Science.gov

Sample records for acid volatile sulfur

  1. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  2. Mechanisms of volatile production from sulfur-containing amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Uk Ahn, Dong; Joo Lee, Eun; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Sulfur-containing amino acids were used to study the mechanisms of off-odor production in meat by irradiation. Irradiation not only increased the amounts of volatiles but also produced many new volatiles from sulfur-containing amino acid monomers. We speculate that the majority of the volatiles were the direct radiolytic products of the side chains, but Strecker degradation as well as deamination and decarboxylation of radiolytic products were also involved in the production of volatile compounds from sulfur amino acids. The volatile compounds produced in amino acids were not only the primary products of irradiation, but also the products of secondary chemical reactions after the primary compounds were produced. Cysteine and methionine produced odor characteristics similar to that of the irradiated meat, but the amounts of sulfur volatiles from methionine were far greater than that of cysteine. Although the present study was carried out using an amino acid model system, the information can be applied to the quality indexes of irradiated meats as well as other food products.

  3. On-line pervaporation-capillary electrophoresis for the determination of volatile acidity and free sulfur dioxide in wines.

    PubMed

    Ruiz-Jiménez, Jose; Luque de Castro, Maria D

    2005-06-01

    Pervaporation has been coupled on-line to capillary electrophoresis (CE) by a simple interface consisting of a modified CE vial. The approach allows volatile analytes to be removed and injected into the capillary meanwhile the sample matrix remains in the pervaporator. By this approach volatile acidity and free sulfur dioxide have been simultaneously determined in wines. The detection limits (LODs) are 1.25 and 5.00 microg/mL, the quantification limits 4.12 and 16.50 microg/mL, and the linear dynamic ranges between LOD and 50 microg/mL and between 0.1 and 0.9 g/L for free sulfur dioxide and volatile acidity, respectively. The repeatability and within laboratory reproducibility, expressed as relative standard deviation (RSD), are 1.61% and 3.00% for free sulfur, and 3.35% and 4.58% for volatile acidity, respectively. The optimal pervaporation time and the time necessary for the individual separation-detection of the target analytes are 6 and 5 min, respectively. The analysis frequency is 7 h(-1) and the sample amount necessary is less than 7 mL. The proposed method and official methods for the analytes were applied to 32 wine samples. A two-tailed t-test was used to compare the methods, which yielded similar results. The errors, expressed as RSD for the two parameters, ranged between 1.3 and 4.1%.

  4. Measurements of Volatile Organic Compounds and Gaseous Sulfuric Acid During the 2008 CAREBEIJING Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zheng, J.; Hu, M.; Zhu, T.

    2009-05-01

    Air quality in Beijing has been a hot topic recently, because Beijing hosted the 2008 summer Olympics. To combat the problem, China ordered numerous factories shut down or used only sporadically during the games to limit air pollution in the area. Another major step involved ordering about one-half of the city's 3.3 million vehicles off the road during the games, allowing only cars on roads with odd or even-numbered license plates on alternate days until the games were over. In addition, China has implemented new auto emission standards since March 2009 with regulations that are similar to those used throughout Europe. Our team at the Texas A&M participated in the 2008 CAREBEIJING campaign, with the objectives of studying the complex chemistry of the air in Beijing, looking at emission controls and their effectiveness, studying the surrounding air from other regions and how it can affect Beijing's air, and comparing all of our findings with air quality in other cities we have examined, such as Mexico City and Houston. In this talk, preliminary results of measurements of volatile organic compounds (VOCs) and gaseous sulfuric acid will be presented to discuss the trends of VOCs and new particle formation associated with the traffic control.

  5. Short-term endproducts of sulfate reduction in a salt marsh: Formation of acid volatile sulfides, elemental sulfur, and pyrite

    NASA Astrophysics Data System (ADS)

    King, Gary M.; Howes, B. L.; Dacey, J. W. H.

    1985-07-01

    Rates of sulfate reduction, oxygen uptake and carbon dioxide production in sediments from a short Spartina alterniflora zone of Great Sippewissett Marsh were measured simultaneously during late summer. Surface sediments (0-2 cm) were dominated by aerobic metabolism which accounted for about 45% of the total carbon dioxide production over 0-15 cm. Rates of sulfate reduction agreed well with rates of total carbon dioxide production below 2 cm depth indicating that sulfate reduction was the primary pathway for sub-surface carbon metabolism. Sulfate reduction rates were determined using a radiotracer technique coupled with a chromous chloride digestion and carbon disulfide extraction of the sediment to determine the extent of formation of radiolabelled elemental sulfur and pyrite during shortterm (48 hr) incubations. In the surface 10 cm of the marsh sediments investigated, about 50% of the reduced radiosulfur was recovered as dissolved or acid volatile sulfides, 37% as carbon disulfide extractable sulfur, and only about 13% was recovered in a fraction operationally defined as pyrite. Correlations between the extent of sulfate depletion in the marsh sediments and the concentrations of dissolved and acid volatile sulfides supported the results of the radiotracer work. Our data suggest that sulfides and elemental sulfur may be major short-term end-products of sulfate reduction in salt marshes.

  6. Sulfuric acid poisoning

    MedlinePlus

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  7. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  8. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  9. Are the clouds of Venus sulfuric acid.

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1973-01-01

    It is shown that strong aqueous sulfuric acid solutions have the right refractive index and freeze at Venusian cloud temperature, explain the dryness of the Venusian stratosphere, are consistent with some features of the Venusian IR spectrum, and do not absorb in highly reflecting areas of Venus. It is also indicated that such solutions should be produced by reactions between known atmospheric constituents and most sulfur-bearing rock at the Venusian surface temperature, and require only small amounts of sulfur consistent with its cosmic abundance and with the amounts of other volatile elements present in the atmosphere. It is believed therefore that the clouds of Venus consist of sulfuric acid solutions.

  10. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  11. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  12. Sulfuric acid on Europa and the radiolytic sulfur cycle.

    PubMed

    Carlson, R W; Johnson, R E; Anderson, M S

    1999-10-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  13. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  14. Sulfuric acid as autocatalyst in the formation of sulfuric acid.

    PubMed

    Torrent-Sucarrat, Miquel; Francisco, Joseph S; Anglada, Josep M

    2012-12-26

    Sulfuric acid can act as a catalyst of its own formation. We have carried out a computational investigation on the gas-phase formation of H(2)SO(4) by hydrolysis of SO(3) involving one and two water molecules, and also in the presence of sulfuric acid and its complexes with one and two water molecules. The hydrolysis of SO(3) requires the concurrence of two water molecules, one of them acting as a catalyzer, and our results predict an important catalytic effect, ranging between 3 and 11 kcal·mol(-1) when the catalytic water molecule is substituted by a sulfuric acid molecule or one of its hydrates. In these cases, the reaction products are either bare sulfuric acid dimer or sulfuric acid dimer complexed with a water molecule. There are broad implications from these new findings. The results of the present investigation show that the catalytic effect of sulfuric acid in the SO(3) hydrolysis can be important in the Earth's stratosphere, in the heterogeneous formation of sulfuric acid and in the formation of aerosols, in H(2)SO(4) formation by aircraft engines, and also in understanding the formation of sulfuric acid in the atmosphere of Venus.

  15. Sulfuric Acid in the Venus Clouds

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1972-01-01

    The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine, produced by the photolytic decomposition of hydrogen bromide.

  16. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.

    PubMed

    Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf

    2012-01-30

    The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed.

  17. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    ERIC Educational Resources Information Center

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  18. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  19. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  20. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  1. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  2. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  3. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  4. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  5. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  6. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  7. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9),...

  8. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  9. 21 CFR 184.1095 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sulfuric acid. 184.1095 Section 184.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1095 Sulfuric acid. (a) Sulfuric acid (H2SO4, CAS Reg. No. 7664-93-9), also known as oil of vitriol,...

  10. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  11. 21 CFR 582.1095 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfuric acid. 582.1095 Section 582.1095 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1095 Sulfuric acid. (a) Product. Sulfuric acid. (b) Conditions of use. This substance is...

  12. 46 CFR 153.1046 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfuric acid. 153.1046 Section 153.1046 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK....1046 Sulfuric acid. No person may liquefy frozen or congealed sulfuric acid other than by external...

  13. Hydrate sulfuric acid after sulfur implantation in water ice

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Leto, G.; Gomis, O.

    2007-12-01

    For many years an ongoing research program performed at our laboratory has had the aim to investigate the implantation of reactive ions in ices relevant to planetology by using IR spectroscopy. We present new results obtained by implanting 200 keV sulfur ions into water ice at 80 K. We have looked at the formation of sulfur-bearing molecules such as sulfuric acid, sulfur dioxide and hydrogen sulfide. We find that hydrated sulfuric acid is formed with high yield ( 0.65±0.1 molecules/ion). An upper limit to the production yield of SO 2 ( Y⩽0.025 molecules/ion) has been estimated; no hydrogen sulfide has been detected. The formation of hydrogen peroxide is confirmed. Ozone is not detected. The results are discussed relevant to the inquiry on the radiolytic sulfur cycle considered responsible for the formation of sulfur-bearing molecules on the surfaces of the Galilean satellites. We demonstrate that sulfur implantation efficiently forms hydrated sulfuric acid whose observed abundance is explained as caused by an exogenic process. It is more difficult to say if the observed sulfur dioxide is quantitatively supported by only sulfur implantation; additional experimental studies are necessary along with direct observations, especially at UV wavelengths such as those that could be performed by instruments on board Hubble Space Telescope or by the forthcoming World Space Observatory (WSO/UV).

  14. Microbial cycling of volatile organic sulfur compounds in anoxic environments.

    PubMed

    Lomans, B P; Pol, A; Op den Camp, H J M

    2002-01-01

    Microbial cycling of volatile organic sulfur compounds (VOSC) is investigated due to the impact these compounds are thought to have on environmental processes like global temperature control, acid precipitation and the global sulfur cycle. Moreover, in several kinds of industries like composting plants and the paper industry VOSC are released causing odor problems. Waste streams containing these compounds must be treated in order to avoid the release of these compounds to the atmosphere. This paper describes the general mechanisms for the production and degradation of methanethiol (MT) and dimethyl sulfide (DMS), two ubiquitous VOSC in anaerobic environments. Slurry incubations indicated that methylation of sulfide and MT resulting in MT and DMS, respectively, is one of the major mechanisms for VOSC in sulfide-rich anaerobic environments. An anaerobic bacterium that is responsible for the formation of MT and DMS through the anaerobic methylation of H2S and MT was isolated from a freshwater pond after enrichment with syringate as a methyl group donating compound and sole carbon source. In spite of the continuous formation of MT and DMS, steady state concentrations are generally very low. This is due to the microbial degradation of these compounds. Experiments with sulfate-rich and sulfate-amended sediment slurries demonstrated that besides methanogens, sulfate-reducing bacteria can also degrade MT and DMS, provided that sulfate is available. A methanogen was isolated that is able to grow on DMS as the sole carbon source. A large survey of sediments slurries of various origin demonstrated that both isolates are commonly occurring inhabitants of anaerobic environments.

  15. Production of Volatile and Sulfur Compounds by 10 Saccharomyces cerevisiae Strains Inoculated in Trebbiano Must

    PubMed Central

    Patrignani, Francesca; Chinnici, Fabio; Serrazanetti, Diana I.; Vernocchi, Pamela; Ndagijimana, Maurice; Riponi, Claudio; Lanciotti, Rosalba

    2016-01-01

    In wines, the presence of sulfur compounds is the resulting of several contributions among which yeast metabolism. The characterization of the starter Saccharomyces cerevisiae needs to be performed also taking into account this ability even if evaluated together with the overall metabolic profile. In this perspective, principal aim of this experimental research was the evaluation of the volatile profiles, throughout GC/MS technique coupled with solid phase micro extraction, of wines obtained throughout the fermentation of 10 strains of S. cerevisiae. In addition, the production of sulfur compounds was further evaluated by using a gas-chromatograph coupled with a Flame Photometric Detector. Specifically, the 10 strains were inoculated in Trebbiano musts and the fermentations were monitored for 19 days. In the produced wines, volatile and sulfur compounds as well as amino acid concentrations were investigated. Also the physico-chemical characteristics of the wines and their electronic nose profiles were evaluated. PMID:26973621

  16. Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.; Carlson, R. W.

    2011-01-01

    We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4 H2O), and sulfuric acid tetrahydrate (H2SO4 4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, HSO4(exp -), and SO4(exp 2-). At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4 H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4 H2O, the loss of H2SO4 4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.

  17. Effects of inorganic sulfur addition on fluxes of volatile sulfur compounds in Sphagnum peatlands

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in an artificially acidified (sulfuric and nitric acids) poor fen (Mire 239) at the Experimental Lakes Area (ELA), Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen) in Barrington, NH, USA. At Mire 239, emissions of VSC's were monitored, before and after acidification, at control (unacidified) and experimental sections within two major physiographic zones of the mire (oligotrophic and minerotrophic). The experimental segments of the mire received S amendments since 1983, in amounts equivalent to the annual S deposition in the highest polluted areas of Canada and U.S. Dimethyl sulfide (DMS) was the predominant VSC released from the mire and varied largely with time and space (i.e., from 2.5 to 127 nmol/m(sup -2)h(sup -1)). Sulfur addition did not affect DMS emissions in a period of hours to a few days, although it stimulated production of DMS and MSH in the anoxic surficial regions of the peat. DMS emissions in the experimental oligotrophic segment of the mire was approximately 3-fold greater than in the control oligotrophic segment, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were approximately 8 times higher from a Sphagnum site than from a bare peat site. Fluxes of VSC's were not significantly affected by sulfate amendments at both sites, while DMS and MSH concentrations increases greatly with time in the top 10 cm of the peat column. Our data indicated that although Sphagnum is not the direct source of DMS released from Sphagnum peatlands, it might play a role in regulating DMS emissions to the atmosphere.

  18. Charles H. Winston and Confederate Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Reithmiller, Steven

    1995-07-01

    Sulfuric acid turned out to be one of the critical chemicals made in the South during the Civil War. It was necessary for the manufacture of mercury fulminate which was used in the production of percussion caps and sulfuric acid was used in the Daniells cell to produce electricity. Charles H. Winston, president of the Richmond Female Institute and later professor at the University of Richmond (VA) was instrumental in the establishment of a plant to manufacture sulfuric acid in Charlotte, North Carolina. His patent and method of manufacture plus the uses of sulfuric acid during the Civil War are discussed.

  19. [Emission of volatile sulfur gases from Chinese paddy soils].

    PubMed

    Qiao, W; Yang, Z; Cao, J; Li, Z

    2001-09-01

    In the paper, emission of volatile sulfur gases from paddy soil was discussed in a growth period of paddy rice by constructing a field sampling system. The result showed that COS, CS2, DMS and DMDS were mainly emitted from paddy soil. The order of emission fluxes was 81.11, 6.33 and 10.71 mg.(m2.a)-1. Sulphur emission fluxes of Chinese paddy soil was 0.013662 Tg/a, and those of world paddy soil was 0.07992 Tg/a.

  20. Scalping of light volatile sulfur compounds by wine closures.

    PubMed

    Silva, Maria A; Jourdes, Michaël; Darriet, Philippe; Teissedre, Pierre-Louis

    2012-11-07

    Closures have an important influence on wine quality during aging in a bottle. Closures have a direct impact on oxygen exposure and on volatiles scavenging in wine. Model wine solution soaking assays of several types of closures (i.e., natural and technical cork stoppers, synthetic closures, screw caps) with two important wine volatile sulfur compounds led to a considerable reduction in their levels. After 25 days, cork closures and synthetic closures, to a lesser extent, have significantly scavenged hydrogen sulfide and dimethyl sulfide. These compounds have a determinant impact on wine aging bouquet, being largely responsible for "reduced off-flavors". Hydrogen sulfide levels are often not well correlated with the exposure of wine to oxygen or with the permeability of the closure. Its preferential sorption by some types of closures may explain that behavior. Scalping phenomenon should be taken into account when studying wine post-bottling development.

  1. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  2. Sulfuric Acid Regeneration Waste Disposal Technology.

    DTIC Science & Technology

    1986-11-01

    46 2 4 H2 3 4 4 2 Phosphate Sulfuric Water Phosphoric Hydro- Phosphogypsum Rock Acid Acid fluoric Acid For our purposes the process could be viewed as...one where sulfuric acid is neutralized using phosphate rock rather than lime. Although the resulting calcium sulfate (referred to as phosphogypsum ...spearhead research in this country on uses for waste gypsum or phosphogypsum . They have published a recent review of historic and current work on

  3. Emission of volatile sulfur compounds from spruce trees

    SciTech Connect

    Rennenberg, H.; Huber, B.; Schroeder, P.; Stahl, K.; Haunold, W.; Georgil, H.W.; Slovik, S.; Pfanz, H. )

    1990-03-01

    Spruce (Picea abies L.) trees from the same clone were supplied with different, but low, amounts of plant available sulfate in the soil (9.7-18.1 milligrams per 100 grams of soil). Branches attached to the trees were enclosed in a dynamic gas exchange cuvette and analyzed for the emission of volatile sulfur compounds. Independent of the sulfate supply in the soil, H{sub 2}S was the predominant reduced sulfur compound continuously emitted from the branches with high rates during the day and low rates in the night. In the light, as well as in the dark, the rates of H{sub 2}S emission increased exponentially with increasing water vapor flux from the needles. Approximately 1 nanomole of H{sub 2}S was found to be emitted per mole of water. When stomata were closed completely, only minute emission of H{sub 2}S was observed. Apparently, H{sub 2}S emission from the needles is highly dependent on stromatal aperture, and permeation through the cuticle is negligible. In several experiments, small amounts of dimethylsulfide and carbonylsulfide were also detected in a portion of the samples. However, SO{sub 2} was the only sulfur compound consistently emitted from branches of spruce trees in addition to H{sub 2}S. Emission of SO{sub 2} mainly proceeded via an outburst starting before the beginning of the light period. The total amount of SO{sub 2} emitted from the needles during this outburst was correlated with the plant available sulfate in the soil. The diurnal changes in sulfur metabolism that may result in an outburst of SO{sub 2} are discussed.

  4. Organic volatile sulfur compounds in inland aquatic systems

    SciTech Connect

    Richards, S.R.

    1991-01-01

    The speciation, concentration, and fluxes of organic volatile sulfur compounds (VSCs) in a wide variety of inland aquatic systems wee studied. Dissolved VSCs were sparged from water samples, trapped cryogenically, and quantified by gas chromatograph equipped with a flame photometric detector. Species detected and mean surface water concentrations were: carbonyl sulfide (COS), 0.091-7.6 nM; methanethiol (MSH), undetected-180 nM; dimethyl sulfide (DMS), 0.48-1290 nM; carbon disulfide (CS[sub 2]), undetected-69 nM; dimethyl disulfide (DMDS), undetected-68 nM. The range in surface water concentrations of over five orders of magnitude was influenced principally by lake depth and sulfate concentration ([SO[sub 4][sup 2[minus

  5. Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Arnold, F.; Schulte, P.

    2002-04-01

    Sulfuric acid concentrations were measured in the exhaust plume of a B737-300 aircraft in flight. The measurements were made onboard of the German research aircraft Falcon using the Volatile Aerosol Component Analyzer (VACA). The VACA measures total H2SO4, which is the sum of gaseous H2SO4 and aerosol H2SO4. Measurements took place at distances of 25-200 m behind the B737 corresponding to plume ages of about 0.1-1 seconds. The fuel sulfur content (FSC) of the fuel burned by the B737 engines was alternatively 2.6 and 56 mg sulfur per kilogram fuel (ppmm). H2SO4 concentrations measured in the plume for the 56 ppmm sulfur case were up to ~600 pptv. The average concentration of H2SO4 measured in the ambient atmosphere outside the aircraft plume was 88 pptv, the maximum ambient atmospheric H2SO4 was ~300 pptv. Average efficiencies ɛΔCO2 = 3.3 +/- 1.8% and ɛΔT = 2.9 +/- 1.6% for fuel sulfur conversion to sulfuric acid were inferred when relating the H2SO4 data to measurements of the plume tracers ΔCO2 and ΔT.

  6. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol. An Introductory Overview

    NASA Astrophysics Data System (ADS)

    Chasteen, Thomas G.; Bentley, Ronald

    2004-10-01

    Volatile organic sulfur compounds and their degradation products play important environmental roles in global warming, acid precipitation, and cloud formation. Two important members of this group, dimethyl sulfide, DMS, and methanethiol, MT, are formed by living organisms as well as by abiotic processes. DMS is synthesized by various organisms in the marine environment and large quantities of it are released to the atmosphere. One key precursor for DMS synthesis is the sulfonium salt, dimethylsulfoniopropionate. MT, also formed in marine environments, can be further converted to DMS. The chemical reactions responsible for the biosynthesis of DMS and MT are emphasized here, as well as means for their degradation. Since sulfur compounds are often ignored in normal course work, this article provides a basic foundation for an understanding of these interesting and environmentally significant compounds.

  7. Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food.

    PubMed

    Landaud, Sophie; Helinck, Sandra; Bonnarme, Pascal

    2008-01-01

    The formation of volatile sulfur compounds (VSC) in fermented food is a subject of interest. Such compounds are essential for the aroma of many food products like cheeses or fermented beverages, in which they can play an attractive or a repulsive role, depending on their identity and their concentration. VSC essentially arise from common sulfur-bearing precursors, methionine being the most commonly found. In the first section of this paper, the main VSC found in cheese, wine, and beer are reviewed. It is shown that a wide variety of VSC has been evidenced in these food products. Because of their low odor threshold and flavor notes, these compounds impart essential sensorial properties to the final product. In the second section of this review, the main (bio)chemical pathways leading to VSC synthesis are presented. Attention is focused on the microbial/enzymatic phenomena-which initiate sulfur bearing precursors degradation-leading to VSC production. Although chemical reactions could also play an important role in this process, this aspect is not fully developed in our review. The main catabolic pathways leading to VSC from the precursor methionine are presented.

  8. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  9. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  10. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  11. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  12. 46 CFR 151.50-21 - Sulfuric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Sulfuric acid. 151.50-21 Section 151.50-21 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-21 Sulfuric acid. (a) How sulfuric acid may be carried. (1) Sulfuric acid of concentration of 77.5 percent (1.7019 specific gravity)...

  13. Methane activation and oxidation in sulfuric acid.

    PubMed

    Goeppert, Alain; Dinér, Peter; Ahlberg, Per; Sommer, Jean

    2002-07-15

    The H/D exchange observed when methane is contacted with D(2)SO(4) at 270-330 degrees C shows that the alkane behaves as a sigma base and undergoes rapid and reversible protonation at this temperature. DFT studies of the hydrogen exchange between a monomer and a dimer of sulfuric acid and methane show that the transition states involved in the exchange are bifunctional, that is one hydrogen atom is transferred from a hydroxy group in sulfuric acid to methane, while one hydrogen atom is abstracted from methane by a non-hydroxy oxygen atom in sulfuric acid. All the transition states include a CH(5) moiety, which shows similarities to the methanium ion CH(5) (+). The calculated potential activation energy of the hydrogen exchange for the monomer is 174 kJ mol(-1), which is close to the experimental value (176 kJ mol(-1)). Solvation of the monomer and the transition state of the monomer with an extra sulfuric acid molecule, decrease the potential activation energy by 6 kJ mol(-1). The acid-base process is in competition, however, with an oxidative process involving methane and sulfuric acid which leads to CO(2), SO(2), and water, and thus to a decrease of acidity and loss of reactivity of the medium.

  14. Evolution of Volatile Sulfur Compounds during Wine Fermentation.

    PubMed

    Kinzurik, Matias I; Herbst-Johnstone, Mandy; Gardner, Richard C; Fedrizzi, Bruno

    2015-09-16

    Volatile sulfur compounds (VSCs) play a significant role in the aroma of foods and beverages. With very low sensory thresholds and strong unpleasant aromas, most VSCs are considered to have a negative impact on wine quality. In this study, headspace solid phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to analyze the time course of the biosynthesis of 12 VSCs formed during wine fermentation. Two different strains of Saccharomyces cerevisiae, the laboratory strain BY4743 and a commercial strain, F15, were assessed using two media: synthetic grape media and Sauvignon Blanc juice. Seven VSCs were detected above background, with three rising above their sensory thresholds. The data revealed remarkable differences in the timing and evolution of production during fermentation, with a transient spike in methanethiol production early during anaerobic growth. Heavier VSCs such as benzothiazole and S-ethyl thioacetate were produced at a steady rate throughout grape juice fermentation, whereas others, such as diethyl sulfide, appear toward the very end of the winemaking process. The results also demonstrate significant differences between yeast strains and fermentation media.

  15. Sulfuric acid in the Venus clouds.

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1972-01-01

    The extremely dry nature of the Venus upper atmosphere appears to demand the presence of an efficient desiccating agent as the chief constituent of the clouds of Venus. On the basis of polarization measures it is to be expected that this substance is present as spherical droplets, 1 to 2 microns in diameter, with a refractive index n of 1.46 plus or minus 0.02 at 3500A in the observed region of the atmosphere, with T about equal to 235 K. This substance must have ultraviolet, visible, and infrared reflection properties not inconsistent with the observed spectrum of Venus. Sulfuric acid, of about 86% by weight composition, roughly fulfills the first of these properties. The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine produced by the photolytic decomposition of hydrogen bromide.

  16. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  17. First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

    Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ΔCO2 and ΔT and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ɛ for fuel-sulfur conversion to SA of 0.34 %.

  18. Quadruple sulfur isotope constraints on the origin and cycling of volatile organic sulfur compounds in a stratified sulfidic lake

    NASA Astrophysics Data System (ADS)

    Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James

    2013-11-01

    We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.

  19. Measurement and biological significance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices.

    PubMed

    Tangerman, Albert

    2009-10-15

    This review deals with the measurement of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices of rats and humans (blood, serum, tissues, urine, breath, feces and flatus). Hydrogen sulfide and methanethiol both contain the active thiol (-SH) group and appear in the free gaseous form, in the acid-labile form and in the dithiothreitol-labile form. Dimethyl sulfide is a neutral molecule and exists only in the free form. The foul odor of these sulfur volatiles is a striking characteristic and plays a major role in bad breath, feces and flatus. Because sulfur is a biologically active element, the biological significance of the sulfur volatiles are also highlighted. Despite its highly toxic properties, hydrogen sulfide has been lately recommended to become the third gasotransmitter, next to nitric oxide and carbon monoxide, based on high concentration found in healthy tissues, such as blood and brain. However, there is much doubt about the reliability of the assay methods used. Many artifacts in the sulfide assays exist. The methods to detect the various forms of hydrogen sulfide are critically reviewed and compared with findings of our group. Recent findings that free gaseous hydrogen sulfide is absent in whole blood urged the need to revisit its role as a blood-borne signaling molecule.

  20. [Influence of exogenous sulfur-containing compounds on the exchange fluxes of volatile organic sulfur compounds].

    PubMed

    Yi, Zhi-Gang; Wang, Xin-Ming

    2011-08-01

    The influences of cysteine, sodium sulfide (Na2S) and sodium sulfate (Na2SO4) on the soil-air exchange fluxes of volatile organic sulfur compounds (VOSCs), including carbonyl sulfide (COS), dimethyl sulfide (DMS), carbon disulfide (CS2) and dimethyl disulfide (DMDS), were studied employing static chamber enclosure followed by laboratory determination using an Entech 7100 preconcentrator coupled with an Agilent 5973 GC-MSD. The results showed that after the addition of cysteine, the soil for the exchange fluxes of COS and CS2 shifted to be the source from sink and the emissions of DMS and DMDS increased significant. The emission amount of DMS and CS2 accounted for 89.2% to the total VOSCs after the addition of cysteine, implying that cysteine is an important precursor for DMS and CS2 in the soil. The amount of DMDS accounted for 93.2% to the total sulfur from the soil after addition of Na2S, indicating that Na2S is a key precursor for DMDS. No significant difference of VOSCs fluxes was found between the controlled soil and the soil with addition of Na2SO4, suggesting Na2SO4 was not the direct precursor for VOSCs in soil. VOSCs exchange rates reached the maximum at 6 to 8 days after addition of cysteine. As for addition of Na2S, the maximal emission rates of different VOSCs appeared at different dates, and the dates differed significantly from those after addition of cysteine, implying that the formation process of VOSCs from the soil with addition of Na2S was more complex and different from the soil with addition of cysteine.

  1. Sulfur

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    In 2011, elemental sulfur and the byproduct sulfuric acid were produced at 109 operations in 29 states and the U.S. Virgin Islands. Total shipments were valued at about $1.6 billion. Elemental sulfur production was 8.2 Mt (9 million st); Louisiana and Texas accounted for about 53 percent of domestic production.

  2. Intestinal metabolism of sulfur amino acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acid (SAA) metabolism in the body and metabolizes approx. 20% of the dietary methionine intake that is mainly transmethylated to homocysteine and transsulfurated to cysteine. The GIT accounts for approx. 25% of the ...

  3. Charles H. Winston and Confederate Sulfuric Acid.

    ERIC Educational Resources Information Center

    Riethmiller, Steven

    1995-01-01

    Describes the invention and use of a sulfuric acid chamber by Charles Henry Winston during the Civil War. This invention helped supply munitions for the South. Winston, who was President of the Richmond Female Institute in Virginia, constructed the chamber at his farm and was granted a patent by the Confederate Patent Office in 1863. (PVD)

  4. Sulfuric acid thermoelectrochemical system and method

    DOEpatents

    Ludwig, Frank A.

    1989-01-01

    A thermoelectrochemical system in which an electrical current is generated between a cathode immersed in a concentrated sulfuric acid solution and an anode immersed in an aqueous buffer solution of sodium bisulfate and sodium sulfate. Reactants consumed at the electrodes during the electrochemical reaction are thermochemically regenerated and recycled to the electrodes to provide continuous operation of the system.

  5. Heterogeneous Interaction of Peroxyacetyl Nitrate on Liquid Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun

    1996-01-01

    The uptake of peroxyacetyl nitrate (PAN) on liquid sulfuric acid surfaces has been investigated using a fast-flow reactor coupled to a chemical ionization mass spectrometer. PAN was observed to be reversibly adsorbed on sulfuric acid.

  6. Boric/sulfuric acid anodize - Alternative to chromic acid anodize

    NASA Astrophysics Data System (ADS)

    Koop, Rodney; Moji, Yukimori

    1992-04-01

    The suitability of boric acid/sulfuric acid anodizing (BSAA) solution as a more environmentally acceptable replacement of the chromic acid anodizing (CAA) solution was investigated. Results include data on the BSAA process optimization, the corrosion protection performance, and the compatibility with aircraft finishing. It is shown that the BSSA implementation as a substitude for CAA was successful.

  7. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles

    SciTech Connect

    L. M. Petkovic; D. M. Ginosar; H. W. Rollins; K. C. Burch; P. J. Pinhero; H. H. Farrell

    2008-04-01

    Thermochemical cycles consist of a series of chemical reactions to produce hydrogen from water at lower temperatures than by direct thermal decomposition. All the sulfur-based cycles for water splitting employ the sulfuric acid decomposition reaction. This work reports the studies performed on platinum supported on titania (rutile) catalysts to investigate the causes of catalyst deactivation under sulfuric acid decomposition reaction conditions. Samples of 1 wt% Pt/TiO2 (rutile) catalysts were submitted to flowing concentrated sulfuric acid at 1123 K and atmospheric pressure for different times on stream (TOS) between 0 and 548 h. Post-operation analyses of the spent catalyst samples showed that Pt oxidation and sintering occurred under reaction conditions and some Pt was lost by volatilization. Pt loss rate was higher at initial times but total loss appeared to be independent of the gaseous environment. Catalyst activity showed an initial decrease that lasted for about 66 h, followed by a slight recovery of activity between 66 and 102 h TOS, and a period of slower deactivation after 102 h TOS. Catalyst sulfation did not seem to be detrimental to catalyst activity and the activity profile suggested that a complex dynamical situation involving platinum sintering, volatilization, and oxidation, along with TiO2 morphological changes affected catalyst activity in a non-monotonic way.

  8. Identification of muscadine wine sulfur volatiles: pectinase versus skin-contact maceration.

    PubMed

    Gürbüz, Ozan; Rouseff, June; Talcott, Stephen T; Rouseff, Russell

    2013-01-23

    Muscadine grapes ( Vitis rotundifolia ) are widely grown in the southern United States, as the more common Vitis vinifera cannot be cultivated due to Pierce's disease. There is interest to determine if certain cultivars can be used for good-quality wine production. This study compared the effect of pectolytic enzyme pretreatment with conventional skin-contact fermentation on Muscadine (Noble, Vitis rotundifolia ) wine major volatiles, aroma active volatiles, and volatile sulfur compounds (VSCs). Volatile composition, aroma activity, and VSCs in the initial juice and wine samples after 3 years were determined by gas chromatography in combination with mass spectrometry (GC-MS), olfactory detection (GC-O), and pulsed flame photometric detection (GC-PFPD). Forty-three nonethanol MS volatiles were common to all samples. Total ion chromatogram (TIC) MS peak area increased 91% in the skin-contact wines from the initial juice but only 24% in the enzyme-treated wine. Thirty-one VSCs were detected. Twenty-four sulfur volatiles were identified by matching their retention characteristics on polar and nonpolar columns with those of standards or MS spectrum matches. Six of these (sulfur dioxide, 1-propanethiol, 3-mercapto-2-pentanone, 3-mercapto-2-butanone, 2,8-epithio-cis-p-menthane, and 1-p-menthene-8-thiol) were reported for the first time in muscadine wine. Five additional VSCs were tentatively identified by matching standardized retention values with literature values, and two remain unidentified. Total sulfur peak areas increased 400% in the skin-contact wine and 560% in the enzyme-treated wine compared to the initial juice. There were 42 aroma-active volatiles in the initial juice, 48 in the skin-contact wine, and 66 in the enzyme-treated wine. Eleven aroma-active volatiles in the skin-contact wine and 16 aroma volatiles in the enzyme-treated wine appear to be due to sulfur volatiles. Pectolytic enzyme-treated wines contained less total volatiles but more sulfur and aroma

  9. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  10. Exposure to sulfuric acid in zinc production.

    PubMed

    Bråtveit, Magne; Haaland, Inger Margrethe; Moen, Bente E; Målsnes, Agnar

    2004-03-01

    This study characterized workers' exposure to sulfuric acid in two cell houses of a zinc production plant. We also aimed at estimating previous exposure to sulfuric acid by simulating the process conditions from before 1975 to produce exposure data for an epidemiological study on cancer in this industry. Further, we compared different sampling methods for aerosols in the cell houses. Personal sampling with a 37 mm Millipore cassette showed that the geometric means of the exposure levels for the workers in the two cell houses were 0.07 mg/m3 (range 0.01-0.48 mg/m3) and 0.04 mg/m3 (range 0.01-0.15 mg/m3). Norway's newly revised limit value of 0.1 mg/m3 was exceeded in 39.0 and 12.9% of the samples in the two cell houses. After the foam layer was removed from the electrolyte surface to simulate the production process from before 1975, the concentration of sulfuric acid increased from 0.11 to 6.04 mg/m3 in stationary measurement by the Millipore sampler. Stationary sampling showed that the Millipore sampler and the inhalable fraction of the Respicon impactor underestimated the sulfuric acid concentration by factors of 1.5 and 2.1 compared with the Institute of Occupational Medicine (IOM) sampler. Sampling with the Respicon impactor showed that the respirable, tracheobronchial and extrathoracic fractions constituted 3.0, 18.7 and 71.7% of the inhalable sulfuric acid aerosol, respectively. Today's exposure levels are lower than those reported to be associated with an increased prevalence of laryngeal cancer in other industries, but the levels prior to 1975 seem to have been much higher. By mass, most of the inhalable aerosol was in the size fractions considered to be highly relevant for the effects of sulfuric acid on the respiratory system. The risk of cancer among the cell house workers should be investigated in an epidemiological study.

  11. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  12. Volatile sulfur compounds responsible for an offensive odor of the flat-head, Calliurichthys doryssus.

    PubMed

    Shiomi, K; Noguchi, A; Yamanaka, H; Kikuchi, T; Iida, H

    1982-01-01

    1. The volatiles of a flat-head, Calliurichthys doryssus, which gives out a characteristic offensive odor in living time, were analyzed by gas chromatography. 2. A large quantity of volatile sulfur compounds was detected in the flat-head; of which methyl mercaptan and/or dimethyl disulfide were judged to be responsible for the offensive odor. 3. The contents of methyl mercaptan and dimethyl disulfide were much higher in skin than in muscle and viscera.

  13. [Research on determination of total volatile organic sulfur compounds in the atmosphere].

    PubMed

    Wang, Yan-Jun; Zheng, Xiao-Ling; He, Ying; Zhang, Dong; Wang, Bao-Dong

    2011-12-01

    A detection technology was established comprising trap, desorption, oxidation and UV fluorescence determination process, and used for the test of total concentration of trace volatile sulfur compounds (VSCs) in the atmosphere. A cryogenic trap-thermal desorption device was developed, integrating the advantages of solid retention method and cryogenic condensation method, which was applied to capture and enrich trace volatile organic sulfur compounds. Under high temperature and combustion-supporting gas, the VSCs were completely oxidized into sulfur dioxide. By analyzing the content of sulfur dioxide through ultraviolet fluorescence method indirectly calculated to gain the total concentration of volatile organic sulfur compounds. The trapping temperature, desorption temperature and the oxidation temperature were 5 degrees C, 150 degrees C and 1 000 degrees C, and the precision and recovery of the method were 5.46% and 99.6%-109.2%, respectively. The content of trace amounts of atmospheric VSCs determined from February to April at Qingdao was 42-195 ng x m(-3).

  14. Inhibitory Effect of Enterococcus faecium WB2000 on Volatile Sulfur Compound Production by Porphyromonas gingivalis

    PubMed Central

    Higuchi, Takuya; Nakajima, Masato; Fujimoto, Akie; Hanioka, Takashi; Hirofuji, Takao

    2016-01-01

    Volatile sulfur compounds (VSCs) produced by oral anaerobes are the major compounds responsible for oral malodor. Enterococcus faecium WB2000 is recognized as an antiplaque probiotic bacterium. In this study, the effect of E. faecium WB2000 on VSC production by Porphyromonas gingivalis was evaluated, and the mechanism of inhibition of oral malodor was investigated. P. gingivalis ATCC 33277 was cultured in the presence of four lactic acid bacteria, including E. faecium WB2000. Subsequently, P. gingivalis ATCC 33277, W50, W83, and two clinical isolates were cultured in the presence or absence of E. faecium WB2000, and the emission of VSCs from spent culture medium was measured by gas chromatography. The number of P. gingivalis ATCC 33277 in mixed culture with E. faecium WB2000 decreased at 6 h, and the rate of decrease was higher than that in mixed cultures with the other lactic acid bacteria. The numbers of five P. gingivalis strains decreased at similar rates in mixed culture with E. faecium WB2000. The concentration of methyl mercaptan was lower in spent culture medium from P. gingivalis and E. faecium WB2000 cultures compared with that from P. gingivalis alone. Therefore, E. faecium WB2000 may reduce oral malodor by inhibiting the growth of P. gingivalis and neutralizing methyl mercaptan. PMID:27799940

  15. Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.

    PubMed

    Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L

    2008-10-08

    Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.

  16. Heterogeneous Interactions of Acetaldehyde and Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L. T.

    2004-01-01

    The uptake of acetaldehyde [CH3CHO] by aqueous sulfuric acid has been studied via Knudsen cell experiments over ranges of temperature (210-250 K) and acid concentration (40-80 wt. %) representative of the upper troposphere. The Henry's law constants for acetaldehyde calculated from these data range from 6 x 10(exp 2) M/atm for 40 wt. % H2SO4 at 228 K to 2 x 10(exp 5) M/atm for 80 wt. % H2SO4 at 212 K. In some instances, acetaldehyde uptake exhibits apparent steady-state loss. The possible sources of this behavior, including polymerization, will be explored. Furthermore, the implications for heterogeneous reactions of aldehydes in sulfate aerosols in the upper troposphere will be discussed.

  17. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas

    NASA Astrophysics Data System (ADS)

    Black, Benjamin A.; Hauri, Erik H.; Elkins-Tanton, Linda T.; Brown, Stephanie M.

    2014-05-01

    The Siberian Traps flood basalts transferred a large mass of volatiles from the Earth's mantle and crust to the atmosphere. The eruption of the large igneous province temporally overlapped with the end-Permian mass extinction. Constraints on the sources of Siberian Traps volatiles are critical for determining the overall volatile budget, the role of crustal assimilation, the genesis of Noril'sk ore deposits, and the environmental effects of magmatism. We measure sulfur isotopic ratios ranging from -10.8‰ to +25.3‰ Vienna Cañon Diablo Troilite (V-CDT) in melt inclusions from Siberian Traps basaltic rocks. Our measurements, which offer a snapshot of sulfur cycling far from mid-ocean ridge and arc settings, suggest the δ34S of the Siberian Traps mantle melt source was close to that of mid-ocean ridge basalts. In conjunction with previously published whole rock measurements from Noril'sk, our sulfur isotopic data indicate that crustal contamination was widespread and heterogeneous—though not universal—during the emplacement of the Siberian Traps. Incorporation of crustal materials likely increased the total volatile budget of the large igneous province, thereby contributing to Permian-Triassic environmental deterioration.

  18. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  19. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  20. Solubility of HCL in sulfuric acid at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Golden, David M.

    1993-01-01

    The solubility of HCl in sulfuric acid was measured using a Knudsen cell technique. Effective Henry's law constants are reported for sulfuric acid concentrations between 50 and 60 weight percent and for temperatures between 220 and 230 K. The measured values indicate that very little HCl will be dissolved in the stratospheric sulfate aerosol particles.

  1. Stimulation of proinflammatory cytokines by volatile sulfur compounds in endodontically treated teeth

    PubMed Central

    Lechner, Johann; von Baehr, Volker

    2015-01-01

    Persistent microorganisms in endodontically treated teeth produce volatile sulfur compounds (VSC) such as methyl mercaptan, hydrogen sulfide, and thioether. In this retrospective study, we evaluated the ex vivo immune response of peripheral blood mononuclear cells to sulfur compounds in 354 patients with systemic diseases. These systemic findings are correlated with semiquantitative values of a VSC indicator applied directly on endodontically treated teeth. Data elucidate the role of VSC in patients with immunologic diseases and the role of a semiquantitative chairside test, like the VSC indicator presented here, in correlation to IFNg and IL-10 sensitization in peripheral blood mononuclear cells. The association between ex vivo-stimulated cytokines and endodontically derived sulfur components is supported by the fact that the number of interferon gamma- and/or interleukin-10-positive sensitized patients declined significantly 3–8 months after extraction of the corresponding teeth. PMID:25792853

  2. Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit.

    PubMed

    Gonda, Itay; Lev, Shery; Bar, Einat; Sikron, Noga; Portnoy, Vitaly; Davidovich-Rikanati, Rachel; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Giovannonni, James J; Huang, Mingyun; Fei, Zhangjun; Katzir, Nurit; Fait, Aaron; Lewinsohn, Efraim

    2013-05-01

    Sulfur-containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with ¹³C- and ²H-labeled L-methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an L-methionine aminotransferase and preserves the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and other important melon volatiles, including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of sulfur-containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit.

  3. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  4. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  5. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  6. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  7. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  8. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    PubMed

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles.

  9. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  10. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    DOEpatents

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  11. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  12. Investigation of the thermal decomposition of sulfuric acid containing inorganic impurities

    SciTech Connect

    Kogtev, S.E.; Nikandrov, I.S.; Borisenko, A.S.; Peretrutov, A.A.

    1986-09-20

    Oleum is recovered by thermal decomposition of sulfuric acid wastes to sulfur dioxide with conversion of the sulfur dioxide to oleum. The organic substances in sulfuric acid wastes can affect the thermal-decomposition indexes of sulfuric acid wastes. They studied the effect of toluene, nitrotoluene, benzoic acid, and carbon on the yield of sulfur dioxide and also the possibility of reduction of acid vapors by products of pyrolysis and incomplete combustion of hydrocarbons. It is shown that the yield of sulfur dioxide in thermal decomposition of hydrocarbon-containing sulfuric acid wastes can be increased if the process assumes the nature of reductive decomposition.

  13. Protein and sulfur amino acid requirements of broiler breeder hens.

    PubMed

    Harms, R H; Wilson, H R

    1980-02-01

    Two experiments were conducted with Cobb color-sexed broiler breeder hens to determine their protein and sulfur amino acid requirement. A daily intake between 400 and 478 mg of methionine and between 722 and 839 mg of total sulfur amino acids was necessary for maximum egg production, the latter in a diet of 13.07% protein. Slightly lower levels supported maximum body weights. Hens laying at the highest rate consumed 23.4 g of protein per day.

  14. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  15. Influence of chlorine, sulfur and phosphorus on the volatilization behavior of heavy metals during sewage sludge thermal treatment.

    PubMed

    Luan, Jingde; Li, Rundong; Zhang, Zhihui; Li, Yanlong; Zhao, Yun

    2013-10-01

    Chlorine, sulfur and phosphorus were selected as element donators to investigate their effect on the volatilization behavior of heavy metals in sludge sewage incineration. Principal component analysis indicated that the promotive effect on the volatilization of heavy metals was followed by chlorine, sulfur and phosphorus. This result was proved to be correct by total release of heavy metals in sewage sludge incineration using different element donators. The release of heavy metals was very chlorine dependent, especially cadmium (Cd), lead (Pb) and nickel (Ni). When chlorine content was in the range of 0.1-0.5wt%, the increase of the volatilization rate was 44.9% for Cd, 6.8% for Pb and 4.6% for Ni, respectively. Although sulfur contributed to the promotion of the volatilization of heavy metals, excess oxygen impaired the promotive effect of sulfur on the release of heavy metals from the condensed phase. For phosphorus, solidifying heavy metals was dominant. Energy analysis showed that metal chlorides and sulfides were prone to volatilize or to be decomposed at elevated temperature compared with sulfates and phosphates owing to low binding energy in absolute value (VLFA). It was the difference of binding energy that led to the different volatilization behavior of metal compounds in a high temperature, oxygen-enriched atmosphere.

  16. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang).

    PubMed

    Shukla, Shruti; Choi, Tae Bong; Park, Hae-Kyong; Kim, Myunghee; Lee, In Koo; Kim, Jong-Kyu

    2010-01-01

    Organic acids are formed in food as a result of metabolism of large molecular mass compounds. These organic acids play an important role in the taste and aroma of fermented food products. Doenjang is a traditional Korean fermented soybean paste product that provides a major source of protein. The quantitative data for volatile and non-volatile organic acid contents of 18 samples of Doenjang were determined by comparing the abundances of each peak by gas (GC) and high performance liquid chromatography (HPLC). The mean values of volatile organic acids (acetic acid, butyric acid, propionic acid and 3-methyl butanoic acid), determined in 18 Doenjang samples, were found to be 91.73, 29.54, 70.07 and 19.80 mg%, respectively, whereas the mean values of non-volatile organic acids, such as oxalic acid, citric acid, lactic acid and succinic acid, were noted to be 14.69, 5.56, 9.95 and 0.21 mg%, respectively. Malonic and glutaric acids were absent in all the tested samples of Doenjang. The findings of this study suggest that determination of organic acid contents by GC and HPLC can be considered as an affective approach to evaluate the quality characteristics of fermented food products.

  17. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  18. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  19. Delayed production of sulfuric acid condensation nuclei in the polar stratosphere from El Chichon volcanic vapors

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Gringel, W.

    1985-01-01

    It is pointed out that measurements of the vertical profiles of atmospheric condensation nuclei (CN) have been conducted since 1973. Studies with a new instrument revealed that the CN concentration undergoes a remarkable annual variation in the 30-km region characterized by a large increase in the late winter/early spring period with a subsequent decay during the remainder of the year. The event particles are observed to be volatile at 150 C, suggesting a sulfuric acid-water composition similar to that found in the normal 20 km aerosol layer. The development of about 10 to the 7th metric tons of sulfuric acid aerosol following the injection of sulfurous gases by El Chichon in April 1982, prompted Hofmann and Rosen (1983) to predict a very large CN event for 1983. The present investigation is concerned with the actual observation of the predicted event. Attention is given to the observation of a very large increase of what appear to be small sulfuric acid droplets at 30-km altitude in January 1983 over Laramie, WY, in January 1983.

  20. Heterologous production of methionine-gamma-lyase from Brevibacterium linens in Lactococcus lactis and formation of volatile sulfur compounds.

    PubMed

    Hanniffy, Sean B; Philo, Mark; Peláez, Carmen; Gasson, Michael J; Requena, Teresa; Martínez-Cuesta, M C

    2009-04-01

    The conversion of methionine to volatile sulfur compounds (VSCs) is of great importance in flavor formation during cheese ripening and is the focus of biotechnological approaches toward flavor improvement. A synthetic mgl gene encoding methionine-gamma-lyase (MGL) from Brevibacterium linens BL2 was cloned into a Lactococcus lactis expression plasmid under the control of the nisin-inducible promoter PnisA. When expressed in L. lactis and purified as a recombinant protein, MGL was shown to degrade L-methionine as well as other sulfur-containing compounds such as L-cysteine, L-cystathionine, and L-cystine. Overproduction of MGL in recombinant L. lactis also resulted in an increase in the degradation of these compounds compared to the wild-type strain. Importantly, gas chromatography-mass spectrometry analysis identified considerably higher formation of methanethiol (and its oxidized derivatives dimethyl disulfide and dimethyl trisulfide) in reactions containing either purified protein, whole cells, or cell extracts from the heterologous L. lactis strain. This is the first report of production of MGL from B. linens in L. lactis. Given their significance in cheese flavor development, the use of lactic acid bacteria with enhanced VSC-producing abilities could be an efficient way to enhance cheese flavor development.

  1. Field sampling method for quantifying volatile sulfur compounds from animal feeding operations

    NASA Astrophysics Data System (ADS)

    Trabue, Steven; Scoggin, Kenwood; Mitloehner, Frank; Li, Hong; Burns, Robert; Xin, Hongwei

    Volatile sulfur compounds (VSCs) are a major class of chemicals associated with odor from animal feeding operations (AFOs). Identifying and quantifying VSCs in air is challenging due to their volatility, reactivity, and low concentrations. In the present study, a canister-based method collected whole air in fused silica-lined (FSL) mini-canister (1.4 L) following passage through a calcium chloride drying tube. Sampled air from the canisters was removed (10-600 mL), dried, pre-concentrated, and cryofocused into a GC system with parallel detectors (mass spectrometer (MS) and pulsed flame photometric detector (PFPD)). The column effluent was split 20:1 between the MS and PFPD. The PFPD equimolar sulfur response enhanced quantitation and the location of sulfur peaks for mass spectral identity and quantitation. Limit of quantitation for the PFPD and MSD was set at the least sensitive VSC (hydrogen sulfide) and determined to be 177 and 28 pg S, respectively, or 0.300 and 0.048 μg m -3 air, respectively. Storage stability of hydrogen sulfide and methanethiol was problematic in warm humid air (25 °C, 96% relative humidity (RH)) without being dried first, however, stability in canisters dried was still only 65% after 24 h of storage. Storage stability of hydrogen sulfide sampled in the field at a swine facility was over 2 days. The greater stability of field samples compared to laboratory samples was due to the lower temperature and RH of field samples compared to laboratory generated samples. Hydrogen sulfide was the dominant odorous VSCs detected at all swine facilities with methanethiol and dimethyl sulfide detected notably above their odor threshold values. The main odorous VSC detected in aged poultry litter was dimethyl trisulfide. Other VSCs above odor threshold values for poultry facilities were methanethiol and dimethyl sulfide.

  2. Production of methanethiol and volatile sulfur compounds by the archaeon "Ferroplasma acidarmanus".

    PubMed

    Baumler, David J; Hung, Kai-Foong; Jeong, Kwang Cheol; Kaspar, Charles W

    2007-11-01

    Acidophiles are typically isolated from sulfate-rich ecological niches yet the role of sulfur metabolism in their growth and survival is poorly defined. Studies of heterotrophically grown "Ferroplasma acidarmanus" showed that its growth requires a minimum of 100 mM of a sulfate-containing salt. Headspace gas analyses by GC/MS determined that the volatile sulfur compound emitted by active "F. acidarmanus" cultures is methanethiol. In "F. acidarmanus" cultures grown either heterotrophically or chemolithotrophically, methanethiol was produced constitutively. Radiotracer studies with (35)S-labeled methionine, cysteine, and sulfate showed that all three were used in methanethiol production. Additionally, (3)H-labeled methionine was incorporated into methanethiol and was probably used as a methyl-group donor. Methanethiol production in whole cell lysates supplied with SO (3) (2-) indicated that NADPH-dependant sulfite reductase and methyltransferase activities were present. Cell lysates also contained enzymatic activity for methionine-gamma-lyase that cleaved the side chain of either methionine to form methanethiol or cysteine to produce H(2)S. Since methanethiol was detected from the degradation of cysteine, it is likely that sulfide was methylated by a thiol methyltransferase. Collectively, these data demonstrate that "F. acidarmanus" produces methanethiol through the metabolism of methionine, cysteine, or sulfate. This is the first report of a methanethiol-producing acidophile, thus identifying a new contributor to the global sulfur cycle.

  3. Intrajejunal volatile fatty acids in the stagnant loop syndrome.

    PubMed

    Chernov, A J; Doe, W F; Gompertz, D

    1972-02-01

    In the stagnant loop syndrome an abnormal anaerobic flora colonizes the small bowel. Anaerobic organisms are characterized by fermentation reactions leading to the production of volatile fatty acids. This paper describes the measurement of intrajejunal volatile fatty acid concentrations in 11 patients with the stagnant loop syndrome. Nine normal persons and 18 patients with gastrointestinal disease without intestinal stasis acted as controls. Acetate and propionate concentrations were greatly increased in the patients with the stagnant loop syndrome and returned to normal in those patients treated with antibiotics. The measurement of intrajejunal volatile fatty acid concentrations as an index of overgrowth of anaerobic organisms is discussed.

  4. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  5. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1979-01-01

    A series of perhalocarbons are proposed as candidate heat exchange fluids for service in thermochemical cycles for hydrogen production that involve direct contact of the fluid with sulfuric acid and vaporization of the acid. The required chemical and physical criteria of the liquids are described and the results of some preliminary high temperature test data are presented.

  6. Connection of sulfuric acid to atmospheric nucleation in boreal forest.

    PubMed

    Nieminen, T; Manninen, H E; Sihto, S L; Yli-Juuti, T; Mauldin, R L; Petäjä, T; Riipinen, I; Kerminen, V M; Kulmala, M

    2009-07-01

    Gas to particle conversion in the boundary layer occurs worldwide. Sulfuric acid is considered to be one of the key components in these new particle formation events. In this study we explore the connection between measured sulfuric acid and observed formation rate of both charged 2 nm as well as neutral clusters in a boreal forest environment A very short time delay of the order of ten minutes between these two parameters was detected. On average the event days were clearly associated with higher sulfuric acid concentrations and lower condensation sink (CS) values than the nonevent days. Although there was not a clear sharp boundary between the nucleation and no-nucleation days in sulfuric acid-CS plane, at our measurement site a typical threshold concentration of 3.10(5) molecules cm(-3) of sulfuric acid was needed to initiate the new particle formation. Two proposed nucleation mechanisms were tested. Our results are somewhat more in favor of activation type nucleation than of kinetic type nucleation, even though our data set is too limited to omit either of these two mechanisms. In line with earlier studies, the atmospheric nucleation seems to start from sizes very close to 2 nm.

  7. Molecular interaction of pinic acid with sulfuric acid: exploring the thermodynamic landscape of cluster growth.

    PubMed

    Elm, Jonas; Kurtén, Theo; Bilde, Merete; Mikkelsen, Kurt V

    2014-09-11

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated from the corresponding ΔG values. The first two additions of sulfuric acid to pinic acid are found to be favorable with ΔG values of -9.06 and -10.41 kcal/mol. Addition of a third sulfuric acid molecule is less favorable and leads to a structural rearrangement forming a bridged sulfuric acid-pinic acid cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures without the further possibility for attachment of either sulfuric acid or pinic acid. This suggests that pinic acid cannot be a key species in the first steps in nucleation, but the favorable interactions between sulfuric acid and pinic acid imply that pinic acid can contribute to the subsequent growth of an existing nucleus by condensation.

  8. Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem.

    PubMed

    Arfi, Kenza; Amárita, Felix; Spinnler, Henry-Eric; Bonnarme, Pascal

    2003-11-06

    Two Brevibacterium linens strains and the cheese-ripening yeast Geotrichum candidum were compared with regard to their ability to produce volatile sulfur compounds (VSCs) from three different precursors namely L-methionine, 4-methylthio-2-oxobutyric acid (KMBA) and 4-methylthio-2-hydroxybutyric acid (HMBA). All microorganisms were able to convert these precursors to VSCs. However, although all were able to produce VSCs from L-methionine, only G. candidum accumulated KMBA when cultivated on this amino acid, contrary to B. linens suggesting that the transamination pathway is not active in this microorganism. Conversely, a L-methionine gamma-lyase activity--which catalyses the one step L-methionine to methanethiol (MTL) degradation route--was only found in B. linens strains. Several other enzymatic activities involved in the catabolism of the precursors tested were investigated. KMBA transiently accumulated in G. candidum cultures, and was then reduced to HMBA by a KMBA dehydrogenase (KDH) activity. This activity was not detected in B. linens. Despite no HMBA dehydrogenase (HDH) was found in G. candidum, a strong HMBA oxidase (HOX) activity was measured in this microorganism. This latter activity was weakly active in B. linens. KMBA and HMBA demethiolating activities were found in all the microorganisms. Our results illustrate the metabolic diversity between cheese-ripening microorganisms of the cheese ecosystem.

  9. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    SciTech Connect

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  10. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  11. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  12. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  13. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  14. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  15. Adsorption of ammonia by sulfuric acid treated zirconium hydroxide.

    PubMed

    Glover, T Grant; Peterson, Gregory W; DeCoste, Jared B; Browe, Matthew A

    2012-07-17

    The adsorption of ammonia on Zr(OH)(4), as well as Zr(OH)(4) treated with sulfuric acid, were examined. The results show that treating Zr(OH)(4) with sulfuric acid leads to the formation of a sulfate on the surface of the material, and that the sulfate contributes to the ammonia adsorption capacity through the formation of an ammonium sulfates species. Calcination of Zr(OH)(4) decreases the ammonia adsorption capacity of the material and limits the formation of sulfate species. NMR and FTIR spectroscopy results are presented that show the presence of two distinct ammonium species on the surface of the material. The adsorption capacity of the materials is shown to be a complex phenomenon that is impacted by the surface area, the sulfur content, and the pH of the material. The results illustrate that Zr(OH)(4), which is known to adsorb acidic gases, can be modified and used to adsorb basic gases.

  16. Air pollution and asthma: clinical studies with sulfuric acid aerosols

    SciTech Connect

    Utell, M.J.; Frampton, M.W.; Morrow, P.E. )

    1991-11-01

    Until recently, acid deposition has been widely considered a serious ecological problem but not a threat to human health. The controlled clinical study is an important approach in linking acidic aerosol inhalation with respiratory effects. Asthmatic patients represent a subpopulation most responsive to sulfuric acid aerosols. In a series of studies with asthmatic volunteers, several factors have been identified that may modulate the intensity of the bronchoconstrictor response to inhaled acidic aerosols. We found (1) enhancement of the bronchoconstrictor response during exercise, (2) the more acidic aerosols provoke the greatest changes in lung function, and (3) mitigation of airway responses during sulfuric acid aerosol inhalation caused by high respiratory ammonia concentrations. Additional factors influencing responsiveness await identification.

  17. The effect of melt composition on the partitioning of oxidized sulfur between silicate melts and magmatic volatiles

    NASA Astrophysics Data System (ADS)

    Zajacz, Zoltán

    2015-06-01

    Experiments were conducted at 500 MPa and 1240 °C in a piston cylinder apparatus to assess the effect of melt composition on the melt/volatile partition coefficient of sulfur (DSmelt/volatile) , which was used as a measure of the silicate melt's capacity to dissolve oxidized sulfur species. Iron-free, three- and four-component silicate melts were equilibrated with H2O-S fluids with sulfur concentrations ⩽2 mol% at an oxygen fugacity imposed by the Re-ReO2 buffer (1.4 log units above the Ni-NiO buffer). At these conditions, SO2 (S4+) is predicted to be the dominant sulfur species in the volatile phase and sulfate (S6+) is the dominant sulfur species in the silicate melt. The values of DSmelt /volatile were calculated by mass balance. The results show that DSmelt /volatile values increase exponentially with decreasing the degree of polymerization of the silicate melt structure. For example, in calcium-aluminosilicate melts, DSmelt /volatile changes from 0.005 to 0.3 as the degree of melt polymerization changes from the equivalent of a rhyolite to the equivalent of a basalt. At a constant degree of melt polymerization, DSmelt /volatile in equilibrium with sodium-aluminosilicate (NAS) melts is more than an order of magnitude higher than in equilibrium with calcium-aluminosilicate (CAS) melts, and more than two orders of magnitude higher than in equilibrium with magnesium-aluminosilicate (MAS) melts. The value of DSmelt /volatile changes from 0.014 in MAS glasses to 3.4 in NAS glasses for the most depolymerized compositions in each series. Potassium has a similar effect on sulfate dissolution to that of Na. The variation of DSmelt /volatile in equilibrium with various calcium-sodium aluminosilicate (CNAS), magnesium-sodium aluminosilicate (MNAS) and magnesium-potassium aluminosilicate (MKAS) melts indicates that alkalis are only available for sulfate complexation when they are present in excess compared to the required amount to charge balance for the Si4+ to Al3

  18. Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid.

    PubMed

    Niskanen, Johannes; Sahle, Christoph J; Juurinen, Iina; Koskelo, Jaakko; Lehtola, Susi; Verbeni, Roberto; Müller, Harald; Hakala, Mikko; Huotari, Simo

    2015-09-03

    Hydration of sulfuric acid plays a key role in new-particle formation in the atmosphere. It has been recently proposed that proton dynamics is crucial in the stabilization of these clusters. One key question is how water molecules mediate proton transfer from sulfuric acid, and hence how the deprotonation state of the acid molecule behaves as a function concentration. We address the proton transfer in aqueous sulfuric acid with O K edge and S L edge core-excitation spectra recorded using inelastic X-ray scattering and with ab initio molecular dynamics simulations in the concentration range of 0-18.0 M. Throughout this range, we quantify the acid-water interaction with atomic resolution. Our simulations show that the number of donated hydrogen bonds per Owater increases from 1.9 to 2.5 when concentration increases from 0 to 18.0 M, in agreement with a rapid disappearance of the pre-edge feature in the O K edge spectrum. The simulations also suggest that for 1.5 M sulfuric acid SO4(2-) is most abundant and that its concentration falls monotonously with increasing concentration. Moreover, the fraction of HSO4(-) peaks at ∼12 M.

  19. Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels.

    PubMed

    Ye, Dong-Qing; Zheng, Xiao-Tian; Xu, Xiao-Qing; Wang, Yun-He; Duan, Chang-Qing; Liu, Yan-Lin

    2016-07-01

    The evolution of volatile sulfur compounds (VSCs) in Cabernet Sauvignon wines from seven regions of China during maturation in oak barrels was investigated. The barrels were made of different wood grains (fine and medium) and toasting levels (light and medium). Twelve VSCs were quantified by GC/FPD, with dimethyl sulfide (DMS) and methionol exceeding their sensory thresholds. Most VSCs tended to decline during the aging, while DMS was found to increase. After one year aging, the levels of DMS, 2-methyltetrahy-drothiophen-3-one and sulfur-containing esters were lower in the wines aged in oak barrels than in stainless steel tanks. The wood grain and toasting level of oak barrels significantly influenced the concentration of S-methyl thioacetate and 2-methyltetrahy-drothiophen-3-one. This study reported the evolution of VSCs in wines during oak barrel aging for the first time and evaluated the influence of barrel types, which would provide wine-makers with references in making proposals about wine aging.

  20. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-522) on a case by...

  1. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-ENG) on a case by...

  2. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-ENG) on a case by...

  3. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-522) on a case by...

  4. 46 CFR 153.556 - Special requirements for sulfuric acid and oleum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for sulfuric acid and oleum. 153... and Equipment Special Requirements § 153.556 Special requirements for sulfuric acid and oleum. (a... acid, oleum, or contaminated sulfuric acid are approved by the Commandant (CG-ENG) on a case by...

  5. Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma.

    PubMed

    Splivallo, Richard; Ebeler, Susan E

    2015-03-01

    Truffles are symbiotic fungi in high demand for the aroma of their fruiting bodies which are colonized by a diverse microbial flora. Specific sulfur containing volatiles (thiophene derivatives) characteristic of the white truffle Tuber borchii were recently shown to be derived from the bacterial community inhabiting truffle fruiting bodies. Our aim here was to investigate whether thiophene derivatives contributed to the human-sensed aroma of T. borchii. Furthermore, we questioned whether the concentration of thiophene volatiles was affected by freezing or whether it differed in truffles from distinct geographical origins. Gas chromatography-olfactometry (GC-O) analysis revealed that thiophene derivatives were major contributors to the aroma of T. borchii. Of four thiophene derivatives detected in this study, 3-methyl-4,5-dihydrothiophene was the most important one in terms of its contribution to the overall aroma. The relative concentration of thiophene derivatives was unaffected by freezing; however, it differed in samples collected in distinct geographical locations (Italy versus New Zealand). The causes of this variability might be differences in storage conditions and/or in bacterial community composition of the fruiting bodies; however, further work is needed to confirm these hypotheses. Overall, our results demonstrate that thiophene derivatives are major contributors to the human-sensed aroma of T. borchii.

  6. Microbial Sulfur Cycling in an Acid Mine Lake

    NASA Astrophysics Data System (ADS)

    Bernier, L.; Warren, L. A.

    2004-12-01

    Geochemical dynamics of a tailings impacted lake in Northern Ontario were investigated over a three-year period, in which active pyrrhotite slurry disposal was initiated in year two. A strong seasonal trend of decreasing epilimnetic pH with significant diurnal acid production, pre-, during and post slurry deposition was observed with high rates observed compared to pre-slurry. Slurry deposition occurred at the surface of the lake and acted as a reaction stimulant for acid generation. Over the diurnal timescale investigated, the highest rates of acid production occurred not at the lake surface but within the metaliminetic region of the lake. This region was exemplified by strong decreasing oxygen gradients, and thus observed high rates of acid generation are more consistent with microbial pathways of sulfur oxidation than with abiotic, oxygen catalyzed pathways. Consistent with microbial catalysis, metalimnetic rates of acid generation were highest during June and July when microbial populations and metabolic rates were maximal. These results indicate that microbial oxidation of sulfur species play a major role in acid generation in this system. Further, observed rates of acid generation exceed those predicted by published abiotic rates of pyrrhotite oxidation, but are consistent with literature estimates of acid generation catalyzed by microbial activity. Acidithiobacilli accounted for up to 50% of the microbial community pre slurry, but were absent post slurry deposition. These results are the first to demonstrate quantitatively that microbial sulfur oxidation can play a predominant role in acid generation within mine tailings impacted systems. They further highlight the need to evaluate the more complex pathways by which microorganisms process sulfur as the conditions, controls and process rates differ from those observed for abiotic reactions.

  7. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2016-02-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  8. Potential heat exchange fluids for use in sulfuric acid vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  9. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  10. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    EPA Science Inventory

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  11. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  12. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  13. Dilute sulfuric acid pretreatment of sunflower stalks for sugar production.

    PubMed

    Ruiz, Encarnación; Romero, Inmaculada; Moya, Manuel; Cara, Cristóbal; Vidal, Juan D; Castro, Eulogio

    2013-07-01

    In this work the pretreatment of sunflower stalks by dilute sulfuric acid is studied. Pretreatment temperature and the concentration of acid solution were selected as operation variables and modified according to a central rotatable composite experimental design. Based on previous studies pretreatment time was kept constant (5 min) while the variation range for temperature and acid concentration was centered at 175°C and 1.25% (w/v) respectively. Following pretreatment the insoluble solids were separated by filtration and further submitted to enzymatic hydrolysis, while liquid fractions were analyzed for sugars and inhibitors. Response surface methodology was applied to analyze results based on the combined severity of pretreatment experiments. Optimized results show that up to 33 g of glucose and xylose per 100g raw material (65% of the glucose and xylose present in the raw material) may be available for fermentation after pretreatment at 167°C and 1.3% sulfuric acid concentration.

  14. Dissolution, speciation, and reaction of acetaldehyde in cold sulfuric acid

    NASA Astrophysics Data System (ADS)

    Michelsen, Rebecca R.; Ashbourn, Samantha F. M.; Iraci, Laura T.

    2004-12-01

    The uptake of gas-phase acetaldehyde [CH3CHO, ethanal] by aqueous sulfuric acid solutions was studied under upper tropospheric/lower stratospheric (UT/LS) conditions. The solubility of acetaldehyde was found to be low, between 2 × 102 M atm-1 and 1.5 × 105 M atm-1 under the ranges of temperature (211-241 K) and acid composition (39-76 weight percent, wt%, H2SO4) studied. Under most conditions, acetaldehyde showed simple solubility behavior when exposed to sulfuric acid. Under moderately acidic conditions (usually 47 wt% H2SO4), evidence of reaction was observed. Enhancement of uptake at long times was occasionally detected in conjunction with reaction. The source of these behaviors and the effect of acetaldehyde speciation on solubility are discussed. Implications for the uptake of oxygenated organic compounds by tropospheric aerosols are considered.

  15. Recovery of high purity sulfuric acid from the waste acid in toluene nitration process by rectification.

    PubMed

    Song, Kai; Meng, Qingqiang; Shu, Fan; Ye, Zhengfang

    2013-01-01

    Waste sulfuric acid is a byproduct generated from numerous industrial chemical processes. It is essential to remove the impurities and recover the sulfuric acid from the waste acid. In this study the rectification method was introduced to recover high purity sulfuric acid from the waste acid generated in toluene nitration process by using rectification column. The waste acid quality before and after rectification were evaluated using UV-Vis spectroscopy, GC/MS, HPLC and other physical and chemical analysis. It was shown that five nitro aromatic compounds in the waste acid were substantially removed and high purity sulfuric acid was also recovered in the rectification process at the same time. The COD was removed by 94% and the chrominance was reduced from 1000° to 1°. The recovered sulfuric acid with the concentration reaching 98.2 wt% had a comparable quality with commercial sulfuric acid and could be recycled back into the toluene nitration process, which could avoid waste of resources and reduce the environmental impact and pollution.

  16. Color Change of Sudan III against Concentrated Sulfuric Acid in Acetonitrile and Quantification for a Small Amount of Concentrated Sulfuric Acid.

    PubMed

    Sakurai, Takao; Kurata, Shoji; Ogino, Kenji

    2016-01-01

    The color-changing phenomenon of hydrophobic bisazo dye, Sudan III in an acetonitrile solution against the addition of concentrated sulfuric acid has been discovered and the chromic properties investigated. Based on observations, a novel quantification method of concentrated sulfuric acid has been developed. Sudan III changes its color from orange to blue against a small volume of sulfuric acid, and the acetonitrile solution of Sudan III is the most suitable for observing the color-change phenomenon. (1)H-NMR and UV-Vis spectroscopic studies showed that the color-change mechanism of Sudan III against sulfuric acid is due to the protonation of the dye by sulfuric acid. This phenomenon is applicable to the quantification of concentrated sulfuric acid by introducing the Hammett acidity function. The proposed method requires only a small amount of the sample, 0.04 mL, and enables rapid quantification.

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  18. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  19. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  20. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  1. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  2. 40 CFR 180.1019 - Sulfuric acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sulfuric acid; exemption from the... Exemptions From Tolerances § 180.1019 Sulfuric acid; exemption from the requirement of a tolerance. (a) Residues of sulfuric acid are exempted from the requirement of a tolerance when used in accordance...

  3. Metabolism of sulfur amino acids in Saccharomyces cerevisiae.

    PubMed Central

    Thomas, D; Surdin-Kerjan, Y

    1997-01-01

    Sulfur amino acid biosynthesis in Saccharomyces cerevisiae involves a large number of enzymes required for the de novo biosynthesis of methionine and cysteine and the recycling of organic sulfur metabolites. This review summarizes the details of these processes and analyzes the molecular data which have been acquired in this metabolic area. Sulfur biochemistry appears not to be unique through terrestrial life, and S. cerevisiae is one of the species of sulfate-assimilatory organisms possessing a larger set of enzymes for sulfur metabolism. The review also deals with several enzyme deficiencies that lead to a nutritional requirement for organic sulfur, although they do not correspond to defects within the biosynthetic pathway. In S. cerevisiae, the sulfur amino acid biosynthetic pathway is tightly controlled: in response to an increase in the amount of intracellular S-adenosylmethionine (AdoMet), transcription of the coregulated genes is turned off. The second part of the review is devoted to the molecular mechanisms underlying this regulation. The coordinated response to AdoMet requires two cis-acting promoter elements. One centers on the sequence TCACGTG, which also constitutes a component of all S. cerevisiae centromeres. Situated upstream of the sulfur genes, this element is the binding site of a transcription activation complex consisting of a basic helix-loop-helix factor, Cbf1p, and two basic leucine zipper factors, Met4p and Met28p. Molecular studies have unraveled the specific functions for each subunit of the Cbf1p-Met4p-Met28p complex as well as the modalities of its assembly on the DNA. The Cbf1p-Met4p-Met28p complex contains only one transcription activation module, the Met4p subunit. Detailed mutational analysis of Met4p has elucidated its functional organization. In addition to its activation and bZIP domains, Met4p contains two regulatory domains, called the inhibitory region and the auxiliary domain. When the level of intracellular AdoMet increases

  4. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.

    PubMed

    Qifeng, Wei; Xiulian, Ren; Jingjing, Guo; Yongxing, Chen

    2016-03-05

    The recovery and simultaneous separation of sulfuric acid and iron from dilute acidic sulfate effluent (DASE) and waste sulfuric acid (WSA) have been an earnest wish for researchers and the entire sulfate process-based titanium pigment industry. To reduce the pollution of the waste acid and make a comprehensive use of the iron and sulfuric acid in it, a new environmentally friendly recovery and separation process for the DASE and the WSA is proposed. This process is based on the reactive extraction of sulfuric acid and Fe(III) from the DASE. Simultaneously, stripping of Fe(III) is carried out in the loaded organic phase with the WSA. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and iron from the DASE, and the stripping of Fe(III) from the loaded organic phase with the WSA. Trioctylamine (TOA) and tributyl phosphate (TBP) in kerosene (10-50%) were used as organic phases for solvent extraction. Under the optimal conditions, about 98% of Fe(III) and sulfuric acid were removed from the DASE, and about 99.9% of Fe(III) in the organic phase was stripped with the WSA.

  5. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear experiments were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  6. Interaction of sulfuric acid corrosion and mechanical wear of iron

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  7. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-04-15

    Highlights: ► We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ► The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ► Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ► Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup −1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  8. Chlorine and Sulfur Volatiles from in Situ Measurements of Martian Surface Materials

    NASA Astrophysics Data System (ADS)

    Clark, B. C.

    2014-12-01

    A sentinel discovery by the first in situ measurements on Mars was the high sulfur and chlorine content of global-wide soils. A variety of circumstantial evidence led to the conclusion that soil S is in the form of sulfate, and the Cl is probably chloride. An early hypothesis states that these volatiles are emitted as gases from magmas, and quickly react with dust, soil, and exposed rocks. Subsequent determination that SNC meteorites are also samples of the martian crust revealed a significantly higher S content, as sulfide, than terrestrial igneous rocks but substantially less than in soils. The ensuing wet chemical analyses by the high-latitude Phoenix mission discovered not only chloride but also perchlorate and possibly chlorate. MSL data now also implicate perchlorate at low latitudes. Gaseous interactions may have produced amorphous material on grain surfaces without forming stoichiometric salts. Yet, when exposed to liquid water, Phoenix samples released electrolytes, indicating that the soils have not been leached by rain or fresh groundwater. Sulfate occurrences at many locations on Mars, as well as some chloride enrichments, have now been discovered by remote sensing, Landed missions have discovered Cl-enrichments and ferric, Mg, Ca and more complex sulfates as duricrust, subsurface soil horizons, sandstone evaporites, and rock coatings - most of which cannot be detected from orbit. Salt-forming volatiles affect habitability wherever they are in physical contact: physicochemical parameters (ionic strength, freezing point, water activity); S is an essential element for terrestrial organisms; perchlorate is an oxidant which can degrade some organics but also can be utilized as an energy source; the entire valence range of S-compounds has been exploited by diverse microbiota on Earth. Whether such salt-induced conditions are "extremes" of habitability depends on the relative abundance of liquid H2O.

  9. Friction and wear of iron in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Elemental iron sliding on aluminum oxide in aerated sulfuric acid concentrations ranging from very dilute (0.000007 N; i.e., 4 ppm) to very concentrated (96 percent acid) was studied. Load and reciprocating sliding speeds were kept constant. With the most dilute acid of 0.7 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent, the high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid, and decreased somewhat at 50 percent in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It is apparent that the normal passivating film was being worn away and a galvanic cell established which rapidly attached to the wear area.

  10. Dilute-sulfuric acid pretreatment of cattails for cellulose conversion.

    PubMed

    Zhang, Bo; Wang, Lijun; Shahbazi, Abolghasem; Diallo, Oumou; Whitmore, Allante

    2011-10-01

    The use of aquatic plant cattails to produce biofuel will add value to land and reduce emissions of greenhouse gases by replacing petroleum products. Dilute-sulfuric acid pretreatment of cattails was studied using a Dionex accelerated solvent extractor (ASE) varying acid concentration (0.1-1%), treatment temperature (140-180 °C), and residence time (5-10 min). The highest total glucose yield for both the pretreatment and enzyme hydrolysis stages (97.1% of the cellulose) was reached at a temperature of 180 °C, a sulfuric acid concentration of 0.5%, and a time of 5 min. Cattails pretreated with 0.5% sulfuric acid are digestible with similar results at enzyme loadings above 15 FPU/g glucan. Glucose from cattails cellulose can be efficiently fermented to ethanol with an approximately 90% of the theoretical yield. The results in this study indicate that cattails are a promising source of feedstock for advanced renewable fuel production.

  11. Computational study of the hydration of sulfuric acid dimers: implications for acid dissociation and aerosol formation.

    PubMed

    Temelso, Berhane; Phan, Thuong Ngoc; Shields, George C

    2012-10-04

    We have investigated the thermodynamics of sulfuric acid dimer hydration using ab initio quantum mechanical methods. For (H(2)SO(4))(2)(H(2)O)(n) where n = 0-6, we employed high-level ab initio calculations to locate the most stable minima for each cluster size. The results presented herein yield a detailed understanding of the first deprotonation of sulfuric acid as a function of temperature for a system consisting of two sulfuric acid molecules and up to six waters. At 0 K, a cluster of two sulfuric acid molecules and one water remains undissociated. Addition of a second water begins the deprotonation of the first sulfuric acid leading to the di-ionic species (the bisulfate anion HSO(4)(-), the hydronium cation H(3)O(+), an undissociated sulfuric acid molecule, and a water). Upon the addition of a third water molecule, the second sulfuric acid molecule begins to dissociate. For the (H(2)SO(4))(2)(H(2)O)(3) cluster, the di-ionic cluster is a few kcal mol(-1) more stable than the neutral cluster, which is just slightly more stable than the tetra-ionic cluster (two bisulfate anions, two hydronium cations, and one water). With four water molecules, the tetra-ionic cluster, (HSO(4)(-))(2)(H(3)O(+))(2)(H(2)O)(2), becomes as favorable as the di-ionic cluster H(2)SO(4)(HSO(4)(-))(H(3)O(+))(H(2)O)(3) at 0 K. Increasing the temperature favors the undissociated clusters, and at room temperature we predict that the di-ionic species is slightly more favorable than the neutral cluster once three waters have been added to the cluster. The tetra-ionic species competes with the di-ionic species once five waters have been added to the cluster. The thermodynamics of stepwise hydration of sulfuric acid dimer is similar to that of the monomer; it is favorable up to n = 4-5 at 298 K. A much more thermodynamically favorable pathway forming sulfuric acid dimer hydrates is through the combination of sulfuric acid monomer hydrates, but the low concentration of sulfuric acid relative to

  12. Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters.

    PubMed

    Watson, Susan B; Jüttner, Friedrich

    2017-03-01

    Volatile Organic Sulfur Compounds (VOSCs) are instrumental in global S-cycling and greenhouse gas production. VOSCs occur across a diversity of inland waters, and with widespread eutrophication and climate change, are increasingly linked with malodours in organic-rich waterbodies and drinking-water supplies. Compared with marine systems, the role of VOSCs in biogeochemical processes is far less well characterized for inland waters, and often involves different physicochemical and biological processes. This review provides an updated synthesis of VOSCs in inland waters, focusing on compounds known to cause malodours. We examine the major limnological and biochemical processes involved in the formation and degradation of alkylthiols, dialkylsulfides, dialkylpolysulfides, and other organosulfur compounds under different oxygen, salinity and mixing regimes, and key phototropic and heterotrophic microbial producers and degraders (bacteria, cyanobacteria, and algae) in these environs. The data show VOSC levels which vary significantly, sometimes far exceeding human odor thresholds, generated by a diversity of biota, biochemical pathways, enzymes and precursors. We also draw attention to major issues in sampling and analytical artifacts which bias and preclude comparisons among studies, and highlight significant knowledge gaps that need addressing with careful, appropriate methods to provide a more robust understanding of the potential effects of continued global development.

  13. Volatile organic sulfur compounds in anaerobic sludge and sediments: biodegradation and toxicity.

    PubMed

    van Leerdam, Robin C; de Bok, Frank A M; Lomans, Bart P; Stams, Alfons J M; Lens, Piet N L; Janssen, Albert J H

    2006-12-01

    A variety of environmental samples was screened for anaerobic degradation of methanethiol, ethanethiol, propanethiol, dimethylsulfide, and dimethyldisulfide. All sludge and sediment samples degraded methanethiol, dimethylsulfide, and dimethyldisulfide anaerobically. In contrast, ethanethiol and propanethiol were not degraded by the samples investigated under any of the conditions tested. Methanethiol, dimethylsulfide, and dimethyldisulfide were mainly degraded by methanogenic archaea. In the presence of sulfate and the methanogenic inhibitor bromoethane sulfonate, degradation of these compounds coupled to sulfate reduction occurred as well, but at much lower rates. Besides their biodegradability, also the toxicity of methanethiol, ethanethiol, and propanethiol to methanogenesis with methanol, acetate, and H2/CO2 as the substrates was assessed. The 50% inhibition concentration of methanethiol on the methane production from these substrates ranged between 7 and 10 mM. The 50% inhibition concentration values of ethanethiol and propanethiol for the degradation of methanol and acetate were between 6 and 8 mM, whereas hydrogen consumers were less affected by ethanethiol and propanethiol, as indicated by their higher 50% inhibition concentration (14 mM). Sulfide inhibited methanethiol degradation already at relatively low concentrations: methanethiol degradation was almost completely inhibited at an initial sulfide concentration of 8 mM. These results define the operational limits of anaerobic technologies for the treatment of volatile organic sulfur compounds in sulfide-containing wastewater streams.

  14. Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.

    2006-01-01

    The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.

  15. Infrared spectroscopy of sulfuric acid/water aerosols: Freezing characteristics

    NASA Astrophysics Data System (ADS)

    Clapp, M. L.; Niedziela, R. F.; Richwine, L. J.; Dransfield, T.; Miller, R. E.; Worsnop, D. R.

    1997-04-01

    A low-temperature flow cell has been used in conjunction with a Fourier transform infrared (FT-IR) spectrometer to study sulfuric acid/water aerosols. The aerosols were generated with a wide range of composition (28 to 85 wt%), including those characteristic of stratospheric sulfate aerosols, and studied over the temperature range from 240 K to 160 K. The particles exhibited deep supercooling, by as much as 100 K below the freezing point in some cases. Freezing of water ice was observed in the more dilute (<40 wt% sulfuric acid) particles, in agreement with the predictions of Jensen et al. and recent observations by Bertram et al. In contrast with theoretical predictions, however, the entire particle often does not immediately freeze, at least on the timescale of the present experiments (seconds to minutes). Freezing of the entire particle is observed at lower temperatures, well below that characteristic of the polar stratosphere.

  16. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation

    NASA Technical Reports Server (NTRS)

    Loeffler, Mark J.; Hudson, Reggie L.

    2012-01-01

    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  17. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  18. Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Ge, Maofa; Wang, Weigang

    2012-01-01

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products, but the lack of kinetics data significantly limited the evaluation of this process in the atmosphere. Here we report the first measurement of the uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide. Isoprene cannot readily partition into the solution because of its high volatility and low solubility, which hinders its further liquid-phase oxidation. Both methacrylic acid and methyl methacrylate can enter the solutions and be oxidized by hydrogen peroxide, and steady-state uptake was observed with the acidity of solution above 30 wt.% and 70 wt.%, respectively. The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for a solution with same acidity. These observations can be explained by the different reactivity of these two compounds caused by the different electron-withdrawing conjugation between carboxyl and ester groups. The atmospheric lifetimes were estimated based on the calculated steady-state uptake coefficients. These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid plays a role in secondary organic aerosol formation, but for isoprene and methyl methacrylate, this process is not important in the troposphere.

  19. Phenol-Sulfuric Acid Method for Total Carbohydrates

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The phenol-sulfuric acid method is a simple and rapid colorimetric method to determine total carbohydrates in a sample. The method detects virtually all classes of carbohydrates, including mono-, di-, oligo-, and polysaccharides. Although the method detects almost all carbohydrates, the absorptivity of the different carbohydrates varies. Thus, unless a sample is known to contain only one carbohydrate, the results must be expressed arbitrarily in terms of one carbohydrate.

  20. A critique of homogeneous freezing measurements of aqueous sulfuric acid

    NASA Astrophysics Data System (ADS)

    Alofs, Darryl J.; Vandike, John L.

    2000-08-01

    Two laboratory measurements of homogeneous freezing of aqueous sulfuric acid particles are critiqued: The first by Bertram et al., 1996, J. Phys. Chem., vol. 100, pp. 2376-2383: the second by Koop et al., 1998, J. Phys. Chem. A, vol. 102, pp. 8924-8931. Calculations for a proposed experimental artifact are inconclusive for Bertram et al. A proposed artifact for Koop et al. is shown to be insignificant.

  1. COS in the stratosphere. [sulfuric acid aerosol precursor

    NASA Technical Reports Server (NTRS)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  2. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  3. Sulfuric acid intercalated graphite oxide for graphene preparation.

    PubMed

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-06

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  4. Sulfuric Acid Speleogenesis: Microbial Karst and Microbial Crust

    NASA Astrophysics Data System (ADS)

    Engel, A. S.; Bennett, P. C.; Stern, L. A.

    2001-12-01

    Sulfuric acid speleogenesis is a fundamental mechanism of karst formation, and is potentially responsible for the formation of some of the most extensive cave systems yet discovered. Speleogenesis occurs from the rapid dissolution of the host limestone by sulfuric acid produced from biotic and abiotic sulfide oxidation, and with the release of carbon dioxide, secondary gypsum crusts form. This crust develops predominately on the cave walls, often preserving original bedding indicators, until it finally collapses under its own weight to expose fresh limestone for dissolution. While this general speleogenetic process can be inferred from secondary residues in some caves, directly observing this process is difficult, and involves entry into an extreme environment with toxic atmospheres and low pH solutions. Kane Cave, Big Horn County, WY, offers the unique opportunity to study microbe-rock interactions directly. Kane Cave presently contains 3 springs that discharge hydrogen sulfide-rich waters, supporting thick subaqueous mats of diverse microbial communities in the stream passage. Condensation droplets and elemental sulfur form on subaerially exposed gypsum surfaces. Droplets have an average pH of 1.7, and are dominated by dissolved sulfate, Ca, Mg, Al, and Si, with minor Sr and Fe, and trace Mn and U. SEM and EDS examination of the crusts reveal the presence of C, O, and S, as well as authigenic, doubly-terminated quartz crystals. An average δ 13C value of -36 ‰ suggests that the crusts are biogenic and are composed of chemoautotrophic microorganisms. Enrichment cultures of biofilms and acid droplets rapidly produce sulfuric acid, demonstrating the dominance of sulfur-oxidizing bacteria. Colonization of gypsum surfaces by acidophilic microorganisms enhances acid dissolution of the limestone, and hence the growth of the cave itself. Limestone dissolution also results in mineralized crusts and biofilms that accumulate insoluble residues, which serve as sources of

  5. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  6. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  7. Coulometric determination of berkelium in sulfuric acid and nitric acid solutions

    SciTech Connect

    Timofeev, G.A.; Chistyakov, V.M.; Erin, E.A.

    1987-03-01

    Results are reported on the study and quantitative determination of berkelium by the coulometric method in 1 M sulfuric acid, in solutions of nitric acid, and in mixtures of these acids. The best results in the determination of berkelium were obtained in solutions of a mixture of nitric and sulfuric acids. In 1 M HNO/sub 3/ + 0.1 M H/sub 2/SO/sub 4/ solutions, berkelium can be determined with an accuracy within approx. +/- 2%, when its content is 10 ..mu..g/ml.

  8. Emissions of volatile fatty acids from feed at dairy facilities

    NASA Astrophysics Data System (ADS)

    Alanis, Phillip; Ashkan, Shawn; Krauter, Charles; Campbell, Sean; Hasson, Alam S.

    2010-12-01

    Recent studies suggest that dairy operations may be a major source of non-methane volatile organic compounds in dairy-intensive regions such as Central California, with short chain carboxylic acids (volatile fatty acids or VFAs) as the major components. Emissions of four VFAs (acetic acid, propanoic acid, butanoic acid and hexanoic acid) were measured from two feed sources (silage and total mixed rations (TMR)) at six Central California Dairies over a fifteen-month period. Measurements were made using a combination of flux chambers, solid phase micro-extraction fibers coupled to gas chromatography mass spectrometry (SPME/GC-MS) and infra-red photoaccoustic detection (IR-PAD for acetic acid only). The relationship between acetic acid emissions, source surface temperature and four sample composition factors (acetic acid content, ammonia-nitrogen content, water content and pH) was also investigated. As observed previously, acetic acid dominates the VFA emissions. Fluxes measured by IR-PAD were systematically lower than SPME/GC-MS measurements by a factor of two. High signals in field blanks prevented emissions from animal waste sources (flush lane, bedding, open lot) from being quantified. Acetic acid emissions from feed sources are positively correlated with surface temperature and acetic acid content. The measurements were used to derive a relationship between surface temperature, acetic acid content and the acetic acid flux. The equation derived from SPME/GC-MS measurements predicts estimated annual average acetic acid emissions of (0.7 + 1/-0.4) g m -2 h -1 from silage and (0.2 + 0.3/-0.1) g m -2 h -1 from TMR using annually averaged acetic acid content and meteorological data. However, during the summer months, fluxes may be several times higher than these values.

  9. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  10. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.

  11. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    SciTech Connect

    Hiroshi Fukui; Isao Minatsuki; Kazuo Ishino

    2006-07-01

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO{sub 2} gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9 m in height, 1.0 m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder

  12. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    NASA Astrophysics Data System (ADS)

    Minatsuki, Isao; Fukui, Hiroshi; Ishino, Kazuo

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry

  13. Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria.

    PubMed

    Calil, Caroline Morini; Oliveira, Gisele Mattos; Cogo, Karina; Pereira, Antonio Carlos; Marcondes, Fernanda Klein; Groppo, Francisco Carlos

    2014-01-01

    Little is known about the effects of stress hormones on the etiologic agents of halitosis. Thus, the aim of this study was to evaluate in vitro the effects of adrenaline (ADR), noradrenaline (NA) and cortisol (CORT) on bacteria that produce volatile sulfur compounds (VSC), the major gases responsible for bad breath. Cultures of Fusobacterium nucleatum (Fn), Porphyromonas endodontalis (Pe), Prevotella intermedia (Pi) and Porphyromonas gingivalis (Pg) were exposed to 50 µM ADR, NA and CORT or equivalent volumes of sterile water as controls for 12 and 24 h. Growth was evaluated based on absorbance at 660 nm. Portable gas chromatography was used to measure VSC concentrations. Kruskal-Wallis and the Dunn post-hoc test were used to compare the groups. For Fn, ADR, NA and CORT significantly reduced bacterial growth after 12 h and 24 h (p<0.05). All the substances tested increased hydrogen sulfide (H2S) production (p<0.05). For Pe, all the substances tested reduced bacterial development after 24 h (p<0.05), and NA significantly increased the H2S concentration after 12 h (p<0.05). In the Pg and Pi cultures, no effects on bacterial growth were observed (p>0.05). In the Pi cultures, ADR, NA and CORT increased H2S (p<0.05). Catecholamines and cortisol can interfere with growth and H2S production of sub-gingival species in vitro. This process appears to be complex and supports the association between stress and the production of VSC.

  14. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.

    PubMed

    Vilela-Moura, Alice; Schuller, Dorit; Mendes-Faia, Arlete; Côrte-Real, Manuela

    2010-07-01

    Herein, we report the influence of different combinations of initial concentration of acetic acid and ethanol on the removal of acetic acid from acidic wines by two commercial Saccharomyces cerevisiae strains S26 and S29. Both strains reduced the volatile acidity of an acidic wine (1.0 gl(-1) acetic acid and 11% (v/v) ethanol) by 78% and 48%, respectively. Acetic acid removal by strains S26 and S29 was associated with a decrease in ethanol concentration of 0.7 and 1.2% (v/v), respectively. Strain S26 revealed better removal efficiency due to its higher tolerance to stress factors imposed by acidic wines. Sulfur dioxide (SO(2)) in the concentration range 95-170 mg l(-1)inhibits the ability of both strains to reduce the volatile acidity of the acidic wine used under our experimental conditions. Therefore, deacidification should be carried out either in wines stabilized by filtration or in wines with SO(2)concentrations up to 70 mg l(-1). Deacidification of wines with the better performing strain S26 was associated with changes in the concentration of volatile compounds. The most pronounced increase was observed for isoamyl acetate (banana) and ethyl hexanoate (apple, pineapple), with an 18- and 25-fold increment, respectively, to values above the detection threshold. The acetaldehyde concentration of the deacidified wine was 2.3 times higher, and may have a detrimental effect on the wine aroma. Moreover, deacidification led to increased fatty acids concentration, but still within the range of values described for spontaneous fermentations, and with apparently no negative impact on the organoleptical properties.

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi

  16. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  17. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-03-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NOX control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents the

  18. SULFURIC ACID REMOVAL PROCESS EVALUATION: SHORT-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-02-04

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. Sulfuric acid controls are becoming of increasing interest to utilities with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species, a precursor to acid aerosol/condensable emissions, and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of SCR for NO{sub x} control on some coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project is testing the effectiveness of furnace injection of four different calcium- and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents have been tested during four one- to two-week tests conducted on two First Energy Bruce Mansfield Plant units. One of the sorbents tested was a magnesium hydroxide slurry produced from a wet flue gas desulfurization system waste stream, from a system that employs a Thiosorbic{reg_sign} Lime scrubbing process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles into the front wall of upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests. The longer-term tests are being conducted to confirm the effectiveness of the sorbents tested over extended operation and to determine balance-of-plant impacts. This reports presents

  19. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  20. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  1. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  2. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  3. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amines with a substituted benzenesulfonic acid and sulfuric acid (generic name). 721.9220 Section 721... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... benzenesulfonic acid and sulfuric acid (PMNs P-89-703, P-89-755, and P-89-756) are subject to reporting under...

  4. Why sulfuric acid forms particles so extremely well, and how organics might still compete

    NASA Astrophysics Data System (ADS)

    Kurten, T.; Ehn, M.; Kupiainen, O.; Olenius, T.; Rissanen, M.; Thornton, J. A.; Nielsen, L.; Jørgensen, S.; Ortega Colomer, I. K.; Kjaergaard, H. G.; Vehkamäki, H.

    2013-12-01

    It is a well-known result in aerosol science that the single most important molecule for the first steps of new-particle formation in our atmosphere is sulfuric acid, H2SO4. From a chemical perspective, this seems somewhat counterintuitive: the atmosphere contains thousands of different organic compounds, many of which can potentially form oxidation products with even lower volatility than H2SO4. The unique role of sulfuric acid is due to its formation kinetics. The conversion of sulfur dioxide, SO2 to H2SO4 requires only a single oxidant molecule (e.g. OH), as subsequent steps are extremely rapid. Still, the saturation vapor pressure of H2SO4 is over 108 times lower than that of SO2. In contrast, the oxidation reactions of organic molecules typically lower their saturation vapor pressure by only a factor of 10-1000 per oxidation step. Therefore, organic compounds are usually lost to pre-existing aerosol surfaces before they have undergone sufficiently many oxidation reactions to nucleate on their own. The presence of strong nitrogen-containing base molecules such as amines enhances the particle-forming advantages of sulfuric acid even further. Quantum chemical calculations indicate that the evaporation rate of sulfuric acid from key clusters containing two acid molecules may decrease by a factor of 108 in the presence of ppt-level concentrations of amines, implying a total decrease of up to 1016 in the effective vapor pressure going from SO2 to H2SO4. In some circumstances, this decrease causes the energy barrier for new-particle formation to disappear: the process is no longer nucleation, and some common applications of e.g. the nucleation theorem cease to apply. Cluster kinetic models combined with first-principles evaporation rates appear to describe this sulfuric acid - base clustering reasonably well, and result in cluster formation rates close to those measured at the CLOUD experiment in CERN. There may nevertheless exist exceptions to the general rule that

  5. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    SciTech Connect

    Gary M. Blythe; Richard McMillan

    2002-07-03

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for

  6. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry.

    PubMed

    Yang, Chunxia; Chen, Yongheng; Peng, Ping'an; Li, Chao; Chang, Xiangyang; Wu, Yingjuan

    2009-08-15

    Total concentrations combined with chemical partitioning of trace elements (Cd, Co, Cr, Mn, Ni, Pb, Tl, and Zn) in raw pyrite ore and solid roasting wastes were investigated in order to elucidate their transformations and partitioning during the roasting of raw pyrite ores in sulfuric acid production. In order to better understand the behavior of these elements during roasting, mineral transformations accompanying roasting were also investigated by using microscopy. Results indicated that the mode of occurrence of trace elements in raw pyrite ore and the thermostability of trace element-bearing species formed during roasting played major roles in the transformations of the selected trace elements. Silicate- and amorphous iron (hydr)oxide-bound elements (Cr and Pb) were stable and mainly retained in their original phases. However, acid-exchangeable and sulfide-bound elements tended to transform into other forms via different pathways: elements that tend to form low thermostable species (Cd, Pb and Tl) were significantly vaporized, whereas elements that tend to form high thermostable species (Co, Mn and Ni) mainly reacted with iron oxides or silicates, which then remained in the solid residues. The volatility of trace elements during the roasting has a significant effect on their subsequent partitioning in roasting wastes. Nonvolatile element (Co, Cr, Mn, and Ni) partitioning was determined by settling of the particulate in which they are bound, whereas the partitioning of (semi)volatile elements (Cd, Pb, Tl, and Zn) was controlled by the adsorption of their gaseous species on the particulate.

  7. Comparison between the single-bubble sonoluminescences in sulfuric acid and in water

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Chen, Weizhong; Gao, Xianxian; Liang, Yue

    2009-02-01

    Single-bubble sonoluminescence (SBSL) is achieved with strong stability in sulfuric acid solutions. Bubble dynamics and the SBSL spectroscopy in the sulfuric acid solutions with different concentrations are studied with phase-locked integral stroboscopic photography method and a spectrograph, respectively. The experimental results are compared with those in water. The SBSL in sulfuric acid is brighter than that in water. One of the most important reasons for that is the larger viscosity of sulfuric acid, which results in the larger ambient radius and thus the more contents of luminous material inside the bubble. However, sonoluminescence bubble’s collapse in sulfuric acid is less violent than that in water, and the corresponding blackbody radiation temperature of the SBSL in sulfuric acid is lower than that in water.

  8. Sulfuric acid cloud interpretation of the infrared spectrum of Venus

    NASA Technical Reports Server (NTRS)

    Martonchik, J. V.

    1974-01-01

    Sulfuric acid single-cloud models are compared with the Venus spectrum in the 8-14 micron region. The results indicate that a cloud composed of a 75 percent H2SO4 solution and with a particle density of 100 per cu cm is in good agreement with observations. In addition to explaining the 11.2 micron absorption, this model also predicts an absorption feature at 16.7 microns which should be detectable if the observation is made from an aircraft.

  9. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  10. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2003-06-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2002 through March 31, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the seventh reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO3 removal results were presented in the semi

  11. Allyl isothiocyanate from mustard seed is effective in reducing the levels of volatile sulfur compounds responsible for intrinsic oral malodor.

    PubMed

    Tian, Minmin; Hanley, A Bryan; Dodds, Michael W J

    2013-06-01

    Oral malodor is a major social and psychological issue that affects general populations. Volatile sulfur compounds (VSCs), particularly hydrogen sulfide (H₂S) and methyl mercaptan (CH₃SH), are responsible for most oral malodor. The objectives for this study were to determine whether allyl isothiocyanate (AITC) at an organoleptically acceptable level can eliminate VSCs containing a free thiol moiety and further to elucidate the mechanism of action and reaction kinetics. The study revealed that gas chromatograph with a sulfur detector demonstrated a good linearity, high accuracy and sensitivity on analysis of VSCs. Zinc salts eliminate the headspace level of H₂S but not CH₃SH. AITC eliminates both H₂S and CH₃SH via a nucleophilic addition reaction. In addition, a chemical structure-activity relationship study revealed that the presence of unsaturated group on the side chain of the isothiocyanate accelerates the elimination of VSCs.

  12. Gas phase measurements of pyruvic acid and its volatile metabolites.

    PubMed

    Jardine, Kolby J; Sommer, Evan D; Saleska, Scott R; Huxman, Travis E; Harley, Peter C; Abrell, Leif

    2010-04-01

    Pyruvic acid, central to leaf carbon metabolism, is a precursor of many volatile organic compounds (VOCs) that impact air quality and climate. Although the pathways involved in the production of isoprenoids are well-known, those of several oxygenated VOCs remain uncertain. We present concentration and flux measurements of pyruvic acid and other VOCs within the tropical rainforest (TRF) biome at Biosphere 2. Pyruvic acid concentrations varied diurnally with midday maxima up to 15 ppbv, perhaps due to enhanced production rates and suppression of mitochondrial respiration in the light. Branch fluxes and ambient concentrations of pyruvic acid correlated with those of acetone, acetaldehyde, ethanol, acetic acid, isoprene, monoterpenes, and sesquiterpenes. While pyruvic acid is a known substrate for isoprenoid synthesis, this correlation suggests that the oxygenated VOCs may also derive from pyruvic acid, an idea supported by leaf feeding experiments with sodium pyruvate which resulted in large enhancements in emissions of both isoprenoids and oxygenated VOCs. While feeding with sodium pyruvate-2-(13)C resulted in large emissions of both (13)C-labeled isoprenoids and oxygenated VOCs, feeding with sodium pyruvate-1-(13)C resulted in only (13)C-labeled isoprenoids. This suggests that acetaldehyde, ethanol, and acetic acid are produced from pyruvic acid via the pyruvate dehydrogenase (PDH) bypass system (in which the 1-C carbon of pyruvic acid is lost as CO(2)) and that acetone is also derived from the decarboxylation of pyruvic acid.

  13. Factors controlling fluxes of volatile sulfur compounds in Sphagnum peatlands. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni

    1992-01-01

    Exchange of DMS and OCS between the surface of Sphagnum peatlands and the atmosphere were measured with dynamic (S-free sweep air) and static enclosures. DMS emission rates determined by both methods were comparable. The dynamic method provided positive OCS flux rates (emission) for measurements performed at sites containing Sphagnum. Conversely, data from the static method indicated that OCS was consumed from the atmosphere. Short and long-term impacts of increased S deposition on fluxes of volatile S compounds (VSC's) from Sphagnum peatlands were investigated in a poor fen (Mire 239) at the Experimental Lakes Area, Ontario, Canada. Additional experiments were conducted in a poor fen (Sallie's Fen in Barrington, NH, USA). At Mire 239, emissions of VSC's were monitored, before and after acidification, at control and experimental sections within two major physiographic areas of the mire (oligotrophic and minerotrophic). DMS was the predominant VSC released from Mire 239 and varied largely with time and space. Sulfur addition did not affect DMS emissions in a period of hours to a few days. DMS emissions in the experimental oligotrophic area of the mire was approximately 3-fold greater than in the control oligotrophic area, and approximately 10-fold greater than in the minerotrophic zones. These differences could be due to a combination of differences in types of vegetation, nutritional status, and S input. At Sallie's Fen, DMS fluxes were not significantly affected by sulfate amendments, while DMS and MSH concentrations increased greatly with time in the top 10 cm of the peat column. The major environmental factors controlling fluxes of DMS in a Sphagnum-dominated peatland were investigated in Sallie's Fen, NH. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Temperature seemed to be the major environmental factor controlling these variabilities. Concentrations of dissolved VSC's varied with time and space throughout the fen

  14. Solubility of HBr in sulfuric acid at stratospheric temperatures

    SciTech Connect

    Williams, L.R.; Golden, D.M.; Huestis, D.L.

    1995-04-20

    The solubility of HBr in 54 to 72 wt % sulfuric acid at low temperatures (200 to 240 K) was measured using two different experimental techniques. In the first, the time dependence of the uptake coefficient of HBr was measured in a Knudsen cell reactor and analyzed to give the effective Henry`s law coefficient. In the second, equilibrium vapor pressures of HBr (gas) over solutions containing known concentrations of HBr (dissolved) were measured. The two techniques were in good agreement. Typical values of the effective Henry`s law coefficient at 220 K were 1.5 x 10{sup 7} M/atm for 54 wt %, 2.2 x 10{sup 6} M/atm for 60 wt %, 1.5 x 10{sup 5} M/atm for 66 wt %, and 8.5 x 10{sup 3} M/atm for 72 wt % sulfuric acid. The measured solubilities combined with the stratospheric gas phase concentration of HBr indicate that very little HBr will be dissolved in stratospheric sulfate aerosol particles. 28 refs., 4 figs., 2 tabs.

  15. Heterogeneous atmospheric reactions - Sulfuric acid aerosols as tropospheric sinks

    NASA Technical Reports Server (NTRS)

    Baldwin, A. C.; Golden, D. M.

    1979-01-01

    The reaction probabilities of various atmospheric species incident on a bulk sulfuric acid surface are measured in order to determine the role of sulfuric acid aerosols as pollutant sinks. Reaction products and unreacted starting materials leaving a Knudsen cell flow reactor after collision at 300 K with a H2SO4 surface or a soot surface were detected by mass spectrometry. Significant collision reaction probabilities are observed on a H2SO4 surface for H2O2, HNO3, HO2NO2, ClONO2, N2O5, H2O and NH3, and on soot for NH3. Estimates of the contribution of heterogeneous reactions to pollutant removal under atmospheric conditions indicate that while aerosol removal in the stratosphere is insignificant (loss rate constants approximately 10 to the -10th/sec), heterogeneous reactions may be the dominant loss process for several tropospheric species (loss rate constant approximately 10 to the -5th/sec, comparable to photolysis rate constants).

  16. Laboratory measurements of heterogeneous reactions on sulfuric acid surfaces

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Manion, Jeffrey A.; Golden, David M.; Tolbert, Margaret A.

    1994-01-01

    Increasing evidence from field, modeling, and laboratory studies suggests that heterogeneous reactions on stratospheric sulfate aerosol particles may contribute to global ozone depletion. Using a Knudsen cell reactor technique, the authors have studied the uptake, reactivity, and solubility of several trace atmospheric species on cold sulfuric acid surfaces representative of stratospheric aerosol particles. The results suggest that the heterogeneous conversion of N2O5 to HNO3 is fast enough to significantly affect the partitioning of nitrogen species in the global stratosphere and thus contribute to global ozone depletion. The hydrolysis of ClONO2 is slower and unlikely to be important under normal conditions at midlatitudes. The solubilities of HCl and HNO3 in sulfuric acid down to 200 K were found to be quite low. For HCl, this means that little HCl is available for reaction on the surfaces of stratospheric sulfate aerosol particles. The low solubility of HNO3 means that this product of heterogeneous reactions will enter the gas phase, and the denitrification observed in polar regions is unlikely to occur in the global stratosphere.

  17. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  18. Sulfuric Acid Monohydrate: Formation and Heterogeneous Chemistry in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Zhang, Renyi; Leu, Ming-Taun; Keyser, Leon F.

    1995-01-01

    We have investigated some thermodynamic properties (i.e., freezing/melting points) and heterogeneous chemistry of sulfuric acid monohydrate (SAM, H2SO4.H2O), using a fast flow reactor coupled to a quadrupole mass spectrometer. The freezing point observations of thin liquid sulfuric acid films show that for acid contents between 75 and 85 wt % the monohydrate crystallizes readily at temperatures between 220 and 240 K on a glass substrate. Once formed, SAM can be thermodynamically stable in the H2O partial pressure range of (1-4) x 10(exp -4) torr and in the temperature range of 220-240 K. For a constant H2O partial pressure, lowering the temperature causes SAM to melt when the temperature and water partial pressure conditions are out of its stability regime. The reaction probability measurements indicate that the hydrolysis of N2O5 is significantly suppressed owing to the formation of crystalline SAM: The reaction probability on water-rich SAM (with higher relative humidity, or RH) is of the order of 10(exp -3) at 210 K and decreases by more than an order of magnitude for the acid-rich form (with lower RH). The hydrolysis rate of ClONO2 on water-rich SAM is even smaller, of the order of 10(exp -4) at 195 K. These reported values on crystalline SAM are much smaller than those on liquid solutions. No enhancement of these reactions is observed in the presence of HCl vapor at the stratospheric concentrations. In addition, Brunauer, Emmett, and Teller analysis of gas adsorption isotherms and photomicrography have been performed to characterize the surface roughness and porosities of the SAM substrate. The results suggest the possible formation of SAM in some regions of the middle- or low-latitude stratosphere and, consequently, much slower heterogeneous reactions on the frozen aerosols.

  19. Friction and wear of nickel in sulfuric acid

    NASA Technical Reports Server (NTRS)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Experiments were conducted with elemental nickel sliding on aluminum oxide in aerated sulfuric acid in concentrations ranging from very dilute (10 -4 N, i.e., 5 ppm) to very concentrated (96 percent) acid. Load and reciprocating sliding speeds were kept constant. With the most dilute concentration (10 -4 N) no observable corrosion occurred in or outside the wear area. This was used as the base condition to determine the high contribution of corrosion to total wear loss at acid concentrations between 0.5 percent (0.1 N) and 75 percent. Corrosion reached a maximum rate of 100 millimeters per year at 30 percent acid. At the same time, general corrosion outside the wear area was very low, in agreement with published information. It is clear that friction and wear greatly accelerated corrosion in the wear area. At dilute concentrations of 0.001 and 0.01 N, corrosion in the wear area was low, and general corrosion outside was also low, but local outside regions in the direction of the wear motion experienced some enhanced corrosion, apparently due to fluid motion of the acid.

  20. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling

    PubMed Central

    Aziz, Mina; Nadipalli, Ranjith K.; Xie, Xitao; Sun, Yan; Surowiec, Kazimierz; Zhang, Jin-Lin; Paré, Paul W.

    2016-01-01

    Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant’s growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03) transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm, BAW). In contrast, a previously characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against BAW feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense. PMID:27092166

  1. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    NASA Astrophysics Data System (ADS)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  2. A new test procedure for biogenic sulfuric acid corrosion of concrete

    PubMed

    Vincke; Verstichel; Monteny; Verstraete

    1999-01-01

    A new test method is described for biogenic sulfuric acid corrosion of concrete, more specifically in sewer conditions. The aim of the new test method is the development of an accelerated and reproducible procedure for monitoring the resistance of different types of concrete with regard to biogenic sulfuric acid corrosion. This experimental procedure reflects worst case conditions by providing besides H2S, also an enrichment of thiobacilli and biologically produced sulfur. By simulating the cyclic processes occurring in sewer pipes, significant differences between concrete mixtures could be detected after 51 days. Concrete modified by a styrene-acrylic ester polymer demonstrated a higher resistance against biogenic sulfuric acid attack.

  3. Determination of sulfur and nitrogen compounds during the processing of dry fermented sausages and their relation to amino acid generation.

    PubMed

    Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica

    2016-01-01

    The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine.

  4. Sulfur redox reactions: Hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas

    SciTech Connect

    Hill, C.A.

    1995-02-01

    Hydrocarbons, native sulfur, Mississippi Valley-type (MVT) deposits, and sulfuric acid karst in the Delaware Basin, southeastern New Mexico, and west Texas, USA, are all genetically related through a series of sulfur redox reactions. The relationship began with hydrocarbons in the basin that reacted with sulfate ions from evaporite rock to produce isotopically light ({delta}{sup 34}S = -22 to -12) H{sub 2}S and bioepigenetic limestone (castiles). This light H{sub 2}S was then oxidized at the redox interface to produce economic native sulfur deposits ({delta}{sup 34}S = -15 to +9) in the castiles, paleokarst, and along graben-boundary faults. This isotopically light H{sub 2}S also migrated from the basin into its margins to accumulate in structural (anticlinal) and stratigraphic (Yates siltstone) traps, where it formed MVT deposits within the zone of reduction ({delta}{sup 34}S = -15 to +7). Later in time, in the zone of oxidation, this H{sub 2}S reacted with oxygenated water to produce sulfuric acid, which dissolved the caves (e.g., Carlsbad Cavern and Lechuguilla Cave, Guadalupe Mountains). Massive gypsum blocks on the floors of the caves ({delta}{sup 34}S = -25 to +4) were formed as a result of this reaction. The H{sub 2}S also produced isotopically light cave sulfur ({delta}{sup 34}S = -24 to -15), which is now slowly oxidizing to gypsum in the presence of vadose drip water. 16 refs., 10 figs.

  5. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    PubMed

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  6. Thin-film sulfuric acid anodizing as a replacement for chromic acid anodizing

    NASA Technical Reports Server (NTRS)

    Kallenborn, K. J.; Emmons, J. R.

    1995-01-01

    Chromic acid has long been used to produce a thin, corrosion resistant (Type I) coating on aluminum. Following anodizing, the hardware was sealed using a sodium dichromate solution. Sealing closes up pores inherent in the anodized coating, thus improving corrosion resistance. The thinness of the brittle coating is desirable from a fatigue standpoint, and chromium was absorbed by the coating during the sealing process, further improving corrosion resistance. Unfortunately, both chromic acid and sodium dichromate contain carcinogenic hexavalent chromium. Sulfuric acid is being considered as a replacement for chromic acid. Sulfuric acid of 10-20 percent concentration has traditionally been used to produce relatively thick (Types II and III) or abrasion resistant (Type III) coatings. A more dilute, that is five weight percent, sulfuric acid anodizing process, which produces a thinner coating than Type II or III, with nickel acetate as the sealant has been developed. The process was evaluated in regard to corrosion resistance, throwing power, fatigue life, and processing variable sensitivity, and shows promise as a replacement for the chromic acid process.

  7. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    NASA Astrophysics Data System (ADS)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; Ahlm, Lars; Tröstl, Jasmin; Praplan, Arnaud P.; Schobesberger, Siegfried; Kürten, Andreas; Kirkby, Jasper; Bianchi, Federico; Duplissy, Jonathan; Hansel, Armin; Jokinen, Tuija; Keskinen, Helmi; Lehtipalo, Katrianne; Leiminger, Markus; Petäjä, Tuukka; Rissanen, Matti; Rondo, Linda; Simon, Mario; Sipilä, Mikko; Williamson, Christina; Wimmer, Daniela; Riipinen, Ilona; Virtanen, Annele; Smith, James N.

    2016-11-01

    New particle formation driven by acid-base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10-30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid-base pairs in particles as small as 10 nm.

  8. Dilute sulfuric acid pretreatment of transgenic switchgrass for sugar production.

    PubMed

    Zhou, Xu; Xu, Jiele; Wang, Ziyu; Cheng, Jay J; Li, Ruyu; Qu, Rongda

    2012-01-01

    Conventional Alamo switchgrass and its transgenic counterparts with reduced/modified lignin were subjected to dilute sulfuric acid pretreatment for improved sugar production. At 150 °C, the effects of acid concentration (0.75%, 1%, 1.25%) and residence time (5, 10, 20, 30 min) on sugar productions in pretreatment and enzymatic hydrolysis were investigated, with the optimal pretreatment conditions determined for each switchgrass genotype based on total sugar yield and the amounts of sugar degradation products generated during the pretreatment. The results show that genetic engineering, although did not cause an appreciable lignin reduction, resulted in a substantial increase in the ratio of acid soluble lignin:acid insoluble lignin, which led to considerably increased sugar productions in both pretreatment and enzymatic hydrolysis. At an elevated threshold concentration of combined 5-hydroxyfuranmethal and furfural (2.0 g/L), the overall carbohydrate conversions of conventional switchgrass and its transgenic counterparts, 10/9-40 and 11/5-47, reached 75.9%, 82.6%, and 82.2%, respectively.

  9. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylphenoxypoly(oxyethylene)...

  10. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkylphenoxypoly(oxyethylene)...

  11. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylphenoxypoly(oxyethylene)...

  12. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylphenoxypoly(oxyethylene)...

  13. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.7770 Alkylphenoxypoly(oxyethylene) sulfuric acid...) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester, substituted... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylphenoxypoly(oxyethylene)...

  14. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    ERIC Educational Resources Information Center

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  15. Correlation of Sulfuric Acid Hydrate Abundance with Charged Particle Flux at the Surface of Europa

    NASA Astrophysics Data System (ADS)

    Dalton, James B.; Paranicas, C. P.; Cassidy, T. A.; Shirley, J. H.

    2010-10-01

    The trailing hemisphere of Jupiter's moon Europa is bombarded by charged particles trapped within Jupiter's magnetosphere. Sulfur ion implantation and impacting energetic electrons strongly affect the surface chemistry of Europa. Understanding these processes is important for disentangling the extrinsic and intrinsic components of Europa's surface chemistry. In the sulfur cycle model of Carlson et al. (Science 286, 97, 1999), hydrated sulfuric acid represents the dominant reaction product of radiolytic surface modification processes on Europa. In recent compositional investigations employing linear mixture modeling, Dalton et al. (LPSC XV, #2511, 2009) and Shirley et al. (Icarus, in press, 2010) document a well-defined gradient of hydrated sulfuric acid abundance for a study area spanning the leading side - trailing side boundary in Argadnel Regio. Sulfuric acid hydrate abundance in this region increases toward the trailing side apex. Here we compare the derived sulfuric acid hydrate abundances at 41 locations on Europa's surface with independent model results describing 1) the sulfur ion flux (Hendrix et al., 2010, in preparation), and 2) the energetic electron flux, at the same locations. We improve upon the prior calculation of electron energy into the surface of Paranicas et al. (2009, in Europa, U. Arizona, p529; Pappalardo, McKinnon, & Khurana eds.) by incorporating a realistic pitch angle dependence of the distribution. While the sulfur ion implantation and electron energy deposition model distributions differ in important details, both show trailing side gradients similar to that found for the sulfuric acid hydrate. Correlation coefficients exceed 0.9 in comparisons of each of these models with the sulfuric acid hydrate distribution. Our results support models in which the electron energy flux drives reactions that utilize implanted sulfur to produce sulfuric acid hydrate. This work was performed at the California Institute of Technology-Jet Propulsion

  16. FTIR studies of low temperature sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  17. Sulfuric acid leaching kinetics of South African chromite

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Shi, Pei-yang; Zhang, Bo; Jiang, Mao-fa; Zhang, Qing-song; Zevenhoven, Ron; Saxén, Henrik

    2015-03-01

    The sulfuric acid leaching kinetics of South African chromite was investigated. The negative influence of a solid product layer constituted of a silicon-rich phase and chromium-rich sulfate was eliminated by crushing the chromite and by selecting proper leaching conditions. The dimensionless change in specific surface area and the conversion rate of the chromite were observed to exhibit a proportional relationship. A modified shrinking particle model was developed to account for the change in reactive surface area, and the model was fitted to experimental data. The resulting model was observed to describe experimental findings very well. Kinetics analysis revealed that the leaching process is controlled by a chemical reaction under the employed experimental conditions and the activation energy of the reaction is 48 kJ·mol-1.

  18. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  19. Health effects of air pollutants: Sulfuric acid, the old and the new

    SciTech Connect

    Amdur, M.O. )

    1989-05-01

    Data from exposure of experimental animals and human subjects to sulfuric acid presents a consistent picture of its toxicology. Effects on airway resistance in asthmatic subjects were well predicted by data obtained on guinea pigs. Sulfuric acid increases the irritant response to ozone in both rats and man. In donkeys, rabbits, and human subjects, sulfuric acid alters clearance of particles from the lung in a similar manner. These changes resemble those produced by cigarette smoke and could well lead to chronic bronchitis. Data obtained on guinea pigs indicate that very small amounts of sulfuric acid on the surface of ultrafine metal oxide aerosols produce functional, morphological, and biochemical pulmonary effects. Such particles are typical of those emitted from coal combustion and smelting operations. Sulfate is an unsatisfactory surrogate in existing epidemiology studies. Sulfuric acid measurement is a critical need in such studies. 31 references.

  20. Infrared studies of sulfuric acid and its impact on polar and global ozone

    NASA Astrophysics Data System (ADS)

    Iraci, Laura Tracy

    Sulfuric acid aerosols are present throughout the lower stratosphere and play an important role in both polar and global ozone depletion. In the polar regions, stratospheric sulfate aerosols (SSAs) act as nuclei for the growth of polar stratospheric clouds (PSCs). Heterogeneous reactions can occur on these PSCs, leading to chlorine activation and catalytic ozone destruction. This thesis addresses the issue of polar ozone depletion through laboratory studies which examine the nucleation of PSCs on sulfuric acid. In addition, chemistry which occurs directly on sulfate aerosols may impact ozone at midlatitudes, and studies describing one such reaction are presented as well. To study the growth of type I PSCs on sulfuric acid, thin H2SO4 films were exposed to water and nitric acid vapors at stratospheric temperatures. Fourier transform infrared spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films which condensed. Supercooled liquid sulfuric acid films showed uptake of HNO3 to form ternary solutions, followed by crystallization of nitric acid trihydrate (NAT). When crystalline sulfuric acid tetrahydrate (SAT) films were exposed to nitric acid and water, condensation of a supercooled HNO3/H2O layer was often observed. As predicted by theory, some of the SAT crystal then dissolved, creating a ternary H2SO4/HNO3/H2O solution. From this solution, NAT nearly always crystallized, halting the phase change of sulfuric acid. If a supercooled nitric acid layer did not condense on frozen sulfuric acid, crystalline NAT was not deposited from the gas phase when SNAT/leq41. At significantly higher supersaturations, NAT could be forced to condense on sulfuric acid, regardless of its phase. Calculations of the contact parameter from experimental data indicate that m<0.79 for NAT on SAT, predicting a significant barrier to nucleation of NAT from the gas phase. While PSCs can form only in the cold polar regions of the stratosphere, sulfuric

  1. Sulfur isotope effects associated with protonation of HS- and volatilization of H2S

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1986-01-01

    The isotope effects associated with: (1) formation of H2S from HS- by protonation in aqueous solution; and (2) volatilization of H2S have been experimentally determined. Both isotopic distributions in closed systems at equilibrium and differential rates of volatilization of isotopic species in open systems were measured at 22 +/- 1 degrees C. It was found that, at equilibrium aqueous H2S is enriched in 34S by 2.0 - 2.7% relative to HS- and that H2S volatilized from solution is depleted in 34S by 0.5% relative to dissolved H2S. A small kinetic isotope effect accompanying volatilization of H2S was observed in the open-system experiments.

  2. Heterogeneous Chemistry of HO2NO2 on Liquid Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    1995-01-01

    The interaction of HO2NO2 (peroxynitric acid, PNA) vapor with liquid sulfuric acid surfaces was investigated for the acid contents ranging from 50 to 70 wt % and over a temperature range from 205 to 230 K, using a fast flow-reactor coupled to a chemical ionization mass spectrometer. PNA was observed to be physically taken up by liquid sulfuric acid, without undergoing irreversible aqueous phase reactions.

  3. Tungstate sulfuric acid (TSA)/KMnO4 as a novel heterogeneous system for rapid deoximation.

    PubMed

    Karami, Bahador; Montazerozohori, Morteza

    2006-09-28

    Neat chlorosulfonic acid reacts with anhydrous sodium tungstate to give tungstate sulfuric acid (TSA), a new dibasic inorganic solid acid in which two sulfuric acid molecules connect to a tungstate moiety via a covalent bond. A variety of oximes were oxidized to their parent carbonyl compounds under mild conditions with excellent yields in short times by a heterogeneous wet TSA/KMnO4 in dichloromethane system.

  4. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production.

  5. Suicidal carbon monoxide poisoning by combining formic acid and sulfuric acid within a confined space.

    PubMed

    Lin, Peter T; Dunn, William A

    2014-01-01

    Suicide by inhalation of carbon monoxide produced by mixing formic acid and sulfuric acid within a confined space is a rare method of suicide. This method is similar to the so-called "detergent suicide" method where an acid-based detergent is mixed with a sulfur source to produce hydrogen sulfide. Both methods produce a toxic gas that poses significant hazards for death investigators, first responders and bystanders. Carbon monoxide is an odorless gas, while hydrogen sulfide has a characteristic rotten eggs odor, so the risks associated with carbon monoxide are potentially greater due to lack of an important warning signal. While detergent suicides have become increasingly common in the USA, suicide with formic acid and sulfuric acid is rare with only three prior cases being reported. Greater awareness of this method among death investigators is warranted because of the special risks of accidental intoxication by toxic gas and the possibility that this method of suicide will become more common in the future.

  6. Volatile fatty acids production from marine macroalgae by anaerobic fermentation.

    PubMed

    Pham, Thi Nhan; Nam, Woo Joong; Jeon, Young Joong; Yoon, Hyon Hee

    2012-11-01

    Volatile fatty acids (VFAs) were produced from the marine macroalgae, Laminaria japonica, Pachymeniopsis elliptica, and Enteromorpha crinite by anaerobic fermentation using a microbial community derived from a municipal wastewater treatment plant. Methanogen inhibitor (iodoform), pH control, substrate concentration, and alkaline and thermal pretreatments affected VFA productivity. Acetic, propionic, and butyric acids were the main products. A maximum VFA concentration of 15.2g/L was obtained from 50 g/L of L. japonica in three days at 35°C and pH 6.5-7.0. Pretreatment with 0.5 N NaOH improved VFA productivity by 56% compared to control. The result shows the applicability of marine macroalgae as biomass feedstock for the production of VFAs which can be converted to mixed alcohol fuels.

  7. Maximization of volatile fatty acids production from alginate in acidogenesis.

    PubMed

    Pham, Hong Duc; Seon, Jiyun; Lee, Seong Chan; Song, Minkyung; Woo, Hee-Chul

    2013-11-01

    In this study, the response surface methodology (RSM) was applied to determine the optimum fermentative condition of alginate with the respect to the simultaneous effects of alginate concentration and initial pH to maximize the production of total volatile fatty acids (TVFAs) and alcohols. The results showed that the alginate fermentation was significantly affected by initial pH than by alginate concentration and there was no interaction between the two variables. The optimum condition was 6.2g alginate/L and initial pH 7.6 with a maximum TVFAs yield of 37.1%. Acetic acids were the main constituents of the TVFAs mixtures (i.e., 71.9-95.5%), while alcohols (i.e., ethanol, butanol, and propanol) were not detected.

  8. [Investigation on formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica].

    PubMed

    Guo, Ai-Li; Gao, Hui-Min; Chen, Liang-Mian; Zhang, Qi-Wei; Wang, Zhi-Min

    2014-05-01

    To investigate formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica, secologanic acid was enriched and purified from the sun-dried buds of L. japonica by various column chromatography on macroporus resin HPD-100, silica gel and ODS. The stimulation experiments of sulfur-fumigation process were carried out using secologanic acid reacted with SO2 in the aqueous solution. The reaction mechanism could be involved in the esterification or addition reaction. The present investigation provides substantial evidences for interpreting formation pathway of secologanic acid sulfonates in sulfur-fumigated buds of L. japonica.

  9. Benefits of the stirred, autorefrigerated reactor in sulfuric acid alkylation

    SciTech Connect

    Ackerman, S.; Lerner, H.; Zaczepinski, S.

    1996-12-01

    Alkylation is a process which combines propylenes, butylenes, and pentylenes with isobutane in the presence of an acid catalyst (H{sub 2}SO{sub 4} or HF) to produce a premium quality gasoline blendstock. The alkylation process was developed in the late 1930`s and processing capacity grew tremendously during World War II in response to demand for aviation gasoline. Since that time, alkylation capacity has steadily grown to supply an important motor gasoline component. Now, more than 50 years later, alkylation is in the spotlight again for reformulated gasoline. Alkylate is a high octane, low sensitivity, low RVP, totally paraffinic material which represents the ideal blendstock for modern gasoline manufacture. Two types of modern reactor systems are currently offered for license to the refining industry for sulfuric acid alkylation. These are the stirred, autorefrigerated system offered by Exxon Research and Engineering (ERE) and the indirect, or effluent refrigerated system offered by others. By means of a case study example, this paper discusses the autorefrigerated reaction system and its benefits.

  10. Effect of volatile fatty acids mixtures on the simultaneous photofermentative production of hydrogen and polyhydroxybutyrate.

    PubMed

    Cardeña, René; Valdez-Vazquez, Idania; Buitrón, Germán

    2017-02-01

    Purple non-sulfur bacteria generate hydrogen and polyhydroxybutyrate (PHB) as a mechanism for disposing of reducing equivalents generated during substrate consumption. However, both pathways compete for the reducing equivalents released from bacteria growing under certain substrates, thus the formation of hydrogen or PHB is detrimental to the formation of each other. The effect of mixtures of acetic, propionic and butyric acids on the formation of H2 and PHB was evaluated using Box-Behnken design. A bacterial community mainly constituted by Rhodopseudomonas palustris was used as inoculum. It was observed that the three volatile fatty acids had a significant effect on the specific PHB production. However, only the propionic acid had a significant effect on the specific H2 production activity and the highest value was observed when acetate was the main component in the mixture. The maximum values for the specific PHB and hydrogen production rates were 16.4 mg-PHB/g-TSS/day and 391 mL-H2/g-TSS/day, respectively.

  11. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    PubMed

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

  12. Sulfuric acid karst and its relationship to hydrocarbon reservoir porosity, native sulfur deposits, and the origin of Mississippi Valley-type ore deposits

    SciTech Connect

    Hill, C.A. , Albuquerque, NM )

    1993-03-01

    The Delaware Basin of southeastern New Mexico and West Texas contains hydrocarbons and native sulfur in the basin and sulfuric acid-formed caves and Mississippi Valley-type (MVT) ore deposits around the margins of the basin. Hydrocarbons reacting with sulfate evaporite rock produced hydrogen sulfide gas, which gas oxidized to native sulfur in the basin and which gas also migrated from basin to reef and accumulated there in structural and stratigraphic traps. In the reduced zone of the carbonate reef margin the H[sub 2]S combined with metal-chloride complexes to form MVTs, and in the oxidized zone later in time the H[sub 2]S formed sulfuric acid which dissolved out the famous caves of the region (e.g., Carlsbad Cavern, Lechuguilla Cave). Sulfuric acid karst can be recognized by the discontinuity, large size, and spongework nature of its cave passages, and by the presence of native sulfur, endellite, and large gypsum deposits within these caves. Sulfuric acid oilfield karst refers to cavernous porosity filled with hydrocarbons and can be produced by the mixing of waters of different H[sub 2]S content or by the oxidation of H[sub 2]S to sulfuric acid. Sulfur and carbon-oxygen isotopes have been used to establish and trace the sequence of related hydrocarbon, sulfur, MVT, and karst events in the Delaware Basin.

  13. Amine Reactivity with Nanoclusters of Sulfuric Acid and Ammonia

    NASA Astrophysics Data System (ADS)

    Johnston, M. V.; Bzdek, B. R.; DePalma, J.

    2011-12-01

    Alkyl amines have emerged as key species in new particle formation and growth. This interest is reinforced by ambient measurements of amines (e.g. Smith et al., 2010) and enhanced levels of nitrogen (e.g. Bzdek et al., 2011) during growth of newly formed particles. An important mechanism of amine uptake is aminium salt formation, either by substituting for ammonium ions that already exist in the particle or by opening new channels for salt formation that are not favorable with ammonia. This presentation will focus on recent experimental and computational work in our group to study amine uptake into charged nanoclusters of sulfuric acid and ammonia. In the experimental work, clusters are produced by electrospray of an ammonium sulfate solution and then drawn into a Fourier transform ion cyclotron resonance mass spectrometer where a specific cluster is isolated and exposed to amine vapor. We find that amine reactivity is dependent on the size, composition and charge of the isolated cluster. For small clusters of either polarity, all ammonium ions reside on the surface and amine substitution occurs with near unit reaction probability. As the cluster size increases, an ammonium ion can be encapsulated in the center of the cluster, which provides a steric hindrance to amine substitution. Negatively charged clusters are more likely to be acidic than positively charged clusters. For acidic clusters, incoming amine molecules first substitute for preexisting ammonium ions and then add to the cluster until a "neutralized" aminium bisulfate composition is reached. Computational studies of these clusters provide fundamental insight into the thermodynamics and kinetics of amine uptake.

  14. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  15. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  16. Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots.

    PubMed

    Danner, Holger; Brown, Phil; Cator, Eric A; Harren, Frans J M; van Dam, Nicole M; Cristescu, Simona M

    2015-07-01

    Studies on aboveground (AG) plant organs have shown that volatile organic compound (VOC) emissions differ between simultaneous attack by herbivores and single herbivore attack. There is growing evidence that interactive effects of simultaneous herbivory also occur across the root-shoot interface. In our study, Brassica rapa roots were infested with root fly larvae (Delia radicum) and the shoots infested with Pieris brassicae, either singly or simultaneously, to study these root-shoot interactions. As an analytical platform, we used Proton Transfer Reaction Mass Spectrometry (PTR-MS) to investigate VOCs over a 3 day time period. Our set-up allowed us to monitor root and shoot emissions concurrently on the same plant. Focus was placed on the sulfur-containing compounds; methanethiol, dimethylsulfide (DMS), and dimethyldisulfide (DMDS), because these compounds previously have been shown to be biologically active in the interactions of Brassica plants, herbivores, parasitoids, and predators, yet have received relatively little attention. The shoots of plants simultaneously infested with AG and belowground (BG) herbivores emitted higher levels of sulfur-containing compounds than plants with a single herbivore species present. In contrast, the emission of sulfur VOCs from the plant roots increased as a consequence of root herbivory, independent of the presence of an AG herbivore. The onset of root emissions was more rapid after damage than the onset of shoot emissions. The shoots of double infested plants also emitted higher levels of methanol. Thus, interactive effects of root and shoot herbivores exhibit more strongly in the VOC emissions from the shoots than from the roots, implying the involvement of specific signaling interactions.

  17. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko; Danielache, Sebastian O.; Nanbu, Shinkoh

    2015-05-01

    Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S1 and S2) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu-Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning's augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO4(12A″) + H(2S) by S1-excitation, and (ii) HSO4(22A″) + H(2S) by S2-excitation. The direct dissociation dynamics yield products different from the SO2 + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO4 fragment. The trajectories running on S2 do not hop with S0 and a nonadiabatic transition happens at the S2-S1 conical intersection located at a longer OH bond-length than the S1-S0 intersection producing an electronic excited state (22A″) of HSO4 product.

  18. Temperature and intensity of sonoluminescence radiation in sulfuric acid.

    PubMed

    Moshaii, A; Hoseini, M A; Gharibzadeh, S; Tavakoli-Anaraki, A

    2012-07-01

    The spectral radiation of sonoluminescence (SL) from sulfuric acid doped with various Xe concentrations has been studied in a hydrochemical simulation, including radiation effects of both continuum and line emissions. The simulation considers the same temperature for both continuum and line parts of the SL spectrum and gives results in agreement with the experiment. Also, it can properly show period-doubling dynamics for a 50 torr bubble. For most of the allowable driving pressures, it is shown that both the temperature and the intensity of SL for a 4 torr bubble are greater than those of a 50 torr bubble. However, for the range of pressures near the maximum driving conditions of the 50 torr bubble, the SL intensity of this bubble can be up to three orders of magnitude greater than the 4 torr bubble. This case, which is in agreement with the experiment, is obtained when the light-emitting region of the 50 torr bubble is about three orders of magnitude greater than the 4 torr bubble.

  19. Sulfur amino acid metabolism in Zucker diabetic fatty rats.

    PubMed

    Kwak, Hui Chan; Kim, Young-Mi; Oh, Soo Jin; Kim, Sang Kyum

    2015-08-01

    The present study was aimed to investigate the metabolomics of sulfur amino acids in Zucker diabetic fatty (ZDF) rats, an obese type 2 diabetic animal model. Plasma levels of total cysteine, homocysteine and methionine, but not glutathione (GSH) were markedly decreased in ZDF rats. Hepatic methionine, homocysteine, cysteine, betaine, taurine, spermidine and spermine were also decreased. There are no significant difference in hepatic S-adenosylmethionine, S-adenosylhomocysteine, GSH, GSH disulfide, hypotaurine and putrescine between control and ZDF rats. Hepatic SAH hydrolase, betaine-homocysteine methyltransferase and methylene tetrahydrofolate reductase were up-regulated while activities of gamma-glutamylcysteine ligase and methionine synthase were decreased. The area under the curve (AUC) of methionine and methionine-d4 was not significantly different in control and ZDF rats treated with a mixture of methionine (60mg/kg) and methionine-d4 (20mg/kg). Moreover, the AUC of the increase in plasma total homocysteine was comparable between two groups, although the homocysteine concentration curve was shifted leftward in ZDF rats, suggesting that the plasma total homocysteine after the methionine loading was rapidly increased and normalized in ZDF rats. These results show that the AUC of plasma homocysteine is not responsive to the up-regulation of hepatic BHMT in ZDF rats. The present study suggests that the decrease in hepatic methionine may be responsible for the decreases in its metabolites, such as homocysteine, cysteine, and taurine in liver and consequently decreased plasma homocysteine levels.

  20. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid

    NASA Astrophysics Data System (ADS)

    Mohammadabad, Farhad Khorramshahi; Hejazi, Sina; khaki, Jalil Vahdati; Babakhani, Abolfazl

    2016-04-01

    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to determine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28% and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  1. Preparation of levoglucosenone through sulfuric acid promoted pyrolysis of bagasse at low temperature.

    PubMed

    Sui, Xian-wei; Wang, Zhi; Liao, Bing; Zhang, Ying; Guo, Qing-xiang

    2012-01-01

    Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.

  2. Size-resolved sulfuric acid mist concentrations at phosphate fertilizer manufacturing facilities in Florida.

    PubMed

    Hsu, Yu-Mei; Wu, Chang-Yu; Lundgren, Dale A; Birky, Brian K

    2007-01-01

    Strong inorganic acid mists containing sulfuric acid were identified as a 'known human carcinogen' in a National Toxicology Program (NTP) report where phosphate fertilizer manufacture was listed as one of many occupational exposures to strong acids. To properly assess the occupational exposure to sulfuric acid mists in modern facilities, approved National Institute for Occupational Safety and Health (NIOSH) Method 7903 and a cascade impactor were used for measuring the total sulfuric acid mist concentration and size-resolved sulfuric acid mist concentration, respectively. Sampling was conducted at eight phosphate fertilizer plants and two background sites in Florida and there were 24 sampling sites in these plants. Samples were analyzed by ion chromatography (IC) to quantify the water-soluble ion species. The highest sulfuric acid concentrations by the cascade impactor were obtained at the sulfuric acid pump tank area. When high aerosol mass concentrations (100 micro g m(-3)) were observed at this area, the sulfuric acid mists were in the coarse mode. The geometric mean sulfuric acid concentrations (+/-geometric standard deviation) of PM(23) (aerodynamic cut size smaller than 23 micro m), PM(10) and PM(2.5) from the cascade impactor were 41.7 (+/-5.5), 37.9 (+/-5.8) and 22.1 (+/-4.5) micro g m(-3), respectively. The geometric mean (+/-geometric standard deviation) for total sulfuric acid concentration from the NIOSH method samples was 143 (+/-5.08) micro g m(-3). Sulfuric acid mist concentrations varied significantly among the plants and even at the same location. The measurements by the NIOSH method were 1.5-229 times higher than those by the cascade impactor. Moreover, using the NIOSH method, the sulfuric acid concentrations measured at the lower flow rate (0.30 Lpm) were higher than those at the higher flow rate (0.45 Lpm). One possible reason for the significant differences between the results from the cascade impactor and the NIOSH method is the potential

  3. Abundances of sodium, sulfur, and potassium in lunar volcanic glasses: Evidence for volatile loss during eruption

    NASA Technical Reports Server (NTRS)

    Delano, J. W.; Mcguire, J.

    1992-01-01

    Six varieties of lunar volcanic glass are known to occur within the Apollo 17 sample collection. Investigations have shown that 25 volatile elements are known to be concentrated on the exterior surfaces of individual volcanic glass spheres. Since bulk analyses of volcanic glass provide an integrated abundance of an element on and with the glass spherules, other methods must be relied on to determine the interior abundance of an element. The interior abundance of an element with a volcanic glass sphere establishes the abundance of that element in the melt at the time of quench. The current study is part of a comprehensive attempt to measure the abundance of three volatile elements (Na, S, and K) within representative spheres of the 25 varieties of lunar volcanic glass currently known to exist at the Apollo landing sites. Comparison of the measured abundances of these elements within the interiors of individual glasses with bulk analyses and crystalline mare basalts will furnish new constraints on the geochemical behavior of volatile elements during lunar mare volcanism.

  4. Volatile sulfur compounds from a redox-controlled-cattle-manure slurry

    SciTech Connect

    Beard, W.E.; Guenzi, W.D.

    1983-01-01

    Volatile S compounds have been implicated as contributors to the odor problem from cattle-feedlots. This study was designed to evaluate the effects of oxidation-reduction potentials (E/sub h/) on the type and amount of volatile S compounds released from cattle manure. The laboratory experiment utilized a manure slurry controlled at pH 7, 30/sup 0/C, and a preselected E/sub h/ levels. The E/sub h/ of the slurry was initially controlled at +300 mV, and subsequently decreased in increments of 100 mV/week through -200 mV. Effluent gases from the incubation flask were trapped, and the S gases analyzed by gas chromatography. Carbonyl sulfide (COS) and carbon disulfide (CS/sub 2/) production was low (less than or equal to 0.07 ..mu..g/g manure/d) at all redox levels. Dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) were highest at 0 mV, while hydrogen sulfide (H/sub 2/S) and methanethiol (MeSH) were greatest at -100 mV. The total amount of S volatilized from the manure slurry as each compound was: H/sub 2/O, 155 ..mu..g; MeSH, 135 ..mu..g; DMS, 83..mu..g; DMDS, 27 ..mu..g; COS, 8 ..mu..g; and CS/sub 2/, 3 ..mu..g; representing about 1.7% of the total manure S.

  5. A purge and trap technique to capture volatile compounds combined with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry to investigate the effect of sulfur-fumigation on Radix Angelicae Dahuricae.

    PubMed

    Cao, Gang; Li, Qinglin; Zhang, Jida; Cai, Hao; Cai, Baochang

    2014-09-01

    Sulfur-fumigation is known to reduce volatile compounds that are the main active components in herbs used in herbal medicine. We investigated changes in chemical composition between sun-dried and sulfur-fumigated Radix Angelicae Dahuricae using a purge and trap technique to capture volatile compounds, and two-dimensional gas chromatography/time-of-flight mass spectrometry for identification. Using sun-dried Radix Angelicae Dahuricae samples as a reference, the results showed that 73 volatile compounds, including 12 sulfide compounds, were found to be present only in sulfur-fumigated samples. Furthermore, 32 volatile compounds that were found in sun-dried Radix Angelicae Dahuricae samples disappeared after sulfur-fumigation. The proposed method can be applied to accurately discriminate sulfur-fumigated Radix Angelicae Dahuricae from different commercial sources.

  6. Volatile Evolution and Anhydrite-Bearing Dacite, Yanacocha Gold Deposit, Cajamarca, Peru: Relevance for the Sulfur Budget

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.

    2006-12-01

    Magmatic water, sulfur and chlorine evolved during volcanic eruptions have important climactic effects, but during passive degassing these volatiles may transport metals and produce hydrothermal ore deposits. At the Yanacocha Mine, we are examining the volatile evolution of the Miocene andesitic to dacitic volcanic rocks (ca 20 to 8 Ma). High sulfidation epithermal deposits contain >50 Moz of gold in oxides with additional deeper sulfide resources containing >5 Mt of copper. Large volumes (>10 km3) of rock are hydrothermally altered by sulfate-rich and low pH fluid to quartz, quartz-alunite, quartz-pyrophyllite, illite. Pyrite (1-5 vol.%), native sulfur, covellite, enargite and chalcopyrite constitute reduced S-species. In total, at least 500 M tonnes of sulfur were added during alteration. The San Jose ignimbrite (SJI) erupted 30 km3 magma in two cooling units at 11.50 and 11.28 Ma, and immediately predates the bulk of gold mineralization at about 10.80 Ma (Longo, 2005). This hornblende- plagioclase dacitic magma is highly oxidized with fO2 ≍ 2 NNO. Low-Al2O3 (~7 wt.%), and high- Al2O3 (~12 wt.%) amphiboles coexist in most of the samples. Plag-hbl thermobarometry on low-Al content amphibole yields ca. 1.5-2 kb and 800°C. High-Al pargasitic hornblende forms sparse crystals up to 1 cm long that often show resorption or oxide rims associated with oxyhornblende breakdown. Apatite is an inclusion but generally not plagioclase or oxide. These petrographic relations suggest that the high-Al hornblende is the liquidus phase (at 950 to 1000°C, PH2O > 3 kb) in an andesitic or basaltic magma. The high-Al amphibole in two samples contains anhydrite inclusions, one with >5 vol.% anhydrite associated with apatite having up to 1.2 wt.% SO3. Comparison of these data with experimental sulfate solubilities at NNO+2 suggests the andesitic or basaltic melt dissolved at least 1000 ppm S. One low-Al amphibole contains anhydrite, demonstrating that the cooler dacite magma was also

  7. Effect of amino acid intake on brush-border membrane uptake of sulfur amino acids.

    PubMed

    Chesney, R W; Gusowski, N; Padilla, M; Lippincott, S

    1986-07-01

    Alterations in the intake of sulfur amino acids (SAA) changes the rat renal brush-border membrane uptake of the beta-amino acid, taurine. A low-SAA diet enhances and a high-taurine diet reduces uptake (Chesney et al., Kidney Int. 24: 588-594, 1983). Neither the low-SAA diet nor the high-taurine diet alters the time course or concentration-dependent accumulation of the sulfur amino acids methionine and cystine or of inorganic sulfate. By contrast the uptake of beta-alanine, another beta-amino acid that competes with taurine, is greater in animals on the low-SAA diet. The high-taurine diet does not change beta-alanine uptake. The plasma levels of taurine are altered by dietary change, but not the values for methionine and cystine. This study indicates that renal adaptation is expressed for beta-alanine, a nonsulfur-containing beta-amino acid. By contrast, methionine, cystine, and sulfate, which participate in a variety of synthetic and conjugative processes, are not conserved by the renal brush-border surface following ingestion of either a low-methionine and -cystine diet or high-taurine diet.

  8. Reaction of isoprene on thin sulfuric acid films: kinetics, uptake, and product analysis.

    PubMed

    Connelly, Brandon M; Tolbert, Margaret A

    2010-06-15

    A high vacuum Knudsen flow reactor was used to determine the reactive uptake coefficient, gamma, of isoprene on sulfuric acid films as a function of sulfuric acid weight percent, temperature, and relative humidity. No discernible dependence was observed for gamma over the range of temperatures (220 - 265 K) and pressures (10(-7) Torr -10(-4) Torr) studied. However, the uptake coefficient increased with increased sulfuric acid concentration between the range of 78 wt % (gamma(i) approximately 10(-4)) and 93 wt % (gamma(i) approximately 10(-3)). In addition to the Knudsen Cell, a bulk study was conducted between 60 and 85 wt % H(2)SO(4) to quantify uptake at lower acid concentrations and to determine reaction products. After exposing sulfuric acid to gaseous isoprene the condensed phase products were extracted and analyzed using gas chromatography/mass spectrometry (GC/MS). Isoprene was observed to polymerize in the sulfuric acid and form yellow/red colored monoterpenes and cyclic sesquiterpenes. Finally, addition of water to the 85 wt % sulfuric acid/isoprene product mixture released these terpenes from the condensed phase into the gas phase. Together these experiments imply that direct isoprene uptake will not produce significant SOA; however, terpene production from the small uptake may be relevant for ultrafine particles and could affect growth and nucleation.

  9. Cytotoxicity of sulfurous acid on cell membrane and bioactivity of Nitrosomonas europaea.

    PubMed

    Jiang, Ruiyu; Wang, Mingqing; Xue, Jianliang; Xu, Ning; Hou, Guihua; Zhang, Wubing

    2015-01-01

    Nitrosomonas europaea, an ammonia oxidizing bacterium, was chosen as a research model to study the alteration of cell membrane in the presence of sulfurous acid and biodegradation of acetochlor. Significant changes of the outer cell membrane were observed in the presence of sulfurous acid using scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The fluorescence polarization has shown a significant decrease in membrane fluidity and the increase of permeability of cell membrane. Lysozyme experiment show the cell becomes easily influenced by substance in medium. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) measurements show considerable amount of Ca(2+) and Mg(2+) in the supernatant from the sulfurous acid exposed cells. Sulfurous acid treatment enhanced the ability of N. europaea to degrade acetochlor. On this basis, it can be concluded that the increased cell permeability is favor for the absorbability of nutrition. As a result, N. europaea grows faster and the biodegradation efficiency was improved.

  10. Heterogeneous interactions of calcite aerosol with sulfur dioxide and sulfur dioxide-nitric acid mixtures.

    PubMed

    Prince, A Preszler; Kleiber, P; Grassian, V H; Young, M A

    2007-07-14

    The heterogeneous chemistry of sulfur dioxide with CaCO(3) (calcite) aerosol as a function of relative humidity (RH) has been studied under isolated particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reaction of SO(2) with calcite produced gas phase CO(2) as a product in addition to the conversion of the particulate carbonate to sulfite. The reaction extent was found to increase with elevated RH, as has been observed for the similar reaction with HNO(3), but much higher relative humidities were needed to significantly enhance the reaction. Mixed experiments in which calcite aerosol was exposed to both HNO(3) and SO(2) were also performed. The overall reaction extent at a given relative humidity did not appear to be increased by having both reactant gases present. The role of carbonate aerosol as an atmospheric sink for sulfur dioxide and particulate nitrogen and sulfur correlations are discussed.

  11. Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1983-01-01

    The stratospheric sulfuric acid fraction and mass for the 1982 volcanic eruptions of El Chichon are investigated using data from balloon soundings at Laramie (41 deg N) and in southern Texas (27-29 deg N). The total stratospheric mass of these eruptions is estimated to be approximately 8 Tg about 6.5 months after the eruption with possibly as much as 20 Tg in the stratosphere about 45 days after the eruption. Observations of the aerosol in Texas revealed two primary layers, both highly volatile at 150 C. Aerosol in the upper layer at about 25 km was composed of an approximately 80 percent H2SO4 solution while the lower layer at approximately 18 km was composed of a 60-65 percent H2SO4 solution aerosol. It is calculated that an H2SO4 vapor concentration of at least 3 x 10 to the 7th molecules/cu cm is needed to sustain the large droplets in the upper layer. An early bi-modal nature in the size distribution indicates droplet nucleation from the gas phase during the first 3 months, while the similarity of the large particle profiles 2 months apart shows continued particle growth 6.5 months after the explosion.

  12. Dental erosion and sulfuric ion exposure levels in individuals working with sulfuric acid in lead storage battery manufacturing plant measured with mouth-rinse index.

    PubMed

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    To investigate dental erosion in employees working with sulfuric acid at a lead storage battery manufacturing plant and level of personal exposure to sulfuric ions, we measured sulfuric ion concentrations in the mouth rinse of those employees. We also measured exposure levels from air samples obtained from 2 employees from the same plant who did not work with sulfuric acid using a portable air sampler. At the same time, we collected and compared their mouth rinses with those from other employees. More specifically, we measured and compared sulfuric ion, calcium, and magnesium concentrations, along with pH levels from the mouth rinse of these two groups. Positive correlations were found between sulfuric ion and calcium concentrations (r=0.61, p<0.005), calcium and magnesium concentrations (r=0.61, p<0.005), Ca/Mg and calcium concentrations (r=0.64, p<0.005), and sulfuric ion and magnesium concentrations (r=0.55, p<0.005). Negative correlations were found between sulfuric ion concentrations and pH levels (r=-0.31, p<0.01), and magnesium concentrations and pH levels (r=-0.32, p<0.01). This suggests that mouth rinse from employees working with sulfuric acid could function as an indicator of sulfuric ion concentration in the work environment. Furthermore, this could lead to the development of a more accurate indicator of individual exposure.

  13. Optical constants of sulfuric acid - Application to the clouds of Venus

    NASA Technical Reports Server (NTRS)

    Palmer, K. F.; Williams, D.

    1975-01-01

    Young (1973) and Sill (1972) have independently suggested that the clouds of Venus may well consist of particles composed of sulfuric acid molecules with attached water molecules. For a further study of this hypothesis an investigation has been conducted with the objective to supply the needed laboratory data for a wide range of sulfuric acid concentrations. Optical constants have been determined for the visible, near infrared, and intermediate infrared wavelength regions.

  14. Sulfuric Acid droplet formation and growth in the stratosphere after the 1982 eruption of el chichon.

    PubMed

    Hofmann, D J; Rosen, J M

    1983-10-21

    The eruption of El Chichón Volcano in March and April 1982 resulted in the nucleation of large numbers of new sulfuric acid droplets and an increase by nearly an order of magnitude in the size of the preexisting particles in the stratosphere. Nearly 10(7) metric tons of sulfuric acid remained in the stratosphere by the end of 1982, about 40 times as much as was deposited by Mount St. Helens in 1980.

  15. Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids.

    PubMed

    Pujos-Guillot, Estelle; Pickering, Gisèle; Lyan, Bernard; Ducheix, Gilles; Brandolini-Bunlon, Marion; Glomot, Françoise; Dardevet, Dominique; Dubray, Claude; Papet, Isabelle

    2012-02-01

    Sulfur amino acids are determinant for the detoxification of paracetamol (N-acetyl-p-aminophenol) through sulfate and glutathione conjugations. Long-term paracetamol treatment is common in the elderly, despite a potential cysteine/glutathione deficiency. Detoxification could occur at the expense of anti-oxidative defenses and whole body protein stores in elderly. We tested how older persons satisfy the extra demand in sulfur amino acids induced by long-term paracetamol treatment, focusing on metabolic and nutritional aspects. Effects of 3 g/day paracetamol for 14 days on fasting blood glutathione, plasma amino acids and sulfate, urinary paracetamol metabolites, and urinary metabolomic were studied in independently living older persons (five women, five men, mean (±SEM) age 74 ± 1 years). Dietary intakes were recorded before and at the end of the treatment and ingested sulfur amino acids were evaluated. Fasting blood glutathione, plasma amino acids, and sulfate were unchanged. Urinary nitrogen excretion supported a preservation of whole body proteins, but large-scale urinary metabolomic analysis revealed an oxidation of some sulfur-containing compounds. Dietary protein intake was 13% higher at the end than before paracetamol treatment. Final sulfur amino acid intake reached 37 mg/kg/day. The increase in sulfur amino acid intake corresponded to half of the sulfur excreted in urinary paracetamol conjugates. In conclusion, older persons accommodated to long-term paracetamol treatment by increasing dietary protein intake without any mobilization of body proteins, but with decreased anti-oxidative defenses. The extra demand in sulfur amino acids led to a consumption far above the corresponding population-safe recommendation.

  16. Volatile fatty acids as an added value from biowaste.

    PubMed

    den Boer, Emilia; Łukaszewska, Agnieszka; Kluczkiewicz, Władysław; Lewandowska, Daria; King, Kevin; Reijonen, Tero; Kuhmonen, Tero; Suhonen, Anssi; Jääskeläinen, Ari; Heitto, Anneli; Laatikainen, Reino; Hakalehto, Elias

    2016-12-01

    The aim of the present work was to provide proof of concept of employing a co-culture of K. mobilis and E. coli for producing short and medium chain volatile fatty acids (VFAs) from kitchen biowaste and potato peels. To this aim, experiments were carried out at pilot-scale installation with a bioreactor of 250L. Different feeding strategies were tested under microaerobic conditions, at pH 6.0-6.5 in order to enhance chain elongation. Acetic acid and ethanol were dominating products in the initial stages of the bioprocess, but in a relatively short time of approx. 20-22h from the process start accumulation of propionic acid took place followed by a chain elongation to butyric and valeric acids. The highest final products yield of 325mg/g TS was achieved for the substrate load of 99.1g TS/L (VS of 91.1g/L) and pH 6.5, with the productivity of 448mg/L/h. However, the highest average VFAs chain length (3.77C) was observed in the process run with the loading of 63.2g TS/L and pH 6.0. In this study, we demonstrated that the existing symbiosis of the co-culture of K. mobilis and E. coli favours formation and chain elongation of VFA, induced most likely by the enhanced ethanol formation. Our finding differs from the previous research which focus mostly on anaerobic conditions of VFAs production. The results provide good basis for further optimisation of VFAs production process.

  17. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  18. Removal characteristics of sulfuric acid aerosols from coal-fired power plants.

    PubMed

    Pan, Danping; Yang, Linjun; Wu, Hao; Huang, Rongting

    2017-03-01

    With increasing attention on sulfuric acid emission, investigations on the removal characteristics of sulfuric acid aerosols by the limestone gypsum wet flue gas desulfurization (WFGD) system and the wet electrostatic precipitator (WESP) were carried out in two coal-fired power plants, and the effects of the WFGD scrubber type and the flue gas characteristics were discussed. The results showed that it was necessary to install the WESP device after desulfurization, as the WFGD system was inefficient to remove sulfuric acid aerosols from the flue gas. The removal efficiency of sulfuric acid aerosols in the WFGD system with double scrubbers ranged from 50% to 65%, which was higher than that with a single scrubber, ranging from 30% to 40%. Furthermore, the removal efficiency of WESP on the sulfuric acid aerosols was from 47.9% to 52.4%. With increased concentrations of SO3 and particles in the flue gas, the removal efficiencies of the WFGD and the WESP on the sulfuric acid aerosols were increased.

  19. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  20. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  1. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    SciTech Connect

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program`s Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment.

  2. Backscatter laser depolarization studies of simulated stratospheric aerosols: Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1988-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystallization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  3. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  4. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  5. Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2013-01-01

    Fuel ethanol can be produced from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. To reduce the environmental impact of this process, treatment of the stillage, reuse of the sulfuric acid and reduction of the process water used were studied. The total organic carbon (TOC) concentration of stillage decreased from 29,688 to 269 mg/l by thermophilic methane fermentation followed by aerobic treatment. Washing the solid residue from acid hydrolysis with effluent from the biological treatment increased the sugar recovery from 69.3% to 79.3%. Sulfuric acid recovered during the acid-sugar separation process was condensed and reused for hydrolysis, resulting in a sugar recovery efficiency of 76.8%, compared to 80.1% when fresh sulfuric acid was used. After acetate removal, the condensate could be reused as elution water in the acid-sugar separation process. As much as 86.3% of the process water and 77.6% of the sulfuric acid could be recycled.

  6. The effects of pH and copper on the formation of volatile sulfur compounds in Chardonnay and Shiraz wines post-bottling.

    PubMed

    Bekker, Marlize Z; Mierczynska-Vasilev, Agnieszka; Smith, Paul A; Wilkes, Eric N

    2016-09-15

    The effects of pH and Cu(2+) treatment on the formation of volatile sulfur compounds (VSCs) were investigated in Chardonnay and Shiraz wine samples. Four VSCs were significantly affected by pH, with lower wine pH associated with decreased hydrogen sulfide (H2S), methanethiol, dimethyl sulfide, and carbon disulfide concentrations. The effects of pH and Cu(2+) on H2S formation from known precursor compounds were subsequently studied in a model wine system. In samples treated with cysteine and glutathione lower pH produced less H2S. Nanoparticle tracking analysis was used to study the effects of variable pH concentrations in a model system containing Cu(2+), tartaric acid, and H2S. Differences in Cu(2)(+)-tartrate complexes particle size and concentration were measured as a function of pH and H2S addition, suggesting the type of complexes formed may affect the binding sites of Cu(2+) available to catalyse the formation of VSCs such as H2S.

  7. Comparison of sulfuric and oxalic acid anodizing for preparation of thermal control coatings for spacecraft

    NASA Technical Reports Server (NTRS)

    Le, Huong G.; Watcher, John M.; Smith, Charles A.

    1988-01-01

    The development of thermal control surfaces, which maintain stable solar absorptivity and infrared emissivity over long periods, is challenging due to severe conditions in low-Earth orbit (LEO). Some candidate coatings are second-surface silver-coated Teflon; second-surface, silvered optical solar reflectors made of glass or quartz; and anodized aluminum. Sulfuric acid anodized and oxalic acid anodized aluminum was evaluated under simulated LEO conditions. Oxalic acid anodizing shows promise of greater stability in LEO over long missions, such as the 30 years planned for the Space Station. However, sulfuric acid anodizing shows lower solar absorptivity.

  8. [Volatile oil of Anethum Graveolens L. as an inhibitor of yeast and lactic acid bacteria].

    PubMed

    Shcherbanovsky, L R; Kapelev, I G

    1975-01-01

    The antimicrobial activity of 25 volatile oils from aerial parts and seeds of dill (Anethum graveolens L.) of different geographical origin towards yeast Saccharomyces vini and lactic acid bacteria Lactobacterium buchneri was measured by serial dilutions. Volatile oils from mature seeds and green parts of the plants harvested at late vegetation phases showed the highest activity. The geographical origin of plants influenced insignificantly the antimicrobial activity of volatile oil.

  9. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice.

    PubMed

    Di Cagno, Raffaella; Filannino, Pasquale; Gobbetti, Marco

    2017-02-21

    Pomegranate juice (PJ) fermented with Lactobacillus plantarum C2, POM1, and LP09, unstarted-PJ, and raw-PJ were characterized for the profile of the volatile components (VOC) by PT-GC-MS. Lactic acid fermentation through selected strains enhanced the flavor profile of PJ. Concentrations of desired compounds (e.g., alcohols, ketones, and terpenes) were positively affected, whereas those of non-desired aldehydes decreased. Unstarted-PJ mainly differentiated from fermented PJs for the highest levels of aldehydes and sulfur compounds, and in lesser extent of furans, whereas alcohols, ketones, and alkenes followed by terpenes and benzene derivatives mainly differentiated fermented PJs. As expected, the lowest level of VOC was found in raw-PJ. VOC profile reflected on the sensory features of fermented PJs, unstarted-PJ, and raw-PJ, which were evaluated using a consensus modified flavor profile based on 13 attributes. Fermented PJs were mainly discriminated by the higher intensity of floral, fruity and anise notes than the controls.

  10. Reaction kinetics of waste sulfuric acid using H2O2 catalytic oxidation.

    PubMed

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H2O2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H2O2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H2O2 feeding rate of 50 g (kg waste acid)(-1) per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H2O2 was 88.57%.

  11. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst

    NASA Astrophysics Data System (ADS)

    Manna, Joydev; Roy, Binayak; Sharma, Pratibha

    2015-02-01

    A heterogeneous acid catalyst, silica sulfuric acid, was prepared from silica gel (SiO2) and sulfuric acid (H2SO4). Addition of SO3H functional group to SiO2 has been confirmed through various characterization techniques. The effect of this heterogeneous acid catalyst on hydrogen generation from sodium borohydride hydrolysis reaction was studied for different ratios of catalyst to NaBH4 and at different temperatures. The catalyst exhibited high catalytic activity towards sodium borohydride hydrolysis reaction. The activation energy of the NaBH4 hydrolysis reaction in the presence of silica sulfuric acid was calculated to be the lowest (17 kJ mol-1) among reported heterogeneous catalysts till date.

  12. Acid volatile sulphide as an indicator for sediment toxicity?

    SciTech Connect

    Goyvaerts, M.P.; Brucker, N. De; Geuzens, P.

    1995-12-31

    The ratio SEM (Simultaneously Extracted Metals) to AVS (Acid Volatile Sulfide) is considered to be a measure for heavy metal bioavailability for benthic species. When the SEM/AVS ratio exceeds 1 heavy metal toxicity for the benthic organisms is expected. The correlation between the SEM/AVS and the toxicity for the bioluminescent bacterium Photobacterium phosphoreum is investigated. Freshwater sediments originating from different locations with high and low heavy metal contamination are tested. The toxicity test is performed according to the Solid Phase Microtox test (SPT). Unexpectedly, negative correlation between SEM/AVS and SPT toxicity was found (r = {minus}0.82, n = 44). However, sediments with a high sulphide content show a correlation between AVS and toxicity determined by SPT (r = 0.90, n = 18). Comparison with literature data and possible hypothesis for the discrepancies with the data will be presented. Additionally, a validation study concerning the AVS determination has been performed. Some of the aspects involved are: the sampling technique preserving the anoxic conditions of the sediment, the influence of the storage time and storage conditions on the AVS content of the standard conditions and the recovery of the metal sulphides used for the SEM calculation.

  13. Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements

    SciTech Connect

    Kuang C.; Zhao, J.; Smith, J. N.; Eisele, F. L.; Chen, M.; McMurry, P. H.

    2011-11-02

    Recent ab initio calculations showed that amines can enhance atmospheric sulfuric acid-water nucleation more effectively than ammonia, and this prediction has been substantiated in laboratory measurements. Laboratory studies have also shown that amines can effectively displace ammonia in several types of ammonium clusters. However, the roles of amines in cluster formation and growth at a microscopic molecular scale (from molecular sizes up to 2 nm) have not yet been well understood. Processes that must be understood include the incorporation of amines into sulfuric acid clusters and the formation of organic salts in freshly nucleated particles, which contributes significantly to particle growth rates. We report the first laboratory and ambient measurements of neutral sulfuric acid-amine clusters using the Cluster CIMS, a recently-developed mass spectrometer designed for measuring neutral clusters formed in the atmosphere during nucleation. An experimental technique, which we refer to as Semi-Ambient Signal Amplification (SASA), was employed. Sulfuric acid was added to ambient air, and the concentrations and composition of clusters in this mixture were analyzed by the Cluster CIMS. This experimental approach led to significantly higher cluster concentrations than are normally found in ambient air, thereby increasing signal-to-noise levels and allowing us to study reactions between gas phase species in ambient air and sulfuric acid containing clusters. Mass peaks corresponding to clusters containing four H{sub 2}SO{sub 4} molecules and one amine molecule were clearly observed, with the most abundant sulfuric acid-amine clusters being those containing a C2- or C4-amine (i.e. amines with masses of 45 and 73 amu). Evidence for C3- and C5-amines (i.e. amines with masses of 59 and 87 amu) was also found, but their correlation with sulfuric acid tetramer was not as strong as was observed for the C2- and C4-amines. The formation mechanisms for those sulfuric acid

  14. Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste.

    PubMed

    Zhang, Hongyu; Li, Guoxue; Gu, Jun; Wang, Guiqin; Li, Yangyang; Zhang, Difang

    2016-12-01

    This study investigates the influence of aeration on volatile sulfur compounds (VSCs) and ammonia (NH3) emissions during kitchen waste composting. Aerobic composting of kitchen waste and cornstalks was conducted at a ratio of 85:15 (wet weight basis) in 60L reactors for 30days. The gas emissions were analyzed with force aeration at rates of 0.1 (A1), 0.2 (A2) and 0.3 (A3) L (kgDMmin)(-1), respectively. Results showed that VSCs emission at the low aeration rate (A1) was more significant than that at other two rates (i.e., A2 and A3 treatment), where no considerable emission difference was observed. On the other hand, NH3 emission reduced as the aeration rate decreased. It is noteworthy that the aeration rate did not significantly affect the compost quality. These results suggest that the aeration rate of 0.2L (kgDMmin)(-1) may be applied to control VSCs and NH3 emissions during kitchen waste composting.

  15. Using electromagnetic induction technology to predict volatile fatty acid, source area differences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface sampling techniques have been adapted to measure manure accumulation on feedlot surface. Objectives of this study were to determine if sensor data could be used to predict differences in volatile fatty acids (VFA) and other volatiles produced on the feedlot surface three days following a...

  16. Dynamics and mass accommodation of HCl molecules on sulfuric acid-water surfaces.

    PubMed

    Behr, P; Scharfenort, U; Ataya, K; Zellner, R

    2009-09-28

    A molecular beam technique has been used to study the dynamics and mass accommodation of HCl molecules in collision with sulfuric acid-water surfaces. The experiments were performed by directing a nearly mono-energetic beam of HCl molecules onto a continuously renewed liquid film of 54-76 wt% sulfuric acid at temperatures between 213 K and 243 K. Deuterated sulfuric acid was used to separate sticking but non-reactive collisions from those that involved penetration through the phase boundary followed by dissociation and recombination with D+. The results indicate that the mass accommodation of HCl on sulfuric acid-water surfaces decreases sharply with increasing acidity over the concentration range 54-76 wt%. Using the capillary wave theory of mass accommodation this effect is explained by a change of the surface dynamics. Regarding the temperature dependence it is found that the mass accommodation of HCl increases with increasing temperature and is limited by the bulk phase viscosity and driven by the restoring forces of the surface tension. These findings imply that under atmospheric conditions the uptake of HCl from the gas phase depends crucially on the bulk phase parameters of the sulfuric acid aerosol.

  17. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    PubMed

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation.

  18. Cluster Formation of Sulfuric Acid with Dimethylamine or Diamines and Detection with Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Jen, C. N.; McMurry, P. H.; Hanson, D. R.

    2015-12-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to chemically ionize clusters for detection. In this study, we compare measured cluster concentrations formed by reacting sulfuric acid vapor with dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine) using nitrate and acetate ions. We show from flow reactor measurements that nitrate is unable to chemically ionize clusters with weak acidities. In addition, we vary the ion-molecule reaction time to probe the chemical ionization processes and lifetimes of ions composed of sulfuric acid and base molecules. We then model the neutral and ion cluster formation pathways, including chemical ionization, ion-induced clustering, and ion decomposition, to better identify which cluster types cannot be chemically ionized by nitrate. Our results show that sulfuric acid dimer with two diamines and sulfuric acid trimer with 2 or more base molecules cannot be chemical ionized by nitrate. We conclude that cluster concentrations measured with acetate CI gives a better representation of both cluster abundancies and their base content than nitrate CI.

  19. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  20. The sulfuric acid leaching of Bayer electrofilter fines: A practical kinetical approach

    NASA Astrophysics Data System (ADS)

    Sancho Martínez, J. P.; Ayala, Espina J.; García Coque, M. P.; Fernández, Pérez B.; Costales, Alonso D.

    2006-08-01

    Electrofilter fines, which are by-products of the Bayer process for the production of alumina from bauxite, were characterized to evaluate the alumina that was potentially extractable with sulfuric acid. Acid leaching is carried out at different concentrations of sulfuric acid, at different temperatures, pulp densities, and times, to dissolve gibbsite and transition aluminas. The result is an aluminum sulfate solution. This article reports on a study of the kinetics of the leaching reaction at 90°C with two pulp densities: 10% and 30%.

  1. Effect of a variety of Chinese herbs and an herb-containing dentifrice on volatile sulfur compounds associated with halitosis: An in vitro analysis

    PubMed Central

    Li, Ming-yu; Wang, Jun; Xu, Zhu-ting

    2010-01-01

    Background: The principal components of halitosis are volatile sulfur compounds (VSCs) such as hydrogen sulfide, methyl mercaptan, and dimethylsulfide or compounds such as butyric acid, propionic acid, putrescine, and cadaverine. Objective: The aim of this study was to evaluate the effect of Chinese herbs on VSCs in vitro. Methods: Saliva samples from volunteers were used as the source for the evaluation of bacterial activity and VSC inhibition. Extracted substances from Chinese herbs were identified by VSC inhibition tests with a Halimeter and microbial sensitivity testing. The effectiveness on halitosis was compared between a dentifrice containing one of the effective Chinese herbs (ie, chrysanthemum flower [Chrysanthemum morifolium flos]), 4 commercially available antihalitosis dentifrices, and a positive control that received no treatment. Results: Ten volunteers provided saliva samples for VSC testing. Of the 40 herbs tested, 14 extracts had percent inhibition rates of VSCs >50%. Ten herbs showed greatest effect against all culturable microorganisms with bacterial inhibition >70%. There was a weak positive correlation between bacteriostasis and the anti-VSC activity of the herbs with a correlation coefficient of 0.2579 (Pearson). The mean (SD) values of the VSC testing were as follows: dentifrice containing chrysanthemum flower, 55.91 (8.16) ppb; Crest Tea Refreshing Dentifrice®, 48.39 (7.48) ppb (P = NS); Cortex Phellodendri Dentifrice®, 139.90 (14.70) ppb (P < 0.01); Colgate Total Plus Whitening®, 120.94 (15.58) ppb (P < 0.01); Zhong Hua Chinese Herbs Dentifrice®, 136.96 (13.06) ppb (P < 0.01); and positive control, 312.38 (28.58) ppb (P < 0.01). Conclusions: Of 40 herbs tested, 14 Chinese herbs were found to be effective for VSC inhibition. A dentifrice containing chrysanthemum flower reduced the formation of VSC in vitro, showing a significantly greater effect than the control group and 3 of 4 dentifrices already on the market. PMID:24683259

  2. New insights into sulfur amino acids function in gut health and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAAs) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable amino acid and is...

  3. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    NASA Astrophysics Data System (ADS)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  4. Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily

    NASA Astrophysics Data System (ADS)

    De Waele, Jo; Audra, Philippe; Madonia, Giuliana; Vattano, Marco; Plan, Lukas; D'Angeli, Ilenia M.; Bigot, Jean-Yves; Anoux, Catherine; Nobécourt, Jean-Claude

    2016-01-01

    Caves formed by rising sulfuric waters have been described from all over the world in a wide variety of climate settings, from arid regions to mid-latitude and alpine areas. H2S is generally formed at depth by reduction of sulfates in the presence of hydrocarbons and is transported in solution through the deep aquifers. In tectonically disturbed areas major fractures eventually allow these H2S-bearing fluids to rise to the surface where oxidation processes can become active producing sulfuric acid. This extremely strong acid reacts with the carbonate bedrock creating caves, some of which are among the largest and most spectacular in the world. Production of sulfuric acid mostly occurs at or close to the water table but also in subaerial conditions in moisture films and droplets in the cave environment. These caves are generated at or immediately above the water table, where condensation-corrosion processes are dominant, creating a set of characteristic meso- and micromorphologies. Due to their close connection to the base level, these caves can also precisely record past hydrological and geomorphological settings. Certain authigenic cave minerals, produced during the sulfuric acid speleogenesis (SAS) phase, allow determination of the exact timing of speleogenesis. This paper deals with the morphological, geochemical and mineralogical description of four very typical sulfuric acid water table caves in Europe: the Grotte du Chat in the southern French Alps, the Acqua Fitusa Cave in Sicily (Italy), and the Bad Deutsch Altenburg and Kraushöhle caves in Austria.

  5. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Brus, D.; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-06-01

    In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm-3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm-3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  6. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    PubMed

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  7. Ice core sulfur and methanesulfonic acid (MSA) records from southern Greenland document North American and European air pollution and suggest a decline in regional biogenic sulfur emissions.

    NASA Astrophysics Data System (ADS)

    Pasteris, D. R.; McConnell, J. R.; Burkhart, J. F.; Saltzman, E. S.

    2014-12-01

    Sulfate aerosols have an important cooling effect on the Earth because they scatter sunlight back to space and form cloud condensation nuclei. However, understanding of the atmospheric sulfur cycle is incomplete, leading to uncertainty in the assessment of past, present and future climate forcing. Here we use annually resolved observations of sulfur and methanesulfonic acid (MSA) concentration in an array of precisely dated Southern Greenland ice cores to assess the history of sulfur pollution emitted from North America and Europe and the history of biogenic sulfate aerosol derived from the North Atlantic Ocean over the last 250 years. The ice core sulfur time series is found to closely track sulfur concentrations in North American and European precipitation since records began in 1965, and also closely tracks estimated sulfur emissions since 1850 within the air mass source region as determined by back trajectory analysis. However, a decline to near-preindustrial sulfur concentrations in the ice cores after 1995 that is not so extensive in the source region emissions indicates that there has been a change in sulfur cycling over the last 150 years. The ice core MSA time series shows a decline of 60% since the 1860s, and is well correlated with declining sea ice concentrations around Greenland, suggesting that the phytoplankton source of biogenic sulfur has declined due to a loss of marginal sea ice zone habitat. Incorporating the implied decrease in biogenic sulfur in our analysis improves the match between the ice core sulfur record and the source region emissions throughout the last 150 years, and solves the problem of the recent return to near-preindustrial levels in the Greenland ice. These findings indicate that the transport efficiency of sulfur air pollution has been relatively stable through the industrial era and that biogenic sulfur emissions in the region have declined.

  8. Quantitative gas chromatographic analysis of volatile fatty acids in spent culture media and body fluids.

    PubMed Central

    van den Bogaard, A E; Hazen, M J; Van Boven, C P

    1986-01-01

    Gas chromatographic analysis of volatile fatty acids for identification of obligately anaerobic bacteria and for presumptive diagnosis of anaerobic infections is now widely practiced. However, it is difficult to compare data because only a qualitative analysis is done or only chromatograms are presented instead of quantitative data on volatile fatty acid production. We compared three stationary phases for volatile fatty acid analysis of aqueous solutions and four methods of pretreating samples for gas chromatography. Quantitative analysis could be done accurately by using Carbowax as the stationary phase after pretreatment of spent culture media with Dowex columns. If only qualitative analysis is required (e.g., for presumptive diagnosis of anaerobic infections), ether extraction and headspace analysis are equally suitable. The overall variation coefficient for volatile fatty acid production by four reference strains of obligately anaerobic bacteria after 24 h of incubation was approximately 10%. PMID:3958144

  9. Treatment of odorous volatile fatty acids using a biotrickling filter.

    PubMed

    Tsang, Y F; Chua, H; Sin, S N; Chan, S Y

    2008-02-01

    In this study, a novel fibrous bioreactor was developed for treating odorous compounds present in contaminated air. The first stage of this work was a preliminary study which aimed at investigating the feasibility of using the fibrous bioreactor for the removal of malodorous volatile fatty acids (VFA) that is a common odorous contaminant generated from anaerobic degradation of organic compounds. The kinetics of microbial growth and VFA degradation in the selected culture, and the performance of the submerged bioreactor at different VFA mass loadings were studied. Above 95% of VFA removal efficiencies were achieved at mass loadings up to 22.4 g/m(3)/h. In the second stage, the odour treatment process was scaled up with system design and operational considerations. A trickling biofilter with synthetic fibrous packing medium was employed. The effects of inlet VFA concentration and empty bed retention time (EBRT) on the process performance were investigated. The bioreactor was effective in removing VFA at mass loadings up to 32 g/m(3)/h, beyond which VFA started to accumulate in the recirculation liquid, indicating the biofilm was unable to degrade all of the VFA introduced. Although VFA accumulated in the liquid phase, the removal efficiency remained above 99%. This suggested that the biochemical reaction rather than gas-liquid mass transfer was the limiting step of the treatment process. In addition, the biotrickling filter was stable for long-term operation with relatively low and steady pressure drop, no clogging and degeneration of the packing material occurred during the four-month study.

  10. A laboratory formulated sediment incorporating synthetic acid volatile sulfide

    SciTech Connect

    Gonzalez, A.M.

    1995-12-31

    The usefulness of laboratory formulated sediment (LFS) for sediment research applications might be expanded if sediment characteristics other than particle size distribution, organic carbon and pH could be artificially manipulated. This report describes the development of a LFS containing synthetic acid volatile sulfide (AVS). Several formulations were evaluated with respect to their toxicological effects on Hyalella azteca, and their chemical stability and oxidation dynamics in the H. azteca toxicity test system. Optimal amphipod survival was obtained in prepared LFS formulations where the molar cation-to-sulfide ratio was near unity. The synthetic AVS at the surface of the test system oxidized quickly, but was fairly stable for up to 28 days when isolated from air or oxygenated water. AVS analysis of core slices show a clear, dissolved oxygen-diffusion limited oxidation profile. A selected synthetic AVS formulation, as determined by (maximum) H. azteca survival, was evaluated with respect to complexation of copper and nickel, and the corresponding reduction in metal bioavailability. The toxicity of whole sediment and pore water from metal-spiked LFS containing synthetic AVS was evaluated by the 10-d H. azteca toxicity test and the Microtox{reg_sign} bioassay, respectively. As expected, test responses to amended LFS with metal-to-AVS molar ratios less than one were not significantly different than the unspiked, amended LFS. In contrast, amended LFS with metal-to AVS molar ratios greater than one had significant effects on the response of the two test species. Complexation of the metals was confirmed by sediment and pore water chemical analyses. This formulation may provide consistent and controlled substrates with which to investigate metal/sediment chemistry and toxicity, and to develop sediment quality criteria for metals.

  11. Death of a toddler due to ingestion of sulfuric acid at a clandestine home methamphetamine laboratory.

    PubMed

    Burge, Meredith; Hunsaker, John C; Davis, Gregory J

    2009-12-01

    Exposure to strong acids such as sulfuric acid to either the skin or the gastrointestinal or respiratory mucosa will result respectively in significant-occasionally fatal-cutaneous chemical burns as well as devastating corrosive damage to the respiratory and gastrointestinal tracts. Most injuries are accidental, but there are reports of using acids as weapons or as a means of suicide. The primary mechanism of acid injury is coagulative necrosis of the tissues. Sulfuric acid is a chemical often used in industrial and chemical laboratories, and it is an ingredient in household products like drain cleaner. Easily accessible, over-the-counter, household drain cleaner is one of several common materials used to manufacture methamphetamine. With increasing clandestine methamphetamine laboratories in the United States, exposure to methamphetamine and the toxic chemicals used for its production is a growing problem. In many instances, children living in these laboratories qua homes are at risk for injury and death. We report the death of an unattended toddler, who ingested sulfuric acid drain cleaner in his home. The gross and histopathological autopsy findings in this case are similar to those of previously described cases of sulfuric acid injury.

  12. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty-acids, carotenoids, amino-acids as well as terpenes. Incubation of melon fruit cubes with amino- and a-keto acids led to the enhanced formation of aroma compounds be...

  13. Process for recovery of sulfur from acid gases

    DOEpatents

    Towler, Gavin P.; Lynn, Scott

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  14. Role of Criegee Intermediates in Formation of Sulfuric Acid at BVOCs-rich Cape Corsica Site

    NASA Astrophysics Data System (ADS)

    Kukui, A.; Dusanter, S.; Sauvage, S.; Gros, V.; Bourrianne, T.; Sellegri, K.; Wang, J.; Colomb, A.; Pichon, J. M.; Chen, H.; Kalogridis, C.; Zannoni, N.; Bonsang, B.; Michoud, V.; Locoge, N.; Leonardis, T.

    2015-12-01

    Oxidation of SO2 in reactions with stabilised Criegee Intermediates (sCI) was suggested as an additional source of gaseous sulfuric acid (H2SO4) in the atmosphere, complementary to the conventional H2SO4 formation in reaction of SO2 with OH radicals. Evaluation of the importance of this additional source is complicated due to large uncertainty in the mechanism and rate constants for the reactions of different sCI with SO2, water vapor and other atmospheric species. Here we present an evaluation of the role of sCI in H2SO4 production at remote site on Cape Corsica near the North tip of Corsica Island (Ersa station, Western Mediterranean). In July 2013 comprehensive field observations including gas phase (OH and RO2 radicals, H2SO4, VOCs, NOx, SO2, others) and aerosol measurements were conducted at this site in the frame of ChArMEx project. During the field campaign the site was strongly influenced by local emissions of biogenic volatile compounds (BVOCs), including isoprene and terpenes, forming different sCI in reactions with ozone and, hence, presenting additional source of H2SO4 via sCI+SO2. However, this additional source of H2SO4 at the Ersa site was found to be insignificant. The observed concentrations of H2SO4 were found to be in good agreement with those estimated from the H2SO4 condensation sink and the production of H2SO4 only in the reaction of OH with SO2, without accounting for any additional H2SO4 source. Using the BVOCs observations we present estimation of the upper limit for the rate constants of H2SO4 production via reactions of different sCI with SO2.

  15. Potential role of stabilized Criegee radicals in sulfuric acid production in a high biogenic VOC environment.

    PubMed

    Kim, Saewung; Guenther, Alex; Lefer, Barry; Flynn, James; Griffin, Robert; Rutter, Andrew P; Gong, Longwen; Cevik, Basak Karakurt

    2015-03-17

    We present field observations made in June 2011 downwind of Dallas-Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H2SO4) production. Zero-dimensional model calculations show that sCI from biogenic volatile organic compounds composed the majority of the sCIs. The main uncertainty associated with an evaluation of H2SO4 production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO2 along with systematic discrepancies in experimentally derived reaction rates between other sCIs and SO2 and water vapor. In general, the maximum of H2SO4 production from the sCI channel is found in the late afternoon as ozone increases toward the late afternoon. The sCI channel, however, contributes minor H2SO4 production compared with the conventional OH channel in the mid-day. Finally, the production and the loss rates of H2SO4 are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H2SO4 loss rates compared with H2SO4 production rates. However, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H2SO4. The results suggest that the recommended coefficient for the H2O surface may not be suitable for this relatively dry environment.

  16. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid.

    PubMed

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-05-15

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5M sulfuric acid in 2h.

  17. Diamine-sulfuric acid reactions are a potent source of new particle formation

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Bachman, Ryan; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-01-01

    Atmospheric nucleation from sulfuric acid depends on the concentrations and the stabilizing effect of other trace gases, such as ammonia and amines. Diamines are an understudied class of atmospherically relevant compounds, and we examine how they affect sulfuric acid nucleation in both flow reactor experiments and the atmosphere. The number of particles produced from sulfuric acid and diamines in the flow reactor was equal to or greater than the number formed from monoamines, implying that diamines are more effective nucleating agents. Upper limits of diamine abundance were also monitored during three field campaigns: Lamont, OK (2013); Lewes, DE (2012); and Atlanta, GA (2009). Mixing ratios were measured as high as tens of parts per trillion by volume (GA and OK). Laboratory results suggest that diamines at these levels are important for atmospheric nucleation. Diamines likely participate in atmospheric nucleation and should be considered in nucleation measurements and models.

  18. Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Tiitta, Petri; Jaars, Kerneels; Croteau, Philip; Beukes, Johan Paul; Josipovic, Miroslav; Kerminen, Veli-Matti; Kulmala, Markku; Venter, Andrew D.; Zyl, Pieter G.; Worsnop, Douglas R.; Laakso, Lauri

    2015-12-01

    Aerosol particles formed in the atmosphere are important to the Earth's climate system due to their ability to affect cloud properties. At present, little is known about the atmospheric chemistry responsible for the growth of newly formed aerosol particles to climate-relevant sizes. Here combining detailed aerosol measurements with a theoretical framework we found that depending on the gaseous precursors and size of the newly formed particles, the growth was dominated by either sulfuric acid accompanied by ammonium or organic compounds originating in either biogenic emissions or savannah fires. The contribution of sulfuric acid was larger during the early phases of the growth, but in clean conditions organic compounds dominated the growth from 1.5 nm up to climatically relevant sizes. Furthermore, our analysis indicates that in polluted environments the contribution of sulfuric acid to the growth may have been underestimated by up to a factor of 10.

  19. Biomediated Precipitation of Calcium Carbonate and Sulfur in a Faintly Acidic Hot Spring

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Peng, X.; Qiao, H.

    2014-12-01

    A faintly acidic hot spring named "female Tower" (T=73.5 ℃, pH=6.64 ) is located in the Jifei Geothermal Field,Yunnan province, Southwest China. The precipitates in the hot spring are composed of large amounts of calcite and sulfur, as reveals by XRD analysis. Scanning electron microscopy (SEM) analysis show the microbial mats are formed of various coccoid, rod and filamentous microbes. Transmission electron microscopy (TEM) analysis show that intracellular sulfur granules are commonly associated with these microbes. Energy dispersive X-ray spectrometer (EDS) analysis shows that the surface of microbes are mainly composed of Ca, C, O and S. A culture-independent molecular phylogenetic analysis demonstrates the majority of bacteria in the spring are sulfur-oxidizing bacteria. In the spring water, H2S concentration was up to 60 ppm, while SO42- concentration was only about 10 ppm. We suggest that H2S might be utilized by sulfur-oxidizing bacteria in this hot spring water, leading to the formation of sulfur granules intracellularly and extracellularly. In the meantime, this reaction increases the pH in ambient environments, which fosters the precipitation of calcium carbonate precipitation in the microbial mats. This study suggests that the sulfur-oxidizing bacteria could play an important role in calcium carbonate precipitation in faintly acidic hot spring environments.

  20. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry.

    PubMed

    Rondo, L; Ehrhart, S; Kürten, A; Adamov, A; Bianchi, F; Breitenlechner, M; Duplissy, J; Franchin, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Hakala, J; Hansel, A; Keskinen, H; Kim, J; Jokinen, T; Lehtipalo, K; Leiminger, M; Praplan, A; Riccobono, F; Rissanen, M P; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Smith, J N; Tomé, A; Tröstl, J; Tsagkogeorgas, G; Vaattovaara, P; Winkler, P M; Williamson, C; Wimmer, D; Baltensperger, U; Kirkby, J; Kulmala, M; Petäjä, T; Worsnop, D R; Curtius, J

    2016-03-27

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  1. Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility.

    PubMed

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    Dental erosion, and specifically its symptoms, has long been studied in Japan as an occupational dental disease. However, in recent years, few studies have investigated the development of this disease or labor hygiene management aimed at its prevention. As a result, interest in dental erosion is comparatively low, even among dental professionals. Our investigation at a lead storage battery factory in 1991 found that the work environmental sulfuric acid density was above the tolerable range (1.0mg/m(3)) and that longterm workers had dental erosion. Therefore, workers handling sulfuric acid were given an oral examination and rates of dental erosion by tooth type, rates of erosion by number of working years and rates of erosion by sulfuric acid density in the work environment investigated. Where dental erosion was diagnosed, degree of erosion was identified according to a diagnostic criterion. No development of dental erosion was detected in the maxillary teeth, and erosion was concentrated in the anterior mandibular teeth. Its prevalence was as high as 20%. Rates of dental erosion rose precipitously after 10 working years. The percentages of workers with dental erosion were 42.9% for 10-14 years, 57.1% for 15-19 years and 66.7% for over 20 years with 22.5% for total number of workers. The percentages of workers with dental erosion rose in proportion to work environmental sulfuric acid density: 17.9% at 0.5-1.0, 25.0% at 1.0-4.0 and 50.0% at 4.0-8.0mg/m(3). This suggests that it is necessary to evaluate not only years of exposure to sulfuric acid but also sulfuric acid density in the air in factory workers.

  2. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  3. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    PubMed Central

    Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Abstract Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI‐APi‐TOF (Chemical Ionization‐Atmospheric Pressure interface‐Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI‐APi‐TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4‐H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self‐contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit. PMID:27610289

  4. Changes in salivary microbiota increase volatile sulfur compounds production in healthy male subjects with academic-related chronic stress

    PubMed Central

    Marcondes, Fernanda Klein; Groppo, Francisco Carlos; Rolim, Gustavo Sattolo; de Moraes, Antonio Bento Alves; Cogo-Müller, Karina; Franz-Montan, Michelle

    2017-01-01

    Objective To investigate the associations among salivary bacteria, oral emanations of volatile sulfur compounds, and academic-related chronic stress in healthy male subjects. Materials and methods Seventy-eight healthy male undergraduate dental students were classified as stressed or not by evaluation of burnout, a syndrome attributed to academic-related chronic stress. This evaluation was carried out using the Maslach Burnout Inventory—Student Survey questionnaire. Oral emanations of hydrogen sulfide, methyl mercaptan, and dimethyl sulfide were measured using an Oral Chroma™ portable gas chromatograph. The amounts in saliva of total bacteria and seven bacteria associated with halitosis were quantified by qPCR. The in vitro production of H2S by S. moorei and/or F. nucleatum was also measured with the Oral Chroma™ instrument. Results The stressed students group showed increased oral emanations of hydrogen sulfide and dimethyl sulfide, together with higher salivary Solobacterium moorei levels (p < 0.05, Mann Whitney test). There were moderate positive correlations between the following pairs of variables: Fusobacterium nucleatum and S. moorei; F. nucleatum and hydrogen sulfide; Tannerella forsythia and F. nucleatum; T. forsythia and S. moorei. These correlations only occurred for the stressed group (p < 0.05, Spearman correlation). The in vitro experiment demonstrated that S. moorei increased H2S production by F. nucleatum (p < 0.05, ANOVA and Tukey’s test). Conclusion The increased amount of S. moorei in saliva, and its coexistence with F. nucleatum and T. forsythia, seemed to be responsible for increased oral hydrogen sulfide in the healthy male stressed subjects. PMID:28319129

  5. On the prolonged lifetime of the El Chichon sulfuric acid aerosol cloud

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.

    1987-01-01

    The observed decay of the aerosol mixing ratio following the eruption of El Chichon appears to have been 20-30 percent slower than that following the eruption of Fuego in 1974, even though the sulfuric acid droplets were observed to grow to considerably larger sizes after El Chichon. This suggests the possible presence of a condensation nuclei and sulfuric acid vapor source and continued growth phenomena occurring well after the El Chichon eruption. It is proposed that the source of these nuclei and the associated vapor may be derived from annual evaporation and condensation of aerosol in the high polar regions during stratospheric warming events, with subsequent spreading to lower latitudes.

  6. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  7. Ammonia Catalyzed Formation of Sulfuric Acid in Troposphere: The Curious Case of A Base Promoting Acid Rain.

    PubMed

    Bandyopadhyay, Biman; Kumar, Pradeep; Biswas, Partha

    2017-04-03

    Electronic structure calculations have been performed to investigate the role of ammonia in catalyzing the formation of sulfuric acid through hydrolysis of SO3 in Earth's atmosphere. The uncatalyzed process involves a high activation barrier and, till date, is mainly known to occur in Earth's atmosphere only when catalyzed by water and acids. Here we show that hydrolysis of SO3 can be very efficiently catalyzed by ammonia, the most abundant basic component in Earth's atmosphere. It was found, based on magnitude of relative potential energies as well as rate coefficients, that ammonia is the best among all the catalysts studied until now (water and acids) and could be a considerable factor in formation of sulfuric acid in troposphere. The calculated rate coefficient (at 298 K) of ammonia catalyzed reaction has been found to be ~10^5 - 10^7 times greater than that for water catalyzed ones. It was found, based on relative rates of ammonia and water catalyzed processes that in troposphere ammonia, together with water, could be the key factor in determining the rate of formation of sulfuric acid. In fact ammonia could surpass water in catalyzing formation of sulfuric acid via hydrolysis of SO3 at various altitudes in troposphere depending upon their relative concentrations.

  8. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met).

    PubMed

    Riffet, Vanessa; Frison, Gilles; Bouchoux, Guy

    2011-11-07

    Acid-base thermochemistry of isolated amino acids containing oxygen or sulfur in their side chain (serine, threonine, cysteine and methionine) have been examined by quantum chemical computations. Density functional theory (DFT) was used, with B3LYP, B97-D and M06-2X functionals using the 6-31+G(d,p) basis set for geometry optimizations and the larger 6-311++G(3df,2p) basis set for energy computations. Composite methods CBS-QB3, G3B3, G4MP2 and G4 were applied to large sets of neutral, protonated and deprotonated conformers. Conformational analysis of these species, based on chemical approach and AMOEBA force field calculations, has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. It is observed that G4, G4MP2, G3B3, CBS-QB3 composite methods and M06-2X DFT lead to similar conformer energies. Thermochemical parameters have been computed using either the most stable conformers or equilibrium populations of conformers. Comparison of experimental and theoretical proton affinities and Δ(acid)H shows that the G4 method provides the better agreement with deviations of less than 1.5 kJ mol(-1). From this point of view, a set of evaluated thermochemical quantities for serine, threonine, cysteine and methionine may be proposed: PA = 912, 919, 903, 938; GB = 878, 886, 870, 899; Δ(acid)H = 1393, 1391, 1396, 1411; Δ(acid)G = 1363, 1362, 1367, 1382 kJ mol(-1). This study also confirms that a non-negligible ΔpS° is associated with protonation of methionine and that the most acidic hydrogen of cysteine in the gas phase is that of the SH group. In several instances new conformers were identified thus suggesting a re-examination of several IRMPD spectra.

  9. Identification, synthesis, and characterization of novel sulfur-containing volatile compounds from the in-depth analysis of Lisbon lemon peels (Citrus limon L. Burm. f. cv. Lisbon).

    PubMed

    Cannon, Robert J; Kazimierski, Arkadiusz; Curto, Nicole L; Li, Jing; Trinnaman, Laurence; Jańczuk, Adam J; Agyemang, David; Da Costa, Neil C; Chen, Michael Z

    2015-02-25

    Lemons (Citrus limon) are a desirable citrus fruit grown and used globally in a wide range of applications. The main constituents of this sour-tasting fruit have been well quantitated and characterized. However, additional research is still necessary to better understand the trace volatile compounds that may contribute to the overall aroma of the fruit. In this study, Lisbon lemons (C. limon L. Burm. f. cv. Lisbon) were purchased from a grove in California, USA, and extracted by liquid-liquid extraction. Fractionation and multidimensional gas chromatography-mass spectrometry were utilized to separate, focus, and enhance unidentified compounds. In addition, these methods were employed to more accurately assign flavor dilution factors by aroma extract dilution analysis. Numerous compounds were identified for the first time in lemons, including a series of branched aliphatic aldehydes and several novel sulfur-containing structures. Rarely reported in citrus peels, sulfur compounds are known to contribute significantly to the aroma profile of the fruit and were found to be aroma-active in this particular study on lemons. This paper discusses the identification, synthesis, and organoleptic properties of these novel volatile sulfur compounds.

  10. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  11. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  12. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  13. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  14. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  15. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    PubMed

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  16. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating.

    PubMed

    Haiyan, Zhong; Bedgood, Danny R; Bishop, Andrea G; Prenzler, Paul D; Robards, Kevin

    2006-12-13

    Camellia oil is widely used in some parts of the world partly because of its high oxidative stability. The effect of heating a refined camellia oil for 1 h at 120 degrees C or 2 h at 170 degrees C with exogenous antioxidant, namely, caffeic acid and tyrosol, was studied. Parameters used to assess the effect of heating were peroxide and K values, volatile formation, and fatty acid profile. Of these, volatile formation was the most sensitive index of change as seen in the number of volatiles and the total area count of volatiles in gas chromatograms. Hexanal was generally the dominant volatile in treated and untreated samples with a concentration of 2.13 and 5.34 mg kg(-1) in untreated oils heated at 120 and 170 degrees C, respectively. The hexanal content was significantly reduced in heated oils to which tyrosol and/or caffeic acid had been added. Using volatile formation as an index of oxidation, tyrosol was the more effective antioxidant of these compounds. This is contradictory to generally accepted antioxidant structure-activity relationships. Changes in fatty acid profiles after heating for up to 24 h at 180 degrees C were not significant.

  17. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    PubMed

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

  18. Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process.

    PubMed

    Qian, Jin; Wang, Lianlian; Wu, Yaoguo; Bond, Philip L; Zhang, Yuhan; Chang, Xing; Deng, Baixue; Wei, Li; Li, Qin; Wang, Qilin

    2017-06-01

    A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO3(-) + SO3(2-)) and free sulfurous acid (FSA, the unionized form: H2SO3) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10(-8) to 2.0 × 10(-4) mg H2SO3-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage.

  19. Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid.

    PubMed

    Jeong, Hanseob; Jang, Soo-Kyeong; Hong, Chang-Young; Kim, Seon-Hong; Lee, Su-Yeon; Lee, Soo Min; Choi, Joon Weon; Choi, In-Gyu

    2017-02-01

    The objectives of this research were to produce a levulinic acid by two-step acid-catalyzed treatment of Quercus mongolica and to investigate the effect of treatment parameter (reaction temperature range: 100-230°C; sulfuric acid (SA) concentration range: 0-2%) on the levulinic acid yield. After 1(st) step acid-catalyzed treatment, most of the hemicellulosic C5 sugars (15.6gg/100gbiomass) were released into the liquid hydrolysate at the reaction temperature of 150°C in 1% SA; the solid fraction, which contained 53.5% of the C6 sugars, was resistant to further loss of C6 sugars. Subsequently, 2(nd) step acid-catalyzed treatment of the solid fractions was performed under more severe conditions. Finally, 16.5g/100g biomass of levulinic acid was produced at the reaction temperature of 200°C in 2% SA, corresponding to a higher conversion rate than during single-step treatment.

  20. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  1. New insights into sulfur amino acid function in gut health and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gastrointestinal tract (GIT) is a metabolically significant site of sulfur amino acids (SAA) metabolism in the body. Aside from their role in protein synthesis, methionine and cysteine are involved in many biological functions and diseases. Methionine (MET) is an indispensable AA and is transmet...

  2. Pressure leaching of metals from waste printed circuit boards using sulfuric acid

    NASA Astrophysics Data System (ADS)

    Jha, Manis K.; Lee, Jae-Chun; Kumari, Archana; Choubey, Pankaj K.; Kumar, Vinay; Jeong, Jinki

    2011-08-01

    Printed circuit boards (PCBs) are essential components of electronic equipments which contain various metallic values. This paper reports a hydrometallurgical recycling process for waste PCBs, which consists of the novel pretreatment consisting of organic swelling of PCBs followed by sulfuric acid leaching of metals from waste PCBs. To recycle the waste PCBs, experiments were carried out for the recovery of copper from the crushed and organic swelled materials of waste PCBs using sulfuric acid leaching in presence of hydrogen peroxide under atmospheric and pressure condition. The leaching of PCBs at 90°C, pulp density 100 g/L under atmospheric condition, using 6M sulfuric acid resulted in the dissolution of a minor amount of copper due to the presence of plastic coating on the surface of metallic layers. On the other hand, when the liberated metal sheets from organic swelled PCBs were treated with dilute sulfuric acid of concentration 2M along with hydrogen peroxide in an autoclave under oxygen atmosphere, the percentage recovery of copper was found to increase from 59.63% to 97.01% with an increase in hydrogen peroxide concentration from 5 to 15% (v/v) keeping constant pulp density 30 g/L.

  3. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues.

    PubMed

    Safarzadeh, Mohammad Sadegh; Moradkhani, Davood; Ojaghi-Ilkhchi, Mehdi

    2009-04-30

    Cd-Ni filtercakes are produced continuously at the third purification step in the electrolytic production of zinc in the National Iranian Lead and Zinc Company (NILZ) in northwestern Iran. In this research, the dissolution kinetics of cadmium from Cd-Ni residues produced in NILZ plant has been investigated. Hence, the effects of temperature, sulfuric acid concentration, particle size and stirring speed on the kinetics of cadmium dissolution in sulfuric acid were studied. The dissolution kinetics at 25-55 degrees C and tsulfuric acid concentration, solid/liquid ratio and particle size were also achieved. The rate of reaction at first 5 min based on diffusion-controlled process can be expressed by a semi-empirical equation as:It was determined that the dissolution rate increased with increasing sulfuric acid concentration and decreasing particle size.

  4. Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-10-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to deprotonate and thus chemically ionize the clusters. In this study, we compare cluster concentrations measured using either nitrate or acetate. Clusters were formed in a flow reactor from vapors of sulfuric acid and dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine). These comparisons show that nitrate is unable to chemically ionize clusters with high base content. In addition, we vary the ion-molecule reaction time to probe ion processes which include proton-transfer, ion-molecule clustering, and decomposition of ions. Ion decomposition upon deprotonation by acetate/nitrate was observed. More studies are needed to quantify to what extent ion decomposition affects observed cluster content and concentrations, especially those chemically ionized with acetate since it deprotonates more types of clusters than nitrate.Model calculations of the neutral and ion cluster formation pathways are also presented to better identify the cluster types that are not efficiently deprotonated by nitrate. Comparison of model and measured clusters indicate that sulfuric acid dimers with two diamines and sulfuric acid trimers with two or more base molecules are not efficiently chemical ionized by nitrate. We conclude that acetate CI provides better information on cluster abundancies and their base content than nitrate CI.

  5. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  6. The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation

    SciTech Connect

    Kurten, T.; Kuang, C.; Gomez, P.; McMurry, P. H.; Vehkamaki, H.; Ortega, I.; Noppel, M.; Kulmala, M.

    2010-01-11

    We discuss the possible role of energy nonaccommodation (monomer-cluster collisions that do not result in stable product formation due to liberated excess energy) in atmospheric nucleation processes involving sulfuric acid. Qualitative estimates of the role of nonaccommodation are computed using quantum Rice-Ramsberger-Kassel theory together with quantum chemically calculated vibrational frequencies and anharmonic coupling constants for small sulfuric acid-containing clusters. We find that energy nonaccommodation effects may, at most, decrease the net formation rate of sulfuric acid dimers by up to a factor of 10 with respect to the hard-sphere collision rate. A decrease in energy nonaccommodation due to an increasing number of internal degrees of freedom may kinetically slightly favor the participation of amines rather than ammonia as stabilizing agents in sulfuric acid nucleation, though the kinetic enhancement factor is likely to be less than three. However, hydration of the clusters (which always occurs in ambient conditions) is likely to increase the energy accommodation factor, reducing the role that energy nonaccommodation plays in atmospheric nucleation.

  7. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution.

    PubMed

    Chen, Guo; Zhang, Bin; Zhao, Jun; Chen, Hongwen

    2013-06-05

    An improved process for production of cellulose sulfate (CS) was developed by using sulfuric acid/ethanol solution as sulfonating agent and Na2SO4 as water absorbent. The FTIR, SEM and TG analysis were used to characterize the CS prepared. The total degree of substitution and viscosity of the product solution (2%, w/v) were ranging from 0.28 to 0.77 and from 115 to 907 mPa s, respectively, by changing the process parameters such as the amount of Na2SO4, the reaction time, the temperature, the sulfuric acid/alcohol ratio and liquid/solid ratio. The results indicated that the product with DS (0.28-0.77) and η2% (115-907) mPa s could be produced by using this improved process and more cellulose sulfate could be produced when cellulose was sulfonated for 3-4 h at -2 °C in sulfuric acid/ethanol (1.4-1.6) solution with addition of 0.8 g Na2SO4. The (13)C NMR indicated that the sulfate group of CS produced using sulfuric acid/ethanol solution was at C6 position.

  8. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  9. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To determine the effects of hops extract, on in vitro volatile fatty acid (VFA) production by bovine rumen microorganisms. Methods and Results: When mixed rumen microbes were suspended in media containing carbohydrates, the initial rates of VFA production were suppressed by beta-acid rich hops...

  10. Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine.

    PubMed

    Taylor, Meghan; Chapman, Ralph; Beyaert, Ronald; Hernández-Sebastià, Cinta; Marsolais, Frédéric

    2008-07-23

    The contents of sulfur amino acids in seeds of common bean ( Phaseolus vulgaris L.) are suboptimal for nutrition. They accumulate large amounts of a gamma-glutamyl dipeptide of S-methyl-cysteine, a nonprotein amino acid that cannot substitute for methionine or cysteine in the diet. Protein accumulation and amino acid composition were characterized in three genetically related lines integrating a progressive deficiency in major seed storage proteins, phaseolin, phytohemagglutinin, and arcelin. Nitrogen, carbon, and sulfur contents were comparable among the three lines. The contents of S-methyl-cysteine and gamma-glutamyl-S-methyl-cysteine were progressively reduced in the mutants. Sulfur was shifted predominantly to the protein cysteine pool, while total methionine was only slightly elevated. Methionine and cystine contents (mg per g protein) were increased by up to ca. 40%, to levels slightly above FAO guidelines on amino acid requirements for human nutrition. These findings may be useful to improve the nutritional quality of common bean.

  11. Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water

    NASA Astrophysics Data System (ADS)

    Wyslouzil, B. E.; Seinfeld, J. H.; Flagan, R. C.; Okuyama, K.

    1991-05-01

    This work presents a systematic investigation of binary nucleation rates for sulfuric acid and water and the effect of temperature on these rates at isothermal, subsaturated conditions. The results from nucleation rate measurements for the sulfuric acid (H2SO4) -water system are discussed and compared to those previously presented for methanesulfonic acid (MSA)-water [B. E. Wyslouzil, J. H. Seinfeld, R. C. Flagan, and K. Okuyama, J. Chem. Phys. (submitted)]. Experiments were conducted at relative humidities (Rh) ranging from 0.006acidities (Ra) in the range of 0.04acid molecules in the critical nucleus for both the H2SO4 -water and MSA-water systems.

  12. Competitive Oxidation Kinetics and Microbial Ecology: Intermediate Sulfur Transformations in Acid Mine Drainage Environments

    NASA Astrophysics Data System (ADS)

    Druschel, G. K.; Hamers, R. J.; Banfield, J. F.

    2001-12-01

    Experimental studies have demonstrated that oxidation of pyrite proceeds through several intermediate sulfur species, notably elemental sulfur, thiosulfate, and polythionates (Schippers et al., 1996). However, detailed sampling and analysis of flowing waters and pore waters failed to detect intermediate sulfur species in the 5-way area of the Richmond metal sulfide deposit at the Iron Mountain Mine in northern California. Potential energy available from the oxidation of intermediate sulfur species is considerable, so microbial activity may explain absence of intermediate sulfur compounds at the site. However, the abundance of sulfur-oxidizing microorganisms in areas of active pyrite oxidation at the 5-way is generally low (Bond et al. 2000). Rapid inorganic oxidation rates may prevent microorganisms from utilizing these intermediate sulfur species, thus shaping the structure of microbial communities in acid mine drainage (AMD) environments. Rates and mechanisms of oxidation for tetrathionate and elemental sulfur have been experimentally determined. Batch and flow-through experiments have indicated very slow oxidation of elemental sulfur in inorganic solutions analogous to AMD environments. Results for tetrathionate indicate the importance of non-metabolic and inorganic processes, including surface catalysis and the generation of hydroxyl radicals. Surface catalysis occurs through trithionate on iron oxide surfaces. Hydroxyl radicals may be formed directly by microbes living in proximity to pyrite surfaces, or at pyrite surfaces undergoing wetting and drying cycles. Further experiments investigating the importance of organic compounds associated with iron-oxidizing microorganisms acting as electron transport shuttles and/or wetting agents and ab initio calculations of the electronic structure of potential reactants and intermediates are currently being performed. It is suggested that inorganic processes involved with seasonal wetting and drying of pyritic sediment

  13. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    SciTech Connect

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-08-15

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in cellular GSH

  14. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment.

  15. Study of insoluble crystals derived from solutions of Kevlar 49 in sulfuric acid

    SciTech Connect

    Butler, N.L.

    1984-05-21

    The object of the study was to isolate and obtain x-ray diffraction analysis of the insoluble crystals which have been observed in Kevlar 49/H/sub 2/SO/sub 4/ dope. These insoluble crystals had previously been reported to be Kevlar single crystals after analysis by optical microscopy. A more detailed analysis does not support this conclusion. Additional optical microscopy coupled with FTIR and elemental analysis for C, H and N, has shown that these insoluble crystals are in fact terephthalic acid which is a decomposition product of the acid hydrolysis of Kevlar. A model compound study of sulfuric-acid hydrolysis of aromatic amide was carried out in order to better understand the sulfuric-acid-hydrolysis of Kevlar.

  16. THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

    SciTech Connect

    Gorensek, M.; Summers, W.

    2010-03-24

    The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. 2) for the SO{sub 2}-depolarized electrolysis (sulfur oxidation) step, while Sandia National Laboratories (SNL) successfully demonstrated the high-temperature sulfuric acid decomposition (sulfur reduction) step using a bayonet-type reactor (Fig. 3). This latter work was performed as part of the Sulfur-Iodine (SI) cycle Integrated Laboratory Scale demonstration at General Atomics (GA). The combination of these two operations results in a simple process that will be more efficient and cost-effective for the massive production of hydrogen than alkaline electrolysis. Recent developments suggest that the use of PEMs other than Nafion will allow sulfuric acid to be produced at higher concentrations (>60 wt%), offering the possibility of net thermal efficiencies around 50% (HHV basis

  17. Parenteral sulfur amino acid requirements in septic infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate parenteral methionine requirements of critically ill, septic infants, we conducted an investigation involving 12 infants (age 2+/-1 years; weight 13+/-2kg) using the intravenous indicator amino acid oxidation and balance technique. They received a balanced parenteral amino acid formul...

  18. Volatile Solubilities in Mt. Somma-Vesuvius Phonolite Melt and New Insights on Degassing of Sulfur, Chlorine, and Water

    NASA Astrophysics Data System (ADS)

    Webster, J. D.; Sintoni, M. F.; de Vivo, B.; Lima, A.

    2007-05-01

    To better understand volatile exsolution, degassing, and eruptive processes in subduction-related magmas, we have conducted thirty H2O plus S plus Cl solubility experiments with phonolite melt at 905 to 1000 deg. C, 200 MPa, and relatively oxidizing conditions. The experiments include an 8000-year old Mt. Somma-Vesuvius phonolite, distilled H2O, NaCl, KCl, and CaSO4, and they involve a new method of constraining the concentration of S in the run-product fluids. Unlike prior S-solubility experiments, the S concentration in fluid is determined as proportional to the mass loss of the anhydrite crystals in the starting charges of the experiments. This method provides accurate S contents of fluids. The H2O, Cl, and S concentrations of the phonolitic glasses of our experiments range from 4 to 8, 0.38 to 0.84, and 0.01 to 0.19 wt.%, respectively. Sulfur solubility increases with increasing CaO and FeO (total iron) in melt, decreasing Cl and K2O in melt, decreasing Cl in fluid(s), and with increasing oxygen fugacity values greater than NNO. Chlorine solubility in melt increases with decreasing S content of melt and decreasing S and H2O in the coexisting fluid(s). Water solubility in melt shows no systematic variation with melt composition, but varies strongly with the composition of fluids. The partition coefficients (wt.% of X in fluid[s]/wt.% of X in phonolitic melt) range from 40 to > 200 for S and from 12 to 87 for Cl. At pressure-temperature-oxygen fugacity conditions similar to those of this study, these partition coefficients are equivalent to those determined previously for natural equilibria involving andesite melt plus Cl-free, S-bearing aqueous fluid (Scaillet and Pichavant, 2003) and experimental equilibria with andesite melt plus S-free, Cl-bearing aqueous fluid (Webster et al., 1999), respectively. Our research also shows that these partition coefficients for S and Cl are inversely proportional to one another. Silicate melt inclusions in pyroxene phenocrysts

  19. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  20. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.

    PubMed

    Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D

    2011-03-01

    Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase.

  1. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    NASA Astrophysics Data System (ADS)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  2. Fatty acid composition and volatile compounds of caviar from farmed white sturgeon (Acipenser transmontanus).

    PubMed

    Caprino, Fabio; Moretti, Vittorio Maria; Bellagamba, Federica; Turchini, Giovanni Mario; Busetto, Maria Letizia; Giani, Ivan; Paleari, Maria Antonietta; Pazzaglia, Mario

    2008-06-09

    The present study was conducted to characterize caviar obtained from farmed white sturgeons (Acipenser transmontanus) subjected to different dietary treatments. Twenty caviar samples from fish fed two experimental diets containing different dietary lipid sources have been analysed for chemical composition, fatty acids and flavour volatile compounds. Fatty acid make up of caviar was only minimally influenced by dietary fatty acid composition. Irrespective of dietary treatments, palmitic acid (16:0) and oleic acid (OA, 18:1 n-9) were the most abundant fatty acid followed by docosahexaenoic acid (DHA, 22:6 n-3) and eicopentaenoic (EPA, 20:5 n-3). Thirty-three volatile compounds were isolated using simultaneous distillation-extraction (SDE) and identified by GC-MS. The largest group of volatiles were represented by aldehydes with 20 compounds, representing the 60% of the total volatiles. n-Alkanals, 2-alkenals and 2,4-alkadienals are largely the main responsible for a wide range of flavours in caviar from farmed white surgeon.

  3. Quantitative assessment of the sulfuric acid contribution to new particle growth.

    PubMed

    Bzdek, Bryan R; Zordan, Christopher A; Pennington, M Ross; Luther, George W; Johnston, Murray V

    2012-04-17

    The Nano Aerosol Mass Spectrometer (NAMS) was deployed to rural/coastal and urban sites to measure the composition of 20-25 nm diameter nanoparticles during new particle formation (NPF). NAMS provides a quantitative measure of the elemental composition of individual, size-selected nanoparticles. In both environments, particles analyzed during NPF were found to be enhanced in elements associated with inorganic species (nitrogen, sulfur) relative to that associated with organic species (carbon). A molecular apportionment algorithm was applied to the elemental data in order to place the elemental composition into a molecular context. These measurements show that sulfate constitutes a substantial fraction of total particle mass in both environments. The contribution of sulfuric acid to new particle growth was quantitatively determined and the gas-phase sulfuric acid concentration required to incorporate the measured sulfate fraction was calculated. The calculated values were compared to those calculated by a sulfuric acid proxy that considers solar radiation and SO(2) levels. The two values agree within experimental uncertainty. Sulfate accounts for 29-46% of the total mass growth of particles. Other species contributing to growth include ammonium, nitrate, and organics. For each location, the relative amounts of these species do not change significantly with growth rate. However, for the coastal location, sulfate contribution increases with increasing temperature whereas nitrate contribution decreases with increasing temperature.

  4. Development of Sulfuric Acid Decomposer for Thermo-Chemical IS Process

    SciTech Connect

    Hiroki, Noguchi; Hiroyuki, Ota; Atsuhiko, Terada; Shinji, Kubo; Kaoru, Onuki; Ryutaro, Hino

    2006-07-01

    The Japan Atomic Energy Agency (JAEA) has been conducting R and D on thermo-chemical Iodine-Sulfur (IS) process, which is one of most attractive water-splitting hydrogen production methods using nuclear heat of a high-temperature gas-cooled reactor (HTGR). In the IS process, sulfuric acid is evaporated and decomposed into H{sub 2}O and SO{sub 3} in a sulfuric acid decomposer operated under high temperature condition up to 500 deg C. Necessary heat is supplied by high temperature helium gas from the HTGR. Since the sulfuric acid decomposer will be exposed to severe corrosion condition, we have proposed a new decomposer concept of a block type heat exchanger made of SiC ceramic which has excellent corrosion and mechanical strength performance. To verify the concept, integrity of new type gaskets applied for boundary seal of the decomposer was examined as a first step. Pure gold gaskets coupled with absorption mechanism against thermal expansion showed good seal performance under 500 deg C. Based on this result, a mock-up model for a IS pilot-plant with 30 m{sup 3}/h-hydrogen production rate was test-fabricated as the next step. Through the fabrication and gas-tight tests, fabricability and structural integrity were confirmed. Also, the decomposer showed good mechanical strength and seal performances against horizontal loading simulating earthquake motion. (authors)

  5. Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P.

    2013-12-01

    Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at <0.3‰ precision in simulated cave atmospheres. Bioreactors containing Madison Limestone were inoculated with either a monoculture of the mixotrophic sulfur-oxidizing Thiothrix unzii or a mixed environmental (LKC) sulfur-metabolizing community. Ca2+ and pH were also continuously logged in order to quantify the impact of microbial metabolism on limestone dissolution rate. We found an order of magnitude of variability in limestone dissolution rates that were closely tied to microbial metabolism. In monocultures, limestone dissolution was inhibited by excessive reduced sulfur as T. unzii prefers to store sulfur internally as So under these conditions, generating no acidity. The headspace was depleted in 13C when sulfur was being stored as So and enriched in 13C when sulfur was being converted to SO42-. This suggests a preference for a heterotrophy during periods of high sulfur input and autotrophy when sulfur input is low. This was corroborated by an increase in SO42- during low sulfide input and microscope images showed loss of internal sulfur within the filaments

  6. Lewis-Acid/Base Effects on Gallium Volatility in Molten Chlorides

    SciTech Connect

    Williams, D.F.

    2001-02-26

    It has been proposed that GaCl{sub 3} can be removed by direct volatilization from a Pu-Ga alloy that is dissolved in a molten chloride salt. Although pure GaCl{sub 3} is quite volatile (boiling point, 201 C), the behavior of GaCl{sub 3} dissolved in chloride salts is different due to solution effects and is critically dependent on the composition of the solvent salt (i.e., its Lewis-acid/base character). In this report, the behavior of gallium in prototypical Lewis-acid and Lewis-base salts is compared. It was found that gallium volatility is suppressed in basic melts and enhanced in acidic melts. The implications of these results on the potential for simple gallium removal in molten salt systems are significant.

  7. Temperature shifts for extraction and purification of zygomycetes chitosan with dilute sulfuric acid.

    PubMed

    Zamani, Akram; Edebo, Lars; Niklasson, Claes; Taherzadeh, Mohammad J

    2010-08-13

    The temperature-dependent hydrolysis and solubility of chitosan in sulfuric acid solutions offer the possibility for chitosan extraction from zygomycetes mycelia and separation from other cellular ingredients with high purity and high recovery. In this study, Rhizomucor pusillus biomass was initially extracted with 0.5 M NaOH at 120 °C for 20 min, leaving an alkali insoluble material (AIM) rich in chitosan. Then, the AIM was subjected to two steps treatment with 72 mM sulfuric acid at (i) room temperature for 10 min followed by (ii) 120 °C for 45 min. During the first step, phosphate of the AIM was released into the acid solution and separated from the chitosan-rich residue by centrifugation. In the second step, the residual AIM was re-suspended in fresh 72 mM sulfuric acid, heated at 120 °C and hot filtered, whereby chitosan was extracted and separated from the hot alkali and acid insoluble material (HAAIM). The chitosan was recovered from the acid solution by precipitation at lowered temperature and raised pH to 8-10. The treatment resulted in 0.34 g chitosan and 0.16 g HAAIM from each gram AIM. At the start, the AIM contained at least 17% phosphate, whereas after the purification, the corresponding phosphate content of the obtained chitosan was just 1%. The purity of this chitosan was higher than 83%. The AIM subjected directly to the treatment with hot sulfuric acid (at 120 °C for 45 min) resulted in a chitosan with a phosphate impurity of 18.5%.

  8. A combined proteomic and transcriptomic analysis on sulfur metabolism pathways of Arabidopsis thaliana under simulated acid rain.

    PubMed

    Liu, Tingwu; Chen, Juan A; Wang, Wenhua; Simon, Martin; Wu, Feihua; Hu, Wenjun; Chen, Juan B; Zheng, Hailei

    2014-01-01

    With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress.

  9. A Combined Proteomic and Transcriptomic Analysis on Sulfur Metabolism Pathways of Arabidopsis thaliana under Simulated Acid Rain

    PubMed Central

    Wang, Wenhua; Simon, Martin; Wu, Feihua; Hu, Wenjun; Chen, Juan B.; Zheng, Hailei

    2014-01-01

    With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress. PMID:24595051

  10. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  11. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  12. Effect of Mineral Admixtures on Resistance to Sulfuric Acid Solution of Mortars with Quaternary Binders

    NASA Astrophysics Data System (ADS)

    Makhloufi, Zoubir; Bederina, Madani; Bouhicha, Mohamed; Kadri, El-Hadj

    This research consists to study the synergistic action of three mineral additions simultaneously added to the cement. This synergistic effect has a positive effect on the sustainability of limestone mortars. Tests were performed on mortars based on crushed limestone sand and manufactured by five quaternary binders (ordinary Portland cement and CPO mixed simultaneously with filler limestone, blast-furnace and natural pozzolan). The purpose of this research was to identify the resistance of five different mortars to the solution of sulfuric acid. Changes in weight loss and compressive strength measured at 30, 60, 90, 120 and 180 days for each acid solution were studied. We followed up on the change in pH of the sulfuric acid solution at the end of each month up to 180 days.

  13. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    NASA Astrophysics Data System (ADS)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Zhu, Ren-feng; Liu, You-cai; Fu, Jian-gang

    2016-05-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leaching efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sulfuric acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respectively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent activation energy of 12.28 kJ·mol-1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  14. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    NASA Astrophysics Data System (ADS)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  15. Separation of hafnium from zirconium in sulfuric acid solutions using pressurized ion exchange

    SciTech Connect

    Hurst, F.J.

    1981-01-01

    High-resolution pressurized ion exchange has been used successfully to study and separate hafnium and zirconium sulfate complexes by chromatographic elution from Dowex 50W-X8 (15 to 25 ..mu..m) resin with sulfuric acid solutions. Techniques were developed to continuously monitor the column effluents for zirconium and hafnium by reaction with fluorometric and colorimetric reagents. Since neither reagent was specific for either metal ion, peak patterns were initially identified by using the stable isotopes /sup 90/Zr and /sup 180/Hf as fingerprints of their elution position. Distribution ratios for both zirconium and hafnium decrease as the inverse fourth power of the sulfuric acid concentration below 2N and as the inverse second power at higher acid concentration. The hafnium-to-zirconium separation factor is approximately constant (approx. 8) over the 0.5 to 3N range. Under certain conditions, an unseparated fraction was observed that was not retained by the resin. The amount of this fraction which is thought to be a polymeric hydrolysis product appears to be a function of metal and sulfuric acid concentrations. Conditions are being sought to give the highest zirconium concentration and the lowest acid concentration that can be used as a feed material for commercial scale-up in the continuous annular chromatographic (CAC) unit without formation of the polymer.

  16. [Opportunities for volatile fatty acids using in early diagnostics of infected pancreonecrosis].

    PubMed

    Gagua, A K; Ivanenkov, I M; Vorob'ev, P Iu

    2014-01-01

    It was analyzed the treatment results of 108 patients with pancreonecrosis (PN). Gas-liquid chromatography with definition of blood concentration of volatile fatty acids (VFA) was used additionally for timely diagnostics of infected pancreonecrosis. Volatile fatty acids are toxic metabolites of microorganisms. Statistically significant threshold values of VFA were revealed. These values allow to diagnose timely early phase of PN infection and the nature of the microflora. It was defined changes of VFA depending on the severity of infectious process in pancreas and retroperitoneal fiber.

  17. Influence of adjunct cultures on volatile free fatty acids in reduced-fat Edam cheeses.

    PubMed

    Tungjaroenchai, W; White, C H; Holmes, W E; Drake, M A

    2004-10-01

    The effects of the adjunct cultures Lactococcus lactis ssp. diacetylactis, Brevibacterium linens BL2, Lactobacillus helveticus LH212, and Lactobacillus reuteri ATCC 23272 on volatile free fatty acid production in reduced-fat Edam cheese were studied. Lipase activity evaluation using p-nitrophenyl fatty acid ester substrates indicated that L. lactis ssp. diacetylactis showed the highest activity among the 4 adjunct cultures. Full-fat and 33% reduced-fat control cheeses (no adjunct) were made along with 5 treatments of reduced-fat cheeses, which included individual, and a mixture of the adjunct cultures. Volatile free fatty acids of cheeses were analyzed using static headspace analysis with 4-bromofluorobenzene as an internal standard. Changes in volatile free fatty acid concentrations were found in headspace gas of cheeses after 3-and 6-mo ripening. Acetic acid was the most abundant acid detected throughout ripening. Full-fat cheese had the highest relative amount of propionic acid among the cheeses. Certain adjunct cultures had a definite role in lipolysis at particular times. Reduced-fat cheese with L. lactis ssp. diacetylactis at 3-mo showed the highest levels of butyric, isovaleric, n-valeric, iso-caproic, and n-caproic acid. Reduced-fat cheese with Lactobacillus reuteri at 6 mo produced the highest relative concentration of isocaproic, n-caproic, and heptanoic, and the highest relative concentration of total acids.

  18. Effects of ageing on the content in sulfur-containing amino acids in rat brain.

    PubMed

    Benedetti, M S; Russo, A; Marrari, P; Dostert, P

    1991-01-01

    Concentrations of the sulfur-containing amino acids methionine, homocysteic acid, cysteic acid and taurine were measured in brain structures of young and old Wistar rats in an attempt to establish a possible link between the increase in oxidative stress with ageing and changes in tissue levels of these amino acids. Contrary to data reported by others, in all brain structures of young and old rats homocysteic acid levels could not be quantified. Compared with young rats, in old animals taurine and methionine concentrations significantly decreased in striatum and cortex; decreased taurine levels were also found in nucleus accumbens and cerebellum and lower concentrations of methionine were found in midbrain, hippocampus and pons-medulla. Cysteic acid levels either did not change or significantly increased in cortex and hippocampus. These results are discussed taking into account the biosynthesis of sulfur-containing amino acids in rat brain and the decrease in glutathione in relation to oxidative stress with ageing. Changes in aspartic acid, glutamic acid, serine, glutamine, glycine and GABA concentrations with ageing were also determined in the same brain structures and were in good agreement with those previously reported (Strolin Benedetti et al., 1990 a, b).

  19. Corrosion abatement in sulfuric acid alkylation unit horizontal contactors

    SciTech Connect

    Schutt, H.U.

    1997-09-01

    The need to increase throughput in alkylation plants has resulted in higher operating temperatures and higher water levels in alkylation acids than projected by design. Combined with higher flow rates, the more severe process environment causes carbon steel to corrode at increased rates. Carbon steel is the main material of construction for horizontal contactors (Stratco reactors). A leak to the atmosphere in the hydraulic end cone of one contactor and the realization that basic corrosion data are not available for high throughput process conditions in alkylation units prompted a laboratory study to develop the lacking expertise. Corrosion in alkylation unit horizontal contactors is successfully mitigated by saturating fresh alkylation acid with ferrous sulfate.

  20. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit.

    PubMed

    Gonda, Itay; Bar, Einat; Portnoy, Vitaly; Lev, Shery; Burger, Joseph; Schaffer, Arthur A; Tadmor, Ya'akov; Gepstein, Shimon; Giovannoni, James J; Katzir, Nurit; Lewinsohn, Efraim

    2010-02-01

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.

  1. Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant

    PubMed Central

    Dümig, Michaela; O'Keeffe, Gráinne; Binder, Jasmin; Doyle, Sean; Beilhack, Andreas

    2016-01-01

    Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements of A. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection. PMID:26787716

  2. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist.

    PubMed

    Huang, Jiayu; Wang, Hongmei; Shi, Yingjie; Zhang, Fan; Dang, Xiaoqing; Zhang, Hui; Shu, Yun; Deng, Shuang; Liu, Yu

    2016-10-01

    The use of a wet electrostatic precipitator (WESP) is often regarded as a viable option to reduce sulfuric acid mist emitted from the wet flue gas desulfurization (WFGD) tower in coal-fired power plants. In this study, a pilot-scale wet electrostatic precipitator equipped with a wall-cooled collection electrode is investigated for the control of sulfuric acid mist from a simulated WFGD system. The results show that due to partial charging effect, the removal efficiency of sulfuric acid aerosol decreases when the aerosol size decreases to several tens of nanometers. Moreover, due to the plasma-induced effect, a large number of ultrafine sulfuric acid aerosols below 50 nm formed at a voltage higher than 24 kV inside the WESP. The percentages of submicron-sized aerosols significantly increase together with the voltage. To minimize the adverse plasma-induced effect, a WESP should be operated at a high gas velocity with an optimum high voltage. Even at a high flue gas velocity of 2.3 m s(-1), the mass concentration and the total number concentration of uncaptured sulfuric acid aerosols at the WESP outlet are as low as ca. 0.6 mg m(-3) and ca. 10(4) 1 cm(-3) at 28 kV, respectively. The corresponding removal efficiencies were respectively higher than 99.4 and 99.9 % and are very similar to that at 1.1 and 1.6 m s(-1). Moreover, the condensation-induced aerosol growth enhances the removal of sulfuric acid mist inside a WESP and enables a low emission concentration of ca. 0.65 mg m(-3) with a corresponding removal efficiency superior to 99.4 % even at a low voltage of 21 kV, and of ca. 0.35 mg m(-3) with a corresponding removal efficiency superior to 99.6 % at a higher voltage level of 26 kV.

  3. Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage.

    PubMed

    Riefler, R Guy; Krohn, Jeremy; Stuart, Ben; Socotch, Cheryl

    2008-05-15

    This report describes a twenty month case study of a successive alkalinity producing system (SAPS) treating a strong acid mine drainage (AMD) source in Coshocton County, Ohio. Prior to the commencement of the project, a large volume of black amorphous sludge had accumulated in several of the constructed wetlands. The sludge was found to be 43% organic, with very high concentrations of sulfur, iron, aluminum, and acidity. Based on several biological, physical, and chemical analyses, the sludge was determined to be an anaerobic biofilm with a large population of sulfur-reducing bacteria and a high mineral content due to the formation of iron sulfide and aluminum precipitates. On average the system performed well, generating 26 kg CaCO3/d of alkalinity and capturing 5.0 kg/d of iron and 1.7 kg/d of aluminum. Several simple performance analysis tools were presented in this work. By comparing the pollutant influent and effluent loading, it was determined that the SAPS was performing at capacity and over the past year increased effluent concentrations were due to increased influent loadings and not system deterioration. Further, by performing a detailed cell-by-cell loading analysis of multiple chemical components, the alkalinity generated by limestone dissolution and by sulfate reduction was determined. Interestingly, 61% of the alkalinity generation in the vertical flow wetlands was due to sulfur-reducing bacteria activity, indicating that sulfur-reducing bacteria may play a more significant role in SAPS than expected.

  4. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    PubMed

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc.

  5. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  6. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  7. Corrosion abatement in sulfuric acid alkylation unit horizontal contactors

    SciTech Connect

    Schutt, H.U.

    1999-03-01

    A leak to the atmosphere in the hydraulic end cone of a horizontal contactor and the realization that basic corrosion data are not available for high-throughput process conditions in alkylation units prompted a laboratory study to develop the lacking expertise. Corrosion in the horizontal contractor of an alkylation unit was mitigated successfully by saturating fresh alkylation acid with ferrous sulfate (FeSO{sub 4}).

  8. Using heat pipe to make isotherm condition in catalytic converters of sulfuric acid plants

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Pahlavanzadeh, H.; Sadrameli, S. M.

    2017-03-01

    In this study, for the first time, it is tried to construct a pilot reactor, for surveying the possibility of creating isothermal condition in the catalytic convertors where SO2 is converted to SO3 in the sulfuric acid plants by heat pipe. The thermodynamic and thermo-kinetic conditions were considered the same as the sulfuric acid plants converters. Also, influence of SO2 gas flow rate on isothermal condition, has been studied. A thermo-siphon type heat pipe contains the sulfur + 5% iodine as working fluid, was used for disposing the heat of reaction from catalytic bed. Our results show that due to very high energy-efficiency, isothermal and passive heat transfer mechanism of heat pipe, it is possible to reach more than 95% conversion in one isothermal catalytic bed. As the results, heat pipe can be used as a certain piece of equipment to create isothermal condition in catalytic convertors of sulphuric acid plants. With this work a major evaluation in design of sulphuric acid plants can be taken place.

  9. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    SciTech Connect

    Soleimani, Sahar Isgor, O. Burkan Ormeci, Banu

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.

  10. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    PubMed

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  11. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  12. Prevention of formation of acid drainage from high-sulfur coal refuse by inhibition of iron- and sulfur-oxidizing microorganisms. I. Preliminary experiments in controlled shaken flasks.

    PubMed

    Dugan, P R

    1987-01-01

    Changes of pH and sulfate concentration in high-sulfur coal refuse slurries are used as measurements of microbial pyrite oxidation in the laboratory. Sodium lauryl sulfate (SLS), alkylbenzene sulfonate (ABS), benzoic acid (BZ) and combinations of SLS plus BZ and ABS plus BZ effectively inhibited formation of sulfate and acid when added in concentrations greater than 50 mg/L to inoculated 20 or 30% coal refuse slurries. Here 25 mg/L concentrations of SLS, ABS, and ABS + BZ stimulated acid production. Formic, hexanoic, oxalic, propionic, and pyruvic acids at 0.1% concentrations were also effective inhibitors. Four different lignin sulfonates were only slightly effective inhibitors at 0.1% concentrations. It was concluded that acid formation resulting from microbial oxidation in high-sulfur coal refuse can be inhibited.

  13. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  14. Characterizing reduced sulfur compounds and non-methane volatile organic compounds emissions from a swine concentrated animal feeding operation

    NASA Astrophysics Data System (ADS)

    Rumsey, Ian Cooper

    Reduced sulfur compounds (RSCs) and non-methane volatile organic compounds (NMVOCs) emissions from concentrated animal feeding operations (CAFOs) have become a potential environmental and human health concern. Both RSCs and NMVOCs contribute to odor. In addition, RSCs also have the potential to form fine particulate matter (PMfine) and NMVOCs the potential to form ozone. Measurements of RSCs and NMVOCs emissions were made from both an anaerobic lagoon and barn at a swine CAFO in North Carolina. Emission measurements were made over all four seasonal periods. In each seasonal period, measurements were made from both the anaerobic lagoon and barn for ˜1 week. RSC and NMVOCs samples were collected using passivated canisters. Nine to eleven canister samples were taken from both the lagoon and barn over each sampling period. The canisters were analyzed ex-situ using gas chromatography flame ionization detection (GC-FID). Hydrogen sulfide (H2S) measurements were made in-situ using a pulsed fluorescence H2S/SO2 analyzer. During sampling, measurements of meteorological and physiochemical parameters were made. H2S had the largest RSC flux, with an overall average lagoon flux of 1.33 mug m-2 min-1. The two main RSCs identified by the GC-FID, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), had overall average lagoon fluxes an order of magnitude lower, 0.12 and 0.09 mug m-2 min-1, respectively. Twelve significant NMVOCs were identified in lagoon samples (ethanol, 2-ethyl-1-hexanol, methanol, acetaldehyde, decanal, heptanal, hexanal, nonanal, octanal, acetone, methyl ethyl ketone, and 4-methylphenol). The overall average fluxes for these NMVOCs, ranged from 0.08 mug m-2 min-1 (4-methylphenol) to 2.11 mug m-2 min-1 (acetone). Seasonal H2S barn concentrations ranged from 72-631 ppb. DMS and DMDS seasonal concentrations were 2-3 orders of magnitude lower. There were six significant NMVOCs identified in barn samples (methanol, ethanol, acetone 2-3 butanedione, acetaldehyde

  15. Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation.

    PubMed

    Liu, Ze-Shen; Wu, Xiao-Lei; Kida, Kenji; Tang, Yue-Qin

    2012-09-01

    Although concentrated sulfuric acid saccharification is not a novel method for breaking down lignocellulosic biomass, the process by which saccharification affects biomass decomposition, sugar recovery, and by-product generation is not well studied. The present study employed Taguchi experimental design to study the effects of seven parameters on corn stover concentrated sulfuric acid saccharification. The concentration of sulfuric acid and the temperature of solubilization significantly affect corn stover decomposition. They also have significant effects on glucose and xylose recoveries. Low generation of furfural and 5-hydroxymethyl-2-furfural (5HMF) was noted and organic acids were the main by-products detected in the hydrolysate. Temperature also significantly affected the generation of levulinic acid and formic acid; however, acetic acid generation was not significantly influenced by all seven parameters. The ratio of acid to feedstock significantly affected glucose recovery, but not total sugar recovery. The corn stover hydrolysate was well fermented by both glucose- and xylose-fermenting yeast strains.

  16. [VOLATILE FATTY ACIDS IN SALIVA--BIOLOGICAL MARKERS FOR ASSESSMENT OF DRINKING WATER POLLUTANTS ON CHILDREN].

    PubMed

    Akaizina, A E; Akaizin, E S; Starodumov, V L

    2015-01-01

    The use of modern methods of analysis is aimed to the search of ultimately novel biological markers. Volatile fatty acids in saliva were not used previously for the assessment of the effects of contaminating substances in the drinking water on the body of children. The aim of the study is to investigate the informative value of volatile fatty acids in saliva as biological markers of the impact for the assessment of the exposure to contaminating substances in the drinking water on the body of children. Hygienic assessment of drinking water quality was made according to data of the own research of drinking water from centralized supply system of the city of Ivanovo. For the comparison of indices there was investigated the drinking water from wells at the village Podvyaznovsky of the Ivanovo region. In the Ivanovo water from the distributing network of centralized drinking water supply system of the city of Ivanovo, there were identified indices of the permanganate oxidation and the total concentration of residual chlorine exceeding norms, and also chloroform and carbon tetrachloride were in concentrations not exceeding the norms. Studied by us the samples of drinking water from Podvyaznovsky village wells, the water met the standards for all investigated parameters. The was studied the informative value of volatile fatty acids in the saliva of children aged 9-14 years from the city of Ivanovo and the Podvyaznovsky village, Ivanovo region. There was established the fall in acetic, butyric, isovaleric acids and the total amount of volatile fatty acids in the saliva in children of the city of Ivanovo, consuming water treated with chlorine of Ivanovo centralized drinking water supply system. Indices of volatile fatty acids in saliva are informative for the assessment of the impact of organic pollutants, residual chlorine and organic chlorine compounds of drinking water on the body of children.

  17. Determination of volatile fatty acids in landfill leachates by ion-exclusion chromatography.

    PubMed

    Yamamoto, Atsushi; Yasuhara, Akio; Kodama, Shuji; Matsunaga, Akinobu; Suzuki, Shigeru; Mohri, Shino; Yamada, Masato

    2004-03-01

    An ion-exclusion chromatographic method with on-line desalinization for the determination of volatile fatty acids in landfill leachates is described. Highly sensitive conductivity detection of the organic acids was achieved by using dilute p-hydroxybenzoic acid solution as an eluent. Interference with mineral acids was reduced by treatment with barium chloride solution prior to desalinization. A silver-loaded cation-exchange guard column for the desalinization was installed in series with the analytical column to avoid the contamination of organic acids. This method features detection limits of 0.01 mg L(-1) formic acid, 0.02 mg L(-1) acetic acid, 0.05 mg L(-1) propionic acid, and 0.1 mg L(-1) butyric acid, respectively, with an injection of 20 microL sample. Application of the on-line desalinization LC method is illustrated for leachate samples from a Japanese sanitary landfill.

  18. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    PubMed

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.

  19. Uptake of formaldehyde by sulfuric acid solutions - Impact on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Pfaff, Jeanne; Jayaweera, Indira; Prather, Michael J.

    1993-01-01

    The study investigates the uptake of CH2O by low temperature sulfuric acid solutions representative of global stratospheric particulate. It is argued that if similar uptake occurs under stratospheric pressures of CH2O, i.e., 1000 times lower than used in the present study, then the removal of CH2O from the gas phase can take away a significant source of odd hydrogen in the mid- and high-latitude lower stratosphere. It is shown that with the inclusion of this reaction, concentrations of OH and H2O are reduced by as much as 4 percent under background levels of aerosols and more than 15 percent under elevated (volcanic) conditions. The accumulation of CH2O in stratospheric aerosols over a season, reaching about 1 M solutions, will alter the composition and may even change the reactivity of these sulfuric acid-water mixtures.

  20. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  1. Alum recovery and wastewater sludge stabilization with sulfuric acid.

    PubMed

    Jiménez, B; Martínez, M; Vaca, M

    2007-01-01

    Coagulation-flocculation is used to remove helminth ova from wastewater intended for agricultural reuse. Nevertheless, it has the drawback of producing a large amount of sludge which together with the chemicals used to treat the wastewater increases the operating cost. This can be overcome by recovering and recycling the aluminium contained in the sludge. This paper presents how an acid recovery process was applied to an Advanced Primary Treatment (APT) sludge to partially treat it and to reduce its quantity. This is a method applied several decades ago in water sludge that has not been used in secondary wastewater sludge to recover aluminium and to inactivate microorganisms. By adding sulphuric acid to a 6%TS sludge, more than 70% of the aluminium added during the coagulation flocculation process was recovered when a pH of 2 was maintained during 30 minutes and at 300 rpm of mixing conditions. This way the sludge was reduced by 45% in volume and by 63% by mass, inactivating 5 logs of faecal coliforms and 68% of helminth ova. Due to the lower alum consumption, the operating cost of the APT is reduced by 3.78 US$/1,000 m(3).

  2. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  3. MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...

  4. Volatilization of iodine from nitric acid using peroxide

    DOEpatents

    Cathers, G.I.; Shipman, C.J.

    1975-10-21

    A method for removing radioactive iodine from nitric acid solution by adding hydrogen peroxide to the solution while concurrently holding the solution at the boiling point and distilling hydrogen iodide from the solution is reported.

  5. Stochastic analysis of current fluctuations during general corrosion of stainless steel in sulfuric acid

    SciTech Connect

    Petek, A.; Dolecek, V.; Vlachy, V.

    1997-12-01

    Current fluctuations during general corrosion of stainless steel in sulfuric acid were studied experimentally and analyzed using a simple electrochemical model. Stochastic behavior of the metal-electrolyte interface in the model was based upon the assumption that elementary fluctuation sources were related to fluxes of electrons that pass from a metal to electron-acceptor ions in solution. The number of successful electron transfers obeyed a Gaussian distribution, from which the corrosion current density and transfer coefficients could be determined.

  6. Pretreatment of Human Epidermal Keratinocytes In Vitro With Ethacrynic Acid Reduces Sulfur Mustard Cytotoxicity

    DTIC Science & Technology

    2004-01-01

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES...Ethacrynic Acid Reduces 5b. GRANT NUMBER Sulfur Mustard Toxicity 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Gross, CL, Nipwoda, MT, Nealley

  7. A global three-dimensional model of the stratospheric sulfuric acid layer

    NASA Technical Reports Server (NTRS)

    Golombek, Amram; Prinn, Ronald G.

    1993-01-01

    A 3D model which encompasses SO2 production from OCS, followed by its oxidation to gaseous H2SO4, the condensation-evaporation equilibrium of gaseous and particulate H2SO4, and finally particle condensation and rainout, is presently used to study processes maintaining the nonvolcanically-perturbed stratosphere's sulfuric acid layer. A comparison of the results thus obtained with remotely sensed stratospheric aerosol extinction data shows the model to simulate the general behavior of stratospheric aerosol extinction.

  8. Design bases: Bauxite-sulfuric acid feed facilities 100-K Area

    SciTech Connect

    Etheridge, E.L.

    1993-06-10

    This document defines the objective, bases, and functional requirements governing the preparation of detail design of the bauxite-sulfuric acid feed facilities to be installed in the 183-KE and KW buildings. These facilities will produce the chemical coagulant used in the treatment of Columbia River water in the water plants; they will replace existing liquid alum feed systems. The treated water will be used as reactor coolant.

  9. The dynamics of sorption of sulfuric acid by weakly basic polyacrylic anion exchangers

    NASA Astrophysics Data System (ADS)

    Mamchenko, A. V.; Kushnir, T. V.

    2009-05-01

    The nonequilibrium dynamics of sorption of sulfuric acid by free base forms of Amberlite IRA-67 and Lewatite VP.OC.1072 weakly basic anion exchangers is studied. It is established that, in hydrodynamic regimes of filtration, which are typical of OH filters of the first stage of water-desalting plants, the limiting stage of sorption kinetics is inside diffusion. It is concluded that the process is correctly described by an asymptotic solution to the inside-diffusion model of sorption dynamics.

  10. Formation and growth of molecular clusters containing sulfuric acid, water, ammonia, and dimethylamine.

    PubMed

    DePalma, Joseph W; Doren, Douglas J; Johnston, Murray V

    2014-07-24

    The structures and thermochemistry of molecular clusters containing sulfuric acid, water, ammonia, and/or dimethylamine ((CH3)2NH or DMA) are explored using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Clusters are of the general form [(BH(+))n(HSO4(-))n(H2O)y], where B = NH3 or DMA, 2 ≤ n ≤ 8, and 0 ≤ y ≤ 10. Cluster formulas are written based on the computed structures, which uniformly show proton transfer from each sulfuric acid molecule to a base molecule while the water molecules remain un-ionized. Cluster formation is energetically favorable, owing to strong electrostatic attraction among the ions. Water has a minor effect on the energetics of cluster formation, lowering the free energy of formation by ∼ 10% depending on the cluster size and number of water molecules. Cluster growth (addition of one base molecule and one sulfuric acid molecule to a pre-existing cluster) and base substitution (substituting DMA for ammonia) are also energetically favorable processes for both anhydrous and hydrated clusters. However, the effect of water is different for different bases. Hydrated ammonium bisulfate clusters have a more favorable free energy for growth (i.e., incrementing n with fixed y) than anhydrous clusters, while the reverse is observed for dimethylammonium bisulfate clusters, where the free energy for growth is more favorable for anhydrous clusters. The substitution of DMA for ammonia in bisulfate clusters is favorable but exhibits a complex water dependence. Base substitution in smaller bisulfate clusters is enhanced by the presence of water, while base substitution in larger bisulfate clusters is less favorable for hydrated clusters than that for anhydrous clusters. While DMA substitution can stabilize small clusters containing one or a few sulfuric acid molecules, the free energy advantage of forming amine clusters relative to ammonia clusters becomes less

  11. Numerical Simulation of Condensation of Sulfuric Acid and Water in a Large Two-stroke Marine Diesel Engine

    NASA Astrophysics Data System (ADS)

    Walther, J. H.; Karvounis, N.; Pang, K. M.

    2016-11-01

    We present results from computational fluid dynamics simulations of the condensation of sulfuric acid (H2SO 4) and water (H2 O) in a large two-stroke marine diesel engine. The model uses a reduced n-heptane skeletal chemical mechanism coupled with a sulfur subset to simulate the combustion process and the formation of SOx and H2SO 4 . Condensation is modeled using a fluid film model coupled with the Eulerian in-cylinder gas phase. The fluid film condensation model is validated against both experimental and numerical results. The engine simulations reveal that the fluid film has a significant effect on the sulfuric acid gas phase. A linear correlation is found between the fuel sulfur content and the sulfuric acid condensation rate. The initial in-cylinder water content is found not to affect the sulfuric acid condensation but it has a high impact on water condensation. The scavenging pressure level shows an inverse correlation between pressure and condensation rate due to change in the flame propagation speed. Finally, increasing the cylinder liner temperature significantly decreases water condensation but has a negligible influence on the condensation of sulfuric acid.

  12. Sulfuric acid-induced changes in the physiology and structure of the tracheobronchial airways

    SciTech Connect

    Gearhart, J.M.; Schlesinger, R.B.

    1989-02-01

    Sulfuric acid aerosols occur in the ambient particulate mode due to atmospheric conversion from sulfur dioxide (SO2). This paper describes the response of the rabbit tracheobronchial tree to daily exposures to sulfuric acid (H2SO4) aerosol, relating physiological and morphological parameters. Rabbits were exposed to filtered air (sham control) or to submicrometer-sized H2SO4 at 250 micrograms/m3 H2SO4, for 1 hr/day, 5 days/week, with sacrifices after 4, 8, and 12 months of acid (or sham) exposure; some rabbits were allowed a 3-month recovery after all exposures ended. H2SO4 produced a slowing of tracheobronchial mucociliary clearance during the first weeks of exposure; this change became significantly greater with continued exposures and did not improve after exposures ended. Airway hyperresponsiveness was evident by 4 months of acid exposure; the condition worsened by 8 months of exposure and appeared to stabilize after this time. Standard pulmonary mechanics parameters showed no significant trends with repeated acid exposure, except for a decline in dynamic lung compliance in animals exposed to acid for 12 months. Lung tissue samples obtained from exposed animals showed a shift toward a greater frequency of smaller airways compared to control, an increase in epithelial secretory cell density in smaller airways, and a shift from neutral to acidic glycoproteins in the secretory cells. The effect on airway diameter resolved after the exposures ceased, but the secretory cell response did not return to normal within the recovery period. No evidence of inflammatory cell infiltration was found due to H2SO4 exposure. Thus, significant alterations in the physiology of the tracheobronchial tree have been demonstrated due to repeated 1-hr exposures to a concentration of H2SO4 that is one-fourth the current 8-hr threshold limit value for exposure in the work environment.

  13. Heterogeneous interactions of chlorine nitrate, hydrogen chloride, and nitric acid with sulfuric acid surfaces at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Rossi, Michel J.; Golden, David M.

    1988-01-01

    The heterogeneous interactions of ClONO2, HCl, and HNO3 with sulfuric acid surfaces were studied using a Knudsen cell flow reactor. The surfaces studied, chosen to simulate global stratospheric particulate, were composed of 65-75 percent H2SO4 solutions at temperatures in the range -63 to -43 C. Heterogeneous loss, but not reaction, of HNO3 and HCl occurred on these surfaces; the measured sticking coefficients are reported. Chlorine nitrate reacted on the cold sulfuric acid surfaces, producing gas-phase HOCl and condensed HNO3. CLONO2 also reacted with HCl dissolved in the 65-percent H2SO4 solution at -63 C, forming gaseous Cl2. In all cases studied, the sticking and/or reaction coefficients were much larger for the 65-percent H2SO4 solution at -63 C than for the 75-percent solution at -43 C.

  14. Real-time analysis of sulfur-containing volatiles in Brassica plants infested with root-feeding Delia radicum larvae using proton-transfer reaction mass spectrometry

    PubMed Central

    van Dam, Nicole M.; Samudrala, Devasena; Harren, Frans J. M.; Cristescu, Simona M

    2012-01-01

    Background and aims Plants damaged by herbivores emit a variety of volatile organic compounds (VOCs). Here we used proton-transfer reaction mass spectrometry (PTR-MS) as a sensitive detection method for online analysis of herbivore-induced VOCs. Previously, it was found that Brassica nigra plants emit several sulfur-containing VOCs when attacked by cabbage root fly (Delia radicum) larvae with m/z 60 as a marker for the formation of allylisothiocyanate from the glucosinolate sinigrin. We tested the hypothesis that m/z 60 emission occurs only in plants with sinigrin in their roots. Additionally, we tested the hypothesis that methanethiol, dimethylsulfide and dimethyldisulfide are only emitted after larval infestation. Methodology Proton-transfer reaction mass spectrometry was used to track sulfur-containing VOCs from six different species of Brassica over time. The roots were either artificially damaged or infested with cabbage root fly larvae. Glucosinolate profiles of the roots were analysed using high-pressure liquid chromatography and compared with VOC emissions. Principal results Brassica nigra, B. juncea and B. napus primarily emitted m/z 60 directly after artificial damage or root fly infestation. Sulfide and methanethiol emissions from B. nigra and B. juncea also increased after larval damage but much later (6–12 h after damage). Brassica rapa, B. oleracea and B. carinata principally emitted methanethiol after artificial and after larval damage. Brassica oleracea and B. carinata showed some increase in m/z 60 emission after larval damage. Comparison with root glucosinolate profiles revealed that sinigrin cannot be the only precursor for m/z 60. Conclusions The principal compound emitted after root damage is determined by the plant species, and not by damage type or root glucosinolate composition. Once determined, the principal compounds may be used as markers for identifying damaged or infested plants. Further analyses of plant enzymes involved in the

  15. Sulfur amino acid metabolism limits the growth of children living in environments of poor sanitation.

    PubMed

    Bickler, Stephen W; Ring, Jason; De Maio, Antonio

    2011-09-01

    Environmental enteropathy has been identified as a cause of poor growth in children living in low-income countries, but a mechanism has not been well defined. We suggest changes in sulfur amino acid metabolism can in part explain the poor growth and possibly the histological changes in the small bowel, which is the hallmark of environmental enteropathy. In environments of poor sanitation, where infection is common, we propose increased oxidative stress drives methionine metabolism toward cystathionine synthesis. This "cystathionine siphon" limits sulfur amino acids from participating in critical protein synthesis pathways. Increased expression of cystathionine β-synthase (CBS) could be one mechanism, as lipopolysaccharide and TNFα increase activity of this enzyme in vivo. CBS catalyzes the first of two steps in the transsulfuration pathway that converts homocysteine to cysteine. As enterocytes are one of the most rapidly proliferating cells in the body, we suggest diminished translation might also be important in the barrier failure observed in environmental enteropathy. Identifying sulfur amino acid metabolism as a mechanism leading to poor growth provides a new testable hypothesis for the undernutrition observed in children living in settings of poor sanitation.

  16. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  17. Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid.

    PubMed

    Kürten, Andreas; Rondo, Linda; Ehrhart, Sebastian; Curtius, Joachim

    2012-06-21

    The accurate measurement of the gaseous sulfuric acid concentration is crucial within many fields of atmospheric science. Instruments utilizing chemical ionization mass spectrometry (CIMS) measuring H(2)SO(4), therefore, require a careful calibration. We have set up a calibration source that can provide a stable and adjustable concentration of H(2)SO(4). The calibration system initiates the production of sulfuric acid through the oxidation of SO(2) by OH. The hydroxyl radical is produced by UV photolysis of water vapor. A numerical model calculates the H(2)SO(4) concentration provided at the outlet of the calibration source. From comparison of this concentration and the signals measured by CIMS, a calibration factor is derived. This factor is evaluated to be 1.1 × 10(10) cm(-3), which is in good agreement with values found in the literature for other CIMS instruments measuring H(2)SO(4). The calibration system is described in detail and the results are discussed. Because the setup is external to the CIMS instrument, it offers the possibility for future CIMS intercomparison measurements by providing defined and stable concentrations of sulfuric acid.

  18. Thoracic Duct Chylous Fistula Following Severe Electric Injury Combined with Sulfuric Acid Burns: A Case Report.

    PubMed

    Chang, Fei; Cheng, Dasheng; Qian, Mingyuan; Lu, Wei; Li, Huatao; Tang, Hongtai; Xia, Zhaofan

    2016-10-11

    BACKGROUND As patients with thoracic duct injuries often suffer from severe local soft tissue defects, integrated surgical treatment is needed to achieve damage repair and wound closure. However, thoracic duct chylous fistula is rare in burn patients, although it typically involves severe soft tissue damage in the neck or chest. CASE REPORT A 32-year-old male patient fell after accidentally contacting an electric current (380 V) and knocked over a barrel of sulfuric acid. The sulfuric acid continuously poured onto his left neck and chest, causing combined electrical and sulfuric acid burn injuries to his anterior and posterior torso, and various parts of his limbs (25% of his total body surface area). During treatment, chylous fistula developed in the left clavicular region, which we diagnosed as thoracic duct chylous fistula. We used diet control, intravenous nutritional support, and continuous somatostatin to reduce the chylous fistula output, and hydrophilic silver ion-containing dressings for wound coverage. A boneless muscle flap was used to seal the left clavicular cavity, and, integrated, these led to resolution of the chylous fistula. CONCLUSIONS Patients with severe electric or chemical burns in the neck or chest may be complicated with thoracic duct injuries. Although conservative treatment can control chylous fistula, wound cavity filling using a muscle flap is an effective approach for wound healing.

  19. A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte

    SciTech Connect

    Li, YF; Huang, K; Xing, YC

    2012-10-30

    We demonstrate a type of carbon nanotube based buckypaper cathode in a hybrid electrolyte Li-air battery (HyLAB) that showed outstanding discharging performances. The HyLAB has sulfuric acid as the catholyte and a large active electrode area (10 cm(2)). The active cathode layer was made from a buckypaper with 5 wt.% Pt supported on carbon nanotubes (Pt/CNTs) for oxygen reduction and evolution. A similar cathode was constructed with a catalyst of 5 wt.% Pt supported on carbon black (Pt/CB). It is demonstrated that sulfuric acid can achieve high discharging current densities while maintaining relatively high cell potentials. The cell with Pt/CNTs showed a much better performance than with Pt/CB at high current densities. The HyLAB with Pt/CNTs achieved a discharging capacity of 306 mAh/g and a cell voltage of 3.15 V at 0.2 mA/cm(2). The corresponding specific energy is 1067 Wh/kg based on the total weight of the sulfuric acid. Slow decrease in performance was observed, but it can be recovered by refilling the cell with new electrolyte after continuous discharging of more than 75 h. A charge-discharge experiment at 0.2 mA/cm(2) showed that the cell was rechargeable with a capacity of more than 300 mAh/g. (c) 2012 Elsevier Ltd. All rights reserved.

  20. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

  1. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    PubMed

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  2. Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Wu, Ling-Yan; Wang, Tian-He; Ge, Mao-Fa; Wang, Wei-Gang

    2012-01-12

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol (SOA) formation from isoprene and its gas-phase oxidation products, but the kinetics and chemical mechanism remain largely uncertain. Here we report the first measurement of uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide in the temperature range of 253-293 K. The steady-state uptake coefficients were acquired and increased quickly with increasing sulfuric acid concentration and decreasing temperature. Propyne, acetone, and 2,3-dihydroxymethacrylic acid were suggested as the products. The chemical mechanism is proposed to be the oxidation of carbonyl group and C═C double bonds by peroxide hydrogen in acidic environment, which could explain the large content of polyhydroxyl compounds in atmospheric fine particles. These results indicate that multiphase acid-catalyzed oxidation of methacrolein by hydrogen peroxide can contribute to SOA mass in the atmosphere, especially in the upper troposphere.

  3. Formaldehyde instrument development and boundary layer sulfuric acid: Implications for photochemistry

    NASA Astrophysics Data System (ADS)

    Case Hanks, Anne Theresa

    This work presents the development of a laser-induced fluorescence technique to measure atmospheric formaldehyde. In conjunction with the technique, the design of a compact, narrow linewidth, etalon-tuned titanium: sapphire laser cavity which is pumped by the second harmonic of a kilohertz Nd:YAG laser is also presented. The fundamental tunable range is from 690-1100 nm depending on mirror reflectivities and optics kit used. The conversion efficiency is at least 25% for the fundamental, and 2-3% for intracavity frequency doubling from 3.5-4W 532 nm pump power. The linewidth is <0.1 cm-1, and the pulsewidth is 18 nsec. Applications of this cavity include the measurement of trace gas species by laser-induced fluorescence, cavity ringdown spectroscopy, and micropulse lidar in the UV-visible region. Also presented are observations of gas-phase sulfuric acid from the NEAQS-ITCT 2K4 (New England Air Quality Study--- Intercontinental Transport and Chemical Transformation) field campaign in July and August 2004. Sulfuric acid values are reported for a polluted environment and possible nucleation events as well as particle growth within the boundary layer are explored. Sulfate production rates via gas phase oxidation of sulfur dioxide are also reported. This analysis allows an important test of our ability to predict sulfuric acid concentration and probe its use as a fast time response photochemical tracer for the hydroxyl radical, OH. In comparison, the NASA time-dependent photochemical box model is used to calculate OH concentration. Nighttime H2SO4 values are examined to test our understanding of nocturnal OH levels and oxidation processes. In comparison, sulfuric acid from a large ground based mission in Tecamac, Mexico (near the northern boundary of Mexico City) during MIRAGE-Mex field campaign (March 2006) is presented. This and other measurements are used to characterize atmospheric oxidation and predict sulfuric acid and OH concentrations at the site. The

  4. Advances in Acid Concentration Membrane Technology for the Sulfur-Iodine Thermochemical Cycle

    SciTech Connect

    Frederick F. Stewart; Christopher J. Orme

    2006-11-01

    One of the most promising cycles for the thermochemical generation of hydrogen is the Sulfur-Iodine (S-I) process, where aqueous HI is thermochemically decomposed into H2 and I2 at approximately 350 degrees Celsius. Regeneration of HI is accomplished by the Bunsen reaction (reaction of SO2, water, and iodine to generate H2SO4 and HI). Furthermore, SO2 is regenerated from the decomposition of H2SO4 at 850 degrees Celsius yielding the SO2 as well as O2. Thus, the cycle actually consists of two concurrent oxidation-reduction loops. As HI is regenerated, co-produced H2SO4 must be separated so that each may be decomposed. Current flowsheets employ a large amount (~83 mol% of the entire mixture) of elemental I2 to cause the HI and the H2SO4 to separate into two phases. To aid in the isolation of HI, which is directly decomposed into hydrogen, water and iodine must be removed. Separation of iodine is facilitated by removal of water. Sulfuric acid concentration is also required to facilitate feed recycling to the sulfuric acid decomposer. Decomposition of the sulfuric acid is an equilibrium limited process that leaves a substantial portion of the acid requiring recycle. Distillation of water from sulfuric acid involves significant corrosion issues at the liquid-vapor interface. Thus, it is desirable to concentrate the acid without boiling. Recent efforts at the INL have concentrated on applying pervaporation through Nafion-117, Nafion-112, and sulfonated poly(etheretherketone) (S-PEEK) membranes for the removal of water from HI/water and HI/Iodine/water feedstreams. In pervaporation, a feed is circulated at low pressure across the upstream side of the membrane, while a vacuum is applied downstream. Selected permeants sorb into the membrane, transport through it, and are vaporized from the backside. Thus, a concentration gradient is established, which provides the driving force for transport. In this work, membrane separations have been performed at temperatures as high as

  5. Oxaldihydroxamic acid as a new reagent for the fixation of atmospheric sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Paul, Khana Rani; Gupta, V. K.

    In the present investigation 0.01 M aqueous oxaldihydroxamic acid has been used to stabilize the atmospheric sulfur dioxide. The collection efficiency of the reagent was found to be ~ 100% and the sulfite solution was stable for ⩾ 30 days at room temperature. The sulfite ion was estimated colorimetrically using acidified p-aminoazobenzene and formaldehyde. The pink coloured dye, λmax 505 nm, obeys Beer's law in the range of 0.1-1 ppm. The procedure has been optimized with respect to the acidity, time and reagent concentration. The method is simple, free from pH dependence and several commonly present air pollutants do not interfere.

  6. Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse

    SciTech Connect

    Clews, P.J.; Nelson, G.C.; Resnick, P.J.; Matlock, C.A.; Adkins, C.L.J.

    1997-08-01

    Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.

  7. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    PubMed Central

    Takeuchi, T L; Suzuki, I

    1994-01-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation. PMID:8300544

  8. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  9. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  10. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo.

  11. Analysis of the interactions of sulfur-containing amino acids in membrane proteins.

    PubMed

    Gómez-Tamayo, José C; Cordomí, Arnau; Olivella, Mireia; Mayol, Eduardo; Fourmy, Daniel; Pardo, Leonardo

    2016-08-01

    The interactions of Met and Cys with other amino acid side chains have received little attention, in contrast to aromatic-aromatic, aromatic-aliphatic or/and aliphatic-aliphatic interactions. Precisely, these are the only amino acids that contain a sulfur atom, which is highly polarizable and, thus, likely to participate in strong Van der Waals interactions. Analysis of the interactions present in membrane protein crystal structures, together with the characterization of their strength in small-molecule model systems at the ab-initio level, predicts that Met-Met interactions are stronger than Met-Cys ≈ Met-Phe ≈ Cys-Phe interactions, stronger than Phe-Phe ≈ Phe-Leu interactions, stronger than the Met-Leu interaction, and stronger than Leu-Leu ≈ Cys-Leu interactions. These results show that sulfur-containing amino acids form stronger interactions than aromatic or aliphatic amino acids. Thus, these amino acids may provide additional driving forces for maintaining the 3D structure of membrane proteins and may provide functional specificity.

  12. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2012-05-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  13. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    NASA Astrophysics Data System (ADS)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2011-10-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  14. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  15. Effect of tritium on corrosion behavior of chromium in 0.01 N sulfuric acid solution

    SciTech Connect

    Oyaidzu, M.; Isobe, K.; Hayashi, T.

    2015-03-15

    The effects of tritium on the corrosion behavior of chromium in 0.01 N sulfuric solution have been investigated in the present study. Electrochemical experiments have been carried our for pure chromium. At first, the concentration dependence of sulfuric acid solution on anodic polarization behavior of chromium was experimented, resulting in that 0.01 N one was found appropriate. The dependence of both dissolved oxygen and tritium concentration on anodic behavior of chromium were performed. It was found from that the self-passivation of chromium induced by dissolved oxygen was inhibited in tritiated solution resulting in the enhancement of the corrosion. As a consequence it is highly likely that the elution of chromium by highly oxidative radiolysis products would explain the passivation inhibitory effect of SUS304 stainless steel observed in tritiated solutions.

  16. Energy and Angle Resolved Uptake of Organic Gases in Concentrated Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Fiehrer, Kathleen; Nathanson, Gilbert

    1996-03-01

    We have measured the uptake of reactive gases in concentrated (98.8 wtsulfuric acid at 298 K. Our goal is to determine the fraction of gas molecules that dissolve in and react with concentrated sulfuric acid as a function of impact angle, collision energy, and gas molecule basicity (pKBH+). These gases include olefins, alcohols, ethers, aldehydes, and carboxylic acids. We have investigated how scattering and solvation compete at high and low impact energies and at grazing and perpendicular approach directions. We find that the sticking probability decreases slowly with increasing impact energy and with more grazing angle of incidence. However, the sticking probabilities change dramatically with gas functionality and scale monotonically with the molecule's solution phase basicity. Thus, the sticking probability decreases in the order ethanol, dimethyl ether, formic acid, acetaldehyde, and propene.

  17. Examination of Organic Reactions in UT/LS Aerosols: Temperature Dependence in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Michelsen, R. R.

    2004-12-01

    Sulfuric acid has been used for decades as an industrial catalyst for organic reactions, but its parallel role in atmospheric aerosols is relatively unexplored, despite identification of a wide array of organic compounds in particles. Several recent studies have demonstrated possible reactions in acidic particles, generally involving carbonyl groups (C=O) and leading to the formation of larger molecules. Reactions of oxygenated organic compounds in acidic solution are most often studied near room temperature, while the sulfate particles of the upper troposphere and lower stratosphere are significantly colder. Our studies of ethanal (acetaldehyde) suggest that reactivity in ~50 wt% H2SO4 solutions may be enhanced at lower temperatures, contrary to expectations. We will present temperature-dependent results of acid catalyzed condensation reactions, leading to formation of higher molecular weight products. Implications for aerosol composition and reactivity will be discussed.

  18. Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction.

    PubMed

    Vriens, Bas; Mathis, Marcel; Winkel, Lenny H E; Berg, Michael

    2015-08-14

    Biologically produced volatile-alkylated Se and S compounds play an important role in the global biogeochemical Se and S cycles, are important constituents of odorous industrial emissions, and contribute to (off-)flavors in food and beverages. This study presents a fully automated direct-immersion solid-phase microextraction (DI-SPME) method coupled with capillary gas chromatography-mass spectrometry (GC/MS) for the simultaneous quantification of 10 volatile-alkylated Se and S compounds in complex aqueous media. Instrumental parameters of the SPME procedure were optimized to yield extraction efficiencies of up to 96% from complex aqueous matrices. The effects of sample matrix composition and analyte transformation during sample storage were critically assessed. With the use of internal standards and procedural calibrations, the DI-SPME-GC/MS method allows for trace-level quantification of volatile Se and S compounds in the ng/L range (e.g. down to 30 ng/L dimethyl sulfide and 75 ng/L dimethyl selenide). The applicability and robustness of the presented method demonstrate that the method may be used to quantify volatile Se and S compounds in complex aqueous samples, such as industrial effluents or food and beverage samples.

  19. Porewater geochemistry of inland Acid sulfate soils with sulfuric horizons following postdrought reflooding with freshwater.

    PubMed

    Creeper, Nathan L; Shand, Paul; Hicks, Warren; Fitzpatrick, Rob W

    2015-05-01

    Following the break of a severe drought in the Murray-Darling Basin, rising water levels restored subaqueous conditions to dried inland acid sulfate soils with sulfuric horizons (pH <3.5). Equilibrium dialysis membrane samplers were used to investigate in situ changes to soil acidity and abundance of metals and metalloids following the first 24 mo of restored subaqueous conditions. The rewetted sulfuric horizons remained severely acidified (pH ∼4) or had retained acidity with jarosite visibly present after 5 mo of continuous subaqueous conditions. A further 19 mo of subaqueous conditions resulted in only small additional increases in pH (∼0.5-1 pH units), with the largest increases occurring within the uppermost 10 cm of the soil profile. Substantial decreases in concentrations of some metal(loid)s were observed with time most likely owing to lower solubility and sorption as a consequence of the increase in pH. In deeper parts of the profiles, porewater remained strongly buffered at low pH values (pH <4.5) and experienced little progression toward anoxic circumneutral pH conditions over the 24 mo of subaqueous conditions. It is proposed that low pH conditions inhibited the activity of SO-reducing bacteria and, in turn, the in situ generation of alkalinity through pyrite production. The limited supply of alkalinity in freshwater systems and the initial highly buffered low pH conditions were also thought to be slowing recovery. The timescales involved for a sulfuric horizon rewetted by a freshwater body to recover from acidic conditions could therefore be in the order of several years.

  20. Poly(L-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application.

    PubMed

    Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Eun Seong

    2012-09-01

    In order to develop a novel functional poly(L-amino acid) that can dissolve in volatile organic solvents, we prepared poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol) [poly(L-Asp-g-DEAP)-b-PEG] via the conjugation of 3-diethylaminopropyl (DEAP) to carboxylate groups of poly(L-Asp) (M(n) 4 K)-b-PEG (M(n) 2 K). This poly(L-aspartic acid) derivative evidenced a relatively high solubility in volatile organic solvents such as dichloromethane, chloroform, and acetone. We fabricated a model nanostructure (i.e., polymeric micelle) using poly(L-Asp-g-DEAP)-b-PEG by the film rehydration method, which involves the simple removal of the volatile organic solvent (dichloromethane) used to dissolve polymer, reducing concerns about organic solvents remaining in a nano-sized particle. Interestingly, this micelle showed the pH-stimulated release of encapsulated model drug [i.e., doxorubicin (DOX)] due to the protonation of DEAP according to the pH of the solution. We expect that this poly(L-aspartic acid) derivative promises to provide pharmaceutical potential for constituting a new stimuli-sensitive drug carrier for various drug molecules.

  1. MELCOR-H2 Benchmarking of the SNL Transient Sulfuric Acid Decomposition Experiments

    SciTech Connect

    Rodriguez, Sal B.; Gauntt, Randall O.; Gelbard, Fred; Pickard, Paul; Cole, Randy; McFadden, Katherine; Drennen, Tom; Martin, Billy; Louie, David; Archuleta, Louis; Revankar, Shripad T.; Vierow, Karen; El-Genk, Mohamed; Tournier, Jean Michel

    2007-07-01

    MELCOR is a world-renowned nuclear reactor safety analysis code that is used to simulate both light water and gas-cooled reactors. MELCOR-H2 is an extension of MELCOR that can model detailed nuclear reactors that are fully coupled with modular secondary-system components and the sulfur iodine (SI) thermochemical cycle for the generation of hydrogen and electricity. The models are applicable to both steady state and transient calculations. Previous work has shown that the hydrogen generation rate calculated by MELCOR-H2 for the SI cycle was within the expected theoretical yield, thus providing a macroscopic confirmation that MELCOR-H2's computational approach is reasonable. However, in order to better quantify its adequacy, benchmarking of the code with experimental data is required. Sulfuric acid decomposition experiments were conducted during late 2006 at Sandia National Laboratories, and MELCOR-H2 was used to simulate them. We developed an input deck based on the experiment's geometry, as well as the initial and boundary conditions, and then proceeded to compare the experimental acid conversion efficiency and SO{sub 2} production data with the code output. The comparison showed that the simulation output was typically within less than 10% of experimental data, and that key experimental data trends such as acid conversion efficiency, molar acid flow rate, and solution mole % were computed adequately by the MELCOR-H2. (authors)

  2. Effects of simulated sulfuric acid rain on yield, growth, and foliar injury of several crops

    SciTech Connect

    Lee, J.J.; Neely, G.E.; Perrigan, S.C.; Grothaus, L.C.

    1980-10-01

    This study was designed to reveal patterns of response of major United States crops to sulfuric acid rain. Potted plants were grown in field chambers and exposed to simulated sulfuric acid rain (pH 3.0, 3.5 or 4.0) or to a control rain (pH 5.6). At harvest, the weights of the marketable portion, total aboveground portion and roots were determined for 28 crops. Of these, marketable yield production was inhibited for 5 crops (radish, beet, carrot, mustard greens, broccoli), stimulated for 6 crops (tomato, green pepper, strawberry, alfalfa, orchardgrass, timothy), and ambiguously affected for 1 crop (potato). In addition, stem and leaf production of sweet corn was stimulated. Visible injury of tomatoes might have decreased their marketability. No statistically significant effects on yield were observed for the other 15 crops. The results suggest that the likelihood of yield being affected by acid rain depends on the part of the plant utilized, as well as on species. Effects on the aboveground portions of crops and on roots are also presented. Plants were regularly examined for foliar injury associated with acid rain. Of the 35 cultivars examined, the foliage of 31 was injured at pH 3.0, 28 at pH 3.5, and 5 at pH 4.0. Foliar injury was not generally related to effects on yield. However, foilar injury of swiss chard, mustard greens and spinach was severe enough to adversely affect marketability.

  3. The infrared optical constants of sulfuric acid at 250 K. [spectral reflectance measurement of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Williams, D.

    1976-01-01

    Results are presented for measurements of the IR spectral reflectance at near-normal incidence of aqueous solutions of sulfuric acid with acid concentrations of 75% and 95.6% by weight. Kramers-Kronig analyses of the reflectance data are employed to obtain values of the optical constants n(nu) and k(nu) in the spectral range from 400 to 6000 cm to the -1 power. The optical constants of these solutions at 250 K and 300 K are compared. It is found that in spectral regions remote from strong absorption bands, the values of the n(nu) indices obtained at 250 K agree with the values given by Lorentz-Lorenz correction of the same indices at 300 K. All absorption bands observed at 300 K are found to be present at 250 K with slight shifts in frequency and with significant differences in the k(nu) indices at the band maxima. Based on these results, it is concluded that the clouds of Venus probably consist of droplets of aqueous solutions of sulfuric acid with acid concentrations of about 75% by weight.

  4. Effects of sulfur dioxide, hydrogen peroxide and sulfuric acid on the de novo synthesis of PCDD/F and PCB under model laboratory conditions.

    PubMed

    Pekárek, V; Puncochár, M; Bures, M; Grabic, R; Fiserová, E

    2007-01-01

    In a laboratory model system consisting of fly ash from municipal waste incinerator, CuCl2 x 2H2O, NaCl and activated carbon in N2 + 10% O2 atmosphere, the de novo synthetic reactions of formation of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) were studied under laboratory conditions in the presence of sulfur dioxide, hydrogen peroxide, and sulfuric acid. It has been found that the formation of PCDD is suppressed by sulfur dioxide more efficiently than the formation of PCDF. A similar effect has also been observed in the presence of hydrogen peroxide. The formation of PCDF is strongly suppressed in the presence of sulfuric acid. On the basis of the experimental results and thermodynamic calculations, the following mechanisms are proposed and discussed: oxidative destruction of PCDD and PCDF oxygen rings, conversion of cupric chloride and possibly also cupric oxide into the non-reactive sulfate, and the Deacon oxychlorination processes catalyzed by cupric chloride.

  5. Acute generalized exanthematous pustulosis (AGEP) due to exposure to sulfuric acid and bromic acid vapor: a case report.

    PubMed

    Bilac, Dilek Bayraktar; Ermertcan, Aylin Turel; Ozturkcan, Serap; Sahin, M Turhan; Temiz, Peyker

    2008-01-01

    Acute generalized exanthematous pustulosis (AGEP, toxic pustuloderma, pustular drug eruption) is a not uncommon cutaneous reaction pattern that is usually related to drug administration. The eruption is of sudden onset and appears 7-10 days after the medication is started. A 22-year-old male patient who was a student at a chemical faculty attended our outpatient clinic with a complaint of pustular eruption on his face. According to his history, the eruption started with pruritus and erythema on his chin 3 days ago and spread to his face and chest. He explained that he had performed an experiment with sulfuric acid and bromic acid and was exposed to their vapor. His dermatological examination revealed erythema and pustules on his cheeks, on his chin, above his upper lip, and on his eyebrows. He also had a few pustules on his chest. There were no ocular, mucous membrane, or pulmonary symptoms. Histopathological examination of the skin biopsy specimen revealed superficial orthokeratosis, focal subcorneal pustule formation, and perivascular chronic inflammatory cell infiltration in superficial dermis. After administration of systemic antihistamines and wet dressing topically, we observed rapid healing of the lesions. Because there was no systemic drug intake in his history, we were concerned that exposure to sulfuric acid and bromic acid vapor caused AGEP in this patient. We present this rare case to show that the vapor of chemical materials may cause AGEP or other drug eruptions.

  6. Impact of addition of aromatic amino acids on non-volatile and volatile compounds in lychee wine fermented with Saccharomyces cerevisiae MERIT.ferm.

    PubMed

    Chen, Dai; Chia, Jing Yee; Liu, Shao-Quan

    2014-01-17

    The impact of individual aromatic amino acid addition (L-phenylalanine, L-tryptophan and L-tyrosine) on non-volatile and volatile constituents in lychee wine fermented with Saccharomyces cerevisiae var. cerevisiae MERIT.ferm was studied. None of the added amino acids had any significant effect on the yeast cell count, pH, soluble solid contents, sugars and ethanol. The addition of L-phenylalanine significantly reduced the production of pyruvic and succinic acids. The addition of each amino acid dramatically reduced the consumption of proline and decreased the production of glycerol. Supplementation of the lychee juice with L-phenylalanine resulted in the formation of significantly higher amounts of 2-phenylethyl alcohol, 2-phenylethyl acetate, 2-phenylethyl isobutyrate and 2-phenylethyl hexanoate. In contrast, supplementation with L-tryptophan and L-tyrosine had negligible effects on the volatile profile of lychee wines. These findings suggest that selectively adding amino acids may be used as a tool to modulate the volatile profile of lychee wines so as to diversify and/or intensify wine flavour and style.

  7. Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: Reevaluation of sulfur reactions during early diagenesis in marine environments

    NASA Astrophysics Data System (ADS)

    Zaback, Doreen A.; Pratt, Lisa M.

    1992-02-01

    The timing and pathways of early diagenetic sulfur transfer from dissolved species in pore waters to solid inorganic and organic compounds in sediments have been studied in the Miocene Monterey Formation, Santa Maria Basin (onshore), California. Correlation between concentrations of total organic carbon (TOC) and total sulfur (TS), in addition to concentrations of titanium, aluminum, total iron, and reactive iron, have been used to infer organic matter reactivity, redox conditions, and relative rates of clastic and biogenic input for each lithofacies. Isotopic compositions of six sulfur species (acid-volatile, disulfide, kerogen, bitumen, sulfate and elemental) have provided information regarding relative timing of sulfur incorporation, sulfate diffusivity in the upper centimeters of the sediments, and the sources of sulfur for individual species. Isotopically, the disulfide species expresses the greatest fractionation relative to estimated values of Miocene seawater sulfate (~ +22‰ CDT). On average, disulfide is depleted in 34S by 10.4%. relative to kerogen and by 9.9‰ relative to acid-volatile sulfide. The δ 34S of bitumen shows no systematic change relative to δ 34S keregon, suggesting the presence of migrated bitumen. Isotopic similarity of sulfate and elemental sulfur to sulfides and bitumen indicates that sulfate and elemental sulfur are chemical and/or biological oxidation products derived from sulfides and bitumen. Consistent ordering of isotopic values for sulfur species (disulfide < acid-volatile sulfide ≤ kerogen) indicates that pyrite precipitated nearest to the sediment-water interface under mildly reducing conditions and with little or no decrease in sulfate concentration relative to seawater. Enrichment of 34S in acid-volatile sulfide and kerogen sulfur resulted from formation of these species at greater depths or in restricted micro-environments under more reducing conditions and with low concentrations of porewater sulfate. The formation of

  8. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  9. Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware basin, New Mexico and Texas

    SciTech Connect

    Hill, C.A. )

    1990-11-01

    Sulfur-isotope data and pH-dependence of the mineral endellite support the hypothesis that Carlsbad Cavern and other caves in the Guadalupe Mountains were dissolved primarily by sulfuric acid rather than by carbonic acid. Floor gypsum deposits up to 10 m thick and native sulfur in the caves are significantly enriched in {sup 32}S; {delta}{sup 34}S values as low as {minus}25.8 {per thousand} (CDT) indicate that the cave sulfur and gypsum are the end products of microbial reactions associated with hydrocarbons. A model for a genetic connection between hydrocarbons in the basin and caves in the Guadalupe Mountains is proposed. As the Guadalupe Mountains were uplifted during the late Pliocene-Pleistocene, oil and gas moved updip in the basin. The gas reacted with sulfate anions derived from dissolution of the Castile anhydrite to form H{sub 2}S, CO{sub 2}, and castile limestone. The hydrogen sulfide rose into the Capitan reef along joints, forereef carbonate beds, or Bell Canyon siliciclastic beds and there reacted with oxygenated groundwater to form sulfuric acid and Carlsbad Cavern. A sulfuric-acid mode of dissolution may be responsible for large-scale porosity of some Delaware basin reservoirs and for oil-field karst reservoirs in other petroleum basins of the world. 8 figs.

  10. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12.

    PubMed

    Yang, Xue; Wan, Chunli; Lee, Duu-Jong; Du, Maoan; Pan, Xiangliang; Wan, Fang

    2014-09-01

    This study adopted rapid alkaline treatment at pH 12 to hydrolyze 66% of total chemical oxygen demands. Then the hydrolyzed liquor was fermented in a continuous-flow stirred reactor to produce volatile fatty acids (VFAs) at 8-h hydraulic retention time and at 35 °C. The maximum VFA productivity reached 365 mg VFAs g(-1) volatile suspended solids in a 45-d operation, with most produced VFAs being acetate and propionate, principally produced by protein degradation. The Bacteroidia, ε-proteobacteria and the Clostridia were identified to be the classes correlating with the fermentation processes. The fermented liquor was applied to denitrifying phosphorus removal process as alternative carbon source after excess phosphorus and nitrogen being recycled via struvite precipitation. Fermented liquors from alkaline hydrolysis-acid fermentation on waste activated sludge are a potential renewable resource for applications that need organic carbons.

  11. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    USGS Publications Warehouse

    Brumbaugh, William G.; Hammerschmidt, Chad R.; Zanella, Luciana; Rogevich, Emily; Salata, Gregory; Bolek, Radoslaw

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM_Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean = 25%) for AVS and from 5.5 to 15% (mean = 10%) for SEM_Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories.

  12. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    USGS Publications Warehouse

    Brumbaugh, W.G.; Hammerschmidt, C.R.; Zanella, L.; Rogevich, E.; Salata, G.; Bolek, R.

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM-Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean=25%) for AVS and from 5.5 to 15% (mean=10%) for SEM-Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories. ?? 2011 SETAC.

  13. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    USGS Publications Warehouse

    Brumbaugh, William G.; Hammerschmidt, Chad R.; Zanella, Luciana; Rogevich, Emily; Salata, Gregory; Bolek, Radoslaw

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM_Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean?=?25%) for AVS and from 5.5 to 15% (mean?=?10%) for SEM_Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories.

  14. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    NASA Astrophysics Data System (ADS)

    Li, Tian; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na+ montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV-vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  15. Pervaporation of Water from Aqueous Sulfuric Acid at Elevated Temperatures Using Nafion® Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2009-01-01

    The concentration of sulfuric acid by pervaporation has been studied using Nafion-112® and Nafion-117® membranes, which have been characterized in terms of flux, permeability, and selectivity at 100 ºC and 120 ºC. Feed concentrations investigated ranged from 40 to over 80 weight percent. In general, water fluxes ranged from 100-8000 g/m2h, depending on feed acid concentration and separations factors as high as 104 were observed. Membrane stability was probed using Dynamic Mechanical Analysis that revealed some embrittlement of the membranes during use. Further studies showed that the embrittlement was due to an interaction with the acid and was not induced by the operating temperature.

  16. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  17. Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.

    PubMed

    Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M

    2013-04-15

    Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale.

  18. Sulfuric-acid-regeneration waste-disposal technology. Final report, June 1985-November 1986

    SciTech Connect

    Balasco, A.A.; Johnson, D.E.; Stahr, J.J.; Stevens, J.I.; Fields, M.A.

    1986-11-01

    All U.S. Army Ammunition Plants (AAPs) having sulfuric acid regeneration (SAR) facilities use lime precipitation as the principal means of acid-wastewater neutralization. This is as an advanced system as is used in industrial practice. However, lime precipitation could not meet zero discharge of pollutants should these be promulgated for the sulfuric-acid industry. In fact it discharges a water high in soluble sulfates. Further, based on the only current experience at Radford AAP, this process is plagued with: excessive scaling, poor pH and turbididty control, and excessive maintenance and downtime. One probable cause of these difficulties is excessive water loads from the SAR plants resulting in inadequate residence time for crystal formation and settling, coupled with the inherent slowness of this chemical reaction. However, it should be pointed out there is an almost total lack of operating data on the adequacy or inadequacy of these lime-precipitation systems to meet even today's standards. Presumably because of concern at one time for soluble sulfate, two AAPs have secondary treatment: 1) ion exchange to remove the soluble calcium (Ca) and sulfate (SO/sub 4/) ions (Volunteer AAP); and 2) barium (Ba) precipitation to remove the soluble SO/sub 4/, followed by ion exchange (Joliet AAP). Secondary treatment would permit total recycle of the process water, thus achieving zero discharge; however, we question the utility of both of these systems in achieving any improvement in the total environment of the watersheds of the plants in question.

  19. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis; de Loos-Vollebregt, Margaretha T. C.; Mora, Juan

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma-mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w- 1) have been compared with the corresponding signals for a 1% w w- 1- nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for 128Te+, 78Se+ and 75As+ were significantly higher when using sulfuric acid matrices (up to 2.2-fold for 128Te+ and 78Se+ and 1.8-fold for 75As+ in the presence of 5 w w-1 sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for 31P+ is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for 128Te+, 78Se+, 75As+ and 31P+ are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S+ species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10-20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These results demonstrate that the use of matrix-matched standards allows the accurate determination of the tested elements in a sulfuric acid matrix.

  20. Volatile fatty acids distribution during acidogenesis of algal residues with pH control.

    PubMed

    Li, Yan; Hua, Dongliang; Zhang, Jie; Zhao, Yuxiao; Xu, Haipeng; Liang, Xiaohui; Zhang, Xiaodong

    2013-06-01

    The anaerobic acidification of protein-rich algal residues with pH control (4, 6, 8, 10) was studied in batch reactors, which was operated at mesophilic(35 °C) condition. The distribution of major volatile fatty acids (VFAs) during acidogenesis was emphasized in this paper. The results showed that the acidification efficiency and VFAs distribution in the acid reactor strongly depended on the pH. The main product for all the runs involved acetic acid except that the proportion of butyric acid acidified at pH 6 was relatively higher. The other organic acids remained at lower levels. The VFAs yield reached the maximum value with about 0.6 g VFAs/g volatile solid (VS) added as pH was 8, and also the content of total ammonia nitrogen (TAN) reached the highest values of 9,629 mg/l. Low acidification degrees were obtained under the conditions at pH 4 and 10, which was not suitable for the metabolism of acidogens. Hydralic retention time (HRT) required for different conditions varied. As a consequence, it was indicated that pH was crucial to the acidification efficiency and products distribution. The investigation of acidogenesis process, which was producing the major substrates, short-chain fatty acids, would play the primary role in the efficient operation of methanogenesis.

  1. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  2. A density-functional theory study of electrochemical adsorption of sulfuric acid anions on Pt(111).

    PubMed

    Santana, Juan A; Cabrera, Carlos R; Ishikawa, Yasuyuki

    2010-08-28

    A density-functional theory study of the electrochemical adsorption of sulfuric acid anions was conducted at the Pt(111)/electrolyte interface over a wide range of electrode potential, including the anomalous region of the hydrogen voltammogram of this electrode. We focus on the precise nature of the binding species and their bonding to the surface, identifying the adsorbed species as a function of electrode potential. In particular, the origin of anomalous or so-called "butterfly" feature in this voltammogram between +0.30 and +0.50 V vs. the reference hydrogen electrode and the nature of the adsorbed species on the Pt(111) surface in this potential range were explicated.

  3. Alpha-amylase production is induced by sulfuric acid in rice aleurone cells.

    PubMed

    Mitsunaga, Shin-ichiro; Kobayashi, Midori; Fukui, Satoe; Fukuoka, Kayoko; Kawakami, Osamu; Yamaguchi, Junji; Ohshima, Masahiro; Mitsui, Toshiaki

    2007-12-01

    The hydrolytic enzyme alpha-amylase (EC 3.2.1.1) is produced mainly in aleurone cells of germinating cereals, and the phytohormone gibberellin (GA) is essential for its induction. However, in rice (Oryza sativa L.), sulfuric acid (H(2)SO(4)) induces alpha-amylase production in aleurone tissue even in the absence of GA. Here, the pre-treatment of rice aleurone cells with H(2)SO(4) and incubation in water induced alpha-amylase activity, as if the cells had been incubated in GA solution.

  4. Solubilization and functionalization of sulfuric acid lignin generated during bioethanol production from woody biomass.

    PubMed

    Matsushita, Yasuyuki; Inomata, Toyoki; Hasegawa, Tatsuya; Fukushima, Kazuhiko

    2009-01-01

    Sulfuric acid lignin (SAL), which is formed as a by-product during the production of bioethanol from woody biomass, was solubilized and functionalized by hydrothermal reaction. SAL could be easily dissolved in an alkaline medium, especially sodium hydroxide solution, by this reaction. The soluble part of the reaction products (S-HSAL) could be dissolved at neutral pH. IR spectrometric analysis of SAL revealed that hydrophilic groups were introduced in it during the reaction. The dispersibility of S-HSAL was increased by sulfonation (SS-HSAL), and it was found to be an effective dispersant for gypsum paste.

  5. Effect of temperature on iron leaching from bauxite residue by sulfuric acid.

    PubMed

    Liu, Zhi-Rong; Zeng, Kai; Zhao, Wei; Li, Ying

    2009-01-01

    Bauxite residue, as solid waste from alumina production, contains mainly hematite [Fe2O3]. Kinetic study of iron leaching of bauxite residue by diluted sulfuric acid at atmospheric pressure has been investigated. The results have been obtained as following: (i) Temperature play an important role in iron leaching from bauxite residue. Higher temperature is favor of Fe(III) leaching from bauxite residue. (ii) The leaching process is applicable to the intra-particle diffusion model and the apparent activation energy of model of leaching is found to be 17.32 kJ/mol.

  6. [Application of the vanillin sulfuric acid colorimetry-ultraviolet spectrometry on quality evaluation of Panax notoginseng].

    PubMed

    Ding, Yong-Li; Wang, Yuan-Zhong; Zhang, Ji; Zhang, Qing-Zhi; Zhang, Jin-Yu; Jin, Hang

    2013-02-01

    In this study, Panax notoginseng samples were extracted by chloroform, ethanol and water, or by those extracted solution with 5% vanillin sulfuric acid to establish two kinds of UV fingerprint of P. notoginseng which were compared by applying the common and variation peak ratio dual index sequence analysis method and SIMCA software qualitative analysis. The results indicated that the optimization extraction time of P. notoginseng samples was 20 min with chloroform, ethanol and water extraction, but the fingerprint differed significantly after add vanillin sulfuric acid. The common peak ratios of UV fingerprint of P. notoginseng were scattered. The minimum was 25% (Y5-Y8), while the maximum was 84.38% (Y11-Y13, Y20-Y21). The maximum variation peak ratio was 177.78% (Y8-Y5), meanwhile, the variation peak ratios of several samples were more than 100%. However, the common peak ratios of UV fingerprint of P. notoginseng with vanillin sulfuric acid were concentrated (distributed in the range of 50%-70%): the minimum was 42.86%(Y1-Y19), whereas the maximum was 79.55% (Y22-Y23); the range of the variation peak ratios was also smaller with the ranges of 20%-50% in general. The result of the dual index sequence analysis was agreement with the fingerprint implied. The similarity of the UV fingerprint of the extracts of P. notoginseng after adding vanillin sulfuric acid was greater than before. Both the ages and origin was related with the difference of UV fingerprint. The similarity of the two samples with same age was more significant than those with different ages. The similarity and difference between samples was no correlation with the distance of geographic space, the near origin samples maybe have a significant similarity or difference. This method appears as good alternative for evaluate quality of the P. notoginseng and can distinguish at least two samples quantitatively, duo to it reaches the limitation of the multiple methods which only could be used to indistinctly

  7. Corrosion behavior of niobium and Nb-25 wt% Ta alloy in sulfuric acid solutions

    SciTech Connect

    Robin, A.; Nunes, C.A. ); de Almeida, M.E. )

    1991-06-01

    In this paper the corrosion behavior of niobium and Nb-25 wt% Ta alloy in H{sub 2} SO{sub 4} solutions has been studied. Using mass-loss techniques, the influences of H{sub 2}SO{sub 4} concentration, temperature, and exposure time have been examined. The Nb-Ta alloy is more corrosion resistant than pure niobium. The obtained corrosion data allowed the construction of iso-corrosion curves of both materials in sulfuric acid below and above the boiling point.

  8. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin

    PubMed Central

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen

    2015-01-01

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development. PMID:26519385

  9. A Branch Point of Streptomyces Sulfur Amino Acid Metabolism Controls the Production of Albomycin.

    PubMed

    Kulkarni, Aditya; Zeng, Yu; Zhou, Wei; Van Lanen, Steven; Zhang, Weiwen; Chen, Shawn

    2015-10-30

    Albomycin (ABM), also known as grisein, is a sulfur-containing metabolite produced by Streptomyces griseus ATCC 700974. Genes predicted to be involved in the biosynthesis of ABM and ABM-like molecules are found in the genomes of other actinomycetes. ABM has potent antibacterial activity, and as a result, many attempts have been made to develop ABM into a drug since the last century. Although the productivity of S. griseus can be increased with random mutagenesis methods, understanding of Streptomyces sulfur amino acid (SAA) metabolism, which supplies a precursor for ABM biosynthesis, could lead to improved and stable production. We previously characterized the gene cluster (abm) in the genome-sequenced S. griseus strain and proposed that the sulfur atom of ABM is derived from either cysteine (Cys) or homocysteine (Hcy). The gene product, AbmD, appears to be an important link between primary and secondary sulfur metabolic pathways. Here, we show that propargylglycine or iron supplementation in growth media increased ABM production by significantly changing the relative concentrations of intracellular Cys and Hcy. An SAA metabolic network of S. griseus was constructed. Pathways toward increasing Hcy were shown to positively impact ABM production. The abmD gene and five genes that increased the Hcy/Cys ratio were assembled downstream of hrdBp promoter sequences and integrated into the chromosome for overexpression. The ABM titer of one engineered strain, SCAK3, in a chemically defined medium was consistently improved to levels ∼400% of the wild type. Finally, we analyzed the production and growth of SCAK3 in shake flasks for further process development.

  10. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH).

    PubMed

    Rodrigues, Rita de Cássia L B; Rocha, George J M; Rodrigues, Durval; Filho, Hélcio J I; Felipe, Maria das Graças A; Pessoa, Adalberto

    2010-02-01

    Sugarcane bagasse was pretreated with diluted sulfuric acid to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). Experiments were conducted in laboratory and semi-pilot reactors to optimize the xylose recovery and to reduce the generation of sugar degradation products, as furfural and 5-hydroxymethylfurfural (HMF). The hydrolysis scale-up procedure was based on the H-Factor, that combines temperature and residence time and employs the Arrhenius equation to model the sulfuric acid concentration (100 mg(acid)/g(dm)) and activation energy (109 kJ/mol). This procedure allowed the mathematical estimation of the results through simulation of the conditions prevailing in the reactors with different designs. The SBHH obtained from different reactors but under the same H-Factor of 5.45+/-0.15 reached similar xylose yield (approximately 74%) and low concentration of sugar degradation products, as furfural (0.082 g/L) and HMF (0.0071 g/L). Also, the highest lignin degradation products (phenolic compounds) were rho-coumarilic acid (0.15 g/L) followed by ferulic acid (0.12 g/L) and gallic acid (0.035 g/L). The highest concentration of ions referred to S (3433.6 mg/L), Fe (554.4 mg/L), K (103.9 mg/L). The H-Factor could be used without dramatically altering the xylose and HMF/furfural levels. Therefore, we could assume that H-Factor was directly useful in the scale-up of the hemicellulosic hydrolysate production.

  11. Protonation of Alcohols in Sulfuric Acid Solutions at UT/LS Conditions

    NASA Astrophysics Data System (ADS)

    Michelsen, R. R.; Vernier, K.; Axson, J.; Morley, D.

    2007-12-01

    The protonation of several small alcohols (ethanol, 2-propanol, and 1-butanol) in cold sulfuric acid aqueous solutions was measured using variable temperature 13C nuclear magnetic resonance (NMR) spectroscopy. The acidity of the sulfuric acid + deuterium oxide solutions ranged from 43 to 81 weight percent (wt %) H2SO4. The pKBH+ values, which are a measure of the acidity of each alcohol, range from -2.0 for butanol at room temperature to -2.2 for ethanol at -20°C. The protonation enthalpies of the three alcohols over the temperature range of 22°C to -35°C were found to be small and negative, ranging from -1.8 kJ mol-1 for 2-propanol to -2.3 kJ mol-1 for ethanol. A small, negative protonation enthalpy means that the degree of protonation of the alcohol slightly decreases as temperature decreases. The pKBH+values and protonation enthalpies are used to predict the form of dissolved alcohols in sulfate aerosols. For typical upper troposphere/lower stratosphere (UT/LS) conditions (40-70 wt % H2SO4 and 220 K), all three alcohols increase from approximately 10% protonated in 40 wt % H2SO4 to over 60% protonated in 70 wt % H2SO4. The percent of protonated alcohol depends more strongly on m*, the slope factor of the excess acidity treatment, than on pKBH+ values. This relationship may reflect solvation effects. The treatment of strongly acidic, non-ideal solutions as applied to organic solutes in sulfate aerosol particles will be discussed.

  12. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  13. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the

  14. Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process.

    PubMed

    Ren, Suxia; Xu, Haiyan; Zhu, Jinling; Li, Shunqing; He, Xiaofeng; Lei, Tingzhou

    2012-10-01

    This study aimed to optimize the conditions for furfural production from rice husk via a two-stage process: acid hydrolysis followed by dehydration using an orthogonal test design and response surface methodology, respectively. Orthogonal test design was utilized in the hydrolysis step; optimum conditions were as follows: 2.5% sulfuric acid (mass fraction), 110°C reaction temperature, sulfuric acid to rice husk (L/S) ratio of 8 (g/mL), and a reaction time of 3h. According to the Box-Behnken design, the temperature, amount of catalyst, extractant volume, and reaction time were chosen as four important factors with three levels for the dehydration step. Conditions were further optimized by response surface analysis. The results showed that the optimal conditions were 177°C, 120 mL extractant volume, 2.1g of catalyst, and a reaction time of 4.8h. Under the optimal conditions, the furfural yield reached 8.9%, which is consistent with the estimated value, 8.97%.

  15. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  16. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  17. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    PubMed

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  18. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    PubMed Central

    Hug, Katrin; Maher, William A.; Stott, Matthew B.; Krikowa, Frank; Foster, Simon; Moreau, John W.

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55–75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18–25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  19. Why is sulfuric acid a much stronger acid than ethanol? Determination of the contributions by inductive/field effects and electron-delocalization effects.

    PubMed

    Lynch, Kevin; Maloney, Adam; Sowell, Austin; Wang, Changwei; Mo, Yirong; Karty, Joel M

    2015-01-07

    Two different and complementary computational methods were used to determine the contributions by inductive/field effects and by electron-delocalization effects toward the enhancement of the gas-phase deprotonation enthalpy of sulfuric acid over ethanol. Our alkylogue extrapolation method employed density functional theory calculations to determine the deprotonation enthalpy of the alkylogues of sulfuric acid, HOSO2-(CH2CH2)n-OH, and of ethanol, CH3CH2-(CH2CH2)n-OH. The inductive/field effect imparted by the HOSO2 group for a given alkylogue of sulfuric acid was taken to be the difference in deprotonation enthalpy between corresponding (i.e., same n) alkylogues of sulfuric acid and ethanol. Extrapolating the inductive/field effect values for the n = 1-6 alkylogues, we obtained a value of 51.0 ± 6.4 kcal mol(-1) for the inductive/field effect for n = 0, sulfuric acid, leaving 15.4 kcal mol(-1) as the contribution by electron-delocalization effects. Our block-localized wavefunction method was employed to calculate the deprotonation enthalpies of sulfuric acid and ethanol using the electron-localized acid and anion species, which were compared to the values calculated using the electron-delocalized species. The contribution from electron delocalization was thus determined to be 18.2 kcal mol(-1), which is similar to the value obtained from the alkylogue extrapolation method. The two methods, therefore, unambiguously agree that both inductive/field effects and electron-delocalization effects have significant contributions to the enhancement of the deprotonation enthalpy of sulfuric acid compared with ethanol, and that the inductive/field effects are the dominant contributor.

  20. Relationships between pyruvate decarboxylation and branched-chain volatile acid synthesis in Ascaris mitochondria.

    PubMed

    Komuniecki, R; Komuniecki, P R; Saz, H J

    1981-10-01

    The rate of 14CO2 evolution from 1-[14C]pyruvate by intact Ascaris mitochondria was very slow, but increased with increasing concentrations of pyruvate. At all concentrations of pyruvate, in an aerobic environment, pyruvate decarboxylation was stimulated greatly by the addition of fumarate, malate, or succinate. However, under anaerobic conditions, only malate and fumarate stimulated pyruvate decarboxylation; succinate had no effect. This implies that the aerobic metabolism of succinate, presumably to other dicarboxylic acids, may be required for the stimulation. Incubation of sonicated mitochondria with pyruvate plus fumarate, under rate-limiting concentrations of NAD+, resulted in approximately equal quantities of pyruvate utilized and succinate formed, suggesting that pyruvate oxidation and fumarate reduction may be linked. Branched-chain, volatile fatty acids were not formed during incubations with either malate or succinate, or succinate plus acetate. However, incubations of intact Ascaris mitochondria with pyruvate plus succinate yielded 2-methylbutyrate and 2-methylvalerate, whereas incubations with pyruvate plus propionate yielded almost exclusively 2-methylvalerate. Oxygen dramatically inhibited the synthesis of the branched-chain acids from succinate plus pyruvate, attesting to the apparent anaerobic nature of Ascaris mitochondrial metabolism. Significantly, the addition of glucose plus ADP stimulated the formation of all volatile fatty acids. Therefore, the synthesis of branched-chain acids may be related directly to increased energy generation. Alternatively, they may function in the regulatory role of maintaining the mitochondrial redox balance.

  1. Determination of volatile fatty acids in wastewater by solvent extraction and gas chromatography

    NASA Astrophysics Data System (ADS)

    Mkhize, Nontando T.; Msagati, Titus A. M.; Mamba, Bhekie B.; Momba, Maggy

    The purpose of this study was to develop a liquid-liquid extraction method for the analysis of volatile fatty acids collected at the elutriation units of Unit 3, 4 and 5 at Johannesburg Water-Northern Works Wastewater Treatment Plant. Liquid-liquid extraction (LLE) method employing dichloromethane (DCM) and methyl-tert-butyl-ether (MTBE) as extracting solvents was used during the quantitative analysis of volatile fatty acids namely acetic, propionic, butyric, isobutyric, valeric, isovaleric and heptanoic acid. The detection of the extracts was by gas chromatography coupled to a mass spectrometer operating under electron ionization mode (GC-EI-MS). The results showed that MTBE was a better extraction solvent than DCM as it gave much higher recoveries (>5 folds). On the other hand, the overall reactor performance for all the three units in the period when the samples were collected, which was measured by the ratio of propionic to acetic acid was good since the ratio o did not exceed 1.4 with the exception of the samples collected on the 3rd of October where the ratio exceeded 1.4 significantly. The concentration of acetic acid, another indicator for the reactor performance in all three units was way below 800 mg/L thus the digester balance was on par.

  2. Exploring Jupiter's icy moons with old techniques and big facilities - new insights on sulfuric acid hydrates

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Avdeev, M.; Brand, H.; Wallwork, K.

    2013-12-01

    Sulfuric acid hydrates have been proposed to be abundant on the surface of Europa [1], and hence would be important planetary forming materials for this moon and its companions Ganymede and Callisto. Understanding of the surface features and subsurface of these moons could be advanced by firmer knowledge of the icy materials that comprise them [2], insight into which can be drawn from firmer knowledge of physical properties and phase behaviour of the candidate materials. We wish to present results from a study that started with the question ';What form of sulfuric acid hydrate would form on the surface of Europa'. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction and utilization of the large scattering cross section with neutron diffraction. We have used the Powder Diffraction beamline at Australian synchrotron [4] and the Echidna (High-resolution neutron powder diffraction) instrument of the Australian Nuclear Science and Technology Organization, [5] to obtain an number of new insights into the crystalline phases formed from sulfruic acid and water mixtures. These instruments have enabled the discovery a new water-rich sulfuric acid hydrate form [6], improved structural characterisation of existing forms [7] and a charting the phase diagram of this fundamental binary system [8]. This has revealed exciting potential for understanding more about the surface of Europa from space, perhaps even providing a window into its past. [1] Carlson, R.W., R.E. Johnson, and M.S. Anderson, Science, 1999. 286(5437): p. 97-99. [2] Fortes, A.D. and M. Choukroun. Space Sci Rev, 2010. 153(1-4): p. 185-218. [3] Blake, D., et al., Space Sci Rev,, 2012. 170(1-4): p. 341-399. [4] Wallwork, K.S., Kennedy B. J. and Wang, D

  3. Lunar sulfur

    NASA Technical Reports Server (NTRS)

    Kuck, David L.

    1991-01-01

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  4. Temperature dependence of single-bubble sonoluminescence threshold in sulfuric acid: An experimental study.

    PubMed

    Bandara, Vibodha; Herath, Prabhath; Nanayakkara, Asiri

    2015-06-01

    We experimentally investigated the temperature dependence of intensity of single-bubble sonoluminescence (SBSL) in 85 wt%. sulfuric acid. It was found that the intensity increases as temperature increases from 15 °C and 25 °C, confirming what has been predicted by A. Moshaii et al. [Phys. Rev. E 84, 046301 (2011)] theoretically. This behavior, however, is completely opposite to what has been observed for water. Above 25 °C, the behavior of intensity of SBSL in sulfuric acid is found to be independent of the liquid temperature. Moreover, it was observed that as the temperature increases, contribution to total intensity from the UV portion of the spectrum increases while contribution from the visible portion decreases, indicating higher bubble temperatures at higher liquid temperatures. Results of this experiment further indicate that the intensity threshold at each temperature is not determined by the shape or the positional stability conditions but by the driving pressure at which the transition from SBSL to multibubble sonoluminescence (MBSL) takes place.

  5. Temperature dependence of single-bubble sonoluminescence threshold in sulfuric acid: An experimental study

    NASA Astrophysics Data System (ADS)

    Bandara, Vibodha; Herath, Prabhath; Nanayakkara, Asiri

    2015-06-01

    We experimentally investigated the temperature dependence of intensity of single-bubble sonoluminescence (SBSL) in 85 wt %. sulfuric acid. It was found that the intensity increases as temperature increases from 15 °C and 25 °C, confirming what has been predicted by A. Moshaii et al. [Phys. Rev. E 84, 046301 (2011), 10.1103/PhysRevE.84.046301] theoretically. This behavior, however, is completely opposite to what has been observed for water. Above 25 °C, the behavior of intensity of SBSL in sulfuric acid is found to be independent of the liquid temperature. Moreover, it was observed that as the temperature increases, contribution to total intensity from the UV portion of the spectrum increases while contribution from the visible portion decreases, indicating higher bubble temperatures at higher liquid temperatures. Results of this experiment further indicate that the intensity threshold at each temperature is not determined by the shape or the positional stability conditions but by the driving pressure at which the transition from SBSL to multibubble sonoluminescence (MBSL) takes place.

  6. Study of the ammonia (gas)-sulfuric acid (aerosol) reaction rate

    SciTech Connect

    McMurry, P.H.; Takano, H.; Anderson, G.R.

    1983-06-01

    An experimental study of the reaction rate between monodisperse sulfuric acid aerosols and ammonia gas is described. Reactions took place in a laminar flow reactor at 24/sup 0/C and 6% relative humidity, and reaction products were sampled from the core of the flow so that reaction times were well defined. For the data reported here, the reaction time was 5.0 +/- 0.5 s, ammonia concentrations ranged from 13 to 63 ppb, and particle sizes ranged from 0.03 to 0.2 ..mu..m. The extent of reaction was determined by comparing the hygroscopic and deliquescent properties of the product aerosols with known properties of aerosols consisting of internal mixtures of sulfuric acid and ammonium sulfate. It was found that the average fraction of ammonia-aerosol collisions that resulted in chemical reaction during neutralization decreased from 0.40 +/- 0.10 for 0.058-..mu..m particles to 0.18 +/- 0.03 for 0.10-..mu..m particles. Differential mobility analyzers were used for generating the monodisperse aerosols and also for measuring the hygroscopic and deliquescent properties of the product aerosols.

  7. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  8. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    PubMed

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  9. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  10. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis

    PubMed Central

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4’-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. DOI: http://dx.doi.org/10.7554/eLife.17828.001 PMID:27540631

  11. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure.

    PubMed

    Agatzini-Leonardou, S; Oustadakis, P; Tsakiridis, P E; Markopoulos, Ch

    2008-09-15

    Laboratory-scale research has focused on the recovery of titanium from red mud, which is obtained from bauxite during the Bayer process for alumina production. The leaching process is based on the extraction of this element with diluted sulfuric acid from red mud under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The titanium recovery efficiency on the basis of red mud weight reached 64.5%. The characterization of the initial red mud, as well as this of the leached residues was carried out by X-ray diffraction, TG-DTA and scanning electron microscopy.

  12. Rapid analysis of barley straw before and after dilute sulfuric acid pretreatment by photoluminescence.

    PubMed

    Kim, Sung Bong; Cui, Chunzhi; Lee, Ja Hyun; Lee, Sang Jun; Ahn, Dong June; Park, Chulhwan; Kim, Jun Seok; Kim, Seung Wook

    2013-10-01

    The fluorescence intensities (FIs) of raw and pretreated barley straws were measured by fluorescence microscopy, and the difference in the fluorescence intensity of barley straw before and after dilute acid pretreatment was analyzed by investigation of the major compounds of barley straw. The difference in fluorescence intensity was due to the difference in xylan content. Barley straw was pretreated using dilute sulfuric acid at various conditions and the correlation between the fluorescence intensity and glucose yield of barley straw was investigated. The coefficient of determination (R(2)) of the correlation was found to be 72.28%. Also the calibration of fluorescence intensity with the xylan content was performed. In addition, the absorption and emission spectra of the raw and the pretreated barley straw were examined to verify the proposed method. The absorption and emission wave lengths were 550 nm and 665 nm, respectively.

  13. Functional improvement of Saccharomyces cerevisiae to reduce volatile acidity in wine.

    PubMed

    Luo, Zongli; Walkey, Christopher J; Madilao, Lufiani L; Measday, Vivien; Van Vuuren, Hennie J J

    2013-08-01

    Control of volatile acidity (VA) is a major issue for wine quality. In this study, we investigated the production of VA by a deletion mutant of the fermentation stress response gene AAF1 in the budding yeast Saccharomyces cerevisiae. Fermentations were carried out in commercial Chardonnay grape must to mimic industrial wine-making conditions. We demonstrated that a wine yeast strain deleted for AAF1 reduced acetic acid levels in wine by up to 39.2% without increasing the acetaldehyde levels, revealing a potential for industrial application. Deletion of the cytosolic aldehyde dehydrogenase gene ALD6 also reduced acetic acid levels dramatically, but increased the acetaldehyde levels by 41.4%, which is not desired by the wine industry. By comparison, ALD4 and the AAF1 paralog RSF2 had no effects on acetic acid production in wine. Deletion of AAF1 was detrimental to the growth of ald6Δ and ald4Δald6Δ mutants, but had no effect on acetic acid production. Overexpression of AAF1 dramatically increased acetic acid levels in wine in an Ald6p-dependent manner, indicating that Aaf1p regulates acetic acid production mainly via Ald6p. Overexpression of AAF1 in an ald4Δald6Δ strain produced significantly more acetic acid in wine than the ald4Δald6Δ mutant, suggesting that Aaf1p may also regulate acetic acid synthesis independently of Ald4p and Ald6p.

  14. Kojic acid reduces the cytotoxic effects of sulfur mustard on cultures containing human melanoma cells in vitro.

    PubMed

    Smith, C N; Lindsay, C D

    2001-01-01

    In vivo experiments have shown that melanocytes are more sensitive than keratinocytes to the cytotoxic effects of sulfur mustard when it is applied topically to pig skin.1 It has been hypothesized that this is caused by the uncoupling of the melanogenic pathway by depletion of cellular glutathione, resulting in the uncontrolled production of cytotoxic quinone free-radical species by tyrosinase.2. In the present study, the feasibility of blocking the melanogenic pathway as a means of reducing the cytotoxicity of sulfur mustard was evaluated using kojic acid. Kojic acid is a topically applied depigmenting agent that exerts its effect by acting as a slow-binding, competitive inhibitor of tyrosinase.3 Preincubation of G361 pigmented melanoma cells and mixed cultures of G361 cells and SVK keratinocytes with 2.5 mM kojic acid resulted in significant increases in the viability of these cultures as determined by neutral red (NR) and gentian violet (GV) dye binding assays for up to 48 h following exposure to 50 microM sulfur mustard. The highest levels of protection were seen in the G361 cultures, with a 26.8% increase in culture viability (NR assay) compared with the sulfur-mustard-only controls at 24 h. Preincubation of SVK cells alone with kojic acid resulted in lower increases in viability (2.5% at 24 h by the NR assay). Inhibition of the melanogenic pathway reduces the sensitivity of cultures containing pigment cells to sulfur mustard.

  15. Recovery of transplutonium elements from aqueous and water-ethanol solutions of sulfuric acid and their separation from other actinides

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-05-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on anion and cation exchangers in aqueous and water-ethanol solutions of sulfuric acid as a function of the various components of the solution has been investigated. It has been discovered that the presence of ethanol in sulfuric acid solutions causes an increase in the distribution coefficients both on cation exchangers and on anion exchangers. The possibility of the use of ion exchangers for the preconcentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements which form strong complexes with sulfate ions over a broad range of concentrations of sulfuric acid has been demonstrated.

  16. Extractive separation and determination of arsenic at different valences in industrial solutions and sulfuric acid production waste waters

    SciTech Connect

    Minasyan, K.V.; Vrtanesyan, S.G.; Badalyan, M.A.

    1986-12-01

    Wash towers of sulfuric acid production divisions of non-ferrous metallurgy plants contain sulfated solutions and waste waters with arsenic contents over a wide range of concentrations (1-20 g/liter). These solutions also contain large amounts of iron, copper, zinc, selenium, tellurium, and other impurities. Monitoring arsenic removal from the solutions requires rapid and accurate methods of determining not only the total arsenic content but also its valence state. In this paper, the authors report the quantitative extractive separation of arsenic(III) from sulfuric acid solutions with toluene (or benzene) in the presence of chlorides. The technique is intended to be a preliminary step in developing a method for separately determining tri- and pentavalent arsenic in complex sulfuric acid solutions.

  17. Changes in sugars, acids, and volatiles during ripening of koubo [Cereus peruvianus (L.) Miller] fruits.

    PubMed

    Ninio, Racheli; Lewinsohn, Efraim; Mizrahi, Yosef; Sitrit, Yaron

    2003-01-29

    The columnar cactus Cereus peruvianus (L.) Miller, Cactaceae (koubo), is grown commercially in Israel. The unripe fruits are green, and the color changes to violet and then to red when the fruit is fully ripe. The content of soluble sugars was found to increase 5-fold during ripening. Glucose and fructose were the main sugars accumulated in the fruit pulp, and each increased from 0.5 to 5.5 g/100 g fresh weight during ripening. The polysaccharides content decreased during ripening from 1.4 to 0.4 g/100 g fresh weight. The titratable acidity decreased and the pH increased during ripening. The major organic acid found in the fruit was malic acid, which decreased from 0.75 g/100 g fresh weight at the mature green stage to 0.355 g/100 g fresh weight in ripe fruits. Citric, succinic, and oxalic acids were found in concentrations lower than 0.07 g/100 g fresh weight. Prominent accumulation of aroma volatiles occurred toward the end of the ripening process. The main volatile found in the ripe fruit was linalool, reaching concentrations of 1.5-3.5 microg/g fresh weight.

  18. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.

    PubMed

    Hasan, Salah Din Mahmud; Giongo, Citieli; Fiorese, Mônica Lady; Gomes, Simone Damasceno; Ferrari, Tatiane Caroline; Savoldi, Tarcio Enrico

    2015-01-01

    The production of volatile fatty acids (VFAs), intermediates in the anaerobic degradation process of organic matter from waste water, was evaluated in this work. A batch reactor was used to investigate the effect of temperature, and alkalinity in the production of VFAs, from the fermentation of industrial cassava waste water. Peak production of total volatile fatty acids (TVFAs) was observed in the first two days of acidogenesis. A central composite design was performed, and the highest yield (3400 mg L(-1) of TVFA) was obtained with 30°C and 3 g L(-1) of sodium bicarbonate. The peak of VFA was in 45 h (pH 5.9) with a predominance of acetic (63%) and butyric acid (22%), followed by propionic acid (12%). Decreases in amounts of cyanide (12.9%) and chemical oxygen demand (21.6%) were observed, in addition to the production of biogas (0.53 cm(3) h(-1)). The process was validated experimentally and 3400 g L(-1) of TVFA were obtained with a low relative standard deviation.

  19. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: a transmission and ATR-FTIR study.

    PubMed

    Al-Hosney, H A; Grassian, V H

    2005-03-21

    Calcium carbonate (CaCO3) is a reactive component of mineral dust aerosol as well as buildings, statues and monuments. In this study, attenuated total reflection (ATR) and transmission Fourier transform infrared spectroscopy (FTIR) have been used to study the uptake of water, sulfur dioxide and nitric acid on CaCO3 particles at 296 K. Under atmospheric conditions, CaCO3 particles are terminated by a Ca(OH)(CO3H) surface layer. In the presence of water vapor between 5 and 95% relative humidity (RH), water molecularly adsorbs on the Ca(OH)(CO3H) surface resulting in the formation of an adsorbed thin water film. The adsorbed water film assists in the enhanced uptake of sulfur dioxide and nitric acid on CaCO3 in several ways. Under dry conditions (near 0% RH), sulfur dioxide and nitric acid react with the Ca(OH)(CO3H) surface to form adsorbed carbonic acid (H2CO3) along with sulfite and nitrate, respectively. Adsorbed carbonic acid is stable on the surface under vacuum conditions. Once the surface saturates with a carbonic acid capping layer, there is no additional uptake of gas-phase sulfur dioxide and nitric acid. However, upon adsorption of water, carbonic acid dissociates to form gaseous carbon dioxide and there is further uptake of sulfur dioxide and nitric acid. In addition, adsorbed water increases the mobility of the ions at the surface and enhances uptake of SO2 and HNO3. In the presence of adsorbed water, CaSO3 forms islands of a crystalline hydrate whereas Ca(NO3)2 forms a deliquescent layer or micropuddles. Thus adsorbed water plays an important and multi-faceted role in the uptake of pollutant gases on CaCO3.

  20. Influence of pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt.

    PubMed

    Akbaridoust, Ghazal; Plozza, Tim; Trenerry, V Craige; Wales, William J; Auldist, Martin J; Ajlouni, Said

    2015-08-01

    The influence of different pasture-based feeding systems on fatty acids, organic acids and volatile organic flavour compounds in yoghurt was studied. Pasture is the main source of nutrients for dairy cows in many parts of the world, including southeast Australia. Milk and milk products produced in these systems are known to contain a number of compounds with positive effects on human health. In the current study, 260 cows were fed supplementary grain and forage according to one of 3 different systems; Control (a traditional pasture based diet offered to the cows during milking and in paddock), PMR1 (a partial mixed ration which contained the same supplement as Control but was offered to the cows as a partial mixed ration on a feedpad), PMR 2 (a differently formulated partial mixed ration compared to Control and PMR1 which was offered to the cows on a feedpad). Most of the yoghurt fatty acids were influenced by feeding systems; however, those effects were minor on organic acids. The differences in feeding systems did not lead to the formation of different volatile organic flavour compounds in yoghurt. Yet, it did influence the relative abundance of these components.

  1. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    PubMed

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover.

  2. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus.

    PubMed

    Wu, Chien-Hui; Chien, Wei-Chen; Chou, Han-Kai; Yang, Jungwoo; Lin, Hong-Ting Victor

    2014-09-01

    One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized, and various detoxification methods (neutralization, overliming, and electrodialysis) of the acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces marxianus. A proximate composition analysis indicated that P. capillacea was rich in carbohydrates. A significant galactose recovery of 81.1 ± 5% was also achieved under the conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, 121°C, and hydrolysis for 30 min. Among the various detoxification methods, electrodialysis was identified as the most suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea resulted in the best ethanol levels and fermentation efficiency.

  3. Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production.

    PubMed

    Xu, Feng; Shi, Yong-Cheng; Wu, Xiaorong; Theerarattananoon, Karnnalin; Staggenborg, Scott; Wang, Donghai

    2011-05-01

    Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

  4. Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Photoperiod Sensitvie Sorghum for Ethanol Production

    SciTech Connect

    F Xu; Y Shi; X Wu

    2011-12-31

    Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

  5. Oxidation of Co(II) by ozone and reactions of Co(III) in solutions of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.

    2016-12-01

    Reactions of the oxidation of bivalent cobalt ions by ozone, of the spontaneous decomposition of trivalent cobalt, and of interactions between Co(III) and chloride ions in solutions of sulfuric acid are studied. The order and rate constant of the process of decomposition of Co(III) are determined. Information on the kinetics of the interaction between Co(III) and Cl- is obtained. Kinetic patterns of the accumulation of Co(III) during the ozonation of solutions of CoSO4 in sulfuric acid are explained. Molar absorption coefficients of Co(III) and Co2+ ions in the visible range of wavelengths are determined.

  6. An ab initio Study of the Crystalline Structure of Sulfuric Acid (H2SO4)- The Point Charge Model.

    DTIC Science & Technology

    1987-12-01

    2 ... 8 1.81. 5 111 .4 1111 . Pj LH~ H I Lp ’V. 1 4% % %4"~4 % 4’°" 111’, f LE AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID...first child .5 .5 4 S. S. S. ni-Ic A I’ J a ~-, ., I ,I/p - ~ ~SJ. ~ >4" h AN AB INITIO STUDY OF THE CRYSTALLINE STRUCTURE OF SULFURIC ACID (H2SO4)- THE

  7. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production.

  8. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-04

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  9. Thermochemical stability diagrams for condensed phases and volatility diagrams for volatile species over condensed phases in twenty metal-sulfur-oxygen systems between 1150 and 1450/sup 0/K

    SciTech Connect

    Gulbransen, E.A.; Meier, G.H.

    1980-05-01

    This work begins with a description of the thermochemistry of gaseous species in the H-O-S-C system and the role of condensed and volatile species in oxidation and hot corrosion phenomena. The major part of the report is a description of the stability diagrams and diagrams for the volatile metal oxide and sulfide species in the A1-O-S, Ca-O-S, Ce-O-S, Co-O-S, Cr-O-S, Fe-O-S, Hf-O-S, K-O-S, Mg-O-S, Mn-O-S, Mo-O-S, Na-O-S, Ni-O-S, Nb-O-S, Si-O-S, Ta-O-S, Ti-O-S, V-O-S, W-O-S, and Zr-O-S systems. Log p/sub O/sub 2// vs log p/sub S/sub 2// diagrams are developed to show the stability regions for the several metal, oxide, sulfide and sulfate phases for four temperatures 1150, 1250, 1342, and 1450/sup 0/K. Log p/sub M//sub x//sub O///sub y/ vs log p/sub O/sub 2// and log p/sub M//sub x//sub S//sub y/ vs log p/sub S/sub 2// are developed for twenty oxide and sulfide systems at 1250/sup 0/K. Log p/sub M//sub x//sub O//sub y/ vs 1/T and log p/sub M//sub x//sub S//sub y/ vs 1/T diagrams are developed to summarize the results. Here log p/sub M//sub x//sub O//sub y/ and log p/sub M//sub x//sub S//sub y/ refer to the several metal, oxide and sulfide vapor species. The importance of the volatile species, melting points of the condensed phases and constitution of the condensed phases as a function of the oxygen and sulfur potential of the reaction environment is discussed with regard to high temperature oxidation and hot corrosion of metals and alloys.

  10. Energy efficiency of iron–boron–silicon metallic glasses in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.; Jiang, W.; Rahman, B. M. A.; Grattan, K. T. V.

    2017-03-01

    A criterion of the energy efficiency of iron–boron–silicon metallic glasses in sulfuric acid solutions is proposed for the first time. The criterion has been derived based on calculating the limit of the ratio value of the conductivity of a metallic glass in aqueous solution to the conductivity of the metallic glass in air. In other words, the conductivity ratio of a metallic glass in aqueous solution to the conductivity of the metallic glass in air  = 1, was applied to determine the energy efficiency of the metallic glass in the aqueous solution when the conductivity of a metallic glass in air became equal (decreased) to the steady conductivity of the metallic glass in aqueous solution as a function of time of the exposure of the metallic glass to the aqueous solution. This criterion was not only used to determine the energy efficiency of different metallic glasses, but also, the criterion was used to determine the energy efficiency of metallic glasses exposed to a wide range of sulfuric acid concentrations. These conductivity values were determined by the electrochemical impedance spectroscopy (EIS). In addition, the criterion can be applied under diverse test conditions with a predetermined period of the operational life of the metallic glasses as functional materials. Furthermore, variations of the energy efficiency of the metallic glasses as a function of the acid concentration and time were produced by fitting the experimental data to a numerical model using a nonlinear regression method. The profiles of the metallic glasses exhibit a less conservative behavior of the energy efficiency than the proposed analytical criterion.

  11. Recovery of volatile fatty acids via membrane contactor using flat membranes: experimental and theoretical analysis.

    PubMed

    Tugtas, Adile Evren

    2014-07-01

    Volatile fatty acid (VFA) separation from synthetic VFA solutions and leachate was investigated via the use of a membrane contactor. NaOH was used as a stripping solution to provide constant concentration gradient of VFAs in both sides of a membrane. Mass flux (12.23 g/m(2)h) and selectivity (1.599) observed for acetic acid were significantly higher than those reported in the literature and were observed at feed pH of 3.0, flow rate of 31.5 ± 0.9 mL/min, and stripping solution concentration of 1.0 N. This study revealed that the flow rate, stripping solution strength, and feed pH affect the mass transfer of VFAs through the PTFE membrane. Acetic and propionic acid separation performances observed in the present study provided a cost effective and environmental alternative due to elimination of the use of extractants.

  12. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion.

    PubMed

    Xu, Zhiyang; Zhao, Mingxing; Miao, Hengfeng; Huang, Zhenxing; Gao, Shumei; Ruan, Wenquan

    2014-07-01

    Anaerobic digestion is considered to be an efficient way of disposing kitchen wastes, which can not only reduce waste amounts, but also produce biogas. However, the excessive accumulation of volatile fatty acids (VFA) caused by high organic loads will inhibit anaerobic digestion intensively. Effects of the VFA composition on biogas generation and microbial community are still required for the investigation under various organic loads of kitchen wastes. Our results showed that the maximum specific methane production was 328.3 ml g TS(-1), and acetic acid was the main inhibitor in methanogenesis. With the increase of organic load, aceticlastic methanogenesis was more sensitive to acetic acid than hydrogenotrophic methanogenesis. Meanwhile, methanogenic microbial community changed significantly, and few species grew well under excessive organic loads. This study provides an attempt to reveal the mechanism of VFA inhibition in anaerobic digestion of kitchen wastes.

  13. Stearoyl-CoA Desaturase-1: Is It the Link between Sulfur Amino Acids and Lipid Metabolism?

    PubMed

    Poloni, Soraia; Blom, Henk J; Schwartz, Ida V D

    2015-06-03

    An association between sulfur amino acids (methionine, cysteine, homocysteine and taurine) and lipid metabolism has been described in several experimental and population-based studies. Changes in the metabolism of these amino acids influence serum lipoprotein concentrations, although the underlying mechanisms are still poorly understood. However, recent evidence has suggested that the enzyme stearoyl-CoA desaturase-1 (SCD-1) may be the link between these two metabolic pathways. SCD-1 is a key enzyme for the synthesis of monounsaturated fatty acids. Its main substrates C16:0 and C18:0 and products palmitoleic acid (C16:1) and oleic acid (C18:1) are the most abundant fatty acids in triglycerides, cholesterol esters and membrane phospholipids. A significant suppression of SCD-1 has been observed in several animal models with disrupted sulfur amino acid metabolism, and the activity of SCD-1 is also associated with the levels of these amino acids in humans. This enzyme also appears to be involved in the etiology of metabolic syndromes because its suppression results in decreased fat deposits (regardless of food intake), improved insulin sensitivity and higher basal energy expenditure. Interestingly, this anti-obesogenic phenotype has also been described in humans and animals with sulfur amino acid disorders, which is consistent with the hypothesis that SCD-1 activity is influenced by these amino acids, in particularly cysteine, which is a strong and independent predictor of SCD-1 activity and fat storage. In this narrative review, we discuss the evidence linking sulfur amino acids, SCD-1 and lipid metabolism.

  14. Key volatile aroma compounds of lactic acid fermented malt based beverages - impact of lactic acid bacteria strains.

    PubMed

    Nsogning Dongmo, Sorelle; Sacher, Bertram; Kollmannsberger, Hubert; Becker, Thomas

    2017-08-15

    This study aims to define the aroma composition and key aroma compounds of barley malt wort beverages produced from fermentation using six lactic acid bacteria (LAB) strains. Gas chromatography mass spectrometry-olfactometry and flame ionization detection was employed; key aroma compounds were determined by means of aroma extract dilution analysis. Fifty-six detected volatile compounds were similar among beverages. However, significant differences were observed in the concentration of individual compounds. Key aroma compounds (flavor dilution (FD) factors ≥16) were β-damascenone, furaneol, phenylacetic acid, 2-phenylethanol, 4-vinylguaiacol, sotolon, methional, vanillin, acetic acid, nor-furaneol, guaiacol and ethyl 2-methylbutanoate. Furthermore, acetaldehyde had the greatest odor activity value of up to 4266. Sensory analyses revealed large differences in the flavor profile. Beverage from L. plantarum Lp. 758 showed the highest FD factors in key aroma compounds and was correlated to fruity flavors. Therefore, we suggest that suitable LAB strain selection may improve the flavor of malt based beverages.

  15. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    PubMed

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.

  16. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  17. Sulfur amino acid metabolism in juvenile-onset nonketotic and ketotic diabetic patients.

    PubMed

    Mårtensson, J; Hermansson, G

    1984-05-01

    Sulfur amino acid metabolism was studied in non-fasting nonketotic and ketotic juvenile-onset diabetic children and the results were compared to age-matched healthy children on an ordinary diet. An increased excretion of total sulfur and inorganic sulfate was found in diabetic children, probably a result of a decreased protein-serum synthesis and/or increased endogenous protein catabolism, although as a result of hyperglycemia a decreased tubular reabsorption may also have contributed. All diabetics showed a normal excretion of methionine. For cyst(e)ine and taurine an increased excretion was seen in ketotic diabetics, probably also a consequence of an increased endogenous protein degradation. As a sign of the latter, an increased output of 3-methylhistidine was also observed, a confirmation of earlier reports. The increased output of mercaptolactate and mercaptoacetate found in ketotic patients, was probably also a result of enhanced endogenous protein degradation. An increased urinary excretion of N-acetylcysteine was seen in diabetic children, which may reflect an enhanced availability to acetyl coenzyme A.

  18. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries.

    PubMed

    Zheng, Jianming; Tian, Jian; Wu, Dangxin; Gu, Meng; Xu, Wu; Wang, Chongmin; Gao, Fei; Engelhard, Mark H; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2014-05-14

    Lithium-sulfur (Li-S) battery is one of the most promising energy storage systems because of its high specific capacity of 1675 mAh g(-1) based on sulfur. However, the rapid capacity degradation, mainly caused by polysulfide dissolution, remains a significant challenge prior to practical applications. This work demonstrates that a novel Ni-based metal organic framework (Ni-MOF), Ni6(BTB)4(BP)3 (BTB = benzene-1,3,5-tribenzoate and BP = 4,4'-bipyridyl), can remarkably immobilize polysulfides within the cathode structure through physical and chemical interactions at molecular level. The capacity retention achieves up to 89% after 100 cycles at 0.1 C. The excellent performance is attributed to the synergistic effects of the interwoven mesopores (∼2.8 nm) and micropores (∼1.4 nm) of Ni-MOF, which first provide an ideal matrix to confine polysulfides, and the strong interactions between Lewis acidic Ni(II) center and the polysulfide base, which significantly slow down the migration of soluble polysulfides out of the pores, leading to the excellent cycling performance of Ni-MOF/S composite.

  19. Separation of boric acid from PWR waste by volatilization during evaporation

    SciTech Connect

    Bruggeman, A.; Braet, J.; Smaers, F.; De Regge, P.

    1997-01-01

    SCK{circ}CEN has developed a process to separate boric acid during and/or after evaporation of the liquid waste from pressurized light-water reactors. The key goal is to achieve higher waste volume reduction factors, while maintaining low activity discharge limits. An additional goal is to obtain purified boric acid for recycling. The process is based on the volatility of boric acid in steam. The liquid waste is treated in a semicontinuous evaporator, which operates preferentially at a higher temperature than the present evaporators. The stream loaded with boric acid is fed to a column for fractional condensation with partial reflux. In this way, one obtains a highly concentrated waste that contains all the radioactive and chemical impurities and little boron, a concentrated boric acid solution which can be reused, as well as a highly decontaminated effluent without boron. In case replacement or adaptation of existing evaporators is less practical, one can adapt the process for the treatment of evaporator concentrates. After having been intensively tested at SCK{circ}CEN, the process has recently been demonstrated in a small pilot installation and with realistic liquid waste, at the nuclear power station in Doel, Belgium. The results corresponded to the theoretical predictions. After a transitional period, the boron concentration in the evaporator no longer increased and consequently did not limit the achievable waste volume reduction factor. The boric acid was recovered from the steam and during a supplementary treatment additional boric acid from the waste concentrate was recovered.

  20. Sulfur-rich geothermal emissions elevate acid aerosol levels in metropolitan Taipei.

    PubMed

    Lin, Chih-Hung; Mao, I-Fang; Tsai, Pei-Hsien; Chuang, Hsin-Yi; Chen, Yi-Ju; Chen, Mei-Lien

    2010-08-01

    Several studies have demonstrated that millions of people globally are potentially exposed to volcanic gases. Hydrogen sulfide is a typical gas in volcanic and geothermal areas. The gas is toxic at high concentrations that predominantly affects the nervous, cardiovascular, and respiratory systems. The WHO air quality guideline for hydrogen sulfide is 150 microg m(-3) (105 ppb). The northwest part of Taipei is surrounded by sulfur-rich geothermal and hot springs. Active fumaroles and bubbling springs around the geothermal area emit acidic gases. In combination with automobile emissions, the pollution of acid aerosols is characteristic of the metropolis. This study considered sulfur-rich geothermal, suburban and downtown locations of this metropolis to evaluate geothermally emitted acid aerosol and H(2)S pollution. Acid aerosols were collected using a honeycomb denuder filter pack sampling system (HDS), and then analyzed by ion chromatography (IC). Results indicated that long-term geothermal emissions, automobile emissions and photochemical reactions have led to significant variations in air pollution among regions of metropolitan Taipei. The highest H(2)S concentration was 1705 ppb in the geothermal area with low traffic density and the mean concentration was 404.06 ppb, which was higher than WHO guideline and might cause eye irritation. The SO(2) concentrations were relatively low (mean concentration was 3.9 ppb) in this area. It may partially result from the chemical reduction reaction in the geothermal emission, which converted the SO(2) gas into SO(4)(2-) and H(2)S. Consequently, very high sulfate concentrations (mean concentration higher than 25.0 microg m(-3)) were also observed in the area. The geothermal areas also emitted relatively high levels of aerosol acidity, Cl(-), F(-), PO(4)(3-), and N-containing aerosols. As a result, concentrations of HNO(3), NO(2)(-), PO(4)(3-), and SO(4)(2-) in metropolitan Taipei are significantly higher than those in other