quantitative yield.

  13. The Future of Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Girvin, Steven

    2003-03-01

    Where are we? Where are we going? Where should we be going? Condensed matter systems have proven capable of existing in a marvelous variety of physical states that exhibit fundamental phenomena of interest even outside our subfield, particluarly in elementary particle physics. Will this continue or are the different subfields beginning to lose touch with each other as they mature? It is already clear that a large and unfortunate communication gulf has developed even inside our own community between the soft matter and electronic materials camps. Most members of our community have been proud to celebrate the technological relevance of our subfield. The past few decades have seen a marvelous synergy in which advances in condensed matter physics have led to technological advances. These in turn have permitted explorations of new realms and allowed new fundamental physics advances. Will this synergy continue or are we in danger of becoming technologically irrelevant? It is clear that we are entering a new era of confluence between atomic/molecular/optical physics and condensed matter physics. It is less clear but quite possible, that we are at the dawn of an age in which we will spin off a new subfield of quantum electrical engineering and quantum computation. Can we develop a useful understanding of complex materials? Whither nano-scale physics? Our colleagues in other subfields of physics seem to be better at communicating the excitement of their research to the public. What can we do on this front? I do not have answers to all these questions, but will at least attempt to make a few observations on them.

  14. Galilean geometry in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Geracie, Michael

    In this thesis we present a systematic means to impose Galilean invariance within effective field theory. Recently a number of authors have shown that Galilean invariance has powerful consequences on condensed matter systems. However, unlike the relativistic case, torsion is often a necessary element and is subject to constraints that make it surprisingly difficult to include in a Galilean invariant way. We will review this issue, define the most general torsionful geometries consistent with Galilean invariance and then turn to applications within effective field theory and the quantum Hall effect.

  15. Condensate Accretion in Shock Tube's Expansion Fan

    NASA Technical Reports Server (NTRS)

    Mezonlin, Ephrem-Denis; DeSilva, Upul P.; Hunte, F.; Johnson, Joseph A., III

    1997-01-01

    It has been shown that turbulence and temperature influence the droplet sizes in expansion fan induced condensation by studying the Rayleigh scattering from one port in our shock tube's test section. We have modified our set-up so as to allow, using two ports, the real time measurement of the influence of turbulence and temperature on the rate at which these droplets grow. To do this, we looked at the Rayleigh scattering from two different ports for ten Reynolds numbers at five different temperatures. We modeled the time of flight of droplets, using the equations of one-dimensional gas dynamics and the measured shock wave speed in shock tube's driven section.

  16. Comparative analysis of condensation models within DSMC

    SciTech Connect

    Bykov, Nikolay Y.; Gorbachev, Yuriy E.

    2014-12-09

    Two condensation process modeling approaches within DSMC methodology are compared. The first is based on the modified nucleation theory which correctly describes small clusters and the second on the kinetic theory and considers not only supercritical clusters, but clusters of all sizes including dimers. The relaxation of the size distribution function is calculated for the spatially homogeneous cases, where the monomer parameters are kept constant. As an example the vapour of Cu atoms is considered and importance of taking into account of the internal energies of clusters is shown. Peculiarities of the classical and kinetic approaches are discussed herein.

  17. Kaon condensation and multi-strange matter

    NASA Astrophysics Data System (ADS)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2010-04-01

    We report on dynamical calculations of multi- K¯ hypernuclei, which were performed by adding K¯ mesons to particle-stable configurations of nucleons, Λ and Ξ hyperons. The K¯ separation energy as well as the baryonic densities saturate with the number of antikaons. We demonstrate that the saturation is a robust feature of multi- K¯ hypernuclei. Because the K¯ separation energy B does not exceed 200 MeV, we conclude that kaon condensation is unlikely to occur in finite strong-interaction self-bound {N,Λ,Ξ} strange hadronic systems.

  18. System Study: Isolation Condenser 1998-2014

    SciTech Connect

    Schroeder, John Alton

    2015-12-01

    This report presents an unreliability evaluation of the isolation condenser (ISO) system at four U.S. boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified. A statistically significant decreasing trend was identified for ISO unreliability. The magnitude of the trend indicated a 1.5 percent decrease in system unreliability over the last 10 years.

  19. System Study: Isolation Condenser 1998–2013

    SciTech Connect

    Schroeder, John Alton

    2015-01-31

    This report presents an unreliability evaluation of the isolation condenser (ISO) system at four U.S. boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the ISO results.

  20. Chiral magnetic effect in condensed matter systems

    SciTech Connect

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3D Dirac/Weyl semimetals.

  1. Condensation of anyons in frustrated quantum magnets.

    PubMed

    Batista, C D; Somma, Rolando D

    2012-11-30

    We derive the exact ground space of a family of spin-1/2 Heisenberg chains with uniaxial exchange anisotropy (XXZ) and interactions between nearest and next-nearest-neighbor spins. The Hamiltonian family, H(eff)(Q), is parametrized by a single variable Q. By using a generalized Jordan-Wigner transformation that maps spins into anyons, we show that the exact ground states of H(eff)(Q) correspond to a condensation of anyons with a statistical phase φ=-4Q. We also provide matrix-product state representations of some ground states that allow for the efficient computation of spin-spin correlation functions.

  2. Innovations in high rate condensate polishing systems

    SciTech Connect

    O`Brien, M.

    1995-01-01

    Test work is being conducted at two major east coast utilities to evaluate flow distribution in high flow rate condensate polishing service vessels. The work includes core sample data used to map the flow distribution in vessels as originally manufactured. Underdrain modifications for improved flow distribution are discussed with data that indicates performance increases of the service vessel following the modifications. The test work is on going, with preliminary data indicating that significant improvements in cycle run length are possible with underdrain modifications. The economic benefits of the above modifications are discussed.

  3. Condensate Recycling in Closed Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.

    1994-01-01

    Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.

  4. Precipitating Condensation Clouds in Substellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Marley, Mark S.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and precipitation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with previous methods. An adjustable parameter describing the efficiency of precipitation allows the new model to span the range of predictions from previous models. Calculations for the Jovian ammonia cloud are found to be consistent with observational constraints. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet.

  5. Guide to a condensed form of NASTRAN

    NASA Technical Reports Server (NTRS)

    Rogers, J. L., Jr.

    1978-01-01

    A limited capability form of NASTRAN level 16 is presented to meet the needs of universities and small consulting firms. The input cards, the programming language of the direct matrix abstraction program, the plotting, the problem definition, and the modules' diagnostic messages are described. Sample problems relating to the analysis of linear static, vibration, and buckling are included. This guide can serve as a handbook for instructional courses in the use of NASTRAN or for users who need only the capability provided by the condensed form.

  6. Aristoxazole analogues. Conversion of 8-nitro-1-naphthoic acid to 2-methylnaphtho[1,2-d]oxazole-9-carboxylic acid: comments on the chemical mechanism of formation of DNA adducts by the aristolochic acids.

    PubMed

    Priestap, Horacio A; Barbieri, Manuel A; Johnson, Francis

    2012-07-27

    2-Methylnaphtho[1,2-d]oxazole-9-carboxylic acid was obtained by reduction of 8-nitro-1-naphthoic acid with zinc-acetic acid. This naphthoxazole is a condensation product between an 8-nitro-1-naphthoic acid reduction intermediate and acetic acid and is a lower homologue of aristoxazole, a similar condensation product of aristolochic acid I with acetic acid that was previously reported. Both oxazoles are believed to arise via a common nitrenium/carbocation ion mechanism that is likely related to that which leads to aristolochic acid-DNA-adducts.

  7. Microscopic theory of two-dimensional spatially-indirect-exciton condensates and exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wu, Feng Cheng; MacDonald, Allan

    BEC of excitons and polaritons have drawn attention in recent years because of the demonstration of their ability to host macroscopic quantum phenomena and because of their promise for applications. We study the case of a system containing two TMD monolayers that are separated and surrounded by h-BN. Under appropriate conditions this system is expected to support a spatially indirect thermal equilibrium exciton condensate. We combine a microscopic mean-field calculation and a weakly interacting boson model to explore the bilayer exciton condensates phase diagram. By varying the layer separation and exciton density, we find a phase transition occurs between states containing one and two condensate flavors. We also use a microscopic time-dependent mean-field theory to address condensate collective mode spectra and quantum fluctuations. Next we study the case of exciton-polariton formed by strong coupling between quantum well excitons and confined photon modes when the system is placed in a vertical microcavity. We build a microscopic mean-field theory starting from electrons and holes, and account for their coupling to coherent light field. We compare our model with the normal weakly interacting boson model that starts from weakly interacting excitons that are coupled to photons. This work was supported by the SRC and NIST under the Nanoelectronic Research Initiative (NRI) and SWAN, by the Welch Foundation under Grant No. F1473, and by the ARO Grant No. 26-3508-81.

  8. GENOTOXICITY OF TEN CIGARETTE SMOKE CONDENSATES IN FOUR TEST SYSTEMS: COMPARISONS AMONG ASSAYS AND CONDENSATES

    EPA Science Inventory

    The particulate fraction of cigarette smoke, cigarette smoke condensate (CSC), is genotoxic in many short-term in vitro tests and carcinogenic in rodents. However, no study has evaluatedd a set of CSCs prepared from a diverse set of cigarettes in a variety of short-term genotoxic...

  9. Comparison of concentric condensation technique with laterally condensed gutta-percha.

    PubMed

    Page, M L; Hargreaves, K M; ElDeeb, M

    1995-06-01

    Sixty mandibular premolars with large, straight canals and 60 nonjoining narrow, curved canals from mesial mandibular molar roots were obturated with gutta-percha via 1 of 3 methods: lateral condensation with sealer, or concentric condensation without sealer. The sealer used was a zinc oxide-eugenol without radiopacifiers. The premolar teeth were radiographed next to a step wedge, both before and after obturation. All teeth were exposed to India ink as a test for linear dye leakage, then cleared, and the leakage recorded. The pre- and postobturation radiographs were scanned at 2 and 6 mm from the apex using a Joyce-Loebel microdensitometer to establish the radiographic density of the obturation material, and a density ratio for the obturation was calculated using the cross-sectional diameter of the obturating material. The incidence of gutta-percha extrusion and Micro-Flow Compactor breakage was recorded. Two-way analysis of variance for linear dye leakage revealed no significant differences between the lateral and concentric condensation groups when sealer was used (p > 0.05). The concentric condensation without sealer groups exhibited significantly greater leakage (p < 0.00001) than the other groups, showing the importance of using sealers. One-way analysis of variance found no significant differences in radiographic density ratios between groups at 2 mm (p > 0.05) or 6 mm from the apex (p > 0.05). The incidence of extrusion was not significant, but a high rate of #30 condensor breakage was found.

  10. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  11. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  12. Calcium ions function as a booster of chromosome condensation

    PubMed Central

    Phengchat, Rinyaporn; Takata, Hideaki; Morii, Kenichi; Inada, Noriko; Murakoshi, Hideji; Uchiyama, Susumu; Fukui, Kiichi

    2016-01-01

    Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca2+, to chromosome condensation in vitro and in vivo. Ca2+ depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca2+. Chromosomes had compact globular structures when exposed to Ca2+ and expanded fibrous structures without Ca2+. Therefore, we have clearly demonstrated a role for Ca2+ in the compaction of chromatin fibres. PMID:27910894

  13. Modeling the Phase Composition of Gas Condensate in Pipelines

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  14. Row effect for R-11 condensation on enhanced tubes

    SciTech Connect

    Webb, R.L.; Murawski, C.G. )

    1990-08-01

    Experimental results of a condensation row effect study on enhanced tubes are presented. A test cell was constructed to condense Refrigerant-11 on the shell side of a vertical bank of five horizontal tubes. Four distinctly different commercially available tubes were tested. The tubes are a 1024-fpm integral fin, the Wolverine Tube-C, Wieland GEWA-SC, and the Tred-D. A modified Turbo-C tube was also tested. Experimental and visual observations are used to understand the row effect due to condensate loading. By plotting the data in the form of the local condensation coefficient versus condensate Reynolds number, the results may be interpreted for any number of tube rows, up to the maximum Reynolds numbers tested. Bundle average condensation coefficients may be established by integrating the h versus Re values over the number of tube rows.

  15. Calcium ions function as a booster of chromosome condensation.

    PubMed

    Phengchat, Rinyaporn; Takata, Hideaki; Morii, Kenichi; Inada, Noriko; Murakoshi, Hideji; Uchiyama, Susumu; Fukui, Kiichi

    2016-12-02

    Chromosome condensation is essential for the faithful transmission of genetic information to daughter cells during cell division. The depletion of chromosome scaffold proteins does not prevent chromosome condensation despite structural defects. This suggests that other factors contribute to condensation. Here we investigated the contribution of divalent cations, particularly Ca(2+), to chromosome condensation in vitro and in vivo. Ca(2+) depletion caused defects in proper mitotic progression, particularly in chromosome condensation after the breakdown of the nuclear envelope. Fluorescence lifetime imaging microscopy-Förster resonance energy transfer and electron microscopy demonstrated that chromosome condensation is influenced by Ca(2+). Chromosomes had compact globular structures when exposed to Ca(2+) and expanded fibrous structures without Ca(2+). Therefore, we have clearly demonstrated a role for Ca(2+) in the compaction of chromatin fibres.

  16. Chiral magnetic effect in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  17. Dropwise Condensation on a Radial Gradient Surface

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2013-11-01

    In transient dropwise condensation from steam onto a cool surface, distributions of drops evolve by nucleation, growth, and coalescence. This study examines how surface functionalization affects drop growth and coalescence. Surfaces are treated by silanization to deliver either a spatially uniform contact-angle (hydrophilic, neutral, and hydrophobic) or a radial gradient of contact-angles. The time evolution of number-density and associated drop-size distributions are reported. For a typical condensation experiment on a uniform angle surface, the number-density curves show two regimes: an initial increase in number-density as a result of nucleation and a subsequent decrease in number-density as a result of larger scale coalescence events. Without a removal mechanism, the fractional coverage, regardless of treatment, approaches unity. For the same angle-surface, the associated drop-size distributions progress through four different shapes along the growth curve. In contrast, for a radial gradient surface where removal by sweeping occurs, the number-density increases and then levels off to a value close to the maximum number-density that is well below unity coverage and only two shapes of distributions are observed. Implications for heat transfer will be discussed. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.

  18. Nonequilibrium kinetic theory for trapped binary condensates

    NASA Astrophysics Data System (ADS)

    Edmonds, M. J.; Lee, K. L.; Proukakis, N. P.

    2015-12-01

    We derive a nonequilibrium finite-temperature kinetic theory for a binary mixture of two interacting atomic Bose-Einstein condensates and use it to explore the degree of hydrodynamicity attainable in realistic experimental geometries. Based on the standard separation-of-time-scales argument of kinetic theory, the dynamics of the condensates of the multicomponent system are shown to be described by dissipative Gross-Pitaevskii equations self-consistently coupled to corresponding quantum Boltzmann equations for the noncondensate atoms: On top of the usual mean-field contributions, our scheme identifies a total of eight distinct collisional processes, whose dynamical interplay is expected to be responsible for the system's equilibration. In order to provide their first characterization, we perform a detailed numerical analysis of the role of trap frequency and geometry on collisional rates for experimentally accessible mixtures of 87Rb-41K and 87Rb-85Rb , discussing the extent to which the system may approach the hydrodynamic regime with regard to some of those processes as a guide for future experimental investigations of ultracold Bose gas mixtures.

  19. Dark solitons as quasiparticles in trapped condensates

    SciTech Connect

    Brazhnyi, V. A.; Konotop, V. V.; Pitaevskii, L. P.

    2006-05-15

    We present a theory of dark soliton dynamics in trapped quasi-one-dimensional Bose-Einstein condensates, which is based on the local-density approximation. The approach is applicable for arbitrary polynomial nonlinearities of the mean-field equation governing the system as well as to arbitrary polynomial traps. In particular, we derive a general formula for the frequency of the soliton oscillations in confining potentials. A special attention is dedicated to the study of the soliton dynamics in adiabatically varying traps. It is shown that the dependence of the amplitude of oscillations vs the trap frequency (strength) is given by the scaling law X{sub 0}{proportional_to}{omega}{sup -{gamma}} where the exponent {gamma} depends on the type of the two-body interactions, on the exponent of the polynomial confining potential, on the density of the condensate, and on the initial soliton velocity. Analytical results obtained within the framework of the local-density approximation are compared with the direct numerical simulations of the dynamics, showing a remarkable match. Various limiting cases are addressed. In particular for the slow solitons we computed a general formula for the effective mass and for the frequency of oscillations.

  20. Analysis of MIR Condensate and Potable Water

    NASA Technical Reports Server (NTRS)

    Pierre, L. M.; Bobe, L.; Protasov, N. N.; Sauer, R. L.; Schultz, J. R.; Sinyak, Y. E.; Skuratov, V. M.

    1999-01-01

    Approximately fifty percent of the potable water supplied to the Russian cosmonauts, American astronauts, and other occupants of the current Russian Mir Space Station is produced by the direct recycle of water from humidity condensate. The remainder comes from ground supplied potable water that is delivered on a Progress resupply spacecraft, or processed fuel cell water transferred from the Shuttle. Reclamation of water for potable and hygiene purposes is considered essential for extended duration missions in order to avoid massive costs associated with resupplying water from the ground. The Joint U.S/Russian Phase 1 program provided the U.S. the first opportunity to evaluate the performance of water reclamation hardware in microgravity. During the Phase I program, the U.S. collected recycled water, stored water, and humidity condensate samples for chemical and microbial evaluation. This experiment was conducted to determine the potability of the water supplied on Mir, to assess the reliability of the water reclamation and distribution systems, and to aid in developing water quality monitoring standards for International Space Station.

  1. Exhaled Breath Condensate: Technical and Diagnostic Aspects

    PubMed Central

    Konstantinidi, Efstathia M.; Lappas, Andreas S.; Tzortzi, Anna S.; Behrakis, Panagiotis K.

    2015-01-01

    Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice. PMID:26106641

  2. Gravitational dynamics in Bose-Einstein condensates

    SciTech Connect

    Girelli, F.; Liberati, S.; Sindoni, L.

    2008-10-15

    Analogue models for gravity intend to provide a framework where matter and gravity, as well as their intertwined dynamics, emerge from degrees of freedom that have a priori nothing to do with what we call gravity or matter. Bose-Einstein condensates (BEC) are a natural example of an analogue model since one can identify matter propagating on a (pseudo-Riemannian) metric with collective excitations above the condensate of atoms. However, until now, a description of the 'analogue gravitational dynamics' for such model was missing. We show here that in a BEC system with massive quasiparticles, the gravitational dynamics can be encoded in a modified (semiclassical) Poisson equation. In particular, gravity is of extreme short range (characterized by the healing length) and the cosmological constant appears from the noncondensed fraction of atoms in the quasiparticle vacuum. While some of these features make the analogue gravitational dynamics of our BEC system quite different from standard Newtonian gravity, we nonetheless show that it can be used to draw some interesting lessons about 'emergent gravity' scenarios.

  3. Open problems in condensed matter physics, 1987

    SciTech Connect

    Falicov, L.M.

    1988-08-01

    The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs.

  4. The Condensate Database for Big Data Analysis

    NASA Astrophysics Data System (ADS)

    Gallaher, D. W.; Lv, Q.; Grant, G.; Campbell, G. G.; Liu, Q.

    2014-12-01

    Although massive amounts of cryospheric data have been and are being generated at an unprecedented rate, a vast majority of the otherwise valuable data have been ``sitting in the dark'', with very limited quality assurance or runtime access for higher-level data analytics such as anomaly detection. This has significantly hindered data-driven scientific discovery and advances in the polar research and Earth sciences community. In an effort to solve this problem we have investigated and developed innovative techniques for the construction of ``condensate database'', which is much smaller than the original data yet still captures the key characteristics (e.g., spatio-temporal norm and changes). In addition we are taking advantage of parallel databases that make use of low cost GPU processors. As a result, efficient anomaly detection and quality assurance can be achieved with in-memory data analysis or limited I/O requests. The challenges lie in the fact that cryospheric data are massive and diverse, with normal/abnomal patterns spanning a wide range of spatial and temporal scales. This project consists of investigations in three main areas: (1) adaptive neighborhood-based thresholding in both space and time; (2) compressive-domain pattern detection and change analysis; and (3) hybrid and adaptive condensation of multi-modal, multi-scale cryospheric data.

  5. Dew condensation on desert beetle skin.

    PubMed

    Guadarrama-Cetina, J; Mongruel, A; Medici, M-G; Baquero, E; Parker, A R; Milimouk-Melnytchuk, I; González-Viñas, W; Beysens, D

    2014-11-01

    Some tenebrionind beetles inhabiting the Namib desert are known for using their body to collect water droplets from wind-blown fogs. We aim to determine whether dew water collection is also possible for desert insects. For this purpose, we investigated the infra-red emissivity, and the wetting and structural properties, of the surface of the elytra of a preserved specimen of Physasterna cribripes (Tenebrionidæ) beetle, where the macro-structure appears as a series of "bumps", with "valleys" between them. Dew formation experiments were carried out in a condensation chamber. The surface properties (infra-red emissivity, wetting properties) were dominated by the wax at the elytra surface and, to a lower extent, its micro-structure. We performed scanning electron microscope on histological sections and determined the infra-red emissivity using a scanning pyrometer. The emissivity measured (0.95±0.07 between 8-14 μm) was close to the black body value. Dew formation occurred on the insect's elytra, which can be explained by these surface properties. From the surface coverage of the condensed drops it was found that dew forms primarily in the valleys between the bumps. The difference in droplet nucleation rate between bumps and valleys can be attributed to the hexagonal microstructure on the surface of the valleys, whereas the surface of the bumps is smooth. The drops can slide when they reach a critical size, and be collected at the insect's mouth.

  6. Nonlinear phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.

    2008-05-01

    We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, 2008). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, Phys. Rev. A in press, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).

  7. Dynamical properties of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Navarro, Rafael

    Bose-Einstein condensates (BECs) provide a testbed for a wide array of coherent structures with complex dynamical properties. Of these structures, vortices and two-component BECs are at the forefront in understanding fundamental properties of BECs and have been under intense scrutiny in both experiments and theoretical studies. The behavior of these structures elucidates the mechanics of nonlinear processes that give rise to patterns in vortex lattices and patterns in binary BECs. This has lead to the integration of BECs into the new field of emergent phenomena that has unified many seemingly unrelated disciplines because at a fundamental level, the nonlinear processes provide a blueprint to give rise to coherence out of randomness. First, we study the interactions between two atomic species in a binary BEC to determine conditions for miscibility, oscillations between species, steady state solutions and their stability. Second, the two component system is extended to a quasi-2D systems for a pancake-shaped condensate. Third, the shape of the background atomic density as well as the background with a vortex is studied to determine the role of the phase and background on the precession of a vortex. Lastly, the dynamics of small clusters of same charge vortices in a trapped BEC is studied giving fixed point configurations that rotate at a constant speed.

  8. The order of condensation in capillary grooves.

    PubMed

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented.

  9. Statistical steady state in turbulent droplet condensation

    NASA Astrophysics Data System (ADS)

    Siewert, Christoph; Bec, Jérémie; Krstulovic, Giorgio

    2017-01-01

    Motivated by systems in which droplets grow and shrink in a turbulence-driven supersaturation field, we investigate the problem of turbulent condensation in a general manner. Using direct numerical simulations we show that the turbulent fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. Based on that, we propose a Lagrangian stochastic model for condensation and evaporation of small droplets in turbulent flows. It consists of a set of stochastic integro-differential equations for the joint evolution of the squared radius and the supersaturation along the droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution. These results reconcile those of earlier numerical studies, once these various regimes are considered.

  10. Chaos in Chiral Condensates in Gauge Theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Murata, Keiju; Yoshida, Kentaroh

    2016-12-01

    Assigning a chaos index for dynamics of generic quantum field theories is a challenging problem because the notion of a Lyapunov exponent, which is useful for singling out chaotic behavior, works only in classical systems. We address the issue by using the AdS /CFT correspondence, as the large Nc limit provides a classicalization (other than the standard ℏ→0 ) while keeping nontrivial quantum condensation. We demonstrate the chaos in the dynamics of quantum gauge theories: The time evolution of homogeneous quark condensates ⟨q ¯q ⟩ and ⟨q ¯γ5q ⟩ in an N =2 supersymmetric QCD with the S U (Nc) gauge group at large Nc and at a large 't Hooft coupling λ ≡NcgYM2 exhibits a positive Lyapunov exponent. The chaos dominates the phase space for energy density E ≳(6 ×1 02)×mq4(Nc/λ2), where mq is the quark mass. We evaluate the largest Lyapunov exponent as a function of (Nc,λ ,E ) and find that the N =2 supersymmetric QCD is more chaotic for smaller Nc.

  11. Edge effects on water droplet condensation

    NASA Astrophysics Data System (ADS)

    Royon, Laurent; Montgruel, Anne; Medici, Marie Gabrielle; Beysens, Daniel

    2014-11-01

    The effect of geometrical or thermal discontinuities on the growth of water droplets condensing on a cooled substrate is investigated. Edges, corners, cooled/non cooled boundaries can have a strong effect on the vapor concentration profile and mass diffusion around the drops. In comparison to growth in a pattern where droplets have to compete to catch vapor, which results in a linear water concentration profile directed perpendicular to the substrate, droplets near discontinuities can get more vapor (outer edges, corners), resulting in faster growth or less vapor (inner edges), giving lower growth. When the cooling heat flux limits growth instead of mass diffusion (substrate with low thermal conductivity, strong heat exchange with air), edges effects can be canceled. In certain cases, the growth enhancement can reach nearly 500% on edges or corners which, on an inclined substrate, make droplets near the edges detach sooner than in the middle of the substrate. This effect is frequently observed with dew condensing on windows or car windshields. Such droplets, acting as wipers, can thus appreciably increase dew collection on a substrate.

  12. FILAMENT CHANNEL FORMATION VIA MAGNETIC HELICITY CONDENSATION

    SciTech Connect

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2015-08-20

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear in the form of filament channels at photospheric polarity inversion lines (PILs). In addition to free energy, this shear represents magnetic helicity, which is conserved under reconnection. In this paper we address the problem of filament channel formation and show how filaments acquire their shear and magnetic helicity. The results of three-dimensional (3D) simulations using the Adaptively Refined Magnetohydrodynamics Solver are presented. Our findings support the model of filament channel formation by magnetic helicity condensation that was developed by Antiochos. We consider the small-scale photospheric twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations.

  13. CO2 Condensation Models for Mars

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R.

    2004-01-01

    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  14. Bose-Einstein condensation in quantum magnets

    NASA Astrophysics Data System (ADS)

    Zapf, Vivien; Jaime, Marcelo; Batista, C. D.

    2014-04-01

    This article reviews experimental and theoretical work on Bose-Einstein condensation in quantum magnets. These magnets are natural realizations of gases of interacting bosons whose relevant parameters such as dimensionality, lattice geometry, amount of disorder, nature of the interactions, and particle concentration can vary widely between different compounds. The particle concentration can be easily tuned by applying an external magnetic field which plays the role of a chemical potential. This rich spectrum of realizations offers a unique possibility for studying the different physical behaviors that emerge in interacting Bose gases from the interplay between their relevant parameters. The plethora of other bosonic phases that can emerge in quantum magnets, of which the Bose-Einstein condensate is the most basic ground state, is reviewed. The compounds discussed in this review have been intensively studied in the last two decades and have led to important contributions in the area of quantum magnetism. In spite of their apparent simplicity, these systems often exhibit surprising behaviors. The possibility of using controlled theoretical approaches has triggered the discovery of unusual effects induced by frustration, dimensionality, or disorder.

  15. Purification and Characterization of OleA from Xanthomonas campestris and Demonstration of a Non-decarboxylative Claisen Condensation Reaction

    SciTech Connect

    Frias, JA; Richman, JE; Erickson, JS; Wackett, LP

    2011-03-25

    OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C] myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.

  16. Multiple pollutant removal using the condensing heat exchanger

    SciTech Connect

    Jankura, B. J.; Kudlac, G. A.; Bailey, R. T.

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy's Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute's Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the Teflon

  17. Condensation and mixing in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Meyer, B. S.; Grossman, L.

    2010-06-01

    Low-density graphite spherules from the Murchison carbonaceous chondrite contain TiC grains and possess excess 28Si and 44Ca (from decay of short-lived 44Ti). These and other isotopic anomalies indicate that such grains formed by condensation from mixtures of ejecta from the interior of a core-collapse supernova with those from the exterior. Using homogenized chemical and isotopic model compositions of the eight main burning zones as end-members, Travaglio et al. (1999) attempted to find mixtures whose isotopic compositions match those observed in the graphite spherules, subject to the condition that the atomic C/O ratio = 1. They were partially successful, but this chemical condition does not guarantee condensation of TiC at a higher temperature than graphite, which is indicated by the spherule textures. In the present work, model compositions of relatively thin layers of ejecta within the main burning zones computed by Rauscher et al. (2002) for Type II supernovae of 15, 21 and 25 M ʘ are used to construct mixtures whose chemical compositions cause equilibrium condensation of TiC at a higher temperature than graphite in an attempt to match the textures and isotopic compositions of the spherules simultaneously. The variation of pressure with temperature and the change in elemental abundances with time due to radioactive decay were taken into account in the condensation calculations. Layers were found within the main Ni, O/Ne, He/C and He/N zones that, when mixed together, simultaneously match the carbon, nitrogen and oxygen isotopic compositions, 44Ti/ 48Ti ratios and inferred initial 26Al/ 27Al ratios of the low-density graphite spherules, even at subsolar 12C/ 13C ratios. Due to the relatively large proportion of material from the Ni zone and the relative amounts of the two layers of the Ni zone required to meet these conditions, predicted 28Si excesses are larger than observed in the low-density graphite spherules, and large negative δ46Ti/ 48Ti, δ47Ti/ 48Ti

  18. One pot direct synthesis of amides or oxazolines from carboxylic acids using Deoxo-Fluor reagent.

    PubMed

    Kangani, Cyrous O; Kelley, David E

    2005-12-19

    A mild and highly efficient one pot-one step condensation and/or condensation-cyclization of various acids to amides and/or oxazolines using Deoxo-Fluor reagents is described. Parallel syntheses of various free fatty acids with 2-amino-2, 2-dimethyl-1-propanol resulted with excellent yields.

  19. Influence of condensed sweet cream buttermilk on the manufacture, yield, and functionality of pizza cheese.

    PubMed

    Govindasamy-Lucey, S; Lin, T; Jaeggi, J J; Johnson, M E; Lucey, J A

    2006-02-01

    Compositional changes in raw and pasteurized cream and unconcentrated sweet cream buttermilk (SCB) obtained from a local dairy were investigated over 1 yr. Total phospholipid (PL) composition in SCB ranged from 0.113 to 0.153%. Whey protein denaturation in pasteurized cream over 1 yr ranged from 18 to 59%. Pizza cheese was manufactured from milk standardized with condensed SCB (approximately 34.0% total solids, 9.0% casein, 17.8% lactose). Effects of using condensed SCB on composition, yield, PL recovery, and functional properties of pizza cheese were investigated. Cheesemilks were prepared by adding 0, 2, 4, and 6% (wt/wt) condensed SCB to part-skim milk, and cream was added to obtain cheesemilks with approximately 11.2 to 12.7% total solids and casein:fat ratio of approximately 1. Use of condensed SCB resulted in a significant increase in cheese moisture. Cheese-making procedures were modified to obtain similar cheese moisture contents. Fat and nitrogen recoveries in SCB cheeses were slightly lower and higher, respectively, than in control cheeses. Phospholipid recovery in cheeses was below 40%. Values of pH and 12% trichloro-acetic acid-soluble nitrogen were similar among all treatments. Cheeses made from milk standardized with SCB showed less melt and stretch than control cheese, especially at the 4 and 6% SCB levels. Addition of SCB significantly lowered free oil at wk 1 but there were no significant differences at wk 2 and 4. Use of SCB did not result in oxidized flavor in unmelted cheeses. At low levels (e.g., 2% SCB), addition of condensed SCB improved cheese yield without affecting compositional, rheological, and sensory properties of cheese.

  20. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs.