Science.gov

Sample records for acid vfa accumulation

  1. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    PubMed

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate. PMID:25274086

  2. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    PubMed

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate.

  3. High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH.

    PubMed

    Tamis, J; Joosse, B M; Loosdrecht, M C M van; Kleerebezem, R

    2015-11-01

    Volatile fatty acids (VFA) are proposed platform molecules for the production of basic chemicals and polymers from organic waste streams. In this study we developed a granular sludge process to produce VFA at high rate, yield and purity while minimizing potential operational costs. A lab-scale anaerobic sequencing batch reactor (ASBR) was fed with 10 g l(-1) glucose as model substrate. Inclusion of a short (2 min) settling phase before effluent discharge enabled effective granulation and very high volumetric conversion rates of 150-300 gCOD l(-1)  d(-1) were observed during glucose conversion. The product spectrum remained similar at the tested pH range with acetate and butyrate as the main products, and a total VFA yield of 60-70% on chemical oxygen demand (COD) basis. The requirement for base addition for pH regulation could be reduced from 1.1 to 0.6 mol OH(-) (mol glucose)(-1) by lowering the pH from 5.5 to 4.5. Solids concentrations in the effluent were 0.6 ± 0.3 g l(-1) but could be reduced to 0.02 ± 0.01 g l(-1) by introduction of an additional settling period of 5 min. The efficient production of VFA at low pH with a virtually solid-free effluent increases the economic feasibility of waste-based chemicals and polymer production. Biotechnol.

  4. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  5. Bromine accumulation in acidic black colluvial soils

    NASA Astrophysics Data System (ADS)

    Cortizas, Antonio Martínez; Vázquez, Cruz Ferro; Kaal, Joeri; Biester, Harald; Casais, Manuela Costa; Rodríguez, Teresa Taboada; Lado, Luis Rodríguez

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (<50 μm) fraction were on average 3-times higher than those (17-250 μg g-1) in the fine earth (<2 mm), the former containing almost all bromine (90 ± 5%). Inventories were between 148 and 314 g m-2, indicating a rather large variability in a small area, and total estimated retention was low (6-16%). The degree of SOM bromination, expressed as the Br/C molar ratio, varied between 0.03 and 1.20 mmol Br/mol C. The ratio was highly correlated (n = 23, r2 0.88, p < 0.01) with the age of the SOM for the last ∼12 ka. Partial least squares modeling indicates that bromine concentration depends on the amount of organic matter stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  6. Comparison of VFA titration procedures used for monitoring the biogas process.

    PubMed

    Lützhøft, Hans-Christian Holten; Boe, Kanokwan; Fang, Cheng; Angelidaki, Irini

    2014-05-01

    Titrimetric determination of volatile fatty acids (VFAs) contents is a common way to monitor a biogas process. However, digested manure from co-digestion biogas plants has a complex matrix with high concentrations of interfering components, resulting in varying results when using different titration procedures. Currently, no standardized procedure is used and it is therefore difficult to compare the performance among plants. The aim of this study was to evaluate four titration procedures (for determination of VFA-levels of digested manure samples) and compare results with gas chromatographic (GC) analysis. Two of the procedures are commonly used in biogas plants and two are discussed in literature. The results showed that the optimal titration results were obtained when 40 mL of four times diluted digested manure was gently stirred (200 rpm). Results from samples with different VFA concentrations (1-11 g/L) showed linear correlation between titration results and GC measurements. However, determination of VFA by titration generally overestimated the VFA contents compared with GC measurements when samples had low VFA concentrations, i.e. around 1 g/L. The accuracy of titration increased when samples had high VFA concentrations, i.e. around 5 g/L. It was further found that the studied ionisable interfering components had lowest effect on titration when the sample had high VFA concentration. In contrast, bicarbonate, phosphate and lactate had significant effect on titration accuracy at low VFA concentration. An extended 5-point titration procedure with pH correction was best to handle interferences from bicarbonate, phosphate and lactate at low VFA concentrations. Contrary, the simplest titration procedure with only two pH end-points showed the highest accuracy among all titration procedures at high VFA concentrations. All in all, if the composition of the digested manure sample is not known, the procedure with only two pH end-points should be the procedure of

  7. The effect of organic loading rate on VFA/COD ratio for methane production from an EGSB reactor.

    PubMed

    Wei, Bo; Yuan, Linjiang; Liu, Wenhui

    2015-07-01

    The present study evaluated the effect of organic loading rate (OLR) on VFA/COD ratio for continuous production of methane using an expanded granular sludge bed(EGSB) reactor for 200 d. Reactor performances were studied in treating high OLRs ranging from 4.91 +/- 0.54 to 16.79 +/- 1.62 g-COD l(-1)d(-1) of glucose-based synthetic wastewater in a mesophilic condition. Results showed that performance of anaerobic fermentation system was distinctly influenced by OLR in terms of organic removal efficiency, VFA yield, methane production rate and system stability.Acetic and propionic acids accounted for 80-90% of total VFA, and presented highest VFA concentration and composition of VFA showed minor changes with OLR variation. Moreover, an increase in OLR increased VFA/COD ratio in the whole operation period and high VFA/COD ratio could inhibit methanogenesis at high OLR (16.79 +/- 1.62 g-COD l(-1) d(-1)). PMID:26364485

  8. The effect of organic loading rate on VFA/COD ratio for methane production from an EGSB reactor.

    PubMed

    Wei, Bo; Yuan, Linjiang; Liu, Wenhui

    2015-07-01

    The present study evaluated the effect of organic loading rate (OLR) on VFA/COD ratio for continuous production of methane using an expanded granular sludge bed(EGSB) reactor for 200 d. Reactor performances were studied in treating high OLRs ranging from 4.91 +/- 0.54 to 16.79 +/- 1.62 g-COD l(-1)d(-1) of glucose-based synthetic wastewater in a mesophilic condition. Results showed that performance of anaerobic fermentation system was distinctly influenced by OLR in terms of organic removal efficiency, VFA yield, methane production rate and system stability.Acetic and propionic acids accounted for 80-90% of total VFA, and presented highest VFA concentration and composition of VFA showed minor changes with OLR variation. Moreover, an increase in OLR increased VFA/COD ratio in the whole operation period and high VFA/COD ratio could inhibit methanogenesis at high OLR (16.79 +/- 1.62 g-COD l(-1) d(-1)).

  9. Prediction of a membrane-coupled anaerobic VFA fermenter efficiency using an empirical model.

    PubMed

    Kim, J O; Somiya, I

    2001-03-01

    An empirical model based on some statistical analysis for predicting produced volatile fatty acids (VFA) concentration was developed to establish reliable design conditions of a membrane-coupled anaerobic VFA fermenter (MCAVF) and assess its performance with influent organics concentration (Ci), membrane filtration ratio (phi) and hydraulic loading rate (HLR). The empirical model followed the same trend as the experimental data, which showed the effectiveness of the model. The relationship involving these three independent variables explained more than 90% of the variation in the dependent variable. A model explains that the produced VFA concentration is more sensitive to changes in influent organics concentration (Ci) and membrane filtration ratio (phi) than hydraulic loading rate (HLR). This empirical model can predict the optimum values of operation parameters on many scenarios. Due to its simplicity, the empirical model can be used to design and operate a membrane-coupled anaerobic VFAs fermenter. PMID:11346285

  10. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    PubMed

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  11. A nine-point pH titration method to determine low-concentration VFA in municipal wastewater.

    PubMed

    Ai, Hainan; Zhang, Daijun; Lu, Peili; He, Qiang

    2011-01-01

    Characterization of volatile fatty acid (VFA) in wastewater is significant for understanding the wastewater nature and the wastewater treatment process optimization based on the usage of Activated Sludge Models (ASMs). In this study, a nine-point pH titration method was developed for the determination of low-concentration VFA in municipal wastewater. The method was evaluated using synthetic wastewater containing VFA with the concentration of 10-50 mg/l and the possible interfering buffer systems of carbonate, phosphate and ammonium similar to those in real municipal wastewater. In addition, the further evaluation was conducted through the assay of real wastewater using chromatography as reference. The results showed that the recovery of VFA in the synthetic wastewater was 92%-102 and the coefficient of variance (CV) of reduplicate measurements 1.68%-4.72%. The changing content of the buffering substances had little effect on the accuracy of the method. Moreover, the titration method was agreed with chromatography in the determination of VFA in real municipal wastewater with R(2)= 0.9987 and CV =1.3-1.7. The nine-point pH titration method is capable of satisfied determination of low-concentration VFA in municipal wastewater.

  12. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates.

  13. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. PMID:25697838

  14. Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock.

    PubMed

    Kuruti, Kranti; Gangagni Rao, A; Gandu, Bharath; Kiran, G; Mohammad, Sameena; Sailaja, S; Swamy, Y V

    2015-09-01

    Acidogenic anaerobic fermentation route was explored for the production of bioethanol and volatile fatty acids (VFA) from the press mud (PM) obtained from sugar mill. Slurry was prepared from PM having 10% of total solids and the same was hydrolyzed under acidic thermal conditions. Both press mud slurry (PMS) and pre-treated press mud slurry (PTPMS) was used as feedstock with mixed microbial consortia (MMC) and enriched mixed microbial consortia (EMMC). Mix of bioethanol and VFA were obtained in all the four cases (PMS-MMC, PMS-EMMC, PTPMS-EMC and PTPMS-EMMC), but, bioethanol and VFA yield of 0.04 g/g and 0.27 g/g, respectively obtained from PTPMS with EMMC was found to be comparatively higher. Control experiments carried out with glucose yielded bioethanol and VFA of 0.042 g/g and 0.28 g/g, respectively demonstrating that the organism was using reducible sugars in the feedstock for the generation of bioethanol by simultaneously producing the VFA from COD.

  15. Ascorbic acid transport and accumulation in human neutrophils

    SciTech Connect

    Washko, P.; Rotrosen, D.; Levine, M. )

    1989-11-15

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake.

  16. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica.

    PubMed

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-02-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%-50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%-60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  17. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica.

    PubMed

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-02-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%-50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%-60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed.

  18. Accumulation of hydroxycinnamic acid amides in winter wheat under snow.

    PubMed

    Jin, Shigeki; Yoshida, Midori; Nakajima, Takashi; Murai, Akio

    2003-06-01

    It was found that the content of antifungal compounds p-coumaroylagmatine [1-(trans-4'-hydroxycinnamoylamino)-4-guanidinobutane] and p-coumaroyl-3-hydroxyagmatine [1-(trans-4'-hydroxycinnamoylamino)-3-hydroxy-4-guanidinobutane] in the crown of winter wheat (Triticum aestivum L. cv Chihokukomugi) significantly increased under snow cover. This finding suggests that the accumulation of these hydroxycinnamic acid amides was caused by winter stress and related to protecting the plant against snow mold under snow cover.

  19. The biochemistry of citric acid accumulation by Aspergillus niger.

    PubMed

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  20. Accumulation of Phosphatidic Acid Increases Vancomycin Resistance in Escherichia coli

    PubMed Central

    Sutterlin, Holly A.; Zhang, Sisi

    2014-01-01

    In Gram-negative bacteria, lipopolysaccharide (LPS) contributes to the robust permeability barrier of the outer membrane, preventing entry of toxic molecules such as antibiotics. Mutations in lptD, the beta-barrel component of the LPS transport and assembly machinery, compromise LPS assembly and result in increased antibiotic sensitivity. Here, we report rare vancomycin-resistant suppressors that improve barrier function of a subset of lptD mutations. We find that all seven suppressors analyzed mapped to the essential gene cdsA, which is responsible for the conversion of phosphatidic acid to CDP-diacylglycerol in phospholipid biosynthesis. These cdsA mutations cause a partial loss of function and, as expected, accumulate phosphatidic acid. We show that this suppression is not confined to mutations that cause defects in outer membrane biogenesis but rather that these cdsA mutations confer a general increase in vancomycin resistance, even in a wild-type cell. We use genetics and quadrupole time of flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) to show that accumulation of phosphatidic acid by means other than cdsA mutations also increases resistance to vancomycin. We suggest that increased levels of phosphatidic acid change the physical properties of the outer membrane to impede entry of vancomycin into the periplasm, hindering access to its target, an intermediate required for the synthesis of the peptidoglycan cell wall. PMID:24957626

  1. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    PubMed

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  2. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    PubMed

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands. PMID:24933893

  3. Effects of the dicarboxylic acids malate and fumarate on E. coli 0157:H7 and Salmonella enterica Typhimurium populations in pure culture and in mixed ruminal microorganism fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dicarboxylic organic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total VFA production, and reduce lactic acid accumulation in a manner similar to ionophores. These acids stimulate the ruminal bacterium Selenomonas ruminantium to ferment lact...

  4. Effects of the dicarboxylic acids malate and fumarate on E. coli O157:H7 and Salmonella Typhimurium populations in pure culture and mixed ruminal culture in in vitro fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dicarboxylic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total VFA production, and reduce lactic acid accumulation in a manner similar to ionophores. The mechanism by which these acids effect the ruminal environment is reported to be through...

  5. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.

    PubMed

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Juergen

    2013-11-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance.

  6. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  7. Activation of PPARα by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis.

    PubMed

    Yang, Yang; Feng, Yuyao; Zhang, Xiaowei; Nakajima, Takero; Tanaka, Naoki; Sugiyama, Eiko; Kamijo, Yuji; Aoyama, Toshifumi

    2016-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first reaction in the mitochondrial fatty acid β-oxidation pathway. VLCAD deficiency is associated with the accumulation of fat in multiple organs and tissues, which results in specific clinical features including cardiomyopathy, cardiomegaly, muscle weakness, and hepatic dysfunction in infants. We speculated that the abnormal fatty acid metabolism in VLCAD-deficient individuals might cause cell necrosis by fatty acid toxicity. The accumulation of fatty acids may activate peroxisome proliferator-activated receptor (PPAR), a master regulator of fatty acid metabolism and a potent nuclear receptor for free fatty acids. We examined six skin fibroblast lines, derived from VLCAD-deficient patients and identified fatty acid accumulation and PPARα activation in these cell lines. We then found that the expression levels of three enzymes involved in fatty acid degradation, including long-chain acyl-CoA synthetase (LACS), were increased in a PPARα-dependent manner. This increased expression of LACS might enhance the fatty acyl-CoA supply to fatty acid degradation and sulfatide synthesis pathways. In fact, the first and last reactions in the sulfatide synthesis pathway are regulated by PPARα. Therefore, we also measured the expression levels of enzymes involved in sulfatide metabolism and the regulation of cellular sulfatide content. The levels of these enzymes and cellular sulfatide content both increased in a PPARα-dependent manner. These results indicate that PPARα activation plays defensive and compensative roles by reducing cellular toxicity associated with fatty acids and sulfuric acid. PMID:27644403

  8. Gamma amino butyric acid accumulation in medicinal plants without stress

    PubMed Central

    Anju, P.; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Introduction: Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. Aim and Objective: The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. Materials and Methods: The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F–254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague. PMID:25861139

  9. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species.

    PubMed

    Kolouchová, Irena; Schreiberová, Olga; Sigler, Karel; Masák, Jan; Řezanka, Tomáš

    2015-11-01

    The possibility of utilizing volatile fatty acids (VFA)-containing waste substrates from biotechnological and industrial processes was investigated by cultivating both oleaginous (Candida sp., Rhodotorula glutinis, Trichosporon cutaneum, Yarrowia lipolytica) and non-oleaginous (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulaspora delbrueckii) yeast species on acetic acid, propionic acid and a combination of either acid with glucose as carbon and energy sources. Both oleaginous and non-oleaginous yeasts grew on VFA. Oleaginous yeasts accumulated lipids to 15-48% of dry cell weight, non-oleaginous yeasts also grew on VFA and showed comparable biomass yields but the lipid content was only 2-5%. Biomass and lipid yield increased in cultivations on VFA plus glucose. The lipid composition was comparable to plant-derived oils and therefore might be exploitable in biodiesel production; nearly all species, when cultured on propionate, showed a high content of the desirable odd-chain unsaturated FA, especially 17:1 acid. This study points at the wide array of possible applications of many yeasts, even non-oleaginous strains, for biovalorization of industrial wastes. Despite their low lipid content these species are useful because they can readily utilize VFA from waste products and, since they are not biologically hazardous, their biomass can be afterwards used, e.g. as livestock fodder.

  10. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species.

    PubMed

    Kolouchová, Irena; Schreiberová, Olga; Sigler, Karel; Masák, Jan; Řezanka, Tomáš

    2015-11-01

    The possibility of utilizing volatile fatty acids (VFA)-containing waste substrates from biotechnological and industrial processes was investigated by cultivating both oleaginous (Candida sp., Rhodotorula glutinis, Trichosporon cutaneum, Yarrowia lipolytica) and non-oleaginous (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulaspora delbrueckii) yeast species on acetic acid, propionic acid and a combination of either acid with glucose as carbon and energy sources. Both oleaginous and non-oleaginous yeasts grew on VFA. Oleaginous yeasts accumulated lipids to 15-48% of dry cell weight, non-oleaginous yeasts also grew on VFA and showed comparable biomass yields but the lipid content was only 2-5%. Biomass and lipid yield increased in cultivations on VFA plus glucose. The lipid composition was comparable to plant-derived oils and therefore might be exploitable in biodiesel production; nearly all species, when cultured on propionate, showed a high content of the desirable odd-chain unsaturated FA, especially 17:1 acid. This study points at the wide array of possible applications of many yeasts, even non-oleaginous strains, for biovalorization of industrial wastes. Despite their low lipid content these species are useful because they can readily utilize VFA from waste products and, since they are not biologically hazardous, their biomass can be afterwards used, e.g. as livestock fodder. PMID:26323601

  11. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  12. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    PubMed

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes.

  13. Accumulation potentials of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays).

    PubMed

    Krippner, Johanna; Falk, Sandy; Brunn, Hubertus; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2015-04-15

    Uptake of perfluoroalkyl acids (PFAAs) by maize represents a potential source of exposure for humans, either directly or indirectly via feed for animals raised for human consumption. The aim of the following study was, therefore, to determine the accumulation potential of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) in maize (Zea mays). Two different concentrations of PFAAs were applied as aqueous solution to the soil to attain target concentrations of 0.25 mg or 1.00 mg of PFAA per kg of soil. Maize was grown in pots, and after harvesting, PFAA concentrations were measured in the straw and kernels of maize. PFCA and PFSA concentrations of straw decreased significantly with increasing chain length. In maize kernels, only PFCAs with a chain length ≤ C8 as well as perfluorobutanesulfonic acid (PFBS) were detected. The highest soil-to-plant transfer for both straw and kernels was determined for short-chained PFCAs and PFSAs.

  14. A hybrid cascade control scheme for the VFA and COD regulation in two-stage anaerobic digestion processes.

    PubMed

    Méndez-Acosta, H O; Campos-Rodríguez, A; González-Álvarez, V; García-Sandoval, J P; Snell-Castro, R; Latrille, E

    2016-10-01

    A hybrid (continuous-discrete) cascade control is proposed to regulate both, volatile fatty acids (VFA) and chemical oxygen demand (COD) concentrations in two-stage (acidogenic-methanogenic) anaerobic digestion (TSAD) processes. The outer loop is a discrete controller that regulates the COD concentration of the methanogenic bioreactor by using a daily off-line measurement and that modifies the set-point tracked by inner loop, which manipulates the dilution rate to regulate the VFA concentration of the acidogenic bioreactor, estimated by continuous on-line conductivity measurements, avoiding acidification. The experimental validation was conducted in a TSAD process for the treatment of tequila vinasses during 110days. Results showed that the proposed cascade control scheme was able to achieve the VFA and COD regulation by using conventional measurements under different set-point values in spite of adverse common scenarios in full-scale anaerobic digestion processes. Microbial composition analysis showed that the controller also favors the abundance and diversity toward methane production.

  15. A hybrid cascade control scheme for the VFA and COD regulation in two-stage anaerobic digestion processes.

    PubMed

    Méndez-Acosta, H O; Campos-Rodríguez, A; González-Álvarez, V; García-Sandoval, J P; Snell-Castro, R; Latrille, E

    2016-10-01

    A hybrid (continuous-discrete) cascade control is proposed to regulate both, volatile fatty acids (VFA) and chemical oxygen demand (COD) concentrations in two-stage (acidogenic-methanogenic) anaerobic digestion (TSAD) processes. The outer loop is a discrete controller that regulates the COD concentration of the methanogenic bioreactor by using a daily off-line measurement and that modifies the set-point tracked by inner loop, which manipulates the dilution rate to regulate the VFA concentration of the acidogenic bioreactor, estimated by continuous on-line conductivity measurements, avoiding acidification. The experimental validation was conducted in a TSAD process for the treatment of tequila vinasses during 110days. Results showed that the proposed cascade control scheme was able to achieve the VFA and COD regulation by using conventional measurements under different set-point values in spite of adverse common scenarios in full-scale anaerobic digestion processes. Microbial composition analysis showed that the controller also favors the abundance and diversity toward methane production. PMID:27474953

  16. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  17. Effect of fatty acid on the accumulation of thiamine disulfide in rat skin.

    PubMed

    Komata, Y; Kaneko, A; Fujie, T

    1994-05-01

    The effect of long chain fatty acid (FA) and its analogs on the accumulation of thiamine disulfide (TDS) in rat skin using propylene glycol as a vehicle was studied in vitro. Lauric acid (12:0) increased the accumulation of TDS in skin, while myristic acid and stearic acid caused a slight decrease in accumulation. Lauryl alcohol and lauric acid methyl ester did not change the accumulation of TDS in the skin. The ratio of the amount of TDS accumulated in skin to the solubility of TDS in the vehicle increased dependent on the concentration of 12:0 added in the vehicle. It was suggested that the increase in the permeability coefficient of TDS by 12:0 results from the enhanced transport of TDS from the vehicle to skin.

  18. Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in the post-ischemic heart.

    PubMed

    Klevstig, Martina; Ståhlman, Marcus; Lundqvist, Annika; Scharin Täng, Margareta; Fogelstrand, Per; Adiels, Martin; Andersson, Linda; Kolesnick, Richard; Jeppsson, Anders; Borén, Jan; Levin, Malin C

    2016-04-01

    Ceramide accumulation is known to accompany acute myocardial ischemia, but its role in the pathogenesis of ischemic heart disease is unclear. In this study, we aimed to determine how ceramides accumulate in the ischemic heart and to determine if cardiac function following ischemia can be improved by reducing ceramide accumulation. To investigate the association between ceramide accumulation and heart function, we analyzed myocardial left ventricle biopsies from subjects with chronic ischemia and found that ceramide levels were higher in biopsies from subjects with reduced heart function. Ceramides are produced by either de novo synthesis or hydrolysis of sphingomyelin catalyzed by acid and/or neutral sphingomyelinase. We used cultured HL-1 cardiomyocytes to investigate these pathways and showed that acid sphingomyelinase activity rather than neutral sphingomyelinase activity or de novo sphingolipid synthesis was important for hypoxia-induced ceramide accumulation. We also used mice with a partial deficiency in acid sphingomyelinase (Smpd1(+/-) mice) to investigate if limiting ceramide accumulation under ischemic conditions would have a beneficial effect on heart function and survival. Although we showed that cardiac ceramide accumulation was reduced in Smpd1(+/-) mice 24h after an induced myocardial infarction, this reduction was not accompanied by an improvement in heart function or survival. Our findings show that accumulation of cardiac ceramides in the post-ischemic heart is mediated by acid sphingomyelinase. However, targeting ceramide accumulation in the ischemic heart may not be a beneficial treatment strategy. PMID:26930027

  19. Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in the post-ischemic heart.

    PubMed

    Klevstig, Martina; Ståhlman, Marcus; Lundqvist, Annika; Scharin Täng, Margareta; Fogelstrand, Per; Adiels, Martin; Andersson, Linda; Kolesnick, Richard; Jeppsson, Anders; Borén, Jan; Levin, Malin C

    2016-04-01

    Ceramide accumulation is known to accompany acute myocardial ischemia, but its role in the pathogenesis of ischemic heart disease is unclear. In this study, we aimed to determine how ceramides accumulate in the ischemic heart and to determine if cardiac function following ischemia can be improved by reducing ceramide accumulation. To investigate the association between ceramide accumulation and heart function, we analyzed myocardial left ventricle biopsies from subjects with chronic ischemia and found that ceramide levels were higher in biopsies from subjects with reduced heart function. Ceramides are produced by either de novo synthesis or hydrolysis of sphingomyelin catalyzed by acid and/or neutral sphingomyelinase. We used cultured HL-1 cardiomyocytes to investigate these pathways and showed that acid sphingomyelinase activity rather than neutral sphingomyelinase activity or de novo sphingolipid synthesis was important for hypoxia-induced ceramide accumulation. We also used mice with a partial deficiency in acid sphingomyelinase (Smpd1(+/-) mice) to investigate if limiting ceramide accumulation under ischemic conditions would have a beneficial effect on heart function and survival. Although we showed that cardiac ceramide accumulation was reduced in Smpd1(+/-) mice 24h after an induced myocardial infarction, this reduction was not accompanied by an improvement in heart function or survival. Our findings show that accumulation of cardiac ceramides in the post-ischemic heart is mediated by acid sphingomyelinase. However, targeting ceramide accumulation in the ischemic heart may not be a beneficial treatment strategy.

  20. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  1. Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids.

    PubMed

    Pardelha, Filipa; Albuquerque, Maria G E; Reis, Maria A M; Dias, João M L; Oliveira, Rui

    2012-12-31

    Fermented agro-industrial wastes are potential low cost substrates for polyhydroxyalkanoates (PHA) production by mixed microbial cultures (MMC). The use of complex substrates has however profound implications in the PHA metabolism. In this paper we investigate PHA accumulation using a lumped metabolic model that describes PHA storage from arbitrary mixtures of volatile fatty acids (VFA). Experiments were conducted using synthetic and complex VFA mixtures obtained from the fermentation of sugar cane molasses. Metabolic flux analysis (MFA) and flux balance analysis (FBA) were performed at different stages of culture enrichment in order to investigate the effect of VFA composition and time of enrichment in PHA storage efficiency. Substrate uptake and PHA storage fluxes increased over enrichment time by 70% and 73%, respectively. MFA calculations show that higher PHA storage fluxes are associated to an increase in the uptake of VFA with even number of carbon atoms and a more effective synthesis of hydroxyvalerate (HV) precursors from VFA with odd number of carbons. Furthermore, FBA shows that the key metabolic objective of a MMC subjected to the feast and famine regimen is the minimization of the tricarboxylic acid cycle fluxes. The PHA flux and biopolymer composition (hydroxybutyrate (HB): HV) could be accurately predicted in several independent experiments.

  2. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. Greenhouse studies were conducted to determine the glyphosate I50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected legum...

  3. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  4. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells.

    PubMed

    Etienne, A; Génard, M; Lobit, P; Mbeguié-A-Mbéguié, D; Bugaud, C

    2013-04-01

    Fleshy fruit acidity is an important component of fruit organoleptic quality and is mainly due to the presence of malic and citric acids, the main organic acids found in most ripe fruits. The accumulation of these two acids in fruit cells is the result of several interlinked processes that take place in different compartments of the cell and appear to be under the control of many factors. This review combines analyses of transcriptomic, metabolomic, and proteomic data, and fruit process-based simulation models of the accumulation of citric and malic acids, to further our understanding of the physiological mechanisms likely to control the accumulation of these two acids during fruit development. The effects of agro-environmental factors, such as the source:sink ratio, water supply, mineral nutrition, and temperature, on citric and malic acid accumulation in fruit cells have been reported in several agronomic studies. This review sheds light on the interactions between these factors and the metabolism and storage of organic acids in the cell.

  5. Intracellular boron accumulation in CHO-K1 cells using amino acid transport control.

    PubMed

    Sato, Eisuke; Yamamoto, Tetsuya; Shikano, Naoto; Ogura, Masato; Nakai, Kei; Yoshida, Fumiyo; Uemae, Yoji; Takada, Tomoya; Isobe, Tomonori; Matsumura, Akira

    2014-06-01

    BPA used in BNCT has a similar structure to some essential amino acids and is transported into tumor cells by amino acid transport systems. Previous study groups have tried various techniques of loading BPA to increase intracellular boron concentration. CHO-K1 cells demonstrate system L (LAT1) activity and are suitable for specifying the transport system of a neutral amino acid. In this study, we examined the intracellular accumulation of boron in CHO-K1 cells by amino acid transport control, which involves co-loading with L-type amino acid esters. Intracellular boron accumulation in CHO-K1 cells showed the greatest increased upon co-loading 1.0mM BPA, with 1.0mM l-Tyr-O-Et and incubating for 60min. This increase is caused by activation of a system L amino acid exchanger between BPA and l-Tyr. The amino acid esters are metabolized to amino acids by intracellular hydrolytic enzymes that increase the concentrations of intracellular amino acids and stimulate exchange transportation. We expect that this amino acid transport control will be useful for enhancing intracellular boron accumulation.

  6. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis

    PubMed Central

    Ronda, Srinivasa Reddy; Lele, S.S.

    2008-01-01

    Gamma-linolenic acid (GLA) production by Spirulina platensis under different stress-inducing conditions was studied. Submerged culture studies showed that low temperature (25°C), strong light intensity (6 klux) and primrose oil supplement (0.8%w/v) induced 13.2 mg/g, 14.6 mg/g and 13.5 mg linolenic acid per gram dry cell weight respectively. A careful observation of fatty acid profile of the cyanobacteria shows that, oleic acid and linoleic acid, in experiments with varying growth temperature and oil supplements respectively, helped in accumulating excess γ-linolenic acid. In addition, cultures grown at increasing light regimes maintained the γ-linolenic acid to the total fatty acid ratio(GLA/TFA) constant, despite any change in γ-linolenic acid content of the cyanobacteria. PMID:24031291

  7. [Exudation and accumulation of citric acid in common bean in response to Al toxicity stress].

    PubMed

    Shen, Hong; Yan, Xiaolong; Zheng, Shaoling; Wang, Xiurong

    2002-03-01

    Significant differences in the exudation and accumulation of citric acid in common bean genotypes were observed in response to Al toxicity stress by hydroponic cultural experiments. Secreted citric acid increased with increasing external concentrations of Al3+ which ranged from 0 to 50 mumol.L-1, while ranged from 50 to 80 mumol.L-1, secreted citric acid decreased with increasing external concentrations of Al3+. Among different genotypic common beans, citric acid secreted in G19842 was the largest, while Al uptake per unit dry weight in G19842 was the least. No difference in the accumulation of citric acid in leaves was found among different genotypic common beans, while the size of the content of citric acid in roots was G19842 > AFR > ZPV > G5273. The amount of citric acid exuded was smaller induced by phosphorus deficiency than that induced by Al toxicity stress. Exposure to 50 mumol.L-1 LaCl3 could not induce the exudation of citric acid, and it implied that the exudation and accumulation of citric acid in common bean was an important physiological response of resistance to Al toxicity stress.

  8. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'.

  9. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions.

    PubMed

    Wilson, Daniel C; Carella, Philip; Cameron, Robin K

    2014-01-01

    The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response.

  10. Arachidonic acid accumulates in the stromal macrophages during thymus involution in diabetes.

    PubMed

    Gruia, Alexandra T; Barbu-Tudoran, Lucian; Mic, Ani A; Ordodi, Valentin L; Paunescu, Virgil; Mic, Felix A

    2011-07-01

    Diabetes is a debilitating disease with chronic evolution that affects many tissues and organs over its course. Thymus is an organ that is affected early after the onset of diabetes, gradually involuting until it loses most of its thymocyte populations. We show evidence of accumulating free fatty acids with generation of eicosanoids in the diabetic thymus and we present a possible mechanism for the involution of the organ during the disease. Young rats were injected with streptozotocin and their thymuses examined for cell death by flow cytometry and TUNEL reaction. Accumulation of lipids in the diabetic thymus was investigated by histology and electron microscopy. The identity and quantitation of accumulating lipids was done with gas chromatography-mass spectrometry and liquid chromatography. The expression and dynamics of the enzymes were monitored via immunohistochemistry. Diabetes causes thymus involution by elevating the thymocyte apoptosis. Exposure of thymocytes to elevated concentration of glucose causes apoptosis. After the onset of diabetes, there is a gradual accumulation of free fatty acids in the stromal macrophages including arachidonic acid, the substrate for eicosanoids. The eicosanoids do not cause thymocyte apoptosis but administration of a cyclooxygenase inhibitor reduces the staining for ED1, a macrophage marker whose intensity correlates with phagocytic activity. Diabetes causes thymus involution that is accompanied by accumulation of free fatty acids in the thymic macrophages. Excess glucose is able to induce thymocyte apoptosis but eicosanoids are involved in the chemoattraction of macrophage to remove the dead thymocytes.

  11. Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation1[W][OPEN

    PubMed Central

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  12. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  13. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    PubMed

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  14. Similar PAH Fate in Anaerobic Digesters Inoculated with Three Microbial Communities Accumulating Either Volatile Fatty Acids or Methane

    PubMed Central

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH

  15. Pseudomonas mutant strains that accumulate androstane and seco-androstane intermediates from bile acids.

    PubMed Central

    Leppik, R A; Sinden, D J

    1987-01-01

    Transposon mutant strains which were affected in bile acid catabolism were isolated from four Pseudomonas spp. Two of the mutant groups isolated were found to accumulate 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione as the major product from deoxycholic acid. Strains in one of these two groups were able to grow on steroids such as chenodeoxycholic acid, which lacks a 12 alpha-hydroxy function, whereas the one member of the second group could not. With chenodeoxycholic acid, this latter strain accumulated a yellow muconic-like derivative, tentatively identified as 3,7-dihydroxy-5,9,17-trioxo-4(5),9(10)-disecoandrosta-1(10)2 -dien-4-oic acid. Members of two further mutant groups accumulated either 12 beta-hydroxyandrosta-1,4-diene-3,17-dione or 3,12 beta-dihydroxy-9(10)-secoandrosta-1,3,5(10)-triene-9,17-dione as the major product from deoxycholic acid. The relationship between the catabolism of m- and p-cresol, 3-ethylphenol and the bile acids was also examined. PMID:3038076

  16. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.)

    PubMed Central

    Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli

    2016-01-01

    Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of

  17. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  18. Uric acid accumulation in an Arabidopsis urate oxidase mutant impairs seedling establishment by blocking peroxisome maintenance.

    PubMed

    Hauck, Oliver K; Scharnberg, Jana; Escobar, Nieves Medina; Wanner, Gerhard; Giavalisco, Patrick; Witte, Claus-Peter

    2014-07-01

    Purine nucleotides can be fully catabolized by plants to recycle nutrients. We have isolated a urate oxidase (uox) mutant of Arabidopsis thaliana that accumulates uric acid in all tissues, especially in the developing embryo. The mutant displays a reduced germination rate and is unable to establish autotrophic growth due to severe inhibition of cotyledon development and nutrient mobilization from the lipid reserves in the cotyledons. The uox mutant phenotype is suppressed in a xanthine dehydrogenase (xdh) uox double mutant, demonstrating that the underlying cause is not the defective purine base catabolism, or the lack of UOX per se, but the elevated uric acid concentration in the embryo. Remarkably, xanthine accumulates to similar levels in the xdh mutant without toxicity. This is paralleled in humans, where hyperuricemia is associated with many diseases whereas xanthinuria is asymptomatic. Searching for the molecular cause of uric acid toxicity, we discovered a local defect of peroxisomes (glyoxysomes) mostly confined to the cotyledons of the mature embryos, which resulted in the accumulation of free fatty acids in dry seeds. The peroxisomal defect explains the developmental phenotypes of the uox mutant, drawing a novel link between uric acid and peroxisome function, which may be relevant beyond plants. PMID:25052714

  19. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  20. Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation.

    PubMed

    Abbadi, Amine; Domergue, Fréderic; Bauer, Jörg; Napier, Johnathan A; Welti, Ruth; Zähringer, Ulrich; Cirpus, Petra; Heinz, Ernst

    2004-10-01

    Omega6- and omega3-polyunsaturated C20 fatty acids represent important components of the human diet. A more regular consumption and an accordingly sustainable source of these compounds are highly desirable. In contrast with the very high levels to which industrial fatty acids have to be enriched in plant oils for competitive use as chemical feedstocks, much lower percentages of very-long-chain polyunsaturated fatty acids (VLCPUFA) in edible plant oils would satisfy nutritional requirements. Seed-specific expression in transgenic tobacco (Nicotiana tabacum) and linseed (Linum usitatissimum) of cDNAs encoding fatty acyl-desaturases and elongases, absent from all agronomically important plants, resulted in the very high accumulation of Delta6-desaturated C18 fatty acids and up to 5% of C20 polyunsaturated fatty acids, including arachidonic and eicosapentaenoic acid. Detailed lipid analyses of developing seeds from transgenic plants were interpretated as indicating that, after desaturation on phosphatidylcholine, Delta6-desaturated products are immediately channeled to the triacylglycerols and effectively bypass the acyl-CoA pool. Thus, the lack of available Delta6-desaturated acyl-CoA substrates in the acyl-CoA pool limits the synthesis of elongated C20 fatty acids and disrupts the alternating sequence of lipid-linked desaturations and acyl-CoA dependent elongations. As well as the successful production of VLCPUFA in transgenic oilseeds and the identification of constraints on their accumulation, our results indicate alternative strategies to circumvent this bottleneck.

  1. An Oleaginous Bacterium That Intrinsically Accumulates Long-Chain Free Fatty Acids in its Cytoplasm

    PubMed Central

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo

    2014-01-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production. PMID:24296497

  2. Role of p53 in the cellular response following oleic acid accumulation in Chang liver cells.

    PubMed

    Park, Eun-Jung; Lee, Ah Young; Chang, Seung-Hee; Yu, Kyeong-Nam; Kim, Jae-Ho; Cho, Myung-Haing

    2014-01-01

    Abnormal accumulation of fatty acids triggers the harmful cellular response called lipotoxicity. In this study, we investigated the cellular response following accumulation of oleic acid (OA), a monounsaturated fatty acid, in human Chang liver cells. OA droplets were distributed freely in the cytoplasm and/or degraded within lysosomes. OA exposure increased ATP production and concomitantly dilated mitochondria. At 24h after OA exposure, cell viability decreased slightly and was coupled with a reduction in mitochondrial Ca(2+) concentration, the alteration in cell viability was also associated with the generation of reactive oxygen species and changes in the cell cycle. Moreover, OA treatment increased the expression of autophagy- and apoptotic cell death-related proteins in a dose-dependent manner. Furthermore, we investigated the role of p53, a tumor suppressor protein, in the cellular response elicited by OA accumulation. OA-induced changes in cell viability and ATP production were rescued to control levels when cells were pretreated with pifithrin-alpha (PTA), a p53 inhibitor. By contrast, the expressions of LC3-II and perilipin, proteins required for lipophagy, were down-regulated by PTA pretreatment. Taken together, our results suggest that p53 plays a key role in the cellular response elicited by OA accumulation in Chang liver cells.

  3. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  4. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30.

  5. Factors Affecting the Elicitation of Sesquiterpenoid Phytoalexin Accumulation by Eicosapentaenoic and Arachidonic Acids in Potato 1

    PubMed Central

    Bostock, Richard M.; Laine, Roger A.; Kuć, Joseph A.

    1982-01-01

    Eicosapentaenoic and arachidonic acids in extracts of Phytophthora infestans mycelium were identified as the most active elicitors of sesquiterpenoid phytoalexin accumulation in potato tuber slices. These fatty acids were found free or esterified in all fractions with elicitor activity including cell wall preparations. Yeast lipase released a major portion of eicosapentaenoic and arachidonic acids from lyophilized mycelium. Concentration response curves comparing the elicitor activity of the polyunsaturated fatty acids to a cell-free sonicate of P. infestans mycelium indicated that the elicitor activity of the sonicated mycelium exceeded that which would be obtained by the amount of eicosapentaenoic and arachidonic acids (free and esterified) present in the mycelium. Upon acid hydrolysis of lyophilized mycelium, elicitor activity was obtained only from the fatty acid fraction. However, the fatty acids accounted for only 21% of the activity of the unhydrolyzed mycelium and the residue did not enhance their activity. Centrifugation of the hydrolysate, obtained from lyophilized mycelium treated with 2n NaOH, 1 molarity NaBH4 at 100°C, yielded a supernatant fraction with little or no elicitor activity. Addition of this material to the fatty acids restored the activity to that which was present in the unhydrolyzed mycelium. The results indicate that the elicitor activity of the unsaturated fatty acids is enhanced by heat and base-stable factors in the mycelium. PMID:16662691

  6. Neurons and glia in cat superior colliculus accumulate [3H]gamma-aminobutyric acid (GABA).

    PubMed

    Mize, R R; Spencer, R F; Sterling, P

    1981-11-01

    We have examined by autoradiography the labeling pattern in the cat superior colliculus following injection of tritiated gamma-aminobutyric acid (GABA). Silver grains were heavily distributed within the zonal layer and the upper 200 micrometer of the superficial gray. Fewer grains were observed deeper within the superficial gray, and still fewer were found within the optic and intermediate gray layers. The accumulation of label was restricted to certain classes of neuron and glia. Densely labeled neurons were small (8-12 micrometer in diameter) and located primarily within the upper 200 micrometer. Dark oligodendrocytes and astrocytes showed a moderate accumulation of label while pale oligodendrocytes and microglia were unlabeled. Label was also selectively accumulated over several other types of profile within the neuropil, including presynaptic dendrites, axons, and axon terminals.

  7. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    PubMed

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  8. Modelling the metabolic shift of polyphosphate-accumulating organisms.

    PubMed

    Acevedo, B; Borrás, L; Oehmen, A; Barat, R

    2014-11-15

    Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metabolic models by including the ability of PAO to change their metabolic pathways according to the content of poly-P available. The processes of the PAO metabolic model were adapted to new formulations enabling the change from P-driven VFA uptake to glycogen-driven VFA uptake using the same process equations. The stoichiometric parameters were changed from a typical PAO coefficient to a typical GAO coefficient depending on the internal poly-P with Monod-type expressions. The model was calibrated and validated with seven experiments under different internal poly-P concentrations, showing the ability to correctly represent the PAO metabolic shift at low poly-P concentrations. The sensitivity and error analysis showed that the model is robust and has the ability to describe satisfactorily the change from one metabolic pathway to the other one, thereby encompassing a wider range of process conditions found in EBPR plants.

  9. Modelling the metabolic shift of polyphosphate-accumulating organisms.

    PubMed

    Acevedo, B; Borrás, L; Oehmen, A; Barat, R

    2014-11-15

    Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metabolic models by including the ability of PAO to change their metabolic pathways according to the content of poly-P available. The processes of the PAO metabolic model were adapted to new formulations enabling the change from P-driven VFA uptake to glycogen-driven VFA uptake using the same process equations. The stoichiometric parameters were changed from a typical PAO coefficient to a typical GAO coefficient depending on the internal poly-P with Monod-type expressions. The model was calibrated and validated with seven experiments under different internal poly-P concentrations, showing the ability to correctly represent the PAO metabolic shift at low poly-P concentrations. The sensitivity and error analysis showed that the model is robust and has the ability to describe satisfactorily the change from one metabolic pathway to the other one, thereby encompassing a wider range of process conditions found in EBPR plants. PMID:25123437

  10. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  11. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China.

  12. Modelling metal accumulation using humic acid as a surrogate for plant roots.

    PubMed

    Le, T T Yen; Swartjes, Frank; Römkens, Paul; Groenenberg, Jan E; Wang, Peng; Lofts, Stephen; Hendriks, A Jan

    2015-04-01

    Metal accumulation in roots was modelled with WHAM VII using humic acid (HA) as a surrogate for root surface. Metal accumulation was simulated as a function of computed metal binding to HA, with a correction term (E(HA)) to account for the differences in binding site density between HA and root surface. The approach was able to model metal accumulation in roots to within one order of magnitude for 95% of the data points. Total concentrations of Mn in roots of Vigna unguiculata, total concentrations of Ni, Zn, Cu and Cd in roots of Pisum sativum, as well as internalized concentrations of Cd, Ni, Pb and Zn in roots of Lolium perenne, were significantly correlated to the computed metal binding to HA. The method was less successful at modelling metal accumulation at low concentrations and in soil experiments. Measured concentrations of Cu internalized in L. perenne roots were not related to Cu binding to HA modelled and deviated from the predictions by over one order of magnitude. The results indicate that metal uptake by roots may under certain conditions be influenced by conditional physiological processes that cannot simulated by geochemical equilibrium. Processes occurring in chronic exposure of plants grown in soil to metals at low concentrations complicate the relationship between computed metal binding to HA and measured metal accumulation in roots.

  13. Modelling metal accumulation using humic acid as a surrogate for plant roots.

    PubMed

    Le, T T Yen; Swartjes, Frank; Römkens, Paul; Groenenberg, Jan E; Wang, Peng; Lofts, Stephen; Hendriks, A Jan

    2015-04-01

    Metal accumulation in roots was modelled with WHAM VII using humic acid (HA) as a surrogate for root surface. Metal accumulation was simulated as a function of computed metal binding to HA, with a correction term (E(HA)) to account for the differences in binding site density between HA and root surface. The approach was able to model metal accumulation in roots to within one order of magnitude for 95% of the data points. Total concentrations of Mn in roots of Vigna unguiculata, total concentrations of Ni, Zn, Cu and Cd in roots of Pisum sativum, as well as internalized concentrations of Cd, Ni, Pb and Zn in roots of Lolium perenne, were significantly correlated to the computed metal binding to HA. The method was less successful at modelling metal accumulation at low concentrations and in soil experiments. Measured concentrations of Cu internalized in L. perenne roots were not related to Cu binding to HA modelled and deviated from the predictions by over one order of magnitude. The results indicate that metal uptake by roots may under certain conditions be influenced by conditional physiological processes that cannot simulated by geochemical equilibrium. Processes occurring in chronic exposure of plants grown in soil to metals at low concentrations complicate the relationship between computed metal binding to HA and measured metal accumulation in roots. PMID:25482978

  14. Formation and accumulation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol during flowering of hops (Humulus lupulus L.).

    PubMed

    De Keukeleire, Jelle; Ooms, Geert; Heyerick, Arne; Roldan-Ruiz, Isabel; Van Bockstaele, Erik; De Keukeleire, Denis

    2003-07-16

    Important secondary metabolites, present in hops (Humulus lupulus L.), include alpha-acids and beta-acids, which are essential for the brewing of beer, as well as the prenylated chalcones, desmethylxanthohumol, and xanthohumol, which exhibit interesting bioactive properties. Their formation and accumulation in five selected hop varieties, Wye Challenger, Wye Target, Golding, Admiral, and Whitbread Golding Variety, were quantitatively monitored by high-performance liquid chromatography using UV detection. All target compounds were present from the onset of flowering, not only in female hop cones but also in male inflorescences, albeit in low concentrations. During development from female inflorescences to cones, levels of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol gradually increased, while each hop variety exhibited individual accumulation rates. Furthermore, these compounds were present in leaves of fully grown hops as well. The study demonstrated that key compounds for flavor and potential beneficial health effects associated with beer not only reside in the glandular lupulin structures but also are distributed over various parts of the hop plant. PMID:12848522

  15. Folic acid administration inhibits amyloid β-peptide accumulation in APP/PS1 transgenic mice.

    PubMed

    Li, Wen; Liu, Huan; Yu, Min; Zhang, Xumei; Zhang, Meilin; Wilson, John X; Huang, Guowei

    2015-08-01

    Alzheimer's disease (AD) is associated with malnutrition, altered one-carbon metabolism and increased hippocampal amyloid-β peptide (Aβ) accumulation. Aberrant DNA methylation may be an epigenetic mechanism that underlies AD pathogenesis. We hypothesized that folic acid acts through an epigenetic gene silencing mechanism to lower Aβ levels in the APP/PS1 transgenic mouse model of AD. APP/PS1 mice were fed either folate-deficient or control diets and gavaged daily with 120 μg/kg folic acid, 13.3mg/kg S-adenosylmethionine (SAM) or both. Examination of the mice after 60 days of treatment showed that serum folate concentration increased with intake of folic acid but not SAM. Folate deficiency lowered endogenous SAM concentration, whereas neither intervention altered S-adenosylhomocysteine concentration. DNA methyltransferase (DNMT) activity increased with intake of folic acid raised DNMT activity in folate-deficient mice. DNA methylation rate was stimulated by folic acid in the amyloid precursor protein (APP) promoter and in the presenilin 1 (PS1) promoter. Folate deficiency elevated hippocampal APP, PS1 and Aβ protein levels, and these rises were prevented by folic acid. In conclusion, these findings are consistent with a mechanism in which folic acid increases methylation potential and DNMT activity, modifies DNA methylation and ultimately decreases APP, PS1 and Aβ protein levels.

  16. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation.

    PubMed

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  17. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation

    PubMed Central

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P.; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  18. Velocity Estimates for Signal Propagation Leading to Systemic Jasmonic Acid Accumulation in Wounded Arabidopsis*

    PubMed Central

    Glauser, Gaetan; Dubugnon, Lucie; Mousavi, Seyed A. R.; Rudaz, Serge; Wolfender, Jean-Luc; Farmer, Edward E.

    2009-01-01

    The wound response prohormone jasmonic acid (JA) accumulates rapidly in tissues both proximal and distal to injury sites in plants. Using quantitative liquid chromatography-mass spectrometry after flash freezing of tissues, we found that JA accumulated within 30 s of injury in wounded Arabidopsis leaves (p = 3.5 e−7). JA augmentation distal to wounds was strongest in unwounded leaves with direct vascular connections to wounded leaves wherein JA levels increased significantly within 120 s of wounding (p = 0.00027). This gave conservative and statistically robust temporal boundaries for the average velocity of the long distance signal leading to distal JA accumulation in unwounded leaves of 3.4–4.5 cm min−1. Like JA, transcripts of the JA synthesis gene LIPOXYGENASE2 (LOX2) and the jasmonate response gene JAZ10.3 also accumulated to higher levels in directly interconnected leaves than in indirectly connected leaves. JA accumulation in a lox2-1 mutant plant was initiated rapidly after wounding then slowed progressively compared with the wild type (WT). Despite this, JAZ10.3 expression in the two genotypes was similar. Free cyclopentenone jasmonate levels were similar in both resting WT and lox2-1. In contrast, bound cyclopentenone jasmonates (arabidopsides) were far lower in lox2-1 than in the WT. The major roles of LOX2 are to generate arabidopsides and the large levels of JA that accumulate proximal to the wound. LOX2 is not essential for some of the most rapid events elicited by wounding. PMID:19846562

  19. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  20. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-02-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of (109)Cd increased significantly, and higher (109)Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the (109)Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  1. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-02-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of (109)Cd increased significantly, and higher (109)Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the (109)Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd.

  2. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.

    PubMed

    Martins, Neusa; Gonçalves, Sandra; Andrade, Paula B; Valentão, Patrícia; Romano, Anabela

    2013-01-01

    We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved. PMID:23199681

  3. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.

    PubMed

    Martins, Neusa; Gonçalves, Sandra; Andrade, Paula B; Valentão, Patrícia; Romano, Anabela

    2013-01-01

    We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved.

  4. Increased accumulation of the lipophilic cation tetraphenylphosphonium by cyclopiazonic acid-treated renal epithelial cells

    SciTech Connect

    Riley, R.T.; Norred, W.P.; Dorner, J.W.; Cole, R.J.

    1985-01-01

    Pig kidney renal epithelial cells (LLC-PK1) in culture were used to determine the effects of cyclopiazonic acid (CPA) on the uptake of the transmembrane potential probe, (TH)tetraphenylphosphonium bromide (TPP ). CPA had a significant stimulatory effect on TPP accumulation, which occurred in a dose-related manner. TPP accumulation in the presence of CPA was significantly reduced by high-potassium media (HK) and carbonylcyanide m-chlorophenylhydrazone (CCCP), but neither HK nor the protonophore CCCP, could completely abolish the stimulatory effect of CPA. The apparent transmembrane potential difference, calculated based on the difference in accumulation of TPP in low-potassium and HK media, ranged from -55.9 to -85.7 mV for control cells and -89.4 to -109.0 mV for CPA-treated cells (20 mg CPA/I). The mechanism of CPA stimulation of TPP accumulation was not known. However, it was hypothesized that the effect could be a result of alterations in ion pumps or altered membrane permeability.

  5. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions.

    PubMed

    de Ollas, Carlos; Hernando, Bárbara; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2013-03-01

    Phytohormones are central players in sensing and signaling numerous environmental conditions like drought stress. In this work, an experimental system based on severe drought was established and hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonic acid (JA) biosynthesis was studied in roots of citrumelo CPB 4475 (a commercial citrus rootstock) plants. JA concentration transiently increased after a few hours of stress, returning to control levels 30 h after the onset of the condition. A more progressive ABA accumulation was observed, with the onset of this increase at the same time or right after the JA transient accumulation. Molecular data suggested that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also pointed to a possible involvement of JA on ABA biosynthesis under stress. To test this hypothesis, JA and ABA biosynthesis were chemically inhibited and subsequently phenotypes rescued by the addition of exogenous hormones. Results showed that the early JA accumulation was necessary for the subsequent ABA increase in roots under stress whereas the opposite could not be stated. The model includes a burst of JA in roots of citrus under severe drought stress conditions that leads to a more progressive ABA accumulation that will induce later plant responses. The present work adds a new level of interaction between JA and ABA at the biosynthetic level that together with the previously described interaction between signal transduction cascades of the two hormones would allow plants to fine-tune specific responses to different stimuli.

  6. Accumulation of amino acids in muscle of perfused rat heart. Effect of insulin

    PubMed Central

    Scharff, R.; Wool, I. G.

    1965-01-01

    1. Rat heart perfused with Krebs–Henseleit bicarbonate buffer released material containing ninhydrin-positive nitrogen, but the amount was less than that reported to be released by diaphragm; glucose, but not insulin, decreased the release of ninhydrin-positive nitrogen and increased the concentration of the same material in the intracellular water of heart. 2. When heart was perfused with a mixture of amino acids and glucose, there was actually a net uptake, and an increase in intracellular concentration, of ninhydrin-positive nitrogen. Changes in the concentration of ninhydrin-positive nitrogen did not accurately reflect changes in concentration of amino acids. 3. The effect of insulin on the actual concentration of individual amino acids in heart muscle was examined by perfusing the heart with a mixture of amino acids and other ninhydrin-positive substances in the same concentration as they are found in plasma. 4. The effect of insulin on the concentrations of amino acids in the medium and in the intracellular water of the heart was determined after perfusion for different periods of time. No clear or meaningful effect of insulin was observed, despite the fact that insulin significantly increased the accumulation, in each of the same hearts, of radioactivity from amino[14C]isobutyric acid. PMID:16749112

  7. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis

    PubMed Central

    Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

    2014-01-01

    Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants. PMID:25610446

  8. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis.

    PubMed

    Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

    2014-01-01

    Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants. PMID:25610446

  9. A strategy for promoting astaxanthin accumulation in Haematococcus pluvialis by 1-aminocyclopropane-1-carboxylic acid application.

    PubMed

    Lee, Changsu; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-10-20

    The green algae Haematococcus pluvialis is a freshwater unicellular microalga belonging to Chlorophyceae. It is one of the best natural sources of astaxanthin, a secondary metabolite commonly used as an antioxidant and anti-inflammatory agent. Due to the importance of astaxanthin, various efforts have been made to increase its production. In this study, we attempted to develop a strategy for promoting astaxanthin accumulation in H. pluvialis using 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene (normally known as an aging hormone in plants). Our results demonstrated that ACC could enhance the growth of H. pluvialis, thereby promoting astaxanthin accumulation. Therefore, ACC has an indirect influence on astaxanthin production. We further verified the effect of ACC with a direct treatment of ethylene originated from banana peels. These results indicate that ethylene could be applied as an indirect method for enhancing growth and astaxanthin biosynthesis in H. pluvialis. PMID:27544287

  10. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance. PMID:27255930

  11. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance.

  12. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control.

    PubMed

    Mosquera-Restrepo, Sergio Fabián; Caro, Ana Cecilia; Peláez-Jaramillo, Carlos Alberto; Rojas, Mauricio

    2016-05-01

    The fatty acid composition of monocytes changes substantially during differentiation into macrophages, increasing the proportion of saturated fatty acids. These changes prompted us to investigate whether fatty acid accumulation in the extracellular milieu could affect the differentiation of bystander mononuclear phagocytes. An esterified fatty acid derivative, stearate, was the only fatty acid that significantly increased in macrophage supernatants, and there were higher levels when cells differentiated in the presence of Mycobacterium tuberculosis H37Rv or purified protein derivative (PPD). Exogenous stearic acid enhanced the expression of HLA-DR and CD64; there was also accumulation of IL-12, TNF-α, IL-6, MIP-1 α and β and a reduction in MCP-1 and the bacterial load. These results suggested that during differentiation, a derivative of stearic acid, which promotes the process as well as the effector mechanisms of phagocytes against the mycobacterium, accumulates in the cell supernatants.

  13. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    PubMed

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production.

  14. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation.

    PubMed

    Zhang, Litao; Liu, Jianguo

    2016-07-01

    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells.

  15. Effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in germinated brown millet.

    PubMed

    Li, Xingfeng; Hao, Jianxiong; Liu, Xianggui; Liu, Haijie; Ning, Yawei; Cheng, Ruhong; Tan, Bin; Jia, Yingmin

    2015-11-01

    The accumulation of γ-aminobutyric acid and the microbial decontamination are concerned increasingly in the production of sprouts. In this work, the effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in the germinated brown millet was evaluated by high performance liquid chromatography during germination. The results showed that slightly acidic electrolyzed water with appropriate available chlorine (15 or 30 mg/L) could promote the accumulation of γ-aminobutyric acid by up to 21% (P < 0.05). However, the treatment with slightly acidic electrolyzed water could not enhance the sprouts growth of the germinated brown millet. The catalase and peroxidase activities of the germinated brown millet during germination were in agreement with the sprouts growth. Our results suggested that the accumulation of γ-aminobutyric acid was independent of the length of sprouts in germinated grains. Moreover, the treatment with slightly acidic electrolyzed water significantly reduced the microbial counts in the germinated millet (P < 0.05) and the treatment with high available chlorine concentration (15 and 30 mg/L) showed stronger anti-infection potential in the germinated brown millet than that of lower available chlorine concentration (5 mg/L). In conclusion, the treatment with slightly acidic electrolyzed water is an available approach to improve the accumulation of γ-aminobutyric acid and anti-infection potential in the germinated brown millet, and it can avoid too long millet sprouts.

  16. Accumulation of seleno-amino acids in legume and grass plant species grown in selenium-laden soils

    SciTech Connect

    Wu, L.; Guo, X.; Banuelos, G.S.

    1997-03-01

    Seleno-amino acid accumulation was studied for two legume and two grass species grown in Selenium (Se)-laden soils. An antagonistic relationship was found between the tissue Se-amino acid concentration and the corresponding sulfur-amino acid concentration. This relationship demonstrates a competitive interaction between Se and sulfate at the amino acid synthesis level. The nonsulfur-containing amino acids were not substantially affected by the increase of tissue Se concentration. Sour clover (Melilotus indica L.) was able to accumulate much greater tissue Se concentration than the other three species. Tissue methionine concentration of sour clover, rabbitfoot grass (Polypogon monspeliensis L.), and tall fescue (Festuca arundinacea Schreb.) was not significantly affected by the increase of tissue selenomethionine concentration, but a highly significant negative correlation was found in alfalfa (Medicago sativa L.). This discrepancy suggests that a less antagonistic effect on sulfur-amino acids under the increase of Se-amino acid analogues in the tissue might be able to minimize Se toxicity to the plant. Both Se-methylselenocysteine (nonprotein amino acid) and selenomethionine (protein amino acid) accumulated in the plants when grown in Se-laden soils. Possible effects of these Se-amino acids accumulated by plants on animal health should be tested before the plants are used for forage supplementation.

  17. Influence of chilling and drought on water relations and abscisic acid accumulation in bean

    SciTech Connect

    Vernieri, P.; Pardossi, A.; Tognoni, F. )

    1991-01-01

    Intact bean seedlings were subjected to either chilling (4{degree}C) or drought stress. Leaf water relations and abscisic acid (ABA) content were monitored throughout a stress-recovery cycle. Chilling at low relative humidity (RH) and drought caused similar water deficits, as indicated by the decline in relative water content and water potentials, but they had different effects on ABA accumulation. There was a rapid increase in ABA levels in the leaves of water-deprived plants while only slight ABA accumulation was observed after 48 h of chilling (4{degree}C). After 24 h cold treatment there were large changes in turgor but no change in ABA content. Plants chilled for 24 h accumulated ABA only when transferred to recovery conditions (20{degree}C, 90-95% RH, in the dark) to an extent that was related to the rate of leaf rehydration. When the chilling treatment was performed in a water-saturated atmosphere, plants did not suffer any water stress and ABA levels did not increase over a period of 48 h. However, when the chilling treatment lasted for a longer period (72 h), a significant increase in ABA levels was found also in the absence of water deficit. Experiments performed with leaf discs incubated in a mannitol solution (osmotic potential {minus}1{center dot}6 MPa) at different temperatures indicated that low temperature markedly inhibits ABA synthesis and that water stress induces increases in ABA content only at non-limiting warm temperatures.

  18. Abscisic acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes

    SciTech Connect

    Creelman, R.A.; Zeevaart, J.A.D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress rather than a chemical stress.

  19. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.

  20. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    PubMed Central

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  1. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance.

    PubMed

    Clé, Carla; Hill, Lionel M; Niggeweg, Ricarda; Martin, Cathie R; Guisez, Yves; Prinsen, Els; Jansen, Marcel A K

    2008-08-01

    Chlorogenic acid (CGA) is one of the most abundant phenolic compounds in tomato (Solanum lycopersicum). Hydroxycinnamoyl CoA quinate transferase (HQT) is the key enzyme catalysing CGA biosynthesis in tomato. We have studied the relationship between phenolic accumulation and UV-susceptibility in transgenic tomato plants with altered HQT expression. Overall, increased CGA accumulation was associated with increased UV-protection. However, the genetic manipulation of HQT expression also resulted in more complex alterations in the profiles of phenolics. Levels of rutin were relatively high in both HQT gene-silenced and HQT-overexpressing plants raised in plant growth tunnels. This suggests plasticity in the flux along different branches of phenylpropanoid metabolism and the existence of regulatory mechanisms that direct the flow of phenolic precursors in response to both metabolic parameters and environmental conditions. These changes in composition of the phenolic pool affected the relative levels of UV-tolerance. We conclude that the capability of the phenolic compounds to protect against potentially harmful UV radiation is determined both by the total levels of phenolics that accumulate in leaves as well as by the specific composition of the phenolic profile.

  2. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots.

  3. Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry.

    PubMed

    Grellet-Bournonville, Carlos F; Martinez-Zamora, Martín G; Castagnaro, Atilio P; Díaz-Ricci, Juan Carlos

    2012-05-01

    Many authors have reported interactions between strawberry cultivars and pathogenic microorganisms, yet little is known about the mechanisms triggered in the plant. In this paper we examine the participation of the salicylic acid (SA) signaling pathway involved in the response of Fragaria x ananassa cv. Pájaro plants to pathogens. Strawberry plants were challenged with the virulent strain M11 of Colletotrichum acutatum, or with the avirulent strain M23 of Colletotrichum fragariae which confers resistance to the former. Our study showed that the isolate M23 induced a temporal SA accumulation that was accompanied with the induction of PR-1 gene expression in strawberry plants. Such events occured after the oxidative burst, evaluated as the accumulation of hydrogen peroxide and superoxide anion, and many hours before the protection could be detected. Similar results were obtained with exogenously applied SA. Results obtained supports the hypothesis that strawberry plants activate a SA mediated defense mechanisms that is effective against a causal agent of anthracnose. In contrast, plants inoculated with M11 did not show oxidative burst, SA accumulation or PR1 gene induction. This is the first report about a defense response signaling pathway studied in strawberry plants. PMID:22366637

  4. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  5. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. PMID:26851887

  6. Polar transport and accumulation of indole-3-acetic acid during root regeneration by Pinus lambertiana embryos.

    PubMed

    Greenwood, M S; Goldsmith, M H

    1970-12-01

    The relation of indoleacetic acid (IAA) transport to accumulation of auxin at the base of cuttings and to polar root formation was investigated with small cuttings from germinating embryos of Pinus lambertiana.The transport of endogenous auxin participates in regeneration of roots. This is shown by the facts that (1) more than 40% of the cuttings rooted without addition of exogenous indoleacetic acid; (2) the first regeneration always occurred at the basal tip of a slanting cut; and (3) 2,3,5-triiodobenzoic acid (TIBA), a specific inhibitor of auxin transport, totally inhibited rooting. Addition of IAA to the medium increased the number of roots formed per rooting hypocotyl.Sections of hypocotyls excised from dormant embryos and tested immediately after 2 h hydration were capable of polar transport of IAA. This polarity increased during the first 3 days of culture because of a marked increase in basipetal transport. Culturing the cuttings in 1 μM IAA for 3-5 days doubled both the basipetal transport of 1-(14)C-IAA by hypocotyl segments and the accumulation of radioactivity at the base of cuttings.The extent of the accumulation at the base of cuttings was similar at early (2 days, first mitoses) and late stages (5 days, organized meristem) of regeneration and was not affected by removal of the regenerating region immediately prior to uptake and transport of (14)C-IAA. The accumulation was inhibited by TIBA. In terms of increase in wet and dry weight and mitotic activity, the cotyledons rather than the regenerating root meristems were the most actively growing region of the cuttings. The upper part of the hypocotyl elongated more than the region of the slanting cut where regeneration was occurring.These results provide no support for the idea that the regenerating root controls the direction of polar transport by acting as a sink. The results are consistent with the view that polar auxin transport delivers auxin to the base of the cutting and raises the local

  7. Influence of operating conditions for volatile fatty acids enrichment as a first step for polyhydroxyalkanoate production on a municipal waste water treatment plant.

    PubMed

    Pittmann, Timo; Steinmetz, Heidrun

    2013-11-01

    This work describes the generation of volatile fatty acids (VFAs) as the first step of the polyhydroxyalkanoate (PHA) production cycle. Therefore four different substrates from a municipal waste water treatment plant (WWTP) were investigated regarding high VFA production and stable VFA composition. Due to its highest VFA yield primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable conditions for a stable VFA production. The results demonstrated that although the substrate primary sludge differs in its consistence a stable composition of VFA could be achieved. Experiments with a semi-continuous reactor operation showed that a short RT of 4d and a small WD of 25% at pH=6 and around 30°C is preferable for high VFA mass flow (MF=1913 mg VFA/(Ld)) and a stable VFA composition.

  8. Intraneuronal amyloid beta accumulation and oxidative damage to nucleic acids in Alzheimer disease.

    PubMed

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A; Perry, George

    2010-03-01

    In an analysis of amyloid pathology in Alzheimer disease, we used an in situ approach to identify amyloid-beta (Abeta) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal-specific antibodies directed against Abeta40 and Abeta42 were used for immunocytochemical analyses, Abeta42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Abeta-oligomer. In comparison to the Abeta42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Abeta42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r=- 0.61, p<0.02). Together with recent evidence that the Abeta peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Abeta may be a compensatory response in neurons to oxidative stress in Alzheimer disease.

  9. Intraneuronal Amyloid β Accumulation and Oxidative Damage to Nucleic Acids in Alzheimer Disease

    PubMed Central

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A.; Perry, George

    2010-01-01

    An in situ approach was used to identify amyloid-β (Aβ) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal specific antibodies directed against Aβ40 and Aβ42 were used for immunocytochemical analyses, Aβ42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Aβ-oligomer. In comparison to the Aβ42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Aβ42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r = − 0.61, p < 0.02). Together with recent evidence that the Aβ peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Aβ may be a compensatory response in neurons to oxidative stress in Alzheimer disease. PMID:20034567

  10. Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum.

    PubMed

    Yu, Xiaoli; Jin, Haiying; Cheng, Xuelian; Wang, Qian; Qi, Qingsheng

    2016-11-01

    5-Aminolevulinic acid (ALA), the committed intermediate of the heme biosynthetic pathway, attracts close attention among researchers because of its potential applications to cancer treatment and agriculture. Overexpression of heterologous hemA and hemL, which encode glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase, respectively, in Corynebacterium glutamicum produces ALA, although whether ALA accumulation causes unintended effects on the host is unknown. Here we used an integrated systems approach to compare global transcriptional changes induced by the expression of hemA and hemL. Metabolic pathway such as glycolysis was inhibited, but tricarboxylic acid cycle, pentose phosphate pathway, and respiratory metabolism were stimulated. Moreover, the transcriptional levels of certain genes involved in heme biosynthesis were up-regulated, and the data implicate the two-component system (TCS) HrrSA was involved in the regulation of heme synthesis. With these understandings, it is proposed that ALA accumulation stimulates heme synthesis pathway and respiratory metabolism. Our study illuminates the physiological effects of overexpressing hemA and hemL on the phenotype of C. glutamicum and contributes important insights into the regulatory mechanisms of the heme biosynthetic pathways. PMID:27664748

  11. Low erucic acid canola oil does not induce heart triglyceride accumulation in neonatal pigs fed formula.

    PubMed

    Green, T J; Innis, S M

    2000-06-01

    Canola oil is not approved for use in infant formula largely because of concerns over possible accumulation of triglyceride in heart as a result of the small amounts of erucic acid (22:1n-9) in the oil. Therefore, the concentration and composition of heart triglyceride were determined in piglets fed from birth for 10 (n = 4-6) or 18 (n = 6) d with formula containing about 50% energy fat as 100% canola oil (0.5% 22:1n-9) or 100% soybean oil, or 26% canola oil or soy oil (blend) with palm, high-oleic sunflower and coconut oil, providing amounts of 16:0 and 18:1 closer to milk, or a mix of soy, high-oleic sunflower and flaxseed oils with C16 and C18 fatty acids similar to canola oil but without 22:1. Biochemical analysis found no differences in heart triglyceride concentrations among the groups at 10 or 18 d. Assessment of heart triglycerides using Oil Red O staining in select treatments confirmed no differences between 10-d-old piglets fed formula with 100% canola oil (n = 4), 100% soy oil (n = 4), or the soy oil blend (n = 2). Levels of 22:1n-9 in heart triglyceride and phospholipid, however, were higher (P<0.01) in piglets fed 100% canola oil or the canola oil blend, with higher levels found in triglycerides compared with phospholipids. The modest accumulation of 22:1n-9 associated with feeding canola oil was not associated with biochemical evidence of heart triglyceride accumulation at 10 and 18 d. PMID:10901421

  12. Media optimization of Parietochloris incisa for arachidonic acid accumulation in an outdoor vertical tubular photobioreactor.

    PubMed

    Tababa, Hazel Guevarra; Hirabayashi, Seishiro; Inubushi, Kazuyuki

    2012-08-01

    The green alga Parietochloris incisa contains a significant amount of the nutritionally valuable polyunsaturated fatty acid and arachidonic acid (AA) and is being considered for mass cultivation for commercial AA production. This study was primarily aimed to define a practical medium formulation that can be used in commercial mass cultivation that will contribute to a substantial increase in the AA productivity of P. incisa with concomitant reduction of nutritional cost. The effect of nutrient limitation on growth and AA content of this microalga was explored in a batch culture in outdoor conditions using a vertical tubular photobioreactor. The study was conducted in two parts: the first was primarily focused on the effect of different nitrogen concentration on growth and AA content and the second part compares nitrogen deprivation, combination of nitrogen and phosphorus deprivation, and combined overall nutrient limitations at different levels of deprivation under low and high population densities. Since complete nitrogen deprivation hampers lipid and AA accumulation of P. incisa, thus, a critical value of nitrogen supply that will activate AA accumulation must be elucidated under specific growth conditions. Under the present experimental conditions, 0.5 g(-1) sodium nitrate obtained a higher AA productivity and volumetric yield relative to the nitrogen-deprived culture corresponding to 36.32 mg L(-1) day(-1) and 523.19 mg L(-1). The combined nitrogen and phosphorus limitation seemed to enhance AA productivity better than nitrogen deprivation alone. The effect of overall nutrient limitation indicates that acute nutrient deficiency can trigger rapid lipid and AA syntheses. The effect of light as a consequence of culture cell density was also discussed. This study therefore shows that the nutrient cost can be greatly reduced by adjusting the nutrient levels and culture density to induce AA accumulation in P. incisa. PMID:22798718

  13. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    PubMed Central

    2012-01-01

    Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production. PMID:22448811

  14. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  15. [Accumulation characteristics of applied cinnamic acid in cucumber seedling-soil system under NaCl stress].

    PubMed

    Wang, Ying; Wu, Feng-Zhi; Wang, Yu-Yan

    2011-11-01

    Taking cucumber cultivars' Jinlv No. 5' (salt-tolerant) and 'Jinyou No. 1' (salt-sensitive) as test materials, a pot experiment was conducted to study the effects of applying cinnamic acid on the accumulation of applied cinnamic acid in cucumber seedling-soil system under NaCl (585 mg x kg(-1) soil) stress. The concentration of applied cinnamic acid was the main factor affecting the accumulation of the exogenous cinnamic acid in the cucumber plant and soil. With the increasing concentration of applied cinnamic acid, except in the treatment of highest concentration (200 mg x kg(-1) soil) cinnamic acid, the total content of cinnamic acid in cucumber plant was increased. NaCl stress enhanced the toxicity of cinnamic acid. In the treatments of low and medium concentration cinnamic acid, the cinnamic acid content in cucumber plant increased; whereas in the treatments of high concentration cinnamic acid, the decline of the seedlings growth was observed, and led to the decrease of the cinnamic acid content in the plant. The content of cinnamic acid in 'Jinlv No. 5' plant decreased at the concentration of applied cinnamic acid being > 200 mg x kg(-1) soil, while that in 'Jinyou No. 1' started to decrease when the concentration of applied cinnamic acid was > 100 mg x kg(-1) soil, reflecting the discrepancy in salt tolerance of the two cultivars. For the cucumber plant, its leaf had the highest content of cinnamic acid. In the cucumber seedling-soil system, most of applied cinnamic acid was mainly accumulated in soil.

  16. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures.

    PubMed

    Moyo, Mack; Amoo, Stephen O; Aremu, Adeyemi O; Gruz, Jiří; Subrtová, Michaela; Doležal, Karel; Van Staden, Johannes

    2014-10-01

    Micropropagation of Hypoxis hemerocallidea Fisch. and C.A. Mey was used as a model system to study the influence of cytokinins (CKs) on plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in organ and callus cultures and their antioxidant activity. Fourteen free phenolic acids were detected using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) while antioxidant activity was evaluated using oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Cytokinins had a significant effect on the biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in H. hemerocallidea organ cultures. In particular, meta-topolin-treated organ cultures produced high concentrations of gallic, protocatechuic, gentisic, p-hydroxybenzoic, m-hydroxybenzoic, salicylic, chlorogenic and trans-cinnamic acids. The isoprenoid CK, N(6)-(2-isopentenyl)-adenine significantly increased the accumulation of hydroxycinnamic acid derivatives, namely, caffeic, p-coumaric, sinapic and ferulic acids. Cytokinin-treated organ cultures exhibited a significant increase in antioxidant activity, particularly in the ORAC model. In callus cultures, CKs decreased the concentrations of hydroxycinnamic acid derivatives and antioxidant activity when compared to the control. Overall, both CK type and concentration had a significant effect on plant regeneration, callus proliferation, biochemical accumulation of free phenolic acids and antioxidant activity of the resultant extracts.

  17. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation.

    PubMed

    Khairallah, Ramzi J; Khairallah, Maya; Gélinas, Roselle; Bouchard, Bertrand; Young, Martin E; Allen, Bruce G; Lopaschuk, Gary D; Deschepper, Christian F; Des Rosiers, Christine

    2008-08-01

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the impact of its chronic activation on cardiac energy metabolism using mice overexpressing a constitutively active cytoplasmic guanylate cyclase (GC(+/0)) in cardiomyocytes. Ex vivo working GC(+/0) heart perfusions with (13)C-labeled substrates revealed an altered pattern of exogenous substrate fuel selection compared to controls, namely a 38+/-9% lower contribution of exogenous fatty acids to acetyl-CoA formation, while that of carbohydrates remains unchanged despite a two-fold increase in glycolysis. The lower contribution of exogenous fatty acids to energy production is not associated with changes in energy demand or supply (contractile function, oxygen consumption, tissue acetyl-CoA or CoA levels, citric acid cycle flux rate) or in the regulation of beta-oxidation (acetyl-CoA carboxylase activity, tissue malonyl-CoA levels). However, GC(+/0) hearts show a two-fold increase in the incorporation of exogenous oleate into triglycerides. Furthermore, the following molecular data are consistent with a concomitant increase in triglyceride hydrolysis: (i) increased abundance of hormone sensitive lipase (HSL) protein (24+/-11%) and mRNA (22+/-4%) as well as (ii) several phosphorylation events related to HSL inhibitory (AMPK) and activation (ERK 1/2) sites, which should contribute to enhance its activity. These changes in exogenous fatty acid trafficking in GC(+/0) hearts appear to be functionally relevant, as demonstrated by their resistance to fasting-induced triglyceride accumulation. While the documented metabolic profile of GC(+/0) mouse hearts is partly reminiscent of hypertrophied hearts, the observed changes in lipid trafficking have not been previously documented, and may

  18. Extracellular accumulation of a new amino acid, O-2-hydroxypropylhomoserine, from 1,2-propanediol by flavobacterium rigense.

    PubMed Central

    Yamada, S; Nabe, K; Ujimaru, T; Izuo, N; Chibata, M

    1978-01-01

    During an investigation of microorganisms utilizing petrochemicals, a strain identified as Flavobacterium rigense was found to accumulate a new amino acid in a medium containing 1,2-propanediol as the sole carbon source. Cultural conditions for the accumulation of the product were investigated, and as a result, the yield was increased to 2.8 mg/ml after a 5-day incubation in a medium containing 8% 1,2-propanediol. The pure amino acid was isolated, and its structure was investigated. Elemental analysis and infrared, nuclear magnetic resonance, and mass spectral analyses indicated that the amino acids is O-2-hydroxypropylhomoserine. PMID:28076

  19. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant.

    PubMed

    Zhou, Xue-Rong; Singh, Surinder P; Green, Allan G

    2013-08-01

    We have characterised the FAD2 gene family from Hiptage benghalensis, a tropical plant that accumulates high levels of ricinoleic acid in its seeds. Functional characterisation of six FAD2 gene family members showed that two of them were capable of functioning as Δ12-hydroxylases while the other FAD2 members were confirmed to be Δ12-desaturases. The Δ12-hydroxylation function of these two genes was confirmed in yeast cells, using C16:1(Δ9) and C18:1(Δ9) monounsaturated fatty acids as substrates. These Δ12-hydroxylases, like the other Δ12-hydroxylases previously cloned from plants Ricinus communis (castor), Physaria fendleri and fungus Claviceps purpurea, also showed some Δ12-desaturase activity. The hydroxylation activity of the two Hiptage hydroxylases was further confirmed by their expression in the Arabidopsis fad2/fae1 double mutant where they were able to produce equivalent or higher levels hydroxylated fatty acids in the seed oil when compared with the other known hydroxylases.

  20. Modulation of norepinephrine-stimulated cyclic AMP accumulation in rat pinealocytes by n-3 fatty acids.

    PubMed

    Delton-Vandenbroucke, I; Sarda, N; Molière, P; Lagarde, M; Gharib, A

    1996-10-01

    This work showed that docosahexaenoic (22:6n-3) and eicosapentaenoic (20:5n-3) acid supplementation for 48 h have opposite effects on the norepinephrine-stimulated cyclic AMP accumulation in rat pinealocytes. We found that 22:6n-3 supplementation of pineal cells, done by increasing specifically 22:6n-3 in phospholipid and triacylglycerol pools, led to inhibition of norepinephrine-stimulated cyclic AMP production whereas 20:5n-3 supplementation, by increasing 20:5n-3, and 22:5n-3 and 22:6n-3 in the same pools, stimulated it. In contrast, direct treatment of pinealocytes with each fatty acid (50 microM) did not affect cyclic AMP production in the presence of (0.1-10 microM) norepinephrine. The results indicate that, using pharmacological agents such as forskolin or prazosin: (a) neither basal nor forskolin-stimulated cyclic AMP levels were modified in fatty acid-supplemented cells compared to control cells; (b) in the presence of 1 microM prazosin, the activation by 20:5n-3 was still effective whereas no additional inhibition of norepinephrine stimulation was observed in 22:6n-3-supplemented cells. Taken together our results suggest that 22:6n-3 or 20:5n-3 supplementation modulates specifically the alpha 1- or beta-adrenoceptors in the rat pineal gland.

  1. Optimization of a histopathological biomarker for sphingomyelin accumulation in acid sphingomyelinase deficiency.

    PubMed

    Taksir, Tatyana V; Johnson, Jennifer; Maloney, Colleen L; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L; Ryan, Susan

    2012-08-01

    Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy. PMID:22614361

  2. Optimization of a histopathological biomarker for sphingomyelin accumulation in acid sphingomyelinase deficiency.

    PubMed

    Taksir, Tatyana V; Johnson, Jennifer; Maloney, Colleen L; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L; Ryan, Susan

    2012-08-01

    Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy.

  3. Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals

    PubMed Central

    Mavrodi, Dmitri V.; Mavrodi, Olga V.; Parejko, James A.; Bonsall, Robert F.; Kwak, Youn-Sig; Paulitz, Timothy C.; Weller, David M.

    2012-01-01

    Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication, and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundamental questions by assessing the geographic distribution of indigenous phenazine-producing (Phz+) Pseudomonas spp. and the accumulation of the broad-spectrum antibiotic phenazine-1-carboxylic acid (PCA) in the rhizosphere of wheat grown in the low-precipitation zone (<350 mm) of the Columbia Plateau and in adjacent, higher-precipitation areas. Plants were collected from 61 commercial wheat fields located within an area of about 22,000 km2. Phz+ Pseudomonas spp. were detected in all sampled fields, with mean population sizes ranging from log 3.2 to log 7.1 g−1 (fresh weight) of roots. Linear regression analysis demonstrated a significant inverse relationship between annual precipitation and the proportion of plants colonized by Phz+ Pseudomonas spp. (r2 = 0.36, P = 0.0001). PCA was detected at up to nanomolar concentrations in the rhizosphere of plants from 26 of 29 fields that were selected for antibiotic quantitation. There was a direct relationship between the amount of PCA extracted from the rhizosphere and the population density of Phz+ pseudomonads (r2 = 0.46, P = 0.0006). This is the first demonstration of accumulation of significant quantities of a natural antibiotic across a terrestrial ecosystem. Our results strongly suggest that natural antibiotics can transiently accumulate in the plant rhizosphere in amounts sufficient not only for inter- and intraspecies signaling but also for the direct inhibition of sensitive organisms. PMID:22138981

  4. Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis

    PubMed Central

    Ito, Shinsaku; Nozoye, Tomoko; Sasaki, Eriko; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Ishige, Taichiro; Fukui, Kosuke; Ito, Ken; Nakanishi, Hiromi; Nishizawa, Naoko K.; Yajima, Shunsuke; Asami, Tadao

    2015-01-01

    Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL) signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants. PMID:25793732

  5. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  6. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.).

    PubMed

    Cui, Jing; Zhang, Rui; Wu, Guo Lin; Zhu, Hong Mei; Yang, Hong

    2010-07-01

    Napropamide is a widely used herbicide for controlling weeds in crop production. However, extensive use of the herbicide has led to its accumulation in ecosystems, thus causing toxicity to crops and reducing crop production and quality. Salicylic acid (SA) plays multiple roles in regulating plant adaptive responses to biotic and environmental stresses. However, whether SA regulates plant response to herbicides (or pesticides) was unknown. In this study, we investigated the effect of SA on herbicide napropamide accumulation and biological processes in rapeseed (Brassica napus). Plants exposed to 8 mg kg(-1) napropamide showed growth stunt and oxidative damage. Treatment with 0.1 mM SA improved growth and reduced napropamide levels in plants. Treatment with SA also decreased the abundance of O (2) (-.) and H(2)O(2) as well as activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), and increased activities of guaiacol peroxidase (POD) and glutathione-S-transferase (GST) in napropamide-exposed plants. Analysis of SOD, CAT, and POD activities using nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. These results may help to understand how SA regulates plant response to organic contaminants and provide a basis to control herbicide/pesticide contamination in crop production. PMID:19967348

  7. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels.

  8. Accumulation of different sulfur fractions in Chinese forest soil under acid deposition.

    PubMed

    Wang, Zhanyi; Zhang, Xiaoshan; Zhang, Yi; Wang, Zhangwei; Mulder, Jan

    2011-09-01

    Atmogenic sulfur (S) deposition loading by acid rain is one of the biggest environmental problems in China. It is important to know the accumulated S stored in soil, because eventually the size (and also the "desorption" rate) determines how rapidly the soil water pH responds to decrease in S deposition. The S fractions and the ratio of total carbon/total sulfur (C/S) of forest soil in 9 catchments were investigated by comparing soils at the rural and urban sites in China. The S fractions included water-soluble sulfate-S (SO(4)-S), adsorbed SO(4)-S, insoluble SO(4)-S and organic S. The ratio of C/S in soil at the rural site was significantly (p < 0.05) greater than that at the urban site. C/S of soil in the A horizon was significantly (p < 0.05) and negatively correlated with the wet S-deposition rate. The ratio of C/S presents a better indicator for atmogenic S loading. Organic S was the dominant form in soils at rural sites; contributing more than 69% of the total S in the uppermost 30 cm soil. Organic S and adsorbed SO(4)-S were the main forms of S in soil at urban sites. High contents of water-soluble SO(4)-S and adsorbed SO(4)-S were found in uppermost 30 cm soils at urban sites but not at rural sites. Decades of acid rain have caused accumulation of inorganic SO(4)-S in Chinese forest soil especially at the urban sites. The soil at urban sites had been firstly acidified, and the impacts on the forest ecosystem in these areas should be noticed.

  9. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Valdemarsen, Thomas; Kristensen, Erik

    2010-03-01

    The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA's), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO 42-. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA's, amino acids) and inorganic (CO 2, NH 4+, SO 42-) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO 2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ˜1/3 of the aromatic amino acid (tyrosine) was recovered as CO 2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO 2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA's (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO 42- markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO 2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO 2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H 2 production, and >50% of sulfate reduction appeared to be fuelled by H 2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.

  10. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition

    SciTech Connect

    Guckert, J.B.; Cooksey, K.E. )

    1990-03-01

    Alkaline pH stress resulted in triglyceride (TG) accumulation in Chlorella CHLOR1 and was independent of medium nitrogen or carbon levels. Based on morphological observations, alkaline pH inhibited autospore release, thus increasing the time for cell cycle completion. Autospore release has been postulated to coincide with TG utilization within the microalgal cell division cycle. The alkaline pH stress affected lipid accumulation by inhibiting the cell division cycle prior to autospore release and, therefore, prior to TG utilization. Cells inhibited in this manner showed an increase in TG accumulation but a decrease in both membrane lipid classes (glycolipid and polar lipid). Unlike TG fatty acid profiles, membrane lipid fatty acid profiles were not stable during TG accumulation. The membrane profiles became similar to the TG, i.e. less unsaturated than in the membrane lipids of unstressed control cells.

  11. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.

    PubMed

    Li, Mingjun; Li, Dongxia; Feng, Fengjuan; Zhang, Sheng; Ma, Fengwang; Cheng, Lailiang

    2016-09-01

    Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase.

  12. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.

    PubMed

    Li, Mingjun; Li, Dongxia; Feng, Fengjuan; Zhang, Sheng; Ma, Fengwang; Cheng, Lailiang

    2016-09-01

    Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase. PMID:27535992

  13. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  14. Propolis Induces Chondroitin/Dermatan Sulphate and Hyaluronic Acid Accumulation in the Skin of Burned Wound

    PubMed Central

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M.

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair. PMID:23533471

  15. Propolis induces chondroitin/dermatan sulphate and hyaluronic Acid accumulation in the skin of burned wound.

    PubMed

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair.

  16. Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum.

    PubMed

    Álvarez-Ayuso, E; Giménez, A; Ballesteros, J C

    2011-09-15

    The application of flue gas desulphurisation (FGD) gypsum as an acid soil ameliorant was studied in order to establish the possible detrimental effects on plants and animals feeding on them caused by the high fluoride content in this by-product. A greenhouse experiment was conducted under controlled conditions to determine the F accumulation by two plant species (alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.)) grown in acid soils amended with different FGD gypsum doses (0-10%). The F concentrations in plant aerial parts were comprised in the range 22-65 mg kg(-1), and those in plant roots varied from 49 to 135 mg kg(-1). The F contents in the above-ground plant tissues showed to decrease with the FGD gypsum application rate, whereas an inverse trend was manifested by plant roots. The increase in the soil content of soluble Ca as a result of the FGD gypsum addition seemed to play an important role in limiting the translocation of F to plant aerial parts.

  17. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.

    PubMed

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Go, Young Sam; Jung, Jin Hee; Suh, Mi-Chung; Kim, Jong Bum

    2011-06-01

    Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.

  18. The relation between Acid Volatile Sulfides (AVS) and metal accumulation in aquatic invertebrates: implications of feeding behavior and ecology.

    PubMed

    De Jonge, Maarten; Blust, Ronny; Bervoets, Lieven

    2010-05-01

    The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa. Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology.

  19. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina.

    PubMed

    Grigoryan, Aleksandr A; Cornish, Sabrina L; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J; Voordouw, Gerrit

    2008-07-01

    Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were

  20. Impact of brassinosteroids and ethylene on ascorbic acid accumulation in tomato leaves.

    PubMed

    Mazorra Morales, Luis Miguel; Senn, María Eugenia; Gergoff Grozeff, Gustavo Esteban; Fanello, Diego Darío; Carrión, Cristian Antonio; Núñez, Miriam; Bishop, Gerard James; Bartoli, Carlos Guillermo

    2014-01-01

    Plant steroid hormones brassinosteroids (BRs) and the gaseous hormone ethylene (ET) alter the ascorbic acid-glutathione (AA-GSH) levels in tomato (Solanum lycopersicum L.) plants. The interaction of these hormones in regulating antioxidant metabolism is however unknown. The combined use of genetics (BR-mutants) and chemical application (BR/ET-related chemicals) shows that BRs and ET signalling pathways interact, to regulate leaf AA content and synthesis. BR-deficient (d(x)) leaves display low total AA but BR-accumulating (35S:D) leaves show normal total AA content. Leaves with either BR levels lower or higher than wild type plants showed a higher oxidised AA redox state. The activity of L-galactono-1,4-lactone dehydrogenase (L-GalLDH), the mitochondrial enzyme that catalyses the last step in AA synthesis is lower in d(x) and higher in 35S:D plants. BR-deficient mutants show higher ET production but it is restored to normal levels when BR content is increased in 35S:D plants. Suppression of ET signalling using 1-methylcyclopropene in d(x) and 35S:D plants restored leaf AA content and L-GalLDH activity, to the values observed in wild type. The suppression of ET action in d(x) and 35S:D leaves leads to the respective decreasing and increasing respiration, indicating an opposite response compared to AA synthesis. This inverse relationship is lacking in ET suppressed d(x) plants in response to external BRs. The modifications in the in vivo activity of L-GalLDH activity do not correlate with changes in the level of the enzyme. Taken together, these data suggest that ET suppresses and BRs promote AA synthesis and accumulation.

  1. Accumulation of the mycotoxin patulin in the presence of gluconic acid contributes to pathogenicity of Penicillium expansum.

    PubMed

    Barad, Shiri; Horowitz, Sigal Brown; Kobiler, Ilana; Sherman, Amir; Prusky, Dov

    2014-01-01

    Penicillium expansum, the causal agent of blue mold rot, causes severe postharvest fruit maceration through secretion of D-gluconic acid (GLA) and secondary metabolites such as the mycotoxin patulin in colonized tissue. GLA involvement in pathogenicity has been suggested but the mechanism of patulin accumulation and its contribution to P. expansum pathogenicity remain unclear. The roles of GLA and patulin accumulation in P. expansum pathogenicity were studied using i) glucose oxidase GOX2-RNAi mutants exhibiting decreased GOX2 expression, GLA accumulation, and reduced pathogenicity; ii) IDH-RNAi mutants exhibiting downregulation of IDH (the last gene in patulin biosynthesis), reduced patulin accumulation, and no effect on GLA level; and iii) PACC-RNAi mutants exhibiting downregulation of both GOX2 and IDH that reduced GLA and patulin production. Present results indicate that conditions enhancing the decrease in GLA accumulation by GOX2-RNAi and PACC-RNAi mutants, and not low pH, affected patulin accumulation, suggesting GLA production as the driving force for further patulin accumulation. Thus, it is suggested that GLA accumulation may modulate patulin synthesis as a direct precursor under dynamic pH conditions modulating the activation of the transcription factor PACC and the consequent pathogenicity factors, which contribute to host-tissue colonization by P. expansum.

  2. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci.

    PubMed

    Tabanelli, Giulia; Montanari, Chiara; Bargossi, Eleonora; Lanciotti, Rosalba; Gatto, Veronica; Felis, Giovanna; Torriani, Sandra; Gardini, Fausto

    2014-11-01

    The aim of this study was to evaluate the competitive effects of three bacteriocin producing strains of Lactococcus lactis subsp. lactis against two aminobiogenic lactic acid bacteria, i.e. the tyramine producing strain Enterococcus faecalis EF37 and the histamine producing strain Streptococcus thermophilus PRI60, inoculated at different initial concentrations (from 2 to 6 log cfu/ml). The results showed that the three L. lactis subsp. lactis strains were able to produce bacteriocins: in particular, L. lactis subsp. lactis VR84 and EG46 produced, respectively, nisin Z and lacticin 481, while for the strains CG27 the bacteriocin has not been yet identified, even if its peptidic nature has been demonstrated. The co-culture of E. faecalis EF37 in combination with lactococci significantly reduced the growth potential of this aminobiogenic strain, both in terms of growth rate and maximum cell concentration, depending on the initial inoculum level of E. faecalis. Tyramine accumulation was strongly reduced when E. faecalis EF37 was inoculated at 2 log cfu/ml and, to a lesser extent, at 3 log cfu/ml, as a result of a lower cell load of the aminobiogenic strain. All the lactococci were more efficient in inhibiting streptococci in comparison with E. faecalis EF37; in particular, L. lactis subsp. lactis VR84 induced the death of S. thermophilus PRI60 and allowed the detection of histamine traces only at higher streptococci inoculum levels (5-6 log cfu/ml). The other two lactococcal strains did not show a lethal action against S. thermophilus PRI60, but were able to reduce its growth extent and histamine accumulation, even if L. lactis subsp. lactis EG46 was less effective when the initial streptococci concentration was 5 and 6 log cfu/ml. This preliminary study has clarified some aspects regarding the ratio between bacteriocinogenic strains and aminobiogenic strains with respect to the possibility to accumulate BA and has also showed that different bacteriocins can have

  3. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci.

    PubMed

    Tabanelli, Giulia; Montanari, Chiara; Bargossi, Eleonora; Lanciotti, Rosalba; Gatto, Veronica; Felis, Giovanna; Torriani, Sandra; Gardini, Fausto

    2014-11-01

    The aim of this study was to evaluate the competitive effects of three bacteriocin producing strains of Lactococcus lactis subsp. lactis against two aminobiogenic lactic acid bacteria, i.e. the tyramine producing strain Enterococcus faecalis EF37 and the histamine producing strain Streptococcus thermophilus PRI60, inoculated at different initial concentrations (from 2 to 6 log cfu/ml). The results showed that the three L. lactis subsp. lactis strains were able to produce bacteriocins: in particular, L. lactis subsp. lactis VR84 and EG46 produced, respectively, nisin Z and lacticin 481, while for the strains CG27 the bacteriocin has not been yet identified, even if its peptidic nature has been demonstrated. The co-culture of E. faecalis EF37 in combination with lactococci significantly reduced the growth potential of this aminobiogenic strain, both in terms of growth rate and maximum cell concentration, depending on the initial inoculum level of E. faecalis. Tyramine accumulation was strongly reduced when E. faecalis EF37 was inoculated at 2 log cfu/ml and, to a lesser extent, at 3 log cfu/ml, as a result of a lower cell load of the aminobiogenic strain. All the lactococci were more efficient in inhibiting streptococci in comparison with E. faecalis EF37; in particular, L. lactis subsp. lactis VR84 induced the death of S. thermophilus PRI60 and allowed the detection of histamine traces only at higher streptococci inoculum levels (5-6 log cfu/ml). The other two lactococcal strains did not show a lethal action against S. thermophilus PRI60, but were able to reduce its growth extent and histamine accumulation, even if L. lactis subsp. lactis EG46 was less effective when the initial streptococci concentration was 5 and 6 log cfu/ml. This preliminary study has clarified some aspects regarding the ratio between bacteriocinogenic strains and aminobiogenic strains with respect to the possibility to accumulate BA and has also showed that different bacteriocins can have

  4. Mortality of Pratylenchus penetrans by Volatile Fatty Acids from Liquid Hog Manure

    PubMed Central

    Mahran, A.; Tenuta, M.; Hanson, M. L.; Daayf, F.

    2008-01-01

    As part of our research program assessing the use of liquid hog manure (LHM) to control root-lesion nematodes, Pratylenchus penetrans, a series of acute toxicity tests was conducted to: (i) examine if non-ionized forms of volatile fatty acids (VFA) are responsible for the mortality of P. penetrans exposed to LHM under acidic conditions, (ii) determine if Caenorhabditis elegans can be a surrogate for P. penetrans in screening tests by comparing their sensitivities to VFA, (iii) characterize the nematicidal effect of individual VFA in LHM to P. penetrans, and (iv) determine whether individual VFA in LHM interact in their toxicity to P. penetrans. LHM was significantly (P ≤ 0.05) more toxic to P. penetrans than a mixture of its main VFA components at concentrations of 5% and 10% (vol. VFA or LHM /vol. in buffer). Pratylenchus penetrans was more sensitive to acetic acid than C. elegans, whereas the sensitivity of both nematode species to n-caproic acid was similar. Individual VFA vary in their lethality to P. penetrans. n-valeric acid was the most toxic (LC95= 6.8 mM), while isobutyric acid was the least toxic (LC95 = 45.7 mM). Individual VFA did not interact in their toxicity to P. penetrans, and their effects were considered additive. VFA account for the majority of the lethal effect of LHM to P. penetrans under acidic conditions. Caenorhabditis elegans cannot be used as a surrogate to P. penetrans in toxicity studies using VFA. The efficacy of LHM to control P. penetrans can be evaluated by assessing its VFA content prior to application, and this evaluation is facilitated by the fact that the interaction of individual VFA appears to be simply additive. PMID:19259528

  5. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.

    PubMed

    Nguyen, Huu Tam; Park, Hyunwoo; Koster, Karen L; Cahoon, Rebecca E; Nguyen, Hanh T M; Shanklin, John; Clemente, Thomas E; Cahoon, Edgar B

    2015-01-01

    Seed oils enriched in omega-7 monounsaturated fatty acids, including palmitoleic acid (16:1∆9) and cis-vaccenic acid (18:1∆11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega-7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ∆9 desaturation of stearoyl (18:0)-acyl carrier protein (ACP) to ∆9 desaturation of palmitoyl (16:0)-acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed-specific co-expression of a mutant ∆9-acyl-ACP and an acyl-CoA desaturase with high specificity for 16:0-ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega-7 monounsaturated fatty acids were obtained. Further increases in omega-7 fatty acid accumulation to 60-65% of the total fatty acids in camelina seeds were achieved by inclusion of seed-specific suppression of 3-keto-acyl-ACP synthase II and the FatB 16:0-ACP thioesterase genes to increase substrate pool sizes of 16:0-ACP for the ∆9-acyl-ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications. PMID:25065607

  6. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum.

    PubMed

    Barad, Shiri; Espeso, Eduardo A; Sherman, Amir; Prusky, Dov

    2016-06-01

    Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin.

  7. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum.

    PubMed

    Barad, Shiri; Espeso, Eduardo A; Sherman, Amir; Prusky, Dov

    2016-06-01

    Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin. PMID:26420024

  8. Roots of nutrient-deprived Brachiaria species accumulate 1,3-di-O-trans-feruloylquinic acid.

    PubMed

    Wenzl, P; Chaves, A L; Mayer, J E; Rao, I M; Nair, M G

    2000-11-01

    A novel di-hydroxycinnamoylquinic acid ester, 1,3-di-O-trans-feruloylquinic acid (DFQA), was isolated from roots of nutrient-deprived Brachiaria species--the most widely sown tropical forage grasses in South America. In contrast to other so far characterized quinic-acid esters, DFQA exists in a chair conformation with the carboxylic group in the axial orientation. It accumulates in older parts of the root system, but not in root apices or shoots. Higher levels were found in B. ruziziensis, which is poorly adapted to infertile acid soils, than in well adapted B. decumbens. DFQA was also found in the soil, most likely as a result of root decay, because it was not detected in root exudates of plants cultivated in solution culture. Nitrogen and phosphorus deficiency--but not aluminum toxicity or deprivation of other nutrients--stimulated its synthesis in roots. Its accumulation was correlated with a shift in biomass partitioning toward the root system.

  9. Triglyceride accumulation and altered composition of triglyceride-associated fatty acids in the skin of tenascin-X-deficient mice.

    PubMed

    Matsumoto, Ken-ichi; Sato, Takashige; Oka, Seiko; Orba, Yasuko; Sawa, Hirofumi; Kabayama, Kazuya; Inokuchi, Jin-ichi; Ariga, Hiroyoshi

    2004-08-01

    Tenascin-X (TNX) is a member of the tenascin family of glycoproteins of the extracellular matrix. Here, we observed abnormalities in the skin of TNX-deficient mice in comparison with that of wild-type mice. Histological analysis with Oil Red O staining demonstrated that there was considerable accumulation of lipid in the skin of TNX-deficient (TNX-/-) mice. By thin-layer chromatography of total lipids, it was found that the level of triglyceride was significantly increased in TNX-/- mice. The mRNA levels of most of the lipogenic enzyme genes examined were remarkably increased in TNX-/- mice. By gas chromatography-mass spectrometry analysis of triglyceride-associated fatty acids in the skin, saturated fatty acid palmitoic acid was decreased, whereas unsaturated fatty acids palmitoleic acid and oleic acid were increased in TNX-/- mice compared with those in wild-type mice. Conversely, fibroblast cell lines transfected with TNX showed a significant decrease in the amount of triglyceride. An increase in the saturated fatty acid stearic acid and decreases in the unsaturated fatty acids palmitoleic acid, oleic acid and linoleic acid, compared to those in mock-transfected cells were also caused by over-expression of TNX. These results indicate that TNX is involved in the regulation of triglyceride synthesis and the regulation of composition of triglyceride-associated fatty acids.

  10. Molecular hydrogen attenuates fatty acid uptake and lipid accumulation through downregulating CD36 expression in HepG2 cells

    PubMed Central

    2013-01-01

    Background There is accumulating evidence that obesity is closely associated with an impaired free fatty acid metabolism as well as with insulin resistance and inflammation. Excessive fatty acid uptake mediated by fatty acid translocase CD36 plays an important role in hepatic steatosis. Molecular hydrogen has been shown to attenuate oxidative stress and improve lipid, glucose and energy metabolism in patients and animal models of hepatic steatosis and atherosclerosis, but the underlying molecular mechanisms remain largely unknown. Methods Human hepatoma HepG2 cells were exposed to palmitate-BSA complex after treatment with or without hydrogen for 24 h. The fatty acid uptake was measured by using spectrofluorometry and the lipid content was detected by Oil Red O staining. JNK phosphorylation and CD36 expression were analyzed by Western blot and real-time PCR analyses. Results Pretreatment with hydrogen reduced fatty acid uptake and lipid accumulation after palmitate overload in HepG2 cells, which was associated with inhibition of JNK activation. Hydrogen treatment did not alter CD36 mRNA expression but reduced CD36 protein expression. Conclusion Hydrogen inhibits fatty acid uptake and lipid accumulation through the downregulation of CD36 at the protein level in hepatic cultured cells, providing insights into the molecular mechanism underlying the hydrogen effects in vivo on lipid metabolism disorders. PMID:23448206

  11. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (ω-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal ω-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. Results We constructed a series of homologous vectors for the endogenous and exogenous expression of Δ6 and Δ15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of α-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20°C and 30°C. Thus, transgenic expression of Δ6 and Δ15 fatty acid desaturases enhances the accumulation of specific ω-3 PUFAs in Synechocystis sp. PCC6803. Conclusions In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and γ-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential ω-3 PUFAs. PMID:24581179

  12. Liver free fatty acid (FFA) accumulation as an indicator of ischemic injury during cold preservation

    SciTech Connect

    Nemoto, E.M.; Kang, Y.; DeWolf, A.M.; Lin, M.R.; Bleyaert, A.L.; Winter, P.M.

    1987-05-01

    Reliable assessment of hepatic viability prior to harvest and transplant could improve graft success and aid in evaluating the efficacy of liver preservation techniques. Hepatic tissue metabolites, protein (Pr) synthesis, and ATP have been studied, but none reliably correlate with hepatic viability. Therefore, they studied changes in liver FFA relative to changes in ATP and Pr synthesis during cold ischemic preservation. Rats mechanically ventilated on 0.5% isoflurane/70% N/sub 2/O/30% O/sub 2/ were heparinized and their livers perfused with air-equilibrated Euro-Collins solution (ECS) at 0-4/sup 0/C and kept on ice. A piece of the liver was removed after 0, 2, 6, 8, 12, 24, 36 and 48 h of preservation for ATP and FFA analysis. A portion of the liver was sliced (250 ..mu..m thick) and incubated in vitro for /sup 14/C-lysine incorporation in albumin. ATP, FFA and Pr synthesis were unchanged in the first 8 h, but markedly decreased between 8 and 12 h with little change thereafter. In contrast, between 8 and 48 h, arachidonic and stearic acids increased by 5 and 2-fold, respectively. Changes in ATP and Pr synthesis correlate with the empirically derived clinical maximum of 8 to 12 h preservation. FFA accumulation appears to reflect hepatic ischemic injury and may be a means of evaluating the quality of a donor liver.

  13. Accumulation of free amino acids in marine diatom resting cells during rejuvenation

    NASA Astrophysics Data System (ADS)

    Chen, Changping; Li, Qingyu; Zhou, Qianqian; Sun, Lin; Zheng, Minhua; Gao, Yahui

    2014-01-01

    Many diatoms form resting stages under adverse growth conditions. These resting stages are known to rejuvenate once favorable conditions return, and resume vegetative growth after a certain lag period in which no divisions occurred, but what happens during this period remains unclear. Nitrogen uptake and the accumulation of free amino acids in Skeletonema marinoi resting cells during rejuvenation, but before cell division, were studied in laboratory cultures at different light intensities using the 15N-tracer technique. N uptake rate was higher for the rejuvenating cells at the higher light intensity. We hypothesized that the rapid and increasing N uptake at higher irradiance could enable S. marinoi to rebuild and reorganize its cell contents quickly and so dominate subsequent vegetative growth on the surficial sediment. Compared to the logarithmic growth phase and stationary phase, much higher concentrations of glycine (Gly) and histidine (His) were detected in resting cells, and His appeared to be a storage compound in S. marinoi resting cells. Compared to glutamine, glutamate had the higher 15N label enrichment under the light condition, showing a diel variation of N status during the lag period. The 15N labeled urea was detected at 36 h, compared to the urea cycle intermediates ornithine and citrulline at 30 h, indicating that urea was produced as an N reservoir due to the higher nitrogen uptake in the dark, and that the urea cycle was involved in S. marinoi resting cell rejuvenation.

  14. Accumulation of free amino acids during exposure to drought in three springtail species.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Rozsypal, Jan; Henriksen, Per G; Bayley, Mark

    2015-11-01

    Springtails are closely related to insects, but they differ from these with respect to water balance, in particular because springtails are small and have high integumental permeability to water. Here we report a series of experiments addressing the dynamics of osmoregulation, water content and accumulation of free amino acids (FAAs) in three springtail species during exposure to a gradually increasing environmental desiccation simulating conditions in drought exposed soil. Folsomia candida and Protaphorura fimata (both living in the deeper soil layers; euedaphic species) were active throughout the 3week exposure, with the developing drought regime ending at -3.56MPa (the soil water activity at the permanent wilting point of plants is -1.5MPa) and remained hyperosmotic (having an body fluid osmolality higher than the corresponding environment) to their surrounding air. Sinella curviseta (living in upper soil/litter layers; hemiedaphic species) also survived this exposure, but remained hypoosmotic throughout (i.e. with lower osmolality than the environment). The body content of most FAAs increased in response to drought in all three species. Alanine, proline and arginine were the most significantly upregulated FAAs. By combining our results with data in the literature, we could account for 82% of the observed osmolality at -3.56MPa in F. candida and 92% in P. fimata. The osmolality of S. curviseta was only slightly increased under drought, but here FAAs were considerably more important as osmolytes than in the two other species. We propose that FAAs probably have general importance in drought tolerance of springtails.

  15. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum.

    PubMed

    Wang, Jin; Lin, Lijin; Luo, Li; Liao, Ming'an; Lv, Xiulan; Wang, Zhihui; Liang, Dong; Xia, Hui; Wang, Xun; Lai, Yunsong; Tang, Yi

    2016-03-01

    The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 μmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 μmol/L ABA with 569.42 μg/plant in shoots of the mining ecotype and 520.51 μg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 μmol/L ABA was the optimal dose. PMID:26899030

  16. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  17. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum.

    PubMed

    Wang, Jin; Lin, Lijin; Luo, Li; Liao, Ming'an; Lv, Xiulan; Wang, Zhihui; Liang, Dong; Xia, Hui; Wang, Xun; Lai, Yunsong; Tang, Yi

    2016-03-01

    The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 μmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 μmol/L ABA with 569.42 μg/plant in shoots of the mining ecotype and 520.51 μg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 μmol/L ABA was the optimal dose.

  18. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice.

    PubMed

    Arao, Tomohito; Kawasaki, Akira; Baba, Koji; Mori, Shinsuke; Matsumoto, Shingo

    2009-12-15

    Rice consumption is a major source of cadmium and arsenic for the population of Asia. We investigated the effects of water management in rice paddy on levels of cadmium and arsenic in Japanese rice grains. Flooding increased arsenic concentrations in rice grains, whereas aerobic treatment increased the concentration of cadmium. Flooding for 3 weeks before and after heading was most effective in reducing grain cadmium concentrations, but this treatment increased the arsenic concentration considerably, whereas aerobic treatment during the same period was effective in reducing arsenic concentrations but increased the cadmium concentration markedly. Flooding treatment after heading was found to be more effective than flooding treatment before heading in reducing rice grain cadmium without a concomitant increase in total arsenic levels, although it increased inorganic arsenic levels. Concentrations of dimethylarsinic acid (DMA) in grain were very low under aerobic conditions but increased under flooded conditions. DMA accounted for 3-52% of the total arsenic concentration in grain grown in soil with a lower arsenic concentration and 10-80% in soil with a higher arsenic concentration. A possible explanation for the accumulation of DMA in rice grains is that DMA translocates from shoots/roots to the grains more readily than does inorganic arsenic. PMID:20000530

  19. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer

    PubMed Central

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  20. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.

    PubMed

    Wu, Xue-Long; Liu, Zhi-Hong; Hu, Zhang-Hua; Huang, Rui-Zhi

    2014-06-01

    Photosynthesis in "green" seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mechanism underpinning the coordinated expression of fatty acid (FA) biosynthesis- and photosynthesis-related genes in such developing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyll content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Overexpression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.

  1. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  2. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    SciTech Connect

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  3. A new hexacyclic triterpene acid from the roots of Euscaphis japonica and its inhibitory activity on triglyceride accumulation.

    PubMed

    Li, Yan-Ci; Tian, Ke; Sun, Li-Juan; Long, Hui; Li, Lu-Jun; Wu, Zheng-Zhi

    2016-03-01

    A new taraxerene-type hexacyclic triterpene acid named (12R,13S)-3-methoxy-12,13-cyclo-taraxerene-2,14-diene-1-one-28-oic acid (1), together with a known compound 3,7-dihydroxy-5-octanolide (2), was isolated from the roots of Euscaphis japonica. The structure of new compound 1 was elucidated on the basis of NMR, HR-ESIMS and X-ray diffraction analysis. It showed promising inhibitory activity on oleic acid induced triglyceride accumulation on HepG2 cells. PMID:26828452

  4. Effects of Fatty Acid Quality and Quantity in the Japanese Diet on the Suppression of Lipid Accumulation.

    PubMed

    Sakamoto, Yu; Yamamoto, Kazushi; Hatakeyama, Yu; Tsuduki, Tsuyoshi

    2016-01-01

    Japan has been known as a healthy country since its life expectancy became among the highest in the world in the 1980s. The influence of the Japanese diet is one of the factors explaining Japan's high life expectancy. Our recent study that fed representative freeze-dried and powdered Japanese diets from 1960, 1975, 1990, and 2005 based on National Health and Nutrition Research to mice showed the 1975 Japanese diet exhibited the strongest visceral fat accumulation suppression and overall health benefits. However, it is unclear why. We investigated the effects of the fatty acid composition in Japanese diets on visceral fat accumulation in mice. ICR mice were fed diets replicating the fatty acid composition and macronutrient ratios of Japanese diets from 1960, 1975, 1990, and 2005 for four weeks. The 1975 diet suppressed visceral fat accumulation and adipocyte hypertrophy. DNA microarray analysis showed the 1975 diet suppressed Acyl-CoA synthetase and prostaglandin D2 synthase mRNA expressions in white adipose tissue. As the effects of the 1975 diet are likely due to differences in fatty acid intake and/or composition, we investigated test diets that replicated only the fatty acid composition of Japanese diets. There were no significant differences in visceral fat mass. Therefore, both the quality and quantity of fatty acids are involved in the anti-obesity effects of the 1975 Japanese diet.

  5. Effects of Fatty Acid Quality and Quantity in the Japanese Diet on the Suppression of Lipid Accumulation.

    PubMed

    Sakamoto, Yu; Yamamoto, Kazushi; Hatakeyama, Yu; Tsuduki, Tsuyoshi

    2016-01-01

    Japan has been known as a healthy country since its life expectancy became among the highest in the world in the 1980s. The influence of the Japanese diet is one of the factors explaining Japan's high life expectancy. Our recent study that fed representative freeze-dried and powdered Japanese diets from 1960, 1975, 1990, and 2005 based on National Health and Nutrition Research to mice showed the 1975 Japanese diet exhibited the strongest visceral fat accumulation suppression and overall health benefits. However, it is unclear why. We investigated the effects of the fatty acid composition in Japanese diets on visceral fat accumulation in mice. ICR mice were fed diets replicating the fatty acid composition and macronutrient ratios of Japanese diets from 1960, 1975, 1990, and 2005 for four weeks. The 1975 diet suppressed visceral fat accumulation and adipocyte hypertrophy. DNA microarray analysis showed the 1975 diet suppressed Acyl-CoA synthetase and prostaglandin D2 synthase mRNA expressions in white adipose tissue. As the effects of the 1975 diet are likely due to differences in fatty acid intake and/or composition, we investigated test diets that replicated only the fatty acid composition of Japanese diets. There were no significant differences in visceral fat mass. Therefore, both the quality and quantity of fatty acids are involved in the anti-obesity effects of the 1975 Japanese diet. PMID:26743670

  6. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid.

    PubMed

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-02-27

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis.

  7. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid.

    PubMed

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-01-01

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis. PMID:25721093

  8. Regulation of Primary Metabolic Pathways in Oyster Mushroom Mycelia Induced by Blue Light Stimulation: Accumulation of Shikimic Acid

    PubMed Central

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-01-01

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis. PMID:25721093

  9. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    PubMed

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  10. How do eggs get fat? Insights into ovarian fatty acid accumulation in the shortfinned eel, Anguilla australis.

    PubMed

    Damsteegt, Erin L; Mizuta, Hiroko; Hiramatsu, Naoshi; Lokman, P Mark

    2015-09-15

    Previous research using eels has shown that 11-ketotestosterone can induce ovarian triacylglyceride accumulation both in vivo and in vitro. Further, accumulation is dramatically enhanced in the presence of very-low density lipoprotein. This study examined the involvement of the low density lipoprotein receptor and vitellogenin receptor in oocyte lipid accumulation. Specific antisera were used in an attempt to block the vitellogenin receptor and/or the low density lipoprotein receptor. Accordingly, incubation with the low density lipoprotein receptor antiserum clearly reduced the oocyte diameter and the amount of oil present within the oocyte. In contrast, blocking the vitellogenin receptor had little effect on either oocyte surface area or the abundance of oil droplets in the cytosol. In keeping with birds, we conclude that the low density lipoprotein receptor is a major player involved in mediating ovarian fatty acid accumulation in the eel. However, lipoprotein lipase-mediated fatty acid accumulation also remains conceivable, for example through interactions between this enzyme and the low density lipoprotein receptor.

  11. The Relationships between Metabolic Disorders (Hypertension, Dyslipidemia, and Impaired Glucose Tolerance) and Computed Tomography-Based Indices of Hepatic Steatosis or Visceral Fat Accumulation in Middle-Aged Japanese Men

    PubMed Central

    Yokokawa, Hirohide; Naito, Toshio; Sasabe, Noriko; Okumura, Mitsue; Iijima, Kimiko; Shibuya, Katsuhiko; Hisaoka, Teruhiko; Fukuda, Hiroshi

    2016-01-01

    Background Most studies on the relationships between metabolic disorders (hypertension, dyslipidemia, and impaired glucose tolerance) and hepatic steatosis (HS) or visceral fat accumulation (VFA) have been cross-sectional, and thus, these relationships remain unclear. We conducted a retrospective cohort study to clarify the relationships between components of metabolic disorders and HS/VFA. Methods The participants were 615 middle-aged men who were free from serious liver disorders, diabetes, and HS/VFA and underwent multiple general health check-ups at our institution between 2009 and 2013. The data from the initial and final check-ups were used. HS and VFA were assessed by computed tomography. HS was defined as a liver to spleen attenuation ratio of ≤1.0. VFA was defined as a visceral fat cross-sectional area of ≥100 cm2 at the level of the navel. Metabolic disorders were defined using Japan’s metabolic syndrome diagnostic criteria. The participants were divided into four groups based on the presence (+) or absence (-) of HS/VFA. The onset rates of each metabolic disorder were compared among the four groups. Results Among the participants, 521, 55, 24, and 15 were classified as HS(-)/VFA(-), HS(-)/VFA(+), HS(+)/VFA(-), and HS(+)/VFA(+), respectively, at the end of the study. Impaired glucose tolerance was more common among the participants that exhibited HS or VFA (p = 0.05). On the other hand, dyslipidemia was more common among the participants that displayed VFA (p = 0.01). Conclusions It is likely that VFA is associated with impaired glucose tolerance and dyslipidemia, while HS might be associated with impaired glucose tolerance. Unfortunately, our study failed to detect associations between HS/VFA and metabolic disorders due to the low number of subjects that exhibited fat accumulation. Although our observational study had major limitations, we consider that it obtained some interesting results. HS and VFA might affect different metabolic disorders

  12. Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.

    PubMed

    Weyda, István; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2014-04-01

    Aspergillus carbonarius accumulates xylitol when it grows on D-xylose. In fungi, D-xylose is reduced to xylitol by the NAD(P)H-dependent xylose reductase (XR). Xylitol is then further oxidized by the NAD(+)-dependent xylitol dehydrogenase (XDH). The cofactor impairment between the XR and XDH can lead to the accumulation of xylitol under oxygen-limiting conditions. Most of the XRs are NADPH dependent and contain a conserved Ile-Pro-Lys-Ser motif. The only known naturally occurring NADH-dependent XR (from Candida parapsilosis) carries an arginine residue instead of the lysine in this motif. In order to overcome xylitol accumulation in A. carbonarius a Lys-274 to Arg point mutation was introduced into the XR with the aim of changing the specificity toward NADH. The effect of the genetic engineering was examined in fermentation for citric acid production and xylitol accumulation by using D-xylose as the sole carbon source. Fermentation with the mutant strain showed a 2.8-fold reduction in xylitol accumulation and 4.5-fold increase in citric acid production compared to the wild-type strain. The fact that the mutant strain shows decreased xylitol levels is assumed to be associated with the capability of the mutated XR to use the NADH generated by the XDH, thus preventing the inhibition of XDH by the high levels of NADH and ensuring the flux of xylose through the pathway. This work shows that enhanced production of citric acid can be achieved using xylose as the sole carbon source by reducing accumulation of other by-products, such as xylitol.

  13. Accumulation of free amino acids during exposure to drought in three springtail species.

    PubMed

    Holmstrup, Martin; Slotsbo, Stine; Rozsypal, Jan; Henriksen, Per G; Bayley, Mark

    2015-11-01

    Springtails are closely related to insects, but they differ from these with respect to water balance, in particular because springtails are small and have high integumental permeability to water. Here we report a series of experiments addressing the dynamics of osmoregulation, water content and accumulation of free amino acids (FAAs) in three springtail species during exposure to a gradually increasing environmental desiccation simulating conditions in drought exposed soil. Folsomia candida and Protaphorura fimata (both living in the deeper soil layers; euedaphic species) were active throughout the 3week exposure, with the developing drought regime ending at -3.56MPa (the soil water activity at the permanent wilting point of plants is -1.5MPa) and remained hyperosmotic (having an body fluid osmolality higher than the corresponding environment) to their surrounding air. Sinella curviseta (living in upper soil/litter layers; hemiedaphic species) also survived this exposure, but remained hypoosmotic throughout (i.e. with lower osmolality than the environment). The body content of most FAAs increased in response to drought in all three species. Alanine, proline and arginine were the most significantly upregulated FAAs. By combining our results with data in the literature, we could account for 82% of the observed osmolality at -3.56MPa in F. candida and 92% in P. fimata. The osmolality of S. curviseta was only slightly increased under drought, but here FAAs were considerably more important as osmolytes than in the two other species. We propose that FAAs probably have general importance in drought tolerance of springtails. PMID:26428866

  14. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses

    PubMed Central

    Campa, Claudine; Mondolot, Laurence; Rakotondravao, Arsene; Bidel, Luc P. R.; Gargadennec, Annick; Couturon, Emmanuel; La Fisca, Philippe; Rakotomalala, Jean-Jacques; Jay-Allemand, Christian; Davis, Aaron P.

    2012-01-01

    Background and Aims The phenolic composition of Coffea leaves has barely been studied, and therefore this study conducts the first detailed survey, focusing on mangiferin and hydroxycinnamic acid esters (HCEs). Methods Using HPLC, including a new technique allowing quantification of feruloylquinic acid together with mangiferin, and histochemical methods, mangiferin content and tissue localization were compared in leaves and fruits of C. pseudozanguebariae, C. arabica and C. canephora. The HCE and mangiferin content of leaves was evaluated for 23 species native to Africa or Madagascar. Using various statistical methods, data were assessed in relation to distribution, ecology, phylogeny and use. Key Results Seven of the 23 species accumulated mangiferin in their leaves. Mangiferin leaf-accumulating species also contain mangiferin in the fruits, but only in the outer (sporophytic) parts. In both leaves and fruit, mangiferin accumulation decreases with ageing. A relationship between mangiferin accumulation and UV levels is posited, owing to localization with photosynthetic tissues, and systematic distribution in high altitude clades and species with high altitude representatives. Analyses of mangiferin and HCE content showed that there are significant differences between species, and that samples can be grouped into species, with few exceptions. These data also provide independent support for various Coffea lineages, as proposed by molecular phylogenetic analyses. Sampling of the hybrids C. arabica and C. heterocalyx cf. indicates that mangiferin and HCE accumulation may be under independent parental influence. Conclusions This survey of the phenolic composition in Coffea leaves shows that mangiferin and HCE accumulation corresponds to lineage recognition and species delimitation, respectively. Knowledge of the spectrum of phenolic accumulation within species and populations could be of considerable significance for adaptation to specific environments. The potential

  15. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants.

    PubMed

    Liang, Xiaofei; Liberti, Daniele; Li, Moyi; Kim, Young-Tae; Hutchens, Andrew; Wilson, Ron; Rollins, Jeffrey A

    2015-08-01

    The oxaloacetate acetylhydrolase (OAH, EC 3.7.1.1)-encoding gene Ss-oah1 was cloned and functionally characterized from Sclerotinia sclerotiorum. Ss-oah1 transcript accumulation mirrored oxalic acid (OA) accumulation with neutral pH induction dependent on the pH-responsive transcriptional regulator Ss-Pac1. Unlike previously characterized ultraviolet (UV)-induced oxalate-deficient mutants ('A' mutants) which retain the capacity to accumulate OA, gene deletion Δss-oah1 mutants did not accumulate OA in culture or during plant infection. This defect in OA accumulation was fully restored on reintroduction of the wild-type (WT) Ss-oah1 gene. The Δss-oah1 mutants were also deficient in compound appressorium and sclerotium development and exhibited a severe radial growth defect on medium buffered at neutral pH. On a variety of plant hosts, the Δss-oah1 mutants established very restricted lesions in which the infectious hyphae gradually lost viability. Cytological comparisons of WT and Δss-oah1 infections revealed low and no OA accumulation, respectively, in subcuticular hyphae. Both WT and mutant hyphae exhibited a transient association with viable host epidermal cells at the infection front. In summary, our experimental data establish a critical requirement for OAH activity in S. sclerotiorum OA biogenesis and pathogenesis, but also suggest that factors independent of OA contribute to the establishment of primary lesions. PMID:25285668

  16. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To determine the effects of hops extract, on in vitro volatile fatty acid (VFA) production by bovine rumen microorganisms. Methods and Results: When mixed rumen microbes were suspended in media containing carbohydrates, the initial rates of VFA production were suppressed by beta-acid rich hops...

  17. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-04-01

    Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew's enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant's metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding. PMID:21140278

  18. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-04-01

    Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew's enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant's metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding.

  19. Molecular cloning and characterization of tyrosine aminotransferase and hydroxyphenylpyruvate reductase, and rosmarinic acid accumulation in Scutellaria baicalensis.

    PubMed

    Kim, Yeon Bok; Uddina, Md Romij; Kim, YeJi; Park, Chun Geon; Park, Sang Un

    2014-09-01

    Rosmarinic acid (a-O-caffeoyl-3,4-dihydroxyphenylacetic acid, RA) is a caffeoyl ester widely distributed in plants. cDNA clones encoding tyrosine aminotransferase (TAT1 and 2) and hydroxyphenylpyruvate reductase (HPPR) have been isolated from Scutellaria baicalensis. The open reading frames (ORFs) of SbTAT1 and 2 were 1230 and 1272 bp long and encoded 409 and 423 amino acid residues, respectively. HPPR corresponded to a 942-bp ORF and 313 amino acid residues of translated protein. To study the molecular mechanisms of TAT and HPPR and investigate RA accumulation in S. baicalensis, we examined the transcript levels of TAT isoforms and HPPR with quantitative real-time PCR and analyzed the RA content in different organs by using high-performance liquid chromatography. The transcript levels of SbTATI SbTAT2, and SbHPPR in the flowers were higher than those in other organs. RA was also highly accumulated in the flowers and with a trace amount in the roots. No RA was detected in the leaves and stems of S. baicalensis. The amount of accumulated RA in the flowers was 28.7 times higher than that in the roots. Our results will be helpful in elucidating the mechanisms of RA biosynthesis in S. baicalensis. PMID:25918800

  20. Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars.

    PubMed

    Xin, Junliang; Huang, Baifei; Dai, Hongwen; Zhou, Wenjing; Yi, Yumei; Peng, Lijing

    2015-04-01

    Cultivars of hot pepper (Capsicum annuum L.) have different abilities to accumulate Cd in their fruits. Previously, we suggested that low-Cd cultivars take up more Cd, but can better prevent the Cd translocation from roots to aerial parts. However, the mechanisms involved in those processes are still unclear. In this study, we explored the roles of rhizosphere soil Cd fractions and root secretions of low molecular weight organic acids in the uptake, translocation, and accumulation of Cd in a low-Cd and high-Cd cultivar. The results showed that there was no significant difference in exchangeable Cd between rhizosphere soils of the two cultivars, which might be related to their similar root's Cd uptake ability. The total content of low molecular weight organic acids released from roots of the low-Cd cultivar was almost equal to that released from roots of the high-Cd cultivar at the same Cd level; however, the composition of low molecular weight organic acids were determined by cultivars and Cd exposure levels. In the higher Cd (10 μM) treatment, the roots of the low-Cd cultivar excreted significantly less tartaric acid and more oxalic and acetic acids than those of the high-Cd cultivar. Additionally, there was no difference in the concentration of citric or succinic acid between the two cultivars. These results indicate that some kinds of low molecular weight organic acids efflux from hot pepper roots played an important role in the difference of Cd accumulation between low- and high-Cd cultivars.

  1. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas.

  2. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas. PMID:21608265

  3. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment.

    PubMed

    Venkata Mohan, S; Prathima Devi, M

    2012-11-01

    Acid-rich effluent generated from acidogenic biohydrogen production process was evaluated as substrate for lipid synthesis by integrating with heterotrophic cultivation of mixed microalgae. Experiments were performed both with synthetic volatile fatty acids (SVFA) and fermented fatty acids (FFA) from biohydrogen producing reactor. Fatty acid based platform evidenced significant influence on algal growth as well as lipid accumulation by the formation of triglycerides through fatty acid synthesis. Comparatively FFA documented higher biomass and lipid productivity (1.42mg/ml (wet weight); 26.4%) than SVFAs ((HAc+HBu+HPr), 0.60mg/ml; 23.1%). Lipid profiles varied with substrates and depicted 18 types of saturated and unsaturated fatty acids with wide fuel and food characteristics. The observed higher concentrations of Chl b over Chl a supports the biosynthesis of triacylglycerides. Microalgae diversity visualized the presence of lipid accumulating species viz., Scenedesmus sp. and Chlorella sp. Integration of microalgae cultivation with biohydrogen production showed lipid productivity for biodiesel production along with additional treatment.

  4. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  5. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  6. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  7. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate rate of passage and nutrient digestibility. Yet nothing is known relative to their potential impact on fecal microbial ecology and subsequent VFA generation. Two experiments utilizing a total o...

  8. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    PubMed

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA. PMID:24609499

  9. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    PubMed

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  10. Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes.

    PubMed

    Wang, Hui; Gao, Lili; Zhou, Wenjun; Liu, Tianzhong

    2016-10-01

    Palmitoleic acid (C16:1Δ9), contributes greatly to human health, industrial chemicals and biodiesel. The filamentous oleaginous microalgae Tribonema sp. has been identified as a highly efficient producer of palmitoleic acid. Temperature and light regime were adapted to regulate the palmitoleic acid content in this study. Strain T. minus was able to grow well at all the tested temperatures, even at 5 °C. The optimum temperature for palmitoleic acid accumulation (54.25 % of total fatty acid) was 25 °C. Moreover, both light intensity and photoperiod affect the growth, lipid content and fatty acid files of T. minus. The culture exposed to 240 μmol photons m(-2) s(-1) with a photoperiod of 24:0 showed the highest biomass (6.87 g L(-1)) and biggest lipid content (61.27 % of dry weight), whereas the most amount of palmitoleic acid (50.47 % of total fatty acid) was detected at 120 μmol photons m(-2) s(-1). These findings make tangible contributions to culture T. minus for commercial production of lipid or palmitoleic acid. PMID:27250652

  11. Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes.

    PubMed

    Wang, Hui; Gao, Lili; Zhou, Wenjun; Liu, Tianzhong

    2016-10-01

    Palmitoleic acid (C16:1Δ9), contributes greatly to human health, industrial chemicals and biodiesel. The filamentous oleaginous microalgae Tribonema sp. has been identified as a highly efficient producer of palmitoleic acid. Temperature and light regime were adapted to regulate the palmitoleic acid content in this study. Strain T. minus was able to grow well at all the tested temperatures, even at 5 °C. The optimum temperature for palmitoleic acid accumulation (54.25 % of total fatty acid) was 25 °C. Moreover, both light intensity and photoperiod affect the growth, lipid content and fatty acid files of T. minus. The culture exposed to 240 μmol photons m(-2) s(-1) with a photoperiod of 24:0 showed the highest biomass (6.87 g L(-1)) and biggest lipid content (61.27 % of dry weight), whereas the most amount of palmitoleic acid (50.47 % of total fatty acid) was detected at 120 μmol photons m(-2) s(-1). These findings make tangible contributions to culture T. minus for commercial production of lipid or palmitoleic acid.

  12. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.

    PubMed

    Li, Ting; Jia, Kun-Peng; Lian, Hong-Li; Yang, Xu; Li, Ling; Yang, Hong-Quan

    2014-11-01

    Anthocyanins are critical for plants. It is shown that the expression of genes encoding the key enzymes such as dihydroflavonol 4-reductase (DFR), UDP-Glc: flavonoid 3-O-glucosyltransferase (UF3GT), and leucoanthocyanidin dioxygenase (LDOX) in anthocyanin biosynthesis pathway is regulated by MYB75, a R2R3 MYB transcription factor. The production of anthocyanin is known to be promoted by jasmonic acid (JA) in light but not in darkness. The photoreceptors cryptochrome 1 (CRY1), phytochrome B (phyB), and phytochrome A (phyA) are also shown to mediate light promotion of anthocyanin accumulation, respectively, whereas their downstream factor COP1, a master negative regulator of photomorphogensis, represses anthocyanin accumulation. However, whether JA coordinates with photoreceptors in the regulation of anthocyanin accumulation is unknown. Here, we show that under far-red light, JA promotes anthocyanin accumulation in a phyA signaling pathway-dependent manner. The phyA mutant is hyposensitive to jasmonic acid analog methyl jasmonic acid (MeJA) under far-red light. The dominant mutant of MYB75, pap1-D, accumulates significantly higher levels of anthocyanin than wild type under far-red light, whereas knockdown of MYBs (MYB75, MYB90, MYB113, and MYB114) through RNAi significantly reduces MeJA promotion of anthocyanin accumulation. The phyA pap1-D double mutant shows reduced responsiveness to MeJA, similar to phyA mutant under far-red light. In darkness, a mutant allele of cop1, cop1-4, shows enhanced responsiveness to MeJA, but pap1-D mutant is barely responsive to MeJA. Upon MeJA application, the cop1-4 pap1-D double mutant accumulates considerably higher levels of anthocyanin than cop1-4 in darkness. Protein studies indicate that MYB75 protein is stabilized by white light and far-red light. Further gene expression studies suggest that MeJA promotes the expression of DFR, UF3GT, and LDOX genes in a phyA- and MYB75-dependent manner under far-red light. Our findings suggest

  13. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination.

  14. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination. PMID:26868552

  15. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants.

    PubMed

    Hawrylak-Nowak, Barbara; Dresler, Sławomir; Matraszek, Renata

    2015-09-01

    There is increasing evidence showing that low molecular weight organic acids (LMWOA) are involved in heavy metal resistance mechanisms in plants. The aim of this study was to investigate the effects of exogenous malic (MA) or acetic (AA) acids on the toxicity and accumulation of cadmium (Cd) in sunflower (Helianthus annuus L.). For this purpose, plants were grown in hydroponics under controlled conditions. Single Cd stress (5 μM Cd for 14 days) induced strong phytotoxic effects, as indicated by a decrease in all growth parameters, concentration of photosynthetic pigments, and root activity, as well as a high level of hydrogen peroxide (H2O2) accumulation. Exogenous MA or AA (250 or 500 μM) applied to the Cd-containing medium enhanced the accumulation of Cd by the roots and limited Cd translocation to the shoots. Moreover, the MA or AA applied more or less reduced Cd phytotoxicity by increasing the growth parameters, photosynthetic pigment concentrations, decreasing accumulation of H2O2, and improving the root activity. Of the studied organic acids, MA was much more efficient in mitigation of Cd toxicity than AA, probably by its antioxidant effects, which were stronger than those of AA. Plant response to Cd involved decreased production of endogenous LMWOA, probably as a consequence of severe Cd toxicity. The addition of MA or AA to the medium increased endogenous accumulation of LMWOA, especially in the roots, which could be beneficial for plant metabolism. These results imply that especially MA may be involved in the processes of Cd uptake, translocation, and tolerance in plants. PMID:26115548

  16. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  17. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids.

    PubMed

    Wójcik, Małgorzata; Dresler, Sławomir; Plak, Andrzej; Tukiendorf, Anna

    2015-05-01

    Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment. PMID:25510617

  18. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins.

    PubMed

    Tripathi, Rudra Deo; Singh, Ragini; Tripathi, Preeti; Dwivedi, Sanjay; Chauhan, Reshu; Adhikari, Bijan; Trivedi, Prabodh Kumar

    2014-12-01

    Arsenic (As) accumulation and tolerance response of a submerged rootless macrophyte Najas indica were evaluated during arsenate (As(V); 10-250 μM) and arsenite (As(III); 1-50 μM) exposure. Higher As accumulation at As(III) exposure and more tolerance upon As(V) exposure resulted in more toxicity during As(III) stress than As(V), which was evident through measurement of growth parameters and oxidative stress related parameters viz., lipid peroxidation (MDA content), electrical conductivity (EC) and hydrogen peroxide (H2O2) levels. Antioxidant enzymes and various amino acids were more prominent during moderate exposure of As(V), suggesting their possible role in As tolerance and detoxification. Various non-enzymatic antioxidant metabolites viz., ascorbic acid (ASC), glutathione (GSH), non-protein thiols (NPTs) and phytochelatins (PCs) biosynthesis involving phytochelatin synthase (PCS) activity increased more significantly during As(III) stress. However, PCs content seems inadequate in response to As accumulation leading to lower PC-SH:As molar ratio and higher As phytotoxicity during As(III) stress. N. indica may prove useful plant species for phytoremediation purpose in moderately As contaminated water bodies due to high As accumulation and tolerance potential. PMID:25456221

  19. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins.

    PubMed

    Tripathi, Rudra Deo; Singh, Ragini; Tripathi, Preeti; Dwivedi, Sanjay; Chauhan, Reshu; Adhikari, Bijan; Trivedi, Prabodh Kumar

    2014-12-01

    Arsenic (As) accumulation and tolerance response of a submerged rootless macrophyte Najas indica were evaluated during arsenate (As(V); 10-250 μM) and arsenite (As(III); 1-50 μM) exposure. Higher As accumulation at As(III) exposure and more tolerance upon As(V) exposure resulted in more toxicity during As(III) stress than As(V), which was evident through measurement of growth parameters and oxidative stress related parameters viz., lipid peroxidation (MDA content), electrical conductivity (EC) and hydrogen peroxide (H2O2) levels. Antioxidant enzymes and various amino acids were more prominent during moderate exposure of As(V), suggesting their possible role in As tolerance and detoxification. Various non-enzymatic antioxidant metabolites viz., ascorbic acid (ASC), glutathione (GSH), non-protein thiols (NPTs) and phytochelatins (PCs) biosynthesis involving phytochelatin synthase (PCS) activity increased more significantly during As(III) stress. However, PCs content seems inadequate in response to As accumulation leading to lower PC-SH:As molar ratio and higher As phytotoxicity during As(III) stress. N. indica may prove useful plant species for phytoremediation purpose in moderately As contaminated water bodies due to high As accumulation and tolerance potential.

  20. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids.

    PubMed

    Wójcik, Małgorzata; Dresler, Sławomir; Plak, Andrzej; Tukiendorf, Anna

    2015-05-01

    Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment.

  1. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge. PMID:26092200

  2. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge.

  3. Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab. ) (Decapoda, Crustacea) from an acidic and a neutral lake

    SciTech Connect

    Keenan, S.; Alikhan, M.A. )

    1991-07-01

    The purpose of the study reported in this paper was to compare concentrations of lead and cadmium in the sediment and water, as well as in the crayfish, Cambarus Bartoni (Fab.) (Decapoda - Crustacea) trapped from an acidic and a neutral lake in the Sudbury district of Northeastern Ontario. Hepatopancreatic, alimentary canal, tail muscles and exoskeletal concentrations in the crayfish are also examined to determine specific tissue sites for these accumulations.

  4. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum).

    PubMed

    Strazzer, Pamela; Guzzo, Flavia; Levi, Marisa

    2011-02-15

    A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways.

  5. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    PubMed Central

    Mnasri, Mejda; Ghabriche, Rim; Fourati, Emna; Zaier, Hanen; Sabally, Kebba; Barrington, Suzelle; Lutts, Stanley; Abdelly, Chedly; Ghnaya, Tahar

    2015-01-01

    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. PMID:25821455

  6. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds.

    PubMed

    Zhao, Na; Zhang, Yuan; Li, Qiuqi; Li, Rufang; Xia, Xinli; Qin, Xiaowei; Guo, Huihong

    2015-02-01

    Xanthoceras sorbifolia Bunge is an oilseed tree that grows well on barren lands in dry climate. Its seeds contain a large amount of oil rich in oleic acid (18:1(Δ9)) and linoleic acid (18:2(Δ9, 12)). However, the molecular regulation of oil biosynthesis in X. sorbifolia seeds is poorly understood. Stearoyl-ACP desaturase (SAD, EC 1.14.99.6) is a plastid-localized soluble desaturase that catalyzes the conversion of stearic acid (18:0) to oleic acid, which plays a key role in determining the ratio of saturated to unsaturated fatty acids. In this study, a full-length cDNA of XsSAD was isolated from developing X. sorbifolia embryos. The XsSAD open reading frame had 1194-bp, encoding a polypeptide of 397 amino acids. XsSAD expression in Escherichia coli cells resulted in increased 18:1(Δ9) level, confirming the biological activity of the enzyme encoded by XsSAD. XsSAD expression in Arabidopsis ssi2 mutants partially restored the morphological phenotype and effectively increased the 18:1(Δ9) level. The levels of other unsaturated fatty acids synthesized with 18:1(Δ9) as the substrate also increased to some degree. XsSAD in X. sorbifolia had a much higher expression in embryos than in leaves and petals. XsSAD expression also correlated well with the oleic acid, unsaturated fatty acid, and total fatty acid levels in developing embryos. These data suggested that XsSAD determined the synthesis of oleic acid and contributed to the accumulation of unsaturated fatty acid and total oil in X. sorbifolia seeds. A preliminary tobacco rattle virus-based virus-induced gene silencing system established in X. sorbifolia can also be helpful for further analyzing the functions of XsSAD and other oil synthesis-related genes in woody plants.

  7. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    PubMed

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins. PMID:26812586

  8. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    PubMed

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins.

  9. Effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids in the juice sacs of Satsuma mandarin (Citrus unshiu Marc.) fruit.

    PubMed

    Matsumoto, Hikaru; Ikoma, Yoshinori

    2012-10-01

    To elucidate the effect of different postharvest temperatures on the accumulation of sugars, organic acids, and amino acids and to determine the best temperature to minimize their postharvest change, their content after harvest was investigated at 5, 10, 20, and 30 °C for 14 days in the juice sacs of Satsuma mandarin (Citrus unshiu Marc. cv. Aoshima-unshiu) fruit. In all sugars, the changes were negligible at all temperatures. Organic acids decreased slightly at all temperatures, with the exception of malic acid at 30 °C, which increased slightly. Two amino acids, ornithine and glutamine, increased at 5 °C, but they did not increase at other temperatures. In 11 amino acids (phenylalanine, tryptophan, tyrosine, isoleucine, leucine, valine, threonine, lysine, methionine, histidine, and γ-amino butyric acid), the content was higher at 20 and 30 °C than at other temperatures. Thus, the content of amino acids was more variable than that of sugars and organic acids in response to temperatures. Moreover, amino acids responded to temperature differently: two amino acids were cold responsive, and 11 were heat-responsive. The best temperature to minimize the postharvest changes in amino acid profiles in the juice sacs of Aoshima-unshiu was 10 °C. The responsiveness to temperatures in two cold-responsive (ornithine and glutamine) and five heat-responsive (phenylalanine, tryptophan, valine, lysine, and histidine) amino acids was conserved among three different Satsuma mandarin cultivars, Aoshima-unshiu (late-maturing cultivar), Silverhill (midmaturing cultivar), and Miyagawa-wase (early-maturing cultivar). The metabolic responsiveness to temperature stress was discussed on the basis of the changes in the amino acid profile.

  10. Fatty Acid Transport Protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    PubMed Central

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-01-01

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC50 8–11μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC50 58μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of 13C-oleate demonstrating its potential as a therapeutic agent. PMID:26284975

  11. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  12. The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis

    PubMed Central

    Nilsson, Anders K.; Fahlberg, Per; Johansson, Oskar N.; Hamberg, Mats; Andersson, Mats X.; Ellerström, Mats

    2016-01-01

    Arabidopsis produces galactolipids containing esters of 12-oxo-phytodienoic acid (OPDA) and dinor-12-oxo-phytodienoic acid (dnOPDA). These lipids are referred to as arabidopsides and accumulate in response to abiotic and biotic stress. We explored the natural genetic variation found in 14 different Arabidopsis accessions to identify genes involved in the formation of arabidopsides. The accession C24 was identified as a poor accumulator of arabidopsides whereas the commonly used accession Col-0 was found to accumulate comparably large amounts of arabidopsides in response to tissue damage. A quantitative trait loci analysis of an F2 population created from a cross between C24 and Col-0 located a region on chromosome four strongly linked to the capacity to form arabidopsides. Expression analysis of HYDROPEROXIDE LYASE 1 (HPL1) showed large differences in transcript abundance between accessions. Transformation of Col-0 plants with the C24 HPL1 allele under transcriptional regulation of the 35S promoter revealed a strong negative correlation between HPL1 expression and arabidopside accumulation after tissue damage, thereby strengthening the view that HPL1 competes with ALLENE OXIDE SYNTHASE (AOS) for lipid-bound hydroperoxide fatty acids. We further show that the last step in the synthesis of galactolipid-bound OPDA and dnOPDA from unstable allene oxides is exclusively enzyme-catalyzed and not the result of spontaneous cyclization. Thus, the results presented here together with previous studies suggest that all steps in arabidopside biosynthesis are enzyme-dependent and apparently all reactions can take place with substrates being esterified to galactolipids. PMID:27422994

  13. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    PubMed

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  14. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  15. Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate.

    PubMed

    Fordahl, Steve C; Erikson, Keith M

    2014-05-01

    Manganese (Mn) exposure interferes with GABA uptake; however, the effects of Mn on GABA transport proteins (GATs) have not been identified. We sought to characterize how Mn impairs GAT function in primary rat astrocytes. Astrocytes exposed to Mn (500 μM) had significantly reduced (3)H-GABA uptake despite no change in membrane or cytosolic GAT3 protein levels. Co-treatment with 100 μM oleic or palmitic acids (both known to be elevated in Mn neurotoxicity), exacerbated the Mn-induced decline in (3)H-GABA uptake. Mn accumulation in the membrane fraction of astrocytes was enhanced with fatty acid administration, and was negatively correlated with (3)H-GABA uptake. Furthermore, control cells exposed to Mn only during the experimental uptake had significantly reduced (3)H-GABA uptake, and the addition of GABA (50 μM) blunted cytosolic Mn accumulation. These data indicate that reduced GAT function in astrocytes is influenced by Mn and fatty acids accumulating at or interacting with the plasma membrane.

  16. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus L.).

    PubMed

    Xiong, You-Cai; Xing, Geng-Mei; Li, Feng-Min; Wang, Shao-Ming; Fan, Xian-Wei; Li, Zhi-Xiao; Wang, Ya-Fu

    2006-01-01

    Interrelationship among abscisic acid (ABA) content, accumulation of free polyamines and biosynthesis of beta-N-oxalyl-l-alpha,beta-diaminopropionic acid (ODAP) was studied in grass pea (Lathyrus sativus L.) seedlings under drought stress induced by 10% polyethylene glycol (PEG6000). Increase of ABA content occurred prior to that of ODAP and polyamine contents, and was found significantly positive correlation between ABA content and ODAP content. Addition of exogenous ABA increased ODAP content in leaves. On the other hand, pretreatment with alpha-difluoromethylarginine (DFMA), a polyamine biosynthesis inhibitor, significantly suppressed the accumulation of free putrescine (Put), free spermidine (Spd) and free spermine (Spm), which in turn inhibited biosynthesis of ODAP in well-watered leaves. Meanwhile, addition of exogenous Put alleviated DFMA-induced inhibition on the biosynthesis of Put and Spd, but did not affect the biosynthesis of Spm and ODAP in well-watered leaves. Same result was also achieved in drought-stressed leaves. Increasing accumulation of ODAP was significantly correlated with increasing Spm content (R=0.7957**) but not with that of Spd and Put. Therefore, it can be argued that ABA stimulated the biosynthesis of ODAP simultaneously with increasing the level of free Spm under drought stress condition.

  17. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  18. Some things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis

    PubMed Central

    Carella, Philip; Wilson, Daniel C.; Cameron, Robin K.

    2015-01-01

    In Arabidopsis, much of what we know about the phytohormone salicylic acid (SA) and its role in plant defense comes from experiments using young plants. We are interested in understanding why young plants are susceptible to virulent strains of Pseudomonas syringae, while mature plants exhibit a robust defense response known as age-related resistance (ARR). SA-mediated signaling is important for defense in young plants, however, ARR occurs independently of the defense regulators NPR1 and WHY1. Furthermore, intercellular SA accumulation is an important component of ARR, and intercellular washing fluids from ARR-competent plants exhibit antibacterial activity, suggesting that SA acts as an antimicrobial agent in the intercellular space. Young plants accumulate both intracellular and intercellular SA during PAMP- and effector-triggered immunity, however, virulent P. syringae promotes susceptibility by suppressing SA accumulation using the phytotoxin coronatine. Here we outline the hypothesis that mature, ARR-competent Arabidopsis alleviates coronatine-mediated suppression of SA accumulation. We also explore the role of SA in other mature-plant processes such as flowering and senescence, and discuss their potential impact on ARR. PMID:25620972

  19. Perennial peanut (Arachis glabrata Benth.) leaves contain hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase activity and accumulate hydroxycinnamoyl-tartaric acid esters.

    PubMed

    Sullivan, Michael L

    2014-05-01

    Many plants accumulate hydroxycinnamoyl esters to protect against abiotic and biotic stresses. Caffeoyl esters in particular can be substrates for endogenous polyphenol oxidases (PPOs). Recently, we showed that perennial peanut (Arachis glabrata Benth.) leaves contain PPO and identified one PPO substrate, caftaric acid (trans-caffeoyl-tartaric acid). Additional compounds were believed to be cis- and trans-p-coumaroyl tartaric acid and cis- and trans-feruloyl-tartaric acid, but lack of standards prevented definitive identifications. Here we characterize enzymatic activities in peanut leaves to understand how caftaric acid and related hydroxycinnamoyl esters are made in this species. We show that peanut leaves contain a hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase (HTT) activity capable of transferring p-coumaroyl, caffeoyl, and feruloyl moieties from CoA to tartaric acid (specific activities of 11 ± 2.8, 8 ± 1.8, 4 ± 0.8 pkat mg(-1) crude protein, respectively). The HTT activity was used to make cis- and trans-p-coumaroyl- and -feruloyl-tartaric acid in vitro. These products allowed definitive identification of the corresponding cis- and trans-hydroxycinnamoyl esters extracted from leaves. We tentatively identified sinapoyl-tartaric acid as another major phenolic compound in peanut leaves that likely participates in secondary reactions with PPO-generated quinones. These results suggest hydroxycinnamoyl-tartaric acid esters are made by an acyltransferase, possibly a BAHD family member, in perennial peanut. Identification of a gene encoding HTT and further characterization of the enzyme will aid in identifying determinants of donor and acceptor substrate specificity for this important class of biosynthetic enzymes. An HTT gene could also provide a means by genetic engineering for producing caffeoyl- and other hydroxycinnamoyl-tartaric acid esters in forage crops that lack them.

  20. Sex Differences in the Association between the Eicosapentaenoic Acid/Arachidonic Acid Ratio and the Visceral Fat Area among Patients with Type 2 Diabetes.

    PubMed

    Nakanishi, Shuhei; Nagano, Chihiro; Miyahara, Mitsue; Sawano, Fumio

    2016-01-01

    Objective To examine the serum levels of eicosapentaenoic acid (EPA) and the ratios of docosahexaenoic acid (DHA), and the EPA/arachidonic acid (AA) and DHA/AA and to clarify their association with the areas of subcutaneous and visceral fat separately by sex among patients with type 2 diabetes. Methods The study participants included 118 men and 96 women who were hospitalized to receive treatment for type 2 diabetes. We examined the serum levels of EPA and DHA and the ratios of EPA/AA and DHA/AA, and analyzed their association with the total fat area (TFA), subcutaneous fat area (SFA), and visceral fat area (VFA), as measured by computed tomography. Results The mean age of the study participants was 62.6±13.6 years. The mean HbA1c level was 9.37±2.27%. Among men, a multivariate regression analysis adjusted for age and BMI, revealed a significant negative association between VFA and the EPA/AA ratio. When the multivariate regression analysis was adjusted for age, BMI, and HbA1c level, VFA was still found to be significantly negatively associated with the EPA/AA ratio. Although a crude analysis revealed a significant negative association between SFA and the EPA/AA ratio in women, no association was observed in multivariate regression analyses. Conclusion These results suggest the possibility that EPA inhibits the accumulation of visceral fat in men. Furthermore, there appear to be marked differences in the relationships between EPA and DHA and visceral fat accumulation. PMID:27181531

  1. Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae

    PubMed Central

    Kobayashi, Yuki; Tanaka, Kan

    2016-01-01

    Abscisic acid (ABA), a pivotal phytohormone that is synthesized in response to abiotic stresses and other environmental changes, induces various physiological responses. Heme, in its unbound form, has a positive signaling role in cell-cycle initiation in Cyanidioschyzon merolae. ABA induces heme accumulation, but also prevents cell-cycle initiation through the titration of the unbound heme by inducing the heme scavenging protein tryptophan-rich sensory protein-related protein O. In this study, we analyzed the accumulation of tetrapyrrole biosynthetic gene transcripts after the addition of ABA to the medium and found that transcripts of a ferrochelatase and a magnesium-chelatase subunit increased, while other examined transcripts decreased. Under the same conditions, the heme and magnesium-protoporphyrin IX contents increased, while the protoporphyrin IX content decreased. Thus, ABA may regulate the intracellular heme and other tetrapyrrole contents through the transcriptional regulation of biosynthetic genes.

  2. Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae

    PubMed Central

    Kobayashi, Yuki; Tanaka, Kan

    2016-01-01

    Abscisic acid (ABA), a pivotal phytohormone that is synthesized in response to abiotic stresses and other environmental changes, induces various physiological responses. Heme, in its unbound form, has a positive signaling role in cell-cycle initiation in Cyanidioschyzon merolae. ABA induces heme accumulation, but also prevents cell-cycle initiation through the titration of the unbound heme by inducing the heme scavenging protein tryptophan-rich sensory protein-related protein O. In this study, we analyzed the accumulation of tetrapyrrole biosynthetic gene transcripts after the addition of ABA to the medium and found that transcripts of a ferrochelatase and a magnesium-chelatase subunit increased, while other examined transcripts decreased. Under the same conditions, the heme and magnesium-protoporphyrin IX contents increased, while the protoporphyrin IX content decreased. Thus, ABA may regulate the intracellular heme and other tetrapyrrole contents through the transcriptional regulation of biosynthetic genes. PMID:27621743

  3. Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae.

    PubMed

    Kobayashi, Yuki; Tanaka, Kan

    2016-01-01

    Abscisic acid (ABA), a pivotal phytohormone that is synthesized in response to abiotic stresses and other environmental changes, induces various physiological responses. Heme, in its unbound form, has a positive signaling role in cell-cycle initiation in Cyanidioschyzon merolae. ABA induces heme accumulation, but also prevents cell-cycle initiation through the titration of the unbound heme by inducing the heme scavenging protein tryptophan-rich sensory protein-related protein O. In this study, we analyzed the accumulation of tetrapyrrole biosynthetic gene transcripts after the addition of ABA to the medium and found that transcripts of a ferrochelatase and a magnesium-chelatase subunit increased, while other examined transcripts decreased. Under the same conditions, the heme and magnesium-protoporphyrin IX contents increased, while the protoporphyrin IX content decreased. Thus, ABA may regulate the intracellular heme and other tetrapyrrole contents through the transcriptional regulation of biosynthetic genes. PMID:27621743

  4. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    PubMed

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  5. Evaluation of physicochemical properties, skin permeation and accumulation profiles of salicylic acid amide prodrugs as sunscreen agent.

    PubMed

    Yan, Yi-Dong; Sung, Jun Ho; Lee, Dong Won; Kim, Jung Sun; Jeon, Eun-Mi; Kim, Dae-Duk; Kim, Dong Wuk; Kim, Jong Oh; Piao, Ming Guan; Li, Dong Xun; Yong, Chul Soon; Choi, Han Gon

    2011-10-31

    Various amide prodrugs of salicylic acid were synthesised, and their physicochemical properties including lipophilicity, chemical stability and enzymatic hydrolysis were investigated. In vivo skin permeation and accumulation profiles were also evaluated using a combination of common permeation enhancing techniques such as the use of a supersaturated solution of permeants in an enhancer vehicle, a lipophilic receptor solution, removal of the stratum corneum and delipidisation of skin. Their capacity factor values were proportional to the degree of carbon-carbon saturation in the side chain. All these amides were highly stable in acetonitrile and glycerine. Amide prodrugs were converted to salicylic acid both in hairless mouse liver and skin homogenates. N-dodecyl salicylamide (C12SM) showed the lowest permeation of salicylic acid in skin compared to the other prodrugs, probably due to its low aqueous solubility. It had a high affinity for the stratum corneum and its accumulation was restricted to only the uppermost layer of skin. Thus, this amide prodrug could be a safer topical sunscreen agent with minimum potential for systemic absorption.

  6. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets

    PubMed Central

    2012-01-01

    Background Jasmonic acid (JA) is a well-characterized signaling molecule in plant defense responses. However, its relationships with other signal molecules in secondary metabolite production induced by endophytic fungus are largely unknown. Atractylodes lancea (Asteraceae) is a traditional Chinese medicinal plant that produces antimicrobial volatiles oils. We incubated plantlets of A. lancea with the fungus Gilmaniella sp. AL12. to research how JA interacted with other signal molecules in volatile oil production. Results Fungal inoculation increased JA generation and volatile oil accumulation. To investigate whether JA is required for volatile oil production, plantlets were treated with JA inhibitors ibuprofen (IBU) and nordihydroguaiaretic acid. The inhibitors suppressed both JA and volatile oil production, but fungal inoculation could still induce volatile oils. Plantlets were further treated with the nitric oxide (NO)-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the H2O2 inhibitors diphenylene iodonium (DPI) and catalase (CAT), and the salicylic acid (SA) biosynthesis inhibitors paclobutrazol and 2-aminoindan-2-phosphonic acid. With fungal inoculation, IBU did not inhibit NO production, and JA generation was significantly suppressed by cPTIO, showing that JA may act as a downstream signal of the NO pathway. Exogenous H2O2 could reverse the inhibitory effects of cPTIO on JA generation, indicating that NO mediates JA induction by the fungus through H2O2-dependent pathways. With fungal inoculation, the H2O2 scavenger DPI/CAT could inhibit JA generation, but IBU could not inhibit H2O2 production, implying that H2O2 directly mediated JA generation. Finally, JA generation was enhanced when SA production was suppressed, and vice versa. Conclusions Jasmonic acid acts as a downstream signaling molecule in NO- and H2O2-mediated volatile oil accumulation induced by endophytic fungus and has a complementary

  7. Accumulation of α-Keto Acids as Essential Components in Cyanide Assimilation by Pseudomonas fluorescens NCIMB 11764

    PubMed Central

    Kunz, Daniel A.; Chen, Jui-Lin; Pan, Guangliang

    1998-01-01

    Pyruvate (Pyr) and α-ketoglutarate (αKg) accumulated when cells of Pseudomonas fluorescens NCIMB 11764 were cultivated on growth-limiting amounts of ammonia or cyanide and were shown to be responsible for the nonenzymatic removal of cyanide from culture fluids as previously reported (J.-L. Chen and D. A. Kunz, FEMS Microbiol. Lett. 156:61–67, 1997). The accumulation of keto acids in the medium paralleled the increase in cyanide-removing activity, with maximal activity (760 μmol of cyanide removed min−1 ml of culture fluid−1) being recovered after 72 h of cultivation, at which time the keto acid concentration was 23 mM. The reaction products that formed between the biologically formed keto acids and cyanide were unambiguously identified as the corresponding cyanohydrins by 13C nuclear magnetic resonance spectroscopy. Both the Pyr and α-Kg cyanohydrins were further metabolized by cell extracts and served also as nitrogenous growth substrates. Radiotracer experiments showed that CO2 (and NH3) were formed as enzymatic conversion products, with the keto acid being regenerated as a coproduct. Evidence that the enzyme responsible for cyanohydrin conversion is cyanide oxygenase, which was shown previously to be required for cyanide utilization, is based on results showing that (i) conversion occurred only when extracts were induced for the enzyme, (ii) conversion was oxygen and reduced-pyridine nucleotide dependent, and (iii) a mutant strain defective in the enzyme was unable to grow when it was provided with the cyanohydrins as a growth substrate. Pyr and αKg were further shown to protect cells from cyanide poisoning, and excretion of the two was directly linked to utilization of cyanide as a growth substrate. The results provide the basis for a new mechanism of cyanide detoxification and assimilation in which keto acids play an essential role. PMID:9797306

  8. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    SciTech Connect

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  9. Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity.

    PubMed

    St Clair, Samuel B; Lynch, Jonathan P

    2005-01-01

    Foliar nutrient imbalances, including the hyperaccumulation of manganese (Mn), are correlated with symptoms of declining health in sensitive tree species growing on acidic forest soils. The objectives of this study were to: (1) compare foliar nutrient accumulation patterns of six deciduous (sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), white oak (Quercus alba L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana L.)) and three evergreen (eastern hemlock (Tsuga canadensis L.), white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss.)) tree species growing on acidic forest soils; and (2) examine how leaf phenology and other traits that distinguish evergreen and deciduous tree species influence foliar Mn accumulation rates and sensitivity to excess Mn. For the first objective, leaf samples of seedlings from five acidic, non-glaciated field sites on Pennsylvania's Allegheny Plateau were collected and analyzed for leaf element concentrations. In a second study, we examined growth and photosynthetic responses of seedlings exposed to excess Mn in sand culture. In field samples, Mn in deciduous foliage hyperaccumulated to concentrations more than twice as high as those found in evergreen needles. Among species, sugar maple was the most sensitive to excess Mn based on growth and photosynthetic measurements. Photosynthesis in red maple and red oak was also sensitive to excess Mn, whereas white oak, black cherry, white ash and the three evergreen species were tolerant of excess Mn. Among the nine species, relative rates of photosynthesis were negatively correlated with foliar Mn concentrations, suggesting that photosynthetic sensitivity to Mn is a function of its rate of accumulation in seedling foliage. PMID:15519989

  10. Element accumulation patterns of deciduous and evergreen tree seedlings on acid soils: implications for sensitivity to manganese toxicity.

    PubMed

    St Clair, Samuel B; Lynch, Jonathan P

    2005-01-01

    Foliar nutrient imbalances, including the hyperaccumulation of manganese (Mn), are correlated with symptoms of declining health in sensitive tree species growing on acidic forest soils. The objectives of this study were to: (1) compare foliar nutrient accumulation patterns of six deciduous (sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), white oak (Quercus alba L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana L.)) and three evergreen (eastern hemlock (Tsuga canadensis L.), white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss.)) tree species growing on acidic forest soils; and (2) examine how leaf phenology and other traits that distinguish evergreen and deciduous tree species influence foliar Mn accumulation rates and sensitivity to excess Mn. For the first objective, leaf samples of seedlings from five acidic, non-glaciated field sites on Pennsylvania's Allegheny Plateau were collected and analyzed for leaf element concentrations. In a second study, we examined growth and photosynthetic responses of seedlings exposed to excess Mn in sand culture. In field samples, Mn in deciduous foliage hyperaccumulated to concentrations more than twice as high as those found in evergreen needles. Among species, sugar maple was the most sensitive to excess Mn based on growth and photosynthetic measurements. Photosynthesis in red maple and red oak was also sensitive to excess Mn, whereas white oak, black cherry, white ash and the three evergreen species were tolerant of excess Mn. Among the nine species, relative rates of photosynthesis were negatively correlated with foliar Mn concentrations, suggesting that photosynthetic sensitivity to Mn is a function of its rate of accumulation in seedling foliage.

  11. Cell proliferation, apoptosis and accumulation of lipid droplets in U937-1 cells incubated with eicosapentaenoic acid.

    PubMed Central

    Finstad, H S; Drevon, C A; Kulseth, M A; Synstad, A V; Knudsen, E; Kolset, S O

    1998-01-01

    The monocytic cell line U937-1 was cultured in the presence of eicosapentaenoic acid (20:5, n-3) (EPA) or oleic acid (18:1, n-9) (OA). EPA caused a dose-dependent inhibition of cell proliferation, whereas OA had no effect. At the highest EPA concentrations, 120 and 240 microM, inhibition of cell proliferation was accompanied by initiation of apoptosis. A concentration of 60 microM EPA caused a 35% reduction in cell proliferation without inducing apoptosis, and was therefore used for further studies. Addition of antioxidants or inhibitors of eicosanoid synthesis had no influence on the reduced cell proliferation after EPA treatment. The inhibition required continuous presence of EPA in the incubation medium as the cells resumed a normal proliferation rate when they were placed in EPA-free medium. The inhibition of proliferation was not accompanied by differentiation into macrophage-like cells, as expression of serglycin and the ability to perform respiratory burst was unaffected by EPA. Expression of CD23 mRNA increased when the cells were incubated with EPA, but to a smaller extent than after retinoic acid (RA) or PMA treatment. Furthermore, expression of the monocytic differentiation markers CD36 and CD68 was lower in cells treated with EPA or OA when compared with untreated cells. The cell cycle distribution of U937-1 cells was similar in cells incubated with EPA or PMA, whereas RA-treated cells accumulated in the G1 phase. Side scatter increased in cells incubated with EPA and OA, which was ascribed to an accumulation of lipid droplets after examination of the cells by electron microscopy. The number of droplets per cell was higher in cells exposed to EPA than OA. The cellular triacylglycerol (TAG) increased 5.5- and 15.5-fold after incubation with OA and EPA respectively. No difference in the cellular content of cholesterol compared with untreated cells was observed. The TAG fraction in EPA-treated cells contained high amounts of EPA and docosapentaenoic acid

  12. Auxotroph Accumulation in Deoxyribonucleic Acid Polymeraseless Strains of Escherichia coli K-121

    PubMed Central

    Berg, Claire M.

    1971-01-01

    Spontaneous auxotrophs are found with high frequency in several strains of Escherichia coli K-12 deficient in Kornberg deoxyribonucleic acid polymerase. These include amino acid-, vitamin-, purine-, and pyrimidine-requiring strains. Although this was suggestive evidence that these strains might be mutators, reconstruction experiments demonstrate that auxotrophs possess a selective advantage over prototrophs in the same culture. Thus, despite the high frequency of auxotrophs in polymerase-deficient strains, it is not yet clear whether they have elevated mutation rates. PMID:4934065

  13. Osmotic pressure, water kinetics and volatile fatty acid absorption in the rumen of sheep sustained by intragastric infusions.

    PubMed

    López, S; Hovell, F D; MacLeod, N A

    1994-02-01

    The effects of changing rumen osmotic pressure (OP) upon water kinetics and volatile fatty acid (VFA) absorption in the rumen of sheep were studied in two 4 x 4 Latin square experiments, each using four lambs with a rumen cannula and an abomasal catheter. In both experiments the lambs were sustained by the intragastric infusion of all nutrients (VFA, Ca, P, Mg and a buffer solution into the rumen, and casein, vitamins and trace elements into the abomasum). On experimental days, which were at least 1 week apart, drinking water and the casein infusion were withdrawn, and the ruminal OP was changed and held constant for 9.5 h, by incorporating NaCl at different concentrations in the buffer solution being infused. In Expt 1 the target OP values were 300, 340, 380 and 420 mosmol/kg, and in Expt 2 were 261 (no saline addition), 350, 420 and 490 mosmol/kg. Using soluble non-absorbable markers (PEG in continuous infusion and Cr-EDTA injected in pulse doses) rumen volume, liquid outflow rates, apparent water absorption through the rumen wall and VFA absorption rates were estimated at six sampling times corresponding to the 1.5 h intervals during the last 7.5 h following the change in rumen OP. Liquid outflow rate (F; ml/h) showed a significant and positive linear relationship with the rumen OP (mosmol/kg), resulting in the equation F = 1.24 OP (SE 0.096)-36.5 (SE 36.6) (r2 0.96). Similarly, water absorption rate (W; ml/h) was significantly affected by rumen OP, and this relationship was given by W = 395 (SE 39.9)-1.16 OP (SE 0.105) (r2 0.95), which means that for an OP of 341 mosmol/kg the net movement of water across the rumen wall would be zero, and either a net efflux or a net influx of water would be observed with lower or higher OP respectively. In Expt 2 there was a significant linear effect of OP on rumen volume (P < 0.01), with higher OP being associated with increases in rumen liquid contents of about 10-20%. As rumen OP was increased there was also a decline in

  14. Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota 2: confirming biosynthetic steps through feeding of inhibitors and precursors.

    PubMed

    Sircar, Debabrata; Mitra, Adinpunya

    2009-09-01

    Biosynthesis of hydroxybenzoates even at enzymatic level is poorly understood. In this report, effect of feeding of putative biosynthetic precursors and pathway-specific enzyme inhibitors of early phenylpropanoid pathway on p-hydroxybenzoic acid accumulation in chitosan-elicited hairy roots of Daucus carota was studied. Three selective metabolic inhibitors of plant phenylpropanoid pathway, namely, aminooxyacetic acid (AOAA), piperonylic acid (PIP) and 3,4-methylenedioxycinnamic acid (MDCA), which are known to inhibit phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL) respectively, the three early enzymes of phenylpropanoid metabolism, were chosen with the anticipation that selective inhibition of these enzymes in vivo may provide information on the metabolic route to p-hydroxybenzoic acid formation. Supplementation of AOAA (0.2-1.0 mM) and PIP (0.2-1.0 mM) resulted in the reduced accumulation of p-hydroxybenzoic acid in the wall-bound fraction. However, addition of MDCA (0.2-1.25 mM), did not suppress p-hydroxybenzoic acid accumulation but suppressed lignin and total flavonoid accumulation, suggesting that 4CL enzyme activity is not required for p-hydroxybenzoic acid formation. Feeding of elicited hairy roots with phenylalanine, coumaric acid and p-hydroxybenzaldehyde had a stimulatory effect on p-hydroxybenzoic acid accumulation; however, maximum stimulatory effect was shown by p-hydroxybenzaldehyde. This suggests that p-hydroxybenzaldehyde might be the immediate precursor in p-hydroxybenzoic acid biosynthesis. Finally, in vitro conversion of p-coumaric acid to p-hydroxybenzoic acid with p-hydroxybenzaldehyde as intermediate using cell-free extract provided an unequivocal support for CoA-independent and non-beta-oxidative route of p-hydroxybenzoic acid biosynthesis in Daucus carota.

  15. Severe anion gap metabolic acidosis from acetaminophen use secondary to 5-oxoproline (pyroglutamic acid) accumulation.

    PubMed

    Zand, Ladan; Muriithi, Angela; Nelsen, Eric; Franco, Pablo M; Greene, Eddie L; Qian, Qi; El-Zoghby, Ziad M

    2012-12-01

    Anion gap metabolic acidosis (AGMA) is commonly encountered in medical practice. Acetaminophen-induced AGMA is, however, not widely recognized. We report 2 cases of high anion gap metabolic acidosis secondary to 5-oxoproline accumulation resulting from acetaminophen consumption: the first case caused by acute one-time ingestion of large quantities of acetaminophen and the second case caused by chronic repeated ingestion in a patient with chronic liver disease. Recognition of this entity facilitated timely diagnosis and effective treatment. Given acetaminophen is commonly used over the counter medication, increased recognition of this adverse effect is of important clinical significance.

  16. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Liu, Zhe; Zhang, Biao; Li, Mingchun

    2016-10-01

    During the past couple of years, graphene nanomaterials were extremely popular among the scientists due to the promising properties in many aspects. Before the materials being well applied, we should first focus on their biosafety and toxicity. In this study, we investigated the toxicity of synthesized graphene oxide (GO) against the model industrial organism Pichia pastoris. We found that the synthesized GO showed dose-dependent toxicity to P. pastoris, through cell membrane damage and intracellular reactive oxygen species (ROS) accumulation. In response to these cell stresses, cells had normal unsaturated fatty acid (UFA) levels but increased contents of polyunsaturated fatty acid (PUFA) with up-regulation of UFA synthesis-related genes on the transcriptional level, which made it overcome the stress under GO attack. Two UFA defective strains (spt23Δ and fad12Δ) were used to demonstrate the results above. Hence, this study suggested a close connection between PUFAs and cell survival against GO. PMID:27376352

  17. Utilization of ammonium as a nitrogen source: effects of ambient acidity on growth and nitrogen accumulation by soybean

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    Dry matter accumulation of plants utilizing NH4+ as the sole nitrogen source generally is less than that of plants receiving NO3- unless acidity of the root-zone is controlled at a pH of about 6.0. To test the hypothesis that the reduction in growth is a consequence of nitrogen stress within the plant in response to effects of increased acidity during uptake of NH4+ by roots, nonnodulated soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 24 days in flowing nutrient culture containing 1.0 millimolar NH4+ as the nitrogen source. Acidities of the culture solutions were controlled at pH 6.1, 5.1, and 4.1 +/- 0.1 by automatic additions of 0.01 N H2SO4 or Ca(OH)2. Plants were sampled at intervals of 3 to 4 days for determination of dry matter and nitrogen accumulation. Rates of NH4+ uptake per gram root dry weight were calculated from these data. Net CO2 exchange rates per unit leaf area were measured on attached leaves by infrared gas analysis. When acidity of the culture solution was increased from pH 6.1 to 5.1, dry matter and nitrogen accumulation were reduced by about 40% within 14 days. Net CO2 exchange rates per unit leaf area, however, were not affected, and the decreased growth was associated with a reduction in rates of appearance and expansion of new leaves. The uptake rates of NH4+ per gram root were about 25% lower throughout the 24 days at pH 5.1 than at 6.1. A further increase in solution acidity from pH 5.1 to 4.1 resulted in cessation of net dry matter production and appearance of new leaves within 10 days. Net CO2 exchange rates per unit leaf area declined rapidly until all viable leaves had abscised by 18 days. Uptake rates of NH4+, which were initially about 50% lower at pH 4.1 than at 6.1 continued to decline with time of exposure until net uptake ceased at 10 days. Since these responses also are characteristic of the sequence of responses that occur during onset and progression of a nitrogen stress, they corroborate our hypothesis.

  18. Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection

    PubMed Central

    Zhou, Tao; Murphy, Alex M.; Lewsey, Mathew G.; Westwood, Jack H.; Zhang, Heng-Mu; González, Inmaculada; Canto, Tomás

    2014-01-01

    The cucumber mosaic virus (CMV) 2b silencing suppressor protein allows the virus to overcome resistance to replication and local movement in inoculated leaves of plants treated with salicylic acid (SA), a resistance-inducing plant hormone. In Arabidopsis thaliana plants systemically infected with CMV, the 2b protein also primes the induction of SA biosynthesis during this compatible interaction. We found that CMV infection of susceptible tobacco (Nicotiana tabacum) also induced SA accumulation. Utilization of mutant 2b proteins expressed during infection of tobacco showed that the N- and C-terminal domains, which had previously been implicated in regulation of symptom induction, were both required for subversion of SA-induced resistance, while all mutants tested except those affecting the putative phosphorylation domain had lost the ability to prime SA accumulation and expression of the SA-induced marker gene PR-1. PMID:24633701

  19. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms.

    PubMed

    Bengtsson, Simon; Pisco, Ana R; Reis, Maria A M; Lemos, Paulo C

    2010-02-01

    Batch production of polyhydroxyalkanoates (PHAs) under aerobic conditions by an open mixed culture enriched in glycogen accumulating organisms (GAOs) with fermented sugar cane molasses as substrate was studied. The produced polymers contained five types of monomers, namely 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylbutyrate (3H2MB), 3-hydroxy-2-methylvalerate (3H2MV) and the medium chain length monomer 3-hydroxyhexanoate (3HHx). With fermented molasses as substrate, PHA was produced under concurrent consumption of stored glycogen with yields of 0.47-0.66 C-mol PHA per C-mol of total carbon substrate and with rates up to 0.65 C-mol/C-molX h. In order to investigate the role of glycogen during aerobic PHA accumulation in GAOs, synthetic single volatile fatty acids (VFAs) were used as substrates and it was found that the fate of glycogen was dependent on the type of VFA being consumed. Aerobic PHA accumulation occurred under concurrent glycogen consumption with acetate as substrate and under minor concurrent glycogen production with propionate as substrate. With butyrate and valerate as substrates, PHA accumulation occurred with the glycogen pool unaffected. The composition of the PHA was dependent on the VFA composition of the fermented molasses and was 56-70 mol-% 3HB, 13-43 mol-% 3HV, 1-23 mol-% 3HHx and 0-2 mol-% 3H2MB and 3H2MV. The high polymer yields and production rates suggest that enrichment of GAOs can be a fruitful strategy for mixed culture production of PHA from waste substrates.

  20. Decreased Membrane Integrity in Aging Typha latifolia L.Pollen (Accumulation of Lysolipids and Free Fatty Acids).

    PubMed Central

    Van Bilsen, DGJL.; Hoekstra, F. A.

    1993-01-01

    Aging of cattail (Typha latifolia L.) pollen was studied at 24[deg]C under conditions of 40 and 75% relative humidity (RH). The decline of viability coincides with increased leakage at imbibition; both processes develop much faster at the higher humidity condition. During aging phospholipids are deesterified and free fatty acids (FFAs) and lysophospholipids (LPLs) accumulate, again, much more rapidly at 75% RH than at 40% RH. The fatty acid composition of the remaining phospholipids hardly changes during aging, which suggests limited involvement of lipid peroxidation in the degradation process. Tests with phospholipase A2 revealed that the saturated fatty acids occur at the sn-1 position of the glycerol backbone of the phospholipids. The fatty acid composition of the LPLs is similar to that of the phospholipids from which they were formed, indicating that the deesterification occurs at random. This favors involvement of free radicals instead of phospholipases in the deesterification process. Liposome studies were carried out to characterize components in the lipid fraction that might account for the leakage associated with aging. Entrapped carboxyfluorescein leaked much more from liposomes when they were partly made up from total lipids from aged pollen than from nonaged pollen. The components causing the leakage were found in both the polar and the neutral lipid fractions. Further purification and subsequent interchanging of the FFAs and LPLs between extracts from aged and nonaged pollen revealed that in neutral lipid extracts the FFAs are entirely responsible for the leakage, whereas in the phospholipid fraction the LPLs are largely responsible for the leakage. The leakage from the liposomes is not caused by fusion. We suggest that the observed loss of viability and increased leakage during aging are due to the nonenzymic accumulation of FFAs and LPLs in the pollen membranes. PMID:12231723

  1. Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants.

    PubMed

    Li, Hao; Liu, Shan-Shan; Yi, Chang-Yu; Wang, Feng; Zhou, Jie; Xia, Xiao-Jian; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan

    2014-12-01

    Root-shoot communications play important roles in plant stress responses. Here, we examined the roles of root-sourced signals in the shoot response to heat in cucumber plants. Cucumber plants grafted onto their own roots and luffa roots were exposed to aerial and root-zone heat to examine their tolerance by assessing the levels of oxidative stress, PSII photoinhibition, accumulation of abscisic acid (ABA), H2 O2 and heat shock protein (HSP) 70 using immunoblotting, chlorophyll fluorescence, immunoassay, CeCl3 staining and Western blotting, respectively. Grafting onto the luffa rootstock enhanced the shoot tolerance to the heat. This enhanced tolerance was associated with increased accumulation of ABA and apoplastic H2 O2 , RBOH transcripts and HSP70 expression and a decrease in oxidative stress in the shoots. The increases in the ABA and H2 O2 concentrations in the shoots were attributed to an increase in ABA transport from roots and an increase in ABA biosynthesis in the shoots when the root-zone and shoots were heat stressed, respectively. Inhibition of H2 O2 accumulation compromised luffa rootstock-induced HSP70 expression and heat tolerance. These results suggest that, under heat stress, ABA triggers the expression of HSP70 in an apoplastic H2 O2 -dependent manner, implicating the role of an ABA-dependent H2 O2 -driven mechanism in a systemic response involving root-shoot communication.

  2. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed

    Chien, K R; Bellary, A; Nicar, M; Mukherjee, A; Buja, L M

    1983-07-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration.

  3. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the im...

  4. Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease.

    PubMed

    Basurto-Islas, Gustavo; Luna-Muñoz, Jose; Guillozet-Bongaarts, Angela L; Binder, Lester I; Mena, Raul; García-Sierra, Francisco

    2008-05-01

    Truncations of tau protein at aspartic acid421 (D421) and glutamic acid391 (E391) residues are associated with neurofibrillary tangles (NFTs) in the brains of Alzheimer disease (AD) patients. Using immunohistochemistry with antibodies to D421- and E391-truncated tau (Tau-C3 and MN423, respectively), we correlated the presence of NFTs composed of these truncated tau proteins with clinical and neuropathologic parameters in 17 AD and 23 non-AD control brains. The densities of NFTs composed of D421- or E391-truncated tau correlated with clinical dementia index and Braak staging in AD. Glutamic acid391 tau truncation was prominent in the entorhinal cortex, whereas D421 truncation was prominent in the subiculum, suggesting that NFTs composed of either D421- or E391-truncated tau may be formed mutually exclusively in these areas. Both truncations were associated with the prevalence of the apolipoprotein E epsilon4 allele. By double labeling, intact tau in NFTs was commonly associated with D421-cleaved tau but not with E391-truncated tau; D421-cleaved tau was never associated with E391-truncated tau. These results indicate that tau is not randomly proteolyzed at different domains, and that proteolysis occurs sequentially from the C-terminus to inner regions of tau in AD progression. Identification of NFTs composed of tau at different stages of truncation may facilitate assessment of neurofibrillary pathology in AD.

  5. Assessing accumulation and biliary excretion of naphthenic acids in yellow perch exposed to oil sands-affected waters.

    PubMed

    van den Heuvel, Michael R; Hogan, Natacha S; MacDonald, Gillian Z; Berrue, Fabrice; Young, Rozlyn F; Arens, Collin J; Kerr, Russell G; Fedorak, Phillip M

    2014-01-01

    Naphthenic acids are known to be the most prevalent group of organic compounds in oil sands tailings-associated waters. Yellow perch (Perca flavescens) were exposed for four months to oil sands-influenced waters in two experimental systems located on an oil sands lease 30 km north of Fort McMurray Alberta: the Demonstration Pond, containing oil sands tailings capped with natural surface water, and the South Bison Pond, integrating lean oil sands. Yellow perch were also sampled from three lakes: Mildred Lake that receives water from the Athabasca River, Sucker Lake, at the edge of oil sands extraction activity, and Kimowin Lake, a distant reference site. Naphthenic acids were measured in perch muscle tissue using gas chromatography-mass spectrometry (GC-MS). Bile metabolites were measured by GC-MS techniques and by high performance liquid chromatography (HPLC) with fluorescence detection at phenanthrene wavelengths. A method was developed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to evaluate naphthenic acids in bile. Tissue analysis did not show a pattern of naphthenic acids accumulation in muscle tissue consistent with known concentrations in exposed waters. Bile fluorescence and LC-HRMS methods were capable of statistically distinguishing samples originating from oil sands-influenced waters versus reference lakes. Although the GC-MS and HPLC fluorescence methods were correlated, there were no significant correlations of these methods and the LC-HRMS method. In yellow perch, naphthenic acids from oil sands sources do not concentrate in tissue at a measurable amount and are excreted through a biliary route. LC-HRMS was shown to be a highly sensitive, selective and promising technique as an indicator of exposure of biota to oil sands-derived naphthenic acids.

  6. Assessing accumulation and biliary excretion of naphthenic acids in yellow perch exposed to oil sands-affected waters.

    PubMed

    van den Heuvel, Michael R; Hogan, Natacha S; MacDonald, Gillian Z; Berrue, Fabrice; Young, Rozlyn F; Arens, Collin J; Kerr, Russell G; Fedorak, Phillip M

    2014-01-01

    Naphthenic acids are known to be the most prevalent group of organic compounds in oil sands tailings-associated waters. Yellow perch (Perca flavescens) were exposed for four months to oil sands-influenced waters in two experimental systems located on an oil sands lease 30 km north of Fort McMurray Alberta: the Demonstration Pond, containing oil sands tailings capped with natural surface water, and the South Bison Pond, integrating lean oil sands. Yellow perch were also sampled from three lakes: Mildred Lake that receives water from the Athabasca River, Sucker Lake, at the edge of oil sands extraction activity, and Kimowin Lake, a distant reference site. Naphthenic acids were measured in perch muscle tissue using gas chromatography-mass spectrometry (GC-MS). Bile metabolites were measured by GC-MS techniques and by high performance liquid chromatography (HPLC) with fluorescence detection at phenanthrene wavelengths. A method was developed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to evaluate naphthenic acids in bile. Tissue analysis did not show a pattern of naphthenic acids accumulation in muscle tissue consistent with known concentrations in exposed waters. Bile fluorescence and LC-HRMS methods were capable of statistically distinguishing samples originating from oil sands-influenced waters versus reference lakes. Although the GC-MS and HPLC fluorescence methods were correlated, there were no significant correlations of these methods and the LC-HRMS method. In yellow perch, naphthenic acids from oil sands sources do not concentrate in tissue at a measurable amount and are excreted through a biliary route. LC-HRMS was shown to be a highly sensitive, selective and promising technique as an indicator of exposure of biota to oil sands-derived naphthenic acids. PMID:24182406

  7. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.).

    PubMed

    Pline, Wendy A; Wilcut, John W; Duke, Stephen O; Edmisten, Keith L; Wells, Randy

    2002-01-30

    Measurement of shikimic acid accumulation in response to glyphosate inhibition of 5-enolpyruvylshikimate-3-phosphate synthase is a rapid and accurate assay to quantify glyphosate-induced damage in sensitive plants. Two methods of assaying shikimic acid, a spectrophotometric and a high-performance liquid chromatography (HPLC) method, were compared for their accuracy of recovering known amounts of shikimic acid spiked into plant samples. The HPLC method recovered essentially 100% of shikimic acid as compared with only 73% using the spectrophotometric method. Relative sensitivity to glyphosate was measured in glyphosate-resistant (GR) and non-GR cotton leaves, fruiting branches, and squares (floral buds) by assaying shikimic acid. Accumulation of shikimic acid was not observed in any tissue, either GR or non-GR, at rates of 5 mM glyphosate or less applied to leaves. All tissues of non-GR plants accumulated shikimic acid in response to glyphosate treatment; however, only fruiting branches and squares of GR plants accumulated a slight amount of shikimic acid. In non-GR cotton, fruiting branches and squares accumulated 18 and 11 times, respectively, more shikimic acid per micromolar of translocated glyphosate than leaf tissue, suggesting increased sensitivity to glyphosate of reproductive tissue over vegetative tissue. GR cotton leaves treated with 80 mM of glyphosate accumulated 57 times less shikimic acid per micromolar of translocated glyphosate than non-GR cotton but only 12.4- and 4-fold less in fruiting branches and squares, respectively. The increased sensitivity of reproductive structures to glyphosate inhibition may be due to a higher demand for shikimate pathway products and may provide an explanation for reports of fruit abortion from glyphosate-treated GR cotton.

  8. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection.

    PubMed

    Abeysekara, Nilwala S; Swaminathan, Sivakumar; Desai, Nalini; Guo, Lining; Bhattacharyya, Madan K

    2016-02-01

    The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean.

  9. Ca2+ accumulation into acidic organelles mediated by Ca2+- and vacuolar H+-ATPases in human platelets

    PubMed Central

    2005-01-01

    Most physiological agonists increase cytosolic free [Ca2+]c (cytosolic free Ca2+ concentration) to regulate a variety of cellular processes. How different stimuli evoke distinct spatiotemporal Ca2+ responses remains unclear, and the presence of separate intracellular Ca2+ stores might be of great functional relevance. Ca2+ accumulation into intracellular compartments mainly depends on the activity of Ca2+- and H+-ATPases. Platelets present two separate Ca2+ stores differentiated by the distinct sensitivity to thapsigargin and TBHQ [2,5-di-(t-butyl)-1,4-hydroquinone]. Although one store has long been identified as the dense tubular system, the nature of the TBHQ-sensitive store remains uncertain. Treatment of platelets with GPN (glycylphenylalanine-2-naphthylamide) impaired Ca2+ release by TBHQ and reduced that evoked by thrombin. In contrast, GPN did not modify Ca2+ mobilization stimulated by ADP or AVP ([arginine]vasopressin). Treatment with nigericin, a proton carrier, and bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, to dissipate the proton gradient into acidic organelles induces a transient increase in [Ca2+]c that was abolished by previous treatment with the SERCA (sarcoplasmic/endoplasmic-reticulum Ca2+-ATPase) 3 inhibitor TBHQ. Depleted acidic stores after nigericin or bafilomycin A1 were refilled by SERCA 3. Thrombin, but not ADP or AVP, reduces the rise in [Ca2+]c evoked by nigericin and bafilomycin A1. Our results indicate that the TBHQ-sensitive store in human platelets is an acidic organelle whose Ca2+ accumulation is regulated by both Ca2+- and vacuolar H+-ATPases. PMID:15847604

  10. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes.

  11. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. PMID:24805963

  12. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle.

  13. Effect of citric acid and rhizosphere bacteria on metal plaque formation and metal accumulation in reeds in synthetic acid mine drainage solution.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2014-06-01

    Many of regions in the world have been affected by acid mine drainage (AMD). The study assessed the effect of rhizosphere bacteria and citric acid (CA) on the metal plaque formation and heavy metal uptake in Phragmites australis cultured in synthetic AMD solution. Mn and Al plaque were not formed, but Fe plaque which was mediated by rhizosphere iron oxidizing bacteria (Fe(II)OB) was observed on the root system of reeds. Fe plaque did not significantly influence the uptake of Fe, Al and Mn into tissues of reeds. CA significantly (p<0.01) inhibited the growth of Fe(II)OB and decreased the formation of Fe plaque. CA also significantly improved (p<0.05) the accumulation of Fe, Mn and Al in all the tissues of reeds. Roots and rhizomes were the main organs to store metals. The roots contained 0.08±0.01mg/g Mn, 2.39±0.26mg/g Fe and 0.19±0.02mg/g Al, while the shoots accumulated 0.04±0.00mg/g Mn, 0.20±0.01mg/g Fe, 0.11±0.00mg/g Al in reeds cultured in solution amended with 2.101g/l CA and without inoculation of rhizosphere bacteria.

  14. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor

    PubMed Central

    De Sadeleer, Emerik; Vergauwen, Rudy; Struyf, Tom; Le Roy, Katrien; Van den Ende, Wim

    2015-01-01

    Fructans are important vacuolar reserve carbohydrates with drought, cold, ROS and general abiotic stress mediating properties. They occur in 15% of all flowering plants and are believed to display health benefits as a prebiotic and dietary fiber. Fructans are synthesized by specific fructosyltransferases and classified based on the linkage type between fructosyl units. Inulins, one of these fructan types with β(2-1) linkages, are elongated by fructan:fructan 1-fructosyltransferases (1-FFT) using a fructosyl unit from a donor inulin to elongate the acceptor inulin molecule. The sequence identity of the 1-FFT of Viguiera discolor (Vd) and Helianthus tuberosus (Ht) is 91% although these enzymes produce distinct fructans. The Vd 1-FFT produces high degree of polymerization (DP) inulins by preferring the elongation of long chain inulins, in contrast to the Ht 1-FFT which prefers small molecules (DP3 or 4) as acceptor. Since higher DP inulins have interesting properties for industrial, food and medical applications, we report here on the influence of two amino acids on the high DP inulin production capacity of the Vd 1-FFT. Introducing the M19F and H308T mutations in the active site of the Vd 1-FFT greatly reduces its capacity to produce high DP inulin molecules. Both amino acids can be considered important to this capacity, although the double mutation had a much higher impact than the single mutations. PMID:26322058

  15. Accumulation of fatty acids in purslane grown in hydroponic salt stress conditions.

    PubMed

    Anastácio, Ana; Carvalho, Isabel S

    2013-03-01

    Purslane (Portulaca oleracea L.) is the eighth most common plant distributed throughout the world being a heat- and drought-tolerant plant. In this study, we evaluated the effect of salinity on total amounts of fatty acids (FAs) and ω3/ω6 ratio in leaves of purslane. Plants exposed to four levels of chloride salinity in the root zone (60, 90, 120 and 240 mM NaCl) for 40 days showed no signs of toxicity or death. The main FAs detected were C16:0>C18:3>C18:2. The ratio of ω6 to ω3 was not changed with salt stress. Hierarchic cluster analysis brought together 60 and 90 mM NaCl in control plants, based on their FA content. The results of this study confirm the purslane as a plant rich in FAs whose consumption may contribute to dietary intake of ω3 polyunsaturated fatty acid, with obvious benefits to human health.

  16. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43

    PubMed Central

    Kimura, Ikuo; Ozawa, Kentaro; Inoue, Daisuke; Imamura, Takeshi; Kimura, Kumi; Maeda, Takeshi; Terasawa, Kazuya; Kashihara, Daiji; Hirano, Kanako; Tani, Taeko; Takahashi, Tomoyuki; Miyauchi, Satoshi; Shioi, Go; Inoue, Hiroshi; Tsujimoto, Gozoh

    2013-01-01

    The gut microbiota affects nutrient acquisition and energy regulation of the host, and can influence the development of obesity, insulin resistance, and diabetes. During feeding, gut microbes produce short-chain fatty acids, which are important energy sources for the host. Here we show that the short-chain fatty acid receptor GPR43 links the metabolic activity of the gut microbiota with host body energy homoeostasis. We demonstrate that GPR43-deficient mice are obese on a normal diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when fed a high-fat diet. Raised under germ-free conditions or after treatment with antibiotics, both types of mice have a normal phenotype. We further show that short-chain fatty acid-mediated activation of GPR43 suppresses insulin signalling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of unincorporated lipids and glucose in other tissues. These findings establish GPR43 as a sensor for excessive dietary energy, thereby controlling body energy utilization while maintaining metabolic homoeostasis. PMID:23652017

  17. Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.).

    PubMed

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Tripathi, Rudra D; Nautiyal, Chandra S

    2015-07-01

    Trichoderma reesei is an industrially important fungi which also imparts stress tolerance and plant growth promotion in various crops. Arsenic (As) contamination of field soils is one of the challenging problems in agriculture, posing potential threats for both human health and the environment. Plants in association with microbes are a liable method to improve metal tolerance and enhance crop productivity. Chickpea (Cicer arietinum L.), is an important grain legume providing cheap source of protein in semi-arid regions including As affected areas. In this study we report the role of T. reesei NBRI 0716 (NBRI 0716) in supporting chickpea growth and improving soil quality in As simulated conditions. NBRI 0716 modulated the As speciation and its availability to improve grain yield and quality (amino acids and mineral content) in chickpea (C. arietinum L.) plants grown in As spiked soil (100 mg As kg(-1) soil). Arsenic accumulation and speciation results indicate that arsenate [As(V)] was the dominant species in chickpea seeds and rhizosphere soil. The Trichoderma reduced total grain inorganic As (Asi) by 66% and enhanced dimethylarsonic acid (DMA) and monomethylarsinic acid (MMA) content of seed and rhizosphere soil. The results indicate a probable role of NBRI 0716 in As methylation as the possible mechanism for maneuvering As stress in chickpea. Analysis of functional diversity using carbon source utilization (Biolog) showed significant difference in diversity and evenness indices among the soil microbial rhizosphere communities. Microbial diversity loss caused by As were prevented in the presence of Trichoderma NBRI 0716.

  18. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4

    PubMed Central

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C.; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H+ transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties ‘Ordinary Ponkan (OPK)’ and an early maturing mutant ‘Zaoshu Ponkan (ZPK)’. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  19. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    NASA Astrophysics Data System (ADS)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  20. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  1. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina.

    PubMed

    Cingoz, Gunce Sahin; Gurel, Ekrem

    2016-08-01

    Long periods of high temperature or transitory increased temperature, a widespread agricultural problem, may lead to a drastic reduction in economic yield, affecting plant growth and development in many areas of the world. Heat stress causes many anatomical and physiological changes in plants. Its unfavorable effects can be alleviated by thermotolerance induced by exogenous application of plant growth regulators and osmoprotectants or by gradual application of temperature stress. Digitalis trojana Ivanina is an important medicinal plant species well known mainly for its cardenolides. The production of cardenolides via traditional agriculture is commercially inadequate. In this study, elicitation strategies were employed for improving crop thermotolerance and accumulation of cardenolides. For these purposes, the effects of salicylic acid (SA) and/or high temperature treatments in inducing cardenolide accumulation and thermotolerance were tested in callus cultures of D. trojana. Considerable increases in the production of cardenolides (up to 472.28 μg.g(-1) dry weight, dw) and induction of thermotolerance capacity were observed when callus cultures were exposed to high temperature for 2 h after pretreating with SA. High temperature treatments (2 h and 4 h) caused a marked reduction in superoxide dismutase (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities, while SA pretreatment increased their activities. High temperature and/or SA appeared to increase the levels of proline, total phenolic, and flavonoid content. Elevated phenolic accumulation could be associated with increased stress protection. These results indicated that SA treatments induced synthesis of antioxidants and cardenolides, which may play a significant role in resistance to high temperature stress. PMID:27105421

  2. Flaxseed oil and alpha-lipoic acid combination ameliorates hepatic oxidative stress and lipid accumulation in comparison to lard

    PubMed Central

    2013-01-01

    Background Intake of high-fat diet is associated with increased non-alcoholic fatty liver disease (NAFLD). Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in NAFLD. Both flaxseed oil (FO) and α-lipoic acid (LA) exert potential benefit to NAFLD. The aim of this study was to determine the effect of the combination of FO and LA on hepatic lipid accumulation and oxidative stress in rats induced by high-fat diet. Methods LA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO + LA). The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (control group), or 75% lard and 25% FO + LA (L-FO + LA group), or 50% lard and 50% FO + LA (M-FO + LA group), or FO + LA (H-FO + LA group). Male Sprague–Dawley rats were fed for 10 weeks and then killed for liver collection. Results Intake of high-fat lard caused a significant hepatic steatosis. Replacement with FO + LA was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. The combination of FO and LA also significantly elevated hepatic antioxidant defense capacities, as evaluated by the remarkable increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. Conclusion The combination of FO and LA may contribute to prevent fatty livers such as NAFLD by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23634883

  3. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris.

  4. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    PubMed

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  5. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri.

    PubMed

    Horn, Patrick J; Liu, Jinjie; Cocuron, Jean-Christophe; McGlew, Kathleen; Thrower, Nicholas A; Larson, Matt; Lu, Chaofu; Alonso, Ana P; Ohlrogge, John

    2016-05-01

    Two Brassicaceae species, Physaria fendleri and Camelina sativa, are genetically very closely related to each other and to Arabidopsis thaliana. Physaria fendleri seeds contain over 50% hydroxy fatty acids (HFAs), while Camelina sativa and Arabidopsis do not accumulate HFAs. To better understand how plants evolved new biochemical pathways with the capacity to accumulate high levels of unusual fatty acids, transcript expression and protein sequences of developing seeds of Physaria fendleri, wild-type Camelina sativa, and Camelina sativa expressing a castor bean (Ricinus communis) hydroxylase were analyzed. A number of potential evolutionary adaptations within lipid metabolism that probably enhance HFA production and accumulation in Physaria fendleri, and, in their absence, limit accumulation in transgenic tissues were revealed. These adaptations occurred in at least 20 genes within several lipid pathways from the onset of fatty acid synthesis and its regulation to the assembly of triacylglycerols. Lipid genes of Physaria fendleri appear to have co-evolved through modulation of transcriptional abundances and alterations within protein sequences. Only a handful of genes showed evidence for sequence adaptation through gene duplication. Collectively, these evolutionary changes probably occurred to minimize deleterious effects of high HFA amounts and/or to enhance accumulation for physiological advantage. These results shed light on the evolution of pathways for novel fatty acid production in seeds, help explain some of the current limitations to accumulation of HFAs in transgenic plants, and may provide improved strategies for future engineering of their production.

  6. Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress.

    PubMed

    An, Meiling; Mou, Shanli; Zhang, Xiaowen; Zheng, Zhou; Ye, Naihao; Wang, Dongsheng; Zhang, Wei; Miao, Jinlai

    2013-12-01

    The Antarctic ice microalgae Chlamydomonas sp. ICE-L which is highly resistant to salt stress holds promise in providing an alternative species for the production of microalgal oil. We studied the effects of the alga in confrontation with NaCl stress on the growth, oil yield and expression of fatty acid desaturase genes. The growth rate of Chlamydomonas sp. ICE-L decreased with the gradual increase in NaCl concentration. Interestingly, we found that the highest lipid content was achieved at 16‰ NaCl, reaching 23% (w/w). Meanwhile, the expression of Δ9ACPCiFAD increased rapidly while Δ12CiFAD, ω3CiFAD2 and Δ6CiFAD showed a delayed elevation in response to altered salt stress. C18:3 was the dominant PUFA, which account for about 75% TFA in Chlamydomonas sp. ICE-L. Under 96‰ and 128‰ NaCl stress, the content of C20:5 almost approached that of C18:3. In contrast, low salinity enhanced the dominance of C18:3 at the expense of C20:3 and C20:5.

  7. Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment.

    PubMed

    Liu, Shuli; Li, Xiangkun; Zhang, Guangming; Zhang, Jie

    2015-11-01

    This study aimed to optimize four factors affecting biomass accumulation and 5-aminolevulinic acid (ALA) yield together with pollutants removal in Rhodobacter sphaeroides wastewater treatment. Results showed that it was feasible to produce biomass and ALA in R. sphaeroides wastewater treatment. Microaerobic, 1,000-3,000 lux, and pH 7.0 were optimal conditions for the highest ALA yield of 4.5 ± 0.5 mg/g-biomass. Under these conditions, COD removal and biomass production rate were 93.3 ± 0.9% and 31.8 ± 0.5 mg/l/h, respectively. In addition, trace elements Fe(2+), Mg(2+), Ni(2+), and Zn(2+) further improved the ALA yield, COD removal, and biomass production rate. Specifically, the highest ALA yield (12.5 ± 0.6 mg/g-biomass) was achieved with Fe(2+) addition.

  8. Investigation of the accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) in rat kidneys.

    PubMed

    Aydin, Handan; Ozdemir, Nurullah; Uzunören, Nuray

    2005-10-01

    The accumulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (2,4-DCP) in the kidneys of rats was investigated. Male and female Sprague-Dawley rats were given 2,4-D in drinking water and food for 30 days. Group A (control group) was fed a normal diet, Group B was fed 50 ppm 2,4-D in 15 g food, Group C received 100 ppm 2,4-D in 15 g food, Group D received 25 ppm 2,4-D in 15 ml drinking water and Group E was given 50 ppm 2,4-D in 15 ml of drinking water. Levels of 2,4-D and 2,4-DCP in kidneys were determined using high performance liquid chromatography (HPLC). It was observed that at low doses of 2,4-D, the metabolite, 2,4-DCP found in the kidneys.

  9. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    NASA Astrophysics Data System (ADS)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  10. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves.

    PubMed

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-01-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress. PMID:26552588

  11. Lead accumulation and depression of delta-aminolevulinic acid dehydratase (ALAD) in young birds fed automotive waste oil

    USGS Publications Warehouse

    Eastin, W.C.; Hoffman, D.J.; O'Leary, C.T.

    1983-01-01

    The effects of a 3-week dietary exposure to automotive waste crankcase oil (WCO) were examined in 1-week-old mallard (Anas platyrhynchos) ducklings and pheasant (Phasianus colchicus) chicks. Treatment groups consisted of birds exposed to 0.5, 1.5, or 4.5% WCO, to 4.5% clean crankcase oil (CCO), or untreated controls. In both species, red blood cell ALAD activity was significantly inhibited after one week by 50 to 60% in the 0.5% WCO group and by 85 to 90% in the 4.5% WCO group due to the presence of lead. Growth, hematocrit, and hemoglobin were not significantly affected at the end of three weeks. Plasma aspartate aminotransferase (AST) activity was higher in mallards after three weeks of ingesting either 4.5% WCO or 4.5% CCO, suggesting an oil-related effect due to components other than lead. Treatment had no effect on plasma concentration of uric acid, glucose, triglycerides, total protein, or cholesterol. Lead analysis showed the WCO to contain 4,200 ppm Pb and the CCO to contain 2 ppm. Tissues of mallards were examined for accumulation of lead and the order of accumulation at the end of three weeks was kidney > liver > blood ~ brain.

  12. Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores[OPEN

    PubMed Central

    2016-01-01

    Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme β-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth. PMID:26887919

  13. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

    PubMed

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-11-15

    Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis. PMID:23021314

  14. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

    PubMed

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-11-15

    Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis.

  15. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    PubMed Central

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-01-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress. PMID:26552588

  16. Control of diapause by acidic pH and ammonium accumulation in the hemolymph of Antarctic copepods.

    PubMed

    Schründer, Sabine; Schnack-Schiel, Sigrid B; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 (+)) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 (+)). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  17. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  18. TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development Regulators in Arabidopsis1[C][W

    PubMed Central

    Chen, Mingxun; Xuan, Lijie; Wang, Zhong; Zhou, Longhua; Li, Zhilan; Du, Xue; Ali, Essa; Zhang, Guoping; Jiang, Lixi

    2014-01-01

    Fatty acids (FAs) and FA-derived complex lipids play important roles in plant growth and vegetative development and are a class of prominent metabolites stored in mature seeds. The factors and regulatory networks that control FA accumulation in plant seeds remain largely unknown. The role of TRANSPARENT TESTA8 (TT8) in the regulation of flavonoid biosynthesis and the formation of seed coat color is extensively studied; however, its function in affecting seed FA biosynthesis is poorly understood. In this article, we show that Arabidopsis (Arabidopsis thaliana) TT8 acts maternally to affect seed FA biosynthesis and inhibits seed FA accumulation by down-regulating a group of genes either critical to embryonic development or important in the FA biosynthesis pathway. Moreover, the tt8 mutation resulted in reduced deposition of protein in seeds during maturation. Posttranslational activation of a TT8-GLUCOCORTICOID RECEPTOR fusion protein and chromatin immunoprecipitation assays demonstrated that TT8 represses the activities of LEAFY COTYLEDON1, LEAFY COTYLEDON2, and FUSCA3, the critical transcriptional factors important for seed development, as well as CYTIDINEDIPHOSPHATE DIACYLGLYCEROL SYNTHASE2, which mediates glycerolipid biosynthesis. These results help us to understand the entire function of TT8 and increase our knowledge of the complicated networks regulating the formation of FA-derived complex lipids in plant seeds. PMID:24722549

  19. Adipocyte Accumulation of Long-Chain Fatty Acids in Obesity is Multifactorial, Resulting from Increased Fatty Acid Uptake and Decreased Activity of Genes Involved in Fat Utilization

    PubMed Central

    Walewski, José L.; Ge, Fengxia; Gagner, Michel; Inabnet, William B.; Pomp, Alfons; Branch, Andrea D.

    2010-01-01

    Background The obesity epidemic causes significant morbidity and mortality. Knowledge of cellular function and gene expression in obese adipose tissue will yield insights into obesity pathogenesis and suggest therapeutic targets. The aim of this work is to study the processes determining fat accumulation in adipose tissue from obese patients. Methods Omental fat was collected from two cohorts of obese bariatric surgery patients and sex-matched normal-weight donors. Isolated adipocytes were compared for cell size, volume, and long-chain fatty acid (LCFA) uptake. Omental fat RNAs were screened by 10K microarray (cohort 1: three obese, three normal) or Whole Genome microarray (cohort 2: seven obese, four normal). Statistical differences in gene and pathway expression were identified in cohort 1 using the GeneSifter Software (Geospiza) with key results confirmed in cohort 2 samples by microarray, quantitative real-time polymerase chain reaction, and pathway analysis. Results Obese omental adipocytes had increased surface area, volume, and Vmax for saturable LCFA uptake. Dodecenoyl-coenzyme A delta isomerase, central to LCFA metabolism, was approximately 1.6-fold underexpressed in obese fat in cohorts 1 and 2. Additionally, the Kyoto Encyclopedia of Genes and Genomics pathway analysis identified oxidative phosphorylation and fatty acid metabolism pathways as having coordinate, nonrandom down-regulation of gene expression in both cohorts. Conclusions In obese omental fat, saturable adipocyte LCFA uptake was greater than in controls, and expression of key genes involved in lipolysis, β-oxidation, and metabolism of fatty acids was reduced. Thus, both increased uptake and reduced metabolism of LCFAs contribute to the accumulation of LCFAs in obese adipocytes. PMID:19866242

  20. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    PubMed Central

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  1. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice.

    PubMed

    Zheng, Guodong; Qiu, Yangyang; Zhang, Qing-Feng; Li, Dongming

    2014-09-28

    Obesity has become a public health concern due to its positive association with the incidence of many diseases, and coffee components including chlorogenic acid (CGA) and caffeine have been demonstrated to play roles in the suppression of fat accumulation. To investigate the mechanism by which CGA and caffeine regulate lipid metabolism, in the present study, forty mice were randomly assigned to four groups and fed diets containing no CGA or caffeine, CGA, caffeine, or CGA+caffeine for 24 weeks. Body weight, intraperitoneal adipose tissue (IPAT) weight, and serum biochemical parameters were measured, and the activities and mRNA and protein expression of lipid metabolism-related enzymes were analysed. There was a decrease in the body weight and IPAT weight of mice fed the CGA+caffeine diet. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, TAG and leptin of mice fed the CGA+caffeine diet. The activities of carnitine acyltransferase (CAT) and acyl-CoA oxidase (ACO) were increased in mice fed the caffeine and CGA+caffeine diets, while the activity of fatty acid synthase (FAS) was suppressed in those fed the CGA+caffeine diet. The mRNA expression levels of AMP-activated protein kinase (AMPK), CAT and ACO were considerably up-regulated in mice fed the CGA+caffeine diet, while those of PPARγ2 were down-regulated. The protein expression levels of AMPK were increased and those of FAS were decreased in mice fed the CGA+caffeine diet. These results indicate that CGA+caffeine suppresses fat accumulation and body weight gain by regulating the activities and mRNA and protein expression levels of hepatic lipid metabolism-related enzymes and that these effects are stronger than those exerted by CGA and caffeine individually. PMID:25201308

  2. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

    PubMed

    Ochoa-Estopier, Abril; Guillouet, Stéphane E

    2014-01-20

    Lipid accumulation in oleaginous yeasts is triggered by nutrient imbalance in the culture medium between the carbon source in excess and the nitrogen source in limiting concentration. However Yarrowia lipolytica when cultivated on glucose as the sole carbon source, mainly produces citric acid upon nitrogen limitation over lipid accumulation (only 5-10% triacylglycerol). Therefore for developing bioprocess for the production of triacylglycerol from renewable carbon source as glucose it is of first importance to control this imbalance in order to avoid citric acid production during TAG accumulation. Using D-stat cultivation system, where the N/C was linearly decreased using a constant change rate we were able to identify the N/C ratio inducing TAG accumulation (0.085NmolCmol(-1)) and citric acid (0.021NmolCmol(-1)). We therefore demonstrated that it was possible to accumulate lipids without excretion citric acid as long as the N/C was within this indicated range. Moreover enzyme specific activities measurement during the D-stat indicated that ATP-citrate lyase, malic enzyme and acetyl-coA carboxylase were strongly induced at the onset of lipid accumulation and showed different patterns when citric acid was excreted. Our results give relevant information for future industrial bioprocess development concerning the production of lipids using renewable carbohydrate substrates as an alternative way to produce synthons for fuel or chemical industry. By controlling the N/C over the fermentation process on glucose Y. lipolytica can accumulate lipids without excreting citric acid.

  3. Accumulating evidence supports a taste component for free fatty acids in humans.

    PubMed

    Mattes, Richard D

    2011-09-26

    The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA.

  4. Accumulation of Amino Acids in Rhizobium sp. Strain WR1001 in Response to Sodium Chloride Salinity

    PubMed Central

    Hua, Sui-Sheng T.; Tsai, Victor Y.; Lichens, Georgia M.; Noma, Amy T.

    1982-01-01

    Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations. PMID:16346049

  5. Accumulating Evidence Supports a Taste Component for Free Fatty Acids in Humans

    PubMed Central

    Mattes, Richard D.

    2011-01-01

    The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA. PMID:21557960

  6. Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration

    SciTech Connect

    Goswami, B.B.; Sharma, O.K.

    1980-01-01

    Highly purified poly(adenylic acid)-containing RNA isolated from livers of rats fed 0.25% DL-etionine in the diet for 7 days accepted methyl groups from S-adenosyl(methyl-/sup 3/H)methionine, when incubated in vitro with mRNA methyltransferases from vaccinia virus or Ehrlich ascites cells, whereas RNA from control rats had no such activity. Nuclease digestion followed by chromatographic analyses of mRNA methylated in vitro revealed that the methyl groups were incorporated at the 5' end into cap 1 structures (m/sup 7/GpppNmp...) by the viral enzyme, whereas both cap 0 (m/sup 7/GpppNp...) and cap 1 (m/sup 7/Gpppm/sup 6/Am...) structures were formed by the Ehrlich ascites cell enzymes. the methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals in an in vitro protein synthesizing system from wheat germ.

  7. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    PubMed

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a

  8. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    PubMed

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a

  9. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-11-12

    The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and

  10. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  11. The inhibitory effect of bevantolol on the accumulation of non-esterified fatty acids during ischaemia in the dog heart in situ.

    PubMed

    Miura, I; Nasa, Y; Ichihara, K; Abiko, Y

    1991-04-01

    1. The left anterior descending coronary artery (LAD) was completely ligated for 90 min (i.e. myocardial ischaemia was produced) in the dog anaesthetized with pentobarbital. 2. Bevantolol, a beta 1-adrenoceptor antagonist, was injected (1 mg/kg, intravenously) 5 min before LAD occlusion. The bevantolol injection decreased heart rate without affecting blood pressure. 3. The myocardial samples were taken from the LAD area immediately after the end of LAD occlusion, and were subjected to analysis of the myocardial levels of non-esterified fatty acids (NEFA). 4. In dogs in which saline was injected, ischaemia produced accumulation of NEFA, especially arachidonic and palmitoleic acids, in the myocardium. 5. In dogs in which bevantolol was injected, the accumulation of NEFA induced by ischaemia was almost completely inhibited. 6. It is concluded that bevantolol inhibits ischaemia-induced accumulation of NEFA in the myocardium, and that stimulation of the beta 1-adrenoceptors is probably responsible for NEFA accumulation induced by ischaemia.

  12. NFX1-LIKE2 (NFXL2) Suppresses Abscisic Acid Accumulation and Stomatal Closure in Arabidopsis thaliana

    PubMed Central

    Lisso, Janina; Schröder, Florian; Fisahn, Joachim; Müssig, Carsten

    2011-01-01

    The NFX1-LIKE1 (NFXL1) and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA) overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO2 concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions. PMID:22073231

  13. Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex

    SciTech Connect

    DeFelipe, J.; Jones, E.G.

    1985-12-01

    Light and electron microscopic methods were used to examine the neurons in the monkey cerebral cortex labeled autoradiographically following the uptake and transport of (/sup 3/H)-gamma-aminobutyric acid (GABA). Nonpyramidal cell somata in the sensory-motor areas and primary visual area (area 17) were labeled close to the injection site and at distances of 1 to 1.5 mm beyond the injection site, indicating labeling by retrograde axoplasmic transport. This labeling occurred preferentially in the vertical dimension of the cortex. Prior injections of colchicine, an inhibitor of axoplasmic transport, abolished all labeling of somata except those within the injection site. In each area, injections of superficial layers (I to III) produced labeling of clusters of cell somata in layer V, and injections of the deep layers (V and VI) produced labeling of clusters of cell somata in layers II and III. In area 17, injections of the superficial layers produced dense retrograde cell labeling in three bands: in layers IVC, VA, and VI. Vertically oriented chains of silver grains linked the injection sites with the resulting labeled cell clusters. In all areas, the labeling of cells in the horizontal dimension was insignificant. Electron microscopic examination of labeled neurons confirms that the neurons labeled at a distance from an injection site are nonpyramidal neurons, many with somata so small that they would be mistaken for neuroglial cells light microscopically. They receive few axosomatic synapses, most of which have symmetric membrane thickenings. The vertical chains of silver grains overlie neuronal processes identifiable as both dendrites and myelinated axons, but unmyelinated axons may also be included. The clusters of (/sup 3/H)GABA-labeled cells are joined to one another and to adjacent unlabeled cells by junctional complexes, including puncta adherentia and multi-lamellar cisternal complexes.

  14. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wan, Linglin; Li, Aifen; Zhang, Chengwu

    2013-11-01

    Nitrogen deficiency is an effective strategy for enhancing lipid production in microalgae. Close relationships exist among lipid production, microalgal species, and nitrogen sources. We report growth, lipid accumulation, and fatty acid composition in four microalgae ( Chlorococcum ellipsoideum UTEX972, Chlorococcum nivale LB2225, Chlorococcum tatrense UTEX2227, and Scenedesmus deserticola JNU19) under nitrate- and urea-nitrogen deficiencies. We found three patterns of response to nitrogen deficiency: Type-A (decrease in biomass and increase in lipid content), Type-B (reduction in both biomass and lipid content), and Type-C (enhancement of both biomass and lipid content). Type-C microalgae are potential candidates for large-scale oil production. Chlorococcum ellipsoideum, for example, exhibited a neutral lipid production of up to 239.6 mg/(L·d) under urea-nitrogen deficiency. In addition, nitrogen deficiency showed only a slight influence on lipid fractions and fatty acid composition. Our study provides useful information for further screening hyper-lipid microalgal strains for biofuel production.

  15. Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids.

    PubMed

    Gao, Lu; Peng, Kejian; Xia, Yan; Wang, Guiping; Niu, Liyuan; Lian, Chunlan; Shen, Zhenguo

    2013-01-01

    Phytolacca americana L. can accumulate large amounts of heavy metals in its aerial tissues, especially cadmium (Cd) and manganese (Mn). It has great potential for use in phytoextraction of metals from multi-metal-contaminated soils. This study was conducted to further investigate the Cd- and Mn-tolerance strategies of this plant. Concentrations of non-protein thiols (NPTs) and phytochelatins (PCs) in leaves and roots increased significantly as the concentration of Cd in solution increased. The molar ratios of PCs:soluble Cd ranged from 1.8 to 3.6 in roots and 8.1 to 31.6 in leaves, suggesting that the cellular response involving PC synthesis was sufficient to complex Cd ions in the cytosol, especially that of leaves. In contrast, excess Mn treatments did not result in a significant increase in NPT or PC concentrations in leaves or roots. Oxalic acid concentrations in leaves of plants exposed to 2 or 20 mM Mn reached 69.4 to 89.3 mg (0.771 to 0.992 mmol) g(-1) dry weight, respectively, which was approximately 3.7- to 8.6-fold higher than the Mn level in the 0.6 M HCl extract. Thus, oxalic acid may play an important role in the detoxification of Mn.

  16. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation. PMID:26551651

  17. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea.

    PubMed

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  18. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea

    PubMed Central

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  19. The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism.

    PubMed

    González-Agüero, Mauricio; Tejerina Pardo, Luis; Zamudio, María Sofía; Contreras, Carolina; Undurraga, Pedro; Defilippi, Bruno G

    2016-04-25

    Cherimoya (Annona cherimola Mill.) is a subtropical fruit characterized by a significant increase in organic acid levels during ripening, making it an interesting model for studying the relationship between acidity and fruit flavor. In this work, we focused on understanding the balance between the concentration of organic acids and the gene expression and activity of enzymes involved in the synthesis and degradation of these metabolites during the development and ripening of cherimoya cv. "Concha Lisa". Our results showed an early accumulation of citric acid and other changes associated with the accumulation of transcripts encoding citrate catabolism enzymes. During ripening, a 2-fold increase in malic acid and a 6-fold increase in citric acid were detected. By comparing the contents of these compounds with gene expression and enzymatic activity levels, we determined that cytoplasmic NAD-dependent malate dehydrogenase (cyNAD-MDH) and mitochondrial citrate synthase (mCS) play important regulatory roles in the malic and citric acid biosynthetic pathways.

  20. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  1. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2009-08-01

    The effect of pH (4.0-11.0) on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation under mesophilic and thermophilic conditions were investigated. The WAS hydrolysis increased markedly in thermophilic fermentation compared to mesophilic fermentation at any pH investigated. The hydrolysis at alkaline pHs (8.0-11.0) was greater than that at acidic pHs, but both of the acidic and alkaline hydrolysis was higher than that pH uncontrolled under either mesophilic or thermophilic conditions. No matter in mesophilic or thermophilic fermentation, the accumulation of SCFAs at alkaline pHs was greater than at acidic or uncontrolled pHs. The optimum SCFAs accumulation was 0.298g COD/g volatile suspended solids (VSS) with mesophilic fermentation, and 0.368 with thermophilic fermentation, which was observed respectively at pH 9.0 and fermentation time 5 d and pH 8.0 and time 9 d. The maximum SCFAs productions reported in this study were much greater than that in the literature. The analysis of the SCFAs composition showed that acetic acid was the prevalent acid in the accumulated SCFAs at any pH investigated under both temperatures, followed by propionic acid and n-valeric acid. Nevertheless, during the entire mesophilic and thermophilic fermentation the activity of methanogens was inhibited severely at acid or alkaline pHs, and the highest methane concentration was obtained at pH 7.0 in most cases. The studies of carbon mass balance showed that during WAS fermentation the reduction of VSS decreased with the increase of pH, and the thermophilic VSS reduction was greater than the mesophilic one. Further investigation indicated that most of the reduced VSS was converted to soluble protein and carbohydrate and SCFAs in two fermentations systems, while little formed methane and carbon dioxide.

  2. Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion.

    PubMed

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-04-19

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA concentrations was first evaluated with synthetic digestate. Two linear relationships were observed between current densities and VFA levels from 1 to 30 mM (0.04 to 8.50 mA/m(2), R(2) = 0.97) and then from 30 to 200 mM (8.50 to 10.80 mA/m(2), R(2) = 0.95). The detection range was much broader than that of other existing VFA biosensors. The biosensor had no response to protein and lipid which are frequently found along with VFAs in organic waste streams from AD, suggesting the selective detection of VFAs. The current displayed different responses to VFA levels when different ionic strengths and external resistances were applied, though linear relationships were always observed. Finally, the biosensor was further explored with real AD effluents and the results did not show significance differences with those measured by GC. The simple and efficient biosensor showed promising potential for online, inexpensive, and reliable measurement of VFA levels during AD and other anaerobic processes.

  3. [Effects of low molecular organic acids on nitrogen accumulation, nodulation, and nitrogen fixation of soybean (Glycine max L.) under phosphorus deficiency stress].

    PubMed

    Wang, Shu-Qi; Han, Xiao-Zeng; Qiao, Yun-Fa; Yan, Jun; Li, Xiao-Hui

    2009-05-01

    A greenhouse sand culture experiment was conducted to study the effects of citric acid, oxalic acid, malic acid, and their mixture on the nitrogen accumulation, nodulation, and nitrogen fixation of soybean. After the application of test low molecular weight organic acids, the nitrogen accumulation in the aboveground part of soybean decreased by 17.6%-44.9% at seedling stage, 29.8%-88.4% at flowering stage, 9.18%-69.6% at podding stage, and 2.21%-41.7% at maturing stage). In the meanwhile, the nodule number, nitrogenase activity, and leghemoglobin content decreased by 11.4%-59.6%, 80.5%-91.7%, and 11.9%-59.9%, respectively, resulting in a significant decrease (9.71%-64.5%) of nitrogen fixation of soybean, compared with the control. The inhibitory effect of test low molecular weight organic acids increased with their increasing concentration. Oxalic acid had a higher inhibitory effect than citric acid and malic acid, and the mixture of the three organic acids had an enhanced inhibitory effect.

  4. Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light

    SciTech Connect

    Talbott, L.D.; Zeiger, E. )

    1993-08-01

    Changes in neutral sugar and organic acid content of guard cells were quantitated by high-performance liquid chromatography during stomatal opening in different light qualities. Sonicated Vicia faba epidermal peels were irradiated with 10 [mu]mol m[sup [minus]2] s[sup [minus]1] of blue light, a fluence rate insufficient for the activation of guard cell photosynthesis, or 125 [mu]mol m[sup [minus]2] s[sup [minus]1] of red light, in the presence of 1mM KCl, 0.1 mM CaCl[sub 2]. The low-fluence-rate blue light stimulated an average net stomatal opening of 4.7 [mu]m in 2 h, whereas the saturating fluence rate of red light stimulated an average net opening of 3.8 [mu]m in 2 h. Under blue light, the malate content of guard cells increased to 173% of the initial level during the first 30 min of opening and declined as opening continued. Sucrose levels continuously rose throughout the blue light-stimulated opening, reaching 215% of the initial level after 2 h. The starch hydrolysis products maltose and maltotriose remained elevated at all times. Under red light, guard cells showed very little increase in organic acid or maltose levels, whereas sucrose levels increased to 208% of the initial level after 2 h. Total measured organic metabolite concentrations were correlated with stomatal apertures in all cases except where substantial malate increases occurred. These results support the hypothesis that light quality modulates alternative mechanisms of osmotic accumulation guard cells, including potassium uptake, photosynthetic sugar production, and starch breakdown. 29 refs., 5 figs., 2 tab.

  5. Effect of coliform bacteria, feed deprivation, and pH on ruminal D-lactic acid production by steer or continuous-culture microbial populations changed from forage to concentrates.

    PubMed

    Slyter, L L; Rumsey, T S

    1991-07-01

    Fecal coliform bacteria were isolated from three herbivores (cattle, horse, and red panda) and shown to produce primarily the D-form of lactate, plus acetate and ethanol when grown anaerobically in 1.0% glucose broth. To evaluate coliform contribution to D-lactate acidosis in cattle, experiments involving a forage-adapted steer (fasted or normally fed) and four 500-ml fermentors were compared during 3 d of grain overload. In both systems, coliforms and D- and L-lactic acid production were greater from fasted than from normally fed steer inoculum. With fasted inoculum, coliform counts peaked (3 x 10(7)/ml at 7 h after initial engorgement) and receded to 10(3)/ml by the time D-lactate concentration peaked, indicating that bacteria other than coliform were responsible for the delayed peaking of D- (48 h) compared with L-lactate (24 h). Increases in lactobacilli more closely mimicked D-lactate increases than did changes in coliforms. The comparisons between the steer and fermentors showed many similar shifts in end-products and groups of bacteria, more so with the experiment initiated with fasted than with normal inoculum. With normal inoculum, VFA content and moles of butyrate/100 mol of VFA were greater in vitro than in vivo; VFA content presumably was larger because of VFA absorption in vivo. In a separate experiment, cultures initiated with identical inoculum and given the same amount of feed accumulated more lactate when pH was permitted to decrease to 5.0 than when pH was maintained at 5.5 for 6.0 or above, indicating the role buffers can have in controlling acidosis during diet change to concentrates.

  6. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome.

    PubMed

    Jacome-Sosa, M Miriam; Borthwick, Faye; Mangat, Rabban; Uwiera, Richard; Reaney, Martin J; Shen, Jianheng; Quiroga, Ariel D; Jacobs, René L; Lehner, Richard; Proctor, Spencer D; Nelson, Randal C

    2014-07-01

    Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats. PMID:24775093

  7. Control of. cap alpha. -amylase mRNA accumulation by gibberellic acid and calcium in barley aleurone layers

    SciTech Connect

    Deikman, J.; Jones, R.L.

    1985-01-01

    Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA/sub 3/) with or without 5 millimolar CaCl/sub 2/ shows that ..cap alpha..-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca/sup 2 +/. No difference was observed in ..cap alpha..-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA/sub 3/ with 5 millimolar CaCl/sub 2/ and layers incubated in GA/sub 3/ alone. RNA isolated from layers incubated for 12 hours in GA/sub 3/ with and without CA/sup 2 +/. A cDNA clone for ..cap alpha..-amylase was isolated and used to measure ..cap alpha..-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca/sup 2 +/ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca/sup 2 +/ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for ..cap alpha..-amylase synthesized in Ca/sup 2 +/-deprived aleurone layers was translatable. Ca/sup 2 +/ is required for the synthesis of ..cap alpha..-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.

  8. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates.

    PubMed

    Woodworth, Adam P J; Frank, Richard A; McConkey, Brendan J; Müller, Kirsten M

    2012-12-01

    The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts.

  9. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas

    PubMed Central

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D.; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian

    2016-01-01

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition (EMT) gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  10. Accumulated Metabolites of Hydroxybutyric Acid Serve as Diagnostic and Prognostic Biomarkers of Ovarian High-Grade Serous Carcinomas.

    PubMed

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian; Darb-Esfahani, Silvia; Braicu, Elena Ioana

    2016-02-15

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but it is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  11. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  12. Enhanced intracellular accumulation of a non-nucleoside anti-cancer agent via increased uptake of its valine ester prodrug through amino acid transporters.

    PubMed

    Kwak, Eun-Young; Shim, Won-Sik; Chang, Ji-Eun; Chong, Saeho; Kim, Dae-Duk; Chung, Suk-Jae; Shim, Chang-Koo

    2012-07-01

    The phenomenon known as multiple-drug resistance, whereby anti-cancer agents are expelled from cancer cells, makes it necessary to develop methods that will reliably increase the accumulation of anti-cancer agents within cancer cells. To accomplish this goal, a new model compound, Val-SN-38, was synthesized by introducing valine to SN-38, an active ingredient of irinotecan. Val-SN-38 improved intracellular accumulation approximately 5-fold in MCF7 cells, compared with SN-38, and rather than changes in membrane permeability, the amino acid transporter ATB(0,+) played a role, whereas the dipeptide transporter PEPT1 did not. Other sodium-dependent amino acid transporters, namely ATA1, ATA2, and ASCT2, were unexpectedly involved in the uptake of Val-SN-38 as well. The efflux of Val-SN-38 by major efflux transporters was variably changed, but not significantly. In summary, the enhanced accumulation of Val-SN-38 in cancer cells was due to augmented uptake via various amino acid transporters. The results of the present study make a compelling argument in favour of a prodrug concept that can improve intracellular accumulation and take advantage of amino acid transporters without significantly inducing multiple-drug resistance.

  13. Accumulation of protoporphyrin IX from delta-aminolevulinic acid in bovine skin fibroblasts with hereditary erythropoietic protoporphyria. A gene-dosage effect

    PubMed Central

    1981-01-01

    Bovine skin fibroblasts accumulated protoporphyrin IX when incubated in culture with the porphyrin-heme precursor, delta-aminolevulinic acid (ALA). Fibroblasts from cattle homozygous for erythropoietic protoporphyria (EPP) and with the clinical symptoms of the disease accumulated approximately sixfold greater amounts of protoporphyrin IX than cells from normal control animals. Cells from obligatory heterozygous animals, which are clinically normal, accumulated an intermediate level of protoporphyrin IX. When these cells were incubated with ALA and CaMg EDTA, all types of cells accumulated approximately the same amount of protoporphyrin IX (approximately 500 nmol/mg protein), suggesting that ferrochelatase activity was equally low after inhibition by treatment with CaMg EDTA in all cells. Thus the ratio of protoporphyrin IX accumulation from ALA in cultures treated with CaMg EDTA compared with controls treated with ALA alone was greatest in normal cells, least in EPP cells, and intermediate in the heterozygote cells. These findings suggest that the amount of protoporphyrin IX accumulation from ALA reflects the extent of deficiency of ferrochelatase and is proportional to the dosage of abnormal EPP gene in cultured fibroblasts. Similarly, stimulation of porphyrin accumulation by CaMg EDTA reflects diminished ferrochelatase activity in these cells. Thus, the results of this study demonstrate the usefulness of estimating protoporphyrin IX formation from ALA for the detection of an EPP gene defect in cultured bovine skin fibroblasts. PMID:6788885

  14. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  15. Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acids.

    PubMed

    Titus, E; Ahearn, G A

    1992-04-01

    Symbiotic microbial fermentation of plant polysaccharides can potentially provide significant levels of nutrients to host organisms in the form of volatile fatty acids (VFAs). Microbial fermentation can account for as much as 10% of maintenance energy requirements in carnivores and omnivores, and up to 80% in ruminant herbivores. In this review epithelial transport processes for the products of microbial fermentation are described in various mammalian and lower vertebrate species. Studies of transepithelial movement of VFA in vertebrate gastrointestinal systems have mostly been investigated in the mammals. In these it is widely held that the transmural movement of VFA is a concentration-dependent passive diffusion process whereby VFA is transported in the protonated form. A different model is described in this paper for carrier-mediated VFA transport, by way of anionic exchange with intracellular bicarbonate, in the intestine of a fermenting herbivorous teleost. These models for diffusive and carrier-mediated transport are compared and discussed from both physiological and experimental viewpoints.

  16. Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity.

    PubMed

    Hu, Jia; Wei, Min; Mirzaei, Hamed; Madia, Federica; Mirisola, Mario; Amparo, Camille; Chagoury, Shawna; Kennedy, Brian; Longo, Valter D

    2014-06-01

    In mammals, extended periods of fasting leads to the accumulation of blood ketone bodies including acetoacetate. Here we show that similar to the conversion of leucine to acetoacetate in fasting mammals, starvation conditions induced ketone body-like acetic acid generation from leucine in S. cerevisiae. Whereas wild-type and ras2Δ cells accumulated acetic acid, long-lived tor1Δ and sch9Δ mutants rapidly depleted it through a mitochondrial acetate CoA transferase-dependent mechanism, which was essential for lifespan extension. The sch9Δ-dependent utilization of acetic acid also required coenzyme Q biosynthetic genes and promoted the accumulation of intracellular trehalose. These results indicate that Tor-Sch9 deficiency extends longevity by switching cells to an alternative metabolic mode, in which acetic acid can be utilized for the storage of stress resistance carbon sources. These effects are reminiscent of those described for ketone bodies in fasting mammals and raise the possibility that the lifespan extension caused by Tor-S6K inhibition may also involve analogous metabolic changes in higher eukaryotes.

  17. A possible role for bile acid in the control of methanogenesis and the accumulation of hydrogen gas in the human colon.

    PubMed

    Florin, T H; Jabbar, I A

    1994-01-01

    This study investigated a possible role for primary bile acid in the control of methanogenesis in the human colon. Production of hydrogen and methane was measured in anaerobic faecal cultures derived from faeces of six 'non-methanogenic' and three methanogenic healthy humans. Using a sensitive technique for gas measurement, methane was detected in all faecal cultures, including those from 'non-methanogenic' humans. Bile acid inhibited methanogenesis in a dose-response fashion in the in vitro 'non-methanogenic' and methanogenic faecal cultures. Inhibition was significant at bile acid concentrations > 0.05%. Methanogenesis correlated with methanogen (methanogenic bacteria) numbers. If this inhibition occurs in vivo, then it would explain much of the epidemiology of non-methanogenesis in humans. From an analysis of net hydrogen production by the faecal cultures, it is inferred that bile acid inhibits other hydrogen-consuming bacteria in addition to methanogens. These in vitro data suggest a major role for bile acid in the accumulation of hydrogen gas in the colon. Possible links between bile acid induced accumulation of gas and irritable bowel syndrome are discussed.

  18. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    PubMed

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  19. Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment.

    PubMed

    Schimanski, Adrian; Ebbert, Lara; Sabel, Michael C; Finocchiaro, Gaetano; Lamszus, Katrin; Ewelt, Christian; Etminan, Nima; Fischer, Johannes C; Sorg, Rüdiger V

    2016-10-01

    Glioblastoma (GBM) is the most frequent and lethal primary brain tumor in adults. Despite multimodal therapy combining resection, radio- and alkylating chemotherapy, disease recurrence is universal and prognosis of patients is poor. Glioblastoma stem-like cells (GSC), which can be grown as neurospheres from primary tumors in vitro, appear to be resistant to the established therapies and are suspected to be the driving force for disease recurrence. Thus, efficacy of emerging therapies may depend on targeting GSC. 5-aminolaevulinic acid-mediated photodynamic therapy (5-ALA/PDT) is a promising therapeutic approach in GBM. It utilizes the selective accumulation of the photosensitizer protoporphyrin IX (PPIX) in GBM cells after application of 5-ALA. When exposed to laser light of 635nm wavelength, PPIX initiates a photochemical reaction resulting in the generation of reactive oxygen species, which kill the tumor cells. Whether GSC accumulate PPIX and are sensitive to 5-ALA/PDT is currently unknown. Therefore, human GSC were derived from primary tumors and grown as neurospheres under serum free conditions. When subjected to exogenous 5-ALA, a dose- and time-dependent accumulation of PPIX in GSC was observed by flow cytometry, which varied between individual GSC preparations. Subsequent exposure to laser light of 635nm wavelength substantially killed GSC, whereas treatment with 5-ALA or exposure to laser light only had no effect. LD50 values differed between GSC preparations, but were negatively correlated with PPIX accumulation in GSC. In summary, we report for the first time that glioblastoma stem-like cells accumulate PPIX when subjected to 5-aminolaevulinic acid and are sensitive to 5-aminolaevulinc acid based photodynamic therapy. PMID:27588717

  20. Dietary supplementation with phytosterol and ascorbic acid reduces body mass accumulation and alters food transit time in a diet-induced obesity mouse model

    PubMed Central

    2011-01-01

    Previous research indicates that animals fed a high fat (HF) diet supplemented with disodium ascorbyl phytostanyl phosphate (DAPP) exhibit reduced mass accumulation when compared to HF control. This compound is a water-soluble phytostanol ester and consists of a hydrophobic plant stanol covalently bonded to ascorbic acid (Vitamin C). To provide insight into the mechanism of this response, we examined the in vivo effects of a high fat diet supplemented with ascorbic acid (AA) in the presence and absence of unesterified phytosterols (PS), and set out to establish whether the supplements have a synergistic effect in a diet-induced obesity mouse model. Our data indicate that HF diet supplementation with a combination of 1% w/w phytosterol and 1% w/w ascorbic acid results in reduced mass accumulation, with mean differences in absolute mass between PSAA and HF control of 10.05%; and differences in mass accumulation of 21.6% (i.e. the PSAA group gained on average 21% less mass each week from weeks 7-12 than the HF control group). In our previous study, the absolute mass difference between the 2% DAPP and HF control was 41%, while the mean difference in mass accumulation between the two groups for weeks 7-12 was 67.9%. Mass loss was not observed in animals supplemented with PS or AA alone. These data suggest that the supplements are synergistic with respect to mass accumulation, and the esterification of the compounds further potentiates the response. Our data also indicate that chronic administration of PS, both in the presence and absence of AA, results in changes to fecal output and food transit time, providing insight into the possibility of long-term changes in intestinal function related to PS supplementation. PMID:21711516

  1. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth

    PubMed Central

    Castellarin, Simone D.; Gambetta, Gregory A.; Wada, Hiroshi; Krasnow, Mark N.; Cramer, Grant R.; Peterlunger, Enrico; Shackel, Kenneth A.; Matthews, Mark A.

    2016-01-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311

  2. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth.

    PubMed

    Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A

    2016-02-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development.

  3. LCAA, a Novel Factor Required for Magnesium Protoporphyrin Monomethylester Cyclase Accumulation and Feedback Control of Aminolevulinic Acid Biosynthesis in Tobacco1[W][OA

    PubMed Central

    Albus, Christin Anne; Salinas, Annabel; Czarnecki, Olaf; Kahlau, Sabine; Rothbart, Maxi; Thiele, Wolfram; Lein, Wolfgang; Bock, Ralph; Grimm, Bernhard; Schöttler, Mark Aurel

    2012-01-01

    Low Chlorophyll Accumulation A (LCAA) antisense plants were obtained from a screen for genes whose partial down-regulation results in a strong chlorophyll deficiency in tobacco (Nicotiana tabacum). The LCAA mutants are affected in a plastid-localized protein of unknown function, which is conserved in cyanobacteria and all photosynthetic eukaryotes. They suffer from drastically reduced light-harvesting complex (LHC) contents, while the accumulation of all other photosynthetic complexes per leaf area is less affected. As the disturbed accumulation of LHC proteins could be either attributable to a defect in LHC biogenesis itself or to a bottleneck in chlorophyll biosynthesis, chlorophyll synthesis rates and chlorophyll synthesis intermediates were measured. LCAA antisense plants accumulate magnesium (Mg) protoporphyrin monomethylester and contain reduced protochlorophyllide levels and a reduced content of CHL27, a subunit of the Mg protoporphyrin monomethylester cyclase. Bimolecular fluorescence complementation assays confirm a direct interaction between LCAA and CHL27. 5-Aminolevulinic acid synthesis rates are increased and correlate with an increased content of glutamyl-transfer RNA reductase. We suggest that LCAA encodes an additional subunit of the Mg protoporphyrin monomethylester cyclase, is required for the stability of CHL27, and contributes to feedback-control of 5-aminolevulinic acid biosynthesis, the rate-limiting step of chlorophyll biosynthesis. PMID:23085838

  4. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells.

    PubMed

    Qin, Shumin; Yin, Jinjin; Huang, Keer

    2016-07-01

    Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L-02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L-02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L-02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator-activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein-1c (SREBP-1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L-02 cells by upregulating SREBP-1c expression through the suppression of PPARα. PMID:27270405

  5. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection.

    PubMed

    Ponce De León, Inés; Schmelz, Eric A; Gaggero, Carina; Castro, Alexandra; Álvarez, Alfonso; Montesano, Marcos

    2012-10-01

    The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants.

  6. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages.

    PubMed

    Gong, Yangmin; Guo, Xiaojing; Wan, Xia; Liang, Zhuo; Jiang, Mulan

    2013-01-01

    Alteration of lipid biosynthesis is one of important biochemical changes when oleaginous microalgae grow under varied environmental conditions. The effects of culture age and nutrient limitation on triacylglycerol (TAG) accumulation and fatty acid content were investigated in four eicosapentaenoic acid (EPA)-rich marine microalgae. The amounts of TAGs in Chaetoceros sp., Phaeodactylum tricornutum and Nannochloropsis oculata increased sharply from day 4 to day 11, and then the former two remained nearly unchanged while the latter declined gradually during the batch culture. In contrast, no marked increase in TAG accumulation was observed in Pavlova viridis during the culture. Changes in total fatty acid (TFA) content mirrored those observed for TAG accumulation, while the EPA content reached a maximum generally at day 7 or 11 in the range of 11 - 32 mg g(-1) dry cell weight (DCW) and then declined. Nitrogen limitation led to a gradual increase in the amounts of TAGs from N. oculata pronouncedly but almost no change in other three species. The TFA content of the cultures after 5 days of nitrogen limitation was nearly twice that after 1 day in Chaetoceros sp., P. tricornutum and P. viridis, while the lowest increase (220 - 283 mg g(-1) DCW) was observed in N. oculata. TAGs increased gradually under phosphorus limitation in all four species but not sharply compared with that under nitrogen limitation in N. oculata. The TFA content increased gradually under phosphorus limitation and after 5 days of phosphorus limitation it was 1.5 - 2 times that after 1 day. The EPA content was generally not significantly affected by nitrogen or phosphorus limitation. Culture age and nutrient limitation could be useful variables for optimizing TAG accumulation and fatty acid content with potential for biodiesel production. PMID:22581481

  7. Perfluoroalkyl Acids (PFAAs) and Selected Precursors in the Baltic Sea Environment: Do Precursors Play a Role in Food Web Accumulation of PFAAs?

    PubMed

    Gebbink, Wouter A; Bignert, Anders; Berger, Urs

    2016-06-21

    The present study examined the presence of perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea abiotic environment and guillemot food web, and investigated the relative importance of precursors in food web accumulation of PFAAs. Sediment, water, zooplankton, herring, sprat, and guillemot eggs were analyzed for perfluoroalkane sulfonic acids (PFSAs; C4,6,8,10) and perfluoroalkyl carboxylic acids (PFCAs; C6-15) along with six perfluoro-octane sulfonic acid (PFOS) precursors and 11 polyfluoroalkyl phosphoric acid diesters (diPAPs). FOSA, FOSAA and its methyl and ethyl derivatives (Me- and EtFOSAA), and 6:2/6:2 diPAP were detected in sediment and water. While FOSA and the three FOSAAs were detected in all biota, a total of nine diPAPs were only detected in zooplankton. Concentrations of PFOS precursors and diPAPs exceeded PFOS and PFCA concentrations, respectively, in zooplankton, but not in fish and guillemot eggs. Although PFOS precursors were present at all trophic levels, they appear to play a minor role in food web accumulation of PFOS based on PFOS precursor/PFOS ratios and PFOS and FOSA isomer patterns. The PFCA pattern in fish could not be explained by the intake pattern based on PFCAs and analyzed precursors, that is, diPAPs. Exposure to additional precursors might therefore be a dominant exposure pathway compared to direct PFCA exposure for fish.

  8. Perfluoroalkyl Acids (PFAAs) and Selected Precursors in the Baltic Sea Environment: Do Precursors Play a Role in Food Web Accumulation of PFAAs?

    PubMed

    Gebbink, Wouter A; Bignert, Anders; Berger, Urs

    2016-06-21

    The present study examined the presence of perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea abiotic environment and guillemot food web, and investigated the relative importance of precursors in food web accumulation of PFAAs. Sediment, water, zooplankton, herring, sprat, and guillemot eggs were analyzed for perfluoroalkane sulfonic acids (PFSAs; C4,6,8,10) and perfluoroalkyl carboxylic acids (PFCAs; C6-15) along with six perfluoro-octane sulfonic acid (PFOS) precursors and 11 polyfluoroalkyl phosphoric acid diesters (diPAPs). FOSA, FOSAA and its methyl and ethyl derivatives (Me- and EtFOSAA), and 6:2/6:2 diPAP were detected in sediment and water. While FOSA and the three FOSAAs were detected in all biota, a total of nine diPAPs were only detected in zooplankton. Concentrations of PFOS precursors and diPAPs exceeded PFOS and PFCA concentrations, respectively, in zooplankton, but not in fish and guillemot eggs. Although PFOS precursors were present at all trophic levels, they appear to play a minor role in food web accumulation of PFOS based on PFOS precursor/PFOS ratios and PFOS and FOSA isomer patterns. The PFCA pattern in fish could not be explained by the intake pattern based on PFCAs and analyzed precursors, that is, diPAPs. Exposure to additional precursors might therefore be a dominant exposure pathway compared to direct PFCA exposure for fish. PMID:27192404

  9. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    SciTech Connect

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A.; Curti, Carlos; Leopoldino, Andréia M.

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  10. Dietary supplementation with (R)-alpha-lipoic acid reverses the age-related accumulation of iron and depletion of antioxidants in the rat cerebral cortex.

    PubMed

    Suh, Jung H; Moreau, Régis; Heath, Shi-Hua D; Hagen, Tory M

    2005-01-01

    Accumulation of divalent metal ions (e.g. iron and copper) has been proposed to contribute to heightened oxidative stress evident in aging and neurodegenerative disorders. To understand the extent of iron accumulation and its effect on antioxidant status, we monitored iron content in the cerebral cortex of F344 rats by inductively coupled plasma atomic emission spectrometry (ICP-AES) and found that the cerebral iron levels in 24-28-month-old rats were increased by 80% (p<0.01) relative to 3-month-old rats. Iron accumulation correlated with a decline in glutathione (GSH) and the GSH/GSSG ratio, indicating that iron accumulation altered antioxidant capacity and thiol redox state in aged animals. Because (R)-alpha-Lipoic acid (LA) is a potent chelator of divalent metal ions in vitro and also regenerates other antioxidants, we monitored whether feeding LA (0.2% [w/w]; 2 weeks) could lower cortical iron and improve antioxidant status. Results show that cerebral iron levels in old LA-fed animals were lower when compared to controls and were similar to levels seen in young rats. Antioxidant status and thiol redox state also improved markedly in old LA-fed rats versus controls. These results thus show that LA supplementation may be a means to modulate the age-related accumulation of cortical iron content, thereby lowering oxidative stress associated with aging.

  11. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)methylpentadecanoic acid (BMIPP), in relation to ATP concentration

    SciTech Connect

    Fujibayashi, Y.; Yonekura, Y.; Takemura, Y.; Wada, K.; Matsumoto, K.; Tamaki, N.; Yamamoto, K.; Konishi, J.; Yokoyama, A. )

    1990-11-01

    To clarify the relationship between the myocardial accumulation of {sup 125}I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and intracellular adenosine-5'-triphosphate (ATP) content, the effect of 2,4-dinitrophenol (DNP, an electron transport uncoupler) on myocardial BMIPP accumulation was studied, in comparison with that of thallium-201-chloride ({sup 201}Tl-Cl). In the mouse myocardium, DNP decreased the intracellular ATP and ADP levels, without affecting either acyl-CoA synthetase activity or the level of CoA-SH. Following treatment with DNP, decreases in myocardial BMIPP accumulation correlated well with those of ATP, while {sup 201}Tl-Cl showed slightly increased accumulation in the myocardium. Thus, in some diseases, BMIPP may be useful in evaluating myocardial ATP levels.

  12. Autoradiographic analysis of 3H-glutamate, 3H-dopamine, and 3H-GABA accumulation in rabbit retina after kainic acid treatment

    SciTech Connect

    Hampton, C.K.; Redburn, D.A.

    1983-01-01

    We have previously reported that exposure of isolated rabbit retina to 10(-3) M kainic acid produces profound morphological changes in specific retinal neurons (Hampton et al, 1981). We noted specific swelling of horizontal cell bodies and neurites, necrosis of cell bodies in the amacrine and ganglion cell layers, and swelling of elements in the inner plexiform layer. We now report a differential sensitivity to kainic acid of specific subclasses of amacrine cells autoradiographically labeled with 3H-glutamate, 3H-GABA, or 3H-dopamine. Three different effects were observed: (1) Labeling of neurons after incubation in 3H-glutamate was uniformly reduced while labeling of glia was much less affected. (2) The accumulation of 3H-dopamine was also decreased by kainic acid in two of the three labeled bands of the inner plexiform layer. The outermost labeled band was insensitive to kainic acid at the highest concentration tested (10(-2) M). These findings provide a basis for the subclassification of dopaminergic amacrine cells into at least two subclasses based on their sensitivity to kainic acid. (3) Kainic acid caused a dramatic increase in the labeling of GABAergic amacrine cell bodies and their terminals. This increased intensity may reflect a compensatory increase in uptake activity in response to kainic acid-induced depletion of endogenous GABA stores. These results confirm the highly toxic nature of kainic acid and demonstrate a high degree of specificity and complexity in its action in the retina.

  13. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis.

    PubMed

    Wang, Baogui; Fu, Jing; Li, Lumin; Gong, Deming; Wen, Xuefang; Yu, Ping; Zeng, Zheling

    2016-01-01

    Accumulation of lipids in the liver can lead to cell dysfunction and steatosis, an important factor in pathogenesis causing non-alcoholic fatty liver disease. The mechanisms related to lipid deposition in the liver, however, remain poorly understood. This study was aimed to investigate the effects of medium-chain fatty acid (MCFA) on the lipolysis and expression of lipid-sensing genes in human liver cells with steatosis. A cellular steatosis model, which is suitable to experimentally investigate the impact of fat accumulation in the liver, was established in human normal liver cells (LO2 cells) with a mixture of free fatty acids (oleate/palmitate, 2:1) at 200 μm for 24 h incubation. MCFA was found to down-regulate expression of liver X receptor-α, sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase, CD 36 and lipoprotein lipase in this cellular model, and have positive effects on adipose triglyceride lipase and hormone-sensitive lipase. These results suggest that MCFA may reduce lipid accumulation by regulating key lipid-sensing genes in human liver cells with steatosis. PMID:26932533

  14. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.

    PubMed

    Planchet, Elisabeth; Verdu, Isabelle; Delahaie, Julien; Cukier, Caroline; Girard, Clément; Morère-Le Paven, Marie-Christine; Limami, Anis M

    2014-05-01

    Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.

  15. Influence of phenylacetic acid pulses on anaerobic digestion performance and archaeal community structure in WWTP sewage sludge digesters.

    PubMed

    Cabrol, Léa; Urra, Johana; Rosenkranz, Francisca; Kroff, Pablo Araya; Plugge, Caroline M; Lesty, Yves; Chamy, Rolando

    2015-01-01

    The effect of phenylacetic acid (PAA) pulses on anaerobic digestion (AD) performance and archaeal community structure was evaluated in anaerobic digesters treating sewage sludge from a wastewater treatment plant (WWTP). Four pilot-scale continuous stirred tank reactors were set up at a full-scale municipal WWTP in Santiago de Chile, and fed with either primary or mixed sewage sludge. AD performance was evaluated by volatile fatty acid (VFA) and biogas production monitoring. Archaeal community structure was characterized by 16S rRNA denaturing gradient gel electrophoresis and band sequencing. In the primary sludge digester, a single PAA pulse at 200 mg L(-1) was sufficient to affect AD performance and archaeal community structure, resulting in long-term VFA accumulation, reduced biogas production and community shift from dominant acetoclastic (Methanosaeta concilii) to hydrogenotrophic (Methanospirillum hungatei) methanogens. By contrast, AD performance and archaeal community structure in the mixed sludge digester were stable and resistant to repeated PAA pulses at 200 and 600 mg L(-1). This work demonstrated that the effect of PAA pulses on methanogenic activity and archaeal community structure differed according to AD substrate, and suggests that better insights of the correlations between archaeal population dynamics and functional performance could help to better face toxic shocks in AD.

  16. pH-adjustment strategy for volatile fatty acid production from high-strength wastewater for biological nutrient removal.

    PubMed

    Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi

    2014-01-01

    Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.

  17. [Pandanus tectorius derived caffeoylquinic acids inhibit lipid accumulation in HepG2 hepatoma cells through regulation of gene expression involved in lipid metabolism].

    PubMed

    Wu, Chong-ming; Luan, Hong; Wang, Shuai; Zhang, Xiao-po; Liu, Hai-tao; Guo, Peng

    2015-03-01

    The fruit of Pandanus tectorius (PTF) has a long history of use as a folk medicine to treat hyperlipidemia in Hainan province, South China. Our previous studies have shown that the n-butanol extract of PTF is rich in caffeoylquinic acids and has an adequate therapeutic effect on dyslipidemic animals induced by high-fat diet. In this work, seven caffeoylquinic acids isolated from PTF were screened for the lipid-lowering activity in HepG2 hepatoma cells. Oil-Red O staining, microscopy and intracellular triglyceride (TG) and total cholesterol (TC) quantification showed that 3-O-caffeoylquinic acid (3-CQA), 3, 5-di-O-caffeoylquinic acid (3,5-CQA), and 3,4,5-tri-O-caffeoylquinic acid (3,4,5-CQA) significantly inhibited lipid accumulation induced by oleic acid and decreased intracellular levels of TC and TG in a dose-dependent manner. These three caffeoylquinic acids showed no significant cytotoxicity at concentrations of 1 -50 μmol x L(-1) as determined by MTT assay. Realtime quantitative PCR revealed that 3-CQA and 3, 5-CQA significantly increased the expression of lipid oxidation-related genes PPARα, CPT-1 and ACOX1 while 3-CQA, 3, 5-CQA and 3,4,5-CQA decreased the expression of lipogenic genes SREBP-1c, SREBP-2, HMGR, ACC, FAS. Overall, 3-CQA, 3, 5-CQA and 3, 4, 5-CQA may be the principal hypolipidemic components in PTF which can decrease intracellular lipid accumulation through up-regulating the expression of lipid oxidative genes and down-regulating the expression of lipogenic genes.

  18. High level accumulation of gamma linolenic acid (C18:3Δ6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds.

    PubMed

    Nykiforuk, Cory L; Shewmaker, Christine; Harry, Indra; Yurchenko, Olga P; Zhang, Mei; Reed, Catherine; Oinam, Gunamani S; Zaplachinski, Steve; Fidantsef, Ana; Boothe, Joseph G; Moloney, Maurice M

    2012-04-01

    Gamma linolenic acid (GLA; C18:3Δ6,9,12 cis), also known as γ-Linolenic acid, is an important essential fatty acid precursor for the synthesis of very long chain polyunsaturated fatty acids and important pathways involved in human health. GLA is synthesized from linoleic acid (LA; C18:2Δ9,12 cis) by endoplasmic reticulum associated Δ6-desaturase activity. Currently sources of GLA are limited to a small number of plant species with poor agronomic properties, and therefore an economical and abundant commercial source of GLA in an existing crop is highly desirable. To this end, the seed oil of a high LA cultivated species of safflower (Carthamus tinctorius) was modified by transformation with Δ6-desaturase from Saprolegnia diclina resulting in levels exceeding 70% (v/v) of GLA. Levels around 50% (v/v) of GLA in seed oil was achieved when Δ12-/Δ6-desaturases from Mortierella alpina was over-expressed in safflower cultivars with either a high LA or high oleic (OA; C18:1Δ9 cis) background. The differences in the overall levels of GLA suggest the accumulation of the novel fatty acid was not limited by a lack of incorporation into the triacylgylcerol backbone (>66% GLA achieved), or correlated with gene dosage (GLA levels independent of gene copy number), but rather reflected the differences in Δ6-desaturase activity from the two sources. To date, these represent the highest accumulation levels of a newly introduced fatty acid in a transgenic crop. Events from these studies have been propagated and recently received FDA approval for commercialization as Sonova™400.

  19. Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation.

    PubMed

    McDowell, J M; Cuzick, A; Can, C; Beynon, J; Dangl, J L; Holub, E B

    2000-06-01

    To better understand the genetic requirements for R gene-dependent defense activation in Arabidopsis, we tested the effect of several defense response mutants on resistance specified by eight RPP genes (for resistance to Peronospora parasitica) expressed in the Col-0 background. In most cases, resistance was not suppressed by a mutation in the SAR regulatory gene NPR1 or by expression of the NahG transgene. Thus, salicylic acid accumulation and NPR1 function are not necessary for resistance mediated by these RPP genes. In addition, resistance conferred by two of these genes, RPP7 and RPP8, was not significantly suppressed by mutations in either EDS1 or NDR1. RPP7 resistance was also not compromised by mutations in EIN2, JAR1 or COI1 which affect ethylene or jasmonic acid signaling. Double mutants were therefore tested. RPP7 and RPP8 were weakly suppressed in an eds1-2/ndr1-1 background, suggesting that these RPP genes operate additively through EDS1, NDR1 and as-yet-undefined signaling components. RPP7 was not compromised in coi1/npr1 or coi1/NahG backgrounds. These observations suggest that RPP7 initiates resistance through a novel signaling pathway that functions independently of salicylic acid accumulation or jasmonic acid response components.

  20. Effects of organic acids on the photosynthetic and antioxidant properties and accumulations of heavy metals of Melilotus officinalis grown in Cu tailing.

    PubMed

    Han, Yulin; Wu, Xue; Gu, Jiguang; Zhao, Jiuzhou; Huang, Suzhen; Yuan, Haiyan; Fu, Jiajia

    2016-09-01

    The effect of citric acid (CA), acetic acid (Ac), and ethylene diamine tetraacetic acid (EDTA) on the photosynthetic and antioxidant properties and the accumulation of some heavy metals (HMs) of Melilotus officinalis seedling growing in Cu mine tailings for 25 days were studied. Results showed that the formation of photosynthesizing cells of M. officinalis was inhibited by EDTA at 2 mmol/kg. Photosynthetic pigment contents under EDTA of 2 mmol/kg were reduced by 26, 40, and 19 %, respectively, compared to the control. The proline contents in aboveground and underground parts increased as the level of EDTA was enhanced. CA and Ac enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in the aboveground parts and EDTA inhibited the activity of POD in the underground parts. The addition of CA promoted significantly the growth of M. officinalis, while the biomass decreased significantly under 2 mmol/kg EDTA. Cu contents in the aboveground parts treated with 0.5 and 2.0 mmol/kg EDTA reached 175.50 and 265.17 μg/g dry weight, respectively. Ac and EDTA treatments promoted Cd to translocate from root to aboveground parts. The result indicated that M. officinalis was a tolerant species of Cu tailing and can be used to remediate Cu contaminated environment, and rationally utilization of organic acids, especially EDTA, in the phytoremediation can improve the growth and metals accumulation of M. officinalis. PMID:27255310

  1. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  2. Effects of organic acids on the photosynthetic and antioxidant properties and accumulations of heavy metals of Melilotus officinalis grown in Cu tailing.

    PubMed

    Han, Yulin; Wu, Xue; Gu, Jiguang; Zhao, Jiuzhou; Huang, Suzhen; Yuan, Haiyan; Fu, Jiajia

    2016-09-01

    The effect of citric acid (CA), acetic acid (Ac), and ethylene diamine tetraacetic acid (EDTA) on the photosynthetic and antioxidant properties and the accumulation of some heavy metals (HMs) of Melilotus officinalis seedling growing in Cu mine tailings for 25 days were studied. Results showed that the formation of photosynthesizing cells of M. officinalis was inhibited by EDTA at 2 mmol/kg. Photosynthetic pigment contents under EDTA of 2 mmol/kg were reduced by 26, 40, and 19 %, respectively, compared to the control. The proline contents in aboveground and underground parts increased as the level of EDTA was enhanced. CA and Ac enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in the aboveground parts and EDTA inhibited the activity of POD in the underground parts. The addition of CA promoted significantly the growth of M. officinalis, while the biomass decreased significantly under 2 mmol/kg EDTA. Cu contents in the aboveground parts treated with 0.5 and 2.0 mmol/kg EDTA reached 175.50 and 265.17 μg/g dry weight, respectively. Ac and EDTA treatments promoted Cd to translocate from root to aboveground parts. The result indicated that M. officinalis was a tolerant species of Cu tailing and can be used to remediate Cu contaminated environment, and rationally utilization of organic acids, especially EDTA, in the phytoremediation can improve the growth and metals accumulation of M. officinalis.

  3. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    PubMed

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance.

  4. Elutriated acid fermentation of municipal primary sludge.

    PubMed

    Ahn, Young Ho; Speece, Richard E

    2006-06-01

    The performance of a novel fermentation process, adopting a sludge blanket type configuration, for higher hydrolysis/acidogenesis of the municipal primary sludge was investigated under batch and semi-continuous conditions with varying pH and temperature. This acid elutriation slurry reactor provided higher system performance with a short HRT (5d) and higher acidogenic effluent quality under pH 9 and thermophilic (55 degrees C) conditions. The hydrolysis of the sludge was revealed to be significantly dependent on seasonal effects for sludge characteristics but with little impact on acidogenesis. Based on the rainy season at the optimal conditions, VFA production and recovery fraction (VFA(COD)/COD) were 0.18 g VFA(COD)/g VSS(COD) and 63%. As byproducts, nitrogen and phosphorus release were measured at 0.006 g N/g VSS(COD) and 0.003 g P/g VSS(COD), respectively. For the mass balance in a full-scale plant (Q=158,880 m(3)/d) based on the rainy season, the VFA and non-VFA (as COD) production were 3110 kg VFA(COD)/d and 1800 kg COD/d, resulting in an increase of organics of 31 mg COD/L and 20mg VFA(COD)/L and nutrients of 0.7 mg N/L and 0.3 mg P/L in the influent sewage. The economical benefit from this process application was estimated to be about 67 dollars per 1000 m(3) of sewage except for energy requirements and also, better benefits can be expected during the dry season. Moreover, the results revealed that the process has various additional advantages such as pathogen-free stabilized solids production, excellent solids control and economical benefits.

  5. Using electromagnetic induction technology to predict volatile fatty acid, source area differences.

    PubMed

    Woodbury, Bryan L; Eigenberg, Roger A; Varel, Vince; Lesch, Scott; Spiehs, Mindy J

    2011-01-01

    Subsurface measures have been adapted to identify manure accumulation on feedlot surfaces. Understanding where manure accumulates can be useful to develop management practices that mitigate air emissions from manure, such as odor or greenhouse gases. Objectives were to determine if electromagnetic induction could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced in vitro from feedlot surface material following a simulated rain event. Twenty soil samples per pen were collected from eight pens with cattle fed two different diets using a predictive sampling approach. These samples were incubated at room temperature for 3 d to determine fermentation products formed. Fermentation products were categorized into acetate, straight-, branched-chained, and total VFAs. These data were used to develop calibration prediction models on the basis of properties measured by electromagnetic induction (EMI). Diet had no significant effect on mean volatile solids (VS) concentration of accumulated manure. However, manure from cattle fed a corn (Zea mays L.)-based diet had significantly ( P ≤ 0.1) greater mean straight-chained and total VFA generation than pens where wet distillers grain with solubles (WDGS) were fed. Alternately, pens with cattle fed a WDGS-based diet had significantly (P ≤ 0.05) greater branched-chained VFAs than pens with cattle fed a corn-based diet. Many branched-chain VFAs have a lower odor threshold than straight-chained VFAs; therefore, emissions from WDGS-based diet manure would probably have a lower odor threshold. We concluded that diets can affect the types and quantities of VFAs produced following a rain event. Understanding odorant accumulation patterns and the ability to predict generation can be used to develop precision management practices to mitigate odor emissions.

  6. L-FABP T94A decreased fatty acid uptake and altered hepatic triglyceride and cholesterol accumulation in Chang liver cells stably transfected with L-FABP.

    PubMed

    Gao, Na; Qu, Xia; Yan, Jin; Huang, Qi; Yuan, Hao-Yong; Ouyang, Dong-Sheng

    2010-12-01

    Liver fatty acid-binding protein (L-FABP, FABP1) is a highly conserved key factor in lipid metabolism. This study was undertaken to verify whether the T94A mutation in the L-FABP gene affects fatty acid uptake and intracellular esterification into specific lipid pools. Candidate SNPs were recreated using site-directed mutagenesis and tested for physical function in stably transfected Chang liver cell lines. We found that the T94A mutant of L-FABP lowered FFA uptake but had no effect on FFA efflux. L-FABP T94A-expressing cells showed decreased triglyceride content and increased cholesterol accumulation compared to the wild-type control for cells incubated with an FFA mixture (oleate: palmitate, 2:1 ratio). In conclusion, our study provided additional indications of the functional relevance of the L-FABP T94A SNP in hepatic fatty acid and lipid metabolism in humans.

  7. Organic acids on the growth, anatomical structure, biochemical parameters and heavy metal accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings.

    PubMed

    Han, Yu-Lin; Huang, Su-Zhen; Yuan, Hai-Yan; Zhao, Jiu-Zhou; Gu, Ji-Guang

    2013-08-01

    The effect of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) on the growth, anatomical structure, physiological responses and lead (Pb) accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings for 30 days were studied. Results showed that the dry weights (DW) of roots decreased significantly under both levels of CA. The DWs of leaves and roots treated with 2 mmol/kg EDTA decreased significantly and were 23 and 54 %, respectively, lower than those of the control. The tolerant indexes of I. lactea var. chinensis under all treatments of organic acids were lower than control. The root tip anatomical structure was little affected under the treatments of 2 mmol/kg CA and 2 mmol/kg EDTA compared with control. However, the formation of photosynthesizing cells was inhibited by the treatment of 2 mmol/kg EDTA. The concentrations of chlorophyll a, chlorophyll b and total carotenoids in the leaves treated with 2 mmol/kg EDTA significantly decreased. Higher CA level and lower EDTA level could trigger the synthesis of ascorbic acid and higher level of EDTA could trigger the synthesis of glutathione. CA and EDTA could promote Pb accumulation of I. lactea var. chinensis and Pb concentration in the leaves and roots at 2 mmol/kg EDTA treatment increased significantly and reached to 160.44 and 936.08 μg/g DW, respectively, and 1.8 and 1.6 times higher than those of the control. The results indicated that I. lactea var. chinensis could be used to remediate Pb tailing and the role of EDTA in promoting Pb accumulation was better than CA did.

  8. Common variants of GIP are associated with visceral fat accumulation in Japanese adults.

    PubMed

    Nakayama, Kazuhiro; Watanabe, Kazuhisa; Boonvisut, Supichaya; Makishima, Saho; Miyashita, Hiroshi; Iwamoto, Sadahiko

    2014-12-01

    Animal studies have demonstrated that glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) contribute to the etiology of obesity. In humans, genomewide association studies have identified single nucleotide polymorphisms (SNPs) in the GIPR gene that are strongly associated with body mass index (BMI); however, it is not clear whether genetic variations in the GIP gene are involved in the development of obesity. In the current study, we assessed the impact of GIP SNPs on obesity-related traits in Japanese adults. Six tag SNPs were tested for associations with obesity-related traits in 3,013 individuals. Multiple linear regression analyses showed that rs9904288, located at the 3'-end of GIP, was significantly associated with visceral fat area (VFA). Moreover, rs1390154 and rs4794008 showed significant associations with plasma triglyceride levels and hemoglobin A1c levels, respectively. Among the significant SNPs, rs9904288 and rs1390154 were independently linked with SNPs in active enhancers of the duodenum mucosa, the main GIP-secreting tissue. The haplotypes of these two SNPs exhibited stronger associations with VFA. Numbers of VFA-increasing alleles of rs9904288 and BMI-increasing alleles of previously identified GIPR SNPs showed a strong additive effect on VFA, waist circumference, and BMI in the subject population. These novel results support the notion that the GIP-GIPR axis plays a role in the etiology of central obesity in humans, which is characterized by the accumulation of visceral fat.

  9. meso-Dihydroguaiaretic acid inhibits hepatic lipid accumulation by activating AMP-activated protein kinase in human HepG2 cells.

    PubMed

    Lee, Myoung-Su; Kim, Kyung Jin; Kim, Daeyoung; Lee, Kyung-Eun; Hwang, Jae-Kwan

    2011-01-01

    Hepatic lipid accumulation is a major risk factor for dyslipidemia, nonalcoholic fatty liver disease, and insulin resistance. The present study was conducted to evaluate hypolipidemic effects of meso-dihydroguaiaretic acid (MDA), anti-oxidative and anti-inflammatory compound isolated from the Myristica fragrans HOUTT., by oil red O staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot. MDA significantly inhibited insulin-induced hepatic lipid accumulation in a dose-dependent manner. The lipid-lowering effect of MDA was accompanied by increased expression of proteins involved in fatty acid oxidation and decreased expression of lipid synthetic proteins. In addition, MDA activated AMP-activated protein kinase (AMPK) as determined by phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of AMPK. The effects of MDA on lipogenic protein expression were suppressed by pretreatment with compound C, an AMPK inhibitor. Taken together, these findings show that MDA inhibits insulin-induced lipid accumulation in human HepG2 cells by suppressing expression of lipogenic proteins through AMPK signaling, suggesting a potent lipid-lowering agent. PMID:21963507

  10. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-09-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.

  11. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway.

    PubMed

    Bao, Hexigeduleng; Chen, Xianyang; Lv, Sulian; Jiang, Ping; Feng, Juanjuan; Fan, Pengxiang; Nie, Lingling; Li, Yinxin

    2015-03-01

    γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress.

  12. Enhanced production of nitric oxide, reactive oxygen species, and pro-inflammatory cytokines in very long chain saturated fatty acid-accumulated macrophages

    PubMed Central

    Yanagisawa, Naotake; Shimada, Kazunori; Miyazaki, Tetsuro; Kume, Atsumi; Kitamura, Yohei; Sumiyoshi, Katsuhiko; Kiyanagi, Takashi; Iesaki, Takafumi; Inoue, Nao; Daida, Hiroyuki

    2008-01-01

    Background Deterioration of peroxisomal β-oxidation activity causes an accumulation of very long chain saturated fatty acids (VLCSFA) in various organs. We have recently reported that the levels of VLCSFA in the plasma and/or membranes of blood cells were significantly higher in patients with metabolic syndrome and in patients with coronary artery disease than the controls. The aim of the present study is to investigate the effect of VLCSFA accumulation on inflammatory and oxidative responses in VLCSFA-accumulated macrophages derived from X-linked adrenoleukodystrophy (X-ALD) protein (ALDP)-deficient mice. Results Elevated levels of VLCSFA were confirmed in macrophages from ALDP-deficient mice. The levels of nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) and interferon-γ (IFN-γ), intracellular reactive oxygen species (ROS), and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interluekin-6 (IL-6), and interleukin-12p70 (IL-12p70), were significantly higher in macrophages from ALDP-deficient mice than in those from wild-type mice. The inducible NO synthase (iNOS) mRNA expression also showed an increase in macrophages from ALDP-deficient mice. Conclusion These results suggested that VLCSFA accumulation in macrophages may contribute to the pathogenesis of inflammatory diseases through the enhancement of inflammatory and oxidative responses. PMID:19038055

  13. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  14. High concentrations of isovaleric acid in the fats of odontocetes: variation and patterns of accumulation in blubber vs. stability in the melon.

    PubMed

    Koopman, H N; Iverson, S J; Read, A J

    2003-04-01

    Isovaleric acid (iso5:0) is an unusual fatty acid that is important for echolocation and hearing in acoustic tissues of some odontocetes, but its functional significance in blubber is unknown. We examined patterns of accumulation of this compound in blubber in 30 species of odontocetes ( n=299). Iso5:0 concentrations in blubber varied with phylogeny, ontogeny and body topography. Iso5:0 accumulated in greater quantities in superficial/outer blubber than in deep/inner blubber. In the outer blubber of northern right whale and Hector's dolphins, iso5:0 accounted for one-third to one-half of all fatty acids. Total blubber burden of iso5:0 in harbour porpoises represented up to 15 times the amount deposited in the melon. The composition of the melon does not change during starvation in harbour porpoises, supporting the hypothesis that lipids in melon are conserved for a specific function. Some odontocetes continually deposit iso5:0 in blubber after levels in melon have reached asymptotic levels, suggesting independent control of iso5:0 synthesis and storage in these compartments. Dolphins and porpoises inhabiting cold waters possess higher concentrations of iso5:0 in their outer blubber layers than species from warmer regions. We propose that this relationship represents an adaptive secondary role for iso5:0 in maintaining blubber flexibility in cold environments. PMID:12743728

  15. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  16. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  17. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction.

  18. Folic acid deficiency enhances abeta accumulation in APP/PS1 mice brain and decreases amyloid-associated miRNAs expression.

    PubMed

    Liu, Huan; Tian, Tian; Qin, Shanchun; Li, Wen; Zhang, Xumei; Wang, Xuan; Gao, Yuxia; Huang, Guowei

    2015-12-01

    Recent efforts have revealed the microRNA (miRNA) pathways in the pathogenesis of Alzheimer's disease (AD). Epidemiological studies have revealed an association between folic acid deficiency and AD risk. However, the effects of folic acid deficiency on miRNA expression in AD animals have not been observed. We aimed to find if folic acid deficiency may enhance amyloid-β (Aβ) peptide deposition and regulate amyloid-associated miRNAs and their target genes expression in APP/PS1 mice. APP/PS1 mice and N2a cells were treated with folic acid-deficient diet or medium. Cognitive function of mice was assessed using the Morris water maze. miRNA profile was tested by polymerase chain reaction (PCR) array. Different expressional miRNAs were validated by real-time PCR. The deposition of Aβ plaques was evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. APP and BACE1 proteins in mice brain and N2a cells were determined by Western blot. Folic acid deficiency aggravated amyloid pathology in AD mice. The AD+FD group showed shorter time spent in the target zone during the probe test. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that were differentially modulated by folic acid deficiency. In APP/PS1 mice brains and N2a cells with folic acid-deficient treatment, miR-106a-5p, miR-200b-3p and miR-339-5p were down-regulated, and their target genes APP and BACE1 were up-regulated. In conclusion, folic acid deficiency can enhance Aβ accumulation in APP/PS1 mice brain and decrease amyloid-associated miRNAs expression.

  19. The high-level accumulation of n-3 polyunsaturated fatty acids in transgenic pigs harboring the n-3 fatty acid desaturase gene from Caenorhabditis briggsae.

    PubMed

    Zhou, Yanrong; Lin, Yanli; Wu, Xiaojie; Feng, Chong; Long, Chuan; Xiong, Fuyin; Wang, Ning; Pan, Dengke; Chen, Hongxing

    2014-02-01

    Livestock meat is generally low in n-3 polyunsaturated fatty acids (PUFAs), which are beneficial to human health. An alternative approach to increasing the levels of n-3 PUFAs in meat is to generate transgenic livestock animals. In this study, we describe the generation of cloned pigs that express the cbr-fat-1 gene from Caenorhabditis briggsae, encoding an n-3 fatty acid desaturase. Analysis of fatty acids demonstrated that the cbr-fat-1 transgenic pigs produced high levels of n-3 fatty acids from n-6 analogs; consequently, a significantly reduced ratio of n-6/n-3 fatty acids was observed. We demonstrated that the n-3 desaturase gene from C. briggsae was functionally expressed, and had a significant effect on the fatty acid composition of the transgenic pigs, which may allow the production of pork enriched in n-3 PUFAs.

  20. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    PubMed

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver.

  1. Induced Protoporphyrin IX Accumulation by the δ-Aminolevulinic Acid in Bacteria and its Potential Use in the Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Brígido-Aparicio, Cyntiha; Ramón-Gallegos, Eva; Arenas-Huertero, Francisco Jesús; Uribe-Hernández, Raúl

    2008-08-01

    The increasing incident of resistant strains to antibiotic has encouraged the search of new antibacterial treatments, such as the photodynamic therapy. In recent years, photodynamic therapy has demonstrated being a good technology for the treatment of recurrent bacteria infection. PDT presents a hopeful approach to eliminate Gram positive and negative bacteria in immunological compromised patients. This therapy uses a laser in combination with a photosensibilizer in presence of intracellular molecular oxygen. The process generates an effect of phototoxicity in bacterial cells. The aim of this work was to determine the in vitro conditions to accumulate PpIX in effective concentrations in Staphylococcus aureus ATCC25923 and Streptococcus pyogenes, which are responsible of human cutaneous diseases. A cellular suspension of both strains was prepared in TSB to obtain growth in Log-phase, then, the suspensions were adjusted to a final concentration of 2.61×108 cells/mL. The strains were exposed to increasing concentrations from 0 to 160μg/mL of δ-ALA in order to determinate the concentration that induces the biggest accumulation of PpIX. PpIX was measured using the Piomelli method modified for bacteria. The concentration selected was 40 mg/mL of ALA. It was found that in basal concentration of δ-ALA (0 μg/mL) both strains accumulated similar amount of PpIX. In concentrations of 5 mg/mL of δ-ALA it was observed a significant (p<0.001) increment in PpIX concentration. Finally it was realized a kinetic to determinate the optimal accumulation over the time at 0, 5, 10, 15 and 30 min, and 1, 2, 4, 8, 16 and 32 h. It was found that the ideal time for PDT application, in both strains, was 24 h because in smaller times there was not statistically significant difference. The S. aureus ATCC25923 accumulated significantly the biggest concentration of PpIX with regard to S. pyogenes. In conclusion, it was found that the optimal conditions to apply PDT will be to expose both

  2. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  3. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    PubMed

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  4. Oostatic peptides containing D-amino acids: synthesis, oostatic activity, degradation, accumulation in ovaries and NMR study.

    PubMed

    Hlaváček, Jan; Tykva, Richard; Holík, Josef; Bennettová, Blanka; Buděšínský, Miloš; Vlasáková, Věra; Cerný, Bohuslav; Slaninová, Jiřina

    2012-05-01

    Analogs of the H-Tyr-Asp-Pro-Ala-Pro-OH pentapeptide with D-amino acid residues either in differing or in all of the positions of the sequences were prepared and their oostatic potency was compared with that of the parent pentapeptide. The D-amino acid residue containing analogs exhibited an equal or even higher oostatic effect in the flesh fly Neobellieria bullata than the parent peptide. Contrary to the rapid incorporation of radioactivity from the labeled H-Tyr-Asp-[3H]Pro-Ala-Pro-OH pentapeptide into the ovaries of N. bullata in vitro, the radioactivity incorporation from the labeled pentapeptides with either D-aspartic acid or D-alanine was significantly delayed. As compared to the parent pentapeptide, also the degradation of both the D-amino acid-containing analogs mentioned above proceeded at a significantly lower rate. The decreased intake of radioactivity, the lower degradation and finally also the high oostatic effect may be ascribed to the decreased enzymatic degradation of the peptide bonds neighboring the D-amino acid residues in the corresponding peptides. The introduction of the non-coded D: -amino acids thus enhances the oostatic effect in N. bullata owing to the prolonged half-life of the corresponding pentapeptides, which can thus affect more ovarian cells.

  5. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    plasma triglyceride concentrations compared to the control (-53% and -65%, respectively) and ferulic acid (-47% and -60%, respectively) diets. Hamsters fed the control and ferulic acid diets had significantly higher plasma vitamin E concentrations compared to the RBO (201% and 161%, respectively) and oryzanol (548% and 462%, respectively) diets; the ferulic acid and oryzanol diets had significantly lower plasma lipid hydroperoxide levels than the control (-57% and -46%, respectively) diet. The oryzanol-fed hamsters excreted significantly more coprostenol and cholesterol in their feces than the ferulic acid (127% and 120%, respectively) diet. The control diet had significantly greater aortic TC and FC accumulation compared to the RBO (115% and 89%, respectively), ferulic acid (48% and 58%, respectively) and the oryzanol (74% and 70%, respectively) diets. However, only the RBO and oryzanol diets had significantly lower aortic cholesterol ester accumulation compared to the control (-73% and -46%, respectively) diet. The present study suggests that at equal dietary levels, oryzanol has a greater effect on lowering plasma non-HDL-C levels and raising plasma HDL-C than ferulic acid, possibly through a greater extent to increase fecal excretion of cholesterol and its metabolites. However, ferulic acid may have a greater antioxidant capacity via its ability to maintain serum vitamin E levels compared to RBO and oryzanol. Thus, both oryzanol and ferulic acid may exert similar antiatherogenic properties, but through different mechanisms.

  6. Perennial peanut (Arachis glabrata Benth.) leaves contain hydroxycinnamoyl-CoA:tartaric acid hydroxycinnamoyl transferase activity and accumulate hydroxycinnamoyl-tartaric acid esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many plants accumulate hydroxycinnamoyl esters to protect against abiotic and biotic stresses. Caffeoyl esters, in particular, can be substrates for endogenous polyphenol oxidases (PPOs). Recently, we showed that perennial peanut (Arachis glabrata Benth.) leaves contain PPO and identified one PPO su...

  7. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    PubMed

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  8. Accumulation of ascorbate by endocrine-regulated and glucose-sensitive transport of dehydroascorbic acid in luteinized rat ovarian cells.

    PubMed

    Kodaman, P H; Aten, R F; Behrman, H R

    1998-02-01

    The corpus luteum is notable for very high levels of ascorbic acid. In luteal cells, ascorbic acid depletion occurs as a result of consumption during radical scavenging, inhibition of ascorbic acid uptake, and stimulation of its secretion. Oxidation of ascorbic acid generates dehydroascorbic acid (DHAA). Although levels of DHAA in blood are much lower than those of ascorbic acid, DHAA serves as the major transportable form of ascorbate for certain cell types. The aim of the present studies was to investigate whether DHAA transport is a potential mechanism for conserving ascorbic acid in the corpus luteum. DHAA uptake by rat luteal cells precultured for 24 h was linear for up to 30 min. Kinetics studies showed that uptake of DHAA was a concentration-dependent and saturable process with an estimated Michaelis constant (Km) of 830 microM and a maximum velocity (Vmax) of 700 pmol/min per 10(6) cells, a rate 50 times that of ascorbate transport. More than 90% of DHAA was reduced to ascorbic acid within 2 h of cellular uptake. DHAA uptake was energy- and microfilament-dependent, as transport was inhibited by 2,4-dinitrophenol (1 mM) and cytochalasin B (10 microM). Menadione (50 microM), an intracellular generator of reactive oxygen species, also markedly reduced DHAA uptake. In contrast to ascorbic acid transport, DHAA uptake was potently inhibited by glucose and phloretin, an inhibitor of glucose transporters, with IC50s of approximately 5 mM and 10 microM, respectively. DHAA uptake appears to occur via an insulin-insensitive transporter, as insulin (10 nM) had no effect on uptake. However, 24-h preincubation with insulin-like growth factor (IGF)-I dose-dependently (10-100 ng/ml) stimulated DHAA uptake; similar concentrations of IGF-II had no effect. The secretion of radioactivity by cells preloaded with radiolabeled DHAA was significantly increased by prostaglandin F2alpha (1 microM). The ability of luteal cells to transport DHAA in a regulated manner may serve to

  9. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    PubMed

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea.

  10. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  11. The snakehead Channa asiatica accumulates alanine during aerial exposure, but is incapable of sustaining locomotory activities on land through partial amino acid catabolism.

    PubMed

    Chew, Shit F; Wong, Mei Y; Tam, Wai L; Ip, Yuen K

    2003-02-01

    The freshwater snakehead Channa asiatica is an obligatory air-breather that resides in slow-flowing streams and in crevices near riverbanks in Southern China. In its natural habitat, it may encounter bouts of aerial exposure during the dry seasons. In the laboratory, the ammonia excretion rate of C. asiatica exposed to terrestrial conditions in a 12 h:12 h dark:light regime was one quarter that of the submerged control. Consequently, the ammonia contents in the muscle, liver and plasma increased significantly, and C. asiatica was able to tolerate quite high levels of ammonia in its tissues. Urea was not the major product of ammonia detoxification in C. asiatica, which apparently did not possess a functioning ornithine urea cycle. Rather, alanine increased fourfold to 12.6 micromol g(-1) in the muscle after 48 h of aerial exposure. This is the highest level known in adult teleosts exposed to air or an ammonia-loading situation. The accumulated alanine could account for 70% of the deficit in ammonia excretion during this period, indicating that partial amino acid catabolism had occurred. This would allow the utilization of certain amino acids as energy sources and, at the same time, maintain the new steady state levels of ammonia in various tissues, preventing them from rising further. There was a reduction in the aminating activity of glutamate dehydrogenase from the muscle and liver of specimens exposed to terrestrial conditions. Such a phenomenon has not been reported before and could, presumably, facilitate the entry of alpha-ketoglutarate into the Krebs cycle instead of its amination to glutamate, as has been suggested elsewhere. However, in contrast to mudskippers, C. asiatica was apparently unable to reduce the rates of proteolysis and amino acid catabolism, because the reduction in nitrogenous excretion during 48 h of aerial exposure was completely balanced by nitrogenous accumulation in the body. Alanine accumulation also occurred in specimens exposed to

  12. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    PubMed

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance. PMID:24636908

  13. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation.

    PubMed

    Almeida, Luciana O; Garcia, Cristiana B; Matos-Silva, Flavia A; Curti, Carlos; Leopoldino, Andréia M

    2014-02-28

    SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET-hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  14. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation.

    PubMed Central

    Nawrath, C; Métraux, J P

    1999-01-01

    In Arabidopsis, systemic acquired resistance against pathogens has been associated with the accumulation of salicylic acid (SA) and the expression of the pathogenesis-related proteins PR-1, PR-2, and PR-5. We report here the isolation of two nonallelic mutants impaired in the pathway leading to SA biosynthesis. These SA induction-deficient (sid) mutants do not accumulate SA after pathogen inoculation and are more susceptible to both virulent and avirulent forms of Pseudomonas syringae and Peronospora parasitica. However, sid mutants are not as susceptible to these pathogens as are transgenic plants expressing the nahG gene encoding an SA hydroxylase that degrades SA to catechol. In contrast to NahG plants, only the expression of PR-1 is strongly reduced in sid mutants, whereas PR-2 and PR-5 are still expressed after pathogen attack. Furthermore, the accumulation of the phytoalexin camalexin is normal. These results indicate that SA-independent compensation pathways that do not operate in NahG plants are active in sid mutants. One of the mutants is allelic to eds5 (for enhanced disease susceptibility), whereas the other mutant has not been described previously. PMID:10449575

  15. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  16. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  17. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta).

    PubMed

    Figueroa, Félix L; Korbee, Nathalie; Abdala, Roberto; Jerez, Celia G; López-de la Torre, Mayra; Güenaga, Leire; Larrubia, María A; Gómez-Pinchetti, Juan L

    2012-02-01

    The biofiltration capacity, biomass-yield and accumulation of N- and C-compounds of Hydropuntia cornea were analyzed. Algae were grown in different conditions for 28 d: outdoor and indoor, with or without fishpond effluents. N-uptake efficiency of these effluents was higher than 95% after 7 d both outdoors and indoors. N-enriched conditions reduced the extent of photoinhibition and increased the maximal quantum yield in H. cornea. The biomass-yield was higher in outdoor grown-algae after 7 d and decreased independently of the treatment after 28 d. N, acid polysaccharide (AP) and mycosporine-like amino acid (MAA)-yields decreased throughout the experiment in all conditions. The highest MAA-yield was observed in fishpond effluent outdoor-grown algae, indicating a positive effect of increased radiation on MAA accumulation. However, APs were higher under N-depleted conditions. The use of MAAs as UV-screening and antioxidants, and the use of AP as immunostimulants are discussed.

  18. Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy.

    PubMed

    Falk, Harry Michael; Reichling, Peter; Andersen, Christian; Benz, Roland

    2015-02-01

    An ATR-MIR-FTIR spectrometer was integrated into a laboratory scale anaerobic digestion setup. Automatically, a sludge sample from the digester was transferred to a measurement cell; an IR spectrum was recorded and evaluated by chemometric models to estimate the concentration of the individual volatile fatty acids (VFA). The calibration set included semi-artificial samples spiked with known concentrations of the VFA as well as original samples from a continuous fermentation. High-performance liquid chromatography (HPLC) was used as a reference analysis of the samples. The models were optimized for a low root mean square error of prediction (RMSEP). R(2) for acetic acid, propionic acid, isobutyric acid, butyric acid, valeric acid, and isovaleric acid were 0.94, 0.88, 0.83, 0.75, 0.59, and 0.90, respectively. The accuracy of the models was validated in a second experiment. Considering the complex and heterogeneous sludge composition and the chemical similarity of VFA, absolute concentration and dynamic (increasing and decreasing concentration of VFA) was predicted well for acetic, propionic, isobutyric, and isovaleric acid (in their respective concentration range); Butyric acid could not be detected. The installed setup was able to gather and measure native samples from the digester (every 2 h) automatically over a period of 6 months without problems of clogging or biofouling. The instant and continuous analysis of the concentration of the VFA made it possible to evaluate the current bioprocess status and adjust the organic loading rate accordingly.

  19. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.

    PubMed

    Sheng, Ling; Shen, Dandan; Luo, Yi; Sun, Xiaohua; Wang, Jinqiu; Luo, Tao; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2017-02-01

    The loss of organic acids during postharvest storage is one of the major factors that reduces the fruit quality and economic value of citrus. Citrate is the most important organic acid in citrus fruits. Molecular evidence has proved that γ-aminobutyric acid (GABA) shunt plays a key role in citrate metabolism. Here, we investigated the effects of exogenous GABA treatment on citrate metabolism and storage quality of postharvest citrus fruit. The content of citrate was significantly increased, which was primarily attributed to the inhibition of the expression of glutamate decarboxylase (GAD). Amino acids, including glutamate, alanine, serine, aspartate and proline, were also increased. Moreover, GABA treatment decreased the fruit rot rate. The activities of antioxidant enzymes and the content of energy source ATP were affected by the treatment. Our results indicate that GABA treatment is a very effective approach for postharvest quality maintenance and improvement of storage performance in citrus production. PMID:27596402

  20. An in vitro study of manure composition on the biochemical origins, composition, and accumulation of odorous compounds in cattle feedlots.

    PubMed

    Miller, D N; Varel, V H

    2002-09-01

    Very little is known about the biochemical origin of cattle feedlot odors and the environmental factors controlling their production. The tie between diet and manure composition is well established, but the effect of different manure compositions on odorous chemical production is unknown. This study describes the effect of starch, casein, and cellulose substrate additions to slurries of fresh (< 24 h) and aged cattle manure (> 1 d) on the anaerobic production of fermentation products and the consumption of substrates relative to no addition treatments. Aged cattle manure accumulated more VFA (245 to 290 mM) than the fresh manure (91 to 181 mM) irrespective of substrate additions (P < 0.001). In fresh manures, VFA concentrations were increased (P < 0.01) over no addition treatments when carbohydrate (starch or cellulose) was added, whereas starch and protein treatments to aged manure increased VFA content relative to no addition treatments (P < 0.001). Branched-chain VFA and aromatic compounds accumulated only in the aged manure (no addition and protein treatments), indicating that some protein fermentation occurred in those treatments. Based upon substrate loss, starch fermentation was the dominant process in both manures and all treatments with losses exceeding 18.6 g/L. Protein fermentation occurred only in the aged manure, specifically the no addition and protein treatments, when starch was no longer available. The production of odorous compounds from manure was controlled by substrate availability and pH, with pH related to lactate accumulation. We believe that calcareous soil and lactate-consuming microorganisms in the aged manure slurries minimized slurry acidification and resulted in greater accumulations of odorous products. Substrate additions had little effect on the overall accumulation of odor compounds in manure but had profound effects on odor compound composition. We propose that modifying cattle diets to limit starch and protein excretion would

  1. An in vitro study of manure composition on the biochemical origins, composition, and accumulation of odorous compounds in cattle feedlots.

    PubMed

    Miller, D N; Varel, V H

    2002-09-01

    Very little is known about the biochemical origin of cattle feedlot odors and the environmental factors controlling their production. The tie between diet and manure composition is well established, but the effect of different manure compositions on odorous chemical production is unknown. This study describes the effect of starch, casein, and cellulose substrate additions to slurries of fresh (< 24 h) and aged cattle manure (> 1 d) on the anaerobic production of fermentation products and the consumption of substrates relative to no addition treatments. Aged cattle manure accumulated more VFA (245 to 290 mM) than the fresh manure (91 to 181 mM) irrespective of substrate additions (P < 0.001). In fresh manures, VFA concentrations were increased (P < 0.01) over no addition treatments when carbohydrate (starch or cellulose) was added, whereas starch and protein treatments to aged manure increased VFA content relative to no addition treatments (P < 0.001). Branched-chain VFA and aromatic compounds accumulated only in the aged manure (no addition and protein treatments), indicating that some protein fermentation occurred in those treatments. Based upon substrate loss, starch fermentation was the dominant process in both manures and all treatments with losses exceeding 18.6 g/L. Protein fermentation occurred only in the aged manure, specifically the no addition and protein treatments, when starch was no longer available. The production of odorous compounds from manure was controlled by substrate availability and pH, with pH related to lactate accumulation. We believe that calcareous soil and lactate-consuming microorganisms in the aged manure slurries minimized slurry acidification and resulted in greater accumulations of odorous products. Substrate additions had little effect on the overall accumulation of odor compounds in manure but had profound effects on odor compound composition. We propose that modifying cattle diets to limit starch and protein excretion would

  2. Effects of dietary N-3 fatty acid supplementation on lipoproteins and intimal foam cell accumulation in the casein-fed rabbit.

    PubMed

    Adelstein, R; Ferguson, L D; Rogers, K A

    1992-02-01

    This study was undertaken to evaluate the effects of dietary N-3 fatty acid supplementation on lipoprotein profiles and intimal foam cell accumulation in rabbits fed a cholesterol-free semipurified casein diet for 10 weeks. Diets were supplemented with a low-cholesterol fish oil preparation (MaxEPA) or a mixture of corn, palm, and safflower oils with a polyunsaturated/saturated (P/S) fatty acid ratio equivalent to the MaxEPA. Plasma cholesterol levels in both groups doubled after two weeks on diet and remained elevated throughout the study. Plasma triglycerides of both groups decreased uniformly from baseline, reaching at sacrifice a mean concentration that was 52% of baseline values. Neither of these plasma measures were affected by the type of oil supplement. Concentrations of low density lipoprotein (LDL) cholesterol, triglyceride, phospholipid, and protein measured at sacrifice were significantly elevated in MaxEPA treated rabbits. Plasma concentrations of thiobarbituric acid reactive substances (TBARS), indicators of lipid peroxidation, were not significantly different between groups. A macroscopic survey of the thoracic aortas revealed that lesions were restricted to the aortic arch regions in both groups. Microscopically it was determined that these intimal lesions were primarily comprised of oil red O positive foam cell aggregates. N-3 fatty acids did not have an effect on the number of intimal foam cells within these lesions. These data suggest that dietary fish oils may exacerbate an LDL hypercholesterolemia, but not the atherosclerotic process in the casein-fed rabbit model of atherosclerosis.

  3. Agonist-induced production of 1,2-diacylglycerol and phosphatidic acid in intact resistance arteries. Evidence that accumulation of diacylglycerol is not a prerequisite for contraction.

    PubMed

    Ohanian, J; Ollerenshaw, J; Collins, P; Heagerty, A

    1990-05-25

    The production of total amounts of 1,2-diacylglycerol as well as those specifically derived from inositol lipid hydrolysis was studied in intact rat resistance arteries stimulated with either noradrenaline, vasopressin, or angiotensin II at 20 s when the onset of contraction would be nearing its maximum, and at 5 min during the sustained phase of contraction. Total amounts of 1,2-diacylglycerol were not altered by any agonist at 20 s, or at 5 min. However, arachidonate-containing species of 1,2-diacylglycerol were differentially influenced being increased at 5 min by noradrenaline, and decreased at 20 s and 5 min by vasopressin. Only angiotensin II produced substantial increases in this class of 1,2-diacylglycerol at both time points. In order to investigate the fate of this second messenger total and inositol lipid derived phosphatidic acids were then measured at both 20 s and 5 min. Noradrenaline induced a rise in both total and arachidonate-containing phosphatidic acid at both times as did vasopressin. Only small increases were induced by angiotensin II at 20 s. These data demonstrate that the accumulation of 1,2-diacylglycerol generated from inositol lipid breakdown is only observed with activation by angiotensin II. Other agonists produced phosphatidic acids with time and the rate of generation of these lipids is agonist-specific. Thus phosphatidic acid may play a more prominent role during the sustained phase of contraction than previously anticipated.

  4. Effect of pentoxifylline on arachidonic acid metabolism, neutral lipid synthesis and accumulation during induction of the lipocyte phenotype by retinol in murine hepatic stellate cell.

    PubMed

    Cardoso, Carla C A; Paviani, Ernani R; Cruz, Lavínia A; Guma, Fátima C R; Borojevic, Radovan; Guaragna, Regina M

    2003-12-01

    In liver fibrosis, the quiescent hepatic stellate cells (HSC) are activated to proliferate and express the activated myofibroblast phenotype, losing fat droplets and the stored vitamin A, and depositing more extracellular matrix. Therapeutic strategies for liver fibrosis are focused on HSC. Pentoxifylline (PTF), an analog of the methylxanthine, prevents the biochemical and histological changes associated with animal liver fibrosis. The aim of the present study was to investigate the phenotypic change of myofibroblasts into quiescent lipocytes by PTF and/or retinol, using a permanent cell line GRX that represents murine HSC. We studied the action of both drugs on the synthesis of neutral lipids, activity of phospholipase A2 (PLA2), release of arachidonic acid (AA) and prostaglandins synthesis. Accumulation and synthesis of neutral lipids was dependent upon association of retinol with PTF. PTF (0.5 mg/mL) alone did not induce lipid accumulation and synthesis, but in cells induced by physiologic concentration of retinol (1-2.5 microM), it increased the quantity of stored lipids. Retinol and PTF (5 microM and 0.1 mg/mL, respectively) had a synergistic effect on neutral lipid synthesis and accumulation. In higher PTF concentrations (0.5 and 0.7 mg/ml), the synthesis was stimulated but accumulation decreased. Membrane-associated PLA2 activity decreased after PTF treatment, which increased the AA release 8 fold, and significantly increased the production of PGE2, but not of PGF2. However, when in presence of retinol, we observed a slightly higher increase in PGE2 and PGF2a production. In conclusion, PTF treatment generated an excess of free AA. We propose that retinol counteracts the action of PTF on the AA release and PGs production, even though both drugs stimulated the lipocyte induction in the HSC. PMID:14674680

  5. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    PubMed

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar.

  6. [Enriched experiment and endogenous processes of glycogen-accumulating organisms (GAOs)].

    PubMed

    Wang, Qi-Lin; Hao, Xiao-Di; Cao, Ya-Li

    2011-04-01

    Cell decay is an important part of microbiological endogenous processes, which consists of cell death (reduction in the amount of active bacteria) and activity decay (reduction in the specific activity of active bacteria). By means of measuring maximal anaerobic volatile fatty acid (VFA) uptake rates (VFAUR), analyzing 16S rRNA with fluorescence in-situ hybridization (FISH) and observing membrane integrity by live/dead staining, the aerobic decay characteristics of glycogen-accumulating organisms (GAOs) in an enriched GAOs sequencing batch reactor (SBR) system were investigated. It was experimentally identified that a highly enriched culture of GAOs (94%) was obtained by maintaining the temperature at 30 degrees C in the SBR and a high m (COD): m (P) at 100 in the feed. The experimental results and calculations revealed that the decay and death rates of GAOs were 0.132 d(-1) and 0.034 d(-1) respectively, which demonstrated that cell death and activity decay accounted for respective 26% and 74% of the total GAOs cell decay. For this reason, cell death was only a minor factor causing the cell decay of GAOs, and activity decay was mostly responsible for this process.

  7. Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells.

    PubMed

    Aprile, Alessio; Federici, Claire; Close, Timothy J; De Bellis, Luigi; Cattivelli, Luigi; Roose, Mikeal L

    2011-12-01

    The sour taste of lemons (Citrus limon (L.) Burm.) is determined by the amount of citric acid in vacuoles of juice sac cells. Faris is a "sweet" lemon variety since it accumulates low levels of citric acid. The University of California Riverside Citrus Variety Collection includes a Faris tree that produces sweet (Faris non-acid; FNA) and sour fruit (Faris acid; FA) on different branches; it is apparently a graft chimera with layer L1 derived from Millsweet limetta and layer L2 from a standard lemon. The transcription profiles of Faris sweet lemon were compared with Faris acid lemon and Frost Lisbon (L), which is a standard sour lemon genetically indistinguishable from Faris in prior work with SSR markers. Analysis of microarray data revealed that the transcriptomes of the two sour lemon genotypes were nearly identical. In contrast, the transcriptome of Faris sweet lemon was very different from those of both sour lemons. Among about 1,000 FNA-specific, presumably pH-related genes, the homolog of Arabidopsis H(+)-ATPase proton pump AHA10 was not expressed in FNA, but highly expressed in FA and L. Since Arabidopsis AHA10 is involved in biosynthesis and acidification of vacuoles, the lack of expression of the AHA10 citrus homolog represents a very conspicuous molecular feature of the FNA sweet phenotype. In addition, high expression of several 2-oxoglutarate degradation-related genes in FNA suggests activation of the GABA shunt and degradation of valine and tyrosine as components of the mechanism that reduces the level of citric acid in sweet lemon.

  8. Crystal Structure of Okadaic Acid Binding Protein 2.1: A Sponge Protein Implicated in Cytotoxin Accumulation.

    PubMed

    Ehara, Haruhiko; Makino, Marie; Kodama, Koichiro; Konoki, Keiichi; Ito, Takuhiro; Sekine, Shun-ichi; Fukuzawa, Seketsu; Yokoyama, Shigeyuki; Tachibana, Kazuo

    2015-07-01

    Okadaic acid (OA) is a marine polyether cytotoxin that was first isolated from the marine sponge Halichondria okadai. OA is a potent inhibitor of protein serine/threonine phosphatases (PP) 1 and 2A, and the structural basis of phosphatase inhibition has been well investigated. However, the role and mechanism of OA retention in the marine sponge have remained elusive. We have solved the crystal structure of okadaic acid binding protein 2.1 (OABP2.1) isolated from H. okadai; it has strong affinity for OA and limited sequence homology to other proteins. The structure revealed that OABP2.1 consists of two α-helical domains, with the OA molecule deeply buried inside the protein. In addition, the global fold of OABP2.1 was unexpectedly similar to that of aequorin, a jellyfish photoprotein. The presence of structural homologues suggested that, by using similar protein scaffolds, marine invertebrates have developed diverse survival systems adapted to their living environments.

  9. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production.

  10. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid.

    PubMed

    Becker, Christine; Klaering, Hans-Peter; Kroh, Lothar W; Krumbein, Angelika

    2014-03-01

    Cultivating lettuce in greenhouses at low temperatures improves its CO2-balance and may increase its content of flavonoid glycosides and phenolic acids. We cultivated 5weeks old red leaf lettuce seedlings at 20/15°C (day/night) or 12/7°C until plants reached comparable growth stages: small heads were harvested after 13 (warm) and 26 (cool)days, while mature heads were harvested after 26 (warm) or 52 (cool)days. Additionally, some plants were cultivated first cool then warm and vice versa (39days). Cool-cultivated small heads had higher concentrations of cyanidin-3-O-(6″-O-malonyl)-glucoside and caffeoylmalic acid than warm-cultivated ones but we detected no differences concerning quercetin and luteolin glycosides or di-O-caffeoyltartaric and 5-O-caffeoylquinic acid. Regarding mature heads, there were only differences concerning cyanidin-3-O-(6″-O-malonyl)-glucoside. We therefore suggest that only cyanidin-3-O-(6″-O-malonyl)-glucoside was truly responsive to temperatures alone. Previously reported contrasting effects may rather be due to comparison of different growth stages or interactive effects with radiation.

  11. Accumulation and depuration of okadaic acid esters in the European green crab (Carcinus maenas) during a feeding study.

    PubMed

    Jørgensen, Kevin; Cold, Ulrik; Fischer, Knud

    2008-03-01

    Soft shell crab is a seafood delicacy in many parts of the world. In Denmark, it has been investigated whether a commercial production of soft shell European green crabs (Carcinus maenas) would be feasible. In relation to this, a feeding study was performed to examine if occurrence of DSP toxins in the product could be a food safety problem. The crabs were fed with mussels containing DSP toxins (2500 microg total okadaic acid equivalents/kg) for 17 days and then fasted for 19 days. The content of total okadaic acid equivalents in the digestive organs was on average 27 times higher than the corresponding content in the body meat. The highest level of total okadaic acid equivalents measured was 12 microg/kg in body meat and 503 microg/kg in digestive organs. The results show that the content of DSP toxins in a commercial product of soft shell European green crab (without digestive organs) could be regarded as negligible. PMID:17983637

  12. Balance between fatty acid degradation and lipid accumulation in cultured smooth muscle cells and IC-21 macrophages exposed to oleic acid.

    PubMed

    Moinat, M; Kossovsky, M; Chevey, J M; Giacobino, J P

    1991-01-01

    1. The effect of changes in fatty acid beta-oxidation activity on triglyceride and cholesteryl ester synthesis were studied in cultured smooth muscle cells (SMC) and in a macrophage cell line IC-21 in the presence of oleic acid (100 microM). 2. Etomoxir, an inhibitor of carnitine palmitoyltransferase I, stimulated the incorporation of [2-3H]glycerol into triglycerides in SMC and in macrophages 6.2- and 8.2-fold, respectively, and the incorporation of [4-14C]cholesterol into cholesteryl esters in macrophages 3.5-fold. 3. L-Carnitine, a cofactor of fatty acid beta-oxidation, decreased the incorporation of [2-3H]glycerol into triglycerides in smooth muscle cells by 69% and the incorporation of [4-14C]cholesterol into cholesteryl esters by 52%. L-Carnitine had no effect on the macrophages. PMID:2060277

  13. Accumulation of acidic SK₃ dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae.

    PubMed

    Szabala, Bartosz Mieczyslaw; Fudali, Sylwia; Rorat, Tadeusz

    2014-04-01

    The role of acidic SK(n) dehydrins in stress tolerance of important crop and model species of the Solanaceae remains unknown. We have previously shown that the acidic SK₃ dehydrin DHN24 from Solanum sogarandinum is constitutively expressed and its expression is associated with cold acclimation. Here we found that DHN24 is specifically localized to phloem cells of vegetative organs of non-acclimated plants. More precise localization of DHN24 revealed that it is primarily found in sieve elements (SEs) and companion cells (CCs) of roots and stems. In cold-acclimated plants, DHN24 is mainly present in all cell types of the phloem. Dhn24 transcripts are also predominantly localized to phloem cells of cold-acclimated stems. Immunoelectron microscopy localized DHN24 to the cytosol and close to organelle membranes of phloem cells, the lumen with phloem protein filaments, parietal cytoplasm of SEs and the nucleoplasm of some nuclei. Cell fractionation experiments revealed that DHN24 was detected in the cytosolic, nuclear and microsomal fractions. We also determined whether homologous members of the acidic subclass dehydrins from Capsicum annuum and Lycopersicon chilense share the characteristics of DHN24. We showed that they are also constitutively expressed, but their protein level is upregulated preferentially by drought stress. Immunofluorescent localization revealed that they are detected in SEs and CCs of unstressed plants and throughout the phloem in drought-stressed plants. These results suggest that one of the primary roles of DHN24 and its homologs may be the protection of the phloem region from adverse effects of abiotic stresses.

  14. Hatching, growth, ion accumulation, and skeletal ossification of brook trout (Salvelinus fontinalis) alevins in acidic soft waters

    USGS Publications Warehouse

    Steingraeber, M.T.; Gingerich, W.H.

    1991-01-01

    Brook trout eyed eggs and subsequent alevins were exposed to pH 5.0, 6.5, and 7.0 in soft reconstituted water and to pH 8.2 in hard well water for up to 72 d. Hatching was delayed and hatching success reduced (p K+ > Cl- during yolk absorption and early exogenous feeding. Whole-body monovalent ion concentrations were reduced for short periods during yolk absorption in alevins exposed to pH 6.5 and throughout most of the experiment for those exposed to pH 5.0. Whole-body Mg2+ concentrations were not affected by treatment pH and remained near their median hatch level throughout the exposure. The whole-body concentration of Ca2+ was reduced in fish exposed to pH 5.0, particularly near the end of the experiment. Calcium accumulation in fish was influenced by the interaction of pH and time at pH 5.0 but not at the other pH levels. Alevins exposed to pH 5.0 experienced delayed ossification of skeletal structures associated with feeding, respiration, and locomotion that usually persisted for up to 10 d. The detection of skeletal abnormalities early in life might aid in identifying fish populations at risk in acidified waters.

  15. Anaplerotic Accumulation of Tricarboxylic Acid Cycle Intermediates as Well as Changes in Other Key Metabolites During Heterotopic Ossification

    PubMed Central

    Davis, Eleanor L.; Salisbury, Elizabeth A.; Olmsted‐Davis, Elizabeth

    2015-01-01

    ABSTRACT Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:26627193

  16. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  17. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  18. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica)

    PubMed Central

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m−2 s−1 or 100 μmol m−2 s−1 at 10°C, or at 400 μmol m−2 s−1 with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  19. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production.

  20. Accumulation of PrLeg, a Perilla legumin protein in potato tuber results in enhanced level of sulphur-containing amino acids.

    PubMed

    Goo, Young-Min; Kim, Tae-Won; Lee, Min-Kyung; Lee, Shin-Woo

    2013-09-01

    Potato is the fourth staple food in the world, following rice, wheat, and maize, whereas tubers contain high quality of starch, relatively high amounts of vitamin C and many other important substances. It also contains relatively good quality of protein (about 3 to 6% of the dried weight) and patatin, and 11S globulin is a major storage protein with high level of lysine. However, tuber protein contains relatively low amounts of sulphur-containing amino acids, which may result in low nutritional value. Recently, we cloned a gene encoding PrLeg polypeptide, a seed storage protein from Perilla, which contains relatively higher levels of sulphur-containing amino acids. We transformed PrLeg cDNA into a potato plant to over-express under the direction of the tuber-specific promoter, patatin. Most of the transgenic lines identified through PCR and RT-PCR analyses were able to accumulate high amount of prLeg transcript in their tuber tissue, while very little or no transcript that were detected in their leaf tissues. The level of methionine content was elevated up to three-fold compared to non-transgenic parental line, without any significant changes in other amino acids, suggesting that further research is required to get a deeper insight into their nutritional value. PMID:24161240

  1. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying.

    PubMed

    Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C; Wang, Tao; Li, Feng-Min

    2012-08-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat.

  2. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress.

    PubMed

    Huang, Guoyong; Guo, Guangguang; Yao, Shiyuan; Zhang, Na; Hu, Hongqing

    2016-01-01

    Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations.

  3. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress.

    PubMed

    Huang, Guoyong; Guo, Guangguang; Yao, Shiyuan; Zhang, Na; Hu, Hongqing

    2016-01-01

    Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations. PMID:26220483

  4. Effects of Dietary Palmitoleic Acid on Plasma Lipoprotein Profile and Aortic Cholesterol Accumulation Are Similar to Those of Other Unsaturated Fatty Acids in the F1B Golden Syrian Hamster 1–3

    PubMed Central

    Matthan, Nirupa R.; Dillard, Alice; Lecker, Jaime L.; Ip, Blanche; Lichtenstein, Alice H.

    2008-01-01

    The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to PUFA may confer functional advantages with respect to finding acceptable alternatives to partially hydrogenated fats, but limited data are available on its effect on cardiovascular risk factors. This study investigated the effect of diets (10% fat, 0.1% cholesterol, wt:wt) enriched with macadamia [monounsaturated fatty acid (MUFA)16:1], palm (SFA,16:0), canola (MUFA,18:1), or safflower (PUFA,18:2) oils on lipoprotein profiles and aortic cholesterol accumulation in F1B Golden Syrian hamsters (n = 16/group). After 12 wk, 8 hamsters in each group were killed (phase 1). The remaining hamsters fed palm oil were changed to a diet containing coconut oil, while hamsters in the other diet groups continued on their original diets for an additional 6 wk (phase 2). With minor exceptions, the time course and dietary SFA source did not alter the study outcomes. Macadamia oil-fed hamsters had lower non-HDL cholesterol and triglyceride concentrations compared with the palm and coconut oil-fed hamsters and higher HDL-cholesterol compared with the coconut, canola, and safflower oil-fed hamsters. The aortic cholesterol concentration was not affected by dietary fat type. The hepatic cholesterol concentration was higher in the unsaturated compared with the saturated oil-fed hamsters. RBC membrane and aortic cholesteryl ester, triglyceride, and phospholipid fatty acid profiles reflected that of the dietary oil. These data suggest that an oil relatively high in palmitoleic acid does not adversely affect plasma lipoprotein profiles or aortic cholesterol accumulation and was similar to other unsaturated fatty acid-rich oils. PMID:19106316

  5. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden Syrian hamster.

    PubMed

    Matthan, Nirupa R; Dillard, Alice; Lecker, Jaime L; Ip, Blanche; Lichtenstein, Alice H

    2009-02-01

    The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to PUFA may confer functional advantages with respect to finding acceptable alternatives to partially hydrogenated fats, but limited data are available on its effect on cardiovascular risk factors. This study investigated the effect of diets (10% fat, 0.1% cholesterol, wt:wt) enriched with macadamia [monounsaturated fatty acid (MUFA)16:1], palm (SFA,16:0), canola (MUFA,18:1), or safflower (PUFA,18:2) oils on lipoprotein profiles and aortic cholesterol accumulation in F1B Golden Syrian hamsters (n = 16/group). After 12 wk, 8 hamsters in each group were killed (phase 1). The remaining hamsters fed palm oil were changed to a diet containing coconut oil, while hamsters in the other diet groups continued on their original diets for an additional 6 wk (phase 2). With minor exceptions, the time course and dietary SFA source did not alter the study outcomes. Macadamia oil-fed hamsters had lower non-HDL cholesterol and triglyceride concentrations compared with the palm and coconut oil-fed hamsters and higher HDL-cholesterol compared with the coconut, canola, and safflower oil-fed hamsters. The aortic cholesterol concentration was not affected by dietary fat type. The hepatic cholesterol concentration was higher in the unsaturated compared with the saturated oil-fed hamsters. RBC membrane and aortic cholesteryl ester, triglyceride, and phospholipid fatty acid profiles reflected that of the dietary oil. These data suggest that an oil relatively high in palmitoleic acid does not adversely affect plasma lipoprotein profiles or aortic cholesterol accumulation and was similar to other unsaturated fatty acid-rich oils. PMID:19106316

  6. Phase transformations of high-purity PbI2 nanoparticles synthesized from lead-acid accumulator anodes

    NASA Astrophysics Data System (ADS)

    Malevu, T. D.; Ocaya, R. O.; Tshabalala, K. G.

    2016-09-01

    High-purity hexagonal lead iodide nanoparticles have been synthesized from a depleted sealed lead acid battery anode. The synthesized product was found to consist of the rare 6R polytype form of PbI2 that is thought to have good potential in photovoltaic applications. We investigate the effects of annealing time and post-melting temperature on the structure and optical properties using 1.5418 Å CuKα radiation. Photoluminescence measurements were done under 150 W/221 nm wavelength xenon excitation. Phase transformation was observed through XRD peaks when annealing time increased from 0.5-5 h. The nanoparticle grain size and inter-planar distance appeared to be independent of annealing time. PL measurements show three broad peaks in a range of 400 nm to 700 nm that are attributed to excitonic, donor-acceptor pair and luminescence bands from the deep levels.

  7. The biocide tributyltin reduces the accumulation of testosterone as fatty acid esters in the mud snail (Ilyanassa obsoleta).

    PubMed Central

    Gooding, Meredith P; Wilson, Vickie S; Folmar, Leroy C; Marcovich, Dragoslav T; LeBlanc, Gerald A

    2003-01-01

    Imposex, the development of male sex characteristics by female gonochoristic snails, has been documented globally and is causally associated with exposure to the ubiquitous environmental contaminant tributyltin (TBT). Elevated testosterone levels in snails also are associated with TBT, and direct exposure to testosterone has been shown to cause imposex. We discovered previously that the mud snail (Ilyanassa obsoleta)biotransforms and retains excess testosterone primarily as fatty acid esters. The purpose of this study was to determine whether TBT interferes with the esterification of testosterone, resulting in the elevated free (unesterified) testosterone levels associated with imposex. Exposure of snails to environmentally relevant concentrations of TBT (> or = 1.0 ng/L as tin) significantly increased the incidence of imposex. Total (free + esterified) testosterone levels in snails were not altered by TBT; however, free testosterone levels increased with increasing exposure concentration of TBT. TBT-exposed snails were given [14C

  8. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet.

    PubMed

    Xu, Li; Huang, Danping; Hu, Qiaolin; Wu, Jing; Wang, Yizhen; Feng, Jie

    2015-06-28

    To assess the effects of betaine on hepatic lipid accumulation and investigate the underlying mechanism, thirty-two male Sprague-Dawley rats weighing 100 (sd 2·50) g were divided into four groups, and started on one of four treatments: basal diet, basal diet with betaine administration, high-fat diet and high-fat diet with betaine administration. The results showed that no significant difference of body weight was found among experimental groups. Compared with high-fat diet-fed rats, a betaine supplementation decreased (P< 0·05) hepatic TAG accumulation induced by high-fat diet, which was also supported by hepatic histology results. Additionally, hepatic betaine-homocysteine methyltransferase concentration [corrected] as well as its mRNA abundance and lecithin level were found increased (P< 0·05) by betaine supplementation in both basal diet-fed rats and high-fat diet-fed rats. Betaine administration in high-fat diet-fed rats exhibited a higher (P< 0·05) concentration [corrected] of hepatic carnitine palmitoyltransferase 1 (CPT1) compared with high-fat diet-fed rats. High-fat diet inhibited (P< 0·05) the gene expression of hepatic PPARα and CPT1. However, betaine administration in high-fat diet-fed rats elevated (P< 0·05) the gene expression of PPARα and CPT1. Moreover, concentration, gene and protein expressions of hepatic fibroblast growth factor 21 (FGF21) were increased (P< 0·05) in response to betaine administration in high-fat diet group; meanwhile the gene expression of hepatic AMP-activated protein kinase was increased (P< 0·05) as well. The results suggest that betaine administration enhanced hepatic lipid export and fatty acid oxidation in high-fat diet-fed rats, thus effectively alleviating fat accumulation in the liver.

  9. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway. PMID:23017406

  10. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway.

  11. Crassulacean acid metabolism photosynthesis in columnar cactus seedlings during ontogeny: the effect of light on nocturnal acidity accumulation and chlorophyll fluorescence.

    PubMed

    Hernández-González, Olivia; Villarreal, Oscar Briones

    2007-08-01

    Columnar cacti have been traditionally classified as crassulacean acid metabolism (CAM) plants, though recent research indicates some cactus seedlings employ the C(3) pathway. To verify this last result, we measured acidity fluctuations for five columnar and one globular cactus species in seedlings from 1 to 48 d old after experimental exposure to 60% and 30% full sunlight, and in adult plants in the field. Using light-response curves of chlorophyll fluorescence, we determined photosynthetic efficiency (ΔF/Fm'), maximum electron transport rate (ETR(max)) and saturating photosynthetically active photon flux density (PPFD(sat)). All seedlings used the CAM pathway from their first day of development, and increases in nocturnal acidity depended on species, light treatment, and age. The CAM pathway was also found in adult plants. Cactus seedlings were able to acclimatize to light conditions by making photochemical adjustments, mainly by modifying the level of light at which photosystem II is saturated (PPFD(sat)). The presence of CAM in the seedlings of columnar cacti increases water-use efficiency and reduces the risk of photoinhibition. This could favor survival in the highly variable light levels characteristic of the desert environments of columnar cacti.

  12. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity.

  13. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  14. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation

    PubMed Central

    JOËT, THIERRY; SALMONA, JORDI; LAFFARGUE, ANDRÉINA; DESCROIX, FRÉDÉRIC; DUSSERT, STÉPHANE

    2010-01-01

    Developing Coffea arabica seeds accumulate large amounts of chlorogenic acids (CGAs) as a storage form of phenylpropanoid derivatives, making coffee a valuable model to investigate the metabolism of these widespread plant phenolics. However, developmental and environmental regulations of CGA metabolism are poorly understood. In the present work, the expression of selected phenylpropanoid genes, together with CGA isomer profiles, was monitored throughout seed development across a wide set of contrasted natural environments. Although CGA metabolism was controlled by major developmental factors, the mean temperature during seed development had a direct impact on the time-window of CGA biosynthesis, as well as on final CGA isomer composition through subtle transcriptional regulations. We provide evidence that the variability induced by the environment is a useful tool to test whether CGA accumulation is quantitatively modulated at the transcriptional level, hence enabling detection of rate-limiting transcriptional steps [quantitative trait transcripts (QTTs)] for CGA biosynthesis. Variations induced by the environment also enabled a better description of the phenylpropanoid gene transcriptional network throughout seed development, as well as the detection of three temporally distinct modules of quantitatively co-expressed genes. Finally, analysis of metabolite-to-metabolite relationships revealed new biochemical characteristics of the isomerization steps that remain uncharacterized at the gene level. PMID:20199615

  15. Sediment accumulation, stratigraphic order, and the extent of time-averaging in lagoonal sediments: a comparison of 210Pb and 14C/amino acid racemization chronologies

    NASA Astrophysics Data System (ADS)

    Kosnik, Matthew A.; Hua, Quan; Kaufman, Darrell S.; Zawadzki, Atun

    2015-03-01

    Carbon-14 calibrated amino acid racemization (14C/AAR) data and lead-210 (210Pb) data are used to examine sediment accumulation rates, stratigraphic order, and the extent of time-averaging in sediments collected from the One Tree Reef lagoon (southern Great Barrier Reef, Australia). The top meter of lagoonal sediment preserves a stratigraphically ordered deposit spanning the last 600 yrs. Despite different assumptions, the 210Pb and 14C/AAR chronologies are remarkably similar indicating consistency in sedimentary processes across sediment grain sizes spanning more than three orders of magnitude (0.1-10 mm). Estimates of long-term sediment accumulation rates range from 2.2 to 1.2 mm yr-1. Molluscan time-averaging in the taphonomically active zone is 19 yrs, whereas below the depth of final burial (~15 cm), it is ~110 yrs/5 cm layer. While not a high-resolution paleontological record, this reef lagoon sediment is suitable for paleoecological studies spanning the period of Western colonization and development. This sedimentary deposit, and others like it, should be useful, albeit not ideal, for quantifying anthropogenic impacts on coral reef systems.

  16. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation.

    PubMed

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation. PMID:26539205

  17. Accumulation of γ‐aminobutyric acid by E nterococcus avium 9184 in scallop solution in a two‐stage fermentation strategy

    PubMed Central

    Yang, Haoyue; Hu, Linfeng; Liu, Song

    2015-01-01

    Summary In this study, a new bacterial strain having a high ability to produce γ‐aminobutyric acid (GABA) was isolated from naturally fermented scallop solution and was identified as E nterococcus avium. To the best of our knowledge, this is the first study to prove that E . avium possesses glutamate decarboxylase activity. The strain was then mutagenized with UV radiation and was designated as E . avium 9184. Scallop solution was used as the culture medium to produce GABA. A two‐stage fermentation strategy was applied to accumulate GABA. In the first stage, cell growth was regulated. Optimum conditions for cell growth were pH, 6.5; temperature, 37°C; and glucose concentration, 10 g·L−1. This produced a maximum dry cell mass of 2.10 g·L−1. In the second stage, GABA formation was regulated. GABA concentration reached 3.71 g·L−1 at 96 h pH 6.0, 37°C and initial l‐monosodium glutamate concentration of 10 g·L−1. Thus, compared with traditional one‐stage fermentation, the two‐stage fermentation significantly increased GABA accumulation. These results provide preliminary data to produce GABA using E . avium and also provide a new approach to process and utilize shellfish. PMID:26200650

  18. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation.

    PubMed

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  19. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.

    PubMed

    Palacios, Oskar A; Choix, Francisco J; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content.

  20. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    PubMed Central

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation. PMID:26539205

  1. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity. PMID:27412947

  2. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. PMID:26575525

  3. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  4. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  5. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis.

    PubMed

    Zhu, Lin; Guo, Jiansheng; Zhu, Jian; Zhou, Cheng

    2014-02-01

    Drought can activate several stress responses in plants, such as stomatal closure, accumulation of cuticular wax and ascorbic acid (AsA), which have been correlated with improvement of drought tolerance. In this study, a novel MYB gene, designed as EsWAX1, was isolated and characterized from Eutrema salsugineum. EsWAX1 contained a full-length open reading frame (ORF) of 1068 bp, which encoding 355 amino acids. Transcript levels of EsWAX1 were quickly inducible by drought stress and ABA treatment, indicating that EsWAX1 may act as a positive regulator in response to drought stress. Ectopic expression of EsWAX1 increased accumulation of cuticular wax via modulating the expression of several wax-related genes, such as CER1, KCS2 and KCR1. Scanning electron microscopy further revealed higher densities of wax crystalline structures on the adaxial surfaces of leaves in transgenic Arabidopsis plants. In addition, the expression of several AsA biosynthetic genes (VTC1, GLDH and MIOX4) was significantly up-regulated in EsWAX1-overexpressing lines and these transgenic plants have approximately 23-27% more total AsA content than WT plants. However, the high-level expression of EsWAX1 severely disrupted plant normal growth and development. To reduce negative effects of EsWAX1 over-expression on plant growth, we generated transgenic Arabidopsis plants expressing EsWAX1 driven by the stress-inducible RD29A promoter. Our data indicated the RD29A::EsWAX1 transgenic plants had greater tolerance to drought stress than wild-type plants. Taken together, the EsWAX1 gene is a potential regulator that may be utilized to improve plant drought tolerance by genetic manipulation.

  6. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo.

  7. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet

    PubMed Central

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-01-01

    Abstract Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  8. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  9. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Weng, Li-Chi; Pasaribu, Buntora; -Ping Lin, I.; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-07-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations.

  10. A single amino acid substitution in the ORF1 of cymbidium ringspot virus determines the accumulation of two satellite RNAs.

    PubMed

    Rubino, Luisa; Russo, Marcello

    2012-09-01

    Tombusviruses may support the replication of satellite (sat) RNAs. In particular, two satRNAs, sat L and Cymsat RNAs, are replicated by carnation Italian ringspot (CIRV) and tomato bushy stunt (TBSV) virus, but not by cymbidium ringspot virus (CymRSV) in vitro transcripts unless they contain a poly(A) tail at the 3' end. Conversely, the replication of both satRNAs was supported by virus particles or viral RNA of the original CymRSV inoculum even in the absence of the poly(A) tail. Sequence and mutational analyses revealed that the full-length infectious CymRSV clone contains one relevant sequence variation in the ORF 1-encoded protein (p33) compared with the original inoculum, i.e. a Ser₁₉ TCC codon instead of a Phe₁₉ TTC codon, which inhibited the replication of sat L and Cymsat RNAs. It is suggested that this amino acid is contained in a domain essential for the replication of some subviral RNAs. PMID:22709553

  11. Differential accumulation and elimination behavior of perfluoroalkyl Acid isomers in occupational workers in a manufactory in China.

    PubMed

    Gao, Yan; Fu, Jianjie; Cao, Huiming; Wang, Yawei; Zhang, Aiqian; Liang, Yong; Wang, Thanh; Zhao, Chunyan; Jiang, Guibin

    2015-06-01

    In this study, serum and urine samples were collected from 36 occupational workers in a fluorochemical manufacturing plant in China from 2008 to 2012 to evaluate the body burden and possible elimination of linear and branched perfluoroalkyl acids (PFAAs). Indoor dust, total suspended particles (TSP), diet, and drinking water samples were also collected to trace the occupational exposure pathway to PFAA isomers. The geometric mean concentrations of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorohexanesulfonate (PFHxS) isomers in the serum were 1386, 371, and 863 ng mL(-1), respectively. The linear isomer of PFOS, PFOA, and PFHxS was the most predominant PFAA in the serum, with mean proportions of 63.3, 91.1, and 92.7% respectively, which were higher than the proportions in urine. The most important exposure routes to PFAA isomers in the occupational workers were considered to be the intake of indoor dust and TSP. A renal clearance estimation indicated that branched PFAA isomers had a higher renal clearance rate than did the corresponding linear isomers. Molecular docking modeling implied that linear PFOS (n-PFOS) had a stronger interaction with human serum albumin (HSA) than branched isomers did, which could decrease the proportion of n-PFOS in the blood of humans via the transport of HSA.

  12. Production of volatile fatty acids from wastewater screenings using a leach-bed reactor.

    PubMed

    Cadavid-Rodríguez, Luz Stella; Horan, Nigel J

    2014-09-01

    Screenings recovered from the inlet works of wastewater treatment plants were digested without pre-treatment or dilution using a lab-scale, leach-bed reactor. Variations in recirculation ratio of the leachate of 4 and 8 l/lreactor/day and pH values of 5 and 6 were evaluated in order to determine the optimal operating conditions for maximum total volatile fatty acids (VFA) production. By increasing the recirculation ratio of the leachate from 4 to 8 l/lreactor/day it was possible to increase VFA production (11%) and soluble COD (17%) and thus generate up to 264 g VFA/kg-dry screenings. These VFA were predominantly acetic acid with some propionic and butyric acid. The optimum pH for VFA production was 6.0, when the methanogenic phase was inhibited. Below pH 5.0, acid-producing fermentation was inhibited and some alcohols were produced. Ammonia release during the hydrolysis of screenings provided adequate alkalinity; consequently, a digestion process without pH adjustment could be recommended. The leach-bed reactor was able to achieve rapid rates of screenings degradation with the production of valuable end-products that will reduce the carbon footprint associated with current screenings disposal techniques.

  13. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase.

    PubMed

    Arisz, Steven A; van Wijk, Ringo; Roels, Wendy; Zhu, Jian-Kang; Haring, Michel A; Munnik, Teun

    2013-01-01

    Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using (32)P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid (32)P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential (32)P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid (32)P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of (32)P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in (32)P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in (32)P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented.

  14. Effects of light quality and nutrient availability on accumulation of mycosporine-like amino acids in Gymnodinium catenatum (Dinophycea).

    PubMed

    Vale, Paulo

    2015-02-01

    A Portuguese Gymnodinium catenatum Graham strain was studied for its ultraviolet (UV) photoprotective pigments. This strain presented high absorption in the UVA region, in particular in the near UVA region around 370nm, followed by the far-UVA region around 340nm. Absorption in the near-UVA increased when grown under fluorescent when compared to halogen light. This was even more relevant when grown under nutrient-limiting conditions, which even surpassed absorption in the blue region, closely resembling absorption in natural plankton assemblages reported in the literature. HPLC analysis for mycosporine-like amino acids (MAAs), revealed several UV photoprotective pigments common in other marine microalgae from the northwest Atlantic. Amongst the compounds absorbing in the far-UVA region, three were identified by spectra and retention time characteristics: shinorine, porphyra-334, and mycosporine-glycine. In the near-UVA region, the unknown M-370 was usually the most abundant, followed by palythene. The proportional and absolute cellular concentrations of MAAs absorbing in the near-UVA region increased with fluorescent light when compared to halogen light. Additional experiments with light filtration suggest the set of MAAs absorbing in the near-UVA region seem to be regulated separately from the other set of MAAs absorbing in the far-UVA region, and those from the near-UVA region might be stimulated not only by UV but by blue light also. Nutrient availability affected profile: a shift towards MAAs with low nitrogen:carbon ratio (e.g.: mycosporine-glycine) was observed. As G. catenatum requires extensive UV-photoprotection over the entire UVA range, nitrogen availability might strongly restrict blooming, as MAAs are nitrogen-based. This UV sensitivity might help explaining its pronounced autumnal seasonality, tied to a reduced solar exposure.

  15. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)₂ adjustment.

    PubMed

    Li, XiaoLing; Peng, YongZhen; Ren, NanQi; Li, BaiKun; Chai, TongZhi; Zhang, Liang

    2014-09-15

    The effects of temperatures (15-55 °C) on the alkaline fermentation of sewage sludge were investigated in semi-continuous stirred tank reactors (semi - CSTR) at the pH of 10. The highest soluble chemical oxygen demand (SCOD) yield was obtained at 55 °C (764.2 mg/(gVS L d)), while the highest short chain fatty acids (SCFAs) yield was observed at 35 °C (319.8 mg/(gVS L d)), 1.5 times higher than SCFAs yield at 55 °C (209.5 mg/(gVS L d)). The proportion of the intercellular organic substances being transferred to the slime layer of sludge flocs increased from 29% at 15 °C to 54% at 55 °C. But only a small part of soluble organic substances in the slime layers was converted to SCFAs at 55 °C. The dewaterability of sludge was better at 35 °C than that at 55 °C. Microbiological community analysis showed the acid-producing microorganisms at the medium temperatures (25 °C and 35 °C) were more diverse and abundant than those at the low (15 °C) and high temperatures (55 °C). Clodtridium and Bacillus in Firmicutes and Gamma proteobacterium in Proteobacteria were the dominant functional bacterial species for high SCFA accumulation.

  16. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.

    PubMed

    Cecatto, Cristiane; Godoy, Kálita Dos Santos; da Silva, Janaína Camacho; Amaral, Alexandre Umpierrez; Wajner, Moacir

    2016-10-01

    The pathogenesis of the muscular symptoms and recurrent rhabdomyolysis that are commonly manifested in patients with mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiencies is still unknown. In this study we investigated the effects of the major long-chain monocarboxylic 3-hydroxylated fatty acids (LCHFA) accumulating in these disorders, namely 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, on important mitochondrial functions in rat skeletal muscle mitochondria. 3HTA and 3HPA markedly increased resting (state 4) and decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration. 3HPA provoked similar effects in permeabilized skeletal muscle fibers, validating the results obtained in purified mitochondria. Furthermore, 3HTA and 3HPA markedly diminished mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded mitochondria. Mitochondrial permeability transition (mPT) induction probably underlie these effects since they were totally prevented by cyclosporin A and ADP. In contrast, the dicarboxylic analogue of 3HTA did not alter the tested parameters. Our data strongly indicate that 3HTA and 3HPA behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and mPT inducers in skeletal muscle. It is proposed that these pathomechanisms disrupting mitochondrial homeostasis may be involved in the muscle alterations characteristic of MTP and LCHAD deficiencies.

  17. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice.

    PubMed

    Liisberg, Ulrike; Fauske, Kristin Røen; Kuda, Ondrej; Fjære, Even; Myrmel, Lene Secher; Norberg, Nina; Frøyland, Livar; Graff, Ingvild Eide; Liaset, Bjørn; Kristiansen, Karsten; Kopecky, Jan; Madsen, Lise

    2016-07-01

    The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects.

  18. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.).

    PubMed

    Koike, Satoshi; Matsukura, Chiaki; Takayama, Mariko; Asamizu, Erika; Ezura, Hiroshi

    2013-05-01

    Tomatoes accumulate γ-aminobutyric acid (GABA) at high levels in the immature fruits. GABA is rapidly converted to succinate during fruit ripening through the activities of GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH). Although three genes encoding GABA-T and both pyruvate- and α-ketoglutarate-dependent GABA-T activities have been detected in tomato fruits, the mechanism underlying the GABA-T-mediated conversion of GABA has not been fully understood. In this work, we conducted loss-of-function analyses utilizing RNA interference (RNAi) transgenic plants with suppressed pyruvate- and glyoxylate-dependent GABA-T gene expression to clarify which GABA-T isoforms are essential for its function. The RNAi plants with suppressed SlGABA-T gene expression, particularly SlGABA-T1, showed severe dwarfism and infertility. SlGABA-T1 expression was inversely associated with GABA levels in the fruit at the red ripe stage. The GABA contents in 35S::SlGABA-T1(RNAi) lines were 1.3-2.0 times and 6.8-9.2 times higher in mature green and red ripe fruits, respectively, than the contents in wild-type fruits. In addition, SlGABA-T1 expression was strongly suppressed in the GABA-accumulating lines. These results indicate that pyruvate- and glyoxylate-dependent GABA-T is the essential isoform for GABA metabolism in tomato plants and that GABA-T1 primarily contributes to GABA reduction in the ripening fruits.

  19. Effects of short-term irradiation on photoinhibition and accumulation of mycosporine-like amino acids in sun and shade species of the red algal genus Porphyra.

    PubMed

    Figueroa, Félix L; Escassi, Luis; Pérez-Rodríguez, Eduardo; Korbee, Nathalie; Giles, Alma Delia; Johnsen, Geir

    2003-01-01

    The effect of irradiance (40 and 840 micromol photons m(-2) s(-1)) of short-term (48 h) irradiation on photosynthetic activity (estimated as oxygen evolution and as chlorophyll fluorescence), specific absorption and fluorescence excitation spectra, photosynthetic pigment accumulation (chlorophyll a and biliproteins) and UV-absorbing compounds (mycosporine-like amino acids, MAAs) was investigated in sun and shade species of the red algal genus Porphyra collected in Trondheimsfjord (Norway). In the sun type, high irradiance exposure (840 micromol photons m(-2) s(-1)) did not alter the Chl a concentration, however, exposure to a lower irradiance (40 micromol photons m(-2) s(-1)) for 48 h significantly increased the chlorophyll concentration. The content of MAAs was significantly higher in the suntype than in the shade type algae. Porphyra-334 is the main MAA in this species followed by shinorine. The total content of MAAs significantly (P<0.05) increased in the sun type after 48 h exposure to both high and low irradiances. However, in the shade type, porphyra-334 significantly decreased (P<0.05) after both high and low irradiance exposure. Photosynthetic activity (as oxygen evolution) and the optimal quantum yield (F(v)/F(m)), as an indicator of photoinhibition, decreased under low and high irradiance in the shade type algae and no full recovery was observed when the algae were transferred to very low irradiation. The sun type algae presented a higher capacity of acclimation to increased irradiance than the shade type algae. This high acclimation of sun type algae to short term high irradiance exposure (48 h) is explained by the higher thermal dissipation. This was estimated as the ratio of nonphotochemical quenching related to the light dose (q(N):dose) and by the accumulation of MAAs.

  20. The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice.

    PubMed

    Gu, Xing-You; Liu, Tianlei; Feng, Jiuhuan; Suttle, Jeffrey C; Gibbons, James

    2010-05-01

    Seeds acquire primary dormancy during their development and the phytohormone abscisic acid (ABA) is known to play a role in inducing the dormancy. qSD12 is a major seed dormancy quantitative trait locus (QTL) identified from weedy rice. This research was conducted to identify qSD12 candidate genes, isolate the candidates from weedy rice, and determine the relation of the dormancy gene to ABA. A fine mapping experiment, followed by marker-assisted progeny testing for selected recombinants, narrowed down qSD12 to a genomic region of <75 kb, where there are nine predicted genes including a cluster of six transposon/retrotransposon protein genes and three putative (a PIL5, a hypothetic protein, and a bHLH transcription factor) genes based on the annotated Nipponbare genome sequence. The PIL5 and bHLH genes are more likely to be the QTL candidate genes. A bacterial artificial chromosome (BAC) library equivalent to 8-9 times of the haploid genome size was constructed for the weedy rice. One of the two BAC contigs developed from the library covers the PIL5 to bHLH interval. A pair of lines different only in the QTL-containing region of <200 kb was developed as isogenic lines for the qSD12 dormancy and non-dormancy alleles. The dormant line accumulated much higher ABA in 10-day developing seeds than the non-dormant line. In the QTL-containing region there is no predicted gene that has been assigned to ABA biosynthetic or metabolic pathways. Thus, it is concluded that the qSD12 underlying gene promotes ABA accumulation in early developing seeds to induce primary seed dormancy. PMID:19823935

  1. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows.

    PubMed

    Storm, A C; Kristensen, N B; Hanigan, M D

    2012-06-01

    Ruminal absorption of volatile fatty acids (VFA) is quantitatively the most important nutrient flux in cattle. Historically, VFA absorption models have been derived primarily from ruminal variables such as chemical composition of the fluid, volume, and pH. Recently, a mechanistic model incorporated the control of VFA absorption from epithelial surface area of the reticulorumen. In the present study, we hypothesized that ruminal absorption of VFA was controlled through epithelial permeability to VFA and rumen epithelial capillary blood flow. The objective of the study was to construct a model of VFA exchange across the rumen wall that incorporates epithelial blood flow as a driving force for ruminal VFA removal. The bidirectional fluxes between the ruminal and epithelial pool of VFA were assumed mass action driven, given that passive diffusion of nonionized VFA is the dominant transmembrane VFA flux. Parameter estimates were derived by fitting the model to observed data. The model provided reliable unbiased estimates of ruminal VFA absorption and rumen epithelial blood flow. Blood flow was modeled using an equation that considered the effect of butyrate and dietary crude protein intake per kilogram of body weight. The rate constants related to the flux from ruminal fluid to epithelium were in the order isobutyrate < acetate < propionate < butyrate (0.32 ± 0.02, 0.72 ± 0.2, 0.91 ± 0.06, and 0.97 ± 0.02 /h, respectively). The rate constants for fluxes of isobutyrate, acetate, propionate, and butyrate from the rumen epithelium to the ruminal fluid, relative to the pool size of the epithelium, were 4.78, 10.6, 13.4, and 14.3 /h, respectively. Ruminal concentrations of acetate, propionate, butyrate, and isobutyrate were predicted with root mean square prediction errors as percentage of the observed means (RMSPE) of 5.86, 5.75, 11.3, and 4.12, respectively. The epithelial blood flow was predicted with 26.3% RMSPE. Sensitivity analyses indicated that when ruminal

  2. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain).

    PubMed

    Nóvoa-Muñoz, J C; Pontevedra-Pombal, X; Martínez-Cortizas, A; García-Rodeja Gayoso, E

    2008-05-15

    This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: woodaccumulation in the studied acid soils. PMID:18295823

  3. Volatile fatty acids as substrates for iron and sulfate reduction in Arctic marine sediments, Svalbard

    NASA Astrophysics Data System (ADS)

    Finke, N.; Vandieken, V.; Jorgensen, B. B.

    2006-12-01

    Anaerobic degradation of complex organic material in aquatic systems is a multi-step process. The metabolic products of fermentative bacteria serve as electron donors for the terminal oxidizing bacteria. In marine sediments, iron reduction and sulfate reduction are generally the most important terminal oxidation processes in the upper anoxic zone [1]. Microorganisms that reduce iron and sulfate may use a broad range of electron donors, yet the list of potential substrates provides little information about the substrates used in situ by these organisms. Investigations on the electron donors for sulfate reducers in marine sediments have shown that volatile fatty acids (VFA), and in particular acetate, together with hydrogen are the major substrates (e.g. [2-4]). Similar investigations for iron reduction or simultaneous iron and sulfate reduction are lacking for marine sediments. Furthermore, most of these studies were made in temperate sediments and little is known about the substrates for sulfate reducers in permanently cold sediments, which account for >90% of the ocean floor [5]. We investigated the relative contributions of iron reduction and sulfate reduction to the terminal oxidation of organic carbon and the importance of acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in permanently cold, Arctic sediments from Svalbard. In the surface layer (0-2 cm) sulfate reduction accounted for 2/3 of the organic carbon oxidation (determined as DIC production), the remaining 1/3 were attributed to iron reduction. In the 5-9 cm layer sulfate reduction was the sole important terminal oxidation step. The contribution of acetate to terminal oxidation was determined by radiotracer incubation as well as from the accumulation after the inhibition of sulfate reduction by selenate. The rates determined with the two methods varied by less than 20%. Acetate turnover, determined with the tracer incubations, accounted for 10 and 40% of

  4. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere.

    PubMed

    Arseneault, Tanya; Goyer, Claudia; Filion, Martin

    2016-09-01

    Pseudomonads are often used as biocontrol agents because they display a broad range of mechanisms to control diseases. Common scab of potato, caused by Streptomyces scabies, was previously reported to be controlled by Pseudomonas fluorescens LBUM223 through phenazine-1-carboxylic acid (PCA) production. In this study, we aimed at characterizing the population dynamics of LBUM223 and the expression of phzC, a key gene involved in the biosynthesis of PCA, in the rhizosphere and geocaulosphere of potato plants grown under controlled and field conditions. Results obtained from controlled experiments showed that soil populations of LBUM223 significantly declined over a 15-week period. However, at week 15, the presence of S. scabies in the geocaulosphere was associated with significantly higher populations of LBUM223 than when the pathogen was absent. It also led to the detection of significantly higher phzC gene transcript numbers. Under field conditions, soil populations of LBUM223 followed a similar decline in time when a single inoculation was applied in spring but remained stable when reinoculated biweekly, which also led to greater phzC gene transcripts accumulation. Taken together, our findings suggest that LBUM223 must colonize the potato geocaulosphere at high levels (10(7) bacteria/g of soil) in order to achieve biocontrol of common scab through increased PCA production. PMID:27088392

  5. Delayed uric Acid accumulation in plasma provides additional anti-oxidant protection against iron-triggered oxidative stress after a wingate test.

    PubMed

    Souza-Junior, Tp; Lorenço-Lima, L; Ganini, D; Vardaris, Cv; Polotow, Tg; Barros, Mp

    2014-12-01

    Reactive oxygen species are produced during anaerobic exercise mostly by Fe ions released into plasma and endothelial/muscle xanthine oxidase activation that generates uric acid (UA) as the endpoint metabolite. Paradoxically, UA is considered a major antioxidant by virtue of being able to chelate pro-oxidative iron ions. This work aimed to evaluate the relationship between UA and plasma markers of oxidative stress following the exhaustive Wingate test. Plasma samples of 17 male undergraduate students were collected before, 5 and 60 min after maximal anaerobic effort for the measurement of total iron, haem iron, UA, ferric-reducing antioxidant activity in plasma (FRAP), and malondialdehyde (MDA, biomarker of lipoperoxidation). Iron and FRAP showed similar kinetics in plasma, demonstrating an adequate pro-/antioxidant balance immediately after exercise and during the recovery period (5-60 min). Slight variations of haem iron concentrations did not support a relevant contribution of rhabdomyolysis or haemolysis for iron overload following exercise. UA concentration did not vary immediately after exercise but rather increased 29% during the recovery period. Unaltered MDA levels were concomitantly measured. We propose that delayed UA accumulation in plasma is an auxiliary antioxidant response to post-exercise (iron-mediated) oxidative stress, and the high correlation between total UA and FRAP in plasma (R-Square = 0.636; p = 0.00582) supports this hypothesis. PMID:25435669

  6. Accumulation of brachycerine, an antioxidant glucosidic indole alkaloid, is induced by abscisic acid, heavy metal, and osmotic stress in leaves of Psychotria brachyceras.

    PubMed

    do Nascimento, Naíla Cannes; Menguer, Paloma Koprovski; Henriques, Amélia Teresinha; Fett-Neto, Arthur Germano

    2013-12-01

    Psychotria brachyceras Muell. Arg. produces the antioxidant monoterpene indole alkaloid (MIA) brachycerine, which, besides retaining a glucose residue, has its terpenoid moiety derived not from secologanin, but probably from epiloganin, representing a new subclass of MIAs. In this work we showed that osmotic stress agents, such as sodium chloride, sorbitol and polyethylene glycol (PEG), induced brachycerine accumulation in leaf disks of P. brachyceras. Other oxidative stress inducers, such as exposure to aluminum and silver, also increased brachycerine content. Abscisic acid (ABA) treatment was shown to increase brachycerine yield, suggesting its involvement in brachycerine induction during osmotic stress. Ascorbate peroxidase activity was induced in PEG-treated leaf disks, whereas superoxide dismutase (SOD) activity remained unaltered. Assays with specific inhibitors of the cytosolic mevalonate (MVA) and plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways showed that the terpenoid moiety of brachycerine derived predominantly from the MEP pathway. These results suggest a potential involvement of brachycerine in plant defense against osmotic/oxidative stress damage, possibly contributing to detoxification of hydroxyl radical and superoxide anion as a SOD-like molecule.

  7. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.

    PubMed

    Medeiros, David B; Martins, Samuel C V; Cavalcanti, João Henrique F; Daloso, Danilo M; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M; Fernie, Alisdair R; Araújo, Wagner L

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions.

  8. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.

    PubMed

    Medeiros, David B; Martins, Samuel C V; Cavalcanti, João Henrique F; Daloso, Danilo M; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M; Fernie, Alisdair R; Araújo, Wagner L

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. PMID:26542441

  9. DELAYED URIC ACID ACCUMULATION IN PLASMA PROVIDES ADDITIONAL ANTI-OXIDANT PROTECTION AGAINST IRON-TRIGGERED OXIDATIVE STRESS AFTER A WINGATE TEST

    PubMed Central

    Souza-Junior, TP; Lorenço-Lima, L; Ganini, D; Vardaris, CV; Polotow, TG

    2014-01-01

    Reactive oxygen species are produced during anaerobic exercise mostly by Fe ions released into plasma and endothelial/muscle xanthine oxidase activation that generates uric acid (UA) as the endpoint metabolite. Paradoxically, UA is considered a major antioxidant by virtue of being able to chelate pro-oxidative iron ions. This work aimed to evaluate the relationship between UA and plasma markers of oxidative stress following the exhaustive Wingate test. Plasma samples of 17 male undergraduate students were collected before, 5 and 60 min after maximal anaerobic effort for the measurement of total iron, haem iron, UA, ferric-reducing antioxidant activity in plasma (FRAP), and malondialdehyde (MDA, biomarker of lipoperoxidation). Iron and FRAP showed similar kinetics in plasma, demonstrating an adequate pro-/antioxidant balance immediately after exercise and during the recovery period (5–60 min). Slight variations of haem iron concentrations did not support a relevant contribution of rhabdomyolysis or haemolysis for iron overload following exercise. UA concentration did not vary immediately after exercise but rather increased 29% during the recovery period. Unaltered MDA levels were concomitantly measured. We propose that delayed UA accumulation in plasma is an auxiliary antioxidant response to post-exercise (iron-mediated) oxidative stress, and the high correlation between total UA and FRAP in plasma (R-Square = 0.636; p = 0.00582) supports this hypothesis. PMID:25435669

  10. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    SciTech Connect

    Rodriguez-Concepcion, M.; Gruissem, W.

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  11. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  12. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection

    PubMed Central

    Ndiaye, Amadou L.; Delile, Sébastien; Brunet, Jérôme; Varenne, Christelle; Pauly, Alain

    2016-01-01

    Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs), namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH2-tBu) as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). To realize the electrochemical sensing system, the PcH2-tBu has been dropcast-deposited on carbon (C) orgold (Au)screen-printed electrodes (SPEs) and characterized by cyclic voltammetry and scanning electron microscopy (SEM). The SEM analysis reveals that the PcH2-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD) of 25.77 mM in the range of 100 mM–400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM–300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alteration is less perceptible in the case of the carbon electrode. PMID:27598214

  13. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection.

    PubMed

    Ndiaye, Amadou L; Delile, Sébastien; Brunet, Jérôme; Varenne, Christelle; Pauly, Alain

    2016-01-01

    Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs), namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH₂-tBu) as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). To realize the electrochemical sensing system, the PcH₂-tBu has been dropcast-deposited on carbon (C) orgold (Au)screen-printed electrodes (SPEs) and characterized by cyclic voltammetry and scanning electron microscopy (SEM). The SEM analysis reveals that the PcH₂-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD) of 25.77 mM in the range of 100 mM-400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM-300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alteration is less perceptible in the case of the carbon electrode. PMID:27598214

  14. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection.

    PubMed

    Ndiaye, Amadou L; Delile, Sébastien; Brunet, Jérôme; Varenne, Christelle; Pauly, Alain

    2016-09-01

    Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs), namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH₂-tBu) as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). To realize the electrochemical sensing system, the PcH₂-tBu has been dropcast-deposited on carbon (C) orgold (Au)screen-printed electrodes (SPEs) and characterized by cyclic voltammetry and scanning electron microscopy (SEM). The SEM analysis reveals that the PcH₂-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD) of 25.77 mM in the range of 100 mM-400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM-300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alterat