Science.gov

Sample records for acid vfa accumulation

  1. Preparation of volatile fatty acid (VFA) calcium salts by anaerobic digestion of glucose.

    PubMed

    Li, Xiaofen; Swan, Janis E; Nair, Giridhar R; Langdon, Alan G

    2015-01-01

    Many potentially useful intermediates such as hydrogen and volatile fatty acids (VFAs) are formed during the complex anaerobic digestion processes that produce methane from biomass. This study recovers VFAs from an anaerobic digester by a combination of gas stripping and absorption with calcium carbonate slurry. Glucose was used as the model substrate because it is readily available, inexpensive, and easily digested. Sludge from a meatworks anaerobic digester produced methane and carbon dioxide (and sometimes a small amount of hydrogen) when batch-fed with glucose. Conditioning the neutral anaerobic sludge to an acidic pH (below 4.8) was achieved using repeated 1 g L(-1) doses of glucose. After conditioning, mainly VFAs and hydrogen were produced. The intermediate VFAs could be stripped using headspace gas. In subsequent fed-batch digestion/stripping cycles, the pH decreased when glucose was added and then increased when the VFA was gas stripped. The predominant acids formed at low pH values were lactic, butyric, and acetic acids. Lactic acid was converted to VFAs during stripping. The VFA calcium salts recovered were 80% butyrate and 20% acetate with minor quantities of propionate and valerate. PMID:25274086

  2. High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH.

    PubMed

    Tamis, J; Joosse, B M; Loosdrecht, M C M van; Kleerebezem, R

    2015-11-01

    Volatile fatty acids (VFA) are proposed platform molecules for the production of basic chemicals and polymers from organic waste streams. In this study we developed a granular sludge process to produce VFA at high rate, yield and purity while minimizing potential operational costs. A lab-scale anaerobic sequencing batch reactor (ASBR) was fed with 10 g l(-1) glucose as model substrate. Inclusion of a short (2 min) settling phase before effluent discharge enabled effective granulation and very high volumetric conversion rates of 150-300 gCOD l(-1)  d(-1) were observed during glucose conversion. The product spectrum remained similar at the tested pH range with acetate and butyrate as the main products, and a total VFA yield of 60-70% on chemical oxygen demand (COD) basis. The requirement for base addition for pH regulation could be reduced from 1.1 to 0.6 mol OH(-) (mol glucose)(-1) by lowering the pH from 5.5 to 4.5. Solids concentrations in the effluent were 0.6 ± 0.3 g l(-1) but could be reduced to 0.02 ± 0.01 g l(-1) by introduction of an additional settling period of 5 min. The efficient production of VFA at low pH with a virtually solid-free effluent increases the economic feasibility of waste-based chemicals and polymer production. Biotechnol. PMID:25950759

  3. Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity.

    PubMed

    Lin, Lin; Wan, Chunli; Liu, Xiang; Lei, Zhongfang; Lee, Duu-Jong; Zhang, Yi; Tay, Joo Hwa; Zhang, Zhenya

    2013-12-01

    Batch experiments were carried out on anaerobic digestion of swine manure under 10 % of total solids and 60 g/L of zeolite addition at 35 °C. Four distinctive volatile fatty acid (VFAs) evolution stages were observed during the anaerobic process, i.e., VFA accumulation, acetic acid (HAc) and butyric acid (HBu) utilization, propionic acid (HPr) and valeric acid (HVa) degradation, and VFA depletion. Large decreases in HAc/HBu and HPr/HVa occurred respectively at the first and second biogas peaks. Biogas yield increased by 20 % after zeolite addition, about 356 mL/g VSadded with accelerated soluble chemical oxygen demand degradation and VFA (especially HPr and HBu) consumption in addition to a shortened lag phase between the two biogas peaks. Compared with Ca(2+) and Mg(2+) (100-300 mg/L) released from zeolite, simultaneous K(+) and NH4 (+) (580-600 mg/L) adsorptions onto zeolite particles contributed more to the enhanced biogasification, resulting in alleviated inhibition effects of ammonium on acidogenesis and methanogenesis, respectively. All the identified anaerobes could be grouped into Bacteroidetes and Firmicutes, and zeolite addition had no significant influence on the microbial biodiversity in this study. PMID:24270923

  4. Bromine accumulation in acidic black colluvial soils

    NASA Astrophysics Data System (ADS)

    Cortizas, Antonio Martínez; Vázquez, Cruz Ferro; Kaal, Joeri; Biester, Harald; Casais, Manuela Costa; Rodríguez, Teresa Taboada; Lado, Luis Rodríguez

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (<50 μm) fraction were on average 3-times higher than those (17-250 μg g-1) in the fine earth (<2 mm), the former containing almost all bromine (90 ± 5%). Inventories were between 148 and 314 g m-2, indicating a rather large variability in a small area, and total estimated retention was low (6-16%). The degree of SOM bromination, expressed as the Br/C molar ratio, varied between 0.03 and 1.20 mmol Br/mol C. The ratio was highly correlated (n = 23, r2 0.88, p < 0.01) with the age of the SOM for the last ∼12 ka. Partial least squares modeling indicates that bromine concentration depends on the amount of organic matter stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  5. The effect of organic loading rate on VFA/COD ratio for methane production from an EGSB reactor.

    PubMed

    Wei, Bo; Yuan, Linjiang; Liu, Wenhui

    2015-07-01

    The present study evaluated the effect of organic loading rate (OLR) on VFA/COD ratio for continuous production of methane using an expanded granular sludge bed(EGSB) reactor for 200 d. Reactor performances were studied in treating high OLRs ranging from 4.91 +/- 0.54 to 16.79 +/- 1.62 g-COD l(-1)d(-1) of glucose-based synthetic wastewater in a mesophilic condition. Results showed that performance of anaerobic fermentation system was distinctly influenced by OLR in terms of organic removal efficiency, VFA yield, methane production rate and system stability.Acetic and propionic acids accounted for 80-90% of total VFA, and presented highest VFA concentration and composition of VFA showed minor changes with OLR variation. Moreover, an increase in OLR increased VFA/COD ratio in the whole operation period and high VFA/COD ratio could inhibit methanogenesis at high OLR (16.79 +/- 1.62 g-COD l(-1) d(-1)). PMID:26364485

  6. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    PubMed

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. PMID:25697838

  7. Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis.

    PubMed

    Okuma, Eiji; Nozawa, Rieko; Murata, Yoshiyuki; Miura, Kenji

    2014-01-01

    We investigated stomatal phenotype and drought tolerance of Arabidopsis salicylic acid-accumulating mutants, acd6 and cpr5. In these mutants, the light-induced stomatal opening was impaired and the impairment of stomatal opening was restored by peroxidase inhibitors, salicylhydroxamic acid, and azide. The acd6 and cpr5 mutant plants were more tolerant to drought stress than wild-type plants. Introduction of nahG gene into the acd6 and cpr5 mutants removed the inhibition of stomatal opening and reduced the drought tolerance. Drought tolerance-related genes were more highly expressed in the cpr5 and acd6 mutant plants than in the wild-type plants. These results suggest that accumulation of salicylic acid improves drought tolerance through inhibition of light-induced stomatal opening in Arabidopsis. PMID:24603484

  8. Bottlenecks in erucic acid accumulation in genetically engineered ultrahigh erucic acid Crambe abyssinica.

    PubMed

    Guan, Rui; Lager, Ida; Li, Xueyuan; Stymne, Sten; Zhu, Li-Hua

    2014-02-01

    Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%-50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%-60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild-type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine-diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed. PMID:24119222

  9. Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock.

    PubMed

    Kuruti, Kranti; Gangagni Rao, A; Gandu, Bharath; Kiran, G; Mohammad, Sameena; Sailaja, S; Swamy, Y V

    2015-09-01

    Acidogenic anaerobic fermentation route was explored for the production of bioethanol and volatile fatty acids (VFA) from the press mud (PM) obtained from sugar mill. Slurry was prepared from PM having 10% of total solids and the same was hydrolyzed under acidic thermal conditions. Both press mud slurry (PMS) and pre-treated press mud slurry (PTPMS) was used as feedstock with mixed microbial consortia (MMC) and enriched mixed microbial consortia (EMMC). Mix of bioethanol and VFA were obtained in all the four cases (PMS-MMC, PMS-EMMC, PTPMS-EMC and PTPMS-EMMC), but, bioethanol and VFA yield of 0.04 g/g and 0.27 g/g, respectively obtained from PTPMS with EMMC was found to be comparatively higher. Control experiments carried out with glucose yielded bioethanol and VFA of 0.042 g/g and 0.28 g/g, respectively demonstrating that the organism was using reducible sugars in the feedstock for the generation of bioethanol by simultaneously producing the VFA from COD. PMID:26094189

  10. The biochemistry of citric acid accumulation by Aspergillus niger.

    PubMed

    Karaffa, L; Sándor, E; Fekete, E; Szentirmai, A

    2001-01-01

    Fungi, in particular Aspergilli, are well known for their potential to overproduce a variety of organic acids. These microorganisms have an intrinsic ability to accumulate these substances and it is generally believed that this provides the fungi with an ecological advantage, since they grow rather well at pH 3 to 5, while some species even tolerate pH values as low as 1.5. Organic acid production can be stimulated and in a number of cases conditions have been found that result in almost quantitative conversion of carbon substrate into acid. This is exploited in large-scale production of a number of organic acids like citric-, gluconic- and itaconic acid. Both in production volume as well as in knowledge available, citrate is by far the major organic acid. Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) is a true bulk product with an estimated global production of over 900 thousand tons in the year 2000. Till the beginning of the 20th century, it was exclusively extracted from lemons. Since the global market was dominated by an Italian cartel, other means of production were sought. Chemical synthesis was possible, but not suitable due to expensive raw materials and a complicated process with low yield. The discovery of citrate accumulation by Aspergillus niger led to a rapid development of a fermentation process, which only a decade later accounted for a large part of the global production. The application of citric acid is based on three of its properties: (1) acidity and buffer capacity, (2) taste and flavour, and (3) chelation of metal ions. Because of its three acid groups with pKa values of 3.1, 4.7 and 6.4, citrate is able to produce a very low pH in solution, but is also useful as a buffer over a broad range of pH values (2 to 7). Citric acid has a pleasant acid taste which leaves little aftertaste. It sometimes enhances flavour, but is also able to mask sweetness, such as the aspartame taste in diet beverages. Chelation of metal ions is a very

  11. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    PubMed

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands. PMID:24933893

  12. Effects of the dicarboxylic acids malate and fumarate on E. coli 0157:H7 and Salmonella enterica Typhimurium populations in pure culture and in mixed ruminal microorganism fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dicarboxylic organic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total VFA production, and reduce lactic acid accumulation in a manner similar to ionophores. These acids stimulate the ruminal bacterium Selenomonas ruminantium to ferment lact...

  13. Effects of the dicarboxylic acids malate and fumarate on E. coli O157:H7 and Salmonella Typhimurium populations in pure culture and mixed ruminal culture in in vitro fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dicarboxylic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total VFA production, and reduce lactic acid accumulation in a manner similar to ionophores. The mechanism by which these acids effect the ruminal environment is reported to be through...

  14. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  15. Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision.

    PubMed

    Moertelmaier, Christoph; Li, Chaoran; Winter, Josef; Gallert, Claudia

    2014-08-01

    Volatile fatty acid (VFA) metabolism and population changes during re-start of a wet anaerobic digester for treatment of biowaste suspensions were investigated. Initially acetate and propionate accumulated. However, VFA degradation rates improved within 2 weeks, reaching a balanced metabolism with constantly low VFA concentrations. The total microbial population consisted of 60% acidogenic+acetogenic and 40% methanogenic bacteria. Maximally 5.1% of all bacteria in the digester were propionate-oxidizing bacteria. Pelotomaculum species were dominant, followed by much lower numbers of Smithella species and Syntrophobacter species. Pelotomaculum and Smithella spec. decreased during acetate and propionate accumulation and recovered later on, whereas Syntrophobacter spec. was steadily increasing during start-up. A nearly constant proportion of Methanosaeta spec. was present all time, while Methanosarcina spec. decreased and Methanomicrobiales increased during accumulation and degradation of acetate and propionate. During steady state proportions as in the inoculum were obtained. PMID:24950093

  16. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species.

    PubMed

    Kolouchová, Irena; Schreiberová, Olga; Sigler, Karel; Masák, Jan; Řezanka, Tomáš

    2015-11-01

    The possibility of utilizing volatile fatty acids (VFA)-containing waste substrates from biotechnological and industrial processes was investigated by cultivating both oleaginous (Candida sp., Rhodotorula glutinis, Trichosporon cutaneum, Yarrowia lipolytica) and non-oleaginous (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulaspora delbrueckii) yeast species on acetic acid, propionic acid and a combination of either acid with glucose as carbon and energy sources. Both oleaginous and non-oleaginous yeasts grew on VFA. Oleaginous yeasts accumulated lipids to 15-48% of dry cell weight, non-oleaginous yeasts also grew on VFA and showed comparable biomass yields but the lipid content was only 2-5%. Biomass and lipid yield increased in cultivations on VFA plus glucose. The lipid composition was comparable to plant-derived oils and therefore might be exploitable in biodiesel production; nearly all species, when cultured on propionate, showed a high content of the desirable odd-chain unsaturated FA, especially 17:1 acid. This study points at the wide array of possible applications of many yeasts, even non-oleaginous strains, for biovalorization of industrial wastes. Despite their low lipid content these species are useful because they can readily utilize VFA from waste products and, since they are not biologically hazardous, their biomass can be afterwards used, e.g. as livestock fodder. PMID:26323601

  17. Gamma amino butyric acid accumulation in medicinal plants without stress

    PubMed Central

    Anju, P.; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Introduction: Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. Aim and Objective: The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. Materials and Methods: The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F–254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague. PMID:25861139

  18. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  19. THP-1 macrophage lipid accumulation unaffected by fatty acid double bond geometric or positional configuration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to ev...

  20. Accumulated analyses of amino acid precursors in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Harada, K.; Hare, P. E.

    1973-01-01

    Six amino acids (glycine, alanine, aspartic acid, glutamic acid, serine, and threonine) obtained by hydrolysis of extracts have been quantitatively determined in ten collections of fines from five Apollo missions. Although the amounts found, 7-45 ng/g, are small, the lunar amino acid/carbon ratios are comparable to those of the carbonaceous chondrites, Murchison and Murray, as analyzed by the same procedures. Since both the ratios of amino acid to carbon, and the four or five most common types of proteinous amino acid found, are comparable for the two extraterrestrial sources despite different cosmophysical histories of the moon and meteorites, common cosmochemical processes are suggested.

  1. Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces.

    PubMed

    Manna, A; Banerjee, R; Paul, A K

    1999-09-01

    In a limited-scale survey, 55 soil streptomycetes were screened for the accumulation of poly (3-hydroxybutyrate) [PHB]. Only 18% of the isolates accumulated PHB ranging between 1.9-7.8% of the dry biomass. The promising isolate DBCC-719, identified as Streptomyces griseorubiginosus, accumulated PHB amounting to 9.5% of the mycelial dry mass in the early stationary phase when grown in chemically defined medium with 2% (wt/vol) glucose as the sole source of carbon. Nitrogen-limiting conditions were inhibitory to growth and PHB accumulation. The isolated polymer was highly soluble in chloroform, gave a sharp peak at 235 nm on digestion with concentrated H(2)SO(4), and had a characteristic infrared spectrum. PMID:10441729

  2. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    SciTech Connect

    Furlong, E.T.; Cessar, L.R.; Hites, R.A. )

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in {sup 210}Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S, and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States, and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion production deposition.

  3. Accumulation of polycyclic aromatic hydrocarbons in acid sensitive lakes

    NASA Astrophysics Data System (ADS)

    Furlong, Edward T.; Cessar, Linda Roll; Hites, Ronald A.

    1987-11-01

    Polycyclic aromatic hydrocarbon concentrations and fluxes were measured in 210Pb dated sediment cores taken from nine lakes in four regions identified as susceptible to acidification. Calculated PAH accumulations were compared with historic S emissions, accumulation of sedimentary S and anthropogenic metal accumulations to determine if PAH could be used as an indicator of combustion-derived sulfate deposition. Comparisons between regions indicated that the Adirondacks have a significantly higher burden of PAH than do northern New England, the northern Great Lakes States and northern Florida. This difference likely results from significant upwind PAH sources to the Adirondack lakes. Detailed investigation of the largest lake in the study set, Big Moose Lake, indicates that PAH may serve as conservative, combustion indicators in large lakes. In this lake, PAH fluxes and concentrations were significantly correlated with historical S emission rates. These data suggest that PAH measured in sediment cores from large lakes can serve as indicators of past combustion product deposition.

  4. Targeting acid sphingomyelinase reduces cardiac ceramide accumulation in the post-ischemic heart.

    PubMed

    Klevstig, Martina; Ståhlman, Marcus; Lundqvist, Annika; Scharin Täng, Margareta; Fogelstrand, Per; Adiels, Martin; Andersson, Linda; Kolesnick, Richard; Jeppsson, Anders; Borén, Jan; Levin, Malin C

    2016-04-01

    Ceramide accumulation is known to accompany acute myocardial ischemia, but its role in the pathogenesis of ischemic heart disease is unclear. In this study, we aimed to determine how ceramides accumulate in the ischemic heart and to determine if cardiac function following ischemia can be improved by reducing ceramide accumulation. To investigate the association between ceramide accumulation and heart function, we analyzed myocardial left ventricle biopsies from subjects with chronic ischemia and found that ceramide levels were higher in biopsies from subjects with reduced heart function. Ceramides are produced by either de novo synthesis or hydrolysis of sphingomyelin catalyzed by acid and/or neutral sphingomyelinase. We used cultured HL-1 cardiomyocytes to investigate these pathways and showed that acid sphingomyelinase activity rather than neutral sphingomyelinase activity or de novo sphingolipid synthesis was important for hypoxia-induced ceramide accumulation. We also used mice with a partial deficiency in acid sphingomyelinase (Smpd1(+/-) mice) to investigate if limiting ceramide accumulation under ischemic conditions would have a beneficial effect on heart function and survival. Although we showed that cardiac ceramide accumulation was reduced in Smpd1(+/-) mice 24h after an induced myocardial infarction, this reduction was not accompanied by an improvement in heart function or survival. Our findings show that accumulation of cardiac ceramides in the post-ischemic heart is mediated by acid sphingomyelinase. However, targeting ceramide accumulation in the ischemic heart may not be a beneficial treatment strategy. PMID:26930027

  5. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production. PMID:27382772

  6. Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids.

    PubMed

    Pardelha, Filipa; Albuquerque, Maria G E; Reis, Maria A M; Dias, João M L; Oliveira, Rui

    2012-12-31

    Fermented agro-industrial wastes are potential low cost substrates for polyhydroxyalkanoates (PHA) production by mixed microbial cultures (MMC). The use of complex substrates has however profound implications in the PHA metabolism. In this paper we investigate PHA accumulation using a lumped metabolic model that describes PHA storage from arbitrary mixtures of volatile fatty acids (VFA). Experiments were conducted using synthetic and complex VFA mixtures obtained from the fermentation of sugar cane molasses. Metabolic flux analysis (MFA) and flux balance analysis (FBA) were performed at different stages of culture enrichment in order to investigate the effect of VFA composition and time of enrichment in PHA storage efficiency. Substrate uptake and PHA storage fluxes increased over enrichment time by 70% and 73%, respectively. MFA calculations show that higher PHA storage fluxes are associated to an increase in the uptake of VFA with even number of carbon atoms and a more effective synthesis of hydroxyvalerate (HV) precursors from VFA with odd number of carbons. Furthermore, FBA shows that the key metabolic objective of a MMC subjected to the feast and famine regimen is the minimization of the tricarboxylic acid cycle fluxes. The PHA flux and biopolymer composition (hydroxybutyrate (HB): HV) could be accurately predicted in several independent experiments. PMID:23036926

  7. Concomitant extracellular accumulation of alpha-keto acids and higher alcohols by Zygosaccharomyces rouxii.

    PubMed

    Van Der Sluis, Catrinus; Rahardjo, Yovita S P; Smit, Bart A; Kroon, Pieter J; Hartmans, Sybe; Ter Schure, Eelko G; Tramper, Johannes; Wijffels, Renéh

    2002-01-01

    Alpha-keto acids are key intermediates in the formation of higher alcohols, important flavor components in soy sauce, and produced by the salt-tolerant yeast Zygosaccharomyces rouxii. Unlike most of the higher alcohols, the alpha-keto acids are usually not extracellularly accumulated by Z. rouxii when it is cultivated with ammonium as the sole nitrogen source. To facilitate extracellular accumulation of the alpha-keto acids from aspartate-derived amino acid metabolism, the amino acids valine, leucine, threonine and methionine were exogenously supplied during batch and A-star cultivations of (routants of) Z. rouxii. It was shown that all alpha-keto acids from the aspartate-derived amino acid metabolism, except alpha-ketobutyrate, could be extracellularly accumulated. In addition, it appeared from the concomitant extracellular accumulation of alpha-keto acids and higher alcohols that in Z. rouxii, valine, leucine and methionine were converted via Ehrlich pathways similar to those in Saccharomyces cerevisiae. Unlike these amino acids, threonine was converted via both the Ehrlich and amino acid biosynthetic pathways in Z. rouxii. PMID:16233175

  8. Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process.

    PubMed

    Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Guo, Zirui

    2015-09-10

    A new continuous feeding mode was developed to optimize the polyhydroxyalkanoates (PHAs) accumulation step in the three-stage PHAs production process by mixed microbial cultures (MMCs) using mixed volatile fatty acids (VFAs) as substrate. The continuous feeding assays under low biomass loading rate (BLR) (in the range of 3.5-5.5Cmol VFA/Cmol X/d) can be directly fed with feedstock with pH from 5.0 to 10.0 without any pH regulation. The maximum intracellular PHA content of 70.4% and system PHA yield (YPHA/S(sys)) of 0.81Cmol PHA/Cmol VFA were achieved under the continuous feeding mode at BLR of 3.86Cmol VFA/Cmol X/d when directly fed with substrate at pH 5. These values were higher than those under the pulse wise feeding mode with the same substrate and active biomass concentration. The results indicated that a self-balanced pH state was formed in the continuous feeding system. Further studies on the reaction pH and kinetics of the MMCs in the continuous feeding reactor were conducted to understand the pH variation mechanism and accumulation process. The optimal BLR to get high PHA content and YPHA/S(sys) was 3.5-5.5Cmol VFA/Cmol X/d. PMID:26073996

  9. A hybrid cascade control scheme for the VFA and COD regulation in two-stage anaerobic digestion processes.

    PubMed

    Méndez-Acosta, H O; Campos-Rodríguez, A; González-Álvarez, V; García-Sandoval, J P; Snell-Castro, R; Latrille, E

    2016-10-01

    A hybrid (continuous-discrete) cascade control is proposed to regulate both, volatile fatty acids (VFA) and chemical oxygen demand (COD) concentrations in two-stage (acidogenic-methanogenic) anaerobic digestion (TSAD) processes. The outer loop is a discrete controller that regulates the COD concentration of the methanogenic bioreactor by using a daily off-line measurement and that modifies the set-point tracked by inner loop, which manipulates the dilution rate to regulate the VFA concentration of the acidogenic bioreactor, estimated by continuous on-line conductivity measurements, avoiding acidification. The experimental validation was conducted in a TSAD process for the treatment of tequila vinasses during 110days. Results showed that the proposed cascade control scheme was able to achieve the VFA and COD regulation by using conventional measurements under different set-point values in spite of adverse common scenarios in full-scale anaerobic digestion processes. Microbial composition analysis showed that the controller also favors the abundance and diversity toward methane production. PMID:27474953

  10. Accumulation of Oxygenated Fatty Acids in Oat Lipids During Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids were identified in oat grain by gas chromatography - mass spectrometry. We hypothesized that most of these were the results of lipoxygenase activity. This hypothesis was tested by measuring concentrations of these compounds after hydrothermal treatments and storage of oat groa...

  11. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. Greenhouse studies were conducted to determine the glyphosate I50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected legum...

  12. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.

    PubMed

    Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude

    2007-07-01

    The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid. PMID:17467770

  13. Anaerobic Accumulation of γ-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.)

    PubMed Central

    Streeter, John G.; Thompson, John F.

    1972-01-01

    In leaves, the anaerobic accumulation of alanine was accompanied by a loss of aspartate, and these changes preceded γ-aminobutyrate accumulation and glutamate loss. Changes in keto acid content did not appear to be the cause of amino acid changes. Accumulation of γ-aminobutyrate was due to acceleration of glutamate decarboxylation and arrest of γ-aminobutyrate transamination. Changes in enzyme content did not explain the changes in reaction rates in vivo. Most of the aspartate may be converted anaerobically to alanine via oxalacetate and pyruvate. PMID:16658004

  14. Process strategies to maximize lipid accumulations of novel yeast in acid and base treated hydrolyzates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleaginous yeasts can accumulate up to 70% of cell biomass as lipids, predominantly as triacylglycerols. Yeast lipid fatty acid profiles have been reported to be similar to that of vegetable oils and consist primarily of oleic, palmitic, stearic, and linoleic acids. This capability provides the oppo...

  15. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions.

    PubMed

    Nishikawa, S; Watanabe, K; Tanaka, T; Miyachi, N; Hotta, Y; Murooka, Y

    1999-01-01

    The photosynthetic bacterium Rhodobacter sphaeroides accumulates 5-aminolevulinic acid (ALA), which is a precursor in tetrapyrrole biosynthesis, under light illumination and upon addition of levulinic acid as an inhibitor of ALA dehydratase. To generate an industrial strain which produces ALA in the absence of light, we sequentially mutated R. sphaeroides CR-286 using N-methyl-N'-nitro-N-nitrosoguanidine (NTG). The mutant strains were screened by cultivating in the absence of light and assayed for ALA by the Ehrlich reaction in a 96-well microtiter plate. The mutant strain CR-386, derived from R. sphaeroides CR-286, was selected as a mutant that exhibited significant ALA accumulation. While CR-286 required light illumination for ALA production, CR-386 was able to accumulate 1.5 mM ALA in the presence of 50 mM glucose, 60 mM glycine, 15 mM levulinic acid and 1.0% (w/v) yeast extract under conditions of agitation in the absence of light. The mutant strain CR-450, derived from strain CR-386, was selected further as a mutant that exhibited significant ALA accumulation but no accumulation of aminoacetone, analogue of ALA. CR-450 accumulated 3.8 mM ALA under the same conditions. In the presence of 50 mM glucose, 60 mM glycine, 5 mM levulinic acid and 1.0% (w/v) yeast extract, the mutant strain CR-520, derived from strain CR-450, and strain CR-606, derived from strain CR-520, accumulated 8.1 mM and 11.2 mM ALA, respectively. In batch fermentation, the strain CR-606 accumulated 20 mM ALA over 18 h after the addition of glycine, levulinic acid, glucose and yeast extract. PMID:16232557

  16. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis

    PubMed Central

    Ronda, Srinivasa Reddy; Lele, S.S.

    2008-01-01

    Gamma-linolenic acid (GLA) production by Spirulina platensis under different stress-inducing conditions was studied. Submerged culture studies showed that low temperature (25°C), strong light intensity (6 klux) and primrose oil supplement (0.8%w/v) induced 13.2 mg/g, 14.6 mg/g and 13.5 mg linolenic acid per gram dry cell weight respectively. A careful observation of fatty acid profile of the cyanobacteria shows that, oleic acid and linoleic acid, in experiments with varying growth temperature and oil supplements respectively, helped in accumulating excess γ-linolenic acid. In addition, cultures grown at increasing light regimes maintained the γ-linolenic acid to the total fatty acid ratio(GLA/TFA) constant, despite any change in γ-linolenic acid content of the cyanobacteria. PMID:24031291

  17. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. PMID:26041210

  18. Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents.

    PubMed

    Kalyuzhnyi, S V; Gladchenko, M A; Kang, Ho; Mulder, A; Versprille, A

    2008-01-01

    The recently proposed DEAMOX (DEnitrifying AMmonium OXidation) process combines the anammox reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper firstly presents a feasibility study of the DEAMOX process using synthetic (ammonia + nitrate) wastewater where sulphide is replaced by volatile fatty acids (VFA) as a more widespread electron donor for partial denitrification. Under the influent N-NH+4/N-NO3(-) and COD/N-NO3(-) ratios of 1 and 2.3, respectively, the typical efficiencies of ammonia removal were around 40% (no matter whether a VFA mixture or only acetate were used) for nitrogen loading rates (NLR) up to 1236 mg N/l/d. This parameter increased to 80% by increasing the influent COD/N-NO3(-) ratio to 3.48 and decreasing the influent N-NH4 +/N-NO3(-) ratio to 0.29. As a result, the total nitrogen removal increased to 95%. The proposed process was further tested with typical strong nitrogenous effluent such as reject water (total N, 530-566 mg N/l; total COD, 1530-1780 mg/l) after thermophilic sludge anaerobic digestion. For this, the raw wastewater was split and partially ( approximately 50%) fed to a nitrifying reactor (to generate nitrate) and the remaining part ( approximately 50%) was directed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance up to NLR of 1,243 mg N/l/d in the DEAMOX reactor was achieved resulting in 40, 100, and 66% removal of ammonia, NOx(-), and total nitrogen, respectively. PMID:18309208

  19. Investigation of fatty acid accumulation in the engineered Saccharomyces cerevisiae under nitrogen limited culture condition.

    PubMed

    Tang, Xiaoling; Chen, Wei Ning

    2014-06-01

    In this study, the Saccharomyces cerevisiae wild type strain and engineered strain with an overexpressed heterologous ATP-citrate lyase (acl) were cultured in medium with different carbon and nitrogen concentrations, and their fatty acid production levels were investigated. The results showed that when the S. cerevisiae engineered strain was cultivated under nitrogen limited culture condition, the yield of mono-unsaturated fatty acids showed higher than that under non-nitrogen limited condition; with the carbon concentration increased, the accumulation become more apparent, whereas in the wild type strain, no such correlation was found. Besides, the citrate level in the S. cerevisiae under nitrogen limited condition was found to be much higher than that under non-nitrogen limited condition, which indicated a relationship between the diminution of nitrogen and accumulation of citrate in the S. cerevisiae. The accumulated citrate could be further cleaved by acl to provide substrate for fatty acid synthesis. PMID:24755317

  20. [Accumulation of porphyrins in cells of system of blood induced by 5-aminolaevulinic acid].

    PubMed

    Lobanok, E S; Vasilevich, I B; Vorobeĭ, A V

    2011-01-01

    The levels and rates of accumulation of porphyrins in lymphoid cells and bone marrow cells treated with exogenous 5-aminolaevulinic acid (ALA) were studied. The dependence of the quantity of porphyrins accumulated in cell on ALA concentrations in the medium had maximum at 0.7-1.0 mM ALA for all the cell types studied (splenocytes, thymocytes, peripheral blood lymphocytes and bone marrow cells). The rate of accumulation of uro-, copro- and protoporphyrins depended on cell types. The lowest and the highest levels were found in splenocytes and highest in bone marrow cells respectively. It is suggested that photodynamic therapy employing ALA is potentially dangerous for blood cells. PMID:21870605

  1. Coexpressing Escherichia coli Cyclopropane Synthase with Sterculia foetida Lysophosphatidic Acid Acyltransferase Enhances Cyclopropane Fatty Acid Accumulation1[W][OPEN

    PubMed Central

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  2. Similar PAH Fate in Anaerobic Digesters Inoculated with Three Microbial Communities Accumulating Either Volatile Fatty Acids or Methane

    PubMed Central

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10 % to 30 %, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH

  3. Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane.

    PubMed

    Braun, Florence; Hamelin, Jérôme; Bonnafous, Anaïs; Delgenès, Nadine; Steyer, Jean-Philippe; Patureau, Dominique

    2015-01-01

    Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal

  4. Effect of acetic acid on lipid accumulation by glucose-fed activated sludge cultures

    SciTech Connect

    Mondala, Andro; Hernandez, Rafael; French, Todd; McFarland, Linda; Sparks, Darrell; Holmes, William; Haque, Monica

    2012-01-01

    The effect of acetic acid, a lignocellulose hydrolysis by-product, on lipid accumulation by activated sludge cultures grown on glucose was investigated. This was done to assess the possible application of lignocellulose as low-cost and renewable fermentation substrates for biofuel feedstock production. Results: Biomass yield was reduced by around 54% at a 2 g L -1 acetic acid dosage but was increased by around 18% at 10 g L -1 acetic acid dosage relative to the control run. The final gravimetric lipid contents at 2 and 10 g L -1 acetic acid levels were 12.5 + 0.7% and 8.8 + 3.2% w/w, respectively, which were lower than the control (17.8 + 2.8% w/w). However, biodiesel yields from activated sludge grown with acetic acid (5.6 + 0.6% w/w for 2 g L -1 acetic acid and 4.2 + 3.0% w/w for 10 g L -1 acetic acid) were higher than in raw activated sludge (1-2% w/w). The fatty acid profiles of the accumulated lipids were similar with conventional plant oil biodiesel feedstocks. Conclusions: Acetic acid enhanced biomass production by activated sludge at high levels but reduced lipid production. Further studies are needed to enhance acetic acid utilization by activated sludge microorganisms for lipid biosynthesis.

  5. Changes in Metabolite Levels in Kalanchoë daigremontiana and the Regulation of Malic Acid Accumulation in Crassulacean Acid Metabolism.

    PubMed

    Cockburn, W; McAulay, A

    1977-03-01

    Changes in glucose-6-P, fructose-6-P, fructose-1,6-diP, 6-phospho-gluconate, phosphoenolpyruvate, 3-phosphoglycerate, and pyruvate levels in the leaves of the Crassulacean plant Kalanchoë daigremontiana Hammet et Perrier were measured enzymically during transitions from CO(2)-free air to air, air to CO(2)-free air, and throughout the course of acid accumulation in darkness. The data are discussed in terms of the involvement of phosphoenolpyruvate carboxylase in malic acid synthesis and in terms of the regulation of the commencement of malic acid synthesis and accumulation through the effects of CO(2) on storage carbohydrate mobilization and its termination through the effects of malic acid on phosphoenolpyruvate carboxylase activity. PMID:16659872

  6. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation

    PubMed Central

    Park, Mi-Young; Sung, Mi-Kyung

    2015-01-01

    Background: Excess body fat accumulation contributes to the development of metabolic disorders that can cause adverse health effects. Carnosic acid (CA), a major bioactive component of rosemary (Rosemarinus officinalis), has been suggested to possess anti-adipogenic properties. The present study was conducted to elucidate the mechanism underlying the anti-adipogenic effects of CA. Methods: 3T3-L1 pre-adipocytes were treated with CA (0.1, 1, and 10 μM) from day 0 to day 8 of differentiation. On day 8, biochemical markers of lipid accumulation and the degree of fatty acid desaturation were measured. Results: Oil Red O staining results, triglyceride (TG) accumulation, and glycerol 3-phosphate dehydrogenase activity suggested that CA significantly inhibited lipid accumulation in 3T3-L1 adipocytes. CA significantly decreased mRNA expression of peroxisome proliferator-activated receptor-γ, sterol regulatory element-binding protein 1, and CCAAT/enhancer binding protein-α in a dose-dependent manner. Moreover, it decreased the ratio of both C16:1/C16:0 and C18:1/C18:0, with reduced expression of stearoyl CoA desaturase 1 mRNA and protein. Conclusions: These results suggest that CA efficiently suppressed adipogenesis in 3T3-L1 adipocytes and its action, at least in part, is associated with the downregulation of adipogenesis-related genes and the fatty acid composition of TG accumulated in adipocytes. PMID:25853102

  7. Effects of Fatty Acid Treatments on the Dexamethasone-Induced Intramuscular Lipid Accumulation in Chickens

    PubMed Central

    Wang, Xiao juan; Wei, Dai lin; Song, Zhi gang; Jiao, Hong chao; Lin, Hai

    2012-01-01

    Background Glucocorticoid has an important effect on lipid metabolism in muscles, and the type of fatty acid likely affects mitochondrial utilization. Therefore, we hypothesize that the different fatty acid types treatment may affect the glucocorticoid induction of intramuscular lipid accumulation. Methodology/Principal Findings The effect of dexamethasone (DEX) on fatty acid metabolism and storage in skeletal muscle of broiler chickens (Gallus gallus domesticus) was investigated with and without fatty acid treatments. Male Arbor Acres chickens (31 d old) were treated with either palmitic acid (PA) or oleic acid (OA) for 7 days, followed by DEX administration for 3 days (35–37 d old). The DEX-induced lipid uptake and oxidation imbalance, which was estimated by increased fatty acid transport protein 1 (FATP1) expression and decreased carnitine palmitoyl transferase 1 activity, contributed to skeletal muscle lipid accumulation. More sensitive than glycolytic muscle, the oxidative muscle in DEX-treated chickens showed a decrease in the AMP to ATP ratio, a decrease in AMP-activated protein kinase (AMPK) alpha phosphorylation and its activity, as well as an increase in the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal p70S6 kinase, without Akt activation. DEX-stimulated lipid deposition was augmented by PA, but alleviated by OA, in response to pathways that were regulated differently, including AMPK, mTOR and FATP1. Conclusions DEX-induced intramuscular lipid accumulation was aggravated by SFA but alleviated by unsaturated fatty acid. The suppressed AMPK and augmented mTOR signaling pathways were involved in glucocortcoid-mediated enhanced intramuscular fat accumulation. PMID:22623960

  8. Dynamics of Free Amino Acid Accumulations in Cotton Leaves Measured on Different Timelines After Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulations of 16 free amino acids (FAAs) in cotton, Gossypium hirsutum L., leaves in potted greenhouse plants were recorded across three time scales following irrigation. The time scales, 15-minute, 12-hours, and daily sampling intervals, revealed the dynamic response of each FAA, and showed dif...

  9. Changes in the physiological properties and kinetics of citric acid accumulation via carbon ion irradiation mutagenesis of Aspergillus niger *

    PubMed Central

    Hu, Wei; Chen, Ji-hong; Wang, Shu-yang; Liu, Jing; Song, Yuan; Wu, Qing-feng; Li, Wen-jian

    2016-01-01

    The objective of this work was to produce citric acid from corn starch using a newly isolated mutant of Aspergillus niger, and to analyze the relationship between changes in the physiological properties of A. niger induced by carbon ion irradiation and citric acid accumulation. Our results showed that the physiological characteristics of conidia in A. niger were closely related to citric acid accumulation and that lower growth rate and viability of conidia may be beneficial to citric acid accumulation. Using corn starch as a raw material, a high-yielding citric acid mutant, named HW2, was obtained. In a 10-L bioreactor, HW2 can accumulate 118.9 g/L citric acid with a residual total sugar concentration of only 14.4 g/L. This represented an 18% increase in citric acid accumulation and a 12.5% decrease in sugar utilization compared with the original strain.

  10. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  11. Epicuticular Wax Accumulation and Fatty Acid Elongation Activities Are Induced during Leaf Development of Leeks1

    PubMed Central

    Rhee, Yoon; Hlousek-Radojcic, Alenka; Ponsamuel, Jayakumar; Liu, Dehua; Post-Beittenmiller, Dusty

    1998-01-01

    Epicuticular wax production was evaluated along the length of expanding leek (Allium porrum L.) leaves to gain insight into the regulation of wax production. Leaf segments from the bottom to the top were analyzed for (a) wax composition and load; (b) microsomal fatty acid elongase, plastidial fatty acid synthase, and acyl-acyl carrier protein (ACP) thioesterase activities; and (c) tissue and cellular morphological changes. The level of total wax, which was low at the bottom, increased 23-fold along the length of the leaf, whereas accumulation of the hentriacontan-16-one increased more than 1000-fold. The onset of wax accumulation was not linked to cell elongation but, rather, occurred several centimeters above the leaf base. Peak microsomal fatty acid elongation activity preceded the onset of wax accumulation, and the maximum fatty acid synthase activity was coincident with the onset. The C16:0- and C18:0-ACP-hydrolyzing activities changed relatively little along the leaf, whereas C18:1-ACP-hydrolyzing activity increased slightly prior to the peak elongase activity. Electron micrographic analyses revealed that wax crystal formation was asynchronous among cells in the initial stages of wax deposition, and morphological changes in the cuticle and cell wall preceded the appearance of wax crystals. These studies demonstrated that wax production and microsomal fatty acid elongation activities were induced within a defined and identifiable region of the expanding leek leaf and provide the foundation for future molecular studies. PMID:9501123

  12. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  13. Induced accumulation of oleanolic acid and ursolic acid in cell suspension cultures of Uncaria tomentosa.

    PubMed

    Feria-Romero, Iris; Lazo, Elizabeth; Ponce-Noyola, Teresa; Cerda-García-Rojas, Carlos M; Ramos-Valdivia, Ana C

    2005-06-01

    Increasing sucrose from 20 to 50 g l(-1) in Uncaria tomentosa cell suspension cultures enhanced ursolic acid and oleanolic acid production from 129 +/- 61 to 553 +/- 193 microg g(-1) cell dry wt. The maximal concentration of both triterpenes (1680 +/- 39 microg g(-1) cell dry wt) was 8 days after elicitation by jasmonic acid, while yeast extract or citrus pectin treatments produced 1189 +/- 20 or 1120 +/- 26 microg g(-1) cell dry wt, respectively. The ratio of ursolic acid:oleanolic acid was constant at 70:30. PMID:16086245

  14. Factors Affecting the Elicitation of Sesquiterpenoid Phytoalexin Accumulation by Eicosapentaenoic and Arachidonic Acids in Potato 1

    PubMed Central

    Bostock, Richard M.; Laine, Roger A.; Kuć, Joseph A.

    1982-01-01

    Eicosapentaenoic and arachidonic acids in extracts of Phytophthora infestans mycelium were identified as the most active elicitors of sesquiterpenoid phytoalexin accumulation in potato tuber slices. These fatty acids were found free or esterified in all fractions with elicitor activity including cell wall preparations. Yeast lipase released a major portion of eicosapentaenoic and arachidonic acids from lyophilized mycelium. Concentration response curves comparing the elicitor activity of the polyunsaturated fatty acids to a cell-free sonicate of P. infestans mycelium indicated that the elicitor activity of the sonicated mycelium exceeded that which would be obtained by the amount of eicosapentaenoic and arachidonic acids (free and esterified) present in the mycelium. Upon acid hydrolysis of lyophilized mycelium, elicitor activity was obtained only from the fatty acid fraction. However, the fatty acids accounted for only 21% of the activity of the unhydrolyzed mycelium and the residue did not enhance their activity. Centrifugation of the hydrolysate, obtained from lyophilized mycelium treated with 2n NaOH, 1 molarity NaBH4 at 100°C, yielded a supernatant fraction with little or no elicitor activity. Addition of this material to the fatty acids restored the activity to that which was present in the unhydrolyzed mycelium. The results indicate that the elicitor activity of the unsaturated fatty acids is enhanced by heat and base-stable factors in the mycelium. PMID:16662691

  15. Effect of exogenous amylolytic enzymes on the accumulation of chlorogenic acid isomers in wounded potato tubers.

    PubMed

    Torres-Contreras, Ana Mariel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2014-08-01

    Potato tubers under wounding stress synthesize chlorogenic acid isomers, which are phenolic compounds that prevent chronic diseases. The biosynthesis of phenolic compounds in plants requires aromatic amino acids that are produced from sugars. Therefore, in this study, we hypothesized that the wound-induced accumulation of chlorogenic acid isomers in potatoes could be enhanced if the availability of sugars is increased by exogenous amylolytic enzymes applied to the surface of the site of wounding. To test this hypothesis, wounded potatoes stored at 20 °C were treated with amylolytic enzymes (pullulanase and amyloglucosidase, 282 units/mL, 10 mL/kg) after being stored for 0 (E0h), 48 (E48h), or 96 h (E96h). The highest level of accumulation of total chlorogenic acid isomers (∼210% higher than that of time 0 h samples) was observed after storage for 120 h for the E96h treatment. The results suggest that increasing the availability of carbon sources needed for the biosynthesis of phenolic compounds would trigger their accumulation in wounded plants. PMID:25032895

  16. [Relationships between cadmium accumulation and organic acids in leaves of Solanum nigrum L. as a cadmium-hyperaccumulator].

    PubMed

    Sun, Rui-lian; Zhou, Qi-xing; Wang, Xin

    2006-04-01

    The influence of different cadmium concentrations on the organic acid level in leaves of the Cd hyperaccumulator, Solanum nigrum L., in particular, the relationship of organic acids with Cd accumulation in S. nigrum was investigated based on the pot-culture experiment. The results showed that the Cd concentration in S. nigrum leaves exceeded 100 microg x g(-1), the threshold value used to define Cd-hyperaccumulators, and the bioaccumulation coefficient of cadmium in shoots of S. nigrum was higher than 1 when Cd concentration in soil was 25 microg x g(-1). The level of organic acids in leaves of S. nigrum had significant differences between the seedling stage and the mature stage. At the seedling stage, the sequence of organic acids in leaves of S. nigrum was acetic acid> tartaric acid> malic acid> citric acid. On the contrary, the accumulation of organic acids in S. nigrum at the mature stage was approximately in the following sequence malic acid> tartaric acid, acetic acid> citric acid. The significant positive correlation between Cd accumulation in leaves of S. nigrum and the concentration of tartaric acid in leaves of S. nigrum was observed at the seedling stage, whereas there was a significant positive correlation between Cd accumulation in leaves of S. nigrum and both acetic and citric acid concentrations at the mature stage. These results indicated that tartaric, acetic and citric acids in leaves of S. nigrum might act as the indication of Cd hyperaccumulation. PMID:16768003

  17. Modelling the metabolic shift of polyphosphate-accumulating organisms.

    PubMed

    Acevedo, B; Borrás, L; Oehmen, A; Barat, R

    2014-11-15

    Enhanced biological phosphorus removal (EBPR) is one of the most important methods of phosphorus removal in municipal wastewater treatment plants, having been described by different modelling approaches. In this process, the PAOs (polyphosphate accumulating organisms) and GAOs (glycogen accumulating organisms) compete for volatile fatty acids uptake under anaerobic conditions. Recent studies have revealed that the metabolic pathways used by PAOs in order to obtain the energy and the reducing power needed for polyhydroxyalkanoates synthesis could change depending on the amount of polyphosphate stored in the cells. The model presented in this paper extends beyond previously developed metabolic models by including the ability of PAO to change their metabolic pathways according to the content of poly-P available. The processes of the PAO metabolic model were adapted to new formulations enabling the change from P-driven VFA uptake to glycogen-driven VFA uptake using the same process equations. The stoichiometric parameters were changed from a typical PAO coefficient to a typical GAO coefficient depending on the internal poly-P with Monod-type expressions. The model was calibrated and validated with seven experiments under different internal poly-P concentrations, showing the ability to correctly represent the PAO metabolic shift at low poly-P concentrations. The sensitivity and error analysis showed that the model is robust and has the ability to describe satisfactorily the change from one metabolic pathway to the other one, thereby encompassing a wider range of process conditions found in EBPR plants. PMID:25123437

  18. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    PubMed

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes. PMID:26280739

  19. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  20. Modelling metal accumulation using humic acid as a surrogate for plant roots.

    PubMed

    Le, T T Yen; Swartjes, Frank; Römkens, Paul; Groenenberg, Jan E; Wang, Peng; Lofts, Stephen; Hendriks, A Jan

    2015-04-01

    Metal accumulation in roots was modelled with WHAM VII using humic acid (HA) as a surrogate for root surface. Metal accumulation was simulated as a function of computed metal binding to HA, with a correction term (E(HA)) to account for the differences in binding site density between HA and root surface. The approach was able to model metal accumulation in roots to within one order of magnitude for 95% of the data points. Total concentrations of Mn in roots of Vigna unguiculata, total concentrations of Ni, Zn, Cu and Cd in roots of Pisum sativum, as well as internalized concentrations of Cd, Ni, Pb and Zn in roots of Lolium perenne, were significantly correlated to the computed metal binding to HA. The method was less successful at modelling metal accumulation at low concentrations and in soil experiments. Measured concentrations of Cu internalized in L. perenne roots were not related to Cu binding to HA modelled and deviated from the predictions by over one order of magnitude. The results indicate that metal uptake by roots may under certain conditions be influenced by conditional physiological processes that cannot simulated by geochemical equilibrium. Processes occurring in chronic exposure of plants grown in soil to metals at low concentrations complicate the relationship between computed metal binding to HA and measured metal accumulation in roots. PMID:25482978

  1. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system.

    PubMed

    Müller, Claudia E; LeFevre, Gregory H; Timofte, Anca E; Hussain, Fatima A; Sattely, Elizabeth S; Luthy, Richard G

    2016-05-01

    Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short-chain and long-chain PFAAs, generating a U-shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least-sorptive (shortest-chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U-shaped trend with perfluoroalkyl chain length; however, when normalized to dead-tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the "sorption normalized concentration factor," to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long-chain PFAAs, whereas the shortest-chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter-chained PFAAs may bioaccumulate more readily in edible portions. Environ Toxicol Chem 2016;35:1138-1147. © 2015 SETAC. PMID:26383989

  2. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta.

    PubMed

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L; Perdomo, Germán

    2013-07-15

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ~30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ~20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ~40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ~70% and phosphorylation levels of acetyl-CoA carboxylase by ~25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides. PMID:23673156

  3. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos

    SciTech Connect

    Bao, X.; Ohlrogge, J.

    1999-08-01

    The metabolic factors that determine oil yield in seeds are still not well understood. To begin to examine the limits on triacylglycerol (TAG) production, developing Cuphea lanceolata, Ulmus carpinifolia, and Ulmus parvifolia embryos were incubated with factors whose availability might limit oil accumulation. The addition of glycerol or sucrose did not significantly influence the rate of TAG synthesis. However, the rate of {sup 14}C-TAG synthesis upon addition of 2.1 mM {sup 14}C-decanoic acid (10:0) was approximately four times higher than the in vivo rate of TAG accumulation in C. lanceolata and two times higher than the in vivo rate in U. carpinifolia and U. parvifolia. In C. lanceolata embryos, the highest rate of {sup 14}C-TAG synthesis (14.3 nmol h{sup {minus}1} embryo {sup {minus}1}) was achieved with the addition of 3.6 mM decanoic acid. {sup 14}C-Decanoic acid was incorporated equally well in all three acyl positions of TAG. The results suggest that C. lancelata, U. Carpinifolia, and U. parvifolia embryos have sufficient acyltransferase activities and glycerol-3-phosphate levels to support rates of TAG synthesis in excess of those found in vivo. Consequently, the amount of TAG synthesized in these oilseeds may be in part determined by the amount of fatty acid produced in plastids.

  4. Methyl jasmonate, yeast extract and sucrose stimulate phenolic acids accumulation in Eryngium planum L. shoot cultures.

    PubMed

    Kikowska, Małgorzata; Kędziora, Izabela; Krawczyk, Aldona; Thiem, Barbara

    2015-01-01

    Eryngium planum L. has been reported as a medicinal plant used in traditional medicine in Europe. The tissue cultures may be an alternative source of the biomass rich in desired bioactive compounds. The purpose of this study was to investigate the influence of the biotechnological techniques on the selected phenolic acids accumulation in the agitated shoot cultures of E. planum. Qualitative and quantitative analyses of those compounds in 50% aqueous - methanolic extracts from the biomass were conducted by applying the HPLC method. Methyl jasmonate (MeJA), yeast extract (YE) and sucrose (Suc) stimulated accumulation of the phenolic acids: rosmarinic (RA), chlorogenic (CGA) and caffeic (CA) in in vitro shoot cultures. Cultivation of shoots in liquid MS media supplemented with 1.0 mg L(-1) 6-benzyladenine and 0.1 mg L(-1) indole-3-acetic acid in the presence of 100 µM MeJA for 48h was an optimum condition of elicitation and resulted in approximately 4.5-fold increased content of RA + CGA + CA in plant material compared to the control (19.795 mg g(-1) DW, 4.36 mg g(-1) DW, respectively). The results provide the first evidence that the selected phenolic acids can be synthesized in elicited shoot cultures of flat sea holly in higher amount than in untreated shoots. PMID:25856557

  5. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation.

    PubMed

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  6. Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation

    PubMed Central

    Song, No-Joon; Yun, Ui Jeong; Yang, Sunghee; Wu, Chunyan; Seo, Cho-Rong; Gwon, A-Ryeong; Baik, Sang-Ha; Choi, Yuri; Choi, Bo Youn; Bahn, Gahee; Kim, Suji; Kwon, So-Mi; Park, Jin Su; Baek, Seung Hyun; Park, Tae Joo; Yoon, Keejung; Kim, Byung-Joon; Mattson, Mark P.; Lee, Sung-Joon; Jo, Dong-Gyu; Park, Kye Won

    2016-01-01

    Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis. PMID:26786165

  7. Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid.

    PubMed

    Guo, Hongbo; Zhu, Nan; Deyholos, Michael K; Liu, Jun; Zhang, Xiaoru; Dong, Juane

    2015-03-01

    Ca(2+) serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca(2+) mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca(2+) treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca(2+) influx from apoplast after 10 h of SA induction. PMID:25561058

  8. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  9. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid.

    PubMed

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-02-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of (109)Cd increased significantly, and higher (109)Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the (109)Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  10. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.

    PubMed

    Martins, Neusa; Gonçalves, Sandra; Andrade, Paula B; Valentão, Patrícia; Romano, Anabela

    2013-01-01

    We investigated the effect of Al (400μM) on organic acids secretion, accumulation and metabolism in Plantago almogravensis Franco and Plantago algarbiensis Samp. Al induced a significant reduction on root elongation only in P. algarbiensis. Both species accumulated considerable amounts of Al (>120μgg(-1)) in their tissues, roots exhibiting the highest contents (>900μgg(-1)). Al stimulated malonic acid secretion in P. algarbiensis, while citric, succinic and malic acids were secreted by P. almogravensis. Moreover, Al uptake was accompanied by substantial increases of citric, oxalic, malonic and fumaric acids contents in the plantlets of either species. Overall, the acid metabolizing enzymes were not directly involved in the Al induced organic acid secretion and accumulation. Our data suggest that Al detoxification in P. almogravensis implies both secretion of organic acids from roots and tolerance to high Al tissue concentrations, while in P. algarbiensis only the tolerance mechanism seems to be involved. PMID:23199681

  11. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis

    PubMed Central

    Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

    2014-01-01

    Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants. PMID:25610446

  12. Electrochemical antimony removal from accumulator acid: results from removal trials in laboratory cells.

    PubMed

    Bergmann, M E Henry; Koparal, A Savas

    2011-11-30

    Regeneration of spent accumulator acid could be an alternative process for crystallization, neutralisation and disposal. Therefore, for the first time in a study of the possibilities of electrochemical removal of antimony and accumulator acid regeneration on a laboratory scale, two synthetic and several real systems containing sulfuric acid of concentrations ranging between 28% and 36%, and antimony species were tested. Discontinuous electrochemical reactors with anion exchange membranes were successfully used in these experiments, which were conducted at a temperature of 35°C. Removal of antimony using cells that were not divided by a separator, however, was not possible. In selected experiments, by varying the electrode material, type of electrolyte, and cell current, the concentration of antimony could be reduced from the range of 5 ppm to 0.15 ppm. This resulted in current efficiencies between 0.00002% and 0.001%, and in specific electroenergy demands between 100 Wh L(-1) and 2000 Wh L(-1). In other experiments on substances with antimony contents up to 3500 mg L(-1), the current efficiencies obtained were more than a thousandfold higher. In contrast to the formally high relative energy consumption parameters absolute demand parameters are relatively small and favour the electrochemical method in small scale application. Besides plate electrodes, 3D-cathodes were used. Copper- and graphite cathodes produced the best results. PMID:21978586

  13. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Togawa, Satoko; Hikawa, Takahiro; Matsuura, Hideyuki; Masuta, Chikara; Inukai, Tsuyoshi

    2016-07-01

    We initially observed that Brassica rapa cultivars containing the Turnip mosaic virus (TuMV) resistance gene, Rnt1-1, accumulated a high level of endogenous ascorbic acid (AS) and dehydroascobic acid (DHA) when infected with TuMV. We here hypothesized a possible contribution of an elevated level of AS+DHA (TAA) to the Rnt1-1-mediated resistance, and conducted a series of experiments using B. rapa and Arabidopsis plants. The application of l-galactose (the key substrate in AS synthesis) to a susceptible cultivar could increase the TAA level ~2-fold, and simultaneously lead to some degree of enhanced viral resistance. To confirm some positive correlation between TAA levels and viral resistance, we analyzed two Arabidopsis knockout mutants (ao and vtc1) in the AS pathways; the TAA levels were significantly increased and decreased in ao and vtc1 plants, respectively. While the ao plants showed enhanced resistance to TuMV, vtc1 plants were more susceptible than the control, supporting our hypothesis. When we analyzed the expression profiles of the genes involved in the AS pathways upon TuMV infection, we found that the observed TAA increase was mainly brought about by the reduction of AS oxidation and activation of AS recycling. We then investigated the secondary signals that regulate endogenous TAA levels in response to viral infection, and found that jasmonic acid (JA) might play an important role in TAA accumulation. In conclusion, we reason that the elevated TAA accumulation in B. rapa plants would be at least partly mediated by the JA-dependent signaling pathway and may significantly contribute to viral resistance. PMID:27255930

  14. Mononuclear phagocyte accumulates a stearic acid derivative during differentiation into macrophages. Effects of stearic acid on macrophage differentiation and Mycobacterium tuberculosis control.

    PubMed

    Mosquera-Restrepo, Sergio Fabián; Caro, Ana Cecilia; Peláez-Jaramillo, Carlos Alberto; Rojas, Mauricio

    2016-05-01

    The fatty acid composition of monocytes changes substantially during differentiation into macrophages, increasing the proportion of saturated fatty acids. These changes prompted us to investigate whether fatty acid accumulation in the extracellular milieu could affect the differentiation of bystander mononuclear phagocytes. An esterified fatty acid derivative, stearate, was the only fatty acid that significantly increased in macrophage supernatants, and there were higher levels when cells differentiated in the presence of Mycobacterium tuberculosis H37Rv or purified protein derivative (PPD). Exogenous stearic acid enhanced the expression of HLA-DR and CD64; there was also accumulation of IL-12, TNF-α, IL-6, MIP-1 α and β and a reduction in MCP-1 and the bacterial load. These results suggested that during differentiation, a derivative of stearic acid, which promotes the process as well as the effector mechanisms of phagocytes against the mycobacterium, accumulates in the cell supernatants. PMID:26932544

  15. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    PubMed

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production. PMID:26450510

  16. Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation.

    PubMed

    Zhang, Litao; Liu, Jianguo

    2016-07-01

    The purpose of this study was to clarify the interrelation between the mitochondrial alternative oxidase (AOX) pathway and fatty acid accumulation in marine microalga Isochrysis galbana. Under normal conditions, the activity of the AOX pathway was maintained at a low level in I. galbana. Compared with the normal condition, nitrogen deprivation significantly increased the AOX pathway activity and fatty acid accumulation. Under nitrogen deprivation, the inhibition of the AOX pathway by salicylhydroxamic acid caused the accumulation of reducing equivalents and the over-reduction of chloroplasts in I. galbana cells, leading to a decrease in the photosynthetic O2 evolution rate. The over-production of reducing equivalents due to the inhibition of the AOX pathway under nitrogen deprivation further enhanced the accumulation of fatty acids in I. galbana cells. PMID:27068057

  17. Accumulation of seleno-amino acids in legume and grass plant species grown in selenium-laden soils

    SciTech Connect

    Wu, L.; Guo, X.; Banuelos, G.S.

    1997-03-01

    Seleno-amino acid accumulation was studied for two legume and two grass species grown in Selenium (Se)-laden soils. An antagonistic relationship was found between the tissue Se-amino acid concentration and the corresponding sulfur-amino acid concentration. This relationship demonstrates a competitive interaction between Se and sulfate at the amino acid synthesis level. The nonsulfur-containing amino acids were not substantially affected by the increase of tissue Se concentration. Sour clover (Melilotus indica L.) was able to accumulate much greater tissue Se concentration than the other three species. Tissue methionine concentration of sour clover, rabbitfoot grass (Polypogon monspeliensis L.), and tall fescue (Festuca arundinacea Schreb.) was not significantly affected by the increase of tissue selenomethionine concentration, but a highly significant negative correlation was found in alfalfa (Medicago sativa L.). This discrepancy suggests that a less antagonistic effect on sulfur-amino acids under the increase of Se-amino acid analogues in the tissue might be able to minimize Se toxicity to the plant. Both Se-methylselenocysteine (nonprotein amino acid) and selenomethionine (protein amino acid) accumulated in the plants when grown in Se-laden soils. Possible effects of these Se-amino acids accumulated by plants on animal health should be tested before the plants are used for forage supplementation.

  18. Impaired oxidoreduction by 11β-hydroxysteroid dehydrogenase 1 results in the accumulation of 7-oxolithocholic acid[S

    PubMed Central

    Penno, Carlos A.; Morgan, Stuart A.; Vuorinen, Anna; Schuster, Daniela; Lavery, Gareth G.; Odermatt, Alex

    2013-01-01

    11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) mediates glucocorticoid activation and is currently considered as therapeutic target to treat metabolic diseases; however, biomarkers to assess its activity in vivo are still lacking. Recent in vitro experiments suggested that human 11β-HSD1 metabolizes the secondary bile acid 7-oxolithocholic acid (7-oxoLCA) to chenodeoxycholic acid (CDCA) and minor amounts of ursodeoxycholic acid (UDCA). Here, we provide evidence from in vitro and in vivo studies for a major role of 11β-HSD1 in the oxidoreduction of 7-oxoLCA and compare its level and metabolism in several species. Hepatic microsomes from liver-specific 11β-HSD1-deficient mice were devoid of 7-oxoLCA oxidoreductase activity. Importantly, circulating and intrahepatic levels of 7-oxoLCA and its taurine conjugate were significantly elevated in mouse models of 11β-HSD1 deficiency. Moreover, comparative enzymology of 11β-HSD1-dependent oxidoreduction of 7-oxoLCA revealed that the guinea-pig enzyme is devoid of 7-oxoLCA oxidoreductase activity. Unlike in other species, 7-oxoLCA and its glycine conjugate are major bile acids in guinea-pigs. In conclusion, the oxidoreduction of 7-oxoLCA and its conjugated metabolites are catalyzed by 11β-HSD1, and the lack of this activity leads to the accumulation of these bile acids in guinea-pigs and 11β-HSD1-deficient mice. Thus, 7-oxoLCA and its conjugates may serve as biomarkers of impaired 11β-HSD1 activity. PMID:23933573

  19. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. PMID:26851887

  20. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  1. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    PubMed Central

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  2. Abscisic acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes

    SciTech Connect

    Creelman, R.A.; Zeevaart, J.A.D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress rather than a chemical stress.

  3. Intraneuronal Amyloid β Accumulation and Oxidative Damage to Nucleic Acids in Alzheimer Disease

    PubMed Central

    Nunomura, Akihiko; Tamaoki, Toshio; Tanaka, Koich; Motohashi, Nobutaka; Nakamura, Masao; Hayashi, Takaaki; Yamaguchi, Haruyasu; Shimohama, Shun; Lee, Hyoung-gon; Zhu, Xiongwei; Smith, Mark A.; Perry, George

    2010-01-01

    An in situ approach was used to identify amyloid-β (Aβ) accumulation and oxidative damage to nucleic acids in postmortem brain tissue of the hippocampal formation from subjects with Alzheimer disease. When carboxyl-terminal specific antibodies directed against Aβ40 and Aβ42 were used for immunocytochemical analyses, Aβ42 was especially apparent within the neuronal cytoplasm, at sites not detected by the antibody specific to Aβ-oligomer. In comparison to the Aβ42-positive neurons, neurons bearing oxidative damage to nucleic acids were more widely distributed in the hippocampus. Comparative density measurements of the immunoreactivity revealed that levels of intraneuronal Aβ42 were inversely correlated with levels of intraneuronal 8-hydroxyguanosine, an oxidized nucleoside (r = − 0.61, p < 0.02). Together with recent evidence that the Aβ peptide can act as an antioxidant, these results suggest that intraneuronal accumulation of non-oligomeric Aβ may be a compensatory response in neurons to oxidative stress in Alzheimer disease. PMID:20034567

  4. Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors

    PubMed Central

    2012-01-01

    Background Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation. Results We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis. Conclusions We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production. PMID:22448811

  5. Reducing Isozyme Competition Increases Target Fatty Acid Accumulation in Seed Triacylglycerols of Transgenic Arabidopsis1[OPEN

    PubMed Central

    van Erp, Harrie; Shockey, Jay; Zhang, Meng; Adhikari, Neil D.; Browse, John

    2015-01-01

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on hydroxy fatty acids (HFAs) and conjugated polyenoic FAs (α-eleostearic acids [ESAs]) using Arabidopsis (Arabidopsis thaliana) as a model. These FAs are found naturally in seed oils of castor (Ricinus communis) and tung tree (Vernicia fordii), respectively, and used for the production of lubricants, nylon, and paints. Transgenic oils typically contain less target FA than that produced in the source species. We hypothesized that competition between endogenous and transgenic isozymes for substrates limits accumulation of unique FAs in Arabidopsis seeds. This hypothesis was tested by introducing a mutation in Arabidopsis diacylglycerol acyltransferase1 (AtDGAT1) in a line expressing castor FA hydroxylase and acyl-Coenzyme A:RcDGAT2 in its seeds. This led to a 17% increase in the proportion of HFA in seed oil. Expression of castor phospholipid:diacylglycerol acyltransferase 1A in this line increased the proportion of HFA by an additional 12%. To determine if our observations are more widely applicable, we investigated if isozyme competition influenced production of ESA. Expression of tung tree FA conjugase/desaturase in Arabidopsis produced approximately 7.5% ESA in seed lipids. Coexpression of VfDGAT2 increased ESA levels to approximately 11%. Overexpression of VfDGAT2 combined with suppression of AtDGAT1 increased ESA accumulation to 14% to 15%. Our results indicate that isozyme competition is a limiting factor in the engineering of unusual FAs in heterologous plant systems and that reduction of competition through mutation and RNA suppression may be a useful component of seed metabolic engineering strategies. PMID:25739701

  6. Reduction of volatile fatty acids and odor offensiveness by anaerobic digestion and solid separation of dairy manure during manure storage.

    PubMed

    Page, Laura H; Ni, Ji-Qin; Zhang, Hao; Heber, Albert J; Mosier, Nathan S; Liu, Xingya; Joo, Hung-Soo; Ndegwa, Pius M; Harrison, Joseph H

    2015-04-01

    Volatile fatty acids (VFA) play an important role in the biodegradation of organic wastes and production of bioenergy under anaerobic digestion, and are related to malodors. However, little is known about the dynamics of VFA during dairy manure storage. This study evaluated the characteristics of VFA in dairy manure before and after anaerobic co-digestion in a laboratory experiment using eight lab-scale reactors. The reactors were loaded with four different types of dairy manure: (1) liquid dairy manure from a freestall barn, (2) mixture of dairy manure and co-digestion food processing wastes at the inlet of an anaerobic digester, (3) effluent from the digester outlet, and (4) the liquid fraction of effluent from a solid separator. Four VFA (acetic, propionic, butyric, and 2-methylbutyric acids) were identified and quantified in weekly manure samples from all reactors. Results showed that the dominant VFA was acetic acid in all four manure sources. The off-farm co-digestion wastes significantly increased the total VFA concentrations and the proportions of individual VFA in the influent. The dairy manure under storage demonstrated high temporal and spatial variations in pH and VFA concentrations. Anaerobic digestion reduced the total VFA by 86%-96%; but solid-liquid separation did not demonstrate a significant reduction in total VFA in this study. Using VFA as an indicator, anaerobic digestion exhibited an effective reduction of dairy manure odor offensiveness. PMID:25617873

  7. Atlas of Rice Grain Filling-Related Metabolism under High Temperature: Joint Analysis of Metabolome and Transcriptome Demonstrated Inhibition of Starch Accumulation and Induction of Amino Acid Accumulation

    PubMed Central

    Yamakawa, Hiromoto; Hakata, Makoto

    2010-01-01

    High temperature impairs grain filling by inhibiting the deposition of storage materials such as starch and protein. To comprehend its impact on grain filling metabolism in rice (Oryza sativa), levels of metabolites and transcripts related to central pathways of metabolism were simultaneously determined in developing caryopses exposed to high temperature (33°C/28°C) and a control temperature (25°C/20°C) during the milky stage. A capillary electrophoresis-based metabolomic analysis revealed that high temperature increased the accumulation of sucrose and pyruvate/ oxaloacetate-derived amino acids and decreased levels of sugar phosphates and organic acids involved in glycolysis/gluconeogenesis and the tricarboxylic acid (TCA) cycle, respectively. A transcriptomic analysis using a whole genome-covering microarray unraveled the possible metabolic steps causing the shortage of storage materials under the elevated temperature. Starch deposition might be impaired by down-regulation of sucrose import/degradation and starch biosynthesis, and/or up-regulation of starch degradation as well as inefficient ATP production by an inhibited cytochrome respiration chain, as indicated by the response of gene expression to high temperature. Amino acid accumulation might be attributed to the heat-stable import of amino acids into the caryopsis and/or repression of protein synthesis especially the tRNA charging step under high temperature. An atlas showing the effect of high temperature on levels of metabolites and gene expression in the central metabolic pathways is presented. PMID:20304786

  8. Optimization of a histopathological biomarker for sphingomyelin accumulation in acid sphingomyelinase deficiency.

    PubMed

    Taksir, Tatyana V; Johnson, Jennifer; Maloney, Colleen L; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L; Ryan, Susan

    2012-08-01

    Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy. PMID:22614361

  9. Jasmonic acid effect on the fatty acid and terpenoid indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus.

    PubMed

    Goldhaber-Pasillas, Guitele Dalia; Mustafa, Natali Rianika; Verpoorte, Robert

    2014-01-01

    The stress response after jasmonic acid (JA) treatment was studied in cell suspension cultures of Catharanthus roseus. The effect of JA on the primary and secondary metabolism was based on changes in profiles of fatty acids (FA) and terpenoid indole alkaloids (TIA). According to multivariate data analyses (MVDA), three major time events were observed and characterized according to the variations of specific FA and TIA: after 0-30 min of induction FA such as C18:1, C20:0, C22:0 and C24:0 were highly induced by JA; 90-360 min after treatment was characterized by variations of C14:0 and C15:0; and 1440 min after induction JA had the largest effect on both group of metabolites were C18:1, C18:2, C18:3, C16:0, C20:0, C22:0, C24:0, catharanthine, tabersonine-like 1, serpentine, tabersonine and ajmalicine-like had the most significant variations. These results unambiguously demonstrate the profound effect of JA particularly on the accumulation of its own precursor, C18:3 and the accumulation of TIA, which can be considered as late stress response events to JA since they occurred only after 1440 min. These observations show that the early events in the JA response do not involve the de novo biosynthesis of neither its own precursor nor TIA, but is due to an already present biochemical system. PMID:25029072

  10. Degradation of dissolved organic monomers and short-chain fatty acids in sandy marine sediment by fermentation and sulfate reduction

    NASA Astrophysics Data System (ADS)

    Valdemarsen, Thomas; Kristensen, Erik

    2010-03-01

    The decay of a wide range of organic monomers (short-chain volatile fatty acids (VFA's), amino acids, glucose and a pyrimidine) was studied in marine sediments using experimental plug flow-through reactors. The reactions were followed in the presence and absence of 10 mM SO 42-. Degradation stoichiometry of individual monomers (inflow concentration of 6 mM organic C) was traced by measuring organic (VFA's, amino acids) and inorganic (CO 2, NH 4+, SO 42-) compounds in the outflow. Fermentation of amino acids was efficient and complete during passage through anoxic sediment reactors. Aliphatic amino acids (alanine, serine and glutamate) were primarily recovered as CO 2 (24-34%), formate (3-22%) and acetate (41-83%), whereas only ˜1/3 of the aromatic amino acid (tyrosine) was recovered as CO 2 (13%) and acetate (20%). Fermentation of glucose and cytosine was also efficient (78-86%) with CO 2 (30-35%), formate (3%) and acetate (28-33%) as the primary products. Fermentation of VFA's (acetate, propionate and butyrate), on the other hand, appeared to be product inhibited. The presence of SO 42- markedly stimulated VFA degradation (29-45% efficiency), and these compounds were recovered as CO 2 (17% for butyrate to 100% for acetate) and acetate (51% and 82% for propionate and butyrate, respectively). When reaction stoichiometry during fermentation is compared with compound depletion during sulfate reduction, the higher proportion CO 2 recovery is consistent with lower acetate and formate accumulation. Our results therefore suggest that fermentation reactions mediate the initial degradation of added organic compounds, even during active sulfate reduction. Fermentative degradation stoichiometry also suggested significant H 2 production, and >50% of sulfate reduction appeared to be fuelled by H 2. Furthermore, our results suggest that fermentation was the primary deamination step during degradation of the amino acids and cytosine.

  11. Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals

    PubMed Central

    Mavrodi, Dmitri V.; Mavrodi, Olga V.; Parejko, James A.; Bonsall, Robert F.; Kwak, Youn-Sig; Paulitz, Timothy C.; Weller, David M.

    2012-01-01

    Natural antibiotics are thought to function in the defense, fitness, competitiveness, biocontrol activity, communication, and gene regulation of microorganisms. However, the scale and quantitative aspects of antibiotic production in natural settings are poorly understood. We addressed these fundamental questions by assessing the geographic distribution of indigenous phenazine-producing (Phz+) Pseudomonas spp. and the accumulation of the broad-spectrum antibiotic phenazine-1-carboxylic acid (PCA) in the rhizosphere of wheat grown in the low-precipitation zone (<350 mm) of the Columbia Plateau and in adjacent, higher-precipitation areas. Plants were collected from 61 commercial wheat fields located within an area of about 22,000 km2. Phz+ Pseudomonas spp. were detected in all sampled fields, with mean population sizes ranging from log 3.2 to log 7.1 g−1 (fresh weight) of roots. Linear regression analysis demonstrated a significant inverse relationship between annual precipitation and the proportion of plants colonized by Phz+ Pseudomonas spp. (r2 = 0.36, P = 0.0001). PCA was detected at up to nanomolar concentrations in the rhizosphere of plants from 26 of 29 fields that were selected for antibiotic quantitation. There was a direct relationship between the amount of PCA extracted from the rhizosphere and the population density of Phz+ pseudomonads (r2 = 0.46, P = 0.0006). This is the first demonstration of accumulation of significant quantities of a natural antibiotic across a terrestrial ecosystem. Our results strongly suggest that natural antibiotics can transiently accumulate in the plant rhizosphere in amounts sufficient not only for inter- and intraspecies signaling but also for the direct inhibition of sensitive organisms. PMID:22138981

  12. Synthesis and accumulation of poly(3-hydroxybutyric acid) by Rhizobium sp.

    PubMed

    Manna, A; Pal, S; Paul, A K

    2000-01-01

    Forty-two Rhizobium strains obtained from different culture collections were evaluated quantitatively for poly(3-hydroxy-butyric acid) [PHB] production in shake flask culture. The majority of the strains produced the maximum amount of PHB during the late exponential or stationary phase of growth. Synthesis and accumulation of PHB in different species of Rhizobium were found to vary between 1-38% of their dry biomass. Growth and PHB production by the Rhizobium strain TAL-640 were greatly influenced by the C-source and D-mannitol was fundamental to both processes. The identity and purity of PHB isolated from TAL-640 have also been confirmed by UV-, IR- and 1H-NMR spectroscopic analyses. PMID:10866363

  13. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  14. Salicylic acid reduces napropamide toxicity by preventing its accumulation in rapeseed (Brassica napus L.).

    PubMed

    Cui, Jing; Zhang, Rui; Wu, Guo Lin; Zhu, Hong Mei; Yang, Hong

    2010-07-01

    Napropamide is a widely used herbicide for controlling weeds in crop production. However, extensive use of the herbicide has led to its accumulation in ecosystems, thus causing toxicity to crops and reducing crop production and quality. Salicylic acid (SA) plays multiple roles in regulating plant adaptive responses to biotic and environmental stresses. However, whether SA regulates plant response to herbicides (or pesticides) was unknown. In this study, we investigated the effect of SA on herbicide napropamide accumulation and biological processes in rapeseed (Brassica napus). Plants exposed to 8 mg kg(-1) napropamide showed growth stunt and oxidative damage. Treatment with 0.1 mM SA improved growth and reduced napropamide levels in plants. Treatment with SA also decreased the abundance of O (2) (-.) and H(2)O(2) as well as activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), and increased activities of guaiacol peroxidase (POD) and glutathione-S-transferase (GST) in napropamide-exposed plants. Analysis of SOD, CAT, and POD activities using nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed the results. These results may help to understand how SA regulates plant response to organic contaminants and provide a basis to control herbicide/pesticide contamination in crop production. PMID:19967348

  15. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels. PMID:25034826

  16. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. PMID:26057718

  17. The synthesis and accumulation of stearidonic acid in transgenic plants: a novel source of 'heart-healthy' omega-3 fatty acids.

    PubMed

    Ruiz-López, Noemí; Haslam, Richard P; Venegas-Calerón, Mónica; Larson, Tony R; Graham, Ian A; Napier, Johnathan A; Sayanova, Olga

    2009-09-01

    Dietary omega-3 polyunsaturated fatty acids have a proven role in reducing the risk of cardiovascular disease and precursor disease states such as metabolic syndrome. Although most studies have focussed on the predominant omega-3 fatty acids found in fish oils (eicosapentaenoic acid and docosahexaenoic acid), recent evidence suggests similar health benefits from their common precursor, stearidonic acid. Stearidonic acid is a Delta6-unsaturated C18 omega-3 fatty acid present in a few plant species (mainly the Boraginaceae and Primulaceae) reflecting the general absence of Delta6-desaturation from higher plants. Using a Delta6-desaturase from Primula vialii, we generated transgenic Arabidopsis and linseed lines accumulating stearidonic acid in their seed lipids. Significantly, the P. vialiiDelta6-desaturase specifically only utilises alpha-linolenic acid as a substrate, resulting in the accumulation of stearidonic acid but not omega-6 gamma-linolenic acid. Detailed lipid analysis revealed the accumulation of stearidonic acid in neutral lipids such as triacylglycerol but an absence from the acyl-CoA pool. In the case of linseed, the achieved levels of stearidonic acid (13.4% of triacylglycerols) are very similar to those found in the sole natural commercial plant source (Echium spp.) or transgenic soybean oil. However, both those latter oils contain gamma-linolenic acid, which is not normally present in fish oils and considered undesirable for heart-healthy applications. By contrast, the stearidonic acid-enriched linseed oil is essentially devoid of this fatty acid. Moreover, the overall omega-3/omega-6 ratio for this modified linseed oil is also significantly higher. Thus, this nutritionally enhanced linseed oil may have superior health-beneficial properties. PMID:19702757

  18. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition

    SciTech Connect

    Guckert, J.B.; Cooksey, K.E. )

    1990-03-01

    Alkaline pH stress resulted in triglyceride (TG) accumulation in Chlorella CHLOR1 and was independent of medium nitrogen or carbon levels. Based on morphological observations, alkaline pH inhibited autospore release, thus increasing the time for cell cycle completion. Autospore release has been postulated to coincide with TG utilization within the microalgal cell division cycle. The alkaline pH stress affected lipid accumulation by inhibiting the cell division cycle prior to autospore release and, therefore, prior to TG utilization. Cells inhibited in this manner showed an increase in TG accumulation but a decrease in both membrane lipid classes (glycolipid and polar lipid). Unlike TG fatty acid profiles, membrane lipid fatty acid profiles were not stable during TG accumulation. The membrane profiles became similar to the TG, i.e. less unsaturated than in the membrane lipids of unstressed control cells.

  19. Competitive Oxidation of Volatile Fatty Acids by Sulfate- and Nitrate-Reducing Bacteria from an Oil Field in Argentina▿ †

    PubMed Central

    Grigoryan, Aleksandr A.; Cornish, Sabrina L.; Buziak, Brenton; Lin, Shiping; Cavallaro, Adriana; Arensdorf, Joseph J.; Voordouw, Gerrit

    2008-01-01

    Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were

  20. Propolis induces chondroitin/dermatan sulphate and hyaluronic Acid accumulation in the skin of burned wound.

    PubMed

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair. PMID:23533471

  1. Xanthurenic acid distribution, transport, accumulation and release in the rat brain.

    PubMed

    Gobaille, Serge; Kemmel, Véronique; Brumaru, Daniel; Dugave, Christophe; Aunis, Dominique; Maitre, Michel

    2008-05-01

    Tryptophan metabolism through the kynurenine pathway leads to several neuroactive compounds, including kynurenic and picolinic acids. Xanthurenic acid (Xa) has been generally considered as a substance with no physiological role but possessing toxic and apoptotic properties. In the present work, we present several findings which support a physiological role for endogenous Xa in synaptic signalling in brain. This substance is present in micromolar amounts in most regions of the rat brain with a heterogeneous distribution. An active vesicular synaptic process inhibited by bafilomycin and nigericin accumulates xanthurenate into pre-synaptic terminals. A neuronal transport, partially dependant on adenosine 5'-triphosphate (ATP), sodium and chloride ions exists in NCB-20 neurons which could participate in the clearance of extracellular xanthurenate. Both transports (neuronal and vesicular) are greatly enhanced by the presence of micromolar amounts of zinc ions. Finally, electrical in vivo stimulation of A10-induced Xa release in the extracellular spaces of the rat prefrontal cortex. This phenomenon is reproduced by veratrine, K+ ions and blocked by EGTA and tetrodotoxin. These results strongly argue for a role for Xa in neurotransmission/neuromodulation in the rat brain, thus providing the existence of specific Xa receptors. PMID:18182052

  2. Propolis Induces Chondroitin/Dermatan Sulphate and Hyaluronic Acid Accumulation in the Skin of Burned Wound

    PubMed Central

    Olczyk, Pawel; Komosinska-Vassev, Katarzyna; Winsz-Szczotka, Katarzyna; Stojko, Jerzy; Klimek, Katarzyna; Kozma, Ewa M.

    2013-01-01

    Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair. PMID:23533471

  3. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple.

    PubMed

    Li, Mingjun; Li, Dongxia; Feng, Fengjuan; Zhang, Sheng; Ma, Fengwang; Cheng, Lailiang

    2016-09-01

    Understanding the fruit developmental process is critical for fruit quality improvement. Here, we report a comprehensive proteomic analysis of apple fruit development over five growth stages, from young fruit to maturity, coupled with metabolomic profiling. A tandem mass tag (TMT)-based comparative proteomics approach led to the identification and quantification of 7098 and 6247 proteins, respectively. This large-scale proteomic dataset presents a global view of the critical pathways involved in fruit development and metabolism. When linked with metabolomics data, these results provide new insights into the modulation of fruit development, the metabolism and storage of sugars and organic acids (mainly malate), and events within the energy-related pathways for respiration and glycolysis. We suggest that the key steps identified here (e.g. those involving the FK2, TST, EDR6, SPS, mtME and mtMDH switches), can be further targeted to confirm their roles in accumulation and balance of fructose, sucrose and malate. Moreover, our findings imply that the primary reason for decreases in amino acid concentrations during fruit development is related to a reduction in substrate flux via glycolysis, which is mainly regulated by fructose-bisphosphate aldolase and bisphosphoglycerate mutase. PMID:27535992

  4. [Effect of cultivation conditions on the accumulation of poly-beta-hydroxy-butyric acid in Rhizobium lupini].

    PubMed

    Yushkova, L A; Fedulova, N G; Romanov, V I; Kretovich, W L

    1975-01-01

    The influence of the age of the culture and nitrogen source on the accumulation of poly-beta-hydroxybutyric acid by different strains of Rhizobium lupini was studied. The accumulation depended on the age of the culture and reached maximum at the end of the logarithmic and at the beginning of the stationary phase of the bacterial growth (about 50-60% dry weight). The accumulation varied in relation to the nitrogen source used: it was the highest in the glutamate medium and the lowest on nitrate nitrogen; the culture grown on ammonium phosphate was intermediate. PMID:1208373

  5. Mortality of Pratylenchus penetrans by Volatile Fatty Acids from Liquid Hog Manure

    PubMed Central

    Mahran, A.; Tenuta, M.; Hanson, M. L.; Daayf, F.

    2008-01-01

    As part of our research program assessing the use of liquid hog manure (LHM) to control root-lesion nematodes, Pratylenchus penetrans, a series of acute toxicity tests was conducted to: (i) examine if non-ionized forms of volatile fatty acids (VFA) are responsible for the mortality of P. penetrans exposed to LHM under acidic conditions, (ii) determine if Caenorhabditis elegans can be a surrogate for P. penetrans in screening tests by comparing their sensitivities to VFA, (iii) characterize the nematicidal effect of individual VFA in LHM to P. penetrans, and (iv) determine whether individual VFA in LHM interact in their toxicity to P. penetrans. LHM was significantly (P ≤ 0.05) more toxic to P. penetrans than a mixture of its main VFA components at concentrations of 5% and 10% (vol. VFA or LHM /vol. in buffer). Pratylenchus penetrans was more sensitive to acetic acid than C. elegans, whereas the sensitivity of both nematode species to n-caproic acid was similar. Individual VFA vary in their lethality to P. penetrans. n-valeric acid was the most toxic (LC95= 6.8 mM), while isobutyric acid was the least toxic (LC95 = 45.7 mM). Individual VFA did not interact in their toxicity to P. penetrans, and their effects were considered additive. VFA account for the majority of the lethal effect of LHM to P. penetrans under acidic conditions. Caenorhabditis elegans cannot be used as a surrogate to P. penetrans in toxicity studies using VFA. The efficacy of LHM to control P. penetrans can be evaluated by assessing its VFA content prior to application, and this evaluation is facilitated by the fact that the interaction of individual VFA appears to be simply additive. PMID:19259528

  6. Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci.

    PubMed

    Tabanelli, Giulia; Montanari, Chiara; Bargossi, Eleonora; Lanciotti, Rosalba; Gatto, Veronica; Felis, Giovanna; Torriani, Sandra; Gardini, Fausto

    2014-11-01

    The aim of this study was to evaluate the competitive effects of three bacteriocin producing strains of Lactococcus lactis subsp. lactis against two aminobiogenic lactic acid bacteria, i.e. the tyramine producing strain Enterococcus faecalis EF37 and the histamine producing strain Streptococcus thermophilus PRI60, inoculated at different initial concentrations (from 2 to 6 log cfu/ml). The results showed that the three L. lactis subsp. lactis strains were able to produce bacteriocins: in particular, L. lactis subsp. lactis VR84 and EG46 produced, respectively, nisin Z and lacticin 481, while for the strains CG27 the bacteriocin has not been yet identified, even if its peptidic nature has been demonstrated. The co-culture of E. faecalis EF37 in combination with lactococci significantly reduced the growth potential of this aminobiogenic strain, both in terms of growth rate and maximum cell concentration, depending on the initial inoculum level of E. faecalis. Tyramine accumulation was strongly reduced when E. faecalis EF37 was inoculated at 2 log cfu/ml and, to a lesser extent, at 3 log cfu/ml, as a result of a lower cell load of the aminobiogenic strain. All the lactococci were more efficient in inhibiting streptococci in comparison with E. faecalis EF37; in particular, L. lactis subsp. lactis VR84 induced the death of S. thermophilus PRI60 and allowed the detection of histamine traces only at higher streptococci inoculum levels (5-6 log cfu/ml). The other two lactococcal strains did not show a lethal action against S. thermophilus PRI60, but were able to reduce its growth extent and histamine accumulation, even if L. lactis subsp. lactis EG46 was less effective when the initial streptococci concentration was 5 and 6 log cfu/ml. This preliminary study has clarified some aspects regarding the ratio between bacteriocinogenic strains and aminobiogenic strains with respect to the possibility to accumulate BA and has also showed that different bacteriocins can have

  7. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds.

    PubMed

    Nguyen, Huu Tam; Park, Hyunwoo; Koster, Karen L; Cahoon, Rebecca E; Nguyen, Hanh T M; Shanklin, John; Clemente, Thomas E; Cahoon, Edgar B

    2015-01-01

    Seed oils enriched in omega-7 monounsaturated fatty acids, including palmitoleic acid (16:1∆9) and cis-vaccenic acid (18:1∆11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega-7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ∆9 desaturation of stearoyl (18:0)-acyl carrier protein (ACP) to ∆9 desaturation of palmitoyl (16:0)-acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed-specific co-expression of a mutant ∆9-acyl-ACP and an acyl-CoA desaturase with high specificity for 16:0-ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega-7 monounsaturated fatty acids were obtained. Further increases in omega-7 fatty acid accumulation to 60-65% of the total fatty acids in camelina seeds were achieved by inclusion of seed-specific suppression of 3-keto-acyl-ACP synthase II and the FatB 16:0-ACP thioesterase genes to increase substrate pool sizes of 16:0-ACP for the ∆9-acyl-ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications. PMID:25065607

  8. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum.

    PubMed

    Barad, Shiri; Espeso, Eduardo A; Sherman, Amir; Prusky, Dov

    2016-06-01

    Penicillium expansum, the causal agent of blue mould rot, causes severe post-harvest fruit maceration simultaneously with the secretion of d-gluconic acid (GLA) and the mycotoxin patulin in colonized tissue. The factor(s) inducing patulin biosynthesis during colonization of the host acidic environment is unclear. During the colonization of apple fruit in vivo and growth in culture, P. expansum secretes pH-modulating GLA and ammonia. Although patulin and its possible opportunistic precursor GLA accumulate together during fungal development, ammonia is detected on the colonized tissue's leading edge and after extended culture, close to patulin accumulation. Here, we demonstrate ammonia-induced transcript activation of the global pH modulator PacC and patulin accumulation in the presence of GLA by: (i) direct exogenous treatment of P. expansum growing on solid medium; (ii) direct exogenous treatment on colonized apple tissue; (iii) growth under self-ammonia production conditions with limited carbon; and (iv) analysis of the transcriptional response to ammonia of the patulin biosynthesis cluster. Ammonia induced patulin accumulation concurrently with the transcript activation of pacC and patulin biosynthesis cluster genes, indicating the regulatory effect of ammonia on pacC transcript expression under acidic conditions. Electrophoretic mobility shift assays using P. expansum PacC and antibodies to the different cleaved proteins showed that PacC is not protected against proteolytic signalling at pH 4.5 relative to pH 7.0, but NH4 addition did not further enhance its proteolytic cleavage. Ammonia enhanced the activation of palF transcript in the Pal pathway under acidic conditions. Ammonia accumulation in the host environment by the pathogen under acidic pH may be a regulatory cue for pacC activation, towards the accumulation of secondary metabolites, such as patulin. PMID:26420024

  9. Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes.

    PubMed

    Carro, M; Buschiazzo, J; Ríos, G L; Oresti, G M; Alberio, R H

    2013-03-01

    Linoleic acid (LA) is a polyunsaturated fatty acid present in high concentrations in bovine follicular fluid; when added to maturation culture media, it affects oocyte competence (depending on the type and concentration of LA used). To date, little is known about the effective level of incorporation of LA and there is apparently no information regarding its esterification into various lipid fractions of the oocyte and its effect on neutral lipid storage. Therefore, the objective was to assess the uptake and subcellular lipid distribution of LA by analyzing incorporation of radiolabeled LA into oocyte polar and neutral lipid classes. The effects of various concentrations of LA on the nuclear status and cytoplasmic lipid content of bovine oocytes matured in vitro was also analyzed, with particular emphasis on intermediate concentrations of LA. Neutral lipids stored in lipid droplets were quantified with a fluorescence approach. Linoleic acid at 9 and 43 μM did not affect the nuclear status of oocytes matured in vitro, and 100 μM LA inhibited germinal vesicle breakdown, resulting in a higher percentage of oocytes arrested at the germinal state (43.5 vs. 3.0 in controls; P < 0.05). Bovine oocytes actively incorporated LA from the maturation medium (83.4 pmol LA per 100 oocytes at 22 hours of incubation; P < 0.05) and metabolized it mainly into major lipid classes, e.g., triacylglycerols and phospholipids (61.1% and 29.3%, respectively). Supplementation of the maturation medium with LA increased triacylglycerol accumulation in cytoplasmic lipid droplets at all concentrations assayed (P < 0.05). In conclusion, LA added to a defined maturation medium at concentrations that did not alter the nuclear status of bovine oocytes matured in vitro (9 and 43 μM) improved their quality by increasing the content of neutral lipids stored in lipid droplets. By directing the free fatty acid (LA) to triacylglycerol synthesis pathways and increasing the degree of unsaturation of

  10. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (ω-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal ω-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. Results We constructed a series of homologous vectors for the endogenous and exogenous expression of Δ6 and Δ15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of α-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20°C and 30°C. Thus, transgenic expression of Δ6 and Δ15 fatty acid desaturases enhances the accumulation of specific ω-3 PUFAs in Synechocystis sp. PCC6803. Conclusions In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and γ-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential ω-3 PUFAs. PMID:24581179

  11. Accumulation of free amino acids in marine diatom resting cells during rejuvenation

    NASA Astrophysics Data System (ADS)

    Chen, Changping; Li, Qingyu; Zhou, Qianqian; Sun, Lin; Zheng, Minhua; Gao, Yahui

    2014-01-01

    Many diatoms form resting stages under adverse growth conditions. These resting stages are known to rejuvenate once favorable conditions return, and resume vegetative growth after a certain lag period in which no divisions occurred, but what happens during this period remains unclear. Nitrogen uptake and the accumulation of free amino acids in Skeletonema marinoi resting cells during rejuvenation, but before cell division, were studied in laboratory cultures at different light intensities using the 15N-tracer technique. N uptake rate was higher for the rejuvenating cells at the higher light intensity. We hypothesized that the rapid and increasing N uptake at higher irradiance could enable S. marinoi to rebuild and reorganize its cell contents quickly and so dominate subsequent vegetative growth on the surficial sediment. Compared to the logarithmic growth phase and stationary phase, much higher concentrations of glycine (Gly) and histidine (His) were detected in resting cells, and His appeared to be a storage compound in S. marinoi resting cells. Compared to glutamine, glutamate had the higher 15N label enrichment under the light condition, showing a diel variation of N status during the lag period. The 15N labeled urea was detected at 36 h, compared to the urea cycle intermediates ornithine and citrulline at 30 h, indicating that urea was produced as an N reservoir due to the higher nitrogen uptake in the dark, and that the urea cycle was involved in S. marinoi resting cell rejuvenation.

  12. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer

    PubMed Central

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  13. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  14. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice.

    PubMed

    Arao, Tomohito; Kawasaki, Akira; Baba, Koji; Mori, Shinsuke; Matsumoto, Shingo

    2009-12-15

    Rice consumption is a major source of cadmium and arsenic for the population of Asia. We investigated the effects of water management in rice paddy on levels of cadmium and arsenic in Japanese rice grains. Flooding increased arsenic concentrations in rice grains, whereas aerobic treatment increased the concentration of cadmium. Flooding for 3 weeks before and after heading was most effective in reducing grain cadmium concentrations, but this treatment increased the arsenic concentration considerably, whereas aerobic treatment during the same period was effective in reducing arsenic concentrations but increased the cadmium concentration markedly. Flooding treatment after heading was found to be more effective than flooding treatment before heading in reducing rice grain cadmium without a concomitant increase in total arsenic levels, although it increased inorganic arsenic levels. Concentrations of dimethylarsinic acid (DMA) in grain were very low under aerobic conditions but increased under flooded conditions. DMA accounted for 3-52% of the total arsenic concentration in grain grown in soil with a lower arsenic concentration and 10-80% in soil with a higher arsenic concentration. A possible explanation for the accumulation of DMA in rice grains is that DMA translocates from shoots/roots to the grains more readily than does inorganic arsenic. PMID:20000530

  15. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer.

    PubMed

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  16. The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum.

    PubMed

    Wang, Jin; Lin, Lijin; Luo, Li; Liao, Ming'an; Lv, Xiulan; Wang, Zhihui; Liang, Dong; Xia, Hui; Wang, Xun; Lai, Yunsong; Tang, Yi

    2016-03-01

    The study of the effects of exogenous abscisic acid (ABA) addition on cadmium (Cd) accumulation of two ecotypes (mining and farmland) of Solanum photeinocarpum was operated through a pot experiment. The results showed that the biomass and chlorophyll content of the two ecotypes of S. photeinocarpum increased with increasing ABA concentration. Applying exogenous ABA increased Cd content in the two ecotypes of S. photeinocarpum. The maximum Cd contents in shoots of the two ecotypes of S. photeinocarpum were obtained at 20 μmol/L ABA; shoot Cd contents respectively for the mining and farmland ecotypes were 33.92 and 24.71% higher than those for the control. Applying exogenous ABA also increased Cd extraction by the two ecotypes of S. photeinocarpum, and the highest Cd extraction was obtained at 20 μmol/L ABA with 569.42 μg/plant in shoots of the mining ecotype and 520.51 μg/plant in shoots of the farmland ecotype respectively. Therefore, exogenous ABA can be used for enhancing the Cd extraction ability of S. photeinocarpum, and 20 μmol/L ABA was the optimal dose. PMID:26899030

  17. Vertical flow immunoassay (VFA) biosensor for a rapid one-step immunoassay.

    PubMed

    Oh, Young Kyoung; Joung, Hyou-Arm; Kim, Sanghyo; Kim, Min-Gon

    2013-03-01

    A highly rapid, one-step immunoassay of high sensitivity C-reactive protein (hsCRP) using a biosensor with a vertical flow immunoassay (VFA) was developed. The VFA biosensor was primarily composed of a sample pad, conjugate pad, FTH film and nitrocellulose (NC) membrane, which were all vertically stacked upon one another. Anti-hsCRP and secondary antibodies were consecutively immobilized on the NC membrane at the position below the holes. Gold nanoparticles (AuNPs) conjugated with another anti-hsCRP antibody were encapsulated in the conjugation pad. Various assay conditions, including the size of the hole and the sample volume, were optimized. Under optimized conditions, hsCRP concentrations from 0.01 to 10 μg mL(-1) were detected within 2 min. In comparison with a lateral flow assay (LFA) system, the VFA sensor showed a gradual increase of signal in a concentration-dependent manner without a hook effect in the tested range. PMID:23303290

  18. Engineering alfalfa to accumulate useful caffeic acid derivatives and characterization of hydroxycinnamoyl-CoA transferases from legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some forages crops, such as red clover, accumulate high levels of caffeic acid derivatives. Oxidation of these o-diphenols to quinones by endogenous polyphenol oxidases (PPOs) and the subsequent reactions of these quinones (probably with endogenous plant proteases) result in a significant reduction ...

  19. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    SciTech Connect

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  20. A new hexacyclic triterpene acid from the roots of Euscaphis japonica and its inhibitory activity on triglyceride accumulation.

    PubMed

    Li, Yan-Ci; Tian, Ke; Sun, Li-Juan; Long, Hui; Li, Lu-Jun; Wu, Zheng-Zhi

    2016-03-01

    A new taraxerene-type hexacyclic triterpene acid named (12R,13S)-3-methoxy-12,13-cyclo-taraxerene-2,14-diene-1-one-28-oic acid (1), together with a known compound 3,7-dihydroxy-5-octanolide (2), was isolated from the roots of Euscaphis japonica. The structure of new compound 1 was elucidated on the basis of NMR, HR-ESIMS and X-ray diffraction analysis. It showed promising inhibitory activity on oleic acid induced triglyceride accumulation on HepG2 cells. PMID:26828452

  1. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2

  2. Intrahippocampal administration of the alpha-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats.

    PubMed

    de Castro Vasques, Vilson; de Boer, Melissa Avila; Diligenti, Felipe; Brinco, Fabrício; Mallmann, Fabrício; Mello, Carlos Fernando; Wajner, Moacir

    2004-01-01

    Learning disability is a common feature of patients affected by maple syrup urine disease (MSUD). However, the pathomechanisms underlying learning deficit in this disorder are poorly known. In the present study, we investigated the effect of acute administration of the alpha-keto acids accumulating in MSUD into the hippocampus on the behavior of rats in the open field and in the inhibitory avoidance tasks. Adult male Wistar rats received intrahippocampal injections of alpha-ketoisocaproic acid (KIC, 8 micromol), alpha-ketoisovaleric acid (KIV, 5 micromol), alpha-keto-beta-methylvaleric acid (KMV, 5 micromol), or NaCl (8 micromol) (controls) immediately after or 10 min before training. Testing session was performed 24 h later. Posttraining administration of the keto acids had no effect on learning in the open-field task. In contrast, pretraining administration of KIV and KMV impaired habituation in the open field. Similarly, pretraining administration of KIC, KIV, and KMV affected rat performance in the inhibitory avoidance task, suggesting disruption of acquisition. The results indicate that the alpha-keto acids accumulating in MSUD induce learning deficits in aversive and nonaversive tasks. We therefore suggest that these findings may be related to the psychomotor delay/mental retardation observed in MSUD, and may indicate the contribution of increased brain concentrations of these organic acids to the pathophysiology of the neurological dysfunction of MSUD patients. PMID:14724056

  3. Regulation of Primary Metabolic Pathways in Oyster Mushroom Mycelia Induced by Blue Light Stimulation: Accumulation of Shikimic Acid

    PubMed Central

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-01-01

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis. PMID:25721093

  4. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: accumulation of shikimic acid.

    PubMed

    Kojima, Masanobu; Kimura, Ninako; Miura, Ryuhei

    2015-01-01

    Shikimic acid is a key intermediate in the aromatic amino acid pathway as well as an important starting material for the synthesis of Tamiflu, a potent and selective inhibitor of the neuraminidase enzyme of influenza viruses A and B. Here we report that in oyster mushroom (Pleurotus ostreatus) mycelia cultivated in the dark, stimulation with blue light-emitting diodes induces the accumulation of shikimic acid. An integrated analysis of primary metabolites, gene expression and protein expression suggests that the accumulation of shikimic acid caused by blue light stimulation is due to an increase in 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase (DAHPS, EC2.5.1.54), the rate-determining enzyme in the shikimic acid pathway, as well as phosphofructokinase (PFK, EC2.7.1.11) and glucose-6-phosphate dehydrogenase (G6PD, EC1.1.1.49), the rate-determining enzymes in the glycolysis and pentose phosphate pathways, respectively. This stimulation results in increased levels of phosphoenolpyruvic acid (PEP) and erythrose-4-phosphate (E4P), the starting materials of shikimic acid biosynthesis. PMID:25721093

  5. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation.

    PubMed

    Stefan, Alessandra; Hochkoeppler, Alejandro; Ugolini, Luisa; Lazzeri, Luca; Conte, Emanuele

    2016-01-01

    The conversion of industrial by-products into high-value added compounds is a challenging issue. Crude glycerol, a by-product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol-based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ∼5 g L(-1) of biomass and 0.8 g L(-1) of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L(-1) of urea or ammonium sulfate and 20 g L(-1) of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium-chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. PMID:26518537

  6. The Relationships between Metabolic Disorders (Hypertension, Dyslipidemia, and Impaired Glucose Tolerance) and Computed Tomography-Based Indices of Hepatic Steatosis or Visceral Fat Accumulation in Middle-Aged Japanese Men

    PubMed Central

    Yokokawa, Hirohide; Naito, Toshio; Sasabe, Noriko; Okumura, Mitsue; Iijima, Kimiko; Shibuya, Katsuhiko; Hisaoka, Teruhiko; Fukuda, Hiroshi

    2016-01-01

    Background Most studies on the relationships between metabolic disorders (hypertension, dyslipidemia, and impaired glucose tolerance) and hepatic steatosis (HS) or visceral fat accumulation (VFA) have been cross-sectional, and thus, these relationships remain unclear. We conducted a retrospective cohort study to clarify the relationships between components of metabolic disorders and HS/VFA. Methods The participants were 615 middle-aged men who were free from serious liver disorders, diabetes, and HS/VFA and underwent multiple general health check-ups at our institution between 2009 and 2013. The data from the initial and final check-ups were used. HS and VFA were assessed by computed tomography. HS was defined as a liver to spleen attenuation ratio of ≤1.0. VFA was defined as a visceral fat cross-sectional area of ≥100 cm2 at the level of the navel. Metabolic disorders were defined using Japan’s metabolic syndrome diagnostic criteria. The participants were divided into four groups based on the presence (+) or absence (-) of HS/VFA. The onset rates of each metabolic disorder were compared among the four groups. Results Among the participants, 521, 55, 24, and 15 were classified as HS(-)/VFA(-), HS(-)/VFA(+), HS(+)/VFA(-), and HS(+)/VFA(+), respectively, at the end of the study. Impaired glucose tolerance was more common among the participants that exhibited HS or VFA (p = 0.05). On the other hand, dyslipidemia was more common among the participants that displayed VFA (p = 0.01). Conclusions It is likely that VFA is associated with impaired glucose tolerance and dyslipidemia, while HS might be associated with impaired glucose tolerance. Unfortunately, our study failed to detect associations between HS/VFA and metabolic disorders due to the low number of subjects that exhibited fat accumulation. Although our observational study had major limitations, we consider that it obtained some interesting results. HS and VFA might affect different metabolic disorders

  7. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To determine the effects of hops extract, on in vitro volatile fatty acid (VFA) production by bovine rumen microorganisms. Methods and Results: When mixed rumen microbes were suspended in media containing carbohydrates, the initial rates of VFA production were suppressed by beta-acid rich hops...

  8. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses

    PubMed Central

    Campa, Claudine; Mondolot, Laurence; Rakotondravao, Arsene; Bidel, Luc P. R.; Gargadennec, Annick; Couturon, Emmanuel; La Fisca, Philippe; Rakotomalala, Jean-Jacques; Jay-Allemand, Christian; Davis, Aaron P.

    2012-01-01

    Background and Aims The phenolic composition of Coffea leaves has barely been studied, and therefore this study conducts the first detailed survey, focusing on mangiferin and hydroxycinnamic acid esters (HCEs). Methods Using HPLC, including a new technique allowing quantification of feruloylquinic acid together with mangiferin, and histochemical methods, mangiferin content and tissue localization were compared in leaves and fruits of C. pseudozanguebariae, C. arabica and C. canephora. The HCE and mangiferin content of leaves was evaluated for 23 species native to Africa or Madagascar. Using various statistical methods, data were assessed in relation to distribution, ecology, phylogeny and use. Key Results Seven of the 23 species accumulated mangiferin in their leaves. Mangiferin leaf-accumulating species also contain mangiferin in the fruits, but only in the outer (sporophytic) parts. In both leaves and fruit, mangiferin accumulation decreases with ageing. A relationship between mangiferin accumulation and UV levels is posited, owing to localization with photosynthetic tissues, and systematic distribution in high altitude clades and species with high altitude representatives. Analyses of mangiferin and HCE content showed that there are significant differences between species, and that samples can be grouped into species, with few exceptions. These data also provide independent support for various Coffea lineages, as proposed by molecular phylogenetic analyses. Sampling of the hybrids C. arabica and C. heterocalyx cf. indicates that mangiferin and HCE accumulation may be under independent parental influence. Conclusions This survey of the phenolic composition in Coffea leaves shows that mangiferin and HCE accumulation corresponds to lineage recognition and species delimitation, respectively. Knowledge of the spectrum of phenolic accumulation within species and populations could be of considerable significance for adaptation to specific environments. The potential

  9. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants.

    PubMed

    Liang, Xiaofei; Liberti, Daniele; Li, Moyi; Kim, Young-Tae; Hutchens, Andrew; Wilson, Ron; Rollins, Jeffrey A

    2015-08-01

    The oxaloacetate acetylhydrolase (OAH, EC 3.7.1.1)-encoding gene Ss-oah1 was cloned and functionally characterized from Sclerotinia sclerotiorum. Ss-oah1 transcript accumulation mirrored oxalic acid (OA) accumulation with neutral pH induction dependent on the pH-responsive transcriptional regulator Ss-Pac1. Unlike previously characterized ultraviolet (UV)-induced oxalate-deficient mutants ('A' mutants) which retain the capacity to accumulate OA, gene deletion Δss-oah1 mutants did not accumulate OA in culture or during plant infection. This defect in OA accumulation was fully restored on reintroduction of the wild-type (WT) Ss-oah1 gene. The Δss-oah1 mutants were also deficient in compound appressorium and sclerotium development and exhibited a severe radial growth defect on medium buffered at neutral pH. On a variety of plant hosts, the Δss-oah1 mutants established very restricted lesions in which the infectious hyphae gradually lost viability. Cytological comparisons of WT and Δss-oah1 infections revealed low and no OA accumulation, respectively, in subcuticular hyphae. Both WT and mutant hyphae exhibited a transient association with viable host epidermal cells at the infection front. In summary, our experimental data establish a critical requirement for OAH activity in S. sclerotiorum OA biogenesis and pathogenesis, but also suggest that factors independent of OA contribute to the establishment of primary lesions. PMID:25285668

  10. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-04-01

    Effect of prey feeding (ants Formica fusca) on the quantitative changes in the accumulation of free amino acids, soluble proteins, phenolic metabolites and mineral nutrients in the leaves of carnivorous plant Drosera capensis was studied. Arginine was the most abundant compound in Drosera leaves, while proline was abundant in ants. The amount of the majority of amino acids and their sum were elevated in the fed leaves after 3 and 21 days, and the same, but with further enhancement after 21 days, was observed in ants. Accumulation of amino acids also increased in young non-fed leaves of fed plants. Soluble proteins decreased in ants, but were not enhanced in fed leaves. This confirms the effectiveness of sundew's enzymatic machinery in digestion of prey and suggests that amino acids are not in situ deposited, but rather are allocated within the plant. The content of total soluble phenols, flavonoids and two selected flavonols (quercetin and kaempferol) was not affected by feeding in Drosera leaves, indicating that their high basal level was sufficient for the plant's metabolism and prey-induced changes were mainly N based. The prey also showed to be an important source of other nutrients besides N, and a stimulation of root uptake of some mineral nutrients is assumed (Mg, Cu, Zn). Accumulation of Ca and Na was not affected by feeding. PMID:21140278

  11. Molecular cloning and characterization of tyrosine aminotransferase and hydroxyphenylpyruvate reductase, and rosmarinic acid accumulation in Scutellaria baicalensis.

    PubMed

    Kim, Yeon Bok; Uddina, Md Romij; Kim, YeJi; Park, Chun Geon; Park, Sang Un

    2014-09-01

    Rosmarinic acid (a-O-caffeoyl-3,4-dihydroxyphenylacetic acid, RA) is a caffeoyl ester widely distributed in plants. cDNA clones encoding tyrosine aminotransferase (TAT1 and 2) and hydroxyphenylpyruvate reductase (HPPR) have been isolated from Scutellaria baicalensis. The open reading frames (ORFs) of SbTAT1 and 2 were 1230 and 1272 bp long and encoded 409 and 423 amino acid residues, respectively. HPPR corresponded to a 942-bp ORF and 313 amino acid residues of translated protein. To study the molecular mechanisms of TAT and HPPR and investigate RA accumulation in S. baicalensis, we examined the transcript levels of TAT isoforms and HPPR with quantitative real-time PCR and analyzed the RA content in different organs by using high-performance liquid chromatography. The transcript levels of SbTATI SbTAT2, and SbHPPR in the flowers were higher than those in other organs. RA was also highly accumulated in the flowers and with a trace amount in the roots. No RA was detected in the leaves and stems of S. baicalensis. The amount of accumulated RA in the flowers was 28.7 times higher than that in the roots. Our results will be helpful in elucidating the mechanisms of RA biosynthesis in S. baicalensis. PMID:25918800

  12. Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass.

    PubMed

    Cerrone, Federico; Choudhari, Santosh K; Davis, Reeta; Cysneiros, Denise; O'Flaherty, Vincent; Duane, Gearoid; Casey, Eoin; Guzik, Maciej W; Kenny, Shane T; Babu, Ramesh P; O'Connor, Kevin

    2014-01-01

    A two step biological process for the conversion of grass biomass to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) was achieved through the use of anaerobic and aerobic microbial processes. Anaerobic digestion (mixed culture) of ensiled grass was achieved with a recirculated leach bed bioreactor resulting in the production of a leachate, containing 15.3 g/l of volatile fatty acids (VFAs) ranging from acetic to valeric acid with butyric acid predominating (12.8 g/l). The VFA mixture was concentrated to 732.5 g/l with a 93.3 % yield of butyric acid (643.9 g/l). Three individual Pseudomonas putida strains, KT2440, CA-3 and GO16 (single pure cultures), differed in their ability to grow and accumulate PHA from VFAs. P. putida CA-3 achieved the highest biomass and PHA on average with individual fatty acids, exhibited the greatest tolerance to higher concentrations of butyric acid (up to 40 mM) compared to the other strains and exhibited a maximum growth rate (μMAX = 0.45 h⁻¹). Based on these observations P. putida CA-3 was chosen as the test strain with the concentrated VFA mixture derived from the AD leachate. P. putida CA-3 achieved 1.56 g of biomass/l and accumulated 39 % of the cell dry weight as PHA (nitrogen limitation) in shake flasks. The PHA was composed predominantly of 3-hydroxydecanoic acid (>65 mol%). PMID:24162086

  13. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas. PMID:21608265

  14. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae. PMID:25129521

  15. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  16. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  17. Growth and palmitoleic acid accumulation of filamentous oleaginous microalgae Tribonema minus at varying temperatures and light regimes.

    PubMed

    Wang, Hui; Gao, Lili; Zhou, Wenjun; Liu, Tianzhong

    2016-10-01

    Palmitoleic acid (C16:1Δ9), contributes greatly to human health, industrial chemicals and biodiesel. The filamentous oleaginous microalgae Tribonema sp. has been identified as a highly efficient producer of palmitoleic acid. Temperature and light regime were adapted to regulate the palmitoleic acid content in this study. Strain T. minus was able to grow well at all the tested temperatures, even at 5 °C. The optimum temperature for palmitoleic acid accumulation (54.25 % of total fatty acid) was 25 °C. Moreover, both light intensity and photoperiod affect the growth, lipid content and fatty acid files of T. minus. The culture exposed to 240 μmol photons m(-2) s(-1) with a photoperiod of 24:0 showed the highest biomass (6.87 g L(-1)) and biggest lipid content (61.27 % of dry weight), whereas the most amount of palmitoleic acid (50.47 % of total fatty acid) was detected at 120 μmol photons m(-2) s(-1). These findings make tangible contributions to culture T. minus for commercial production of lipid or palmitoleic acid. PMID:27250652

  18. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation.

    PubMed

    Miura, Kenji; Ohta, Masaru

    2010-05-01

    Low temperature induces several genes to acquire plant cold tolerance. Here, we demonstrate that accumulation of salicylic acid (SA) is involved in the regulation of the DREB1A/CBF3 regulon and plant tolerance to cold stresses. The SA-accumulating mutant siz1 exhibits sensitivity to chilling and freezing conditions and decreased expression of DREB1A/CBF3 and its regulon genes. Reduction of SA levels in siz1 by nahG restored cold sensitivity and down-regulation of these genes. Database analyses and RT-PCR analysis revealed that the ice1 mutation also increased expression of SA-responsive genes. As well as siz1, another SA-accumulating mutant acd6 exhibited freezing sensitivity and the sensitivity was suppressed in acd6 nahG plants. Taken together, these data indicate that SA is involved in regulation of cold signaling. PMID:19959255

  19. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge. PMID:26092200

  20. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination. PMID:26868552

  1. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants.

    PubMed

    Hawrylak-Nowak, Barbara; Dresler, Sławomir; Matraszek, Renata

    2015-09-01

    There is increasing evidence showing that low molecular weight organic acids (LMWOA) are involved in heavy metal resistance mechanisms in plants. The aim of this study was to investigate the effects of exogenous malic (MA) or acetic (AA) acids on the toxicity and accumulation of cadmium (Cd) in sunflower (Helianthus annuus L.). For this purpose, plants were grown in hydroponics under controlled conditions. Single Cd stress (5 μM Cd for 14 days) induced strong phytotoxic effects, as indicated by a decrease in all growth parameters, concentration of photosynthetic pigments, and root activity, as well as a high level of hydrogen peroxide (H2O2) accumulation. Exogenous MA or AA (250 or 500 μM) applied to the Cd-containing medium enhanced the accumulation of Cd by the roots and limited Cd translocation to the shoots. Moreover, the MA or AA applied more or less reduced Cd phytotoxicity by increasing the growth parameters, photosynthetic pigment concentrations, decreasing accumulation of H2O2, and improving the root activity. Of the studied organic acids, MA was much more efficient in mitigation of Cd toxicity than AA, probably by its antioxidant effects, which were stronger than those of AA. Plant response to Cd involved decreased production of endogenous LMWOA, probably as a consequence of severe Cd toxicity. The addition of MA or AA to the medium increased endogenous accumulation of LMWOA, especially in the roots, which could be beneficial for plant metabolism. These results imply that especially MA may be involved in the processes of Cd uptake, translocation, and tolerance in plants. PMID:26115548

  2. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol.

    PubMed

    Afitlhile, Meshack; Workman, Samantha; Duffield, Kayla; Sprout, Danielle; Berhow, Mark

    2013-12-01

    Previous studies have shown that a mutant of Arabidopsis that lacks the Toc159 receptor is impaired in chloroplast biogenesis. The mutant is referred as plastid protein import 2 or ppi2 and has an albino phenotype due to its inability to import the photosynthetic proteins. In this study, we measured fatty acid composition and transcript levels of plastid-localized fatty acid desaturases in the wild type and ppi2 mutant. The objective was to evaluate whether the Toc159 receptor was critical in the import of lipid-synthesizing enzymes. The ppi2 mutant accumulated decreased levels of oleic acid (18:1) and α-linolenic acid (18:3). The mutant accumulated drastically reduced amounts of the chloroplast lipid monogalactosyldiacylglycerol (MGDG), which contains more than 80% of 18:3. The expression of genes that encode stearoyl-ACP desaturase and MGD1 synthase were down-regulated in the ppi2 mutant, and this corresponded to decreased levels of 18:1 and MGDG, respectively. We conclude that in the ppi2 mutant the impaired synthesis of MGDG resulted in decreased amounts of 18:3. The mutant however, had a 30-fold increase in fad5 transcript levels; this increase was mirrored by a 16- to 50-fold accumulation of hexadecatrienoic acid (16:3), a fatty acid found exclusively in MGDG. Taken together, these data suggest that the Toc159 receptor is required in the import of stearoyl-ACP desaturase and MGD1 synthase into the chloroplasts. Since the expression of fad5 gene was up-regulated in the ppi2 mutant, we propose that fad5 desaturase is imported into plastids through the atToc132/atToc120 protein import pathway. PMID:24184455

  3. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition. PMID:20096564

  4. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    PubMed

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways. PMID:26343778

  5. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids.

    PubMed

    Wójcik, Małgorzata; Dresler, Sławomir; Plak, Andrzej; Tukiendorf, Anna

    2015-05-01

    Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment. PMID:25510617

  6. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins.

    PubMed

    Tripathi, Rudra Deo; Singh, Ragini; Tripathi, Preeti; Dwivedi, Sanjay; Chauhan, Reshu; Adhikari, Bijan; Trivedi, Prabodh Kumar

    2014-12-01

    Arsenic (As) accumulation and tolerance response of a submerged rootless macrophyte Najas indica were evaluated during arsenate (As(V); 10-250 μM) and arsenite (As(III); 1-50 μM) exposure. Higher As accumulation at As(III) exposure and more tolerance upon As(V) exposure resulted in more toxicity during As(III) stress than As(V), which was evident through measurement of growth parameters and oxidative stress related parameters viz., lipid peroxidation (MDA content), electrical conductivity (EC) and hydrogen peroxide (H2O2) levels. Antioxidant enzymes and various amino acids were more prominent during moderate exposure of As(V), suggesting their possible role in As tolerance and detoxification. Various non-enzymatic antioxidant metabolites viz., ascorbic acid (ASC), glutathione (GSH), non-protein thiols (NPTs) and phytochelatins (PCs) biosynthesis involving phytochelatin synthase (PCS) activity increased more significantly during As(III) stress. However, PCs content seems inadequate in response to As accumulation leading to lower PC-SH:As molar ratio and higher As phytotoxicity during As(III) stress. N. indica may prove useful plant species for phytoremediation purpose in moderately As contaminated water bodies due to high As accumulation and tolerance potential. PMID:25456221

  7. The effect of intravenous insulin on accumulation of excitotoxic and other amino acids in the ischemic rat cerebral cortex.

    PubMed

    Guyot, L L; Diaz, F G; O'Regan, M H; Ren, J; Phillis, J W

    2000-07-01

    Insulin has been reported to be neuroprotective during cerebral ischemia/reperfusion. However, it may also increase the sensitivity of cultured cortical neurons to glutamate toxicity. The experiments described here utilized a rat four-vessel occlusion model with cerebral cortical windows to determine the effects of intravenous insulin, alone (I) or combined with glucose (IG) to maintain physiologic blood glucose levels, on the extracellular accumulation of amino acids in superfusates of the cerebral cortex. Aspartate, phosphoethanolamine, taurine and gamma-aminobutyric acid were increased in the I and IG groups and glutamate was increased in the IG group compared to controls during ischemia/reperfusion. Insulin treatment attenuated the rebound in cortical superfusate glucose levels in both groups of animals during reperfusion. The increases in amino acid release during reperfusion may be due to a lack of glycolytically derived energy available for amino acid uptake systems and ionic pumps. PMID:10869816

  8. Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab. ) (Decapoda, Crustacea) from an acidic and a neutral lake

    SciTech Connect

    Keenan, S.; Alikhan, M.A. )

    1991-07-01

    The purpose of the study reported in this paper was to compare concentrations of lead and cadmium in the sediment and water, as well as in the crayfish, Cambarus Bartoni (Fab.) (Decapoda - Crustacea) trapped from an acidic and a neutral lake in the Sudbury district of Northeastern Ontario. Hepatopancreatic, alimentary canal, tail muscles and exoskeletal concentrations in the crayfish are also examined to determine specific tissue sites for these accumulations.

  9. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    PubMed Central

    Mnasri, Mejda; Ghabriche, Rim; Fourati, Emna; Zaier, Hanen; Sabally, Kebba; Barrington, Suzelle; Lutts, Stanley; Abdelly, Chedly; Ghnaya, Tahar

    2015-01-01

    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. PMID:25821455

  10. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes.

    PubMed

    Mnasri, Mejda; Ghabriche, Rim; Fourati, Emna; Zaier, Hanen; Sabally, Kebba; Barrington, Suzelle; Lutts, Stanley; Abdelly, Chedly; Ghnaya, Tahar

    2015-01-01

    The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species. PMID:25821455

  11. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals.

    PubMed

    Gauthier, Léa; Bonnin-Verdal, Marie-Noelle; Marchegay, Gisèle; Pinson-Gadais, Laetitia; Ducos, Christine; Richard-Forget, Florence; Atanasova-Penichon, Vessela

    2016-03-16

    Fusarium Head Blight and Gibberella Ear Rot, mainly caused by the fungi Fusarium graminearum and Fusarium culmorum, are two of the most devastating diseases of small-grain cereals and maize. In addition to yield loss, these diseases frequently result in contamination of kernels with toxic type B trichothecenes. The potential involvement of chlorogenic acid in cereal resistance to Fusarium Head Blight and Gibberella Ear Rot and to trichothecene accumulation was the focus of this study. The effects of chlorogenic acid and one of its hydrolyzed products, caffeic acid, on fungal growth and type B trichothecenes biosynthesis were studied using concentrations close to physiological amounts quantified in kernels and a set of F. graminearum and F. culmorum strains. Both chlorogenic and caffeic acids negatively impact fungal growth and mycotoxin production, with caffeic acid being significantly more toxic. Inhibitory efficiencies of both phenolic acids were strain-dependent. To further investigate the antifungal and anti "mycotoxin" effect of chlorogenic and caffeic acids, the metabolic fate of these two phenolic acids was characterized in supplemented F. graminearum broths. For the first time, our results demonstrated the ability of F. graminearum to degrade chlorogenic acid into caffeic, hydroxychlorogenic and protocatechuic acids and caffeic acid into protocatechuic and hydroxycaffeic acids. Some of these metabolic products can contribute to the inhibitory efficiency of chlorogenic acid that, therefore, can be compared as a "pro-drug". As a whole, our data corroborate the contribution of chlorogenic acid to the chemical defense that cereals employ to counteract F. graminearum and its production of mycotoxins. PMID:26812586

  12. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    PubMed

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS. PMID:19603670

  13. Influence of Volatile Fatty Acids on Nitrite Accumulation by a Pseudomonas stutzeri Strain Isolated from a Denitrifying Fluidized Bed Reactor

    PubMed Central

    van Rijn, J.; Tal, Y.; Barak, Y.

    1996-01-01

    Intermediate nitrite accumulation during denitrification by Pseudomonas stutzeri isolated from a denitrifying fluidized bed reactor was examined in the presence of different volatile fatty acids. Nitrite accumulated when acetate or propionate served as the carbon and electron source but did not accumulate in the presence of butyrate, valerate, or caproate. Nitrite accumulation in the presence of acetate was caused by differences in the rates of nitrate and nitrite reduction and, in addition, by competition between nitrate and nitrite reduction pathways for electrons. Incubation of the cells with butyrate resulted in a slower nitrate reduction rate and a faster nitrite reduction rate than incubation with acetate. Whereas nitrate inhibited the nitrite reduction rate in the presence of acetate, no such inhibition was found in butyrate-supplemented cells. Cytochromes b and c were found to mediate electron transport during nitrate reduction by the cells. Cytochrome c was reduced via a different pathway when nitrite-reducing cells were incubated with acetate than when they were incubated with butyrate. Furthermore, addition of antimycin A to nitrite-reducing cells resulted in partial inhibition of electron transport to cytochrome c in acetate-supplemented cells but not in butyrate-supplemented cells. On the basis of these findings, we propose that differences in intermediate nitrite accumulation are caused by differences in electron flow to nitrate and nitrite reductases during oxidation of either acetate or butyrate. PMID:16535368

  14. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  15. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    PubMed

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  16. The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis

    PubMed Central

    Nilsson, Anders K.; Fahlberg, Per; Johansson, Oskar N.; Hamberg, Mats; Andersson, Mats X.; Ellerström, Mats

    2016-01-01

    Arabidopsis produces galactolipids containing esters of 12-oxo-phytodienoic acid (OPDA) and dinor-12-oxo-phytodienoic acid (dnOPDA). These lipids are referred to as arabidopsides and accumulate in response to abiotic and biotic stress. We explored the natural genetic variation found in 14 different Arabidopsis accessions to identify genes involved in the formation of arabidopsides. The accession C24 was identified as a poor accumulator of arabidopsides whereas the commonly used accession Col-0 was found to accumulate comparably large amounts of arabidopsides in response to tissue damage. A quantitative trait loci analysis of an F2 population created from a cross between C24 and Col-0 located a region on chromosome four strongly linked to the capacity to form arabidopsides. Expression analysis of HYDROPEROXIDE LYASE 1 (HPL1) showed large differences in transcript abundance between accessions. Transformation of Col-0 plants with the C24 HPL1 allele under transcriptional regulation of the 35S promoter revealed a strong negative correlation between HPL1 expression and arabidopside accumulation after tissue damage, thereby strengthening the view that HPL1 competes with ALLENE OXIDE SYNTHASE (AOS) for lipid-bound hydroperoxide fatty acids. We further show that the last step in the synthesis of galactolipid-bound OPDA and dnOPDA from unstable allene oxides is exclusively enzyme-catalyzed and not the result of spontaneous cyclization. Thus, the results presented here together with previous studies suggest that all steps in arabidopside biosynthesis are enzyme-dependent and apparently all reactions can take place with substrates being esterified to galactolipids. PMID:27422994

  17. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  18. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids.

    PubMed

    Gandhi, S D; Kishore, V K; Crane, J M; Slabaugh, M B; Knapp, S J

    2009-06-01

    Erucic acid (22:1(13)) has been identified as an anti-nutritional compound in meadowfoam (Limnanthes alba) and other oilseeds in the Brassicales, a classification which has necessitated the development of low erucic acid cultivars for human consumption. The erucic acid concentrations of meadowfoam wild types (8%-24%) surpass industry standards for human consumption (acid lines and identify loci affecting the accumulation of 22:1(13) and other very long-chain fatty acids (VLCFAs) in meadowfoam seed storage lipids. LE76, a low erucic acid line, was developed by 3 cycles of selection in an ethyl methanesulfonate-treated wildtype population. LE76 produced 3% 22:1(13), threefold less than the M0 population. Wildtype x LE76 F2 populations produced continuous, approximately normal erucic and dienoic acid distributions. Loss-of-function mutations apparently did not segregate and individuals with low 22:1(13) concentrations (acid F2 progeny. Composite interval mapping identified 3 moderately large-effect erucic acid QTL. The low erucic acid parent transmitted favorable alleles for 2 of 3 QTL, suggesting low erucic acid cultivars can be developed by combining favorable alleles transmitted by wildtype and low erucic acid parents. PMID:19483773

  19. Identification of albumin-bound fatty acids as the major factor in serum-induced lipid accumulation by cultured cells.

    PubMed

    Mackenzie, C G; Mackenzie, J B; Reiss, O K; Wisneski, J A

    1970-11-01

    Factors responsible for the high lipogenic activity of rabbit serum were investigated using an assay procedure based on the gravimetric determination of the 24 hr increase in cell lipid. Cellular synthesis of fatty acids was inhibited by the presence of serum in the assay medium. Approximately 90% of the increase in cell lipid produced by serum fractions was due to triglyceride accumulation. Fractionation of rabbit serum by precipitation with ammonium sulfate or by ultracentrifugation in high density medium, both indicated that three-quarters of its lipogenic activity was associated with albumin. The lipoproteins prepared by ultracentrifugation also exhibited about one-half the activity of whole serum. The lipogenic activity of albumin was confirmed by the high potency of the albumin isolated in a nearly pure form from proteins of d>1.21 by precipitation with trichloroacetic acid and extraction with ethanol. As judged from chemical and isotopic analysis, neither the lipid content nor the lipid composition of the albumin was appreciably altered during its isolation. Of the albumin-bound lipids, only the free fatty acids, as determined by DEAE column chromatography, were present in an amount sufficient to account for the observed increase in cell triglycerides. In control experiments with horse serum of low lipogenic activity, the proteins of d>1.21 also possessed low activity in conjunction with a low content of free fatty acid. However, the albumin isolated from the latter preparation exhibited the high lipogenic activity of rabbit serum albumin. Chemical and isotopic analysis of the recovered horse serum albumin revealed that its free fatty acid content was the same as that of rabbit serum albumin. These results indicated that the isolation of horse serum albumin was attended by a substantial increase in its free fatty acid content. When the rabbit serum and horse serum content of media were adjusted to provide equivalent concentrations of albumin-bound fatty

  20. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants.

    PubMed

    Galili, Gad; Amir, Rachel; Fernie, Alisdair R

    2016-04-29

    Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants. PMID:26735064

  1. ISOLATED MEDICAGO TRUNCATULA MUTANTS WITH INCREASED CALCIUM OXALATE CRYSTAL ACCUMULATION HAVE DECREASED ASCORBIC ACID LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms controlling oxalate biosynthesis and calcium oxalate formation in plants remains largely unknown. As an initial step toward gaining insight into these regulatory mechanisms we initiated a mutant screen to identify plants that over-accumulate crystals of calcium oxalate. Four new mut...

  2. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  3. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice

    PubMed Central

    Schweitzer, George G.; Chen, Zhouji; Gan, Connie; McCommis, Kyle S.; Soufi, Nisreen; Chrast, Roman; Mitra, Mayurranjan S.; Yang, Kui; Gross, Richard W.; Finck, Brian N.

    2015-01-01

    Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1−/− mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1−/− mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1−/− mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1−/− mice were not protected from intrahepatic accumulation of diacylglyerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload. PMID:25722343

  4. Sex Differences in the Association between the Eicosapentaenoic Acid/Arachidonic Acid Ratio and the Visceral Fat Area among Patients with Type 2 Diabetes.

    PubMed

    Nakanishi, Shuhei; Nagano, Chihiro; Miyahara, Mitsue; Sawano, Fumio

    2016-01-01

    Objective To examine the serum levels of eicosapentaenoic acid (EPA) and the ratios of docosahexaenoic acid (DHA), and the EPA/arachidonic acid (AA) and DHA/AA and to clarify their association with the areas of subcutaneous and visceral fat separately by sex among patients with type 2 diabetes. Methods The study participants included 118 men and 96 women who were hospitalized to receive treatment for type 2 diabetes. We examined the serum levels of EPA and DHA and the ratios of EPA/AA and DHA/AA, and analyzed their association with the total fat area (TFA), subcutaneous fat area (SFA), and visceral fat area (VFA), as measured by computed tomography. Results The mean age of the study participants was 62.6±13.6 years. The mean HbA1c level was 9.37±2.27%. Among men, a multivariate regression analysis adjusted for age and BMI, revealed a significant negative association between VFA and the EPA/AA ratio. When the multivariate regression analysis was adjusted for age, BMI, and HbA1c level, VFA was still found to be significantly negatively associated with the EPA/AA ratio. Although a crude analysis revealed a significant negative association between SFA and the EPA/AA ratio in women, no association was observed in multivariate regression analyses. Conclusion These results suggest the possibility that EPA inhibits the accumulation of visceral fat in men. Furthermore, there appear to be marked differences in the relationships between EPA and DHA and visceral fat accumulation. PMID:27181531

  5. Some things get better with age: differences in salicylic acid accumulation and defense signaling in young and mature Arabidopsis

    PubMed Central

    Carella, Philip; Wilson, Daniel C.; Cameron, Robin K.

    2015-01-01

    In Arabidopsis, much of what we know about the phytohormone salicylic acid (SA) and its role in plant defense comes from experiments using young plants. We are interested in understanding why young plants are susceptible to virulent strains of Pseudomonas syringae, while mature plants exhibit a robust defense response known as age-related resistance (ARR). SA-mediated signaling is important for defense in young plants, however, ARR occurs independently of the defense regulators NPR1 and WHY1. Furthermore, intercellular SA accumulation is an important component of ARR, and intercellular washing fluids from ARR-competent plants exhibit antibacterial activity, suggesting that SA acts as an antimicrobial agent in the intercellular space. Young plants accumulate both intracellular and intercellular SA during PAMP- and effector-triggered immunity, however, virulent P. syringae promotes susceptibility by suppressing SA accumulation using the phytotoxin coronatine. Here we outline the hypothesis that mature, ARR-competent Arabidopsis alleviates coronatine-mediated suppression of SA accumulation. We also explore the role of SA in other mature-plant processes such as flowering and senescence, and discuss their potential impact on ARR. PMID:25620972

  6. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4.

    PubMed

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H(+) transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties 'Ordinary Ponkan (OPK)' and an early maturing mutant 'Zaoshu Ponkan (ZPK)'. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  7. In vitro fatty acid enrichment of macrophages alters inflammatory response and net cholesterol accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary omega (omega)-3 polyunsaturated fatty acids (PUFA) and omega–6 PUFA are thought to have unique benefits with respect to cardiovascular disease. Macrophages (M phi) differentiated from human monocytic cell line THP-1 were used to assess the effect of omega-3 PUFA (eicosapentaenoic acid [EPA]...

  8. Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae.

    PubMed

    Kobayashi, Yuki; Tanaka, Kan

    2016-01-01

    Abscisic acid (ABA), a pivotal phytohormone that is synthesized in response to abiotic stresses and other environmental changes, induces various physiological responses. Heme, in its unbound form, has a positive signaling role in cell-cycle initiation in Cyanidioschyzon merolae. ABA induces heme accumulation, but also prevents cell-cycle initiation through the titration of the unbound heme by inducing the heme scavenging protein tryptophan-rich sensory protein-related protein O. In this study, we analyzed the accumulation of tetrapyrrole biosynthetic gene transcripts after the addition of ABA to the medium and found that transcripts of a ferrochelatase and a magnesium-chelatase subunit increased, while other examined transcripts decreased. Under the same conditions, the heme and magnesium-protoporphyrin IX contents increased, while the protoporphyrin IX content decreased. Thus, ABA may regulate the intracellular heme and other tetrapyrrole contents through the transcriptional regulation of biosynthetic genes. PMID:27621743

  9. Transcriptional Regulation of Tetrapyrrole Biosynthetic Genes Explains Abscisic Acid-Induced Heme Accumulation in the Unicellular Red Alga Cyanidioschyzon merolae

    PubMed Central

    Kobayashi, Yuki; Tanaka, Kan

    2016-01-01

    Abscisic acid (ABA), a pivotal phytohormone that is synthesized in response to abiotic stresses and other environmental changes, induces various physiological responses. Heme, in its unbound form, has a positive signaling role in cell-cycle initiation in Cyanidioschyzon merolae. ABA induces heme accumulation, but also prevents cell-cycle initiation through the titration of the unbound heme by inducing the heme scavenging protein tryptophan-rich sensory protein-related protein O. In this study, we analyzed the accumulation of tetrapyrrole biosynthetic gene transcripts after the addition of ABA to the medium and found that transcripts of a ferrochelatase and a magnesium-chelatase subunit increased, while other examined transcripts decreased. Under the same conditions, the heme and magnesium-protoporphyrin IX contents increased, while the protoporphyrin IX content decreased. Thus, ABA may regulate the intracellular heme and other tetrapyrrole contents through the transcriptional regulation of biosynthetic genes. PMID:27621743

  10. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets

    PubMed Central

    2012-01-01

    Background Jasmonic acid (JA) is a well-characterized signaling molecule in plant defense responses. However, its relationships with other signal molecules in secondary metabolite production induced by endophytic fungus are largely unknown. Atractylodes lancea (Asteraceae) is a traditional Chinese medicinal plant that produces antimicrobial volatiles oils. We incubated plantlets of A. lancea with the fungus Gilmaniella sp. AL12. to research how JA interacted with other signal molecules in volatile oil production. Results Fungal inoculation increased JA generation and volatile oil accumulation. To investigate whether JA is required for volatile oil production, plantlets were treated with JA inhibitors ibuprofen (IBU) and nordihydroguaiaretic acid. The inhibitors suppressed both JA and volatile oil production, but fungal inoculation could still induce volatile oils. Plantlets were further treated with the nitric oxide (NO)-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the H2O2 inhibitors diphenylene iodonium (DPI) and catalase (CAT), and the salicylic acid (SA) biosynthesis inhibitors paclobutrazol and 2-aminoindan-2-phosphonic acid. With fungal inoculation, IBU did not inhibit NO production, and JA generation was significantly suppressed by cPTIO, showing that JA may act as a downstream signal of the NO pathway. Exogenous H2O2 could reverse the inhibitory effects of cPTIO on JA generation, indicating that NO mediates JA induction by the fungus through H2O2-dependent pathways. With fungal inoculation, the H2O2 scavenger DPI/CAT could inhibit JA generation, but IBU could not inhibit H2O2 production, implying that H2O2 directly mediated JA generation. Finally, JA generation was enhanced when SA production was suppressed, and vice versa. Conclusions Jasmonic acid acts as a downstream signaling molecule in NO- and H2O2-mediated volatile oil accumulation induced by endophytic fungus and has a complementary

  11. Fatty acid transport protein-2 inhibitor Grassofermata/CB5 protects cells against lipid accumulation and toxicity

    SciTech Connect

    Saini, Nipun; Black, Paul N.; Montefusco, David; DiRusso, Concetta C.

    2015-09-25

    The inhibition of the fatty acid uptake into non-adipose tissues provides an attractive target for prevention of lipotoxicity leading to obesity-associated non-alcoholic fatty liver disease and type 2 diabetes. Fatty acid transport proteins (FATPs) are bifunctional proteins involved in the uptake and activation of fatty acids by esterification with coenzyme A. Here we characterize Grassofermata/CB5, previously identified as a fatty acid uptake inhibitor directed against HsFATP2. The compound was effective in inhibiting the uptake of fatty acids in the low micro-molar range (IC{sub 50} 8–11 μM) and prevented palmitate-mediated lipid accumulation and cell death in cell lines that are models for intestines, liver, muscle and pancreas. In adipocytes, uptake inhibition was less effective (IC{sub 50} 58 μM). Inhibition was specific for long chain fatty acids and was ineffective toward medium chain fatty acids, which are transported by diffusion. Kinetic analysis of Grassofermata-dependent FA transport inhibition verified a non-competitive mechanism. By comparison with Grassofermata, several atypical antipsychotic drugs previously implicated as inhibitors of FA uptake were ineffectual. In mice Grassofermata decreased absorption of {sup 13}C-oleate demonstrating its potential as a therapeutic agent. - Highlights: • Grassofermata is a small compound inhibitor of FATP2. • Uptake inhibition is specific for long chain fatty acids. • Uptake kinetics shows low specificity for adipocytes compared to other cell types. • Inhibition is by a non-competitive mechanism. • Atypical antipsychotics do not inhibit FA uptake by comparison with Grassofermata.

  12. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury.

    PubMed

    Begum, Gulnaz; Yan, Hong Q; Li, Liaoliao; Singh, Amneet; Dixon, C Edward; Sun, Dandan

    2014-03-01

    In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits. PMID:24599472

  13. Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice.

    PubMed

    Martin, Gregory G; Atshaves, Barbara P; McIntosh, Avery L; Mackie, John T; Kier, Ann B; Schroeder, Friedhelm

    2006-01-01

    Although liver fatty acid binding protein (L-FABP) is postulated to influence cholesterol homeostasis, the physiological significance of this hypothesis remains to be resolved. This issue was addressed by examining the response of young (7 wk) female mice to L-FABP gene ablation and a cholesterol-rich diet. In control-fed mice, L-FABP gene ablation alone induced hepatic cholesterol accumulation (2.6-fold), increased bile acid levels, and increased body weight gain (primarily as fat tissue mass). In cholesterol-fed mice, L-FABP gene ablation further enhanced the hepatic accumulation of cholesterol (especially cholesterol ester, 12-fold) and potentiated the effects of dietary cholesterol on increased body weight gain, again mainly as fat tissue mass. However, in contrast to the effects of L-FABP gene ablation in control-fed mice, biliary levels of bile acids (as well as cholesterol and phospholipids) were reduced. These phenotypic alterations were not associated with differences in food intake. In conclusion, it was shown for the first time that L-FABP altered cholesterol metabolism and the response of female mice to dietary cholesterol. While the biliary and lipid phenotype of female wild-type L-FABP+/+ mice was sensitive to dietary cholesterol, L-FABP gene ablation dramatically enhanced many of the effects of dietary cholesterol to greatly induce hepatic cholesterol (primarily cholesterol ester) and triacylglycerol accumulation as well as to potentiate body weight gain (primarily as fat tissue mass). Taken together, these data support the hypothesis that L-FABP is involved in the physiological regulation of cholesterol metabolism, body weight gain, and obesity. PMID:16123197

  14. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds.

    PubMed

    Zhao, Na; Zhang, Yuan; Li, Qiuqi; Li, Rufang; Xia, Xinli; Qin, Xiaowei; Guo, Huihong

    2015-02-01

    Xanthoceras sorbifolia Bunge is an oilseed tree that grows well on barren lands in dry climate. Its seeds contain a large amount of oil rich in oleic acid (18:1(Δ9)) and linoleic acid (18:2(Δ9, 12)). However, the molecular regulation of oil biosynthesis in X. sorbifolia seeds is poorly understood. Stearoyl-ACP desaturase (SAD, EC 1.14.99.6) is a plastid-localized soluble desaturase that catalyzes the conversion of stearic acid (18:0) to oleic acid, which plays a key role in determining the ratio of saturated to unsaturated fatty acids. In this study, a full-length cDNA of XsSAD was isolated from developing X. sorbifolia embryos. The XsSAD open reading frame had 1194-bp, encoding a polypeptide of 397 amino acids. XsSAD expression in Escherichia coli cells resulted in increased 18:1(Δ9) level, confirming the biological activity of the enzyme encoded by XsSAD. XsSAD expression in Arabidopsis ssi2 mutants partially restored the morphological phenotype and effectively increased the 18:1(Δ9) level. The levels of other unsaturated fatty acids synthesized with 18:1(Δ9) as the substrate also increased to some degree. XsSAD in X. sorbifolia had a much higher expression in embryos than in leaves and petals. XsSAD expression also correlated well with the oleic acid, unsaturated fatty acid, and total fatty acid levels in developing embryos. These data suggested that XsSAD determined the synthesis of oleic acid and contributed to the accumulation of unsaturated fatty acid and total oil in X. sorbifolia seeds. A preliminary tobacco rattle virus-based virus-induced gene silencing system established in X. sorbifolia can also be helpful for further analyzing the functions of XsSAD and other oil synthesis-related genes in woody plants. PMID:25528221

  15. Fatty acids from VLDL lipolysis products induce lipid droplet accumulation in human monocytes

    PubMed Central

    den Hartigh, Laura J; Connolly-Rohrbach, Jaime E; Fore, Samantha; Huser, Thomas R; Rutledge, John C

    2010-01-01

    One mechanism by which monocytes become activated postprandially is by exposure to triglyceride (TG)-rich lipoproteins such as very low-density lipoproteins (VLDL). VLDL are hydrolyzed by lipoprotein lipase (LpL) at the blood-endothelial cell interface, releasing free fatty acids. In this study, we examined postprandial monocyte activation in more detail, and found that lipolysis products generated from postprandial VLDL induce the formation of lipid-filled droplets within cultured THP-1 monocytes, characterized by coherent anti-stokes Raman spectroscopy. Organelle-specific stains revealed an association of lipid droplets with the endoplasmic reticulum, confirmed by electron microscopy. Lipid droplet formation was reduced when LpL-released fatty acids were bound by bovine serum albumin, which also reduced cellular inflammation. Furthermore, saturated fatty acids induced more lipid droplet formation in monocytes compared to mono- and polyunsaturated fatty acids. Monocytes treated with postprandial VLDL lipolysis products contained lipid droplets with more intense saturated Raman spectroscopic signals than monocytes treated with fasting VLDL lipolysis products. In addition, we found that human monocytes isolated during the peak postprandial period contain more lipid droplets compared to those from the fasting state, signifying that their development is not limited to cultured cells but also occurs in vivo. In summary, circulating free fatty acids can mediate lipid droplet formation in monocytes and potentially be used as a biomarker to assess an individual’s risk of developing atherosclerotic cardiovascular disease. PMID:20208007

  16. Graphene oxide induces plasma membrane damage, reactive oxygen species accumulation and fatty acid profiles change in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Liu, Zhe; Zhang, Biao; Li, Mingchun

    2016-10-01

    During the past couple of years, graphene nanomaterials were extremely popular among the scientists due to the promising properties in many aspects. Before the materials being well applied, we should first focus on their biosafety and toxicity. In this study, we investigated the toxicity of synthesized graphene oxide (GO) against the model industrial organism Pichia pastoris. We found that the synthesized GO showed dose-dependent toxicity to P. pastoris, through cell membrane damage and intracellular reactive oxygen species (ROS) accumulation. In response to these cell stresses, cells had normal unsaturated fatty acid (UFA) levels but increased contents of polyunsaturated fatty acid (PUFA) with up-regulation of UFA synthesis-related genes on the transcriptional level, which made it overcome the stress under GO attack. Two UFA defective strains (spt23Δ and fad12Δ) were used to demonstrate the results above. Hence, this study suggested a close connection between PUFAs and cell survival against GO. PMID:27376352

  17. Utilization of ammonium as a nitrogen source: effects of ambient acidity on growth and nitrogen accumulation by soybean

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    Dry matter accumulation of plants utilizing NH4+ as the sole nitrogen source generally is less than that of plants receiving NO3- unless acidity of the root-zone is controlled at a pH of about 6.0. To test the hypothesis that the reduction in growth is a consequence of nitrogen stress within the plant in response to effects of increased acidity during uptake of NH4+ by roots, nonnodulated soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 24 days in flowing nutrient culture containing 1.0 millimolar NH4+ as the nitrogen source. Acidities of the culture solutions were controlled at pH 6.1, 5.1, and 4.1 +/- 0.1 by automatic additions of 0.01 N H2SO4 or Ca(OH)2. Plants were sampled at intervals of 3 to 4 days for determination of dry matter and nitrogen accumulation. Rates of NH4+ uptake per gram root dry weight were calculated from these data. Net CO2 exchange rates per unit leaf area were measured on attached leaves by infrared gas analysis. When acidity of the culture solution was increased from pH 6.1 to 5.1, dry matter and nitrogen accumulation were reduced by about 40% within 14 days. Net CO2 exchange rates per unit leaf area, however, were not affected, and the decreased growth was associated with a reduction in rates of appearance and expansion of new leaves. The uptake rates of NH4+ per gram root were about 25% lower throughout the 24 days at pH 5.1 than at 6.1. A further increase in solution acidity from pH 5.1 to 4.1 resulted in cessation of net dry matter production and appearance of new leaves within 10 days. Net CO2 exchange rates per unit leaf area declined rapidly until all viable leaves had abscised by 18 days. Uptake rates of NH4+, which were initially about 50% lower at pH 4.1 than at 6.1 continued to decline with time of exposure until net uptake ceased at 10 days. Since these responses also are characteristic of the sequence of responses that occur during onset and progression of a nitrogen stress, they corroborate our hypothesis.

  18. [Long-term and short-term effects of propionic/acetic acid ratios on metabolism of glycogen-accumulating organisms].

    PubMed

    Yao, Ying; Chen, Yin-guang; Ma, Min; Gu, Guo-wei

    2007-09-01

    Three activated sludges enriched with glycogen accumulating organisms (GAO) were acclimatized respectively with different ratios of propionic to acetic acid (i.e. biomass SBR-A, C and E) . The effect of different ratios of propionic/acetic acid on the metabolism of long-term cultivated GAO was investigated. Cultivated with high propionic/acetic acid ratio, GAO consumed less glycogen and synthesized less poly-beta-hydroxyalkanoates (PHA) in the anaerobic phase, and in the aerobic phase accumulated less glycogen and degraded less PHA, and at the same time the microbial growth was lower. When the carbon mole of acetic acid equaled that of propionic acid in the influent, GAO utilized acetic acid faster than propionic acid. Batch tests were carried out with biomass SBR-A and SBR-E to study the transient response of long-term cultivated GAO to short-term change of propionic/acetic acid ratio. The GAO cultivated with a high propionic/acetic acid ratio was able to utilize acetic acid immediately when the concentration of acetic acid in the feed suddenly increased. But when the biomass cultivated with a low propionic/acetic acid ratio was feed with high ratio propionic/acetic acid wastewater, the propionic acid uptake rate was only 41.1% of the rate of the GAO long-term cultivated with high propionic/acetic acid. The sudden increase of propionic/acetic acid ratio could effectively inhibit the metabolism of GAO. PMID:17990541

  19. Vfa1 binds to the N-terminal microtubule-interacting and trafficking (MIT) domain of Vps4 and stimulates its ATPase activity.

    PubMed

    Vild, Cody J; Xu, Zhaohui

    2014-04-11

    The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function. PMID:24567329

  20. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms.

    PubMed

    Bengtsson, Simon; Pisco, Ana R; Reis, Maria A M; Lemos, Paulo C

    2010-02-01

    Batch production of polyhydroxyalkanoates (PHAs) under aerobic conditions by an open mixed culture enriched in glycogen accumulating organisms (GAOs) with fermented sugar cane molasses as substrate was studied. The produced polymers contained five types of monomers, namely 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxy-2-methylbutyrate (3H2MB), 3-hydroxy-2-methylvalerate (3H2MV) and the medium chain length monomer 3-hydroxyhexanoate (3HHx). With fermented molasses as substrate, PHA was produced under concurrent consumption of stored glycogen with yields of 0.47-0.66 C-mol PHA per C-mol of total carbon substrate and with rates up to 0.65 C-mol/C-molX h. In order to investigate the role of glycogen during aerobic PHA accumulation in GAOs, synthetic single volatile fatty acids (VFAs) were used as substrates and it was found that the fate of glycogen was dependent on the type of VFA being consumed. Aerobic PHA accumulation occurred under concurrent glycogen consumption with acetate as substrate and under minor concurrent glycogen production with propionate as substrate. With butyrate and valerate as substrates, PHA accumulation occurred with the glycogen pool unaffected. The composition of the PHA was dependent on the VFA composition of the fermented molasses and was 56-70 mol-% 3HB, 13-43 mol-% 3HV, 1-23 mol-% 3HHx and 0-2 mol-% 3H2MB and 3H2MV. The high polymer yields and production rates suggest that enrichment of GAOs can be a fruitful strategy for mixed culture production of PHA from waste substrates. PMID:19958801

  1. Decreased Membrane Integrity in Aging Typha latifolia L.Pollen (Accumulation of Lysolipids and Free Fatty Acids).

    PubMed Central

    Van Bilsen, DGJL.; Hoekstra, F. A.

    1993-01-01

    Aging of cattail (Typha latifolia L.) pollen was studied at 24[deg]C under conditions of 40 and 75% relative humidity (RH). The decline of viability coincides with increased leakage at imbibition; both processes develop much faster at the higher humidity condition. During aging phospholipids are deesterified and free fatty acids (FFAs) and lysophospholipids (LPLs) accumulate, again, much more rapidly at 75% RH than at 40% RH. The fatty acid composition of the remaining phospholipids hardly changes during aging, which suggests limited involvement of lipid peroxidation in the degradation process. Tests with phospholipase A2 revealed that the saturated fatty acids occur at the sn-1 position of the glycerol backbone of the phospholipids. The fatty acid composition of the LPLs is similar to that of the phospholipids from which they were formed, indicating that the deesterification occurs at random. This favors involvement of free radicals instead of phospholipases in the deesterification process. Liposome studies were carried out to characterize components in the lipid fraction that might account for the leakage associated with aging. Entrapped carboxyfluorescein leaked much more from liposomes when they were partly made up from total lipids from aged pollen than from nonaged pollen. The components causing the leakage were found in both the polar and the neutral lipid fractions. Further purification and subsequent interchanging of the FFAs and LPLs between extracts from aged and nonaged pollen revealed that in neutral lipid extracts the FFAs are entirely responsible for the leakage, whereas in the phospholipid fraction the LPLs are largely responsible for the leakage. The leakage from the liposomes is not caused by fusion. We suggest that the observed loss of viability and increased leakage during aging are due to the nonenzymic accumulation of FFAs and LPLs in the pollen membranes. PMID:12231723

  2. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat

    PubMed Central

    Danyluk, J; Perron, A; Houde, M; Limin, A; Fowler, B; Benhamou, N; Sarhan, F

    1998-01-01

    Expression of the acidic dehydrin gene wcor410 was found to be associated with the development of freezing tolerance in several Gramineae species. This gene is part of a family of three homologous members, wcor410, wcor410b, and wcor410c, that have been mapped to the long arms of the homologous group 6 chromosomes of hexaploid wheat. To gain insight into the function of this gene family, antibodies were raised against the WCOR410 protein and affinity purified to eliminate cross-reactivity with the WCS120 dehydrin-like protein of wheat. Protein gel blot analyses showed that the accumulation of WCOR410 proteins correlates well with the capacity of each cultivar to cold acclimate and develop freezing tolerance. Immunoelectron microscope analyses revealed that these proteins accumulate in the vicinity of the plasma membrane of cells in the sensitive vascular transition area where freeze-induced dehydration is likely to be more severe. Biochemical fractionation experiments indicated that WCOR410 is a peripheral protein and not an integral membrane protein. These results provide direct evidence that a subtype of the dehydrin family accumulates near the plasma membrane. The properties, abundance, and localization of these proteins suggest that they are involved in the cryoprotection of the plasma membrane against freezing or dehydration stress. We propose that WCOR410 plays a role in preventing the destabilization of the plasma membrane that occurs during dehydrative conditions. PMID:9548987

  3. Hepatocytes maintain greater fluorescent bile acid accumulation and greater sensitivity to drug‐induced cell death in three‐dimensional matrix culture

    PubMed Central

    Murray, John W.; Han, Dennis; Wolkoff, Allan W.

    2014-01-01

    Abstract Primary hepatocytes undergo phenotypic dedifferentiation upon isolation from liver that typically includes down regulation of uptake transporters and up regulation of efflux transporters. Culturing cells between layers of collagen in a three‐dimensional (3D) “sandwich” is reported to restore hepatic phenotype. This report examines how 3D culturing affects accumulation of fluorophores, the cytotoxic response to bile acids and drugs, and whether cell to cell differences in fluorescent anion accumulation correlate with differences in cytotoxicity. Hepatocytes were found to accumulate fluorescent bile acid (FBA) at significantly higher levels than the related fluorophores, carboxyfluorescein diacetate, (4.4‐fold), carboxyfluorescein succinimidyl ester (4.8‐fold), and fluorescein (30‐fold). In 2D culture, FBA accumulation decreased to background levels by 32 h, Hoechst nuclear accumulation strongly decreased, and nuclear diameter increased, indicative of an efflux phenotype. In 3D culture, FBA accumulation was maintained through 168 h but at 1/3 the original intensity. Cell to cell differences in accumulated FBA did not correlate with levels of liver zonal markers L‐FBAP (zone 1) or glutamine synthetase (zone 3). Cytotoxic response to hydrophobic bile acids, acetaminophen, and phalloidin was maintained in 3D culture, and cells with higher FBA accumulation showed 12–18% higher toxicity than the total population toward hydrophobic bile acids (P < 0.05). Long‐term imaging showed oscillations in the accumulation of FBA over periods of hours. Overall, the studies suggest that high accumulation of FBA can indicate the sensitivity of cultured hepatocytes to hydrophobic bile acids and other toxins. PMID:25524275

  4. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the im...

  5. Accumulation of 3-hydroxytetradecenoic acid: Cause or corollary of glucolipotoxic impairment of pancreatic β-cell bioenergetics?

    PubMed Central

    Doliba, Nicolai M.; Liu, Qing; Li, Changhong; Chen, Jie; Chen, Pan; Liu, Chengyang; Frederick, David W.; Baur, Joseph A.; Bennett, Michael J.; Naji, Ali; Matschinsky, Franz M.

    2015-01-01

    Objectives Hyperglycemia and elevated blood lipids are the presumed precipitating causes of β-cell damage in T2DM as the result of a process termed “glucolipotoxicity”. Here, we tested whether glucolipotoxic pathophysiology is caused by defective bioenergetics using islets in culture. Methods Insulin secretion, respiration, ATP generation, fatty acid (FA) metabolite profiles and gene expression were determined in isolated islets treated under glucolipotoxic culture conditions. Results Over time, chronic exposure of mouse islets to FAs with glucose leads to bioenergetic failure and reduced insulin secretion upon stimulation with glucose or amino acids. Islets exposed to glucolipotoxic conditions displayed biphasic changes of the oxygen consumption rate (OCR): an initial increase in baseline and Vmax of OCR after 3 days, followed by decreased baseline and glucose stimulated OCR after 5 days. These changes were associated with lower islet ATP levels, impaired glucose-induced ATP generation, a trend for reduced mitochondrial DNA content and reduced expression of mitochondrial transcription factor A (Tfam). We discovered the accumulation of carnitine esters of hydroxylated long chain FAs, in particular 3-hydroxytetradecenoyl-carnitine. Conclusions As long chain 3-hydroxylated FA metabolites are known to uncouple heart and brain mitochondria [53], [54], [55], we propose that under glucolipotoxic condition, unsaturated hydroxylated long-chain FAs accumulate, uncouple and ultimately inhibit β-cell respiration. This leads to the slow deterioration of mitochondrial function progressing to bioenergetics β-cell failure. PMID:26909309

  6. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc.

    PubMed

    Shi, Wen-Guang; Li, Hong; Liu, Tong-Xian; Polle, Andrea; Peng, Chang-Hui; Luo, Zhi-Bin

    2015-01-01

    A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 μm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification. PMID:25158610

  7. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate rate of passage and nutrient digestibility. Yet nothing is known relative to their potential impact on fecal microbial ecology and subsequent VFA generation. Two experiments utilizing a total o...

  8. Impact of Dietary Markers on Fecal Microbial Ecology, Fecal VFA, and Nutrient Digestibility Coefficients in Finishing Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the experiment was to determine the impact of three commonly utilized markers (Cr, Fe, and Ti) in digestibility studies on fecal microbial ecology, fecal VFA, and nutrient digestibility coefficients. Forty eight gilts, initial BW 115.1 kg, were allotted to 4 dietary treatments based...

  9. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. PMID:25625522

  10. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies.

    PubMed

    Reaves, B J; Row, P E; Bright, N A; Luzio, J P; Davidson, H W

    2000-11-01

    A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway

  11. Assessing accumulation and biliary excretion of naphthenic acids in yellow perch exposed to oil sands-affected waters.

    PubMed

    van den Heuvel, Michael R; Hogan, Natacha S; MacDonald, Gillian Z; Berrue, Fabrice; Young, Rozlyn F; Arens, Collin J; Kerr, Russell G; Fedorak, Phillip M

    2014-01-01

    Naphthenic acids are known to be the most prevalent group of organic compounds in oil sands tailings-associated waters. Yellow perch (Perca flavescens) were exposed for four months to oil sands-influenced waters in two experimental systems located on an oil sands lease 30 km north of Fort McMurray Alberta: the Demonstration Pond, containing oil sands tailings capped with natural surface water, and the South Bison Pond, integrating lean oil sands. Yellow perch were also sampled from three lakes: Mildred Lake that receives water from the Athabasca River, Sucker Lake, at the edge of oil sands extraction activity, and Kimowin Lake, a distant reference site. Naphthenic acids were measured in perch muscle tissue using gas chromatography-mass spectrometry (GC-MS). Bile metabolites were measured by GC-MS techniques and by high performance liquid chromatography (HPLC) with fluorescence detection at phenanthrene wavelengths. A method was developed using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to evaluate naphthenic acids in bile. Tissue analysis did not show a pattern of naphthenic acids accumulation in muscle tissue consistent with known concentrations in exposed waters. Bile fluorescence and LC-HRMS methods were capable of statistically distinguishing samples originating from oil sands-influenced waters versus reference lakes. Although the GC-MS and HPLC fluorescence methods were correlated, there were no significant correlations of these methods and the LC-HRMS method. In yellow perch, naphthenic acids from oil sands sources do not concentrate in tissue at a measurable amount and are excreted through a biliary route. LC-HRMS was shown to be a highly sensitive, selective and promising technique as an indicator of exposure of biota to oil sands-derived naphthenic acids. PMID:24182406

  12. Palmitic Acid Reduces Circulating Bone Formation Markers in Obese Animals and Impairs Osteoblast Activity via C16-Ceramide Accumulation.

    PubMed

    Alsahli, Ahmad; Kiefhaber, Kathryn; Gold, Tziporah; Muluke, Munira; Jiang, Hongfeng; Cremers, Serge; Schulze-Späte, Ulrike

    2016-05-01

    Obesity and impaired lipid metabolism increase circulating and local fatty acid (FA) levels. Our previous studies showed that a high high-saturated -fat diet induced greater bone loss in mice than a high high-unsaturated-fat diet due to increased osteoclast numbers and activity. The impact of elevated FA levels on osteoblasts is not yet clear. We induced obesity in 4 week old male mice using a palmitic acid (PA)- or oleic acid (OA)-enriched high fat high-fat diet (HFD) (20 % of calories from FA), and compared them to mice on a normal (R) caloric diet (10 % of calories from FA). We collected serum to determine FA and bone metabolism marker levels. Primary osteoblasts were isolated; cultured in PA, OA, or control (C) medium; and assessed for mineralization activity, gene expression, and ceramide levels. Obese animals in the PA and OA groups had significantly lower serum levels of bone formation markers P1NP and OC compared to normal weight animals (*p < 0.001), with the lowest marker levels in animals on an PA-enriched HFD (*p < 0.001). Accordingly, elevated levels of PA significantly reduced osteoblast mineralization activity in vitro (*p < 0.05). Elevated PA intake significantly increased C16 ceramide accumulation. This accumulation was preventable through inhibition of SPT2 (serine palmitoyl transferase 2) using myriocin. Elevated levels of PA reduce osteoblast function in vitro and bone formation markers in vivo. Our findings suggest that saturated PA can compromise bone health by affecting osteoblasts, and identify a potential mechanism through which obesity promotes bone loss. PMID:26758875

  13. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection.

    PubMed

    Abeysekara, Nilwala S; Swaminathan, Sivakumar; Desai, Nalini; Guo, Lining; Bhattacharyya, Madan K

    2016-02-01

    The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean. PMID:26795155

  14. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.

    PubMed

    Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten

    2010-10-01

    The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. PMID:20545739

  15. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    PubMed

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (p<0.05) higher than plants collected from an unpolluted 'reference' drainage channel, thus validating the concept of using this species as a biomonitor. A catchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. PMID:24805963

  16. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    PubMed

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  17. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor

    PubMed Central

    De Sadeleer, Emerik; Vergauwen, Rudy; Struyf, Tom; Le Roy, Katrien; Van den Ende, Wim

    2015-01-01

    Fructans are important vacuolar reserve carbohydrates with drought, cold, ROS and general abiotic stress mediating properties. They occur in 15% of all flowering plants and are believed to display health benefits as a prebiotic and dietary fiber. Fructans are synthesized by specific fructosyltransferases and classified based on the linkage type between fructosyl units. Inulins, one of these fructan types with β(2-1) linkages, are elongated by fructan:fructan 1-fructosyltransferases (1-FFT) using a fructosyl unit from a donor inulin to elongate the acceptor inulin molecule. The sequence identity of the 1-FFT of Viguiera discolor (Vd) and Helianthus tuberosus (Ht) is 91% although these enzymes produce distinct fructans. The Vd 1-FFT produces high degree of polymerization (DP) inulins by preferring the elongation of long chain inulins, in contrast to the Ht 1-FFT which prefers small molecules (DP3 or 4) as acceptor. Since higher DP inulins have interesting properties for industrial, food and medical applications, we report here on the influence of two amino acids on the high DP inulin production capacity of the Vd 1-FFT. Introducing the M19F and H308T mutations in the active site of the Vd 1-FFT greatly reduces its capacity to produce high DP inulin molecules. Both amino acids can be considered important to this capacity, although the double mutation had a much higher impact than the single mutations. PMID:26322058

  18. 1-FFT amino acids involved in high DP inulin accumulation in Viguiera discolor.

    PubMed

    De Sadeleer, Emerik; Vergauwen, Rudy; Struyf, Tom; Le Roy, Katrien; Van den Ende, Wim

    2015-01-01

    Fructans are important vacuolar reserve carbohydrates with drought, cold, ROS and general abiotic stress mediating properties. They occur in 15% of all flowering plants and are believed to display health benefits as a prebiotic and dietary fiber. Fructans are synthesized by specific fructosyltransferases and classified based on the linkage type between fructosyl units. Inulins, one of these fructan types with β(2-1) linkages, are elongated by fructan:fructan 1-fructosyltransferases (1-FFT) using a fructosyl unit from a donor inulin to elongate the acceptor inulin molecule. The sequence identity of the 1-FFT of Viguiera discolor (Vd) and Helianthus tuberosus (Ht) is 91% although these enzymes produce distinct fructans. The Vd 1-FFT produces high degree of polymerization (DP) inulins by preferring the elongation of long chain inulins, in contrast to the Ht 1-FFT which prefers small molecules (DP3 or 4) as acceptor. Since higher DP inulins have interesting properties for industrial, food and medical applications, we report here on the influence of two amino acids on the high DP inulin production capacity of the Vd 1-FFT. Introducing the M19F and H308T mutations in the active site of the Vd 1-FFT greatly reduces its capacity to produce high DP inulin molecules. Both amino acids can be considered important to this capacity, although the double mutation had a much higher impact than the single mutations. PMID:26322058

  19. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43.

    PubMed

    Kimura, Ikuo; Ozawa, Kentaro; Inoue, Daisuke; Imamura, Takeshi; Kimura, Kumi; Maeda, Takeshi; Terasawa, Kazuya; Kashihara, Daiji; Hirano, Kanako; Tani, Taeko; Takahashi, Tomoyuki; Miyauchi, Satoshi; Shioi, Go; Inoue, Hiroshi; Tsujimoto, Gozoh

    2013-01-01

    The gut microbiota affects nutrient acquisition and energy regulation of the host, and can influence the development of obesity, insulin resistance, and diabetes. During feeding, gut microbes produce short-chain fatty acids, which are important energy sources for the host. Here we show that the short-chain fatty acid receptor GPR43 links the metabolic activity of the gut microbiota with host body energy homoeostasis. We demonstrate that GPR43-deficient mice are obese on a normal diet, whereas mice overexpressing GPR43 specifically in adipose tissue remain lean even when fed a high-fat diet. Raised under germ-free conditions or after treatment with antibiotics, both types of mice have a normal phenotype. We further show that short-chain fatty acid-mediated activation of GPR43 suppresses insulin signalling in adipocytes, which inhibits fat accumulation in adipose tissue and promotes the metabolism of unincorporated lipids and glucose in other tissues. These findings establish GPR43 as a sensor for excessive dietary energy, thereby controlling body energy utilization while maintaining metabolic homoeostasis. PMID:23652017

  20. Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules.

    PubMed

    Blee, Kristopher A; Anderson, Anne J

    2002-09-01

    Arbuscule formation by the arbuscular mycorrhizal fungus Glomus intraradices (Schenck & Smith) was limited to cortical cells immediately adjacent to the endodermis. Because these cortical cells are the first to intercept photosynthate exiting the vascular cylinder, transcript levels for sucrose metabolizing-enzymes were compared between mycorrhizal and non-mycorrhizal roots. The probes corresponded to genes encoding a soluble acid invertase with potential vacuolar targeting, which we generated from Phaseolus vulgaris roots, a Rhizobium-responsive sucrose synthase of soybean and a cell wall acid invertase of carrot. Transcripts in non-mycorrhizal roots were developmentally regulated and abundant in the root tips for all three probes but in differentiated roots of P. vulgaris they were predominantly located in phloem tissues for sucrose synthase or the endodermis and phloem for soluble acid invertase. In mycorrhizal roots increased accumulations of transcripts for sucrose synthase and vacuolar invertase were both observed in the same cortical cells bearing arbuscules that fluoresce. There was no effect on the expression of the cell wall invertase gene in fluorescent carrot cells containing arbuscules. Thus, it appears that presence of the fungal hyphae in the fluorescent arbusculated cell stimulates discrete alterations in expression of sucrose metabolizing enzymes to increase the sink potential of the cell. PMID:12175013

  1. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  2. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  3. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4

    PubMed Central

    Li, Shao-jia; Yin, Xue-ren; Xie, Xiu-lan; Allan, Andrew C.; Ge, Hang; Shen, Shu-ling; Chen, Kun-song

    2016-01-01

    Organic acids are essential to fruit flavor. The vacuolar H+ transporting adenosine triphosphatase (V-ATPase) plays an important role in organic acid transport and accumulation. However, less is known of V-ATPase interacting proteins and their relationship with organic acid accumulation. The relationship between V-ATPase and citric acid was investigated, using the citrus tangerine varieties ‘Ordinary Ponkan (OPK)’ and an early maturing mutant ‘Zaoshu Ponkan (ZPK)’. Five V-ATPase genes (CitVHA) were predicted as important to citric acid accumulation. Among the genes, CitVHA-c4 was observed, using a yeast two-hybrid screen, to interact at the protein level with an ethylene response factor, CitERF13. This was verified using bimolecular fluorescence complementation assays. A similar interaction was also observed between Arabidopsis AtERF017 (a CitERF13 homolog) and AtVHA-c4 (a CitVHA-c4 homolog). A synergistic effect on citric acid levels was observed between V-ATPase proteins and interacting ERFs when analyzed using transient over-expression in tobacco and Arabidopsis mutants. Furthermore, the transcript abundance of CitERF13 was concomitant with CitVHA-c4. CitERF13 or AtERF017 over-expression leads to significant citric acid accumulation. This accumulation was abolished in an AtVHA-c4 mutant background. ERF-VHA interactions appear to be involved in citric acid accumulation, which was observed in both citrus and Arabidopsis. PMID:26837571

  4. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    NASA Astrophysics Data System (ADS)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  5. Accumulation and Clearance of Perfluorooctanoic Acid (PFOA) in Current and Former Residents of an Exposed Community

    PubMed Central

    Seals, Ryan; Bartell, Scott M.; Steenland, Kyle

    2011-01-01

    Background Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid found in > 99% of Americans. Its health effects are unknown. Prior estimates of serum half-life range from 2.3 to 3.8 years. Objectives We assessed the impact of years of residence and years since residing in the study area on serum PFOA concentration in a sample of current and former residents who were exposed to PFOA emissions from an industrial facility in six water districts in West Virginia and Ohio. Methods Serum samples and questionnaires, including residential history, were collected in 2005–2006. We modeled log serum PFOA (nanograms per milliliter) for current residents as a function of years of residence in a water district, adjusted for a variety of factors. We modeled the half-life in former residents who lived in two water districts with high exposure levels using a two-segment log-linear spline. Results We modeled serum PFOA concentration in 17,516 current residents as a function of years of residence (R2 = 0.68). Years of residence was significantly associated with PFOA concentration (1% increase in serum PFOA/year of residence), with significant heterogeneity by water district. Half-life was estimated in two water districts comprising a total of 1,573 individuals. For the participants included in our analyses, we found that years since residing in a water district was significantly associated with serum PFOA, which yielded half-lives of 2.9 and 8.5 years for water districts with higher and lower exposure levels, respectively. Conclusion Years of residence in an exposed water district is positively associated with observed serum PFOA in 2005–2006. Differences in serum clearance rate between low- and high-exposure water districts suggest a possible concentration-dependent or time-dependent clearance process or inadequate adjustment for background exposures. PMID:20870569

  6. Expression of fatty acid desaturase genes and fatty acid accumulation in Chlamydomonas sp. ICE-L under salt stress.

    PubMed

    An, Meiling; Mou, Shanli; Zhang, Xiaowen; Zheng, Zhou; Ye, Naihao; Wang, Dongsheng; Zhang, Wei; Miao, Jinlai

    2013-12-01

    The Antarctic ice microalgae Chlamydomonas sp. ICE-L which is highly resistant to salt stress holds promise in providing an alternative species for the production of microalgal oil. We studied the effects of the alga in confrontation with NaCl stress on the growth, oil yield and expression of fatty acid desaturase genes. The growth rate of Chlamydomonas sp. ICE-L decreased with the gradual increase in NaCl concentration. Interestingly, we found that the highest lipid content was achieved at 16‰ NaCl, reaching 23% (w/w). Meanwhile, the expression of Δ9ACPCiFAD increased rapidly while Δ12CiFAD, ω3CiFAD2 and Δ6CiFAD showed a delayed elevation in response to altered salt stress. C18:3 was the dominant PUFA, which account for about 75% TFA in Chlamydomonas sp. ICE-L. Under 96‰ and 128‰ NaCl stress, the content of C20:5 almost approached that of C18:3. In contrast, low salinity enhanced the dominance of C18:3 at the expense of C20:3 and C20:5. PMID:24084208

  7. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina.

    PubMed

    Cingoz, Gunce Sahin; Gurel, Ekrem

    2016-08-01

    Long periods of high temperature or transitory increased temperature, a widespread agricultural problem, may lead to a drastic reduction in economic yield, affecting plant growth and development in many areas of the world. Heat stress causes many anatomical and physiological changes in plants. Its unfavorable effects can be alleviated by thermotolerance induced by exogenous application of plant growth regulators and osmoprotectants or by gradual application of temperature stress. Digitalis trojana Ivanina is an important medicinal plant species well known mainly for its cardenolides. The production of cardenolides via traditional agriculture is commercially inadequate. In this study, elicitation strategies were employed for improving crop thermotolerance and accumulation of cardenolides. For these purposes, the effects of salicylic acid (SA) and/or high temperature treatments in inducing cardenolide accumulation and thermotolerance were tested in callus cultures of D. trojana. Considerable increases in the production of cardenolides (up to 472.28 μg.g(-1) dry weight, dw) and induction of thermotolerance capacity were observed when callus cultures were exposed to high temperature for 2 h after pretreating with SA. High temperature treatments (2 h and 4 h) caused a marked reduction in superoxide dismutase (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities, while SA pretreatment increased their activities. High temperature and/or SA appeared to increase the levels of proline, total phenolic, and flavonoid content. Elevated phenolic accumulation could be associated with increased stress protection. These results indicated that SA treatments induced synthesis of antioxidants and cardenolides, which may play a significant role in resistance to high temperature stress. PMID:27105421

  8. Flaxseed oil and alpha-lipoic acid combination ameliorates hepatic oxidative stress and lipid accumulation in comparison to lard

    PubMed Central

    2013-01-01

    Background Intake of high-fat diet is associated with increased non-alcoholic fatty liver disease (NAFLD). Hepatic lipid accumulation and oxidative stress are key pathophysiological mechanisms in NAFLD. Both flaxseed oil (FO) and α-lipoic acid (LA) exert potential benefit to NAFLD. The aim of this study was to determine the effect of the combination of FO and LA on hepatic lipid accumulation and oxidative stress in rats induced by high-fat diet. Methods LA was dissolved in flaxseed oil to a final concentration of 8 g/kg (FO + LA). The rodent diet contained 20% fat. One-fifth of the fat was soybean oil and the others were lard (control group), or 75% lard and 25% FO + LA (L-FO + LA group), or 50% lard and 50% FO + LA (M-FO + LA group), or FO + LA (H-FO + LA group). Male Sprague–Dawley rats were fed for 10 weeks and then killed for liver collection. Results Intake of high-fat lard caused a significant hepatic steatosis. Replacement with FO + LA was effective in reducing steatosis as well as total triglyceride and total cholesterol contents in liver. The combination of FO and LA also significantly elevated hepatic antioxidant defense capacities, as evaluated by the remarkable increase in the activities of SOD, CAT and GPx as well as the level of GSH, and the significant decline in lipid peroxidation. Conclusion The combination of FO and LA may contribute to prevent fatty livers such as NAFLD by ameliorating hepatic lipid accumulation and oxidative stress. PMID:23634883

  9. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. PMID:25554489

  10. Precursor ribosomal ribonucleic acid and ribosome accumulation in vivo during the recovery of Salmonella typhimurium from thermal injury.

    PubMed

    Tomlins, R I; Ordal, Z J

    1971-07-01

    When cells of S. typhimurium were heated at 48 C for 30 min in phosphate buffer (pH 6.0), they became sensitive to Levine Eosin Methylene Blue Agar containing 2% NaCl (EMB-NaCl). The inoculation of injured cells into fresh growth medium supported the return of their normal tolerance to EMB-NaCl within 6 hr. The fractionation of ribosomal ribonucleic acid (rRNA) from unheated and heat-injured cells by polyacrylamide gel electrophoresis demonstrated that after injury the 16S RNA species was totally degraded and the 23S RNA was partially degraded. Sucrose gradient analysis demonstrated that after injury the 30S ribosomal subunit was totally destroyed and the sedimentation coefficient of the 50S particle was decreased to 47S. During the recovery of cells from thermal injury, four species of rRNA accumulated which were demonstrated to have the following sedimentation coefficients: 16, 17, 23, and 24S. Under identical recovery conditions, 22, 26, and 28S precursors of the 30S ribosomal subunit and 31 and 48S precursors of the 50S ribosomal subunit accumulated along with both the 30 and 50S mature particles. The addition of chloramphenicol to the recovery medium inhibited both the maturation of 17S RNA and the production of mature 30S ribosomal subunits, but permitted the accumulation of a single 22S precursor particle. Chloramphenicol did not affect either the maturation of 24S RNA or the mechanism of formation of 50S ribosomal subunits during recovery. Very little old ribosomal protein was associated with the new rRNA synthesized during recovery. New ribosomal proteins were synthesized during recovery and they were found associated with the new rRNA in ribosomal particles. The rate-limiting step in the recovery of S. typhimurium from thermal injury was in the maturation of the newly synthesized rRNA. PMID:4935315

  11. Evolution of subgroup A respiratory syncytial virus: evidence for progressive accumulation of amino acid changes in the attachment protein.

    PubMed Central

    Cane, P A; Pringle, C R

    1995-01-01

    The variability of the attachment (G) proteins of 48 subgroup A isolates of respiratory syncytial virus (RSV) isolated over 38 years has been examined. Nucleotide sequences of two variable regions of the G protein genes were determined following amplification by PCR. The isolates showed temporal rather than geographical clustering, and there was evidence for progressive accumulation of amino acid changes at an average rate of approximately 0.25% per year estimated over the entire protein. The cocirculation of lineages of RSV at present appears to be the result of a process of evolution and survival of particular genotypes and the extinction of others. Analysis of reactivity of the isolates with monoclonal antibodies showed that their antigenic profiles closely paralleled their relatedness by nucleotide sequence, suggesting that antigenic drift due to immune selection may be occurring. PMID:7707517

  12. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    NASA Astrophysics Data System (ADS)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  13. Lead accumulation and depression of delta-aminolevulinic acid dehydratase (ALAD) in young birds fed automotive waste oil

    USGS Publications Warehouse

    Eastin, W.C., Jr.; Hoffman, D.J.; O'Leary, C.T.

    1983-01-01

    The effects of a 3-week dietary exposure to automotive waste crankcase oil (WCO) were examined in 1-week-old mallard (Anas platyrhynchos) ducklings and pheasant (Phasianus colchicus) chicks. Treatment groups consisted of birds exposed to 0.5, 1.5, or 4.5% WCO, to 4.5% clean crankcase oil (CCO), or untreated controls. In both species, red blood cell ALAD activity was significantly inhibited after one week by 50 to 60% in the 0.5% WCO group and by 85 to 90% in the 4.5% WCO group due to the presence of lead. Growth, hematocrit, and hemoglobin were not significantly affected at the end of three weeks. Plasma aspartate aminotransferase (AST) activity was higher in mallards after three weeks of ingesting either 4.5% WCO or 4.5% CCO, suggesting an oil-related effect due to components other than lead. Treatment had no effect on plasma concentration of uric acid, glucose, triglycerides, total protein, or cholesterol. Lead analysis showed the WCO to contain 4,200 ppm Pb and the CCO to contain 2 ppm. Tissues of mallards were examined for accumulation of lead and the order of accumulation at the end of three weeks was kidney > liver > blood ~ brain.

  14. TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development Regulators in Arabidopsis1[C][W

    PubMed Central

    Chen, Mingxun; Xuan, Lijie; Wang, Zhong; Zhou, Longhua; Li, Zhilan; Du, Xue; Ali, Essa; Zhang, Guoping; Jiang, Lixi

    2014-01-01

    Fatty acids (FAs) and FA-derived complex lipids play important roles in plant growth and vegetative development and are a class of prominent metabolites stored in mature seeds. The factors and regulatory networks that control FA accumulation in plant seeds remain largely unknown. The role of TRANSPARENT TESTA8 (TT8) in the regulation of flavonoid biosynthesis and the formation of seed coat color is extensively studied; however, its function in affecting seed FA biosynthesis is poorly understood. In this article, we show that Arabidopsis (Arabidopsis thaliana) TT8 acts maternally to affect seed FA biosynthesis and inhibits seed FA accumulation by down-regulating a group of genes either critical to embryonic development or important in the FA biosynthesis pathway. Moreover, the tt8 mutation resulted in reduced deposition of protein in seeds during maturation. Posttranslational activation of a TT8-GLUCOCORTICOID RECEPTOR fusion protein and chromatin immunoprecipitation assays demonstrated that TT8 represses the activities of LEAFY COTYLEDON1, LEAFY COTYLEDON2, and FUSCA3, the critical transcriptional factors important for seed development, as well as CYTIDINEDIPHOSPHATE DIACYLGLYCEROL SYNTHASE2, which mediates glycerolipid biosynthesis. These results help us to understand the entire function of TT8 and increase our knowledge of the complicated networks regulating the formation of FA-derived complex lipids in plant seeds. PMID:24722549

  15. Toxicity and intracellular accumulation of bile acids in sandwich-cultured rat hepatocytes: role of glycine conjugates.

    PubMed

    Chatterjee, Sagnik; Bijsmans, Ingrid T G W; van Mil, Saskia W C; Augustijns, Patrick; Annaert, Pieter

    2014-03-01

    Excessive intrahepatic accumulation of bile acids (BAs) is a key mechanism underlying cholestasis. The aim of this study was to quantitatively explore the relationship between cytotoxicity of BAs and their intracellular accumulation in sandwich-cultured rat hepatocytes (SCRH). Following exposure of SCRH (on day-1 after seeding) to various BAs for 24h, glycine-conjugated BAs were most potent in exerting toxicity. Moreover, unconjugated BAs showed significantly higher toxicity in day-1 compared to day-3 SCRH. When day-1/-3 SCRH were exposed (0.5-4h) to 5-100μM (C)DCA, intracellular levels of unconjugated (C)DCA were similar, while intracellular levels of glycine conjugates were up to 4-fold lower in day-3 compared to day-1 SCRH. Sinusoidal efflux was by far the predominant efflux pathway of conjugated BAs both in day-1 and day-3 SCRH, while canalicular BA efflux showed substantial interbatch variability. After 4h exposure to (C)DCA, intracellular glycine conjugate levels were at least 10-fold higher than taurine conjugate levels. Taken together, reduced BA conjugate formation in day-3 SCRH results in lower intracellular glycine conjugate concentrations, explaining decreased toxicity of (C)DCA in day-3 versus day-1 SCRH. Our data provide for the first time a direct link between BA toxicity and glycine conjugate exposure in SCRH. PMID:24211540

  16. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    PubMed Central

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-01-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress. PMID:26552588

  17. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana.

    PubMed

    Zhu, Xiao Fang; Jiang, Tao; Wang, Zhi Wei; Lei, Gui Jie; Shi, Yuan Zhi; Li, Gui Xin; Zheng, Shao Jian

    2012-11-15

    Gibberellic acid (GA) is involved in not only plant growth and development but also plant responses to abiotic stresses. Here it was found that treating the plants with GA concentrations from 0.1 to 5 μM for 24 h had no obvious effect on root elongation in the absence of cadmium (Cd), whereas in the presence of Cd2+, GA at 5 μM improved root growth, reduced Cd content and lipid peroxidation in the roots, indicating that GA can partially alleviate Cd toxicity. Cd2+ increased nitric oxide (NO) accumulation in the roots, but GA remarkably reduced it, and suppressed the up-regulation of the expression of IRT1. In contrary, the beneficial effect of GA on alleviating Cd toxicity was not observed in an IRT1 knock-out mutant irt1, suggesting the involvement of IRT1 in Cd2+ absorption. Furthermore, the GA-induced reduction of NO and Cd content can also be partially reversed by the application of a NO donor (S-nitrosoglutathione [GSNO]). Taken all these together, the results showed that GA-alleviated Cd toxicity is mediated through the reduction of the Cd-dependent NO accumulation and expression of Cd2+ uptake related gene-IRT1 in Arabidopsis. PMID:23021314

  18. Accumulation of γ-aminobutyric acid by Enterococcus avium 9184 in scallop solution in a two-stage fermentation strategy.

    PubMed

    Yang, Haoyue; Xing, Ronge; Hu, Linfeng; Liu, Song; Li, Pengcheng

    2016-07-01

    In this study, a new bacterial strain having a high ability to produce γ-aminobutyric acid (GABA) was isolated from naturally fermented scallop solution and was identified as Enterococcus avium. To the best of our knowledge, this is the first study to prove that E. avium possesses glutamate decarboxylase activity. The strain was then mutagenized with UV radiation and was designated as E. avium 9184. Scallop solution was used as the culture medium to produce GABA. A two-stage fermentation strategy was applied to accumulate GABA. In the first stage, cell growth was regulated. Optimum conditions for cell growth were pH, 6.5; temperature, 37°C; and glucose concentration, 10 g·L(-1) . This produced a maximum dry cell mass of 2.10 g·L(-1) . In the second stage, GABA formation was regulated. GABA concentration reached 3.71 g·L(-1) at 96 h pH 6.0, 37°C and initial l-monosodium glutamate concentration of 10 g·L(-1) . Thus, compared with traditional one-stage fermentation, the two-stage fermentation significantly increased GABA accumulation. These results provide preliminary data to produce GABA using E. avium and also provide a new approach to process and utilize shellfish. PMID:26200650

  19. Ascorbic Acid Enhances the Accumulation of Polycyclic Aromatic Hydrocarbons (PAHs) in Roots of Tall Fescue (Festuca arundinacea Schreb.)

    PubMed Central

    Gao, Yanzheng; Li, Hui; Gong, Shuaishuai

    2012-01-01

    Plant contamination by polycyclic aromatic hydrocarbons (PAHs) is crucial to food safety and human health. Enzyme inhibitors are commonly utilized in agriculture to control plant metabolism of organic components. This study revealed that the enzyme inhibitor ascorbic acid (AA) significantly reduced the activities of peroxidase (POD) and polyphenol oxidase (PPO), thus enhancing the potential risks of PAH contamination in tall fescue (Festuca arundinacea Schreb.). POD and PPO enzymes in vitro effectively decomposed naphthalene (NAP), phenanthrene (PHE) and anthracene (ANT). The presence of AA reduced POD and PPO activities in plants, and thus was likely responsible for enhanced PAH accumulation in tall fescue. This conclusion is supported by the significantly enhanced uptake of PHE in plants in the presence of AA, and the positive correlation between enzyme inhibition efficiencies and the rates of metabolism of PHE in tall fescue roots. This study provides a new perspective, that the common application of enzyme inhibitors in agricultural production could increase the accumulation of organic contaminants in plants, hence enhancing risks to food safety and quality. PMID:23185628

  20. Control of diapause by acidic pH and ammonium accumulation in the hemolymph of Antarctic copepods.

    PubMed

    Schründer, Sabine; Schnack-Schiel, Sigrid B; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 (+)) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 (+)). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  1. Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores[OPEN

    PubMed Central

    2016-01-01

    Abscisic acid (ABA) signaling plays a major role in root system development, regulating growth and root architecture. However, the precise localization of ABA remains undetermined. Here, we present a mechanism in which nitrate signaling stimulates the release of bioactive ABA from the inactive storage form, ABA-glucose ester (ABA-GE). We found that ABA accumulated in the endodermis and quiescent center of Arabidopsis thaliana root tips, mimicking the pattern of SCARECROW expression, and (to lower levels) in the vascular cylinder. Nitrate treatment increased ABA levels in root tips; this stimulation requires the activity of the endoplasmic reticulum-localized, ABA-GE-deconjugating enzyme β-GLUCOSIDASE1, but not de novo ABA biosynthesis. Immunogold labeling demonstrated that ABA is associated with cytoplasmic structures near, but not within, the endoplasmic reticulum. These findings demonstrate a mechanism for nitrate-regulated root growth via regulation of ABA accumulation in the root tip, providing insight into the environmental regulation of root growth. PMID:26887919

  2. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat.

    PubMed

    Valluru, Ravi; Davies, William J; Reynolds, Matthew P; Dodd, Ian C

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  3. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    PubMed Central

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  4. Accumulation of Amino Acids in Rhizobium sp. Strain WR1001 in Response to Sodium Chloride Salinity

    PubMed Central

    Hua, Sui-Sheng T.; Tsai, Victor Y.; Lichens, Georgia M.; Noma, Amy T.

    1982-01-01

    Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations. PMID:16346049

  5. Accumulating Evidence Supports a Taste Component for Free Fatty Acids in Humans

    PubMed Central

    Mattes, Richard D.

    2011-01-01

    The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA. PMID:21557960

  6. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo.

    PubMed

    Hall, M B; Nennich, T D; Doane, P H; Brink, G E

    2015-06-01

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess the effect of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between [VFA] and VFA pool size (VFAmol) possibly related to ruminal digesta liquid amount (LIQ, kg) indicate potential issues with the use of [VFA]. We investigated relationships among [VFA], VFAmol, and LIQ measured 2 h postfeeding using individual lactating cow data (n=175) from 7 separate feeding studies. Regression analyses were performed using mixed models with "study" as a discrete random variable. The mean across studies and average range of values within studies, respectively, were 151 and 75 for [VFA], 11.2 and 9.8 for VFAmol, 73.3 and 41.0 for LIQ, and 289 and 83 mmol/kg for rumen fluid osmolality. Liquid amount changed with VFAmol (3.76 VFAmol+31.2; average within-study R2=0.69), but the relationship was weak between [VFA] and LIQ (0.524 LIQ+112.8; average within-study R2=0.12). The relationship between LIQ and VFAmol was likely a function of the osmotic gradient between rumen liquid and blood. The VFA are a major ruminal solute; VFAmol amounts can affect water flux in the rumen as similar tonicities of rumen fluid and blood are maintained. This also has a damping effect on ruminal solute concentration, creating the weak relationship between [VFA] and LIQ. Within studies, similar [VFA] were found in LIQ differing by 30 kg or more. The difference between minimum and maximum LIQ within cow within study was 12.7 kg (standard deviation=7.1), so inclusion of "cow" in analyses did not correct for the variation in LIQ. To allow valid comparisons of experimental treatments, responses must be on an equivalent basis; concentrations in different LIQ are not on an equivalent basis and so are not valid to use for comparing treatment effects. The [VFA] changed with VFAmol (5.80 VFAmol+86.3; average within-study R2=0.56). However, the ratio of [VFA] to VFAmol ranged from 9.0 to 24

  7. Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-11-12

    The brain of children affected by organic acidemias develop acute neurodegeneration linked to accumulation of endogenous toxic metabolites like glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids. Excitotoxic and oxidative events are involved in the toxic patterns elicited by these organic acids, although their single actions cannot explain the extent of brain damage observed in organic acidemias. The characterization of co-adjuvant factors involved in the magnification of early toxic processes evoked by these metabolites is essential to infer their actions in the human brain. Alterations in the kynurenine pathway (KP) - a metabolic route devoted to degrade tryptophan to form NAD(+) - produce increased levels of the excitotoxic metabolite quinolinic acid (QUIN), which has been involved in neurodegenerative disorders. Herein we investigated the effects of subtoxic concentrations of GA, 3-OHGA, MMA and PA, either alone or in combination with QUIN, on early toxic endpoints in rat brain synaptosomes. To establish specific mechanisms, we pre-incubated synaptosomes with different protective agents, including the endogenous N-methyl-d-aspartate (NMDA) receptor antagonist kynurenic acid (KA), the antioxidant S-allylcysteine (SAC) and the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME). While the incubation of synaptosomes with toxic metabolites at subtoxic concentrations produced no effects, their co-incubation (QUIN+GA, +3-OHGA, +MMA or +PA) decreased the mitochondrial function and increased reactive oxygen species (ROS) formation and lipid peroxidation. For all cases, this effect was partially prevented by KA and l-NAME, and completely avoided by SAC. These findings suggest that early damaging events elicited by organic acids involved in metabolic acidemias can be magnified by toxic synergism with QUIN, and this process is mostly mediated by oxidative stress, and in a lesser extent by excitotoxicity and

  8. Induction of a reversible cardiac lipidosis by a dietary long-chain fatty acid (erucic acid). Relationship to lipid accumulation in border zones of myocardial infarcts.

    PubMed Central

    Chien, K. R.; Bellary, A.; Nicar, M.; Mukherjee, A.; Buja, L. M.

    1983-01-01

    Previous studies have demonstrated that cardiac myocytes in the border zone of acute myocardial infarction become markedly overloaded with neutral lipid during the transition from reversible to irreversible injury. To examine directly the role of these changes in neutral lipid metabolism in the development of irreversible cellular injury and associated increases in tissue Ca2+ content, the authors fed rats large amounts of a fatty acid (erucic acid) that is poorly oxidized by the heart and that subsequently accumulates as neutral lipid. Rats fed a high erucic acid (C22:1) diet in the form of 20% rapeseed oil for 3-5 days had a fourfold increase in triglyceride (49.5 +/- 3.8 SEM mg/g wet wt versus 13.6 +/- 13, n = 4) and a 60% increase in long-chain acyl CoA content (166.0 +/- 21.9 versus 91.5 +/- 9.0 nM/g wet wt, n = 4), compared with controls. However, there was no change in long-chain acyl carnitine or total phospholipid content. Histochemical studies showed accumulation of numerous lipid droplets in the myocytes, and electron microscopy revealed localization of lipid vesicles in direct contact with mitochondria, thus mimicking the lipid-laden cells in the border zone regions of acute myocardial infarcts. The acute lipidosis was reversible with either continued feeding of erucic acid for several weeks or conversion to a normal diet. It was not associated with an increased tissue Ca2+ content, nor with cell necrosis. However, continued erucic acid intake for 3 months was associated with focal myocardial degeneration and loss of myocytes. These results suggest that acute increases in neutral lipids, as found in the border zone of acute myocardial infarction, may not be the cause of progression to irreversible damage during acute myocardial injury, but that the persistent presence of similar lipid material over months may result in focal myocardial degeneration. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:6859230

  9. Saxitoxins and okadaic acid group: accumulation and distribution in invertebrate marine vectors from Southern Chile.

    PubMed

    García, Carlos; Pérez, Francisco; Contreras, Cristóbal; Figueroa, Diego; Barriga, Andrés; López-Rivera, Américo; Araneda, Oscar F; Contreras, Héctor R

    2015-01-01

    Harmful algae blooms (HABs) are the main source of marine toxins in the aquatic environment surrounding the austral fjords in Chile. Huichas Island (Aysén) has an history of HABs spanning more than 30 years, but there is limited investigation of the bioaccumulation of marine toxins in the bivalves and gastropods from the Region of Aysén. In this study, bivalves (Mytilus chilenses, Choromytilus chorus, Aulacomya ater, Gari solida, Tagelus dombeii and Venus antiqua) and carnivorous gastropods (Argobuccinum ranelliformes and Concholepas concholepas) were collected from 28 sites. Researchers analysed the accumulation of STX-group toxins using a LC with a derivatisation post column (LC-PCOX), while lipophilic toxins (OA-group, azapiracids, pectenotoxins and yessotoxins) were analysed using LC-MS/MS with electrospray ionisation (+/-) in visceral (hepatopancreas) and non-visceral tissues (mantle, adductor muscle, gills and foot). Levels of STX-group and OA-group toxins varied among individuals from the same site. Among all tissue samples, the highest concentrations of STX-group toxins were noted in the hepatopancreas in V. antiqua (95 ± 0.1 μg STX-eq 100 g(-1)), T. dombeii (148 ± 1.4 μg STX-eq 100 g(-1)) and G. solida (3232 ± 5.2 μg STX-eq 100 g(-1); p < 0.05); in the adductor muscle in M. chilensis (2495 ± 6.4 μg STX-eq 100 g(-1); p < 0.05) and in the foot in C. concholepas (81 ± 0.7 μg STX-eq 100 g(-1)) and T. dombeii (114 ± 1.2 μg STX-eq 100 g(-1)). The highest variability of toxins was detected in G. solida, where high levels of carbamate derivatives were identified (GTXs, neoSTX and STX). In addition to the detected hydrophilic toxins, OA-group toxins were detected (OA and DTX-1) with an average ratio of ≈1:1. The highest levels of OA-group toxins were in the foot of C. concholepas, with levels of 400.3 ± 3.6 μg OA eq kg(-1) (p < 0.05) and with a toxic profile composed of 90% OA. A wide range of OA-group toxins was detected in M. chilensis with a

  10. NFX1-LIKE2 (NFXL2) Suppresses Abscisic Acid Accumulation and Stomatal Closure in Arabidopsis thaliana

    PubMed Central

    Lisso, Janina; Schröder, Florian; Fisahn, Joachim; Müssig, Carsten

    2011-01-01

    The NFX1-LIKE1 (NFXL1) and NFXL2 genes were identified as regulators of salt stress responses. The NFXL1 protein is a nuclear factor that positively affects adaptation to salt stress. The nfxl1-1 loss-of-function mutant displayed reduced survival rates under salt and high light stress. In contrast, the nfxl2-1 mutant, defective in the NFXL2 gene, and NFXL2-antisense plants exhibited enhanced survival under these conditions. We show here that the loss of NFXL2 function results in abscisic acid (ABA) overaccumulation, reduced stomatal conductance, and enhanced survival under drought stress. The nfxl2-1 mutant displayed reduced stomatal aperture under all conditions tested. Fusicoccin treatment, exposition to increasing light intensities, and supply of decreasing CO2 concentrations demonstrated full opening capacity of nfxl2-1 stomata. Reduced stomatal opening presumably is a consequence of elevated ABA levels. Furthermore, seedling growth, root growth, and stomatal closure were hypersensitive to exogenous ABA. The enhanced ABA responses may contribute to the improved drought stress resistance of the mutant. Three NFXL2 splice variants were cloned and named NFXL2-78, NFXL2-97, and NFXL2-100 according to the molecular weight of the putative proteins. Translational fusions to the green fluorescent protein suggest nuclear localisation of the NFXL2 proteins. Stable expression of the NFXL2-78 splice variant in nfxl2-1 plants largely complemented the mutant phenotype. Our data show that NFXL2 controls ABA levels and suppresses ABA responses. NFXL2 may prevent unnecessary and costly stress adaptation under favourable conditions. PMID:22073231

  11. Vertical organization of gamma-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex

    SciTech Connect

    DeFelipe, J.; Jones, E.G.

    1985-12-01

    Light and electron microscopic methods were used to examine the neurons in the monkey cerebral cortex labeled autoradiographically following the uptake and transport of (/sup 3/H)-gamma-aminobutyric acid (GABA). Nonpyramidal cell somata in the sensory-motor areas and primary visual area (area 17) were labeled close to the injection site and at distances of 1 to 1.5 mm beyond the injection site, indicating labeling by retrograde axoplasmic transport. This labeling occurred preferentially in the vertical dimension of the cortex. Prior injections of colchicine, an inhibitor of axoplasmic transport, abolished all labeling of somata except those within the injection site. In each area, injections of superficial layers (I to III) produced labeling of clusters of cell somata in layer V, and injections of the deep layers (V and VI) produced labeling of clusters of cell somata in layers II and III. In area 17, injections of the superficial layers produced dense retrograde cell labeling in three bands: in layers IVC, VA, and VI. Vertically oriented chains of silver grains linked the injection sites with the resulting labeled cell clusters. In all areas, the labeling of cells in the horizontal dimension was insignificant. Electron microscopic examination of labeled neurons confirms that the neurons labeled at a distance from an injection site are nonpyramidal neurons, many with somata so small that they would be mistaken for neuroglial cells light microscopically. They receive few axosomatic synapses, most of which have symmetric membrane thickenings. The vertical chains of silver grains overlie neuronal processes identifiable as both dendrites and myelinated axons, but unmyelinated axons may also be included. The clusters of (/sup 3/H)GABA-labeled cells are joined to one another and to adjacent unlabeled cells by junctional complexes, including puncta adherentia and multi-lamellar cisternal complexes.

  12. pH Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments

    PubMed Central

    Crayton, Samuel H.; Tsourkas, Andrew

    2011-01-01

    A wide variety of nanoparticle platforms are being developed for the diagnosis and treatment of malignancy. While many of these are passively targeted or rely on receptor-ligand interactions, metabolically directed nanoparticles provide a complementary approach. It is known that both primary and secondary events in tumorigensis alter the metabolic profile of developing and metastatic cancers. One highly conserved metabolic phenotype is a state of up-regulated glycolysis and reduced use of oxidative phosphorylation, even when oxygen tension is not limiting. This metabolic shift, termed the Warburg effect, creates a “hostile” tumor microenvironment with increased levels of lactic acid and low extracellular pH. In order to exploit this phenomenon and improve the delivery of nanoparticle platforms to a wide variety of tumors, a pH-responsive iron oxide nanoparticle was designed. Specifically, glycol chitosan (GC), a water-soluble polymer with pH titratable charge, was conjugated to the surface of superparamagnetic iron oxide nanoparticles (SPIO) to generate a T2*-weighted MR contrast agent that responds to alterations in its surrounding pH. Compared to control nanoparticles that lack pH sensitivity, these GC-SPIO nanoparticles demonstrated potent pH-dependent cellular association and MR contrast in vitro. In murine tumor models GC-SPIO also generated robust T2*-weighted contrast, which correlated with increased delivery of the agent to the tumor site, measured quantitatively by inductively coupled plasma mass spectrometry. Importantly, the increased delivery of GC-SPIO nanoparticles cannot be solely attributed to the commonly observed enhanced permeability and retention effect, since these nanoparticles have similar physical properties and blood circulation times as control agents. PMID:22035454

  13. Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea.

    PubMed

    Ghnaya, Tahar; Zaier, Hanen; Baioui, Raoudha; Sghaier, Souhir; Lucchini, Giorgio; Sacchi, Gian Attilio; Lutts, Stanley; Abdelly, Chedly

    2013-01-01

    The implication of organic acids in Pb translocation was studied in two species varying in shoot lead accumulation, Sesuvium portulacastrum and Brassica juncea. Citric, fumaric, malic and α-cetoglutaric acids were separated and determined by HPLC technique in shoots, roots and xylem saps of the both species grown in nutrient solutions added with 200 and 400 μM of Pb(II). The lead content of the xylem saps was determined by ICP-MS. Results showed that S. portulacastrum is more tolerant to Pb than B. juncea. Lead concentration in xylem sap of the S. portulacastrum was significantly greater than in that of B. juncea. For both species, a positive correlation was established between lead and citrate concentrations in xylem sap. However minor relationship was observed for fumaric, malic and α-cetoglutaric acids. In the shoots lead treatment also induced a significant increase in citric acid concentration. Both observations suggest the implication of citric acid in lead translocation and shoot accumulation in S. portulacastrum and B. juncea. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could explain its high potential to translocate and accumulate this metal in shoot suggesting their possible use to remediate Pb polluted soils. PMID:23026160

  14. Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids.

    PubMed

    Gao, Lu; Peng, Kejian; Xia, Yan; Wang, Guiping; Niu, Liyuan; Lian, Chunlan; Shen, Zhenguo

    2013-01-01

    Phytolacca americana L. can accumulate large amounts of heavy metals in its aerial tissues, especially cadmium (Cd) and manganese (Mn). It has great potential for use in phytoextraction of metals from multi-metal-contaminated soils. This study was conducted to further investigate the Cd- and Mn-tolerance strategies of this plant. Concentrations of non-protein thiols (NPTs) and phytochelatins (PCs) in leaves and roots increased significantly as the concentration of Cd in solution increased. The molar ratios of PCs:soluble Cd ranged from 1.8 to 3.6 in roots and 8.1 to 31.6 in leaves, suggesting that the cellular response involving PC synthesis was sufficient to complex Cd ions in the cytosol, especially that of leaves. In contrast, excess Mn treatments did not result in a significant increase in NPT or PC concentrations in leaves or roots. Oxalic acid concentrations in leaves of plants exposed to 2 or 20 mM Mn reached 69.4 to 89.3 mg (0.771 to 0.992 mmol) g(-1) dry weight, respectively, which was approximately 3.7- to 8.6-fold higher than the Mn level in the 0.6 M HCl extract. Thus, oxalic acid may play an important role in the detoxification of Mn. PMID:23487997

  15. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea.

    PubMed

    Liu, Yanling; Zhao, Zhongjuan; Xue, Zheyong; Wang, Long; Cai, Yunfei; Wang, Peng; Wei, Tiandi; Gong, Jing; Liu, Zhenhua; Li, Juan; Li, Shuo; Xiang, Fengning

    2016-01-01

    Paralogous members of the oxidosqualene cyclase (OSC) family encode a diversity of enzymes that are important in triterpenoid biosynthesis. This report describes the isolation of the Gentiana straminea gene GsAS2 that encodes a β-amyrin synthase (βAS) enzyme. Unlike its previously isolated paralog GsAS1, GsAS2 lacks introns. Its predicted protein product was is a 759 residue polypeptide that shares high homology with other known β-amyrin synthases (βASs). Heterologously expressed GsAS2 generates more β-amyrin in yeast than does GsAS1. Constitutive over-expression of GsAS2 resulted in a 5.7 fold increase in oleanolic acid accumulation, while over-expression of GsAS1 led to a 3 fold increase. Additionally, RNAi-directed suppression of GsAS2 and GsAS1 in G. straminea decreased oleonolic acid levels by 65.9% and 21% respectively, indicating that GsAS2 plays a more important role than GsAS1 in oleanolic acid biosynthesis in G. straminea. We uses a docking model to explore the catalytic mechanism of GsAS1/2 and predicted that GsAS2, with its Y560, have higher efficiency than GsAS1 and mutated versions of GsAS2 in β-amyrin produce. When the key residue in GsAS2 was mutagenized, it produced about 41.29% and 71.15% less β-amyrin than native, while the key residue in GsAS1 was mutagenized to that in GsAS2, the mutant produced 38.02% more β-amyrin than native GsAS1. PMID:27624821

  16. Microbial Electrochemical Monitoring of Volatile Fatty Acids during Anaerobic Digestion.

    PubMed

    Jin, Xiangdan; Angelidaki, Irini; Zhang, Yifeng

    2016-04-19

    Volatile fatty acid (VFA) concentration is known as an important indicator to control and optimize anaerobic digestion (AD) process. In this study, an innovative VFA biosensor was developed based on the principle of a microbial desalination cell. The correlation between current densities and VFA concentrations was first evaluated with synthetic digestate. Two linear relationships were observed between current densities and VFA levels from 1 to 30 mM (0.04 to 8.50 mA/m(2), R(2) = 0.97) and then from 30 to 200 mM (8.50 to 10.80 mA/m(2), R(2) = 0.95). The detection range was much broader than that of other existing VFA biosensors. The biosensor had no response to protein and lipid which are frequently found along with VFAs in organic waste streams from AD, suggesting the selective detection of VFAs. The current displayed different responses to VFA levels when different ionic strengths and external resistances were applied, though linear relationships were always observed. Finally, the biosensor was further explored with real AD effluents and the results did not show significance differences with those measured by GC. The simple and efficient biosensor showed promising potential for online, inexpensive, and reliable measurement of VFA levels during AD and other anaerobic processes. PMID:27054267

  17. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  18. Influence of temperature on volatile fatty acid production and microbial community structure during anaerobic fermentation of microalgae.

    PubMed

    Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Kim, Hye Gyeong; Park, Jong Moon

    2015-09-01

    The objectives of this study were to investigate the effect of operating temperature on volatile fatty acids (VFAs) production from microalgal biomass, and to clarify the relationships between VFAs accumulation at different temperatures and the corresponding bacterial communities. The VFA yields were 0.10±0.017, 0.12±0.008, and 0.34±0.009 g/g VS at 35, 45, and 55 °C, respectively. The proportion of acetic acid decreased from 85.6% to 65.8% as operating temperature increased, whereas that of propionic acid increased from near 0% to 15.5% and that of iso-valeric acid remained relatively stable (10.2-11.2%). Bacterial communities at different operating temperatures consisted mostly of the phyla Proteobacteria, Bacteroidetes, and Firmicutes, which can degrade organic compounds effectively. Bacillus sp. was more predominant at 55 °C than at mesophilic temperatures, suggesting that this microorganism contributed significantly to the higher hydrolysis rate and VFA yield at this operating temperature. PMID:25791331

  19. Dietary marker effects on fecal microbial ecology, fecal VFA, nutrient digestibility coefficients, and growth performance in finishing pigs.

    PubMed

    Kerr, B J; Weber, T E; Ziemer, C J

    2015-05-01

    Use of indigestible markers such as Cr2O3, Fe2O3, and TiO2 are commonly used in animal studies to evaluate digesta rate of passage and nutrient digestibility. Yet, the potential impact of indigestible markers on fecal microbial ecology and subsequent VFA generation is not known. Two experiments utilizing a total of 72 individually fed finishing pigs were conducted to describe the impact of dietary markers on fecal microbial ecology, fecal ammonia and VFA concentrations, nutrient digestibility, and pig performance. All pigs were fed a common diet with no marker or with 0.5% Cr2O3, Fe2O3, or TiO2. In Exp. 1, after 33 d of feeding, fresh fecal samples were collected for evaluation of microbial ecology, fecal ammonia and VFA concentrations, and nutrient digestibility, along with measures of animal performance. No differences were noted in total microbes or bacterial counts in pig feces obtained from pigs fed the different dietary markers while Archaea counts were decreased (P = 0.07) in feces obtained from pigs fed the diet containing Fe2O 3compared to pigs fed the control diet. Feeding Cr2O3, Fe2O3, or TiO2 increased fecal bacterial richness (P = 0.03, 0.01, and 0.10; respectively) when compared to pigs fed diets containing no marker, but no dietary marker effects were noted on fecal microbial evenness or the Shannon-Wiener index. Analysis of denaturing gradient gel electrophoresis gels did not reveal band pattern alterations due to inclusion of dietary markers in pig diets. There was no effect of dietary marker on fecal DM, ammonia, or VFA concentrations. Pigs fed diets containing Cr2O3 had greater Ca, Cu, Fe, and P (P ≤ 0.02), but lower Ti ( P= 0.08) digestibility compared to pigs fed the control diet. Pigs fed diets containing Fe2O3 had greater Ca (P = 0.08) but lower Ti (P = 0.01) digestibility compared to pigs fed the control diet. Pigs fed diets containing TiO2 had greater Fe and Zn (P ≤ 0.09), but lower Ti ( P= 0.01) digestibility compared to pigs fed the

  20. Integrin-targeted zwitterionic polymeric nanoparticles with acid-induced disassembly property for enhanced drug accumulation and release in tumor.

    PubMed

    Huang, Pingsheng; Song, Huijuan; Wang, Weiwei; Sun, Yu; Zhou, Junhui; Wang, Xue; Liu, Jinjian; Liu, Jianfeng; Kong, Deling; Dong, Anjie

    2014-08-11

    Reasonably structural design of nanoparticles (NPs) to combine functions of prolonged systemic circulation, enhanced tumor targeting and specific intracellular drug release is crucial for antitumor drug delivery. Combining advantages of Arg-Gly-Asp (RGD) for active tumor targeting, zwitterionic polycarboxybetaine methacrylate (PCB) for prolonged systemic circulation, poly(2-(diisopropylamino) ethyl methacrylate) (PDPA) for acid-triggered intracellular release, novel RGD-PCB-b-PDPA (RGD-PCD) block copolymers were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization and followed by functionalization with RGD. Doxorubicine (DOX) was encapsulated within the RGD-PCD NPs as model medicine (RGD-PCD/DOX NPs). With ultra pH-sensitivity of PDPA, the drug release was restrained at pH 7.4 for only 24% within 36 h, which was increased to 60% at pH 6.0 within 24 h, and released more rapidly at pH 5.0 for 100% within 5 h, indicating that the RGD-PCD/DOX NPs were able to turn drug release "off" at neutral pH (e.g., systemic circulation) whereas "on" under acidic conditions (e.g., inside endo/lysosomes). Furthermore, the results of fluorescence microscopy and flow cytometry analysis demonstrated improved internalization of RGD-PCD/DOX NPs in HepG2 cells via integrin-mediated endocytosis with rapid DOX release intracellularly. Consequently, the RGD-PCD/DOX NPs showed considerable cytotoxicity against HepG2 and HeLa cells in comparison with free DOX. Importantly, the RGD-PCD/DOX NPs exhibited little protein adsorption property with excellent serum stability, which led to prolonged systemic circulation and enhanced tumor accumulation in tumor-bearing nude mice. Therefore, this multifunctional RGD-PCD NPs, which represented the flexible design approach, showed great potential for the development of novel nanocarriers in tumor-targeted drug delivery. PMID:25054812

  1. Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light

    SciTech Connect

    Talbott, L.D.; Zeiger, E. )

    1993-08-01

    Changes in neutral sugar and organic acid content of guard cells were quantitated by high-performance liquid chromatography during stomatal opening in different light qualities. Sonicated Vicia faba epidermal peels were irradiated with 10 [mu]mol m[sup [minus]2] s[sup [minus]1] of blue light, a fluence rate insufficient for the activation of guard cell photosynthesis, or 125 [mu]mol m[sup [minus]2] s[sup [minus]1] of red light, in the presence of 1mM KCl, 0.1 mM CaCl[sub 2]. The low-fluence-rate blue light stimulated an average net stomatal opening of 4.7 [mu]m in 2 h, whereas the saturating fluence rate of red light stimulated an average net opening of 3.8 [mu]m in 2 h. Under blue light, the malate content of guard cells increased to 173% of the initial level during the first 30 min of opening and declined as opening continued. Sucrose levels continuously rose throughout the blue light-stimulated opening, reaching 215% of the initial level after 2 h. The starch hydrolysis products maltose and maltotriose remained elevated at all times. Under red light, guard cells showed very little increase in organic acid or maltose levels, whereas sucrose levels increased to 208% of the initial level after 2 h. Total measured organic metabolite concentrations were correlated with stomatal apertures in all cases except where substantial malate increases occurred. These results support the hypothesis that light quality modulates alternative mechanisms of osmotic accumulation guard cells, including potassium uptake, photosynthetic sugar production, and starch breakdown. 29 refs., 5 figs., 2 tab.

  2. Toxic effects of oil sand naphthenic acids on the biomass accumulation of 21 potential phytoplankton remediation candidates.

    PubMed

    Woodworth, Adam P J; Frank, Richard A; McConkey, Brendan J; Müller, Kirsten M

    2012-12-01

    The oil sands of northern Alberta, Canada contain an estimated 170 billion barrels of crude oil. Extraction processes produce large amounts of liquid tailings known as oil sand process affected water (OSPW) that are toxic to aquatic organisms. Naphthenic acids (NAs), and their sodium salts, represent a significant contributor to the toxicity of these waters. Due to the recalcitrant nature of these compounds, an effective mode of remediation has yet to be established. This study investigates the suitability of the use of phytoplankton for remediation efforts based on two criteria: the ability of phytoplankton strains to withstand the toxic effects of NAs, and their rate of biomass accumulation. A total of 21 phytoplankton strains were isolated from waters containing NAs, cultured, and maintained under unialgal conditions. These strains were then exposed to NAs in concentrations ranging from 0mg L(-1) to 1000mg L(-1) over a 14 day period. Inhibition of growth was observed at 30mg L(-1) NA (one strain), 100mg L(-1) NA (one strain), 300mg L(-1) NA (six strains), and 1000mg L(-1) NA (six strains). Five strains failed to show any growth inhibition at any test concentration and two strains could not be analysed due to poor growth during the test period. Strains were then ranked based on their suitability for use in remediation efforts. PMID:23031586

  3. Accumulated Metabolites of Hydroxybutyric Acid Serve as Diagnostic and Prognostic Biomarkers of Ovarian High-Grade Serous Carcinomas.

    PubMed

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian; Darb-Esfahani, Silvia; Braicu, Elena Ioana

    2016-02-15

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but it is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  4. Accumulated metabolites of hydroxybutyric acid serve as diagnostic and prognostic biomarkers of ovarian high-grade serous carcinomas

    PubMed Central

    Hilvo, Mika; de Santiago, Ines; Gopalacharyulu, Peddinti; Schmitt, Wolfgang D.; Budczies, Jan; Kuhberg, Marc; Dietel, Manfred; Aittokallio, Tero; Markowetz, Florian; Denkert, Carsten; Sehouli, Jalid; Frezza, Christian

    2016-01-01

    Ovarian cancer is a heterogeneous disease of low prevalence, but poor survival. Early diagnosis is critical for survival, but is often challenging because the symptoms of ovarian cancer are subtle and become apparent only during advanced stages of the disease. Therefore, the identification of robust biomarkers of early disease is a clinical priority. Metabolomic profiling is an emerging diagnostic tool enabling the detection of biomarkers reflecting alterations in tumor metabolism, a hallmark of cancer. In this study, we performed metabolomic profiling of serum and tumor tissue from 158 patients with high-grade serous ovarian cancer (HGSOC) and 100 control patients with benign or non-neoplastic lesions. We report metabolites of hydroxybutyric acid (HBA) as novel diagnostic and prognostic biomarkers associated with tumor burden and patient survival. The accumulation of HBA metabolites caused by HGSOC was also associated with reduced expression of succinic semialdehyde dehydrogenase (encoded by ALDH5A1), and with the presence of an epithelial-to-mesenchymal transition (EMT) gene signature, implying a role for these metabolic alterations in cancer cell migration and invasion. In conclusion, our findings represent the first comprehensive metabolomics analysis in HGSOC and propose a new set of metabolites as biomarkers of disease with diagnostic and prognostic capabilities. PMID:26685161

  5. Influence of serum proteins on the accumulation of aminolaevulinic acid-induced protoporphyrin IX in cells in culture

    NASA Astrophysics Data System (ADS)

    Weir, M. M.; Vernon, David I.; Brown, Stanley B.

    1995-03-01

    Aminolaevulinic acid (ALA) induced porphyrin biosynthesis and the resulting in vitro phototoxicity have been determined in both SV40 transformed Swiss mouse 3T3 fibroblasts and PtK2 epithelial cells. Both cell lines respond to the addition of exogenous ALA, producing porphyrin linearly with ALA concentrations up to 0.3 mM. Notably the only accumulating porphyrin detected by HPLC was PpIX. Although the levels of PpIX are both dependent on the time and concentration used, the final intracellular porphyrin concentration is dictated by the presence of serum. When ALA is added in medium containing 10% new born calf serum, 90 - 95% of the induced porphyrin appears in the incubation medium. In the absence of serum, the intracellular PpIX levels are maintained and only under these conditions can successful in vitro PDT be performed. Gel permeation chromatography has indicated that the afflux of PpIX is promoted by the low density and high density lipoproteins, with an unknown protein (mw < 66000) contributing significantly to the effect seen. It appears that this protein is present at very low concentrations in both foetal and new born calf serum.

  6. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome.

    PubMed

    Jacome-Sosa, M Miriam; Borthwick, Faye; Mangat, Rabban; Uwiera, Richard; Reaney, Martin J; Shen, Jianheng; Quiroga, Ariel D; Jacobs, René L; Lehner, Richard; Proctor, Spencer D; Nelson, Randal C

    2014-07-01

    Trans11-18:1 (vaccenic acid, VA) is one of the most predominant naturally occurring trans fats in our food chain and has recently been shown to exert hypolipidemic effects in animal models. In this study, we reveal new mechanism(s) by which VA can alter body fat distribution, energy utilization and dysfunctional lipid metabolism in an animal model of obesity displaying features of the metabolic syndrome (MetS). Obese JCR:LA-cp rats were assigned to a control diet that included dairy-derived fat or the control diet supplemented with 1% VA. VA reduced total body fat (-6%), stimulated adipose tissue redistribution [reduced mesenteric fat (-17%) while increasing inguinal fat mass (29%)] and decreased adipocyte size (-44%) versus control rats. VA supplementation also increased metabolic rate (7%) concomitantly with an increased preference for whole-body glucose utilization for oxidation and increased insulin sensitivity [lower HOMA-IR (-59%)]. Further, VA decreased nonalcoholic fatty liver disease activity scores (-34%) and reduced hepatic (-27%) and intestinal (-39%) triglyceride secretion relative to control diet, while exerting differential transcriptional regulation of SREBP1 and FAS amongst other key genes in the liver and the intestine. Adding VA to dairy fat alleviates features of MetS potentially by remodeling adipose tissue and attenuating ectopic lipid accumulation in a rat model of obesity and MetS. Increasing VA content in the diet (naturally or by fortification) may be a useful approach to maximize the health value of dairy-derived fats. PMID:24775093

  7. Pseudomonas aeruginosa Cytotoxicity Is Attenuated at High Cell Density and Associated with the Accumulation of Phenylacetic Acid

    PubMed Central

    Wang, Jianhe; Dong, Yihu; Zhou, Tielin; Liu, Xiaoling; Deng, Yinyue; Wang, Chao; Lee, Jasmine; Zhang, Lian-Hui

    2013-01-01

    Background P. aeruginosa is known to cause acute cytotoxicity against various human and animal cells and tissues. Methodology/Findings Intriguingly, however, in this study we noticed that while a low cell density inoculum of P. aeruginosa caused severe cytotoxicity against human lung tissue cell line A549, increasing the cell density of bacterial inoculum led to decreased cytotoxicity. Addition of the supernatants from high density bacterial culture to low cell density inoculum protected the human cells from bacterial cytotoxic damage, suggesting that P. aeruginosa may produce and accumulate an inhibitory molecule(s) counteracting its pathogenic infection. The inhibitor was purified from the stationary-phase culture supernatants of P. aeruginosa strain PAO1 using bioassay-guided high performance liquid chromatography (HPLC), and characterized to be phenylacetic acid (PAA) by mass spectrometry and nuclear magnetic resonance spectroscopy. Microarray analysis revealed that treatment of P. aeruginosa with PAA down-regulated the transcriptional expression of Type III secretion system (T3SS) genes and related regulatory genes including rsmA and vfr, which were confirmed by transcriptional and translational analysis. Conclusions Identification of bacterial metabolite PAA as a T3SS-specific inhibitor explains this intriguing inverse cell-density-dependent-cytotoxicity phenomenon as T3SS is known to be a key virulence factor associated with cytotoxicity and acute infection. The findings may provide useful clues for design and development of new strategies to combat this formidable bacterial pathogen. PMID:23555919

  8. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  9. Bioavailability of Fullerene under Environmentally Relevant Conditions: Effects of Humic Acid and Fetal Bovine Serum on Accumulation in Lipid Bilayers and Cellular Uptake.

    PubMed

    Ha, Yeonjeong; Wang, Xianzhe; Liljestrand, Howard M; Maynard, Jennifer A; Katz, Lynn E

    2016-07-01

    Carbon fullerene (C60) has emerged at the forefront of nanoscale research and application due to its unique properties. As the production of this nanoparticle rapidly increases, it can be released into natural aquatic environments and can accumulate in biological systems. This research examined the effects of humic acid and fetal bovine serum (FBS), which are ubiquitous in aquatic environments and representative of blood plasma in living organisms, respectively, on bioavailability of fullerene. Bioavailability was investigated using in vitro methods for lipid membrane accumulation and cellular uptake studies. Humic acid and FBS significantly changed the characteristics of fullerene including its particle size and surface charge. The effects of humic acid on lipid accumulation of fullerene depended on the lipid head charge. FBS also significantly decreased the lipid accumulation when positively charged and zwitterionic head groups were present on the lipids, possibly due to the higher steric repulsion of the protein coated nanoparticles. In addition, both humic acid and FBS protein effectively lowered the amounts of fullerene taken up by Caco-2 cells, which are derived from a human colorectal adenocarcinoma and have similar functions to the small intestinal epithelium. Results of this study suggest that surface modification of fullerene by environmentally relevant matrices can significantly affect the biological transport, as well as the possible toxicity of this nanomaterial. PMID:26943027

  10. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  11. Amylose-like polysaccharide accumulation and hyphal cell-surface structure in relation to citric acid production by Aspergillus niger in shake culture.

    PubMed

    Kirimura, K; Yusa, S; Rugsaseel, S; Nakagawa, H; Osumi, M; Usami, S

    1999-09-01

    When 120 mg glucose/ml was used as a carbon source, in shake culture Aspergillus niger Yang no. 2 maximally produced only 15.4 mg citric acid/ml but accumulated 3.0 mg extracellular polysaccharide/ml. The polysaccharide secreted by mycelia of Yang no. 2 in shake culture was confirmed to be an amylose-like alpha-1,4-glucan by hydrolysis analysis with acid, amylase and glucoamylase. However, in static cultures, such as semisolid and surface cultures free from physical stresses caused by shaking damage, Yang no. 2 produced more citric acid but did not accumulate the polysaccharide. With cultivation time in shake culture, the amount of extracellular polysaccharide and the viscosity of the culture broth increased. The increase of shaking speed caused a remarkable increase in the accumulation of extracellular polysaccharide, e.g. 11.2 mg extracellular polysaccharide/ml was accumulated in the medium at a shaking speed of 200 rpm. The addition of 2.0 mg carboxymethylcellulose (CMC)/ml as a viscous additive to the medium reduced drastically the amount of extracellular polysaccharide accumulated to 1.5 mg/ml, but increased the citric acid produced to 52.0 mg/ml. However, intracellular polysaccharide accumulation kept up a steady rate of 0.26 microgram/mg dried mycelium through the entire period of cultivation. The addition of 3.0 mg polysaccharide/ml purified from the culture broth to the medium at the start of a culture resulted in a decrease of extracellular polysaccharide accumulation but an increase of citric acid accumulation. From electronmicroscopic observation, cell surfaces of hyphae cultivated with CMC were smooth, while hyphae cultivated without CMC had fibrous and granular polysaccharide on the cell surface. These results suggested that Yang no. 2 secreted the polysaccharide on the cell surface as a viscous substance and/or a shock absorber to protect itself from physical stresses caused by shaking damage in shake culture. PMID:10531655

  12. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes

    PubMed Central

    2011-01-01

    Background Studies have demonstrated the beneficial effect of palmitoleic acid (C16:1 n-7) on reducing muscle insulin resistance and preventing beta-cell apoptosis. However, the effect of palmitoleic acid on diabetes remains to be elucidated. The aim of this study was to examine the antidiabetic effect of palmitoleic acid in KK-Ay mice, a spontaneous model for studies of obese type 2 diabetes with low insulin sensitivity. Methods KK-Ay mice were orally administered vehicle, 300 mg/kg of palmitoleic acid, or 300 mg/kg of palmitic acid (C16:0) on a daily basis for 4 weeks. Results Palmitoleic acid reduced body weight increase, ameliorated the development of hyperglycemia and hypertriglyceridemia, and improved insulin sensitivity. In addition, hepatic characteristics were significantly affected, as weight of the liver and hepatic triglyceride levels were lower in the palmitoleic acid group when compared to the control (vehicle and palmitic acid groups). Oil red O staining clearly indicated reduced hepatic lipid accumulation in response to palmitoleic acid. Furthermore, palmitoleic acid down-regulated mRNA expressions of proinflammatory adipocytokine genes (TNFα and resistin) in white adipose tissue and lipogenic genes (SREBP-1, FAS, and SCD-1) in liver. Conclusions These results suggest that palmitoleic acid improves hyperglycemia and hypertriglyceridemia by increasing insulin sensitivity, in part owing to suppressing proinflammatory gene expressions and improving hepatic lipid metabolism in diabetic mice. PMID:21774832

  13. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. PMID:24308505

  14. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats

    PubMed Central

    Chen, Ya-Ling; Peng, Hsiang-Chi; Wang, Xiang-Dong

    2015-01-01

    Background In this study, we evaluated the influence of an ethanol-containing diet with high saturated fatty acids (SFAs) on alcoholic liver disease (ALD) in rats. Methods Male Wistar rats weighing about 160 g were divided into four groups: an ethanol (E) group fed an ethanol-containing liquid diet with 36% total calories as fat (corn oil, olive oil and safflower oil); a control (C) group pair-fed an isoenergetic diet without ethanol; an ethanol with saturated fat (EHS) group fed an ethanol-containing diet which contained 40% total calories as fat (90% lard); and a control with saturated fat (CHS) group fed an isoenergetic diet without ethanol, which contained 40% total calories as fat. Results After 8 weeks of treatment, the liver weight and plasma aspartate aminotransferase (AST) activities in E and EHS groups were significantly higher than those of C group. Significantly higher scores of inflammation, necrosis, and fatty changes were found in E group, whereas significantly higher scores of necrosis, bile duct hyperplasia, and fibrosis were found in EHS group. Although significantly lower plasma adiponectin concentrations were observed in both E and EHS groups, compared to C group, plasma adiponectin in EHS group was significantly higher than that in E group. There was no change in hepatic peroxisome proliferator activated receptor (PPAR)-α expression between E and C groups, and rats in EHS group showed a significantly elevated level compared to the other groups. A lower hepatic sirtuins (SIRT)-1 level was found in E group, but it did not reach statistical significance. Moreover, the highest plasma TGF-β1 level was found in EHS group. Compared to C group, the hepatic reduced glutathione/oxidized glutathione ratio and thiobarbituric acid (TBA)-reactive substance level were significantly increased in E and EHS groups; however, there was no significant difference between E and EHS groups. Significantly increased hepatic CYP2E1 expression was observed in both E and

  15. Aspartic Acid Racemization and Collagen Degradation Markers Reveal an Accumulation of Damage in Tendon Collagen That Is Enhanced with Aging*

    PubMed Central

    Thorpe, Chavaunne T.; Streeter, Ian; Pinchbeck, Gina L.; Goodship, Allen E.; Clegg, Peter D.; Birch, Helen L.

    2010-01-01

    Little is known about the rate at which protein turnover occurs in living tendon and whether the rate differs between tendons with different physiological roles. In this study, we have quantified the racemization of aspartic acid to calculate the age of the collagenous and non-collagenous components of the high strain injury-prone superficial digital flexor tendon (SDFT) and low strain rarely injured common digital extensor tendon (CDET) in a group of horses with a wide age range. In addition, the turnover of collagen was assessed indirectly by measuring the levels of collagen degradation markers (collagenase-generated neoepitope and cross-linked telopeptide of type I collagen). The fractional increase in d-Asp was similar (p = 0.7) in the SDFT (5.87 × 10−4/year) and CDET (5.82 × 10−4/year) tissue, and d/l-Asp ratios showed a good correlation with pentosidine levels. We calculated a mean (±S.E.) collagen half-life of 197.53 (±18.23) years for the SDFT, which increased significantly with horse age (p = 0.03) and was significantly (p < 0.001) higher than that for the CDET (34.03 (±3.39) years). Using similar calculations, the half-life of non-collagenous protein was 2.18 (±0.41) years in the SDFT and was significantly (p = 0.04) lower than the value of 3.51 (±0.51) years for the CDET. Collagen degradation markers were higher in the CDET and suggested an accumulation of partially degraded collagen within the matrix with aging in the SDFT. We propose that increased susceptibility to injury in older individuals results from an inability to remove partially degraded collagen from the matrix leading to reduced mechanical competence. PMID:20308077

  16. Effect of leachate recirculation and aeration on volatile fatty acid concentrations in aerobic and anaerobic landfill leachate.

    PubMed

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2012-02-01

    The main aim of this study was to investigate the effect of leachate recirculation and aeration on volatile fatty acid (VFA) concentrations in aerobic and anaerobic landfill leachate samples. In this study, two aerobic (A1, A2) and two anaerobic (AN1, AN2) reactors with (A1, AN1) and without (A2, AN2) leachate recirculation were used in order to determine the change of volatile fatty acids components in landfill leachate. VFA degradation rate was almost 100% in each reactor but the degradation rate show notable differences. In aerobic landfill reactors, total VFA concentrations decreased below 1000 mg L(-1) after 120 days of operation and only caproic and acetic acids were determined at this time. The stabilization of the VFA concentrations takes about 350 and 450 days for AN1 and AN2 reactors, respectively. VFA concentrations were higher than that of aerobic reactors because of the acidogenic phase occurred in anaerobic environment. According to the results of VFA components, the stabilization of the waste was achieved after 120 days of operation in aerobic landfills. At this time, anaerobic reactors were in the acidogenic phase which results with the high concentrations of VFA. The results also indicated that leachate recirculation does not affect the degradation rate in aerobic landfills as much as it does in anaerobic landfills. PMID:21930522

  17. Risk factors for small bowel angioectasia: The impact of visceral fat accumulation

    PubMed Central

    Yamada, Atsuo; Niikura, Ryota; Kobayashi, Yuka; Suzuki, Hirobumi; Yoshida, Shuntaro; Watabe, Hirotsugu; Yamaji, Yutaka; Hirata, Yoshihiro; Koike, Kazuhiko

    2015-01-01

    AIM: To investigate visceral fat accumulation in association with the risk of small bowel angioectasia. METHODS: We retrospectively investigated 198 consecutive patients who underwent both capsule endoscopy and CT for investigation of obscure gastrointestinal bleeding (OGIB) from January 2009 to September 2013. The visceral fat area (VFA) and subcutaneous fat area were measured by CT, and information on comorbidities, body mass index, and medications was obtained from their medical records. Logistic regression analysis was used to evaluate associations. RESULTS: Capsule endoscopy revealed small bowel angioectasia in 18/198 (9.1%) patients with OGIB. Compared to patients without small bowel angioectasia, those with small bowel angioectasia had a significantly higher VFA (96 ± 76.0 cm2 vs 63.4 ± 51.5 cm2, P = 0.016) and a higher prevalence of liver cirrhosis (61% vs 22%, P < 0.001). The proportion of patients with chronic renal failure was higher in patients with small bowel angioectasia (22% vs 9%, P = 0.11). There were no significant differences in subcutaneous fat area or waist circumference. The prevalence of small bowel angioectasia progressively increased according to the VFA. Multivariate analysis showed that the VFA [odd ratio (OR) for each 10-cm2 increment = 1.1; [95% confidence interval (CI): 1.02-1.19; P = 0.021] and liver cirrhosis (OR = 6.1, 95%CI: 2.2-18.5; P < 0.001) were significant risk factors for small bowel angioectasia. CONCLUSION: VFA is positively associated with the prevalence of small bowel angioectasia, for which VFA and liver cirrhosis are independent risk factors in patients with OGIB. PMID:26109811

  18. Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici.

    PubMed

    Chen, Yinguang; Li, Xiang; Zheng, Xiong; Wang, Dongbo

    2013-02-01

    Volatile fatty acids (VFA) can be used as the additional carbon source of biological nutrient removal (BNR), and the increase of propionic acid percentage in VFA has been reported to facilitate the performance of BNR. In this study a new method for significantly improving the propionic acid fraction in VFA derived from waste activated sludge was reported, which included (1) mixing food waste with sludge and pre-fermenting the mixture (first stage), and (2) separating the mixture, sterilizing the pre-fermentation liquid and fermenting it after inoculating Propionibacterium acidipropionici (second stage). By optimizing the first stage with response surface methodology, a propionic acid content of 68.4% with propionic acid concentration of 7.13 g COD/L could be reached in the second stage, which was much higher than that reported previously. Lactic acid was found to be the most abundant product of the first stage and it served as the substrate for propionic acid production in the second stage. Further investigation showed that during the first stage the addition of food waste to the pre-fermentation system of sludge significantly increased the generation of lactic acid due to the synergistic effect, which resulted in the improvement of propionic acid production in the second stage. Finally, the use of propionic acid-enriched VFA as a superior carbon source of BNR was tested, and its performance was observed to be much better than using acetic acid-enriched VFA derived from sludge by the previously documented method. PMID:23219005

  19. Ascorbic Acid for the Safe Use of a Sunscreen Agent: Accumulation of Nano Zinc Oxide and Titanium Dioxide on the Skin

    PubMed Central

    Fathi-Azarbayjani, Anahita; Tan, Poh Leng; Chan, Yew Ying; Chan, Sui Yung

    2013-01-01

    Objective Physical UV absorbers such as titanium dioxide or zinc oxide have been found to be highly protective against ultraviolet radiation. Sun protection factor depends on the accumulation of the minerals on the skin. UV-absorbing agents must accumulate within the upper skin layers in order to provide a dense light-absorbing layer and guarantee water resistance. The aim of this work was to increase the skin deposition and efficacy of sunscreens without increasing their skin permeation. The application possibility of EDX to determine the quantitative elemental composition of zinc and titanium on the skin surface was studied. Method The changes induced in the skin deposition of physical UV absorbers in conjunction with ascorbic acid were studied. In vitro skin permeation and X-ray elemental analysis were carried out to determine the mineral skin deposition effect of ascorbic acid. Key findings Results indicate that ascorbic acid may significantly increase the skin deposition (p < 0.05) of these minerals on the skin without increasing their skin permeation (p > 0.05). Flow through diffusion cell and X-ray elemental analyses appear to be complementary and show that ascorbic acid is able to increase accumulation of sunscreen on the skin. PMID:24482778

  20. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    PubMed

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa. PMID:27043507

  1. Dietary supplementation with phytosterol and ascorbic acid reduces body mass accumulation and alters food transit time in a diet-induced obesity mouse model

    PubMed Central

    2011-01-01

    Previous research indicates that animals fed a high fat (HF) diet supplemented with disodium ascorbyl phytostanyl phosphate (DAPP) exhibit reduced mass accumulation when compared to HF control. This compound is a water-soluble phytostanol ester and consists of a hydrophobic plant stanol covalently bonded to ascorbic acid (Vitamin C). To provide insight into the mechanism of this response, we examined the in vivo effects of a high fat diet supplemented with ascorbic acid (AA) in the presence and absence of unesterified phytosterols (PS), and set out to establish whether the supplements have a synergistic effect in a diet-induced obesity mouse model. Our data indicate that HF diet supplementation with a combination of 1% w/w phytosterol and 1% w/w ascorbic acid results in reduced mass accumulation, with mean differences in absolute mass between PSAA and HF control of 10.05%; and differences in mass accumulation of 21.6% (i.e. the PSAA group gained on average 21% less mass each week from weeks 7-12 than the HF control group). In our previous study, the absolute mass difference between the 2% DAPP and HF control was 41%, while the mean difference in mass accumulation between the two groups for weeks 7-12 was 67.9%. Mass loss was not observed in animals supplemented with PS or AA alone. These data suggest that the supplements are synergistic with respect to mass accumulation, and the esterification of the compounds further potentiates the response. Our data also indicate that chronic administration of PS, both in the presence and absence of AA, results in changes to fecal output and food transit time, providing insight into the possibility of long-term changes in intestinal function related to PS supplementation. PMID:21711516

  2. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth

    PubMed Central

    Castellarin, Simone D.; Gambetta, Gregory A.; Wada, Hiroshi; Krasnow, Mark N.; Cramer, Grant R.; Peterlunger, Enrico; Shackel, Kenneth A.; Matthews, Mark A.

    2016-01-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311

  3. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth.

    PubMed

    Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A

    2016-02-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development. PMID:26590311

  4. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    PubMed

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation. PMID:26551651

  5. Free Fatty Acids Increase Intracellular Lipid Accumulation and Oxidative Stress by Modulating PPARα and SREBP-1c in L-02 Cells.

    PubMed

    Qin, Shumin; Yin, Jinjin; Huang, Keer

    2016-07-01

    Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L-02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L-02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L-02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator-activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein-1c (SREBP-1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L-02 cells by upregulating SREBP-1c expression through the suppression of PPARα. PMID:27270405

  6. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages.

    PubMed

    Gong, Yangmin; Guo, Xiaojing; Wan, Xia; Liang, Zhuo; Jiang, Mulan

    2013-01-01

    Alteration of lipid biosynthesis is one of important biochemical changes when oleaginous microalgae grow under varied environmental conditions. The effects of culture age and nutrient limitation on triacylglycerol (TAG) accumulation and fatty acid content were investigated in four eicosapentaenoic acid (EPA)-rich marine microalgae. The amounts of TAGs in Chaetoceros sp., Phaeodactylum tricornutum and Nannochloropsis oculata increased sharply from day 4 to day 11, and then the former two remained nearly unchanged while the latter declined gradually during the batch culture. In contrast, no marked increase in TAG accumulation was observed in Pavlova viridis during the culture. Changes in total fatty acid (TFA) content mirrored those observed for TAG accumulation, while the EPA content reached a maximum generally at day 7 or 11 in the range of 11 - 32 mg g(-1) dry cell weight (DCW) and then declined. Nitrogen limitation led to a gradual increase in the amounts of TAGs from N. oculata pronouncedly but almost no change in other three species. The TFA content of the cultures after 5 days of nitrogen limitation was nearly twice that after 1 day in Chaetoceros sp., P. tricornutum and P. viridis, while the lowest increase (220 - 283 mg g(-1) DCW) was observed in N. oculata. TAGs increased gradually under phosphorus limitation in all four species but not sharply compared with that under nitrogen limitation in N. oculata. The TFA content increased gradually under phosphorus limitation and after 5 days of phosphorus limitation it was 1.5 - 2 times that after 1 day. The EPA content was generally not significantly affected by nitrogen or phosphorus limitation. Culture age and nutrient limitation could be useful variables for optimizing TAG accumulation and fatty acid content with potential for biodiesel production. PMID:22581481

  7. Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation.

    PubMed

    Jakobsen, Anita N; Aasen, Inga M; Josefsen, Kjell D; Strøm, Arne R

    2008-08-01

    Aurantiochytrium sp. strain T66 was grown in batch bioreactor cultures in a defined glutamate- and glycerol-containing growth medium. Exponentially growing cells had a lipid content of 13% (w/w) of dry weight. A fattening of cells fed excess glycerol occurred in the post-exponential growth phase, after the medium was depleted of N or P. Lipid accumulation was also initiated by O2 limitation (below 1% of saturation). N starvation per se, or in combination with O2 limitation, gave the highest lipid content, i.e., 54% to 63% (w/w) of dry weight. The corresponding maximum culture density was 90 to 100 g/l dry biomass. The content of docosahexaenoic acid (22:6n-3) in N starved, well-oxygenated cells reached 29% (w/w) of total fatty acids but increased to 36% to 52% in O2-limited cells, depending on the time span of the limitation. O2-limited cells did not accumulate the monounsaturated fatty acids that were normally present. We inferred that the biological explanation is that O2 limitation hindered the O2-dependent desaturase(s) and favored the O2-independent polyunsaturated fatty acid synthase. The highest overall volumetric productivity of docosahexaenoic acid observed was 93 mg/l/h. Additionally, we present a protocol for quantitative lipid extraction, involving heat and protease treatment of freeze-dried thraustochytrids. PMID:18560831

  8. Perfluoroalkyl Acids (PFAAs) and Selected Precursors in the Baltic Sea Environment: Do Precursors Play a Role in Food Web Accumulation of PFAAs?

    PubMed

    Gebbink, Wouter A; Bignert, Anders; Berger, Urs

    2016-06-21

    The present study examined the presence of perfluoroalkyl acids (PFAAs) and selected precursors in the Baltic Sea abiotic environment and guillemot food web, and investigated the relative importance of precursors in food web accumulation of PFAAs. Sediment, water, zooplankton, herring, sprat, and guillemot eggs were analyzed for perfluoroalkane sulfonic acids (PFSAs; C4,6,8,10) and perfluoroalkyl carboxylic acids (PFCAs; C6-15) along with six perfluoro-octane sulfonic acid (PFOS) precursors and 11 polyfluoroalkyl phosphoric acid diesters (diPAPs). FOSA, FOSAA and its methyl and ethyl derivatives (Me- and EtFOSAA), and 6:2/6:2 diPAP were detected in sediment and water. While FOSA and the three FOSAAs were detected in all biota, a total of nine diPAPs were only detected in zooplankton. Concentrations of PFOS precursors and diPAPs exceeded PFOS and PFCA concentrations, respectively, in zooplankton, but not in fish and guillemot eggs. Although PFOS precursors were present at all trophic levels, they appear to play a minor role in food web accumulation of PFOS based on PFOS precursor/PFOS ratios and PFOS and FOSA isomer patterns. The PFCA pattern in fish could not be explained by the intake pattern based on PFCAs and analyzed precursors, that is, diPAPs. Exposure to additional precursors might therefore be a dominant exposure pathway compared to direct PFCA exposure for fish. PMID:27192404

  9. Myocardial accumulation of iodinated beta-methyl-branched fatty acid analogue, iodine-125-15-(p-iodophenyl)-3-(R,S)methylpentadecanoic acid (BMIPP), in relation to ATP concentration

    SciTech Connect

    Fujibayashi, Y.; Yonekura, Y.; Takemura, Y.; Wada, K.; Matsumoto, K.; Tamaki, N.; Yamamoto, K.; Konishi, J.; Yokoyama, A. )

    1990-11-01

    To clarify the relationship between the myocardial accumulation of {sup 125}I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and intracellular adenosine-5'-triphosphate (ATP) content, the effect of 2,4-dinitrophenol (DNP, an electron transport uncoupler) on myocardial BMIPP accumulation was studied, in comparison with that of thallium-201-chloride ({sup 201}Tl-Cl). In the mouse myocardium, DNP decreased the intracellular ATP and ADP levels, without affecting either acyl-CoA synthetase activity or the level of CoA-SH. Following treatment with DNP, decreases in myocardial BMIPP accumulation correlated well with those of ATP, while {sup 201}Tl-Cl showed slightly increased accumulation in the myocardium. Thus, in some diseases, BMIPP may be useful in evaluating myocardial ATP levels.

  10. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation

    SciTech Connect

    Almeida, Luciana O.; Garcia, Cristiana B.; Matos-Silva, Flavia A.; Curti, Carlos; Leopoldino, Andréia M.

    2014-02-28

    Highlights: • hnRNPK is a new target of SET. • SET regulates hnRNPK. • SET and hnRNPK accumulation promotes tumorigenesis. • SET accumulation is a potential model to study genes regulated by SET-hnRNPK. - Abstract: SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.

  11. Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades.

    PubMed Central

    Martínez, M A; Dopazo, J; Hernández, J; Mateu, M G; Sobrino, F; Domingo, E; Knowles, N J

    1992-01-01

    The genetic diversification of foot-and-mouth disease virus (FMDV) of serotype C over a 6-decade period was studied by comparing nucleotide sequences of the capsid protein-coding regions of viruses isolated in Europe, South America, and The Philippines. Phylogenetic trees were derived for VP1 and P1 (VP1, VP2, VP3, and VP4) RNAs by using the least-squares method. Confidence intervals of the derived phylogeny (significance levels of nodes and standard deviations of branch lengths) were placed by application of the bootstrap resampling method. These procedures defined six highly significant major evolutionary lineages and a complex network of sublines for the isolates from South America. In contrast, European isolates are considerably more homogeneous, probably because of the vaccine origin of several of them. The phylogenetic analysis suggests that FMDV CGC Ger/26 (one of the earliest FMDV isolates available) belonged to an evolutionary line which is now apparently extinct. Attempts to date the origin (ancestor) of the FMDVs analyzed met with considerable uncertainty, mainly owing to the stasis noted in European viruses. Remarkably, the evolution of the capsid genes of FMDV was essentially associated with linear accumulation of silent mutations but continuous accumulation of amino acid substitutions was not observed. Thus, the antigenic variation attained by FMDV type C over 6 decades was due to fluctuations among limited combinations of amino acid residues without net accumulation of amino acid replacements over time. PMID:1316467

  12. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis.

    PubMed

    Wang, Baogui; Fu, Jing; Li, Lumin; Gong, Deming; Wen, Xuefang; Yu, Ping; Zeng, Zheling

    2016-05-01

    Accumulation of lipids in the liver can lead to cell dysfunction and steatosis, an important factor in pathogenesis causing non-alcoholic fatty liver disease. The mechanisms related to lipid deposition in the liver, however, remain poorly understood. This study was aimed to investigate the effects of medium-chain fatty acid (MCFA) on the lipolysis and expression of lipid-sensing genes in human liver cells with steatosis. A cellular steatosis model, which is suitable to experimentally investigate the impact of fat accumulation in the liver, was established in human normal liver cells (LO2 cells) with a mixture of free fatty acids (oleate/palmitate, 2:1) at 200 μm for 24 h incubation. MCFA was found to down-regulate expression of liver X receptor-α, sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase, CD 36 and lipoprotein lipase in this cellular model, and have positive effects on adipose triglyceride lipase and hormone-sensitive lipase. These results suggest that MCFA may reduce lipid accumulation by regulating key lipid-sensing genes in human liver cells with steatosis. PMID:26932533

  13. The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism.

    PubMed

    González-Agüero, Mauricio; Tejerina Pardo, Luis; Zamudio, María Sofía; Contreras, Carolina; Undurraga, Pedro; Defilippi, Bruno G

    2016-01-01

    Cherimoya (Annona cherimola Mill.) is a subtropical fruit characterized by a significant increase in organic acid levels during ripening, making it an interesting model for studying the relationship between acidity and fruit flavor. In this work, we focused on understanding the balance between the concentration of organic acids and the gene expression and activity of enzymes involved in the synthesis and degradation of these metabolites during the development and ripening of cherimoya cv. "Concha Lisa". Our results showed an early accumulation of citric acid and other changes associated with the accumulation of transcripts encoding citrate catabolism enzymes. During ripening, a 2-fold increase in malic acid and a 6-fold increase in citric acid were detected. By comparing the contents of these compounds with gene expression and enzymatic activity levels, we determined that cytoplasmic NAD-dependent malate dehydrogenase (cyNAD-MDH) and mitochondrial citrate synthase (mCS) play important regulatory roles in the malic and citric acid biosynthetic pathways. PMID:27120592

  14. Using electromagnetic induction technology to predict volatile fatty acid, source area differences.

    PubMed

    Woodbury, Bryan L; Eigenberg, Roger A; Varel, Vince; Lesch, Scott; Spiehs, Mindy J

    2011-01-01

    Subsurface measures have been adapted to identify manure accumulation on feedlot surfaces. Understanding where manure accumulates can be useful to develop management practices that mitigate air emissions from manure, such as odor or greenhouse gases. Objectives were to determine if electromagnetic induction could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced in vitro from feedlot surface material following a simulated rain event. Twenty soil samples per pen were collected from eight pens with cattle fed two different diets using a predictive sampling approach. These samples were incubated at room temperature for 3 d to determine fermentation products formed. Fermentation products were categorized into acetate, straight-, branched-chained, and total VFAs. These data were used to develop calibration prediction models on the basis of properties measured by electromagnetic induction (EMI). Diet had no significant effect on mean volatile solids (VS) concentration of accumulated manure. However, manure from cattle fed a corn (Zea mays L.)-based diet had significantly ( P ≤ 0.1) greater mean straight-chained and total VFA generation than pens where wet distillers grain with solubles (WDGS) were fed. Alternately, pens with cattle fed a WDGS-based diet had significantly (P ≤ 0.05) greater branched-chained VFAs than pens with cattle fed a corn-based diet. Many branched-chain VFAs have a lower odor threshold than straight-chained VFAs; therefore, emissions from WDGS-based diet manure would probably have a lower odor threshold. We concluded that diets can affect the types and quantities of VFAs produced following a rain event. Understanding odorant accumulation patterns and the ability to predict generation can be used to develop precision management practices to mitigate odor emissions. PMID:21869503

  15. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  16. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids.

    PubMed

    Boher, Pau; Serra, Olga; Soler, Marçal; Molinas, Marisa; Figueras, Mercè

    2013-08-01

    The present study provides new insights on the role of the potato (Solanum tuberosum) suberin feruloyl transferase FHT in native and wound tissues, leading to conclusions about hitherto unknown properties of the phellogen. In agreement with the enzymatic role of FHT, it is shown that its transcriptional activation and protein accumulation are specific to tissues that undergo suberization such as the root boundary layers of the exodermis and the endodermis, along with the tuber periderm. Remarkably, FHT expression and protein accumulation within the periderm is restricted to the phellogen derivative cells with phellem identity. FHT levels in the periderm are at their peak near harvest during periderm maturation, with the phellogen becoming meristematically inactive and declining thereafter. However, periderm FHT levels remain high for several months after harvest, suggesting that the inactive phellogen retains the capacity to synthesize ferulate esters. Tissue wounding induces FHT expression and the protein accumulates from the first stages of the healing process onwards. FHT is up-regulated by abscisic acid and down-regulated by salicylic acid, emphasizing the complex regulation of suberin synthesis and wound healing. These findings open up new prospects important for the clarification of the suberization process and yield important information with regard to the skin quality of potatoes. PMID:23918964

  17. Phytic Acid Synthesis and Vacuolar Accumulation in Suspension-Cultured Cells of Catharanthus roseus Induced by High Concentration of Inorganic Phosphate and Cations1[w

    PubMed Central

    Mitsuhashi, Naoto; Ohnishi, Miwa; Sekiguchi, Yoko; Kwon, Yong-Uk; Chang, Young-Tae; Chung, Sung-Kee; Inoue, Yoshinori; Reid, Robert J.; Yagisawa, Hitoshi; Mimura, Tetsuro

    2005-01-01

    We have established a new system for studying phytic acid, myo-inositol hexakisphosphate (InsP6) synthesis in suspension-cultured cells of Catharanthus. InsP6 and other intermediates of myo-inositol (Ins) phosphate metabolism were measured using an ion chromatography method. The detection limit for InsP6 was less than 50 nm, which was sufficient to analyze Ins phosphates in living cells. Synthesis of Ins phosphates was induced by incubation in high inorganic phosphate medium. InsP6 was mainly accumulated in vacuoles and was enhanced when cells were grown in high concentration of inorganic phosphates with the cations K+, Ca2+, or Zn2+. However, there was a strong tendency for InsP6 to accumulate in the vacuole in the presence of Ca2+ and in nonvacuolar compartments when supplied with Zn2+, possibly due to precipitation of InsP6 with Zn2+ in the cytosol. A vesicle transport inhibitor, brefeldin A, stimulated InsP6 accumulation. The amounts of both Ins(3)P1 myo-inositol monophosphate synthase, a key enzyme for InsP6 synthesis, and Ins(1,4,5)P3 kinase were unrelated to the level of accumulation of InsP6. The mechanisms for InsP6 synthesis and localization into vacuoles in plant cells are discussed. PMID:15965017

  18. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway.

    PubMed

    Bao, Hexigeduleng; Chen, Xianyang; Lv, Sulian; Jiang, Ping; Feng, Juanjuan; Fan, Pengxiang; Nie, Lingling; Li, Yinxin

    2015-03-01

    γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress. PMID:25074245

  19. Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study.

    PubMed

    Battah, Sinan; O'Neill, Sophie; Edwards, Christine; Balaratnam, Sherina; Dobbin, Paul; MacRobert, Alexander J

    2006-01-01

    Intracellular porphyrin generation following administration of 5-aminolaevulinic acid has been widely used in photodynamic therapy for a range of malignant and certain non-malignant lesions. However, cellular uptake of 5-aminolaevulinic acid is limited by its hydrophilic nature and improved means of delivery are therefore being sought. Highly branched polymeric drug carriers known as dendrimers are a promising new approach to drug delivery. The aim of this study was to investigate the efficacy of dendrimers conjugated with 5-aminolaevulinic acid for porphyrin production in the transformed PAM 212 keratinocyte cell line and skin explants. Each dendritic derivative incorporated three 5-aminolaevulinic acid residues which were conjugated as esters via methyl or propyl linkers to a central tertiary carbon whose remaining terminal bore an amino, aminobenzyloxycarbonyl or nitro group. In the cell line, all compounds were more efficient at low concentrations compared to equimolar 5-aminolaevulinic acid for porphyrin production, with the most efficient incorporating the longer propyl linker. This compound was also the most lipophilic according to partition coefficient measurements. The intracellular porphyrin fluorescence levels showed good correlation with cellular phototoxicity following light exposure for all the compounds, together with minimal dark toxicity. Our findings indicate that the key factors influencing the efficacy of the dendritic derivatives are lipophilicity and steric hindrance within the dendritic structure which could restrict access to intracellular esterases for liberation of 5-aminolaevulinic acid. These findings should be taken into account in the design of larger dendrimers of 5-aminolaevulinic acid. PMID:16546435

  20. Temperature modulation of thermal tolerance of a CAM-tank bromeliad and the relationship with acid accumulation in different leaf regions.

    PubMed

    Chaves, Cleber Juliano Neves; Leal, Bárbara Simões Santos; Lemos-Filho, José Pires de

    2015-08-01

    Physiological changes that increase plant performance during exposure to high temperatures may play an inverse role during exposure to low temperatures. The objective of this study was to test variations in photosystem II response to heat and cold stress in the leaves of a bromeliad with crassulacean acid metabolism submitted to high or low temperatures. Leaves were maintained under constant temperatures of 10 and 35°C and used to examine possible relationships among physiological responses to high and low temperatures and organic acid accumulation. We also tested if distinct parts of bromeliad leaves show differences in photosynthetic thermotolerance. The samples from leaves maintained at 35°C showed greater heat tolerance values, while those from leaves maintained at 10°C showed lower cold tolerance values. Our results identified a strong negative relationship between the organic acid accumulation and thermal tolerance of bromeliad leaves that largely explained the differences in thermal tolerance among groups. One of these differences occurred among regions of a single leaf, with the base showing critical heat values of up to 8°C higher than the top region, suggesting a possible partitioning of leaf response among its regions. Differences in thermal tolerance were also observed between sampling times, with higher values observed in the morning. PMID:25271368

  1. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  2. Folic acid deficiency enhances abeta accumulation in APP/PS1 mice brain and decreases amyloid-associated miRNAs expression.

    PubMed

    Liu, Huan; Tian, Tian; Qin, Shanchun; Li, Wen; Zhang, Xumei; Wang, Xuan; Gao, Yuxia; Huang, Guowei

    2015-12-01

    Recent efforts have revealed the microRNA (miRNA) pathways in the pathogenesis of Alzheimer's disease (AD). Epidemiological studies have revealed an association between folic acid deficiency and AD risk. However, the effects of folic acid deficiency on miRNA expression in AD animals have not been observed. We aimed to find if folic acid deficiency may enhance amyloid-β (Aβ) peptide deposition and regulate amyloid-associated miRNAs and their target genes expression in APP/PS1 mice. APP/PS1 mice and N2a cells were treated with folic acid-deficient diet or medium. Cognitive function of mice was assessed using the Morris water maze. miRNA profile was tested by polymerase chain reaction (PCR) array. Different expressional miRNAs were validated by real-time PCR. The deposition of Aβ plaques was evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. APP and BACE1 proteins in mice brain and N2a cells were determined by Western blot. Folic acid deficiency aggravated amyloid pathology in AD mice. The AD+FD group showed shorter time spent in the target zone during the probe test. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that were differentially modulated by folic acid deficiency. In APP/PS1 mice brains and N2a cells with folic acid-deficient treatment, miR-106a-5p, miR-200b-3p and miR-339-5p were down-regulated, and their target genes APP and BACE1 were up-regulated. In conclusion, folic acid deficiency can enhance Aβ accumulation in APP/PS1 mice brain and decrease amyloid-associated miRNAs expression. PMID:26345540

  3. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    PubMed

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea. PMID:24803272

  4. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying

    PubMed Central

    Puértolas, Jaime; Conesa, María R.; Ballester, Carlos; Dodd, Ian C.

    2015-01-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0–10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm3 cm–3 for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  5. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    PubMed

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction. PMID:25547916

  6. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy.

    PubMed

    Díaz, Paula; Harris, Jessica; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2015-12-15

    Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver. PMID:26491104

  7. Induced Protoporphyrin IX Accumulation by the δ-Aminolevulinic Acid in Bacteria and its Potential Use in the Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Brígido-Aparicio, Cyntiha; Ramón-Gallegos, Eva; Arenas-Huertero, Francisco Jesús; Uribe-Hernández, Raúl

    2008-08-01

    The increasing incident of resistant strains to antibiotic has encouraged the search of new antibacterial treatments, such as the photodynamic therapy. In recent years, photodynamic therapy has demonstrated being a good technology for the treatment of recurrent bacteria infection. PDT presents a hopeful approach to eliminate Gram positive and negative bacteria in immunological compromised patients. This therapy uses a laser in combination with a photosensibilizer in presence of intracellular molecular oxygen. The process generates an effect of phototoxicity in bacterial cells. The aim of this work was to determine the in vitro conditions to accumulate PpIX in effective concentrations in Staphylococcus aureus ATCC25923 and Streptococcus pyogenes, which are responsible of human cutaneous diseases. A cellular suspension of both strains was prepared in TSB to obtain growth in Log-phase, then, the suspensions were adjusted to a final concentration of 2.61×108 cells/mL. The strains were exposed to increasing concentrations from 0 to 160μg/mL of δ-ALA in order to determinate the concentration that induces the biggest accumulation of PpIX. PpIX was measured using the Piomelli method modified for bacteria. The concentration selected was 40 mg/mL of ALA. It was found that in basal concentration of δ-ALA (0 μg/mL) both strains accumulated similar amount of PpIX. In concentrations of 5 mg/mL of δ-ALA it was observed a significant (p<0.001) increment in PpIX concentration. Finally it was realized a kinetic to determinate the optimal accumulation over the time at 0, 5, 10, 15 and 30 min, and 1, 2, 4, 8, 16 and 32 h. It was found that the ideal time for PDT application, in both strains, was 24 h because in smaller times there was not statistically significant difference. The S. aureus ATCC25923 accumulated significantly the biggest concentration of PpIX with regard to S. pyogenes. In conclusion, it was found that the optimal conditions to apply PDT will be to expose both

  8. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    plasma triglyceride concentrations compared to the control (-53% and -65%, respectively) and ferulic acid (-47% and -60%, respectively) diets. Hamsters fed the control and ferulic acid diets had significantly higher plasma vitamin E concentrations compared to the RBO (201% and 161%, respectively) and oryzanol (548% and 462%, respectively) diets; the ferulic acid and oryzanol diets had significantly lower plasma lipid hydroperoxide levels than the control (-57% and -46%, respectively) diet. The oryzanol-fed hamsters excreted significantly more coprostenol and cholesterol in their feces than the ferulic acid (127% and 120%, respectively) diet. The control diet had significantly greater aortic TC and FC accumulation compared to the RBO (115% and 89%, respectively), ferulic acid (48% and 58%, respectively) and the oryzanol (74% and 70%, respectively) diets. However, only the RBO and oryzanol diets had significantly lower aortic cholesterol ester accumulation compared to the control (-73% and -46%, respectively) diet. The present study suggests that at equal dietary levels, oryzanol has a greater effect on lowering plasma non-HDL-C levels and raising plasma HDL-C than ferulic acid, possibly through a greater extent to increase fecal excretion of cholesterol and its metabolites. However, ferulic acid may have a greater antioxidant capacity via its ability to maintain serum vitamin E levels compared to RBO and oryzanol. Thus, both oryzanol and ferulic acid may exert similar antiatherogenic properties, but through different mechanisms. PMID:16713234

  9. Accumulation of ascorbate by endocrine-regulated and glucose-sensitive transport of dehydroascorbic acid in luteinized rat ovarian cells.

    PubMed

    Kodaman, P H; Aten, R F; Behrman, H R

    1998-02-01

    The corpus luteum is notable for very high levels of ascorbic acid. In luteal cells, ascorbic acid depletion occurs as a result of consumption during radical scavenging, inhibition of ascorbic acid uptake, and stimulation of its secretion. Oxidation of ascorbic acid generates dehydroascorbic acid (DHAA). Although levels of DHAA in blood are much lower than those of ascorbic acid, DHAA serves as the major transportable form of ascorbate for certain cell types. The aim of the present studies was to investigate whether DHAA transport is a potential mechanism for conserving ascorbic acid in the corpus luteum. DHAA uptake by rat luteal cells precultured for 24 h was linear for up to 30 min. Kinetics studies showed that uptake of DHAA was a concentration-dependent and saturable process with an estimated Michaelis constant (Km) of 830 microM and a maximum velocity (Vmax) of 700 pmol/min per 10(6) cells, a rate 50 times that of ascorbate transport. More than 90% of DHAA was reduced to ascorbic acid within 2 h of cellular uptake. DHAA uptake was energy- and microfilament-dependent, as transport was inhibited by 2,4-dinitrophenol (1 mM) and cytochalasin B (10 microM). Menadione (50 microM), an intracellular generator of reactive oxygen species, also markedly reduced DHAA uptake. In contrast to ascorbic acid transport, DHAA uptake was potently inhibited by glucose and phloretin, an inhibitor of glucose transporters, with IC50s of approximately 5 mM and 10 microM, respectively. DHAA uptake appears to occur via an insulin-insensitive transporter, as insulin (10 nM) had no effect on uptake. However, 24-h preincubation with insulin-like growth factor (IGF)-I dose-dependently (10-100 ng/ml) stimulated DHAA uptake; similar concentrations of IGF-II had no effect. The secretion of radioactivity by cells preloaded with radiolabeled DHAA was significantly increased by prostaglandin F2alpha (1 microM). The ability of luteal cells to transport DHAA in a regulated manner may serve to

  10. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  11. Influence of Carotino oil on in vitro rumen fermentation, metabolism and apparent biohydrogenation of fatty acids.

    PubMed

    Adeyemi, Kazeem Dauda; Ebrahimi, Mahdi; Samsudin, Anjas Asmara; Alimon, Abd Razak; Karim, Roselina; Karsani, Saiful Anuar; Sazili, Awis Qurni

    2015-03-01

    The study appraised the effects of Carotino oil on in vitro rumen fermentation, gas production, metabolism and apparent biohydrogenation of oleic, linoleic and linolenic acids. Carotino oil was added to a basal diet (50% concentrate and 50% oil palm frond) at the rate of 0, 2, 4, 6 and 8% dry matter of the diet. Rumen inoculum was obtained from three fistulated Boer bucks and incubated with 200 mg of each treatment for 24 h at 39°C. Gas production, fermentation kinetics, in vitro organic matter digestibility (IVOMD), volatile fatty acids (VFA), in vitro dry matter digestibility (IVDMD), metabolizable energy and free fatty acids were determined. Carotino oil did not affect (P > 0.05) gas production, metabolizable energy, pH, IVOMD, IVDMD, methane, total and individual VFAs. However, Carotino oil decreased (P < 0.05) the biohydrogenation of linoleic and linolenic acids but enhanced (P < 0.05) the biohydrogenation of oleic acid. After 24 h incubation, the concentrations of stearic, palmitic, pentadecanoic, myristic, myristoleic and lauric acids decreased (P < 0.05) while the concentration of linolenic, linoleic, oleic and transvaccenic acids and conjugated linoleic acid (CLAc9t11) increased (P < 0.05) with increasing levels of Carotino oil. Carotino oil seems to enhance the accumulation of beneficial unsaturated fatty acids without disrupting rumen fermentation. PMID:25377536

  12. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  13. Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana.

    PubMed

    Chen, Yicun; Cui, Qinqin; Xu, Yongjie; Yang, Susu; Gao, Ming; Wang, Yangdong

    2015-08-01

    Genetic engineering to produce valuable lipids containing unsaturated fatty acids (UFAs) holds great promise for food and industrial applications. Efforts to genetically modify plants to produce desirable UFAs with single enzymes, however, have had modest success. The key enzymes fatty acid desaturase (FAD) and diacylglycerol acyltransferase (DGAT) are responsible for UFA biosynthesis (a push process) and assembling fatty acids into lipids (a pull process) in plants, respectively. To examine their roles in UFA accumulation, VfFAD2 and VfDGAT2 genes cloned from Vernicia fordii (tung tree) oilseeds were conjugated and transformed into Rhodotorula glutinis and Arabidopsis thaliana via Agrobacterium tumefaciens. Real-time quantitative PCR revealed variable gene expression levels in the transformants, with a much higher level of VfDGAT2 than VfFAD2. The relationship between VfFAD2 expression and linoleic acid (C18:2) increases in R. glutinis (R (2) = 0.98) and A. thaliana (R (2) = 0.857) transformants was statistically linear. The VfDGAT2 expression level was statistically correlated with increased total fatty acid content in R. glutinis (R (2) = 0.962) and A. thaliana (R (2) = 0.8157) transformants. With a similar expression level between single- and two-gene transformants, VfFAD2-VfDGAT2 co-transformants showed a higher linolenic acid (C18:3) yield in R. glutinis (174.36 % increase) and A. thaliana (14.61 % increase), and eicosatrienoic acid (C20:3) was enriched (17.10 % increase) in A. thaliana. Our data suggest that VfFAD2-VfDGAT2 had a synergistic effect on UFA metabolism in R. glutinis, and to a lesser extent, A. thaliana. These results show promise for further genetic engineering of plant lipids to produce desirable UFAs. PMID:25754996

  14. Inhibition of citric acid accumulation by manganese ions in Aspergillus niger mutants with reduced citrate control of phosphofructokinase

    SciTech Connect

    Schreferl, G.; Kubicek, C.P.; Roehr, M.

    1986-03-01

    Mutant strains of Aspergillus niger with reduced citrate control of carbohydrate catabolism (cic mutants) grow faster than the parent strain on media containing 5% (wt/vol) citrate. The mutants tolerated a higher intracellular citrate concentration than the parent strain. One mutant (cic-7/3) contained phosphofructokinase activity significantly less sensitive towards citrate than the enzyme from the parent strain. When this mutant was grown under citrate accumulating conditions, acidogenesis was far less sensitive to inhibition by Mn/sup 2 +/ than in the parent strain. Some of the cic mutants also showed altered citrate inhibition of NADP-specific isocitrate dehydrogenase.

  15. Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy.

    PubMed

    Falk, Harry Michael; Reichling, Peter; Andersen, Christian; Benz, Roland

    2015-02-01

    An ATR-MIR-FTIR spectrometer was integrated into a laboratory scale anaerobic digestion setup. Automatically, a sludge sample from the digester was transferred to a measurement cell; an IR spectrum was recorded and evaluated by chemometric models to estimate the concentration of the individual volatile fatty acids (VFA). The calibration set included semi-artificial samples spiked with known concentrations of the VFA as well as original samples from a continuous fermentation. High-performance liquid chromatography (HPLC) was used as a reference analysis of the samples. The models were optimized for a low root mean square error of prediction (RMSEP). R(2) for acetic acid, propionic acid, isobutyric acid, butyric acid, valeric acid, and isovaleric acid were 0.94, 0.88, 0.83, 0.75, 0.59, and 0.90, respectively. The accuracy of the models was validated in a second experiment. Considering the complex and heterogeneous sludge composition and the chemical similarity of VFA, absolute concentration and dynamic (increasing and decreasing concentration of VFA) was predicted well for acetic, propionic, isobutyric, and isovaleric acid (in their respective concentration range); Butyric acid could not be detected. The installed setup was able to gather and measure native samples from the digester (every 2 h) automatically over a period of 6 months without problems of clogging or biofouling. The instant and continuous analysis of the concentration of the VFA made it possible to evaluate the current bioprocess status and adjust the organic loading rate accordingly. PMID:25142153

  16. Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids.

    PubMed

    Fernández, R; Fernández-Fuego, D; Bertrand, A; González, A

    2014-05-01

    Dittrichia viscosa (L.) Greuter is plant species commonly found in degraded zones of Asturias (Spain), where it accumulates high levels of Cd, but the mechanisms involved in this response in non-model plants have not been elucidated. In this way, we analysed the fraction of the total Cd bound to the cell walls, the ultrastructural localization of this metal, and non-protein thiol and organic acid concentrations of two clones of D. viscosa: DV-A (from a metal-polluted soil) and DV-W (from a non-polluted area). After 10 days of hydroponic culture with Cd, fractionation and ultrastructural localisation studies showed that most of the Cd accumulated by D. viscosa was kept in the cell wall. The non-protein thiol content rose in D. viscosa with Cd exposure, especially in the non-metallicolous DV-W clone, and in both clones we found with Cd exposure a synthesis de novo of phytochelatins PC2 and PC3 in shoots and roots and also of other phytochelatin-related compounds, particularly in roots. Regarding organic acids, their concentration in both clones decreased in shoots after Cd treatment, but increased in roots, mainly due to changes in the citric acid concentration. Thus, retention of Cd in the cell wall seems to be the first strategy in response to metal entry in D. viscosa and once inside cells non-protein thiols and organic acids might also participate in Cd tolerance. PMID:24636908

  17. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  18. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  19. Differential accumulation and organ-specific metabolism of 5-aminolevulinic acid between cancer cells and normal epithelial and stromal cells

    NASA Astrophysics Data System (ADS)

    Krieg, Rene C.; Rauch, Joachim; Seidl, Juergen; Stepp, Herbert G.; Messmann, Helmut; Knuechel, Ruth

    2001-01-01

    To optimize conditions of photodynamic therapy (PDT) with ALA induced protoporphyrin IX (PPIX), topography of accumulation and metabolism of PPIX were analyzed in vitro. Adenocarcinoma cell lines, urothelial carcinoma cell lines, and a normal fibroblast cell line were cultured in plateau phase. ALA-induced PPIX accumulation, porphobilinogendeaminase-, ferrochelatase- activity, intracellular iron content, transferrin receptor expression and PPIX localization were determined using standard techniques. PBG activity as well as PPIX content were found higher in adenocarcinoma cells than in urothelial cells. Urothelial cell lines showed significant alterations in FC values in contrast to similar levels of FC in adenocarcinoma cell lines overall. Well differentiated cells showed higher iron content than lower differentiated cells. Transferrin receptor expression was found independent of PPIX content and intracellular iron content. In HT29, PPIX localizes mostly in the cell membrane, in SW480 and CaCo2 in mitochondria, and in urothelial cells mainly in cytosol. Data presented encourage the systematic and organ- related analysis of PPIX metabolism, since significant differences have been found between urothelial tumor cells and adenocarcinoma cells which may demand different strategies of therapy optimization and combination therapy regimens.

  20. Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co-substrate uptake.

    PubMed

    Fradinho, J C; Oehmen, A; Reis, M A M

    2014-09-20

    This work studied the effect of the substrate feeding composition on the polyhydroxyalkanoate (PHA) accumulation capacity of an acetate enriched photosynthetic mixed culture (PMC). From the six tested organic acids - malate, citrate, lactate, acetate, propionate and butyrate - only the three volatile fatty acids (VFAs) enabled PHA production, with acetate and butyrate leading to polyhydroxybutyrate (PHB) formation and propionate leading to a HB:HV copolymer with a 51% fraction of hydroxyvalerate (HV). Also, results showed an acceleration of butyrate and propionate consumption when fed in the presence of acetate, suggesting that the latter can act as a co-substrate for butyrate and propionate uptake. Furthermore, results suggest that some PMC bacterial groups present a substrate preference for butyrate in relation to acetate and propionate. These findings indicate the possibility of feeding the PMC with cheap VFA rich fermented wastes, leading to a more cost-effective and environmentally sustainable PHA production system. PMID:24915131

  1. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.

    PubMed

    Sheng, Ling; Shen, Dandan; Luo, Yi; Sun, Xiaohua; Wang, Jinqiu; Luo, Tao; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2017-02-01

    The loss of organic acids during postharvest storage is one of the major factors that reduces the fruit quality and economic value of citrus. Citrate is the most important organic acid in citrus fruits. Molecular evidence has proved that γ-aminobutyric acid (GABA) shunt plays a key role in citrate metabolism. Here, we investigated the effects of exogenous GABA treatment on citrate metabolism and storage quality of postharvest citrus fruit. The content of citrate was significantly increased, which was primarily attributed to the inhibition of the expression of glutamate decarboxylase (GAD). Amino acids, including glutamate, alanine, serine, aspartate and proline, were also increased. Moreover, GABA treatment decreased the fruit rot rate. The activities of antioxidant enzymes and the content of energy source ATP were affected by the treatment. Our results indicate that GABA treatment is a very effective approach for postharvest quality maintenance and improvement of storage performance in citrus production. PMID:27596402

  2. Accumulation, selection and covariation of amino acids in sieve tube sap of tansy (Tanacetum vulgare) and castor bean (Ricinus communis): evidence for the function of a basic amino acid transporter and the absence of a γ-amino butyric acid transporter.

    PubMed

    Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald

    2014-09-01

    Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. PMID:24446756

  3. An in vitro study of manure composition on the biochemical origins, composition, and accumulation of odorous compounds in cattle feedlots.

    PubMed

    Miller, D N; Varel, V H

    2002-09-01

    Very little is known about the biochemical origin of cattle feedlot odors and the environmental factors controlling their production. The tie between diet and manure composition is well established, but the effect of different manure compositions on odorous chemical production is unknown. This study describes the effect of starch, casein, and cellulose substrate additions to slurries of fresh (< 24 h) and aged cattle manure (> 1 d) on the anaerobic production of fermentation products and the consumption of substrates relative to no addition treatments. Aged cattle manure accumulated more VFA (245 to 290 mM) than the fresh manure (91 to 181 mM) irrespective of substrate additions (P < 0.001). In fresh manures, VFA concentrations were increased (P < 0.01) over no addition treatments when carbohydrate (starch or cellulose) was added, whereas starch and protein treatments to aged manure increased VFA content relative to no addition treatments (P < 0.001). Branched-chain VFA and aromatic compounds accumulated only in the aged manure (no addition and protein treatments), indicating that some protein fermentation occurred in those treatments. Based upon substrate loss, starch fermentation was the dominant process in both manures and all treatments with losses exceeding 18.6 g/L. Protein fermentation occurred only in the aged manure, specifically the no addition and protein treatments, when starch was no longer available. The production of odorous compounds from manure was controlled by substrate availability and pH, with pH related to lactate accumulation. We believe that calcareous soil and lactate-consuming microorganisms in the aged manure slurries minimized slurry acidification and resulted in greater accumulations of odorous products. Substrate additions had little effect on the overall accumulation of odor compounds in manure but had profound effects on odor compound composition. We propose that modifying cattle diets to limit starch and protein excretion would

  4. Effect of pentoxifylline on arachidonic acid metabolism, neutral lipid synthesis and accumulation during induction of the lipocyte phenotype by retinol in murine hepatic stellate cell.

    PubMed

    Cardoso, Carla C A; Paviani, Ernani R; Cruz, Lavínia A; Guma, Fátima C R; Borojevic, Radovan; Guaragna, Regina M

    2003-12-01

    In liver fibrosis, the quiescent hepatic stellate cells (HSC) are activated to proliferate and express the activated myofibroblast phenotype, losing fat droplets and the stored vitamin A, and depositing more extracellular matrix. Therapeutic strategies for liver fibrosis are focused on HSC. Pentoxifylline (PTF), an analog of the methylxanthine, prevents the biochemical and histological changes associated with animal liver fibrosis. The aim of the present study was to investigate the phenotypic change of myofibroblasts into quiescent lipocytes by PTF and/or retinol, using a permanent cell line GRX that represents murine HSC. We studied the action of both drugs on the synthesis of neutral lipids, activity of phospholipase A2 (PLA2), release of arachidonic acid (AA) and prostaglandins synthesis. Accumulation and synthesis of neutral lipids was dependent upon association of retinol with PTF. PTF (0.5 mg/mL) alone did not induce lipid accumulation and synthesis, but in cells induced by physiologic concentration of retinol (1-2.5 microM), it increased the quantity of stored lipids. Retinol and PTF (5 microM and 0.1 mg/mL, respectively) had a synergistic effect on neutral lipid synthesis and accumulation. In higher PTF concentrations (0.5 and 0.7 mg/ml), the synthesis was stimulated but accumulation decreased. Membrane-associated PLA2 activity decreased after PTF treatment, which increased the AA release 8 fold, and significantly increased the production of PGE2, but not of PGF2. However, when in presence of retinol, we observed a slightly higher increase in PGE2 and PGF2a production. In conclusion, PTF treatment generated an excess of free AA. We propose that retinol counteracts the action of PTF on the AA release and PGs production, even though both drugs stimulated the lipocyte induction in the HSC. PMID:14674680

  5. Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors.

    PubMed

    Ali, Mohammad Babar; Yu, Kee-Won; Hahn, Eun-Joo; Paek, Kee-Yoeup

    2006-06-01

    The effects of methyl jasmonate (MJ) and salicylic acid (SA) on changes of the activities of major antioxidant enzymes, superoxide anion accumulation (O2-), ascorbate, total glutathione (TG), malondialdehyde (MDA) content and ginsenoside accumulation were investigated in ginseng roots (Panax ginseng L.) in 4 l (working volume) air lift bioreactors. Single treatment of 200 microM MJ and SA to P. ginseng roots enhanced ginsenoside accumulation compared to the control and harvested 3, 5, 7 and 9 days after treatment. MJ and SA treatment induced an oxidative stress in P. ginseng roots, as shown by an increase in lipid peroxidation due to rise in O2- accumulation. Activity of superoxide dismutase (SOD) was inhibited in MJ-treated roots, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), SOD, guaiacol peroxidase (G-POD), glutathione peroxidase (GPx) and glutathione reductase (GR) were induced in SA-treated roots. A strong decrease in the activity of catalase (CAT) was obtained in both MJ- and SA-treated roots. Activities of ascorbate peroxidase (APX) and glutathione S transferase (GST) were higher in MJ than SA while the contents of reduced ascorbate (ASC), redox state (ASC/(ASC+DHA)) and TG were higher in SA- than MJ-treated roots while oxidized ascorbate (DHA) decreased in both cases. The result of these analyses suggests that roots are better protected against the O2- stress, thus mitigating MJ and SA stress. The information obtained in this work is useful for efficient large-scale production of ginsenoside by plant-root cultures. PMID:16463159

  6. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.

    PubMed

    Hintze, Paul E; Nicholson, Wayne L

    2010-06-01

    Dipicolinic acid (pyridine-2,6-carboxylic acid; DPA) is a major component of bacterial spores and has been shown to be an important determinant of spore resistance. In the core of dormant Bacillus subtilis spores, DPA is associated with divalent calcium in a 1:1 chelate (Ca-DPA). Spores excrete Ca-DPA during germination, but it is unknown whether Ca and DPA are imported separately or together into the developing spore. Elemental analysis by scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) of wild-type spores and mutant spores lacking the ability to synthesize DPA showed that DPA-less spores also lacked calcium, suggesting that the two compounds may be co-imported. PMID:20396869

  7. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin.

    PubMed

    Levrat, M A; Rémésy, C; Demigné, C

    1991-11-01

    The digestive and metabolic effects of inulin (from chicory) were studied in rats adapted to semipurified diets containing 0, 5, 10 or 20% inulin (wt/wt). Moderate levels of inulin (5-10%) did not significantly affect food intake or body weight gain. Dietary inulin resulted in considerably greater cecal fermentation and a significantly greater intraluminal concentration of propionate (peaking at 58.4 mmol/L). A lower concentration of acetate (42.6 mmol/L) was observed in rats fed 20% inulin. Lactic fermentations were observed in rats fed the 10 or 20% inulin diets. The cecal pool of volatile fatty acids tended to reach a plateau in rats fed diets containing more than 10% inulin (up to 600-700 mumol), but volatile fatty acid absorption was a slightly hyperbolic function of the dietary inulin level. Butyrate absorption was proportionally lower than that of propionate. Inulin-containing diets induced an enlargement of the cecal pool of calcium, phosphate and (to a lesser extent) magnesium. There was also an enhanced absorption of these divalent cations. The cecal pool of bile acids was greater in rats fed inulin, and this oligosaccharide displayed a slight hypocholesterolemic effect, even in rats fed the 5% inulin diet. However, plasma triglycerides were depressed only in rats fed the 20% inulin diet. In conclusion, inulin seems very effective in promoting propionic fermentation and in enhancing the calcium content of the large intestine. However, high levels of inulin (greater than 10%) may affect growth in rats and lead to acidic (pH 5.65) cecal fermentation. PMID:1941180

  8. Accumulation and depuration of okadaic acid esters in the European green crab (Carcinus maenas) during a feeding study.

    PubMed

    Jørgensen, Kevin; Cold, Ulrik; Fischer, Knud

    2008-03-01

    Soft shell crab is a seafood delicacy in many parts of the world. In Denmark, it has been investigated whether a commercial production of soft shell European green crabs (Carcinus maenas) would be feasible. In relation to this, a feeding study was performed to examine if occurrence of DSP toxins in the product could be a food safety problem. The crabs were fed with mussels containing DSP toxins (2500 microg total okadaic acid equivalents/kg) for 17 days and then fasted for 19 days. The content of total okadaic acid equivalents in the digestive organs was on average 27 times higher than the corresponding content in the body meat. The highest level of total okadaic acid equivalents measured was 12 microg/kg in body meat and 503 microg/kg in digestive organs. The results show that the content of DSP toxins in a commercial product of soft shell European green crab (without digestive organs) could be regarded as negligible. PMID:17983637

  9. Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp.

    PubMed

    Guo, Xiaoyi; Su, Gaomin; Li, Zheng; Chang, Jingyu; Zeng, Xianhai; Sun, Yong; Lu, Yinghua; Lin, Lu

    2015-09-01

    In this study, different light intensities (80, 160, 240 and 320 μmol/m(2) s) and various mediums including control medium (CM), N/P rich medium (NPM), N rich medium (NM), and P rich medium (PM) were applied for cultivation of Chlorella sp. It was revealed that cultivation of Chlorella sp. in CM under the light intensity of 320 μmol/m(2) s led to a lipid content up to 30% enhancement, which was higher than the results of other cases. A rather high unsaturated fatty acid (UFA) content of 7.5% and unsaturated fatty acid/total fatty acid (UFA/TFA) ratio of 0.73 were obtained under 320 μmol/m(2) s in CM, indicating that the CM-320 system was applicable for the generation of UFA. Moreover, Chlorella sp. cultivated in PM under 320 μmol/m(2) s provided higher TFA content (7.3%), which was appropriate for biofuel production. PMID:25899143

  10. Factors associated with visceral fat accumulation in the general population in Okinawa, Japan

    PubMed Central

    Arakaki, Shingo; Maeshiro, Tatsuji; Hokama, Akira; Hoshino, Kunikazu; Maruwaka, Shuichi; Higashiarakawa, Miwa; Parrott, Gretchen; Hirata, Tetsuo; Kinjo, Kozen; Fujita, Jiro

    2016-01-01

    AIM: To investigate the clinical and biochemical factors associated with visceral fat accumulation in the general population. METHODS: We enrolled 1004 subjects who underwent a medical health checkup between April 2008 and March 2009. The medical health checkup included the following tests: Height, body weight, waist circumference (WC), systolic blood pressure, diastolic blood pressure, urinalysis, blood-cell counts, blood chemistry, electrocardiography, chest radiography, and abdominal computed tomography (CT) for visceral fat accumulation. The patients’ medical history and lifestyle factors were collected privately by nurses using a self-administered questionnaire, and they included questions regarding physical activity, sleep duration, dietary habits, smoking, and alcohol consumption. Visceral fat area (VFA) was defined as the sum of the intraperitoneal fat area at the level of the umbilicus with CT density in the range of -150 to -50 Hounsfield units. RESULTS: The mean age and body mass index (BMI) of the study subjects were 57.0 years and 24.4 kg/m2. In both male and females, VFA was significantly and positively correlated with WC (r = 0.532, P < 0.01; r = 0.612, P < 0.01). Subjects with high levels of VFA were primarily male with significantly higher age, height, body weight, BMI, systolic blood pressure (BP), diastolic BP, and hemoglobin in all subjects (P < 0.05). A multivariate logistic regression analysis revealed that VFA had a positive relationship with age ≥ 56, BMI ≥ 25 kg/m2, and triglyceride level ≥ 149 in males (P < 0.05), whereas it had a positive relationship with age ≥ 58, BMI ≥ 24.4 kg/m2, high-density lipoprotein cholesterol level < 40 mg/dL, and current drinking in females (P < 0.05). CONCLUSION: These results suggest that gender differences exist in the clinical and biochemical parameters associated with visceral fat accumulation. PMID:27158542

  11. Expression of Delta(12) fatty acid desaturase during the induced accumulation of the antifungal diene in avocado fruits.

    PubMed

    Wang, Xuejun; Beno-Moualem, Delila; Kobiler, Ilana; Leikin-Frenkel, Alicia; Lichter, Amnon; Prusky, Dov

    2004-11-01

    SUMMARY The preformed (Z,Z)-1-acetoxy-2-hydroxy-4-oxo-heneicosa-12,15-diene (AFD) is the most active antifungal compound in avocado; it affects the quiescence of Colletotrichum gloeosporioides in unripe fruit. One of the genes encoding Delta(12) fatty acid desaturase (avfad12) was hypothesized to take part in the biosynthesis of AFD, and its expression pattern and enzymatic activity were determined in relation to the content of AFD. Using avfad12-3 as a probe, high levels of expression were detected in young fruits and leaves, where the level of AFD was highest. In contrast, Northern analysis of RNA from mature leaves and fruits showed no transcripts from the avfad12 gene family and lower AFD content. The transcripts from the avfad12 gene family, the enzymatic activity of Delta(12) fatty acid desaturase, and the level of AFD in unripe-resistant fruits increased transiently when the fruits were inoculated with C. gloeosporioides or exposed to ethylene (40 microL/L), low temperature (4 degrees C) or 1 mm H(2)O(2), but ripe fruits were not affected. The effect of H(2)O(2) on the transcripts from the avfad12 gene family is of specific importance, because reactive oxygen species were produced by unripe-resistant host fruit soon after inoculation of C. gloeosporioides. In addition, the fungus itself produced H(2)O(2) in culture medium at pH 5.0, which is similar to the pH of unripe-resistant fruit, but not at pH 7.0. Treatments that enhanced Delta(12) fatty acid desaturase activity increased the concentration of the AFD precursor, linoleic acid, and its incorporation into AFD; these treatments also caused a delay in decay development. The present results demonstrate temporal relationships among the transcripts from the avfad12 gene family, the synthesis of the precursor of AFD (linoleic acid), the AFD content and quiescence of C. gloeosporioides in unripe fruits. PMID:20565631

  12. Nitric Oxide Triggers Phosphatidic Acid Accumulation via Phospholipase D during Auxin-Induced Adventitious Root Formation in Cucumber1[W][OA

    PubMed Central

    Lanteri, María Luciana; Laxalt, Ana María; Lamattina, Lorenzo

    2008-01-01

    Auxin and nitric oxide (NO) play fundamental roles throughout plant life. NO is a second messenger in auxin signal transduction leading to root developmental processes. The mechanisms triggered by auxin and NO that direct adventitious root (AR) formation are beginning to be unraveled. The goal of this work was to study phospholipid (PL) signaling during the auxin- and NO-induced AR formation in cucumber (Cucumis sativus) explants. Explants were labeled with 32P-inorganic phosphate and treated with the auxins indole-3-acetic acid or 1-naphthylacetic acid, or the NO donor S-nitroso N-acetyl penicillamine, in the presence or absence of the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. PLs were separated by thin-layer chromatography and quantified. We report that the signaling PLs phosphatidic acid (PA), phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulated within 1 min after auxin or NO treatment. Both auxin and NO evoked similar and transient time course responses, since signaling PLs returned to control levels after 20 or 30 min of treatment. The results indicate that auxin relies on NO in inducing PA, phosphatidylinositol phosphate, and phosphatidylinositol bisphosphate accumulation. Furthermore, we demonstrate that auxin and NO trigger PA formation via phospholipase D (PLD) activity. Explants treated for 10 min with auxin or NO displayed a 200% increase in AR number compared with control explants. In addition, PLD activity was required for the auxin- and NO-induced AR formation. Finally, exogenously applied PA increased up to 300% the number of ARs. Altogether, our data support the idea that PLD-derived PA is an early signaling event during AR formation induced by auxin and NO in cucumber explants. PMID:18375601

  13. Balance between fatty acid degradation and lipid accumulation in cultured smooth muscle cells and IC-21 macrophages exposed to oleic acid.

    PubMed

    Moinat, M; Kossovsky, M; Chevey, J M; Giacobino, J P

    1991-01-01

    1. The effect of changes in fatty acid beta-oxidation activity on triglyceride and cholesteryl ester synthesis were studied in cultured smooth muscle cells (SMC) and in a macrophage cell line IC-21 in the presence of oleic acid (100 microM). 2. Etomoxir, an inhibitor of carnitine palmitoyltransferase I, stimulated the incorporation of [2-3H]glycerol into triglycerides in SMC and in macrophages 6.2- and 8.2-fold, respectively, and the incorporation of [4-14C]cholesterol into cholesteryl esters in macrophages 3.5-fold. 3. L-Carnitine, a cofactor of fatty acid beta-oxidation, decreased the incorporation of [2-3H]glycerol into triglycerides in smooth muscle cells by 69% and the incorporation of [4-14C]cholesterol into cholesteryl esters by 52%. L-Carnitine had no effect on the macrophages. PMID:2060277

  14. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    PubMed

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  15. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica)

    PubMed Central

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m−2 s−1 or 100 μmol m−2 s−1 at 10°C, or at 400 μmol m−2 s−1 with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  16. Hatching, growth, ion accumulation, and skeletal ossification of brook trout (Salvelinus fontinalis) alevins in acidic soft waters

    USGS Publications Warehouse

    Steingraeber, M.T.; Gingerich, W.H.

    1991-01-01

    Brook trout eyed eggs and subsequent alevins were exposed to pH 5.0, 6.5, and 7.0 in soft reconstituted water and to pH 8.2 in hard well water for up to 72 d. Hatching was delayed and hatching success reduced (p K+ > Cl- during yolk absorption and early exogenous feeding. Whole-body monovalent ion concentrations were reduced for short periods during yolk absorption in alevins exposed to pH 6.5 and throughout most of the experiment for those exposed to pH 5.0. Whole-body Mg2+ concentrations were not affected by treatment pH and remained near their median hatch level throughout the exposure. The whole-body concentration of Ca2+ was reduced in fish exposed to pH 5.0, particularly near the end of the experiment. Calcium accumulation in fish was influenced by the interaction of pH and time at pH 5.0 but not at the other pH levels. Alevins exposed to pH 5.0 experienced delayed ossification of skeletal structures associated with feeding, respiration, and locomotion that usually persisted for up to 10 d. The detection of skeletal abnormalities early in life might aid in identifying fish populations at risk in acidified waters.

  17. Anaplerotic Accumulation of Tricarboxylic Acid Cycle Intermediates as Well as Changes in Other Key Metabolites During Heterotopic Ossification

    PubMed Central

    Davis, Eleanor L.; Salisbury, Elizabeth A.; Olmsted‐Davis, Elizabeth

    2015-01-01

    ABSTRACT Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:26627193

  18. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  19. Accumulation of PrLeg, a Perilla legumin protein in potato tuber results in enhanced level of sulphur-containing amino acids.

    PubMed

    Goo, Young-Min; Kim, Tae-Won; Lee, Min-Kyung; Lee, Shin-Woo

    2013-09-01

    Potato is the fourth staple food in the world, following rice, wheat, and maize, whereas tubers contain high quality of starch, relatively high amounts of vitamin C and many other important substances. It also contains relatively good quality of protein (about 3 to 6% of the dried weight) and patatin, and 11S globulin is a major storage protein with high level of lysine. However, tuber protein contains relatively low amounts of sulphur-containing amino acids, which may result in low nutritional value. Recently, we cloned a gene encoding PrLeg polypeptide, a seed storage protein from Perilla, which contains relatively higher levels of sulphur-containing amino acids. We transformed PrLeg cDNA into a potato plant to over-express under the direction of the tuber-specific promoter, patatin. Most of the transgenic lines identified through PCR and RT-PCR analyses were able to accumulate high amount of prLeg transcript in their tuber tissue, while very little or no transcript that were detected in their leaf tissues. The level of methionine content was elevated up to three-fold compared to non-transgenic parental line, without any significant changes in other amino acids, suggesting that further research is required to get a deeper insight into their nutritional value. PMID:24161240

  20. Improved Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Produced by Comamonas sp. EB172 Utilizing Volatile Fatty Acids by Regulating the Nitrogen Source

    PubMed Central

    Zakaria, Mohd Rafein; Ariffin, Hidayah; Abd-Aziz, Suraini; Hassan, Mohd Ali; Shirai, Yoshihito

    2013-01-01

    This study presents the effect of carbon to nitrogen ratio (C/N) (mol/mol) on the cell growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation by Comamonas sp. EB172 in 2 L fermenters using volatile fatty acids (VFA) as the carbon source. This VFA was supplemented with ammonium sulphate and yeast extract in the feeding solution to achieve C/N (mol/mol) 5, 15, 25, and 34.4, respectively. By extrapolating the C/N and the source of nitrogen, the properties of the polymers can be regulated. The number average molecular weight (Mn) of P(3HB-co-3HV) copolymer reached the highest at 838 × 103 Da with polydispersity index (PDI) value of 1.8, when the culture broth was supplemented with yeast extract (C/N 34.4). Tensile strength and Young's modulus of the copolymer containing 6–8 mol% 3HV were in the ranges of 13–14.4 MPa and 0.26–0.34 GPa, respectively, comparable to those of polyethylene (PE). Thus, Comamonas sp. EB172 has shown promising bacterial isolates producing polyhydroxyalkanoates from renewable carbon materials. PMID:24106698

  1. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying

    PubMed Central

    Li, Feng-Min

    2012-01-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat. PMID:22859677

  2. Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) Under Cu stress.

    PubMed

    Huang, Guoyong; Guo, Guangguang; Yao, Shiyuan; Zhang, Na; Hu, Hongqing

    2016-01-01

    Ricinus communis L. is a hyperaccumulation plant newly discovered in an abandoned land of Cu mine in China. A hydroponic experiment was then carried out to determine the root exudates in the Cu-tolerant castor (Ricinus communis L.). Plants were grown in nutrient solution with increasing level of Cu doses (0, 100, 250, 500, and 750 μmol/L Cu) in the form of CuSO4. Cu accumulation in the roots and shoots of castor, and root exudates collected from the castor were measured. The results indicated that the castor had a high Cu accumulation capacity and the Cu concentrations in the shoots and roots of the castor treated with 750 μmol/L Cu were 177.1, 14586.7 mg/kg, respectively. Tartaric was the largest in the root exudates in terms of concentrations, which reached up to 329.13 μmol/g (dry plant) in the level of 750 μmol/L Cu. There was a significantly positive linear relationship between the Cu concentration in root and the concentration of succinic (R = 0.92, P < 0.05), tartaric (R = 0.96, P < 0.01), and citric (R = 0.89, P < 0.05). These results indicated that the difference in root exudation from castor could affect their Cu tolerance. What is more, significant is that the high tartaric and citric, the low oxalic and cysteine in the root exudation of castor contributed to toleration of high Cu concentrations. PMID:26220483

  3. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden Syrian hamster.

    PubMed

    Matthan, Nirupa R; Dillard, Alice; Lecker, Jaime L; Ip, Blanche; Lichtenstein, Alice H

    2009-02-01

    The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to PUFA may confer functional advantages with respect to finding acceptable alternatives to partially hydrogenated fats, but limited data are available on its effect on cardiovascular risk factors. This study investigated the effect of diets (10% fat, 0.1% cholesterol, wt:wt) enriched with macadamia [monounsaturated fatty acid (MUFA)16:1], palm (SFA,16:0), canola (MUFA,18:1), or safflower (PUFA,18:2) oils on lipoprotein profiles and aortic cholesterol accumulation in F1B Golden Syrian hamsters (n = 16/group). After 12 wk, 8 hamsters in each group were killed (phase 1). The remaining hamsters fed palm oil were changed to a diet containing coconut oil, while hamsters in the other diet groups continued on their original diets for an additional 6 wk (phase 2). With minor exceptions, the time course and dietary SFA source did not alter the study outcomes. Macadamia oil-fed hamsters had lower non-HDL cholesterol and triglyceride concentrations compared with the palm and coconut oil-fed hamsters and higher HDL-cholesterol compared with the coconut, canola, and safflower oil-fed hamsters. The aortic cholesterol concentration was not affected by dietary fat type. The hepatic cholesterol concentration was higher in the unsaturated compared with the saturated oil-fed hamsters. RBC membrane and aortic cholesteryl ester, triglyceride, and phospholipid fatty acid profiles reflected that of the dietary oil. These data suggest that an oil relatively high in palmitoleic acid does not adversely affect plasma lipoprotein profiles or aortic cholesterol accumulation and was similar to other unsaturated fatty acid-rich oils. PMID:19106316

  4. Phase transformations of high-purity PbI2 nanoparticles synthesized from lead-acid accumulator anodes

    NASA Astrophysics Data System (ADS)

    Malevu, T. D.; Ocaya, R. O.; Tshabalala, K. G.

    2016-09-01

    High-purity hexagonal lead iodide nanoparticles have been synthesized from a depleted sealed lead acid battery anode. The synthesized product was found to consist of the rare 6R polytype form of PbI2 that is thought to have good potential in photovoltaic applications. We investigate the effects of annealing time and post-melting temperature on the structure and optical properties using 1.5418 Å CuKα radiation. Photoluminescence measurements were done under 150 W/221 nm wavelength xenon excitation. Phase transformation was observed through XRD peaks when annealing time increased from 0.5-5 h. The nanoparticle grain size and inter-planar distance appeared to be independent of annealing time. PL measurements show three broad peaks in a range of 400 nm to 700 nm that are attributed to excitonic, donor-acceptor pair and luminescence bands from the deep levels.

  5. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    PubMed

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. PMID:27342224

  6. Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation.

    PubMed

    Verheijden, Simon; Bottelbergs, Astrid; Krysko, Olga; Krysko, Dmitri V; Beckers, Lien; De Munter, Stephanie; Van Veldhoven, Paul P; Wyns, Sabine; Kulik, Wim; Nave, Klaus-Armin; Ramer, Matt S; Carmeliet, Peter; Kassmann, Celia M; Baes, Myriam

    2013-10-01

    Although peroxisome biogenesis and β-oxidation disorders are well known for their neurodevelopmental defects, patients with these disorders are increasingly diagnosed with neurodegenerative pathologies. In order to investigate the cellular mechanisms of neurodegeneration in these patients, we developed a mouse model lacking multifunctional protein 2 (MFP2, also called D-bifunctional protein), a central enzyme of peroxisomal β-oxidation, in all neural cells (Nestin-Mfp2(-/-)) or in oligodendrocytes (Cnp-Mfp2(-/-)) and compared these models with an already established general Mfp2 knockout. Nestin-Mfp2 but not Cnp-Mfp2 knockout mice develop motor disabilities and ataxia, similar to the general mutant. Deterioration of motor performance correlates with the demise of Purkinje cell axons in the cerebellum, which precedes loss of Purkinje cells and cerebellar atrophy. This closely mimics spinocerebellar ataxias of patients affected with mild peroxisome β-oxidation disorders. However, general knockouts have a much shorter life span than Nestin-Mfp2 knockouts which is paralleled by a disparity in activation of the innate immune system. Whereas in general mutants a strong and chronic proinflammatory reaction proceeds throughout the brain, elimination of MFP2 from neural cells results in minor neuroinflammation. Neither the extent of the inflammatory reaction nor the cerebellar degeneration could be correlated with levels of very long chain fatty acids, substrates of peroxisomal β-oxidation. In conclusion, MFP2 has multiple tasks in the adult brain, including the maintenance of Purkinje cells and the prevention of neuroinflammation but this is not mediated by its activity in oligodendrocytes nor by its role in very long chain fatty acid degradation. PMID:23777740

  7. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway. PMID:23017406

  8. Effect of surfactant on hydrolysis products accumulation and short-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation of waste activated sludge: kinetic studies.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2010-09-01

    In the presence of surfactant sodium dodecylbenzene sulfonate (SDBS) the hydrolysis products accumulation and the short-chain fatty acids (SCFA) production during waste activated sludge fermentation under mesophilic and thermophilic conditions was compared with that at room temperature. In order to understand the mechanism of significant amounts of mesophilic and thermophilic hydrolysis products and SCFA observed in the presence of surfactant, the kinetic models at different SDBS dosages were developed. It was found that SDBS increased the mesophilic and thermophilic hydrolysis rate significantly, and the maximum specific utilization of hydrolysis products increased at low SDBS and decreased at high one. However, the observed maximum specific utilization of SCFA decreased seriously with SDBS increase. In the presence of SDBS the decay rate of acidogenic bacteria not only was lower than that in the absence of SDBS but decreased with the increase of SDBS under either mesophilic or thermophilic conditions. PMID:20409704

  9. Sediment accumulation, stratigraphic order, and the extent of time-averaging in lagoonal sediments: a comparison of 210Pb and 14C/amino acid racemization chronologies

    NASA Astrophysics Data System (ADS)

    Kosnik, Matthew A.; Hua, Quan; Kaufman, Darrell S.; Zawadzki, Atun

    2015-03-01

    Carbon-14 calibrated amino acid racemization (14C/AAR) data and lead-210 (210Pb) data are used to examine sediment accumulation rates, stratigraphic order, and the extent of time-averaging in sediments collected from the One Tree Reef lagoon (southern Great Barrier Reef, Australia). The top meter of lagoonal sediment preserves a stratigraphically ordered deposit spanning the last 600 yrs. Despite different assumptions, the 210Pb and 14C/AAR chronologies are remarkably similar indicating consistency in sedimentary processes across sediment grain sizes spanning more than three orders of magnitude (0.1-10 mm). Estimates of long-term sediment accumulation rates range from 2.2 to 1.2 mm yr-1. Molluscan time-averaging in the taphonomically active zone is 19 yrs, whereas below the depth of final burial (~15 cm), it is ~110 yrs/5 cm layer. While not a high-resolution paleontological record, this reef lagoon sediment is suitable for paleoecological studies spanning the period of Western colonization and development. This sedimentary deposit, and others like it, should be useful, albeit not ideal, for quantifying anthropogenic impacts on coral reef systems.

  10. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations. PMID:15996585

  11. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation

    PubMed Central

    JOËT, THIERRY; SALMONA, JORDI; LAFFARGUE, ANDRÉINA; DESCROIX, FRÉDÉRIC; DUSSERT, STÉPHANE

    2010-01-01

    Developing Coffea arabica seeds accumulate large amounts of chlorogenic acids (CGAs) as a storage form of phenylpropanoid derivatives, making coffee a valuable model to investigate the metabolism of these widespread plant phenolics. However, developmental and environmental regulations of CGA metabolism are poorly understood. In the present work, the expression of selected phenylpropanoid genes, together with CGA isomer profiles, was monitored throughout seed development across a wide set of contrasted natural environments. Although CGA metabolism was controlled by major developmental factors, the mean temperature during seed development had a direct impact on the time-window of CGA biosynthesis, as well as on final CGA isomer composition through subtle transcriptional regulations. We provide evidence that the variability induced by the environment is a useful tool to test whether CGA accumulation is quantitatively modulated at the transcriptional level, hence enabling detection of rate-limiting transcriptional steps [quantitative trait transcripts (QTTs)] for CGA biosynthesis. Variations induced by the environment also enabled a better description of the phenylpropanoid gene transcriptional network throughout seed development, as well as the detection of three temporally distinct modules of quantitatively co-expressed genes. Finally, analysis of metabolite-to-metabolite relationships revealed new biochemical characteristics of the isomerization steps that remain uncharacterized at the gene level. PMID:20199615

  12. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokiniana-Azospirillum brasilense system under heterotrophic conditions.

    PubMed

    Palacios, Oskar A; Choix, Francisco J; Bashan, Yoav; de-Bashan, Luz E

    2016-06-01

    This study measured the relations between tryptophan production, the phytohormone indole-3-acetic acid (IAA) and the metabolism and accumulation of starch during synthetic mutualism between the microalgae Chlorella sorokiniana and the microalgae growth-promoting bacteria Azospirillum brasilense, created by co-immobilization in alginate beads. Experiments used two wild-type A. brasilense strains (Cd and Sp6) and an IAA-attenuated mutant (SpM7918) grown under nitrogen-replete and nitrogen-starved conditions tested under dark, heterotrophic and aerobic growth conditions. Under all incubating conditions, C. sorokiniana, but not A. brasilense, produced tryptophan. A significant correlation between IAA-production by A. brasilense and starch accumulation in C. sorokiniana was found, since the IAA-attenuated mutant was not producing increased starch levels. The highest ADP-glucose pyrophosphorylase (AGPase) activity, starch content and glucose uptake were found during the interaction of A. brasilense wild type strains with the microalgae. When the microalgae were grown alone, they produced only small amounts of starch. Supplementation with synthetic IAA to C. sorokiniana grown alone enhanced the above parameters, but only transiently. Activity of α-amylase decreased under nitrogen-replete conditions, but increased under nitrogen-starved conditions. In summary, this study demonstrated that, during synthetic mutualism, the exchange of tryptophan and IAA between the partners is a mechanism that governs several changes in starch metabolism of C. sorokiniana, yielding an increase in starch content. PMID:26924113

  13. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity. PMID:27412947

  14. Salicylic acid treatment reduces the rot of postharvest citrus fruit by inducing the accumulation of H2O2, primary metabolites and lipophilic polymethoxylated flavones.

    PubMed

    Zhu, Feng; Chen, Jiajing; Xiao, Xue; Zhang, Mingfei; Yun, Ze; Zeng, Yunliu; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2016-09-15

    To comprehensively analyze the effects of salicylic acid (SA) on the storability of Satsuma mandarin (Citrus unshiu), fruits were treated with 2mM SA. The disease incidence of control/SA-treated fruit at 50d and 120d after treatment was 23.3%/10% and 67.3%/23.3%, respectively, suggesting that SA treatment can significantly reduce the rot rate of postharvest citrus fruit. Fruit quality assays revealed that the treatment can maintain fruit firmness without affecting the inner quality. Furthermore, the contents of H2O2 and some defense-related metabolites, such as ornithine and threonine, in citrus pericarp, were significantly increased by SA treatment. Moreover, it was lipophilic polymethoxylated flavones, rather than flavanone glycosides, that accumulated in SA-treated fruits and these can directly inhibit pathogen development. These results suggest that the effects of SA on postharvest citrus fruit may be attributed to the accumulation of H2O2 and defense-related metabolites. PMID:27080881

  15. Muscarinic stimulation of SK-N-BE(2) human neuroblastoma cells elicits phosphoinositide and phosphatidylcholine hydrolysis: relationship to diacylglycerol and phosphatidic acid accumulation.

    PubMed Central

    Pacini, L; Limatola, C; Frati, L; Luly, P; Spinedi, A

    1993-01-01

    Muscarinic stimulation of the human neuroblastoma cell line SK-N-BE(2) elicits hydrolysis of phosphoinositides and phosphatidylcholine (PtdCho) and produces a rapid and sustained elevation of diacylglycerol (DG) mass. PtdIns(4,5)P2 cleavage by phospholipase C (PLC) occurred immediately after carbachol (CCh) addition, and phosphoinositide hydrolysis was then sustained for at least 5 min. Cell stimulation, after extensive PtdCho labelling by long-term [3H]choline administration, resulted in an enhanced release of [3H]phosphocholine (PCho) into the external medium; enhanced [3H]PCho release, which occurred with a 15 s delay with respect to CCh addition, was particularly pronounced within the first minute of stimulation and proved to be caused by PtdCho-specific PLC activation. In fact, when cells were exposed to [3H]choline for a short period, to extensively label the intracellular PCho pool but not PtdCho, stimulation did not result in an enhanced release of [3H]PCho into the medium. PtdCho-specific phospholipase D (PLD) activation was documented by the accumulation of [3H]phosphatidylethanol in cells prelabelled with [3H]myristic acid and stimulated in the presence of 1% (v/v) ethanol; this metabolic pathway, however, proved to be a minor one leading to generation of phosphatidic acid (PtdOH) during cell stimulation, whereas DG production by the sequential action of PtdCho-specific PLD and PtdOH phosphohydrolase was not observed. Studies on cells which were double-labelled with [3H]myristic acid and [14C]arachidonic acid indicated that within 15 s of stimulation DG is uniquely derived from PtdIns(4,5)P2, whereas PtdCho is the major source at later times. Evidence is provided that rapid and selective conversion of phosphoinositide-derived DG into PtdOH may play an important role in determining the temporal accumulation profile of DG from the above-mentioned sources. PMID:8380986

  16. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  17. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  18. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. PMID:26575525

  19. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA.

    PubMed

    Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan

    2012-05-01

    Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found. PMID:22391126

  20. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet.

    PubMed

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-05-01

    Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  1. Effects of microalgal polyunsaturated fatty acid oil on body weight and lipid accumulation in the liver of C57BL/6 mice fed a high fat diet

    PubMed Central

    Go, Ryeo-Eun; Hwang, Kyung-A; Park, Geon-Tae; Lee, Hae-Miru; Lee, Geum-A; Kim, Cho-Won; Jeon, So-Ye; Seo, Jeong-Woo; Hong, Won-Kyung; Choi, Kyung-Chul

    2016-01-01

    Abstract Dietary polyunsaturated fatty acids (PUFAs), which are abundant in marine fish oils, have recently received global attention for their prominent anti-obesogenic effects. Among PUFAs, eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which are n-3 long-chain PUFAs widely referred to as omega-3 oils, were reported to prevent the development of obesity in rodents and humans. In the present study, we evaluated the anti-obesity effects of microalgal oil on high-fat induced obese C57BL/6 mice, compared with commercial omega-3 fish oil and vegetable corn oil. Microalgal oil is an inherent mixture of several PUFAs, including EPA, DHA and other fatty acids produced from a marine microalgal strain of Thraustochytriidae sp. derived mutant. It was found to contain more PUFAs (>80%) and more omega-3 oils than commercial omega-3 fish oil (PUFAs >31%) and corn oil (PUFAs 59%). All three types of oils induced weight loss in high-fat-induced obese mice, with the loss induced by microalgal oil being most significant at 9 weeks (10% reduction). However, the oils tested did not improve blood lipid levels, although microalgal oil showed an apparent inhibitory effect on lipid accumulation in the liver. These findings may be attributed to the higher PUFA content, including omega-3 oils of microalgal oil than other oils. Collectively, these findings suggest that microalgal oil, derived from Thraustochytriidae sp. derived mutant, is a prominent candidate for replacement of omega-3 fish oils based on its apparent anti-obesity effect in vivo. PMID:27533934

  2. Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella.

    PubMed

    Weng, Li-Chi; Pasaribu, Buntora; Lin, I-Ping; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-01-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations. PMID:25047647

  3. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

    NASA Astrophysics Data System (ADS)

    Weng, Li-Chi; Pasaribu, Buntora; -Ping Lin, I.; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-07-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations.

  4. Differential accumulation and elimination behavior of perfluoroalkyl Acid isomers in occupational workers in a manufactory in China.

    PubMed

    Gao, Yan; Fu, Jianjie; Cao, Huiming; Wang, Yawei; Zhang, Aiqian; Liang, Yong; Wang, Thanh; Zhao, Chunyan; Jiang, Guibin

    2015-06-01

    In this study, serum and urine samples were collected from 36 occupational workers in a fluorochemical manufacturing plant in China from 2008 to 2012 to evaluate the body burden and possible elimination of linear and branched perfluoroalkyl acids (PFAAs). Indoor dust, total suspended particles (TSP), diet, and drinking water samples were also collected to trace the occupational exposure pathway to PFAA isomers. The geometric mean concentrations of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorohexanesulfonate (PFHxS) isomers in the serum were 1386, 371, and 863 ng mL(-1), respectively. The linear isomer of PFOS, PFOA, and PFHxS was the most predominant PFAA in the serum, with mean proportions of 63.3, 91.1, and 92.7% respectively, which were higher than the proportions in urine. The most important exposure routes to PFAA isomers in the occupational workers were considered to be the intake of indoor dust and TSP. A renal clearance estimation indicated that branched PFAA isomers had a higher renal clearance rate than did the corresponding linear isomers. Molecular docking modeling implied that linear PFOS (n-PFOS) had a stronger interaction with human serum albumin (HSA) than branched isomers did, which could decrease the proportion of n-PFOS in the blood of humans via the transport of HSA. PMID:25927957

  5. Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

    PubMed Central

    Weng, Li-Chi; Pasaribu, Buntora; -Ping Lin, I.; Tsai, Ching-Hsiu; Chen, Chii-Shiarng; Jiang, Pei-Luen

    2014-01-01

    The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations. PMID:25047647

  6. Perturbations of malate accumulation and the endogenous rhythms of gas exchange in the Crassulacean acid metabolism plant Kalanchoë daigremontiana: testing the tonoplast-as-oscillator model.

    PubMed

    Wyka, Tomasz P; Bohn, Andreas; Duarte, Heitor M; Kaiser, Friedemann; Lüttge, Ulrich E

    2004-08-01

    In continuous light, leaves of the Crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier exhibit a circadian rhythm of CO2 uptake, stomatal conductance and leaf-internal CO2 pressure. According to a current quantitative model of CAM, the pacemaking mechanism involves periodic turgor-related tension and relaxation of the tonoplast, which determines the direction of the net flux of malate between the vacuole and the cytoplasm. Cytoplasmic malate, in turn, through its inhibitory effect on phospho enolpyruvate carboxylase, controls the rate of CO2 uptake. According to this mechanism, when the accumulation of malate is disrupted by removing CO2 from the ambient air, the induction of a phase delay with respect to an unperturbed control plant is expected. First, using the mathematical model, such phase delays were observed in numerical simulations of three scenarios of CO2 removal: (i) starting at a trough of CO2 uptake, lasting for about half a cycle (ca. 12 h in vivo); (ii) with the identical starting phase, but lasting for 1.5 cycles (ca. 36 h); and (iii) starting while CO2 increases, lasting for half a cycle again. Applying the same protocols to leaves of K. daigremontiana in vivo did not induce the predicted phase shifts, i.e. after the end of the CO2 removal the perturbed rhythm adopted nearly the same phase as that of the control plant. Second, when leaves were exposed to a nitrogen atmosphere for three nights prior to onset of continuous light to prevent malate accumulation, a small, 4-h phase advance was observed instead of a delay, again contrary to the model-based expectations. Hence, vacuolar malic acid accumulation is ruled out as the central pacemaking process. This observation is in line with our earlier suggestion [T.P. Wyka, U. Lüttge (2003) J Exp Bot 54:1471-1479] that in extended continuous light, CO2 uptake switches gradually from a CAM-like to a C3-like mechanism, with oscillations of the two CO2 uptake systems being

  7. Associations of Erythrocyte Fatty Acids in the De Novo Lipogenesis Pathway with Proxies of Liver Fat Accumulation in the EPIC-Potsdam Study

    PubMed Central

    Jacobs, Simone; Jäger, Susanne; Jansen, Eugene; Peter, Andreas; Stefan, Norbert; Boeing, Heiner; Schulze, Matthias B.; Kröger, Janine

    2015-01-01

    Background Biomarker fatty acids (FAs) reflecting de novo lipogenesis (DNL) are strongly linked to the risk of cardiometabolic diseases. Liver fat accumulation could mediate this relation. There is very limited data from human population-based studies that have examined this relation. Objective The aim of this study was to investigate the relation between specific FAs in the DNL pathway and liver fat accumulation in a large population-based study. Methods We conducted a cross-sectional analysis of a subsample (n = 1,562) of the EPIC-Potsdam study, which involves 27,548 middle-aged men and women. Baseline blood samples have been analyzed for proportions of 32 FAs in erythrocyte membranes (determined by gas chromatography) and biomarker concentrations in plasma. As indicators for DNL, the DNL-index (16:0 / 18:2n-6) and proportions of individual blood FAs in the DNL pathway were used. Plasma parameters associated with liver fat content (fetuin-A, ALT, and GGT) and the algorithm-based fatty liver index (FLI) were used to reflect liver fat accumulation. Results The DNL-index tended to be positively associated with the FLI and was positively associated with GGT activity in men (p for trend: 0.12 and 0.003). Proportions of 14:0 and 16:0 in erythrocytes were positively associated with fetuin-A, whereas 16:1n-7 were positively associated with the FLI and GGT activity (all p for trends in both sexes at least 0.004). Furthermore, the proportion of 16:1n-7 was positively related to fetuin-A in women and ALT activity in men (all p for trend at least 0.03). The proportion of 16:1n-9 showed positive associations with the FLI and GGT activity in men and fetuin-A in both sexes, whereas 18:1n-7 was positively associated with GGT activity in men (all p for trend at least 0.048). Conclusion Findings from this large epidemiological study suggest that liver fat accumulation could link erythrocyte FAs in the DNL pathway to the risk of cardiometabolic diseases. PMID:25984792

  8. Effects of light quality and nutrient availability on accumulation of mycosporine-like amino acids in Gymnodinium catenatum (Dinophycea).

    PubMed

    Vale, Paulo

    2015-02-01

    A Portuguese Gymnodinium catenatum Graham strain was studied for its ultraviolet (UV) photoprotective pigments. This strain presented high absorption in the UVA region, in particular in the near UVA region around 370nm, followed by the far-UVA region around 340nm. Absorption in the near-UVA increased when grown under fluorescent when compared to halogen light. This was even more relevant when grown under nutrient-limiting conditions, which even surpassed absorption in the blue region, closely resembling absorption in natural plankton assemblages reported in the literature. HPLC analysis for mycosporine-like amino acids (MAAs), revealed several UV photoprotective pigments common in other marine microalgae from the northwest Atlantic. Amongst the compounds absorbing in the far-UVA region, three were identified by spectra and retention time characteristics: shinorine, porphyra-334, and mycosporine-glycine. In the near-UVA region, the unknown M-370 was usually the most abundant, followed by palythene. The proportional and absolute cellular concentrations of MAAs absorbing in the near-UVA region increased with fluorescent light when compared to halogen light. Additional experiments with light filtration suggest the set of MAAs absorbing in the near-UVA region seem to be regulated separately from the other set of MAAs absorbing in the far-UVA region, and those from the near-UVA region might be stimulated not only by UV but by blue light also. Nutrient availability affected profile: a shift towards MAAs with low nitrogen:carbon ratio (e.g.: mycosporine-glycine) was observed. As G. catenatum requires extensive UV-photoprotection over the entire UVA range, nitrogen availability might strongly restrict blooming, as MAAs are nitrogen-based. This UV sensitivity might help explaining its pronounced autumnal seasonality, tied to a reduced solar exposure. PMID:25589340

  9. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase.

    PubMed

    Arisz, Steven A; van Wijk, Ringo; Roels, Wendy; Zhu, Jian-Kang; Haring, Michel A; Munnik, Teun

    2013-01-01

    Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using (32)P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid (32)P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential (32)P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid (32)P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of (32)P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in (32)P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in (32)P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented. PMID:23346092

  10. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase

    PubMed Central

    Arisz, Steven A.; van Wijk, Ringo; Roels, Wendy; Zhu, Jian-Kang; Haring, Michel A.; Munnik, Teun

    2013-01-01

    Phosphatidic acid (PtdOH) is emerging as an important signaling lipid in abiotic stress responses in plants. The effect of cold stress was monitored using 32P-labeled seedlings and leaf discs of Arabidopsis thaliana. Low, non-freezing temperatures were found to trigger a very rapid 32P-PtdOH increase, peaking within 2 and 5 min, respectively. In principle, PtdOH can be generated through three different pathways, i.e., (1) via de novo phospholipid biosynthesis (through acylation of lyso-PtdOH), (2) via phospholipase D hydrolysis of structural phospholipids, or (3) via phosphorylation of diacylglycerol (DAG) by DAG kinase (DGK). Using a differential 32P-labeling protocol and a PLD-transphosphatidylation assay, evidence is provided that the rapid 32P-PtdOH response was primarily generated through DGK. A simultaneous decrease in the levels of 32P-PtdInsP, correlating in time, temperature dependency, and magnitude with the increase in 32P-PtdOH, suggested that a PtdInsP-hydrolyzing PLC generated the DAG in this reaction. Testing T-DNA insertion lines available for the seven DGK genes, revealed no clear changes in 32P-PtdOH responses, suggesting functional redundancy. Similarly, known cold-stress mutants were analyzed to investigate whether the PtdOH response acted downstream of the respective gene products. The hos1, los1, and fry1 mutants were found to exhibit normal PtdOH responses. Slight changes were found for ice1, snow1, and the overexpression line Super-ICE1, however, this was not cold-specific and likely due to pleiotropic effects. A tentative model illustrating direct cold effects on phospholipid metabolism is presented. PMID:23346092

  11. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca(OH)₂ adjustment.

    PubMed

    Li, XiaoLing; Peng, YongZhen; Ren, NanQi; Li, BaiKun; Chai, TongZhi; Zhang, Liang

    2014-09-15

    The effects of temperatures (15-55 °C) on the alkaline fermentation of sewage sludge were investigated in semi-continuous stirred tank reactors (semi - CSTR) at the pH of 10. The highest soluble chemical oxygen demand (SCOD) yield was obtained at 55 °C (764.2 mg/(gVS L d)), while the highest short chain fatty acids (SCFAs) yield was observed at 35 °C (319.8 mg/(gVS L d)), 1.5 times higher than SCFAs yield at 55 °C (209.5 mg/(gVS L d)). The proportion of the intercellular organic substances being transferred to the slime layer of sludge flocs increased from 29% at 15 °C to 54% at 55 °C. But only a small part of soluble organic substances in the slime layers was converted to SCFAs at 55 °C. The dewaterability of sludge was better at 35 °C than that at 55 °C. Microbiological community analysis showed the acid-producing microorganisms at the medium temperatures (25 °C and 35 °C) were more diverse and abundant than those at the low (15 °C) and high temperatures (55 °C). Clodtridium and Bacillus in Firmicutes and Gamma proteobacterium in Proteobacteria were the dominant functional bacterial species for high SCFA accumulation. PMID:24880243

  12. Intake of a Western diet containing cod instead of pork alters fatty acid composition in tissue phospholipids and attenuates obesity and hepatic lipid accumulation in mice.

    PubMed

    Liisberg, Ulrike; Fauske, Kristin Røen; Kuda, Ondrej; Fjære, Even; Myrmel, Lene Secher; Norberg, Nina; Frøyland, Livar; Graff, Ingvild Eide; Liaset, Bjørn; Kristiansen, Karsten; Kopecky, Jan; Madsen, Lise

    2016-07-01

    The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects. PMID:27155918

  13. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain).

    PubMed

    Nóvoa-Muñoz, J C; Pontevedra-Pombal, X; Martínez-Cortizas, A; García-Rodeja Gayoso, E

    2008-05-15

    This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: woodaccumulation in the studied acid soils. PMID:18295823

  14. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere.

    PubMed

    Arseneault, Tanya; Goyer, Claudia; Filion, Martin

    2016-09-01

    Pseudomonads are often used as biocontrol agents because they display a broad range of mechanisms to control diseases. Common scab of potato, caused by Streptomyces scabies, was previously reported to be controlled by Pseudomonas fluorescens LBUM223 through phenazine-1-carboxylic acid (PCA) production. In this study, we aimed at characterizing the population dynamics of LBUM223 and the expression of phzC, a key gene involved in the biosynthesis of PCA, in the rhizosphere and geocaulosphere of potato plants grown under controlled and field conditions. Results obtained from controlled experiments showed that soil populations of LBUM223 significantly declined over a 15-week period. However, at week 15, the presence of S. scabies in the geocaulosphere was associated with significantly higher populations of LBUM223 than when the pathogen was absent. It also led to the detection of significantly higher phzC gene transcript numbers. Under field conditions, soil populations of LBUM223 followed a similar decline in time when a single inoculation was applied in spring but remained stable when reinoculated biweekly, which also led to greater phzC gene transcripts accumulation. Taken together, our findings suggest that LBUM223 must colonize the potato geocaulosphere at high levels (10(7) bacteria/g of soil) in order to achieve biocontrol of common scab through increased PCA production. PMID:27088392

  15. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD. PMID:24370824

  16. Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes

    NASA Astrophysics Data System (ADS)

    Millon, Stacy R.; Ostrander, Julie H.; Yazdanfar, Siavash; Brown, J. Quincy; Bender, Janelle E.; Rajeha, Anita; Ramanujam, Nirmala

    2010-01-01

    We describe the potential of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence as a source of contrast for margin detection in commonly diagnosed breast cancer subtypes. Fluorescence intensity of PpIX in untreated and ALA-treated normal mammary epithelial and breast cancer cell lines of varying estrogen receptor expression were quantitatively imaged with confocal microscopy. Percentage change in fluorescence intensity integrated over 610-700 nm (attributed to PpIX) of posttreated compared to pretreated cells showed statistically significant differences between four breast cancer and two normal mammary epithelial cell lines. However, a direct comparison of post-treatment PpIX fluorescence intensities showed no differences between breast cancer and normal mammary epithelial cell lines due to confounding effects by endogenous fluorescence from flavin adenine dinucleotide (FAD). Clinically, it is impractical to obtain pre- and post-treatment images. Thus, spectral imaging was demonstrated as a means to remove the effects of endogenous FAD fluorescence allowing for discrimination between post-treatment PpIX fluorescence of four breast cancer and two normal mammary epithelial cell lines. Fluorescence spectral imaging of ALA-treated breast cancer cells showed preferential PpIX accumulation regardless of malignant phenotype and suggests a useful contrast mechanism for discrimination of residual cancer at the surface of breast tumor margins.

  17. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance.

    PubMed

    Medeiros, David B; Martins, Samuel C V; Cavalcanti, João Henrique F; Daloso, Danilo M; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M; Fernie, Alisdair R; Araújo, Wagner L

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. PMID:26542441

  18. DELAYED URIC ACID ACCUMULATION IN PLASMA PROVIDES ADDITIONAL ANTI-OXIDANT PROTECTION AGAINST IRON-TRIGGERED OXIDATIVE STRESS AFTER A WINGATE TEST

    PubMed Central

    Souza-Junior, TP; Lorenço-Lima, L; Ganini, D; Vardaris, CV; Polotow, TG

    2014-01-01

    Reactive oxygen species are produced during anaerobic exercise mostly by Fe ions released into plasma and endothelial/muscle xanthine oxidase activation that generates uric acid (UA) as the endpoint metabolite. Paradoxically, UA is considered a major antioxidant by virtue of being able to chelate pro-oxidative iron ions. This work aimed to evaluate the relationship between UA and plasma markers of oxidative stress following the exhaustive Wingate test. Plasma samples of 17 male undergraduate students were collected before, 5 and 60 min after maximal anaerobic effort for the measurement of total iron, haem iron, UA, ferric-reducing antioxidant activity in plasma (FRAP), and malondialdehyde (MDA, biomarker of lipoperoxidation). Iron and FRAP showed similar kinetics in plasma, demonstrating an adequate pro-/antioxidant balance immediately after exercise and during the recovery period (5–60 min). Slight variations of haem iron concentrations did not support a relevant contribution of rhabdomyolysis or haemolysis for iron overload following exercise. UA concentration did not vary immediately after exercise but rather increased 29% during the recovery period. Unaltered MDA levels were concomitantly measured. We propose that delayed UA accumulation in plasma is an auxiliary antioxidant response to post-exercise (iron-mediated) oxidative stress, and the high correlation between total UA and FRAP in plasma (R-Square = 0.636; p = 0.00582) supports this hypothesis. PMID:25435669

  19. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    SciTech Connect

    Rodriguez-Concepcion, M.; Gruissem, W.

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  20. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.

    PubMed

    Król, P; Igielski, R; Pollmann, S; Kępczyńska, E

    2015-05-01

    Methyl jasmonate (MeJA) was tested by seed treatment for its ability to protect tomato seedlings against fusarium wilt caused by the soil-borne fungal pathogen Fusarium oxysporum f.sp. lycopersici. Isolated from Solanum lycopersicon L. seeds, cv. Beta fungus was identified as F. oxysporum f.sp. lycopersici Race 3 fungus by using phytopathological and molecular methods. MeJA applied at 0.01, 0.1 and 1 mM reduced spore germination and mycelial growth in vitro. Soaking of tomato seeds in MeJA solution at 0.1 mM for 1 h significantly enhanced the resistance level against the tested fungus in tomato seedlings 4 weeks after inoculation. The extracts from leaves of 15-day-old seedlings obtained from previously MeJA soaked seeds had the ability to inhibit in vitro spore germination of tested fungus. In these seedlings a significant increase in the levels phenolic compounds such as salicylic acid (SA), kaempferol and quercetin was observed. Up-regulation of phenylalanine ammonia-lyase (PAL5) and benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) genes and down-regulation of the isochorysmate synthase (ICS) gene in response to exogenous MeJA application indicate that the phenylalanine ammonia-lyase (PAL), not the isochorismate (IC) pathway, is the primary route for SA production in tomato. Moreover, the increased accumulation of the flavonols quercetin and kaempferol appears closely related to the increase of PAL5, chalcone synthase (CHS) and flavonol synthase/flavanone 3-hydroxylase-like (FLS) genes. Elevated levels of salicylic acid in seedlings raised from MeJA-soaked seeds were simultaneously accompanied by a decrease of jasmonic acid, the precursor of MeJA, and an increase of 12-oxo-phytodienoic acid (OPDA), the precursor of jasmonic acid. The present results indicate that the priming of tomato seeds with 0.1mM MeJA before sowing enables the seedlings grown from these seeds to reduce the attack of the soil-borne fungal pathogen F. oxysporum f.sp. lycopersici

  1. Screening of Cd-safe genotypes of Chinese cabbage in field condition and Cd accumulation in relation to organic acids in two typical genotypes under long-term Cd stress.

    PubMed

    Wang, Xu; Shi, Yi; Chen, Xin; Huang, Bin

    2015-11-01

    A 65-day field experiment was conducted to select cadmium (Cd)-safe genotypes (CSGs) among 21 Chinese cabbage genotypes in a low Cd-contaminated soil (0.66 mg kg(-1)). Seven CSGs were identified based on their Cd tolerance, shoot Cd concentrations, Cd enrichment factors (EFs), and translocation factors (TFs). Then, Beijingxin3, a typical CSG, together with Qiuxiang, a typical non-CSG for comparison, was selected for a subsequent 80-day field micro-plot experiment under four levels of Cd stress to evaluate the reliability of CSG screening and the role of organic acids in Cd accumulation and tolerance. Beijingxin3 was confirmed to be safe to grow in soil with Cd level up to 3.39 mg kg(-1), with Cd accumulation in its shoots well below the permitted level, and Qiuxiang was still poor in tolerating low Cd stress (1.31 mg kg(-1)). With increasing the Cd stress, Cd accumulation and citrate concentrations increased in shoots and roots of both genotypes, and oxalate concentrations increased significantly in Beijingxin3 roots. Both oxalate and citrate concentrations were significantly positively related to Cd accumulation for Beijingxin3 roots. High accumulation in oxalate and citrate induced by Cd stress in Beijingxin3 roots could benefit its internal tolerance to long-term Cd stress with more Cd accumulation in its roots and less Cd accumulation in its shoots. PMID:26081776

  2. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  3. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor. PMID:27040090

  4. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. PMID:25797155

  5. Effect of Inhibition of Abscisic Acid Accumulation on the Spatial Distribution of Elongation in the Primary Root and Mesocotyl of Maize at Low Water Potentials 1

    PubMed Central

    Saab, Imad N.; Sharp, Robert E.; Pritchard, Jeremy

    1992-01-01

    Previous work showed that accumulation of endogenous abscisic acid (ABA) acts both to maintain primary root growth and inhibit shoot growth in maize seedlings at low water potentials (ψw) (IN Saab, RE Sharp, J Pritchard, GS Voetberg [1990] Plant Physiol 93: 1329-1336). In this study, we have characterized the growth responses of the primary root and mesocotyl of maize (Zea mays L. cv FR27 × FRMo 17) to manipulation of ABA levels at low ψw with a high degree of spatial resolution to provide the basis for studies of the mechanism(s) of ABA action. In seedlings growing at low ψw and treated with fluridone to inhibit carotenoid (and ABA) biosynthesis, ABA levels were decreased in all locations of the root and mesocotyl growing zones compared with untreated seedlings growing at the same ψw. In the root, low ψw (−1.6 megapascals) caused a shortening of the growing zone, as reported previously. The fluridone treatment was associated with severe inhibition of root elongation rate, which resulted from further shortening of the growing zone. In the mesocotyl, low ψw (−0.3 megapascal) also resulted in a shortened growing zone. In contrast with the primary root, however, fluridone treatment prevented most of the inhibition of elongation and the shortening of the growing zone. Final cell length measurements indicated that the responses of both root and mesocotyl elongation to ABA manipulation at low ψw involve large effects on cell expansion. Measurements of the relative changes in root and shoot water contents and dry weights after transplanting to a ψw of −0.3 megapascal showed that the maintenance of shoot elongation in fluridone-treated seedlings was not attributable to increased water or seed-reserve availability resulting from inhibition of root growth. The results suggest a developmental gradient in tissue responsiveness to endogenous ABA in both the root and mesocotyl growing zones. In the root, the capacity for ABA to protect cell expansion at low

  6. Effects of Visceral Fat Accumulation Awareness on a Web-Based Weight-Loss Program: Japanese Study of Visceral Adiposity and Lifestyle Information—Utilization and Evaluation (J-VALUE)

    PubMed Central

    Sakane, Naoki; Dohi, Seitaro; Sakata, Koichi; Hagiwara, Shin-ichi; Uchida, Takanobu; Katashima, Mitsuhiro; Yasumasu, Takeshi; Study Group, J-VALUE

    2013-01-01

    A reduction of visceral fat is important for improvement of metabolic risk. This study was designed to compare the effects of a web-based program alone or together with measurement and self-awareness of accumulated visceral fat in Japanese workers. A new noninvasive device to measure visceral fat accumulation was introduced, and efficacy on weight-loss and improvement of healthy behaviors were examined. This study was conducted according to Helsinki declaration and approved by the ethical committee of Japan Hospital Organization, National Kyoto Hospital. Two-hundred and sixteen overweight and obese males with BMI of more than 23 participated from 8 healthcare offices of 3 Japanese private companies. Subjects were randomly allocated into control group, Web-based weight-loss program (Web), or Web + Visceral fat measurement group (Web + VFA). Eighty-one percent of participants completed the study. Reductions of body weight, waist circumference, and BMI were the largest in Web + VFA group, and the differences between groups were significant by ANOVA. Improvements of healthy behaviors were the largest in Web + VFA group, and the differences of healthy eating improvement scores between Web + VFA and control groups were significant. Our findings suggest that measurement and awareness of visceral fat are effective in weight reduction in overweight and obese males in the workplace. PMID:24555144

  7. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue

    PubMed Central

    Mcilroy, George D.; Tammireddy, Seshu R.; Maskrey, Benjamin H.; Grant, Louise; Doherty, Mary K.; Watson, David G.; Delibegović, Mirela; Whitfield, Phillip D.; Mody, Nimesh

    2016-01-01

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  8. Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome

    PubMed Central

    Beach, Adam; Richard, Vincent R; Bourque, Simon; Boukh-Viner, Tatiana; Kyryakov, Pavlo; Gomez-Perez, Alejandra; Arlia-Ciommo, Anthony; Feldman, Rachel; Leonov, Anna; Piano, Amanda; Svistkova, Veronika; Titorenko, Vladimir I

    2015-01-01

    We have previously revealed that exogenously added lithocholic bile acid (LCA) extends the chronological lifespan of the yeast Saccharomyces cerevisiae, accumulates in mitochondria and alters mitochondrial membrane lipidome. Here, we use quantitative mass spectrometry to show that LCA alters the age-related dynamics of changes in levels of many mitochondrial proteins, as well as numerous proteins in cellular locations outside of mitochondria. These proteins belong to 2 regulons, each modulated by a different mitochondrial dysfunction; we call them a partial mitochondrial dysfunction regulon and an oxidative stress regulon. We found that proteins constituting these regulons (1) can be divided into several “clusters”, each of which denotes a distinct type of partial mitochondrial dysfunction that elicits a different signaling pathway mediated by a discrete set of transcription factors; (2) exhibit 3 different patterns of the age-related dynamics of changes in their cellular levels; and (3) are encoded by genes whose expression is regulated by the transcription factors Rtg1p/Rtg2p/Rtg3p, Sfp1p, Aft1p, Yap1p, Msn2p/Msn4p, Skn7p and Hog1p, each of which is essential for longevity extension by LCA. Our findings suggest that LCA-driven changes in mitochondrial lipidome alter mitochondrial proteome and functionality, thereby enabling mitochondria to operate as signaling organelles that orchestrate an establishment of an anti-aging transcriptional program for many longevity-defining nuclear genes. Based on these findings, we propose a model for how such LCA-driven changes early and late in life of chronologically aging yeast cause a stepwise development of an anti-aging cellular pattern and its maintenance throughout lifespan. PMID:25839782

  9. Phenotypic expression of wild-type tomato and three wilty mutants in relation to abscisic acid accumulation in roots and leaflets of reciprocal grafts

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D. )

    1988-05-01

    Lycopersicon esculentum Mill. cv Rheinlands Ruhm (RR) and cv Moneymaker and the three wilty mutants flacca (flc), sitiens (sit), and sitiens{sup w} (sit{sup w}), together with the most reciprocal grafts, were grown in pots and in solution culture. Detached leaflets, and control and stem-girdled intact plants, were left turgid or were wilted in air. Detached leaflets and the leaflets and roots of the intact plants were analyzed for their abscisic acid (ABA) content. Turgid RR leaflets contained about 2.9 ng ABA per miligram dry weight. On average, the flc and sit leaflets contained 33 and 11% of this amount, respectively. The lack of ABA approximately correlated with the severity of the mutant phenotype. Mutant roots also contained less ABA than wild-type roots. Wild-type scions on mutant stocks (wild type/mutant) maintained the normal phenotype of ungrafted plants. Mutant scions grafted onto wild-type stocks reverted to a near wild-type phenotype. After the wild-type leaves were excised from solution culture-grown mutant/wild-type plants, the revertive morphology of the mutant scions was maintained, although endogenous ABA levels in the leaflets fell to typical mutant levels and the leaflets became wilty again. When stressed in air, both leaflets and roots of RR plants produced stress-induced ABA, but the mutant leaflets and roots did not. The roots and leaflets of the grafted plants behaved according to their own genotype, with the notable exception of mutant roots grown with wild-type scions. Roots of flc and sit{sup w} recovered the ability to accumulate stress-induced ABA when grafted with RR scions before the stress was imposed.

  10. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue.

    PubMed

    Mcilroy, George D; Tammireddy, Seshu R; Maskrey, Benjamin H; Grant, Louise; Doherty, Mary K; Watson, David G; Delibegović, Mirela; Whitfield, Phillip D; Mody, Nimesh

    2016-01-15

    Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo. PMID:26592777

  11. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake

    PubMed Central

    Fan, Shi Kai; Fang, Xian Zhi; Guan, Mei Yan; Ye, Yi Quan; Lin, Xian Yong; Du, Shao Ting; Jin, Chong Wei

    2014-01-01

    Cadmium (Cd) contamination of agricultural soils is an increasingly serious problem. Measures need to be developed to minimize Cd entering the human food chain from contaminated soils. We report here that, under Cd exposure condition, application with low doses of (0.1–0.5 μM) abscisic acid (ABA) clearly inhibited Cd uptake by roots and decreased Cd level in Arabidopsis wild-type plants (Col-0). Expression of IRT1 in roots was also strongly inhibited by ABA treatment. Decrease in Cd uptake and the inhibition of IRT1 expression were clearly lesser pronounced in an ABA-insensitive double mutant snrk2.2/2.3 than in the Col-0 in response to ABA application. The ABA-decreased Cd uptake was found to correlate with the ABA-inhibited IRT1 expression in the roots of Col-0 plants fed two different levels of iron. Furthermore, the Cd uptake of irt1 mutants was barely affected by ABA application. These results indicated that inhibition of IRT1 expression is involved in the decrease of Cd uptake in response to exogenous ABA application. Interestingly, ABA application increased the iron level in both Col-0 plants and irt1 mutants, suggesting that ABA-increased Fe acquisition does not depend on the IRT1 function, but on the contrary, the ABA-mediated inhibition of IRT1 expression may be due to the elevation of iron level in plants. From our results, we concluded that ABA application might increase iron acquisition, followed by the decrease in Cd uptake by inhibition of IRT1 activity. Thus, for crop production in Cd contaminated soils, developing techniques based on ABA application potentially is a promising approach for reducing Cd accumulation in edible organs in plants. PMID:25566293

  12. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.

    PubMed

    Valentino, Francesco; Karabegovic, Lamija; Majone, Mauro; Morgan-Sagastume, Fernando; Werker, Alan

    2015-06-15

    PHA content was attributed to interpreted differences in the biomass initial physiological state and not due to changes in feedstock nutrient loading. We found that the accumulation process production rates for mixed cultures can be sustained long after the maximum PHA content of the biomass was reached. Within the specific context of the applied fed-batch feed-on-demand methods, active biomass growth was interpreted to have been largely restricted to the PHA-storing phenotypic fraction of the biomass. This study suggests practical prospects for mixed culture PHA production using a wide range of volatile fatty acid (VFA) rich feedstocks. Such VFA sources derived from residual industrial or municipal organic wastes often naturally contain associated nutrients ranging in levels from limitation to excess. PMID:25846983

  13. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis.

    PubMed

    Vilchèze, C; Morbidoni, H R; Weisbrod, T R; Iwamoto, H; Kuo, M; Sacchettini, J C; Jacobs, W R

    2000-07-01

    The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C(26:0)), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42 degrees C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C(16:0)) and a concomitant increase of tetracosanoic acid (C(24:0)) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C(16:0), and a concomitant accumulation of C(26:0). Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH. PMID:10869086

  14. CO-EXPRESSION OF THE BORAGE DELTA-6 DESATURASE AND THE ARABIDOPSIS DELTA-15 DESATURASE RESULTS IN HIGH ACCUMULATION OF STEARIDONIC ACID IN THE SEEDS OF TRANSGENIC SOYBEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two relatively rare fatty acids, gamma-linolenic acid (GLA) and stearidonic acid (STA) have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion e...

  15. Comparative study of two routes of administration of 5-aminolevulinic acid (oral and intratumoral via) and their effect on the accumulation of PpIX in tissues in murine model of breast cancer

    NASA Astrophysics Data System (ADS)

    González-Agüero, G.; Ramón-Gallegos, E.

    2012-10-01

    Protoporphyrin IX (PpIX) is a photosensitizer synthesized from 5-aminolevulinic acid (ALA) that has been used in photodynamic therapy (PDT) as a promising treatment for many types of cancer. In this work it was quantified the accumulation of PpIX in tumors and in different tissues of female mice (nu/nu) inoculated with breast cancer cells. Two routes of administration of ALA: gastric probe and intratumoral injection were used to find optimum time of accumulation and the via that induce the higher quantity of PpIX to improve the efficiency of PDT. The results show that the accumulation of PpIX using the intratumoral via is two times bigger than the oral via in tumors at 8 h of treatment. The concentrations obtained in the different tissues are not physiologically significant.

  16. Molar proportions of volatile fatty acids in the gastrointestinal tract of East African wild ruminants.

    PubMed

    Clemens, E T; Maloiy, G M; Sutton, J D

    1983-01-01

    The molar proportions of seven individual VFA's were determined at select sites along the gastrointestinal tract of sixteen species of East African wild ruminants. The resulting data were statistically analyzed for species effect, and for effects due to major feeding groups (browsers, grazers, fresh grass grazers, etc.) and for body weight groups (5-750 kg animals). Present data suggest that body weight, rather than diet, is the more influential factor in reticulo-rumen fermentation rate, and in the molar proportion of fatty acids present. The molar proportions of VFA's observed in the mid and hindgut of these wild ruminants appeared more responsive to diet and body weight of the animal than did foregut VFA values. PMID:6139202

  17. Valproic Acid Treatment Inhibits Hypoxia-Inducible Factor 1α Accumulation and Protects against Burn-Induced Gut Barrier Dysfunction in a Rodent Model

    PubMed Central

    Luo, Hong-Min; Du, Ming-Hua; Lin, Zhi-Long; Zhang, Lin; Ma, Li; Wang, Huan; Yu, Wen; Lv, Yi; Lu, Jiang-Yang; Pi, Yu-Li; Hu, Sen; Sheng, Zhi-Yong

    2013-01-01

    Objective Burn-induced gut dysfunction plays an important role in the development of sepsis and multiple organ dysfunction. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) is critical in paracelluar barrier functions via regulating vascular endothelial growth factor (VEGF) and myosin light chain kinase (MLCK) expression. Previous studies have also demonstrated that histone deacetylase inhibitors (HDACIs) can repress HIF-1α. This study aims to examine whether valproic acid (VPA), a HDACI, protects against burn-induced gut barrier dysfunction via repressing HIF-1α-dependent upregulation of VEGF and MLCK expression. Methods Rats were subjected to third degree 55% TBSA burns and treated with/ without VPA (300mg/kg). Intestinal barrier dysfunction was evaluated by permeability of intestinal mucosa to fluorescein isothiocyanate (FITC)-dextran and histologic evaluation. Histone acetylation, tight junction protein zonula occludens 1 (ZO-1), VEGF, MLCK and HIF-1α were measured. In addition, CaCO2 cells were transfected with siRNA directed against HIF-1α and were stimulated with CoCl2 (1mM) for 24 hours with/without VPA (2mM) followed by analysis of HIF-1α, MLCK, VEGF and ZO-1. Results Burn insults resulted in a significant increase in intestinal permeability and mucosal damage, accompanied by a significant reduction in histone acetylation, ZO-1, upregulation of VEGF, MLCK expression, and an increase in HIF-1α accumulation. VPA significantly attenuated the increase in intestinal permeability, mucosa damage, histone deacetylation and changes in ZO-1 expression. VPA also attenuated the increased VEGF, MLCK and HIF-1α protein levels. VPA reduced HIF-1α, MLCK and VEGF production and prevented ZO-1 loss in CoCl2-stimulated Caco-2 cells. Moreover, transfection of siRNA directed against HIF-1α led to inhibition of MLCK and VEGF production, accompanied by upregulation of ZO-1. Conclusions These results indicate that VPA can protect against burn

  18. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost

    SciTech Connect

    Wong, J.W.C.; Selvam, A.

    2009-10-15

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)-amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg{sup -1}, respectively. These concentrations were significantly lower than those in soil receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg{sup -1} for 10% ASC- and 9.4 to 18.6 mg kg{sup -1} for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting and ASC application rates were at 25 and 20%, respectively.

  19. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    PubMed Central

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-01-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C; 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 ± 2% and 15 ± 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids. PMID:25683239

  20. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    NASA Astrophysics Data System (ADS)

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-02-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 +/- 2% and 15 +/- 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids.

  1. Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean.

    PubMed

    Eckert, Helene; La Vallee, Brad; Schweiger, Bruce J; Kinney, Anthony J; Cahoon, Edgar B; Clemente, Tom

    2006-10-01

    Two relatively rare fatty acids, gamma-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, alpha-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Delta(6) desaturase and an Arabidopsis Delta(15) desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Delta(6) desaturase event with the Delta(15) desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean beta-conglycinin promoter. Soybean events that carried only the Delta(15 )desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids. PMID:16718484

  2. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  3. Whole structure-activity relationships of the fat-accumulation inhibitor (-)-ternatin: recognition of the importance of each amino acid residue.

    PubMed

    Shimokawa, Kenichiro; Iwase, Yoshiaki; Miwa, Ryoka; Yamada, Kaoru; Uemura, Daisuke

    2008-10-01

    A series of Ala and Aoc analogues of (-)-ternatin were prepared, and their bioactivities were assessed by a fat-accumulation inhibition assay using 3T3-L1 adipocytes, which led to the discovery of key structure-activity relationships (SAR). PMID:18798610

  4. Electrochemical Sensors Based on Screen-Printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection.

    PubMed

    Ndiaye, Amadou L; Delile, Sébastien; Brunet, Jérôme; Varenne, Christelle; Pauly, Alain

    2016-01-01

    Here, we report on the use of electrochemical methods for the detection of volatiles fatty acids (VFAs), namely acetic acid. We used tetra-tert-butyl phthalocyanine (PcH₂-tBu) as the sensing material and investigated its electroanalytical properties by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). To realize the electrochemical sensing system, the PcH₂-tBu has been dropcast-deposited on carbon (C) orgold (Au)screen-printed electrodes (SPEs) and characterized by cyclic voltammetry and scanning electron microscopy (SEM). The SEM analysis reveals that the PcH₂-tBu forms mainly aggregates on the SPEs. The modified electrodes are used for the detection of acetic acid and present a linear current increase when the acetic acid concentration increases. The Cmodified electrode presents a limit of detection (LOD) of 25.77 mM in the range of 100 mM-400 mM, while the Aumodified electrode presents an LOD averaging 40.89 mM in the range of 50 mM-300 mM. When the experiment is realized in a buffered condition, theCmodified electrode presents a lower LOD, which averagesthe 7.76 mM. A pronounced signal decay attributed to an electrode alteration is observed in the case of the gold electrode. This electrode alteration severely affects the coating stability. This alteration is less perceptible in the case of the carbon electrode. PMID:27598214

  5. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells. PMID:27261574

  6. Acetate and other Volatile Fatty Acids - Key Intermediates in marine sediment metabolism - Thermodynamic and kinetic implications

    NASA Astrophysics Data System (ADS)

    Glombitza, C.; Jaussi, M.; Røy, H.; Jørgensen, B. B.

    2014-12-01

    Volatile fatty acids (VFAs) play important roles as key intermediates in the anaerobic metabolism of subsurface microbial communities. Usually they are present in marine sediment pore water in low concentrations as a result of balanced production and consumption, both occurring in the same sediment zone. Thus their low concentrations represent a steady state condition regulated by either thermodynamics or kinetics. We have developed a novel analytical approach for the parallel measurement of several VFAs directly from marine pore water without any sample pretreatment by the use of a 2-dimensional ion chromatography coupled to mass spectrometry. In a first study we analyzed acetate, formate, and propionate in pore water from sediment cores retrieved from 5 different stations within and offshore of the Godhåbsfjord (Greenland). The sediment cores represent different sedimentological conditions, ranging from a typical marine sedimentation site to a glacier/freshwater dominated site. In addition to VFA concentrations, we measured sulfate concentrations, sulfate reduction rates, and cell abundances. We calculated the Gibbs free energy (ΔG) available for sulfate reduction (SR), as well as the VFA turnover times by the in-situ SR rates. The turnover time for acetate by SR ranged from several hours to days in the top cm of sediment and increased to several hundred years at the bottom of the SR zone. From the associated cell abundances we calculated that the VFA turnover times were significantly longer than the diffusion times of the VFA between individual cells. This shows that VFA consumption in the SR zone, and concomitantly the observed pore water concentrations, are not constrained by diffusion. DG values for SR using acetate were >36 kJ/mol which is significantly above the lower limit for anaerobic microbial energy metabolism. It thus remains unclear what controls the VFA concentrations in the sediment.

  7. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  8. Visceral Fat Accumulation, Insulin Resistance, and Elevated Depressive Symptoms in Middle-Aged Japanese Men

    PubMed Central

    Yamamoto, Shuichiro; Matsushita, Yumi; Nakagawa, Toru; Honda, Toru; Hayashi, Takeshi; Noda, Mitsuhiko; Mizoue, Tetsuya

    2016-01-01

    Objective To investigate visceral fat accumulation and markers of insulin resistance in relation to elevated depressive symptoms (EDS). Methods Participants were 4,333 male employees (mean age, 49.3 years) who underwent abdominal computed tomography scanning, measured fasting insulin, and did not self-report diabetes and mental disorders under treatment and history of cancer, myocardial infarction, and stroke. Multivariable logistic regression was used to assess the association of EDS with abdominal fat deposition and markers of insulin resistance. Results Visceral fat area (VFA) and fasting insulin were significantly, positively associated with EDS. Multivariable-adjusted odds ratios (95% confidence interval) of high VFA for the lowest through highest quartile of depression score were 1 (reference), 1.18 (0.97–1.42), 1.25 (1.02–1.54), 1.23 (1.01–1.51), respectively, and corresponding figures for high fasting insulin were 1 (reference), 0.98 (0.80–1.19), 1.12 (0.91–1.38), and 1.29 (1.06–1.57), respectively. Subcutaneous fat area was not associated with EDS. Conclusions Results suggest that EDS is related to visceral, but not subcutaneous, fat accumulation and insulin resistance in middle-aged Japanese men. PMID:26891344

  9. Toxic accumulation of alpha-ketobutyrate caused by inhibition of the branched-chain amino acid biosynthetic enzyme acetolactate synthase in Salmonella typhimurium.

    PubMed

    LaRossa, R A; Van Dyk, T K; Smulski, D R

    1987-04-01

    Biochemical and genetic analyses of the bacterium Salmonella typhimurium suggest that accumulation of alpha-ketobutyrate partially mediates the herbicidal activity of acetolactate synthase inhibitors. Growth inhibition of wild-type bacteria by the herbicide sulfometuron methyl was prevented by supplementing the medium with isoleucine, an allosteric inhibitor of threonine deaminase-catalyzed synthesis of alpha-ketobutyrate. In contrast, isoleucine did not rescue the growth of a mutant containing a threonine deaminase unresponsive to isoleucine. Moreover, the hypersensitivity of seven Tn10 insertion mutants to growth inhibition by sulfometuron methyl and alpha-ketobutyrate correlated with their inability to convert alpha-ketobutyrate to less noxious metabolites. We propose that alpha-ketobutyrate accumulation is an important component of sulfonylurea and imidazolinone herbicide action. PMID:3031008

  10. Excessive reactive oxygen species induces apoptosis in fibroblasts: Role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR)

    SciTech Connect

    Chowdhury, Anindya Roy; Ghosh, Ilora Datta, Kasturi

    2008-02-01

    Constitutively expressed HABP1 in normal murine fibroblast cell line induces growth perturbation, morphological abnormalities alongwith initiation of apoptosis. Here, we demonstrate that though HABP1 accumulation started in mitochondria from 48 hr of growth, induction of apoptosis with the release of cytochrome c and apoptosome complex formation occurred only after 60 hr. This mitochondrial dysfunction was due to gradual increase in ROS generation in HABP1 overexpressing cells. Along with ROS generation, increased Ca{sup 2+} influx in mitochondria leading to drop in membrane potential was evident. Interestingly, upon expression of HABP1, the respiratory chain complex I was shown to be significantly inhibited. Electronmicrograph confirmed defective mitochondrial ultrastructure. The reduction in oxidant generation and drop in apoptotic cell population accomplished by disruption of HABP1 expression, corroborating the fact that excess ROS generation in HABP1 overexpressing cells leading to apoptosis was due to mitochondrial HABP1 accumulation.

  11. End product yields from the extraruminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Extraruminal” fermentations, employing mixed ruminal bacterial consortia incubated in vitro, are capable of fermenting a complex array of biomass materials to mixtures of volatile fatty acids (VFA), methane, and carbon dioxide. Most of the potential energy in the biomass feedstock is retained in th...

  12. Age-related changes in amino acid pool sizes in the adult silkmoth, Bombyx mori, reared at low and high temperature; a biochemical examination of the rate-of-living theory and urea accumulation when reared at high temperature.

    PubMed

    Osanai, M; Yonezawa, Y

    1984-01-01

    To examine the rate-of-living theory, age-related changes in amino acid pool sizes were investigated in the adult silkmoth, Bombyx mori, reared at low and high temperature. At either temperature concentrations of free amino acids contained in silkmoths revealed a great sexual difference. Those in females were generally much higher than in males and the former changed much more dynamically than the latter. Major amino acids or ninhydrin-positive compounds inclusive of some essential amino acids such as Leu, Ile, Val, Thr, Arg, Phe, Met, Ala, Tyr, Gln, Aspn , Lan , Cysta , GABA and PEA accumulated in 4 degrees C-moths. However, the levels of these amino changed irregularly with advanced age. Inhibition of protein synthesis may occur generally at low temperature, while protein degradation may be promoted at high temperature. High concentrations of MSO and Tau in the moths reared at high temperature than in the normal moths suggested also catabolism of amino acids proceeding together with protein degradation at high temperature. Amino acid metabolism seems to be complicated under various temperature conditions. When reared at the optimal temperature of 25 degrees C, urea is not present in the body of the silkmoth except for a slight amount in the secreted meconium. In silkmoths reared at the higher temperature of 35 degrees C, however, an extraordinary accumulation of urea occurs accompanied by a reduction in lifespan by one half. Undoubtedly, urea is produced in this terrestrial insect, although the accumulation mechanism is not clear: in silkmoths reared at various temperatures, arginase is found, but urease is not detected. Arginase activity was found to be higher in male moths than in female moths regardless of the rearing temperature. High temperature rearing also did not induce activity and female activity never exceeded that in males at either 25 degrees C or 35 degrees C rearing. Protein degradation accelerated by rearing at high temperatures may result in

  13. Ecology: accumulating threats to life

    SciTech Connect

    Peterson, R.W.

    1980-04-01

    The accumulating impacts of toxic materials like polychloridnated bephenyls (PCBs), acid rain, deforestation in the Amazon River Basin, and nuclear energy are examined as life-threatening actions that the public must recognize. Immediate action is needed to abandon destructive human activities and search out those life-supporting choices which will replace immediate gratification with long-range benefits. (DCK)

  14. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants

    PubMed Central

    Usher, Sarah; Haslam, Richard P.; Ruiz-Lopez, Noemi; Sayanova, Olga; Napier, Johnathan A.

    2015-01-01

    The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation. PMID:27066395

  15. Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement.

    PubMed

    Zhang, Dong; Fu, Xiang; Jia, Shuting; Dai, Lingling; Wu, Bing; Dai, Xiaohu

    2016-01-01

    Volatile fatty acids (VFA), the substrate for the bio-methane yield, can be generated from excess sludge or herbaceous plant waste during the anaerobic fermentation process. However, due to the high protein content and the low carbon-to-nitrogen (C/N) ratio of excess sludge, the nutrient utilization of excess sludge to generate VFA and bio-methane usually becomes inefficient and uneconomical. In this study, the laboratory findings showed that both the organic conversion and VFA generation from the mixture of excess sludge and herbaceous plant waste (e.g., the tall fescue was used as model), could be significantly enhanced, especially when the C/N ratio was adjusted to 20/1. In order to get more VFA and bio-methane generation, the effects of different thermal pretreatment strategies on the excess sludge and tall fescue co-fermentation were investigated. The study of thermal pretreatment revealed that the maximal VFA generation (585.2 g COD/kg of total solids (TS)) from the mixture of sludge and tall fescue by thermal pretreatment at 100 °C was almost 9.9 and 4.1 times higher than un-pretreated sole sludge and tall fescue, respectively. Then the mechanism of enhanced VFA generation from the mixture by thermal pretreatment was investigated. It was observed that pretreating the mixture of excess sludge and tall fescue at 100 °C caused the greatest hydrolysis and acidification. The produced VFA was applied to generate the bio-methane, and it was showed that the bio-methane produced from the thermal-pretreated (100 °C) mixture was almost 9.6 and 4.9 times as high as un-pretreated sole sludge and tall fescue, respectively. In addition, the detection of enzyme activities showed that the main enzymes related to cellulose, hemicelluloses, lignin degradation, and acid forming were more active when VFA was produced from the thermal-pretreated (100 °C) mixture than other cases. Class Bacteroidia, class β-Proteobateria, α-Proteobateria, and phylum Firmicutes of the reactor

  16. Effect of short-chain fatty acids on triacylglycerol accumulation, lipid droplet formation and lipogenic gene expression in goat mammary epithelial cells.

    PubMed

    Sun, Yuting; Luo, Jun; Zhu, Jiangjiang; Shi, Hengbo; Li, Jun; Qiu, Siyuan; Wang, Ping; Loor, Juan J

    2016-02-01

    Short-chain fatty acids (SCFAs) are the major energy sources for ruminants and are known to regulate various physiological functions in other species. However, their roles in ruminant milk fat metabolism are still unclear. In this study, goat mammary gland epithelial cells (GMECs) were treated with 3 mmol/L acetate, propionate or butyrate for 24 h to assess their effects on lipogenesis. Data revealed that the content of triacylglycerol (TAG) and lipid droplet formation were significantly stimulated by propionate and butyrate. The expression of FABP3, SCD1, PPARG, SREBP1, DGAT1, AGPAT6 and ADRP were upregulated by propionate and butyrate treatment. In contrast, the messenger RNA (mRNA) expression of FASN and LXRα was not affected by propionate, but reduced by butyrate. Acetate had no obvious effect on the content of TAG and lipid droplets but increased the mRNA expression of SCD1 and FABP3 in GMECs. Additionally, it was observed that propionate significantly increased the relative content of mono-unsaturated fatty acids (C18:1 and C16:1) at the expense of decreased saturated fatty acids (C16:0 and C18:0). Butyrate and acetate had no significant effect on fatty acid composition. Overall, the results from this work help enhance our understanding of the regulatory role of SCFAs on goat mammary cell lipid metabolism. PMID:26304676

  17. The qSD12 Underlying Gene Promotes Abscisic Acid Accumulation in Early Developing Seeds to Induce Primary Dormancy in Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds acquire primary dormancy during their development and the phytohormone abscisic acid (ABA) is considered to play a role in inducing the dormancy. qSD12 is a major seed dormancy QTL identified from weedy rice. This research was conducted to identify qSD12 candidate genes, isolate the candidat...

  18. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations.

    PubMed

    Charnier, C; Latrille, E; Lardon, L; Miroux, J; Steyer, J P

    2016-05-15

    Volatile fatty acids (VFA), inorganic carbon (IC) and total ammonia nitrogen (TAN) are key variables in the current context of anaerobic digestion (AD). Accurate measurements like gas chromatography and infrared spectrometry have been developed to follow the concentration of these compounds but none of these methods are affordable for small AD units. Only titration methods answer the need for small plant monitoring. The existing methods accuracy was assessed in this study and reveals a lack of accuracy and robustness to control AD plants. To solve these issues, a new titrimetric device to estimate the VFA, IC and TAN concentrations with an improved accuracy was developed. This device named SNAC (System of titration for total ammonia Nitrogen, volatile fatty Acids and inorganic Carbon) has been developed combining the measurement of electrical conductivity and pH. SNAC were tested on 24 different plant samples in a range of 0-0.16 mol.L(-1) TAN, 0.01-0.21 mol.L(-1) IC and 0-0.04 mol.L(-1) VFA. The standard error was about 0.012 mol.L(-1) TAN, 0.015 mol.L(-1) IC and 0.003 mol.L(-1) VFA. The coefficient of determination R(2) between the estimated and reference data was 0.95, 0.94 and 0.95 for TAN, IC and VFA respectively. Using the same data, current methods based on key pH points lead to standard error more than 14.5 times higher on VFA and more than 1.2 times higher on IC. These results show that SNAC is an accurate tool to improve the management of AD plant. PMID:27010787

  19. Effects of one-seed juniper on intake, rumen fermentation, and plasma amino acids in sheep and goats fed supplemental protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the effect of feeding one-seed juniper on total intake, VFA profile, and plasma amino acids (AA) of 12 does and 12 ewes fed sudangrass and a basal diet with no protein supplement (Control; 5% CP) or rumen degradable (SBM; RDP 15% CP) or undegradable (FM; RUP 15% CP) protein supplement. Aft...

  20. Effects of dietary palmitoleic acid on plasma lipoprotein profile and aortic cholesterol accumulation are similar to those of other unsaturated fatty acids in the F1B golden syrian-hamster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lower susceptibility of palmitoleic acid (16:1) to oxidation compared to polyunsaturated fatty acids may confer functional advantages with respect to finding acceptable alternatives to hydrogenated fats but limited data are available on its effect on cardiovascular risk factors. This study inves...

  1. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  2. Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction.

    PubMed

    Popovic, Olga; Jensen, Lars Stoumann

    2012-08-01

    Chemical-mechanical separation of pig slurry into a solid fraction rich in dry matter, P, Cu and Zn and a liquid fraction rich in inorganic N but poor in dry matter may allow farmers to manage surplus slurry by exporting the solid fraction to regions with no nutrient surplus. Pig slurry can be applied to arable land only in certain periods during the year, so it is commonly stored prior to field application. This study investigated the effect of storage duration and temperature on chemical characteristics and P, Cu and Zn distribution between particle size classes of raw slurry and its liquid separation fraction. Dry matter, VFA, total N and ammonium content of both slurry products decreased during storage and were affected by temperature, showing higher losses at higher storage temperatures. In both products, total P, Cu and Zn concentrations were not significantly affected by storage duration or temperature. Particle size distribution was affected by slurry separation, storage duration and temperature. In raw slurry, particles larger than 1 mm decreased, whereas particles 250 μm-1 mm increased. The liquid fraction produced was free of particles >500 μm, with the highest proportions of P, Cu and Zn in the smallest particle size class (<25 μm). The proportion of particles <25 μm increased when the liquid fraction was stored at 5 °C, but decreased at 25 °C. Regardless of temperature, distribution of P, Cu and Zn over particle size classes followed a similar pattern to dry matter. PMID:22591817

  3. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells.

    PubMed

    Xu, H F; Luo, J; Zhao, W S; Yang, Y C; Tian, H B; Shi, H B; Bionaz, M

    2016-01-01

    Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to

  4. A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma

    PubMed Central

    Zhang, Weijian; Zhou, Lina; Yin, Peiyuan; Wang, Jinbing; Lu, Xin; Wang, Xiaomei; Chen, Jianguo; Lin, Xiaohui; Xu, Guowang

    2015-01-01

    Dynamic metabolomics studies can provide a systematic view of the metabolic trajectory during disease development and drug treatment and reveal the nature of biological processes at metabolic level. To extract important information in a systematic time dimension rather than at isolated time points, a weighted method based on the means and variations along the time points was proposed and first applied to previously published rat model data. The method was subsequently extended and applied to prospective metabolomics data analysis of hepatocellular carcinoma (HCC). Permutation was employed for noise filtering and false discovery rate (FDR) was used for parameter optimization during the feature selection. Long-term elevated serum bile acids were identified as risk factors for HCC development. PMID:25757957

  5. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.

    PubMed

    Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia

    2014-08-01

    Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism. PMID:24118032

  6. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. PMID:25898090

  7. Metal accumulating plants: Medium's role

    NASA Astrophysics Data System (ADS)

    Rabier, J.; Prudent, P.; Szymanska, B.; Mevy, J.-P.

    2003-05-01

    To evaluate phytoremediation potentialities by metal accumulation in tolerant plants, trials are carried out using in vitro cultures. Organie compounds influence on metal accumulation is studied with metals supplemented media. The tested compounds on zinc and lead absorption by Brassica juncea, are chelating agents (EDTA, citric acid) and soluble organic fractions of compost. EDTA seems to enhance the transfer of lead in plant but it is the opposite in the case of zinc. Citric acid stimulates root absorption for both zinc and lead. For the aqueous extracts of compost, variable effects are obtained according to the origin of compost (green wastes and food wastes). In'all tested conditions of cultures, zinc is mainly exported towards shoot while lead is stored in root.

  8. The Non-native Helical Intermediate State May Accumulate at Low pH in the Folding and Aggregation Landscape of the Intestinal Fatty Acid Binding Protein.

    PubMed

    Sarkar-Banerjee, Suparna; Chowdhury, Sourav; Paul, Simanta Sarani; Dutta, Debashis; Ghosh, Anisa; Chattopadhyay, Krishnananda

    2016-08-16

    There has been widespread interest in studying early intermediate states and their roles in protein folding. The interest in intermediate states has been further emphasized in the recent literature because of their implications for protein aggregation. Unfortunately, direct kinetic characterization of intermediates has been difficult because of the limited time resolutions offered by the kinetic techniques and the heterogeneity of the folding and aggregation landscape. Even in equilibrium experiments, the characterization of intermediate states could be difficult because (a) their populations in equilibrium could be low and/or (b) they lack any specific biochemical or biophysical signatures for their identification. In this paper, we have used fluorescence correlation spectroscopy to study the nature of a low-pH intermediate state of the intestinal fatty acid binding protein, a small protein with predominantly β-sheet structure. Our results have shown that the pH 3 intermediate diffuses faster than the folded protein and has strong helix forming propensity. These behaviors support Lim's hypothesis according to which even an entirely β-sheet protein would form helical bundles at the early stage. Using dynamic light scattering and thioflavin T binding measurements, we have observed that the pH 3 intermediate is prone to aggregation. We believe that early helix formation is the result of a local effect, which originates from the interaction of the neighboring amino acids around the hydrophobic core residues. This early intermediate reorganizes subsequently, and this structural reorganization is initiated by the destabilizing interactions induced by the distant residues, unfavorable entropic costs, and steric constraints of the hydrophobic side chains. Mutational analyses show further that the increase in the hydrophobicity in the hydrophobic core region increases the population of the α-helical intermediate, enhancing the aggregation propensity of the protein

  9. Uptake and Accumulation of Nephrotoxic and Carcinogenic Aristolochic Acids in Food Crops Grown in Aristolochia clematitis-Contaminated Soil and Water.

    PubMed

    Li, Weiwei; Hu, Qin; Chan, Wan

    2016-01-13

    Emerging evidence has suggested aristolochic acids (AAs) are linked to the development of Balkan endemic nephropathy (BEN), a chronic renal disease affecting numerous farmers living in the Balkan peninsula. However, the pathway by which AAs enter the human food chain and cause kidney disease remains poorly understood. Using our previously developed analytical method with high sensitivity and selectivity (Chan, W.; Lee, K. C.; Liu, N.; Cai, Z. J. Chromatogr. A 2007, 1164, 113-119), we quantified AAs in lettuce, tomato, and spring onion grown in AA-contaminated soil and culture medium. Our study revealed that AAs were being taken up from the soil and bioaccumulated in food crops in a time- and dose-dependent manner. To the best of our knowledge, this study is the first to identify one of the possible pathways by which AAs enter our food chain to cause chronic food poisoning. Results also demonstrated that AAs were resistant to the microbial activity of the soil/water. PMID:26654710

  10. Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi.

    PubMed

    Li, Zhu-Hong; Alvarez, Vanina E; De Gaudenzi, Javier G; Sant'Anna, Celso; Frasch, Alberto C C; Cazzulo, Juan J; Docampo, Roberto

    2011-12-23

    The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3'UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance. PMID:22039054

  11. Novel two-phase anaerobic gasification with solid-bed acid digestion in tandem with fixed-film methane fermentation

    SciTech Connect

    Ghosh, S.; Henry, M.P.; Sajjad, A.

    1983-01-01

    The development and performance of a novel solid-bed two-phase anaerobic digestion system are described. The system consists of a bed of organic feed operated in tandem with an acid-phase slurry digester and a methane-phase upflow anaerobic filter. The bed and the acid-phase digesters liquefy and convert the organics to volatile fatty acids (VFA) without gas production, while a high methane-content product gas is collected from the methane-phase filter. With municipal refuse feeds, VFA and ethanol were the major products from acid-phase digestion. A high methane content (up to 88 mol %) gas was the major product from the methane phase filter.

  12. Taurocholic acid adsorption during non-starch polysaccharide fermentation: an in vitro study.

    PubMed

    Gelissen, I C; Eastwood, M A

    1995-08-01

    The association of radiolabelled taurocholic acid with the solid fraction of a faecal fermentation mixture was measured. A human faecal inoculum was incubated with [24-14C]taurocholic acid and several non-starch polysaccharide sources (pectin, wheat bran, ispaghula (Plantago ovata) husk and seed), glucose or a substrate-free control. Portions of fermentation mixture were taken at 0, 3, 6, 21 and 24 h and centrifuged to acquire a supernatant fraction and a pellet containing the fermentation residue. 14C was measured in supernatant fractions and pellets at all time points. Volatile fatty acids (VFA) were measured at 0 and 24 h to confirm bacterial growth. Radioactivity in the pellet increased over time for all substrates. Glucose resulted in the greatest incorporation of taurocholic acid into the pellet, followed by pectin. At 24 h the proportion of the total radioactivity found in the pellet was 92% for glucose, 79% for pectin, 60% for wheat bran, 59% for ispaghula seed, 53% for ispaghula husk and 26% for the control (mean of duplicates). Glucose and pectin produced the greatest quantity of VFA at 24 h. VFA production was highly correlated with radioactivity in the pellet (r0.976, P < 0.005). These results suggest that the bile acid binding capacity of a faecal culture mixture may be strongly influenced by the fermentability of the available substrate and hence related to bacterial metabolic activity. PMID:7547839

  13. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    PubMed

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Mohan, S Venkata

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition. PMID:25682230

  14. Brain region-specific perfluoroalkylated sulfonate (PFSA) and carboxylic acid (PFCA) accumulation and neurochemical biomarker responses in east Greenland polar bears (Ursus maritimus).

    PubMed

    Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2015-04-01

    Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g.

  15. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls

    PubMed Central

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants’ response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis. PMID:26569488

  16. Trans-10,cis-12 conjugated linoleic acid (CLA) interferes with lipid droplet accumulation during 3T3-L1 preadipocyte differentiation.

    PubMed

    Yeganeh, Azadeh; Taylor, Carla G; Tworek, Leslee; Poole, Jenna; Zahradka, Peter

    2016-07-01

    In this study, we hypothesize that the biologically active isomers of conjugated linoleic acid (CLA), cis-9,trans-11 (c9,t11) and trans-10,cis-12 (t10,c12) CLA, have different effects on early and late stages 3T3-L1 preadipocyte differentiation. Both c9-t11 and t10-c12CLA stimulated early stage pre-adipocyte differentiation (day 2), while t10-c12CLA inhibited late differentiation (day 8) as determined by lipid droplet numbers and both perilipin-1 levels and phosphorylation state. At day 8, the adipokines adiponectin, chemerin and adipsin were all reduced in t10-c12CLA treated cells versus control cells. Immunofluorescence microscopy showed perilipin-1 was present solely on lipid droplets on day 8 in t10-c12 treated 3T3-L1 cells, whereas preilipin-1 was also located in the perinuclear region in control and c9-t11 treated cells. The t10-c12CLA isomer also decreased levels of hormone-sensitive lipase and inhibited lipolysis. These findings indicate that the decrease in lipid droplets caused by t10-c12CLA is the result of an inhibition of lipid droplet production during adipogenesis rather than a stimulation of lipolysis. Additionally, treatment with Gö6976 blocked the effect of t10-c12CLA on perilipin-1 phosphorylation, implicating PKCα in perilipin-1 phosphorylation, and thus a regulator of triglyceride catabolism. These data are supported by evidence that t10-c12CLA activated PKCα. These are the first data to show that CLA isomers can affect lipid droplet dynamics in adipocytes through PKCα. PMID:27131602

  17. The induction of CP43' by iron-stress in Synechococcus sp. PCC 7942 is associated with carotenoid accumulation and enhanced fatty acid unsaturation.

    PubMed

    Ivanov, Alexander G; Krol, Marianna; Selstam, Eva; Sane, Prafullachandra Vishnu; Sveshnikov, Dmitry; Park, Youn-Il; Oquist, Gunnar; Huner, Norman P A

    2007-06-01

    Comparative lipid analysis demonstrated reduced amount of PG (50%) and lower ratio of MGDG/DGDG in iron-stressed Synechococcus sp. PCC 7942 cells compared to cells grown under iron sufficient conditions. In parallel, the monoenoic (C:1) fatty acids in MGDG, DGDG and PG increased from 46.8%, 43.7% and 45.6%, respectively in control cells to 51.6%, 48.8% and 48.7%, respectively in iron-stressed cells. This suggests increased membrane dynamics, which may facilitate the diffusion of PQ and keep the PQ pool in relatively more oxidized state in iron-stressed compared to control cells. This was confirmed by chlorophyll fluorescence and thermoluminescence measurements. Analysis of carotenoid composition demonstrated that the induction of isiA (CP43') protein in response to iron stress is accompanied by significant increase of the relative abundance of all carotenoids. The quantity of carotenoids calculated on a Chl basis increased differentially with nostoxanthin, cryptoxanthin, zeaxanthin and beta-carotene showing 2.6-, 3.1-, 1.9- and 1.9-fold increases, respectively, while the relative amount of caloxanthin was increased only by 30%. HPLC analyses of the pigment composition of Chl-protein complexes separated by non-denaturating SDS-PAGE demonstrated even higher relative carotenoids content, especially of cryptoxanthin, in trimer and monomer PSI Chl-protein complexes co-migrating with CP43' from iron-stressed cells than in PSI complexes from control cells where CP43' is not present. This implies a carotenoid-binding role for the CP43' protein which supports our previous suggestion for effective energy quenching and photoprotective role of CP43' protein in cyanobacteria under iron stress. PMID:17362874

  18. The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes.

    PubMed

    Colín-González, A L; Paz-Loyola, A L; Serratos, I N; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-12-01

    Several physiological processes in the CNS are regulated by the endocannabinoid system (ECS). Cannabinoid receptors (CBr) and CBr agonists have been involved in the modulation of the N-methyl-D-aspartate receptor (NMDAr) activation. Glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids are endogenous metabolites produced and accumulated in the brain of children affected by severe organic acidemias (OAs) with neurodegeneration. Oxidative stress and excitotoxicity have been involved in the toxic pattern exerted by these organic acids. Studying the early pattern of toxicity exerted by these metabolites is crucial to explain the extent of damage that they can produce in the brain. Herein, we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) on early markers of GA-, 3-OHGA-, MMA- and PA-induced toxicity in brain synaptosomes from adult (90-day-old) and adolescent (30-day-old) rats. As pre-treatment, WIN exerted protective effects on the GA- and MMA-induced mitochondrial dysfunction, and prevented the reactive oxygen species (ROS) formation and lipid peroxidation induced by all metabolites. Our findings support a protective and modulatory role of cannabinoids in the early toxic events elicited by toxic metabolites involved in OAs. PMID:26431622

  19. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    SciTech Connect

    Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  20. Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.

    PubMed

    Gruhn, Marvin; Frigon, Jean-Claude; Guiot, Serge R

    2016-01-01

    This study compared the acidogenic fermentation of Scenedesmus sp.-AMDD at laboratory-scale, under mesophilic (35°C) and thermophilic conditions (55°C). Preliminary batch tests were performed to evaluate best conditions for volatile fatty acid (VFA) production from microalgal biomass, with respect to the inoculum, pH and nutrients. The use of bovine manure as inoculum, the operating pH of 4.5 and the addition of a nutrient mix, resulted in a high VFA production of up to 222mgg(-1) total volatile solid (TVS), with a butyrate share of 27%. Both digesters displayed similar hydrolytic activity with 0.38±0.02 and 0.42±0.03 g soluble chemical oxygen demand (COD)g(-1) TVS for the digesters operated at 35 and 55°C, respectively. Mesophilic conditions were more favorable for VFA production, which reached 171±5, compared to 88±12 mg soluble CODg(-1) TVS added under thermophilic conditions (94% more). It was shown that in both digesters, butyrate was the predominant VFA. PMID:26551650

  1. Suppression of hepatic fat accumulation by highly purified eicosapentaenoic acid prevents the progression of d-galactosamine-induced hepatitis in mice fed with a high-fat/high-sucrose diet.

    PubMed

    Kajikawa, Satoshi; Harada, Tsuyoshi; Kawashima, Akiko; Imada, Kazunori; Mizuguchi, Kiyoshi

    2009-04-01

    The pathogenesis of non-alcoholic fatty liver disease (NAFLD) remains largely unknown. Here, we assessed the importance of hepatic fat accumulation on the progression of hepatitis. BALB/cA mice were fed with a standard diet (STD) or a high-fat and high-sucrose diet (HFHSD) for 14 days followed by intraperitoneal injection of d-galactosamine (DGalN) or vehicle. After 20-21 h, plasma and liver tissue were collected and analyzed. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma were increased significantly in HFHSD-fed mice treated with DGalN compared to STD-fed mice treated with DGalN. This exacerbation by the HFHSD was also observed in the plasma soluble tumor necrosis factor receptor (sTNFR) levels, and hepatic levels of reactive oxygen species (ROS) and the fibrogenic gene expression, such as tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), connective tissue growth factor (CTGF) and osteopontin (OPN) in HFHSD-fed mice treated with DGalN. The triglyceride contents of the liver were significantly increased by the HFHSD. When eicosapentaenoic acid (EPA), a suppressor of sterol regulatory element binding protein 1 (SREBP-1), was administered to HFHSD-fed mice, the sensitivity of DGalN, as a result of plasma ALT and AST levels, was suppressed accompanied by reduced plasma sTNFR2 level and hepatic levels of triglyceride, ROS, and fibrogenic parameters, and by increased plasma adiponectin levels. These data suggest that the progression of steatotic liver injury closely depends on the accumulation of fat in the liver and is prevented by EPA through the suppression of the fatty liver change. PMID:19416647

  2. Dynamics of the anaerobic process: effects of volatile fatty acids.

    PubMed

    Pind, Peter F; Angelidaki, Irini; Ahring, Birgitte K

    2003-06-30

    A complex and fast dynamic response of the anaerobic biogas system was observed when the system was subjected to pulses of volatile fatty acids (VFAs). It was shown that a pulse of specific VFAs into a well-functioning continuous stirred tank reactor (CSTR) system operating on cow manure affected both CH(4) yield, pH, and gas production and that a unique reaction pattern was seen for the higher VFAs as a result of these pulses. In this study, two thermophilic laboratory reactors were equipped with a novel VFA-sensor for monitoring specific VFAs online. Pulses of VFAs were shown to have a positive effect on process yield and the levels of all VFA were shown to stabilize at a lower level after the biomass had been subjected to several pulses. The response to pulses of propionate or acetate was different from the response to butyrate, iso-butyrate, valerate, or iso-valerate. High concentrations of propionate affected the degradation of all VFAs, while a pulse of acetate affected primarily the degradation of iso-valerate or 2-methylbutyrate. Pulses of n-butyrate, iso-butyrate, and iso-valerate yielded only acetate, while degradation of n-valerate gave both propionate and acetate. Product sensitivity or inhibition was shown for the degradation of all VFAs tested. Based on the results, it was concluded that measurements of all specific VFAs are important for control purposes and increase and decrease in a specific VFA should always be evaluated in close relationship to the conversion of other VFAs and the history of the reactor process. It should be pointed out that the observed dynamics of VFA responses were based on hourly measurements, meaning that the response duration was much lower than the hydraulic retention time, which exceeds several days in anaerobic CSTR systems. PMID:12701145

  3. Changes in ruminal volatile fatty acid production and absorption rate during the dry period and early lactation as affected by rate of increase of concentrate allowance.

    PubMed

    Dieho, K; Dijkstra, J; Schonewille, J T; Bannink, A

    2016-07-01

    The aim of the present experiment was to study changes in volatile fatty acid (VFA) production using an isotope dilution technique, and changes in VFA fractional absorption rate (kaVFA) using a buffer incubation technique (BIT) during the dry period and early lactation, as affected by the postpartum (pp) rate of increase of concentrate allowance. The current results are complementary to previously reported changes on rumen papillae morphology from the same experiment. From 50 d antepartum to 80 d pp, VFA production rate was measured 5 times and kaVFA was measured 10 times in 12 rumen-cannulated Holstein Friesian cows. Cows had free access to a mixed ration, consisting of grass and corn silage, soybean meal, and (dry period only) chopped straw. Treatment consisted of either a rapid (RAP; 1.0 kg of DM/d; n=6) or gradual (GRAD; 0.25 kg of DM/d; n=6) increase of concentrate allowance (up to 10.9 kg of DM/d), starting at 4 d pp, aimed at creating a contrast in rumen-fermentable organic matter intake. For the BIT, rumen contents were evacuated, the rumen washed, and a standardized buffer fluid introduced [120 mM VFA, 60% acetic (Ac), 25% propionic (Pr), and 15% butyric (Bu) acid; pH 5.9 and Co-EDTA as fluid passage marker]. For the isotope dilution technique, a pulse-dose of (13)C-labeled Ac, Pr, and Bu and Co-EDTA as fluid passage marker was infused. The rate of total VFA production was similar between treatments and was 2 times higher during the lactation (114 mol/d) than the dry period (53 mol/d). Although papillae surface area at 16, 30, and 44 d pp was greater in RAP than GRAD, Bu and Ac production at these days did not differ between RAP and GRAD, whereas at 16 d pp RAP produced more Pr than GRAD. These results provide little support for the particular proliferative effects of Bu on papillae surface area. Similar to developments in papillae surface area in the dry period and early lactation, the kaVFA (per hour), measured using the BIT, decreased from 0.45 (Ac), 0

  4. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly

  5. Multiple mechanisms of age-dependent accumulation of amyloid beta protein in rat brain: Prevention by dietary supplementation with N-acetylcysteine, α-lipoic acid and α-tocopherol.

    PubMed

    Sinha, Maitrayee; Bir, Aritri; Banerjee, Anindita; Bhowmick, Pritha; Chakrabarti, Sasanka

    2016-05-01

    The aged brain may be used as a tool to investigate altered metabolism of amyloid beta protein (Aβ42) that may have implications in the pathogenesis of Alzheimer's disease (AD). In the present study, we have observed a striking increase in the amyloid precursor protein (APP) level in the brain cortex of aged rats (22-24 months) along with a mild but statistically significant increase in the level of APP mRNA. Moreover, the activity of β secretase is elevated (nearly 55%) and that of neprilysin diminished (48%) in brain cortex of aged rats compared to that in young rats (4-6 months). All these changes lead to a markedly increased accumulation of Aβ42 in brain cortical tissue of aged rats. Long-term dietary supplementation of rats with a combination of N-acetylcysteine, α-lipoic and α-tocopherol from 18 months onwards daily till the sacrifice of the animals by 22-24 months, attenuates the age-related alterations in amyloid beta metabolism. In separate experiments, a significant impairment of spatial learning and memory has been observed in aged rats, and the phenomenon is remarkably prevented by the dietary supplementation of the aged animals by the same combination of N-acetylcysteine, α-lipoic acid and α-tocopherol. The results call for further explorations of this combination in suitable animal models in ameliorating AD related brain deficits. PMID:26463138

  6. Fast carry accumulator design

    NASA Technical Reports Server (NTRS)

    Mastin, W. C.

    1971-01-01

    Simple iterative accumulator combined with gated-carry, carry-completion detection, and skip-carry circuits produces three accumulators with decreased carry propagation times. Devices are used in machine control, measurement equipment, and computer applications to increase speed of binary addition. NAND gates are used in combining network.

  7. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses.

    PubMed

    Wu, Qing-Lian; Guo, Wan-Qian; Zheng, He-Shan; Luo, Hai-Chao; Feng, Xiao-Chi; Yin, Ren-Li; Ren, Nan-Qi

    2016-09-01

    The study provided a cost-effective and high-efficiency volatile fatty acid (VFA) production strategy by co-fermentation of food waste (FW) and excess sludge (ES) without artificial pH control. VFA production of 867.42mg COD/g-VS was obtained under the optimized condition: FW/ES 5, solid retention time 7d, organic loading rate 9g VS/L-d and temperature 40°C. Mechanism exploration revealed that the holistic biodegradability of substrate was greatly enhanced, and proper pH range (5.2-6.4) was formed by the high buffering capacity of the co-fermentation system itself, which effectively enhanced hydrolysis yield (63.04%) and acidification yield (83.46%) and inhibited methanogenesis. Moreover, microbial community analysis manifested that co-fermentation raised the relative abundances of hydrolytic and acidogenic bacteria including Clostridium, Sporanaerobacter, Tissierella and Bacillus, but suppressed the methanogen Anaerolineae, which also facilitated high VFA production. These results were of great guiding significance aiming for VFA recovery from FW and ES in large-scale. PMID:27289056

  8. Control of amphibious weed ipomoea (Ipomoea carnea) by utilizing it for the extraction of volatile fatty acids as energy precursors.

    PubMed

    Rafiq Kumar, M; Tauseef, S M; Abbasi, Tasneem; Abbasi, S A

    2015-01-01

    Volatile fatty acids (VFAs), comprising mainly of acetic acid and lesser quantities of propionic and butyric acids, are generated when zoomass or phytomass is acted upon by acidogenic and acetogenic microorganisms. VFAs can be utilized by methanogens under anaerobic conditions to generate flammable methane-carbon dioxide mixtures known as 'biogas'. Acting on the premise that this manner of VFA utilization for generating relatively clean energy can be easily accomplished in a controlled fashion in conventional biogas plants as well as higher-rate anaerobic digesters, we have carried out studies aimed to generate VFAs from the pernicious weed ipomoea (Ipomoea carnea). The VFA extraction was accomplished by a simple yet effective technology, appropriate for use even by laypersons. For this acid-phase reactors were set, to which measured quantities of ipomoea leaves were charged along with water inoculated with cow dung. The reactors were stirred intermittently. It was found that VFA production started within hours of the mixing of the reactants and peaked by the 10(th) or 11(th) day in all the reactors, effecting a conversion of over 10% of the biomass into VFAs. The reactor performance had good reproducibility and the process appeared easily controllable, frugal and robust. PMID:25685545

  9. Control of amphibious weed ipomoea (Ipomoea carnea) by utilizing it for the extraction of volatile fatty acids as energy precursors

    PubMed Central

    Rafiq Kumar, M.; Tauseef, S.M.; Abbasi, Tasneem; Abbasi, S.A.

    2014-01-01

    Volatile fatty acids (VFAs), comprising mainly of acetic acid and lesser quantities of propionic and butyric acids, are generated when zoomass or phytomass is acted upon by acidogenic and acetogenic microorganisms. VFAs can be utilized by methanogens under anaerobic conditions to generate flammable methane–carbon dioxide mixtures known as ‘biogas’. Acting on the premise that this manner of VFA utilization for generating relatively clean energy can be easily accomplished in a controlled fashion in conventional biogas plants as well as higher-rate anaerobic digesters, we have carried out studies aimed to generate VFAs from the pernicious weed ipomoea (Ipomoea carnea). The VFA extraction was accomplished by a simple yet effective technology, appropriate for use even by laypersons. For this acid-phase reactors were set, to which measured quantities of ipomoea leaves were charged along with water inoculated with cow dung. The reactors were stirred intermittently. It was found that VFA production started within hours of the mixing of the reactants and peaked by the 10th or 11th day in all the reactors, effecting a conversion of over 10% of the biomass into VFAs. The reactor performance had good reproducibility and the process appeared easily controllable, frugal and robust. PMID:25685545

  10. Mechanisms of intrahepatic triglyceride accumulation

    PubMed Central

    Ress, Claudia; Kaser, Susanne

    2016-01-01

    Hepatic steatosis defined as lipid accumulation in hepatocytes is very frequently found in adults and obese adolescents in the Western World. Etiologically, obesity and associated insulin resistance or excess alcohol intake are the most frequent causes of hepatic steatosis. However, steatosis also often occurs with chronic hepatitis C virus (HCV) infection and is also found in rare but potentially life-threatening liver diseases of pregnancy. Clinical significance and outcome of hepatic triglyceride accumulation are highly dependent on etiology and histological pattern of steatosis. This review summarizes current concepts of pathophysiology of common causes of hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease, chronic HCV infections, drug-induced forms of hepatic steatosis, and acute fatty liver of pregnancy. Regarding the pathophysiology of NAFLD, this work focuses on the close correlation between insulin resistance and hepatic triglyceride accumulation, highlighting the potential harmful effects of systemic insulin resistance on hepatic metabolism of fatty acids on the one side and the role of lipid intermediates on insulin signalling on the other side. Current studies on lipid droplet morphogenesis have identified novel candidate proteins and enzymes in NAFLD. PMID:26819531

  11. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Wang, Shuying

    2016-04-01

    Waste activated sludge (WAS) fermentation integrated with denitritation (the reduction of nitrite to dinitrogen gas) at different pHs was investigated in batch-mode reactors over a 24-day period. The results showed that in comparison with controlled pHs, the volatile fatty acid (VFA) bioproduction for in situ denitritation was significantly improved at uncontrolled pH. VFA fermented from WAS was quickly consumed by denitritation at uncontrolled pH, which accelerated sludge degradation. On the other hand, sludge digestion was benefited from the alkalinity produced from denitritation, while methanogenesis was prohibited by alkalinity and nitrite. The integrated sludge fermentation and denitritation can be cost-effectively applied to wastewater treatment plants, so that organic substrates (e.g., VFAs) are produced for denitritation via simultaneous sludge fermentation, which enables WAS reutilization and enhances nitrogen removal efficiency without the need of external carbon sources. PMID:26475401

  12. Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments.

    PubMed

    Mathai, Prince P; Zitomer, Daniel H; Maki, James S

    2015-06-01

    In methanogenic habitats, volatile fatty acids (VFA), such as propionate and butyrate, are major intermediates in organic matter degradation. VFA are further metabolized to H(2), acetate and CO(2) by syntrophic fatty acid-degrading bacteria (SFAB) in association with methanogenic archaea. Despite their indispensable role in VFA degradation, little is known about SFAB abundance and their environmental distribution. To facilitate ecological studies, we developed four novel genus-specific quantitative PCR (qPCR) assays, with primer sets targeting known SFAB: Syntrophobacter, Smithella, Pelotomaculum and Syntrophomonas. Primer set specificity was confirmed using in silico and experimental (target controls, clone libraries and melt-curve analysis) approaches. These qPCR assays were applied to quantify SFAB in a variety of mesophilic methanogenic habitats, including a laboratory propionate enrichment culture, pilot- and full-scale anaerobic reactors, cow rumen, horse faeces, an experimental rice paddy soil, a bog stream and swamp sediments. The highest SFAB 16S rRNA gene copy numbers were found in the propionate enrichment culture and anaerobic reactors, followed by the bog stream and swamp sediment samples. In addition, it was observed that SFAB and methanogen abundance varied with reactor configuration and substrate identity. To our knowledge, this research represents the first comprehensive study to quantify SFAB in methanogenic habitats using qPCR-based methods. These molecular tools will help investigators better understand syntrophic microbial communities in engineered and natural environments. PMID:25814038

  13. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.

    PubMed

    Foskolos, A; Siurana, A; Rodriquez-Prado, M; Ferret, A; Bravo, D; Calsamiglia, S

    2015-08-01

    The ban on the use of antibiotics as growth promoters in animal feeds in the European Union has stimulated research on potential alternatives. Recently, propyl-propane thiosulfonate (PTSO), a stable organosulfurate compound of garlic, was purified. The objectives of the current study were to investigate the potential effects of PTSO on rumen microbial fermentation and to define effective doses. Two experiments were conducted using dual-flow continuous culture fermenters in 2 replicated periods. Each experimental period consisted of 5 d for adaptation of the ruminal fluid and 3 d for sampling. Temperature (39°C), pH (6.4), and liquid (0.10 h(-1)) and solid (0.05 h(-1)) dilution rates were maintained constant. Samples were taken 2 h after feeding and from the 24-h effluent. Samples were analyzed for volatile fatty acids (VFA) and nitrogen fractions, and degradation of nutrients was calculated. In addition, 24-h effluents from experiment 2 were analyzed for their fatty acid (FA) profile. Treatments in experiment 1 included a negative control without additive, a positive control with monensin (12mg/L), and PTSO at 30 and 300mg/L. The addition of 30mg/L did not affect any of the measurements tested. The addition of 300mg/L reduced microbial fermentation, as suggested by the decreased total VFA concentration, true degradation of organic matter and acid detergent fiber, and a tendency to decrease neutral detergent fiber degradation. Experiment 2 was conducted to test increasing doses of PTSO (0, 50, 100, and 150mg/L) on rumen microbial fermentation. At 2 h postfeeding, total VFA and molar proportion of propionate responded quadratically, with higher values in the intermediate doses. Molar proportions of butyrate increased and branched-chain VFA decreased linearly as the dose of PTSO increased. In the 24-h effluents, total VFA, acetate, and branched-chain VFA concentrations decreased linearly and those of propionate responded cubically with the highest value at 100mg

  14. Development of the detection threshold concept from a close look at sorption occurrence inside a glass vial based on the in-vial vaporization of semivolatile fatty acids.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun; Szulejko, Jan E; Parker, David

    2014-07-01

    Headspace (HS) analysis has been recommended as one of the most optimal methods for extracting and analyzing volatile organic compounds from samples in diverse media such as soil and water. Short-chain volatile fatty acids (VFA, C3-C7) with strong adsorptivity were selected as the target compounds to assess the basic characteristics of the HS analysis through simulation of HS conditions by in-vial vaporization of liquid-phase standards (VL) in 25 mL glass vials. The reliability of the VL approach was assessed by apportioning the in-vial VFA mass into three classes: (1) vaporized fraction, (2) dynamic adsorption on the vial walls (intermediate stage between vaporization and irreversible absorption), and (3) irreversible absorptive loss (on the vial wall). The dynamic adsorption partitioning inside the vial increased with n-VFA carbon number, e.g., 43% (C2: acetic acid, extrapolated value), 65% (C3: propanoic acid), and 98% (C7: heptanoic acid). The maximum irreversible losses for the studied n-VFAs exhibited a quadratic relationship with carbon number. If the detection threshold limit (DTL: the onset of mass detection after attaining the maximum irreversible loss) is estimated, the DTL values for target VFAs were in the range of 101 ng for i-valeric acid to 616 ng for propionic acid, which are larger than the method detection limit by about 3 orders of magnitude. Consequently, quantitation of VFAs using the VL approach should be critically assessed by simultaneously considering the DTL criterion and the initial VFA masses loaded into the vial. PMID:24881858

  15. Inclusion of psyllium in milk replacer for neonatal calves. 2. Effects on volatile fatty acid concentrations, microbial populations, and gastrointestinal tract size.

    PubMed

    Cannon, S J; Fahey, G C; Pope, L L; Bauer, L L; Wallace, R L; Miller, B L; Drackley, J K

    2010-10-01

    Fermentable fibers such as psyllium increase volatile fatty acid (VFA) concentrations in the lower digestive tract and increase the gastrointestinal tract (GIT) mass of many mammals. We reasoned that psyllium inclusion in milk replacer might produce similar effects in neonatal dairy calves, which could lead to improved growth and health. Male Holstein calves were fed a milk replacer (22% crude protein, 20% fat) either without or with psyllium (1.1% of dry matter, DM) from 2 d through 28 d of age. Milk replacer was reconstituted to 12.5% DM and fed at 12% of calf body weight, adjusted weekly. Water was offered ad libitum but no starter was fed. Three calves per treatment were harvested weekly to sample digesta from the reticulo-rumen, abomasum, jejunum, proximal colon, and distal colon, and to determine length and mass of GIT components. Psyllium in milk replacer increased the proportion of butyrate in reticulo-rumen contents from 2.4 to 3.2% of total but did not affect total VFA concentrations. Total VFA concentrations were very low in the jejunum but psyllium tended to increase total VFA, acetate, and valerate concentrations; valerate accounted for 15.9 and 16.7% of total VFA (molar basis) for control and psyllium calves, respectively. Psyllium increased total VFA concentrations in the proximal and distal colon by 104.4 and 45.6%, respectively, but had little effect on the profile of VFA. Psyllium in milk replacer increased populations of bifidobacteria (from 9.7 to 10.3 log(10) cfu/g of DM) and lactobacilli (from 8.2 to 9.4 log(10) cfu/g of DM) in the reticulo-rumen, but did not affect populations in jejunum or colon. Calves fed psyllium had 12.0% greater total GIT mass and 9.4% greater GIT as a percentage of body weight. Psyllium tended to increase mass of the reticulo-rumen and significantly increased mass of duodenum (34.2%), jejunum (14.5%), and colon (14.6%). Density of intestinal tissues from calves fed psyllium-supplemented milk replacer was 25.9% greater

  16. THE KINETICS OF PENETRATION : VIII. TEMPORARY ACCUMULATION.

    PubMed

    Osterhout, W J; Kamerling, S E

    1934-03-20

    A model is described which throws light on the mechanism of accumulation. In the model used an external aqueous phase A is separated by a non-aqueous phase B (representing the protoplasm) from the artificial sap in C. A contains KOH and C contains HCl: they tend to mix by passing through the non-aqueous layer but much more KOH moves so that most of the KCl is formed in C, where the concentration of potassium becomes much greater than in A. This accumulation is only temporary for as the system approaches equilibrium the composition of A approaches identity with that of C, since all the substances present can pass through the non-aqueous layer. Such an approach to equilibrium may be compared to the death of the cell as the result of which accumulation disappears. During the earlier stages of the experiment potassium tends to go in as KOH and at the same time to go out as KCl. These opposing tendencies do not balance until the concentration of potassium inside becomes much greater than outside (hence potassium accumulates). The reason is that KCl, although its driving force be great, moves very slowly in B because its partition coefficient is low and in consequence its concentration gradient in B is small. This illustrates the importance of partition coefficients for penetration in models and in living cells. It also indicates that accumulation depends on the fact that permeability is greater for the ingoing compound of the accumulating substance than for the outgoing compound. Other things being equal, accumulation is increased by maintaining a low pH in C. Hence we may infer that anything which checks the production of acid in the living cell may be expected to check accumulation and growth. This model recalls the situation in Valonia and in most living cells where potassium accumulates as KCl, perhaps because it enters as KOH and forms KA in the sap (where A is an organic anion). In some plants potassium accumulates as KA but when HCl exists in the external

  17. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  18. Plastids and Carotenoid Accumulation.

    PubMed

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  19. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  20. Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake.

    PubMed

    Welles, L; Tian, W D; Saad, S; Abbas, B; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-10-15

    The anaerobic acetate (HAc) uptake stoichiometry of phosphorus-accumulating organisms (PAO) in enhanced biological phosphorus removal (EBPR) systems has been an extensive subject of study due to the highly variable reported stoichiometric values (e.g. anaerobic P-release/HAc-uptake ratios ranging from 0.01 up to 0.93 P-mol/C-mol). Often, such differences have been explained by the different applied operating conditions (e.g. pH) or occurrence of glycogen-accumulating organisms (GAO). The present study investigated the ability of biomass highly enriched with specific PAO clades ('Candidatus Accumulibacter phosphatis' Clade I and II, hereafter PAO I and PAO II) to adopt a GAO metabolism. Based on long-term experiments, when Poly-P is not stoichiometrically limiting for the anaerobic VFA uptake, PAO I performed the typical PAO metabolism (with a P/HAc ratio of 0.64 P-mol/C-mol); whereas PAO II performed a mixed PAO-GAO metabolism (showing a P/HAc ratio of 0.22 P-mol/C-mol). In short-term batch tests, both PAO I and II gradually shifted their metabolism to a GAO metabolism when the Poly-P content decreased, but the HAc-uptake rate of PAO I was 4 times lower than that of PAO II, indicating that PAO II has a strong competitive advantage over PAO I when Poly-P is stoichiometrically limiting the VFA uptake. Thus, metabolic flexibility of PAO clades as well as their intrinsic differences are additional factors leading to the controversial anaerobic stoichiometry and kinetic rates observed in previous studies. From a practical perspective, the dominant type of PAO prevailing in full-scale EBPR systems may affect the P-release processes for biological or combined biological and chemical P-removal and recovery and consequently the process performance. PMID:26189167

  1. Chimpanzee accumulative stone throwing.

    PubMed

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  2. Chimpanzee accumulative stone throwing

    PubMed Central

    Kühl, Hjalmar S.; Kalan, Ammie K.; Arandjelovic, Mimi; Aubert, Floris; D’Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E.; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J.; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M.; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  3. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  4. Dynamic metabolic modelling of volatile fatty acids conversion to polyhydroxyalkanoates by a mixed microbial culture.

    PubMed

    Pardelha, Filipa; Albuquerque, Maria G E; Reis, Maria A M; Oliveira, Rui; Dias, João M L

    2014-06-25

    In this work, we present a dynamic metabolic model that describes the uptake of complex mixtures of volatile fatty acids (VFA) and respective conversion into PHA by mixed microbial cultures (MMC). This model builds upon a previously published flux balance analysis model [1] that identified the minimization of TCA cycle activity as the key metabolic objective to predict PHA storage fluxes and respective composition. The model was calibrated either with experimental data of PHA production from fermented sugar cane molasses or from synthetic mixtures of VFA. All PHA production experiments were performed using a MMC selected with fermented sugar cane molasses under feast and famine regimen. The model was able to capture the process dynamics denoted by an excellent fit between experimental and computed time profiles of concentrations with the regression coefficients always above 0.92. The introduced VFA uptake regulatory factor reflects the decrease of acetyl-CoA and propionyl-CoA available to TCA cycle in conformity with the hypothesis that the minimization of TCA cycle is a key metabolic objective for MMC subjected to feast and famine regimen for the maximization of PHA production. PMID:23933561

  5. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    PubMed

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. PMID:25218204

  6. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    PubMed

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. PMID:23339903

  7. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell.

    PubMed

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2016-11-01

    Continuous assays with a microbial electrolysis cell (MEC) fed with digested pig slurry were performed to evaluate its stability and robustness to malfunction periods of an anaerobic digestion (AD) reactor and its feasibility as a strategy to recover ammonia. When performing punctual pulses of volatile fatty acids (VFA) in the anode compartment of the MEC, simulating a malfunction of the AD process, an increase in the current density was produced (up to 14 times, reaching values of 3500mAm(-2)) as a result of the added chemical oxygen demand (COD), especially when acetate was used. Furthermore, ammonium diffusion from the anode to the cathode compartment was enhanced and the removal efficiency achieved up to 60% during daily basis VFA pulses. An AD-MEC combined system has proven to be a robust and stable configuration to obtain a high quality effluent, with a lower organic and ammonium content. PMID:27501031

  8. The gas chromatographic determination of volatile fatty acids in wastewater samples: evaluation of experimental biases in direct injection method against thermal desorption method.

    PubMed

    Ullah, Md Ahsan; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-04-11

    The production of short-chained volatile fatty acids (VFAs) by the anaerobic bacterial digestion of sewage (wastewater) affords an excellent opportunity to alternative greener viable bio-energy fuels (i.e., microbial fuel cell). VFAs in wastewater (sewage) samples are commonly quantified through direct injection (DI) into a gas chromatograph with a flame ionization detector (GC-FID). In this study, the reliability of VFA analysis by the DI-GC method has been examined against a thermal desorption (TD-GC) method. The results indicate that the VFA concentrations determined from an aliquot from each wastewater sample by the DI-GC method were generally underestimated, e.g., reductions of 7% (acetic acid) to 93.4% (hexanoic acid) relative to the TD-GC method. The observed differences between the two methods suggest the possibly important role of the matrix effect to give rise to the negative biases in DI-GC analysis. To further explore this possibility, an ancillary experiment was performed to examine bias patterns of three DI-GC approaches. For instance, the results of the standard addition (SA) method confirm the definite role of matrix effect when analyzing wastewater samples by DI-GC. More importantly, their biases tend to increase systematically with increasing molecular weight and decreasing VFA concentrations. As such, the use of DI-GC method, if applied for the analysis of samples with a complicated matrix, needs a thorough validation to improve the reliability in data acquisition. PMID:24745750

  9. Effect of phosphoric acid as a catalyst on the hydrothermal pretreatment and acidogenic fermentation of food waste.

    PubMed

    Shen, Dongsheng; Wang, Kun; Yin, Jun; Chen, Ting; Yu, Xiaoqin

    2016-05-01

    The hydrothermal method was applied to food waste (FW) pretreatment with phosphoric acid as a catalyst. The content of soluble substances such as protein and carbohydrate in the FW increased after the hydrothermal pretreatment with phosphoric acid addition (⩽5%). The SCOD approached approximately 29.0g/L in 5% phosphoric acid group, which is almost 65% more than the original FW. The hydrothermal condition was 160°C for 10min, which means that at least 40% of energy and 60% of reaction time were saved to achieve the expected pretreatment effect. Subsequent fermentation tests showed that the optimal dosage of phosphoric acid was 3% with a VFA yield of 0.763g/gVSremoval, but the increase in salinity caused by phosphoric acid could adversely affect the acidogenesis. With an increase in the quantity of phosphoric acid, among the VFAs, the percentage of propionic acid decreased and that of butyric acid increased. The PCR-DGGE analysis indicated that the microbial diversity could decrease with excessive phosphoric acid, which resulted in a low VFA yield. PMID:26965213

  10. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    PubMed Central

    Baumann, Ivan

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  11. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    PubMed

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  12. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  13. Expression of lauroyl-acyl carrier protein thioesterase in brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation

    PubMed Central

    Eccleston, VS; Ohlrogge, JB

    1998-01-01

    Expression of a California bay lauroyl-acyl carrier protein thioesterase (MCTE) in developing seeds of transgenic oilseed rape alters the fatty acid composition of the mature seed, resulting in up to 60 mol% of laurate in triacylglycerols. In this study, we examined the metabolism of lauric acid and 14C-acetate in developing seeds of oilseed rape that express high levels of MCTE. Lauroyl-CoA oxidase activity but not palmitoyl-CoA oxidase activity was increased several-fold in developing seeds expressing MCTE. In addition, isocitrate lyase and malate synthase activities were six- and 30-fold higher, respectively, in high-laurate developing seeds. Control seeds incorporated 14C-acetate almost entirely into fatty acids, whereas in seeds expressing MCTE, only 50% of the label was recovered in lipids and the remainder was in a range of water-soluble components, including sucrose and malate. Together, these results indicate that the pathways for beta-oxidation and the glyoxylate cycle have been induced in seeds expressing high levels of MCTE. Although a substantial portion of the fatty acid produced in these seeds is recycled to acetyl-CoA and sucrose through the beta-oxidation and glyoxylate cycle pathways, total seed oil is not reduced. How is oil content maintained if lauric acid is inefficiently converted to triacylglycerol? The levels of acyl carrier protein and several enzymes of fatty acid synthesis were increased two- to threefold at midstage development in high-laurate seeds. These results indicate that a coordinate induction of the fatty acid synthesis pathway occurs, presumably to compensate for the lauric acid lost through beta-oxidation or for a shortage of long-chain fatty acids. PMID:9548986

  14. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities.

    PubMed

    Franke-Whittle, Ingrid H; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-11-01

    A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array. PMID:25164858

  15. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    PubMed Central

    Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-01-01

    A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array. PMID:25164858

  16. Plasma lipids and large bowel volatile fatty acids in pigs fed on white rice, brown rice and rice bran.

    PubMed

    Marsono, Y; Illman, R J; Clarke, J M; Trimble, R P; Topping, D L

    1993-09-01

    Adult male pigs were fed on a diet containing (% of energy) fat 25 starch 55 from white rice and providing 20 g fibre/pig d (diet WR). In two other groups rice bran was added to the diet to provide 43 g fibre/d. One group received the diet unmodified (diet RB), but in another (diet RO) heat-stabilized unrefined rice oil replaced the palm oil. In a further group brown rice replaced white rice and provided 37 g fibre/pig per d (diet BR). Plasma cholesterol concentrations were similar with diets WR, RB and BR. With diet RO the concentration was significantly lower than with diets WR and BR but was not different from diet RB. Plasma high-density-lipoprotein-cholesterol and plasma triacylglycerols were unaffected by diet. In all groups, digesta mass rose from the caecum to the proximal colon but fell in the distal colon. Diet WR gave the lowest digesta mass while diet BR gave a significantly higher mass along the large bowel length. RB- and RO-fed pigs had equal masses of digesta which were intermediate between BR- and WR-fed pigs at all sampling sites. Pools of individual and total volatile fatty acids (VFA) in the proximal large bowel were unaffected by diet. Pools of total and individual VFA in the median and distal colon were lowest with diets WR and RB and significantly higher with diet BR. In these regions of the colon pools of acetate in RO-fed pigs did not differ from those in the BR-fed group but were higher than in other groups. However, pools of propionate and butyrate with the RO diet were significantly lower than with diet BR and the same as with diets WR and RB. Portal venous VFA concentrations were unaffected by diet. The higher large bowel digesta masses and VFA with diet BR may reflect the escape of starch from the small intestine. PMID:8260477

  17. Rumen bacterial communities shift across a lactation in Holstein, Jersey and Holstein × Jersey dairy cows and correlate to rumen function, bacterial fatty acid composition and production parameters.

    PubMed

    Bainbridge, Melissa L; Cersosimo, Laura M; Wright, André-Denis G; Kraft, Jana

    2016-05-01

    Rumen bacteria form a dynamic, complex, symbiotic relatio