Science.gov

Sample records for acid water ph

  1. Negative pH and extremely acidic mine waters from Iron Mountain, California

    USGS Publications Warehouse

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-01

    Extremely acidic mine waters with pH values as low as -3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as -4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  2. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  3. The role of low molecular weight organic acids on controlling pH in coastal sea water

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-12-01

    Series investigation of the Jiaozhou Bay, China, observed existences of three low molecular weight organic acids (LMWOAs), including lactic acid, acetic acid and formic acid, with high concentration in the sea water. Generally, their amount accounted for about 20% of DOC in the sea water of the bay. Human activities around the bay were considered as the major source of the LMWOAs. Also, long term detection showed that the pH value in the Jiaozhou Bay was lower than that in the adjacent Yellow Sea. On average, the difference of pH values between the bay and the Yellow was about 0.2. Due to higher concentrations of the LMWOAs, their contribution to lower pH value of the bay should not be ignored. To validate the effect of LMWOAs on the pH value of the bay, a new software was developed to calculate the pH value in the sea water samples based on alkalinity by adding three items of the three organic acids in the expression. Compared to the traditional pH calculating software, the new software could improve the calculating results significantly. Our results confirmed that LMWOAs was an important control factor to adjust pH values in coastal area.

  4. An HPLC method with UV detection, pH control, and reductive ascorbic acid for cyanuric acid analysis in water.

    PubMed

    Cantú, R; Evans, O; Kawahara, F K; Shoemaker, J A; Dufour, A P

    2000-12-01

    Every year over 250 million pounds of cyanuric acid (CA) and chlorinated isocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. The method developed for CA using high-performance liquid chromatography (HPLC) with UV detection simplifies and optimizes certain parameters of previous methodologies by effective pH control of the eluent (95% phosphate buffer: 5% methanol, v/v) to the narrow pH range of 7.2-7.4. UV detection was set at the optimum wavelength of 213 nm where the cyanuric ion absorbs strongly. Analysis at the lower pH range of 6.8-7.1 proved inadequate due to CA keto-enol tautomerism, while at pHs of <6.8 there were substantial losses in analytical sensitivity. In contrast, pHs of >7.4 proved more sensitive but their use was rejected because of CA elution at the chromatographic void volume and due to chemical interferences. The complex equilibria of chlorinated isocyanurates and associated species were suppressed by using reductive ascorbic acid to restrict the products to CA. UV, HPLC-UV, and electrospray ionization mass spectrometry techniques were combined to monitor the reactive chlorinated isocyanurates and to support the use of ascorbic acid. The resulting method is reproducible and measures CA in the 0.5-125 mg/L linear concentration range with a method detection limit of 0.05 mg/L in water.

  5. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  6. Autoionization at the surface of neat water: is the top layer pH neutral, basic, or acidic?

    PubMed

    Vácha, Robert; Buch, Victoria; Milet, Anne; Devlin, J Paul; Jungwirth, Pavel

    2007-09-14

    Autoionization of water which gives rise to its pH is one of the key properties of aqueous systems. Surfaces of water and aqueous electrolyte solutions are traditionally viewed as devoid of inorganic ions; however, recent molecular simulations and spectroscopic experiments show the presence of certain ions including hydronium in the topmost layer. This raises the question of what is the pH (defined using proton concentration in the topmost layer) of the surface of neat water. Microscopic simulations and measurements with atomistic resolution show that the water surface is acidic due to a strong propensity of hydronium (but not of hydroxide) for the surface. In contrast, macroscopic experiments, such as zeta potential and titration measurements, indicate a negatively charged water surface interpreted in terms of preferential adsorption of OH(-). Here we review recent simulations and experiments characterizing autoionization at the surface of liquid water and ice crystals in an attempt to present and discuss in detail, if not fully resolve, this controversy.

  7. Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.

    PubMed

    Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J

    2010-11-15

    A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.

  8. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  9. Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae).

    PubMed

    Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa

    2007-12-01

    The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.

  10. AN HPLC METHOD WITH UV DETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chloroisocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. ...

  11. AN HPLC METHOD WITH UVDETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chlorinated isocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabiliz...

  12. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  13. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  14. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH.

    PubMed

    Jiménez-Rodríguez, A M; Durán-Barrantes, M M; Borja, R; Sánchez, E; Colmenarejo, M F; Raposo, F

    2009-06-15

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  15. Nitrogenous and phosphorus excretions in juvenile silver catfish (Rhamdia quelen) exposed to different water hardness, humic acid, and pH levels.

    PubMed

    Golombieski, Jaqueline Ineu; Koakoski, Gessi; Becker, Alessandra Janaína; Almeida, Ana Paula Gottlieb; Toni, Cândida; Finamor, Isabela Andres; Pavanato, Maria Amália; de Almeida, Tielle Moraes; Baldisserotto, Bernardo

    2013-08-01

    This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L(-1) CaCO3), humic acid (0, 2.5, or 5.0 mg L(-1)), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1% (244-423 μmol kg(-1 )h(-1)) for ammonia, 10.9% (30-52 μmol kg(-1 )h(-1)) for creatinine, 0.02% (0.05-0.08 μmol kg(-1 )h(-1)) for protein, 0.001 % (0.002-0.004 μmol kg(-1 )h(-1)) for urea, 0.5% (0.64-3.6 μmol kg(-1 )h(-1)) for nitrite, and 0.5% (0.0-6.9 μmol kg(-1 )h(-1)) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14-2.97 μmol kg(-1) h(-1). Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.

  16. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values.

    PubMed

    Suhr, K I; Nielsen, P V

    2004-08-15

    Inhibition of spoilage organisms from bakery products by weak acid preservatives in concentrations of 0%, 0.003%, 0.03% and 0.3% (w/v) was investigated experimentally on a substrate media with water activity (a(w)) and pH ranging from sourdough-fermented acidic rye bread to alkaline intermediate moisture sponge cake types (a(w) 0.80-0.95, pH 4.7-7.4). Initially, rye bread conditions (a(w) 0.94-0.97 and pH 4.4-4.8) in combination with calcium propionate were investigated. Results showed that the highest concentration of propionate (0.3%) at all conditions apart from high a(w) (0.97) and high pH (4.8) totally inhibited fungal growth for a 2-week period, with the exception of Penicillium roqueforti, Penicillium commune and Eurotium rubrum. Characteristically for the major spoiler of rye bread, P. roqueforti, all three isolates tested were stimulated by propionate and the stimulation was significantly enhanced at high water activity levels. The effect of propionate on production of secondary metabolites (mycophenolic acid, rugulovasine, echinulin, flavoglaucin) was also studied, and variable or isolate dependent results were found. Subsequently, a screening experiment representing a wider range of bakery products was conducted using calcium propionate, potassium sorbate and sodium benzoate. The obtained data was modelled using survival analysis to determine 'spoilage-free time' for the fungi. At the low a(w) level (0.80) only Eurotium species grew within the test period of 30 days. Higher water activity levels as well as higher pH values decreased spoilage-free times of the fungi. The preservative calcium propionate was less effective than potassium sorbate and sodium benzoate.

  17. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  18. Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of Penicillium camemberti and Penicillium roqueforti conidia.

    PubMed

    Kalai, Safaa; Anzala, Lexane; Bensoussan, Maurice; Dantigny, Philippe

    2017-01-02

    In this study, the influence of environmental factors on the germination time of Penicillium camemberti and Penicillium roqueforti conidia was evaluated. To do so, the effects of i/temperature, pH, water activity, and ii/organic acids were determined using models based on i/cardinal values, and ii/minimum inhibitory concentration (MIC) respectively. Cardinal values for germination of conidia were not observed to be species dependent. Minimum temperatures were estimated to be below the freezing point, with an optimum of 26.9°C, and a maximum of 33.5°C. For both species, minimal and optimal aw values were found to be 0.83 and 0.99, respectively, while for pH these values corresponded to 2.9, and 5.6. MIC values could not be determined for lactic acid because conidia of both species germinated in up to 1M concentrations, the highest concentration tested. At pH5.6, P. camemberti (MIC=0.197M) was more sensitive to propionic acid than P. roqueforti (MIC=0.796M).

  19. pH measurement of low-conductivity waters

    USGS Publications Warehouse

    Busenberg, Eurybiades; Plummer, L.N.

    1987-01-01

    pH is an important and commonly measured parameter of precipitation and other natural waters. The various sources of errors in pH measurement were analyzed and procedures for improving the accuracy and precision of pH measurements in natural waters with conductivities of < 100 uS/cm at 25 C are suggested. Detailed procedures are given for the preparation of dilute sulfuric acid standards to evaluate the performance of pH electrodes in low conductivity waters. A daily check of the pH of dilute sulfuric acid standards and deionized water saturated with a gas mixture of low carbon dioxide at partial pressure (air) prior to the measurement of the pH of low conductivity waters is suggested. (Author 's abstract)

  20. Combined effects of weak acid preservatives, pH and water activity on growth of Eurotium species on a sponge cake.

    PubMed

    Guynot, M E; Ramos, A J; Sala, D; Sanchis, V; Marín, S

    2002-06-05

    The combined effects of weak acid preservatives (sorbate, benzoate and propionate), pH (6.0, 7.5) and water activity (a(w)) levels (0.80, 0.85, 0.90) on growth of four Eurotium species isolated from bakery products on a sponge cake analogue were studied. Even though it is universally known that these preservatives are much more effective at lower pH values, we chose a 6-7.5 level to correlate with the pH of the Spanish cake product studied. In general, 0.3% doses of all three preservatives were effective only when they were applied at pH 6.0 and at 0.80-0.85 a(w). Potassium sorbate was clearly the most effective in inhibiting growth of all isolates. Under the conditions tested, application of all three preservatives added at 0.03% acted as growth promoter of all isolates rather than having a preservative effect.

  1. Influence of sodium chloride and pH during acidic marination on water retention and mechanical properties of turkey breast meat.

    PubMed

    Goli, T; Ricci, J; Bohuon, P; Marchesseau, S; Collignan, A

    2014-03-01

    Turkey breast cubes underwent acidic marination in the presence of salt. The transfer of water, salt and acid was measured, and texture was assessed on the cooked meat. While significant mass gains were observed during marination, from 20 minutes of immersion onwards, only long durations produced an overall matter balance greater than that of non-marinated meat. From the first minutes of immersion, these transfers caused hardening, regardless of the presence of salt in the marinade. For longer durations, only in the absence of salt was significant tenderizing seen in comparison to the non-marinated control. This effect appears to be due on the one hand to passing the isoelectric pH of the meat during acidification, and on the other hand to setting up antagonistic mechanisms breaking down or reinforcing connective tissues by acid and salt respectively. The high degree of tenderization observed in a water-acid solution can be explained partly by dilution of the fiber load per section unit due to protein solubilization.

  2. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated.

  3. RAPID AND SIMPLIFIED HPLC METHOD WITH UV DETECTION, PH CONTROL AND SELECTIVE DECHLORINATOR FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Cyanuric acid (CA) and chloroisocyanurates are commonly used as standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. They are very well known for preventing the photolytic decomposi...

  4. Effects of dietary glutamine and gamma-aminobutyric acid on meat colour, pH, composition, and water-holding characteristic in broilers under cyclic heat stress.

    PubMed

    Dai, S F; Gao, F; Xu, X L; Zhang, W H; Song, S X; Zhou, G H

    2012-01-01

    1. An experiment was conducted to evaluate the effects of dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on raw breast meat colour, pH, composition and water-holding characteristic of broilers under cyclic heat stress (HS). 2. A total of 360 21-d-old Arbor Acres male chicks were randomly assigned to 5 treatment groups (6 replicates of 12 birds per cage). The positive control (PC) broilers were kept in a thermoneutral chamber (22-24°C) and fed on the basal diet. The other 4 groups were kept in a cyclic HS chamber (30-34°C) for 9 h (from 09:00 to 18:00). 3. A significant increase was observed in breast meat lightness at 28, 35 and 42 d; and pH values at 28, 35 and 42 d; while a significant decrease was observed in breast meat cooking loss (CL) and contents of moisture, crude protein (CP), crude fat (CF) and crude ash (CA) due to HS. 4. The supplementation with 0·5 g Gln/kg decreased lightness at 28, 35 and 42 d; while increasing redness at 28 d, yellowness at 35 d, contents of CP, CF and CA, thawing loss (TL) and drip loss (DL). The addition of 100 mg GABA/kg decreased lightness at 28 and 35 d, pH value at 28, 35 and 42 d, and TL; while increasing redness at 28 d, 35 and 42 d, contents of moisture, CP and CF. 5. The lightness, redness, and pH value; contents of moisture, CP, CF and CA; and TL, DL and CL of breast meat of broilers fed with the mixture of Gln and GABA under cyclic HS were similar to those of the broilers in the PC group. 6. Significant interactions were found between Gln and GABA for yellowness at 28 and 35 d; pH at 28, 35 and 42 d; moisture content, CP content, water-holding capacity and TL. 7. These results demonstrated that dietary Gln and GABA offer a potential nutritional strategy to prevent cyclic HS-related depression in broiler meat chemical composition and quality.

  5. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  6. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow.

    PubMed

    Al-Rasheed, Radwan; Cardin, David J

    2003-06-01

    We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO(2) (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 gl(-1); while the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure oxygen, an optimal flow rate was observed at 300 ml min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 (+/-0.6) kJ mol(-1).

  7. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  8. Variation of ocean pH in the Indonesia waters

    NASA Astrophysics Data System (ADS)

    Putri, Mutiara Rachmat; Setiawan, Agus; Safitri, Mediana

    2015-09-01

    The variation of ocean acidity (pH) in the Indonesia waters is strongly influenced by monsoon. Since the climate change tends to potentially change monsoonal variation over the Indonesian region, it will give also implication to the ocean pH variation. Moreover, changes of ocean pH will give effects to the marine lifes and their environment. In order to investigate this issue, we tried to calculate monthly variation of sea surface pH in the Indonesia waters based on monthly average temperature and salinity over past 18 years data. Temperature and salinity data used in this study were taken from the hydrodynamic model of Hamburg Shelf Ocean Model (HAMSOM), while alkalinity and dissolved inorganic carbon (DIC) were from World Ocean Atlas 2009 (WOA 2009). Algorithm from Ocean Carbon Model Intercomparison Project-version.3 (OCMIP-3) was used to calculate the pH. The estimation results indicate that pH variation in the Indonesia waters changes insignificantly over 18 years. El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) contribute to physical changes of seawater, but did not affect the pH significantly. The average pH of seawater is higher during northwest monsoon than during southeast monsoon.

  9. Prediction of the chromatographic retention of acid-base compounds in pH buffered methanol-water mobile phases in gradient mode by a simplified model.

    PubMed

    Andrés, Axel; Rosés, Martí; Bosch, Elisabeth

    2015-03-13

    Retention of ionizable analytes under gradient elution depends on the pH of the mobile phase, the pKa of the analyte and their evolution along the programmed gradient. In previous work, a model depending on two fitting parameters was recommended because of its very favorable relationship between accuracy and required experimental work. It was developed using acetonitrile as the organic modifier and involves pKa modeling by means of equations that take into account the acidic functional group of the compound (carboxylic acid, protonated amine, etc.). In this work, the two-parameter predicting model is tested and validated using methanol as the organic modifier of the mobile phase and several compounds of higher pharmaceutical relevance and structural complexity as testing analytes. The results have been quite good overall, showing that the predicting model is applicable to a wide variety of acid-base compounds using mobile phases prepared with acetonitrile or methanol.

  10. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  11. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH

    DOE PAGES

    Wang, Wan -Hui; Fujita, Etsuko; Ertem, Mehmed Z.; ...

    2015-07-30

    Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stablemore » and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.« less

  12. Highly robust hydrogen generation by bio-inspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH

    SciTech Connect

    Wang, Wan -Hui; Fujita, Etsuko; Ertem, Mehmed Z.; Xu, Shaoan; Onishi, Naoya; Manaka, Yuichi; Suna, Yuki; Kambayashi, Hide; Muckerman, James T.; Himeda, Yuichiro

    2015-07-30

    Hydrogen generation from formic acid (FA), one of the most promising hydrogen storage materials, has attracted much attention due to the demand for the development of renewable energy carriers. Catalytic dehydrogenation of FA in an efficient and green manner remains challenging. Here, we report a series of bio-inspired Ir complexes for highly robust and selective hydrogen production from FA in aqueous solutions without organic solvents or additives. One of these complexes bearing an imidazoline moiety (complex 6) achieved a turnover frequency (TOF) of 322,000 h⁻¹ at 100 °C, which is higher than ever reported. The novel catalysts are very stable and applicable in highly concentrated FA. For instance, complex 3 (1 μmol) affords an unprecedented turnover number (TON) of 2,050,000 at 60 °C. Deuterium kinetic isotope effect experiments and density functional theory (DFT) calculations employing a “speciation” approach demonstrated a change in the rate-determining step with increasing solution pH. This study provides not only more insight into the mechanism of dehydrogenation of FA but also offers a new principle for the design of effective homogeneous organometallic catalysts for H₂ generation from FA.

  13. Reduction of dehydroascorbic acid at low pH.

    PubMed

    Wechtersbach, Luka; Cigić, Blaz

    2007-08-01

    Ascorbic acid and dehydroascorbic acid are unstable in aqueous solution in the presence of copper and iron ions, causing problems in the routine analysis of vitamin C. Their stability can be improved by lowering the pH below 2, preferably with metaphosphoric acid. Dehydroascorbic acid, an oxidised form of vitamin C, gives a relatively low response on the majority of chromatographic detectors, and is therefore routinely determined as the increase of ascorbic acid formed after reduction. The reduction step is routinely performed at a pH that is suboptimal for the stability of both forms. In this paper, the reduction of dehydroascorbic acid with tris-[2-carboxyethyl] phosphine (TCEP) at pH below 2 is evaluated. Dehydroascorbic acid is fully reduced with TCEP in metaphosphoric acid in less than 20 min, and yields of ascorbic acid are the same as at higher pH. TCEP and ascorbic acid formed by reduction, are more stable in metaphosphoric acid than in acetate or citrate buffers at pH 5, in the presence of redox active copper ions. The simple experimental procedure and low probability of artefacts are major benefits of this method, over those currently applied in a routine assay of vitamin C, performed on large number of samples.

  14. Molecular Basis of pH and Ca2+ Regulation of Aquaporin Water Permeability

    PubMed Central

    Németh-Cahalan, Karin L.; Kalman, Katalin; Hall, James E.

    2004-01-01

    Aquaporins facilitate the diffusion of water across cell membranes. We previously showed that acid pH or low Ca2+ increase the water permeability of bovine AQP0 expressed in Xenopus oocytes. We now show that external histidines in loops A and C mediate the pH dependence. Furthermore, the position of histidines in different members of the aquaporin family can “tune” the pH sensitivity toward alkaline or acid pH ranges. In bovine AQP0, replacement of His40 in loop A by Cys, while keeping His122 in loop C, shifted the pH sensitivity from acid to alkaline. In the killifish AQP0 homologue, MIPfun, with His at position 39 in loop A, alkaline rather than acid pH increased water permeability. Moving His39 to His40 in MIPfun, to mimic bovine AQP0 loop A, shifted the pH sensitivity back to the acid range. pH regulation was also found in two other members of the aquaporin family. Alkaline pH increased the water permeability of AQP4 that contains His at position 129 in loop C. Acid and alkaline pH sensitivity was induced in AQP1 by adding histidines 48 (in loop A) and 130 (in loop C). We conclude that external histidines in loops A and C that span the outer vestibule contribute to pH sensitivity. In addition, we show that when AQP0 (bovine or killifish) and a crippled calmodulin mutant were coexpressed, Ca2+ sensitivity was lost but pH sensitivity was maintained. These results demonstrate that Ca2+ and pH modulation are separable and arise from processes on opposite sides of the membrane. PMID:15078916

  15. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model.

    PubMed

    Vermeulen, A; Gysemans, K P M; Bernaerts, K; Geeraerd, A H; Van Impe, J F; Debevere, J; Devlieghere, F

    2007-03-20

    Growth/no growth models can be used to determine the chance that microorganisms will grow in specific environmental conditions. As a consequence, these models are of interest in the assessment of the safety of foods which can be contaminated with food pathogens. In this paper, growth/no growth data for Listeria monocytogenes (in a monoculture and in a mixed strain culture) are presented. The data were gathered at 7 degrees C in Nutrient Broth with different combinations of environmental factors pH (5.0-6.0, six levels), water activity (0.960-0.990, six levels) and acetic acid concentration (0-0.8% (w/w), five levels). This combination of environmental factors for the development of a growth/no growth model was based on the characteristics of sauces and mayonnaise based salads. The strains used were chosen from screening experiments in which the pH, water activity and acetic acid resistance of 26 L. monocytogenes strains (LFMFP culture collection) was determined at 30 degrees C in Brain Heart Infusion broth. The screening showed that most L. monocytogenes strains were not able to grow at a(w)<0.930, pH<4.3 or a total acetic acid concentration >0.4% (w/w). Among these strains, the ones chosen were the most resistant to one of these factors in the hope that, if the resulting model predicted no growth at certain conditions for those more resistant strains, then these predictions would also be valid for the less resistant strains. A mixed strain culture was also examined to combine the strains that were most resistant to one of the factors. A full factorial design with the selected strains was tested. The experiments were performed in microtiter plates and the growth was followed by optical density measurements at 380 nm. The plates were inoculated with 6 log CFU/ml and twenty replicates were made for each treatment combination. These data were used (1) to determine the growth/no growth boundary and (2) to estimate the influence of the environmental conditions on the

  16. Growth of water hyacinth in municipal landfill leachate with different pH.

    PubMed

    El-Gendy, A S; Biswas, N; Bewtra, J K

    2004-07-01

    Batch experiments were conducted to investigate the effect of municipal landfill leachate pH on the growth of water hyacinth (Eichhornia crassipes). These experiments were carried out in a green house environment on leachate samples collected from Essex-Windsor Regional Landfill, Windsor, Ontario, Canada. It was found that water hyacinth plants survived in a pH range of 4.0 to 8.0. Both alkaline pH (above 8.0) and highly acidic pH (below 4.0) had inhibitory effect on the growth of plants. The pH range, for optimum growth of the water hyacinth plants was found to be 5.8 to 6.0. At optimum growth, water hyacinth had an average mean relative growth rate of 0.043 d-1. It was found that nitrogen compounds underwent different transformations depending on the pH of leachate. Plant uptake, nitrification and volatilization were among these transformations.

  17. The pH of water from various sources: an overview for recommendation for patients with atopic dermatitis

    PubMed Central

    Kulthanan, Kanokvalai; Varothai, Supenya

    2013-01-01

    Background Patients with atopic dermatitis (AD) have increased susceptibility to irritants. Some patients have questions about types of water for bathing or skin cleansing. Objective We studied the pH of water from various sources to give an overview for physicians to recommend patients with AD. Methods Water from various sources was collected for measurement of the pH using a pH meter and pH-indicator strips. Results Bottled drinking still water had pH between 6.9 and 7.5 while the sparkling type had pH between 4.9 and 5.5. Water derived from home water filters had an approximate pH of 7.5 as same as tap water. Swimming pool water had had pH between 7.2 and 7.5 while seawater had a pH of 8. Normal saline and distilled water had pH of 5.4 and 5.7, respectively. Facial mineral water had pH between 7.5 and 8, while facial makeup removing water had an acidic pH. Conclusion Normal saline, distilled water, bottled sparkling water and facial makeup removing water had similar pH to that of normal skin of normal people. However, other factors including benefits of mineral substances in the water in terms of bacteriostatic and anti-inflammation should be considered in the selection of cleansing water. PMID:23956962

  18. Formation of elastic whey protein gels at low pH by acid equilibration.

    PubMed

    Vardhanabhuti, Bongkosh; Khayankan, Worarat; Foegeding, E Allen

    2010-06-01

    Whey protein gels have a weak/brittle texture when formed at pH pH is required to produce a high-protein, shelf-stable product. We investigated if gels could be made under conditions that produced strong/elastic textural properties then adjusted to pH pH 7.5). Equilibration in acid solutions caused gel swelling and lowered pH because of the diffusion of water and H(+) into the gels. The type and concentration of acid, and presence of other ions, in the equilibrating solutions influenced pH, swelling ratio, and fracture properties of the gels. Swelling of gels decreased fracture stress (because of decreased protein network density) but caused little change to fracture strain, thus maintaining a desirable strong/elastic fracture pattern. We have shown that whey protein isolate gels can be made at pH acid type, acid concentration, pH of equilibrating solution, and equilibrating time.

  19. Treatment of Escherichia coli O157:H7 with lactic acid, neutralized electrolyzed oxidizing water and chlorine dioxide followed by growth under sub-optimal conditions of temperature, pH and modified atmosphere.

    PubMed

    Smigic, Nada; Rajkovic, Andreja; Antal, Eszter; Medic, Helga; Lipnicka, Barbara; Uyttendaele, Mieke; Devlieghere, Frank

    2009-09-01

    The utilization of sub-lethal decontamination treatments gains more and more interest due to the increased consumers' demand for fresh, minimally processed and convenient food products. These products rely on cold chain and hurdle (combination) technology to provide microbiological safety and quality during their shelf life. To investigate the ability of surviving cells to resuscitate and grow in a food simulating environment, sub-lethal decontamination treatments were coupled with subsequent storage under sub-optimal growth conditions. For this purpose chlorine dioxide (ClO2) and neutralized electrolyzed oxidizing water (NEW)-treated cultures of Escherichia coli O157:H7 were inoculated in TSB-YE of pH 5.8 and aw 0.99, and stored at 10 degrees C, 12.5 degrees C and 15 degrees C, under four different atmospheres (0%, 30% and 60% CO2 balanced with N2, and air). Due to the severity of injury, lactic acid-treated cells were inoculated in TSB-YE pH 7.0. Data obtained reveal that the fraction of sub-lethally injured E. coli O157:H7 undergoes an additional inhibitory effect during the storage period under of sub-optimal conditions. Observed extension in the lag growth phase was a direct consequence prior sub-lethal injury. The effects of liquid ClO2 and NEW were less pronounced in comparison to lactic acid. The current study signifies the potential utilization of appropriate combination of different extrinsic and intrinsic factors in the elimination or growth inhibition of food-borne pathogens.

  20. Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions.

    PubMed

    Kurniawan, James; Suga, Keishi; Kuhl, Tonya L

    2017-02-01

    Oleic acid is known to interact with saturated lipid molecules and increase the fluidity of gel phase lipid membranes. In this work, the thermodynamic properties of mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid at the air-water interface were determined using Langmuir isotherms. The isotherm study revealed an attractive interaction between oleic acid and DPPC. The incorporation of oleic acid also monotonically decreased the elastic modulus of the monolayer indicative of higher fluidity with increasing oleic acid content. Using the surface force apparatus, intermembrane force-distance profiles were obtained for substrate supported DPPC membranes containing 30mol% oleic acid at pH5.8 and 7.4. Three different preparation conditions resulted in distinct force profiles. Membranes prepared in pH5.8 subphase had a low number of nanoscopic defects ≤1% and an adhesion magnitude of ~0.6mN/m. A slightly higher defect density of 1-4% was found for membranes prepared in a physiological pH7.4 subphase. The presence of the exposed hydrophobic moieties resulted in a higher adhesion magnitude of 2.9mN/m. Importantly, at pH7.4, some oleic acid deprotonates resulting in a long-range electrostatic repulsion. Even though oleic acid increased the DPPC bilayer fluidity and the number of defects, no membrane restructuring was observed indicating that the system maintained a stable configuration.

  1. Organic acids make Escherichia coli more resistant to pulsed electric fields at acid pH.

    PubMed

    Somolinos, M; García, D; Mañas, P; Condón, S; Pagán, R

    2010-01-01

    Stationary growth phase cells of Escherichiacoli were more pulsed electric fields (PEF) resistant in citrate-phosphate McIlvaine buffer at pH 4.0 than at pH 7.0. The greater PEF resistance was also confirmed in fruit juices of similar acid pH. In this work we studied whether the higher PEF resistance of E. coli at acid pH was due to the low pH itself or to the interaction of the components of the treatment medium with the cells. The protective effect on E. coli cells was due to the presence of organic acids such as citric, acetic, lactic or malic at pH 4.0. The protective effect of citric acid at pH 4.0 depended on its concentration. A linear relationship was observed between the Log(10) of the citric acid concentration and the degree of inactivation. Organic acids contained in laboratory treatment media (citrate-phosphate buffer) or in fruit juices did not sensitize E. coli cells to PEF but, on the contrary, they induced a protective effect that made E. coli cells more resistant at pH 4.0 than at neutral pH. This work could be useful for improving food preservation by PEF technology and it contributes to the knowledge of the mechanism of microbial inactivation by PEF.

  2. Effects of saliva on starch-thickened drinks with acidic and neutral pH.

    PubMed

    Hanson, Ben; Cox, Ben; Kaliviotis, Efstathios; Smith, Christina H

    2012-09-01

    Powdered maize starch thickeners are used to modify drink consistency in the clinical management of dysphagia. Amylase is a digestive enzyme found in saliva which breaks down starch. This action is dependent on pH, which varies in practice depending on the particular drink. This study measured the effects of human saliva on the viscosity of drinks thickened with a widely used starch-based thickener. Experiments simulated a possible clinical scenario whereby saliva enters a cup and contaminates a drink. Citric acid (E330) was added to water to produce a controlled range of pH from 3.0 to 7.0, and several commercially available drinks with naturally low pH were investigated. When saliva was added to thickened water, viscosity was reduced to less than 1% of its original value after 10-15 min. However, lowering pH systematically slowed the reduction in viscosity attributable to saliva. At pH 3.5 and below, saliva was found to have no significant effect on viscosity. The pH of drinks in this study ranged from 2.6 for Coca Cola to 6.2 for black coffee. Again, low pH slowed the effect of saliva. For many popular drinks, having pH of 3.6 or less, viscosity was not significantly affected by the addition of saliva.

  3. The effect of pH on the survival of leptospires in water*

    PubMed Central

    Smith, C. E. Gordon; Turner, L. H.

    1961-01-01

    One of the factors on which the incidence of leptospirosis is dependent is the survival time of shed leptospires in surface water or soil water, and this time is in turn affected by the acidity or alkalinity of the water. The authors have therefore studied the survival of four leptospiral serotypes in buffered distilled water at pH's ranging from 5.3 to 8.0. All survived longer in alkaline than in acid water, and significant differences between the serotypes were found in response to pH. Survival at pH's under 7.0 ranged from 10 to 117 days and at pH's over 7.0 from 21 to 152 days. Survival was also studied in aqueous extracts of soil samples from different areas in Malaya; no correlation was found between pH and survival time. It was also noted that in a group of Malayan ricefields a low incidence of leptospirosis in man was accompanied by a high infection rate among rodents, and when it was found that this phenomenon could not be explained by pH or salinity, attention was turned to the soil. Bentonite clay, similar to the montmorrillonite clay of the ricefields, was found to adsorb about half the leptospires in suspension. The authors recommend that field study of this laboratory observation be undertaken. PMID:20604084

  4. Acidic pH environment induces autophagy in osteoblasts

    PubMed Central

    Zhang, Zhichao; Lai, Qingguo; Li, Yanan; Xu, Chao; Tang, Xiaopeng; Ci, Jiangbo; Sun, Shaolong; Xu, Bingbing; Li, Yan

    2017-01-01

    Osteoblasts (OBs) play an important role in bone fracture healing, yet the extreme adverse microenvironment in fracture sites has a negative impact on the survival of OBs. Therefore, it is important to study how OBs behave in the complex fracture microenvironment. Studies have shown that autophagy plays a pivotal role in maintaining cellular homeostasis and defending the cell against adverse microenvironments. In this study we found the induction of autophagy in OBs at femoral bone fracture sites, which may be a result of ischemia, oxidative stress and hypoxia within the local area. At fracture sites a low pH environment also developed. Until now it has been unclear whether the induction of autophagy in osteoblasts is triggered by the acidic pH environment. Therefore, we cultured OBs in vitro in media of different pH values, and found both autophagy and apoptosis increased in OBs in acidic conditions. However, when autophagy inhibitor chloroquine (CQ) was used, apoptosis increased significantly compared with that without CQ. Thus indicating that inhibition of autophagy may promote apoptosis in OBs in an acidic environment, which may provide a new therapeutic strategy to decrease cell apoptosis in OBs through the use of drugs that modulate the autophagic state. PMID:28382973

  5. Uric acid plasma level and urine pH in rats treated with ambroxol.

    PubMed

    Drewa, Tomasz; Wolski, Zbigniew; Gruszka, Marzena; Misterek, Bartosz; Lysik, Joanna

    2007-01-01

    It was a chance discovery that ambroxol parenteral administration led to urinary bladder stone formation in rats. This study was undertaken to examine the serum uric acid levels and urine pH in rats after ambroxol parenteral treatment. Ambroxol influence on the uric acid level was measured in 5 rats (Rattus sp.) treated with 60 mg/kg (dissolved in injection water, sc, daily) during 2 weeks. Ambroxol influence on urine pH was examined on 45 rats divided into 3 groups. Rats from the 1st and 2nd group received 30 and 60 mg/kg/24h ambroxol, respectively. Urine was collected once daily and measured with strip kit. All values were presented as the means with standard deviations. The Student t test was used to compare the means, p < 0.05 was considered as significant. Dynamics of pH changes was measured in 4 rats treated with 60 mg/kg/24h of ambroxol. Controls received 1 mL of injection water sc. Serum uric acid level increased up to 8.7 +/- 1.0 mg/dL vs. 5.7 +/- 1.0 mg/dL in control (p < 0.002). In the 1st and 2nd group urine pH increased up to 7.5 +/- 0.5 and 7.6 +/- 0.5 vs. 6.7 +/- 0.4 (p < 0.05). Ambroxol withdrawal resulted in sequential urine pH decrease. 11 days after interruption of ambroxol therapy pH reached the starting value. Urine pH changes and possible disturbances in uric acid metabolic pathway may influence on the stone formation in rats after ambroxol parenteral treatment. The influence of ambroxol on urinary tract GAG layer and the balance between xanthine and CaOx in the urine should be checked.

  6. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    SciTech Connect

    Daniel P. Molloy

    2002-10-15

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P. fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.

  7. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: the effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids.

    PubMed

    Vermeulen, A; Marvig, C L; Daelman, J; Xhaferi, R; Nielsen, D S; Devlieghere, F

    2015-02-01

    Intermediate moisture foods (IMF) are in general microbiologically stable products. However, due to health concerns consumer demands are increasingly forcing producers to lower the fat, sugar and preservatives content, which impede the stability of the IMF products. One of the strategies to counteract these problems is the storage of IMF products at lower temperatures. Thorough knowledge on growth/no growth boundaries of Zygosaccharomyces rouxii in IMF products, also at different storage temperatures is an important tool for ensuring microbiologically stability. In this study, growth/no growth models for Z. rouxii, developed by Vermeulen et al. (2012) were further extended by incorporating the factor temperature. Three different data sets were build: (i) without organic acids, (ii) with acetic acid (10,000 ppm on product basis) and (iii) with sorbic acid (1500 ppm on product basis). For each of these data sets three different growth/no growth models were developed after 30, 60 and 90 days. The results show that the influence of temperature is only significant in the lower temperature range (8-15 °C). Also, the effect of pH is negligible (pH 5.0-6.2) unless organic acids are present. More specific, acetic acid had only an additive effect to ethanol and aw at low pH, whereas sorbic acid had also an additive effect at the higher pH values. For incubation periods longer than 30 days the growth/no growth boundary remained stable but enlarged gradually between day 60 and 90, except for the lower temperature range (<12 °C) where the boundary shifts to more stringent environmental conditions.

  8. Immunomodulatory effects of temperature and pH of water in an Indian freshwater sponge.

    PubMed

    Mukherjee, Soumalya; Bhunia, Anindya Sundar; Bhunia, Niladri Sekhar; Ray, Mitali; Ray, Sajal

    2016-07-01

    Eunapius carteri, a freshwater sponge of India, inhabits the ponds and lakes and experiences variations of temperature and pH of water throughout the year. Sponges bear evolutionary and ecological importance with limited information on their immunological attribute and adaptational resilience in a changing environment. This paper reports temperature and pH specific responses of immune related parameters in sponge maintained in the experimental conditions of laboratory. Innate immunological parameters like phagocytosis and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase activity were estimated in E. carteri at different environmentally realistic water temperatures (10, 20, 30 and 40°C) and pH (6.4, 7.4 and 8.4). Phagocytosis and cytotoxicity are established as important immune parameters of invertebrates. Calalase, an antioxidant enzyme and phosphatases are involved in pathogen destruction and are considered as components of innate immunity. Activities of catalase, acid and alkaline phosphatases were estimated in E. carteri at different thermal regimes and pH. Modulation of phagocytic and cytotoxic responses and the activities of catalase and phosphatases at different water temperatures and pH indicated temperature and pH specific immunological status of E. carteri. Present investigation deals with the effects of selected hydrological parameters on the fundamental immune related parameters in sponge indicating its adaptational plasticity. Immunological resilience of this species in the face of variation of water temperature and pH is thought to be a special adaptive feature of sponge, a reported "living fossil".

  9. Water balance creates a threshold in soil pH at the global scale.

    PubMed

    Slessarev, E W; Lin, Y; Bingham, N L; Johnson, J E; Dai, Y; Schimel, J P; Chadwick, O A

    2016-11-21

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  10. Water balance creates a threshold in soil pH at the global scale

    NASA Astrophysics Data System (ADS)

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  11. pH buffers for sea water media based on the total hydrogen ion concentration scale

    NASA Astrophysics Data System (ADS)

    Dickson, Andrew G.

    1993-01-01

    Published e.m.f. values measured using the cell ? where p° = 101.325 kPa, and BH + and B are the conjugate acid-base pairs of 2-aminopyridine, 2-amino-2-hydroxymethyl-1,3-propanediol (tris), tetrahydro-1,4-isoxazine (morpholine), and 2-amino-2-methyl-1, 3-propanediol (bis), have been re-evaluated to assign pH values based on the "total" hydrogen ion concentration scale to equimolal ( m =0.04 mol kg -1) buffer solutions based on these compounds. These pH values are consistent with the best available equilibrium constants for acid-base processes in sea water and such pH buffers can be used as pH calibration standards to measure accurate values for oceanic pH on the "total" hydrogen ion pH scale. In addition, the published e.m.f. results for these various amine bases have been used to calculate their respective acidity constants on this pH scale.

  12. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    SciTech Connect

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-09-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H/sub 2/S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H/sub 2/S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by (/sup 14/C)glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

  13. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  14. Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry.

    PubMed

    Kampe, Heike; Dziallas, Claudia; Grossart, Hans-Peter; Kamjunke, Norbert

    2010-10-01

    As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH-even at low pH-and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.

  15. Fine-particle water and pH in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Guo, H.; Xu, L.; Bougiatioti, A.; Cerully, K. M.; Capps, S. L.; Hite, J. R., Jr.; Carlton, A. G.; Lee, S.-H.; Bergin, M. H.; Ng, N. L.; Nenes, A.; Weber, R. J.

    2015-05-01

    secondary organic aerosol (SOA) chemistry. The mean pH predicted in the Alabama forest (SOAS) was 0.94 ± 0.59 (median 0.93). pH diurnal trends followed liquid water and were driven mainly by variability in RH; during SOAS nighttime pH was near 1.5, while daytime pH was near 0.5. pH ranged from 0.5 to 2 in summer and 1 to 3 in the winter at other sites. The systematically low pH levels in the southeast may have important ramifications, such as significantly influencing acid-catalyzed reactions, gas-aerosol partitioning, and mobilization of redox metals and minerals. Particle ion balances or molar ratios, often used to infer pH, do not consider the dissociation state of individual ions or particle liquid water levels and do not correlate with particle pH.

  16. Influence of five neutralizing products on intra-oral pH after rinsing with simulated gastric acid.

    PubMed

    Lindquist, Birgitta; Lingström, Peter; Fändriks, Lars; Birkhed, Dowen

    2011-08-01

    The aetiology of dental erosion may be of both extrinsic and intrinsic origin. The aim of the present study was to test the ability of various neutralizing products to raise the low intra-oral pH after an erosive exposure, in this case to gastric acid, which was simulated using hydrochloric acid (HCl). Eleven adults participated. They rinsed with 10 ml of 10 mM HCl (pH 2) or 10 ml of 100 mM HCl (pH 1) for 1 min, after which the pH was measured intra-orally for up to 30 min at four sites (two approximal, one buccal, and the dorsum of the tongue). After rinsing with the two acid solutions (pH 1 and pH 2), the following products were used: (i) antacid tablet; (ii) gum arabic lozenge; (iii) mineral water; (iv) milk; and (v) tap water (positive control). The negative control was no product use. The five test products were used for 2 min after the erosive challenge. All the products produced an initially higher pH compared with the negative control. The antacid tablet resulted in the greatest and most rapid increase in pH, followed by the lozenge. In dental practice, the use of any of the neutralizing products tested, especially the antacid tablet, could be recommended in order to increase the intra-oral pH after an erosive challenge.

  17. Implications of pH manipulation methods for metal toxicity: not all acidic environments are created equal.

    PubMed

    Esbaugh, A J; Mager, E M; Brix, K V; Santore, R; Grosell, M

    2013-04-15

    The toxicity of many metals is impacted by environmental pH, through both competition and complexation by hydroxide and carbonate ions. To establish safe environmental regulation it is important to properly define the relationship between pH and metal toxicity, a process that involves manipulating the pH of test water in the lab. The current study compares the effects of the three most common pH manipulation methods (carbon dioxide, acid-base addition, and chemical buffers) on acute Pb toxicity of a model fish species, Pimephales promelas. Acidification of test water revealed that the Pb and Pb(2+) LC50 values were impacted by the pH manipulation method, with the following order of effects: HClpH was alkalinized using MOPS or NaOH. The different impacts of pH manipulation methods on Pb toxicity are likely due to different physiological stresses resulting from the respective methods; the physiological implications of each method are discussed. The results suggest that when studying the impacts of pH on metal toxicity it is important to properly replicate the ambient conditions of interest as artificial buffering using CO2 environments or organic buffers significantly affects the physiology of the test organisms above and beyond what is expected from pH alone. Thus, using CO2 and organic buffers overestimates the impact of acid pH on Pb toxicity.

  18. Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water.

    PubMed

    Yoon, Seung-No; Yoo, Byoungseung

    2016-03-01

    Flow and dynamic rheological properties of thickened waters prepared with commercial food thickeners were investigated at different pH levels (3, 4, 5, 6, and 7). The commercial xanthan gum (XG)-based thickener (thickener A) and starch-based thickener (thickener B), which have been commonly used in a domestic hospital and nursing home for patients with swallowing difficulty (dysphagia) in Korea, were selected in this study. Thickened samples with both thickeners at different pH levels showed high shear-thinning flow behaviors (n=0.08~0.22). Thickened samples at pH 3 showed higher n values and lower consistency index (K) values when compared to those at other pH levels. The K values of thickener A increased with an increase in pH level, while the n values decreased, showing that the flow properties greatly depended on pH. There were no noticeable changes in the K values of thickener B between pH 4 and 7. At pH 3, the thickened water with thickener A showed a higher storage modulus (G') value, while that with thickener B showed a lower G'. These rheological parameters exhibited differences in rheological behaviors between XG-based and starch-based thickeners, indicating that the rheological properties of thickened waters appear to be greatly influenced by the acidic condition and the type of food thickener. Appropriately selecting a commercial food thickener seems to be greatly important for the preparation of thickened acidic fluids with desirable rheological properties for safe swallowing.

  19. Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water

    PubMed Central

    Yoon, Seung-No; Yoo, Byoungseung

    2016-01-01

    Flow and dynamic rheological properties of thickened waters prepared with commercial food thickeners were investigated at different pH levels (3, 4, 5, 6, and 7). The commercial xanthan gum (XG)-based thickener (thickener A) and starch-based thickener (thickener B), which have been commonly used in a domestic hospital and nursing home for patients with swallowing difficulty (dysphagia) in Korea, were selected in this study. Thickened samples with both thickeners at different pH levels showed high shear-thinning flow behaviors (n=0.08~0.22). Thickened samples at pH 3 showed higher n values and lower consistency index (K) values when compared to those at other pH levels. The K values of thickener A increased with an increase in pH level, while the n values decreased, showing that the flow properties greatly depended on pH. There were no noticeable changes in the K values of thickener B between pH 4 and 7. At pH 3, the thickened water with thickener A showed a higher storage modulus (G′) value, while that with thickener B showed a lower G′. These rheological parameters exhibited differences in rheological behaviors between XG-based and starch-based thickeners, indicating that the rheological properties of thickened waters appear to be greatly influenced by the acidic condition and the type of food thickener. Appropriately selecting a commercial food thickener seems to be greatly important for the preparation of thickened acidic fluids with desirable rheological properties for safe swallowing. PMID:27069910

  20. Effect of pH on Metal Lability in Drinking Water Treatment Residuals.

    PubMed

    Wang, Changhui; Yuan, Nannan; Pei, Yuansheng

    2014-01-01

    Drinking water treatment residuals (WTRs), by-products generated during treatment of drinking water, can be reused as environmental amendments to remediate contamination. However, this beneficial reuse may be hampered by the potential release of toxic contaminants (e.g., metals) in the WTRs. In present study, batch tests and then fractionation, in vitro digestion, and the toxicity characteristic leaching procedure were used to investigate the release and extractability of metals in the Fe/Al hydroxides comprised WTRs under differing pH. The results demonstrated that significant release from WTRs for Ba, Be, Ca, Cd, Co, Cr, Fe, Mg, Mn, Pb, Sr, and Zn occurred under low pH (acid condition); for As, Mo, and V under high pH (alkaline condition); and for Al, Cu, and Ni under both conditions. In comparison, most metals in the WTRs were more easily released under low pH, but the release was stable at a relatively low level between pH 6 and 9, especially under alkaline conditions. Further analysis indicated that the chemical extractability and bioaccessibility of many metals was found to increase in the WTRs after being leached, even though the leached WTRs could still be considered nonhazardous. These results demonstrated that pH had a substantial effect on the lability of metals in WTRs. Overall, caution should be used when considering pH conditions during WTRs reuse to avoid potential metal pollution.

  1. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Kirk, Nordstrom D.; Blaine, McCleskey R.; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  2. Optical pH measurements with water dispersion of polyaniline nanoparticles and their redox sensitivity.

    PubMed

    Lindfors, Tom; Harju, Leo; Ivaska, Ari

    2006-05-01

    A new method for optical pH and redox measurements with a commercially available water dispersion of polyaniline (PANI) nanoparticles (mean particle size, 46 nm) is presented. The pH measurements are based on the acid-base equilibrium of PANI and were carried out either by combining both the automated sequential injection analysis (SIA) and UV-visible spectrophotometric techniques or with a fiber-optic light guide. In the former case, the detection was done in continuous mode at lambda = 800 nm by using the SIA technique for transporting the sample to a flow-through cell, which was placed in the light path of the photometer. With the fiber-optic light guide, the detection was done in batch mode at lambda = 400 and 580 nm. In both methods, fresh pH reagent (PANI) solution was used in each measurement, thus overcoming the problem with hysteresis (memory effect), which is usually observed with PANI films. The PANI nanoparticles were characterized with UV-visible spectroscopy in pH buffer solutions between pH 2-12 and a protonation constant of logK(0.5H,L)(H(0.5)L) = 4.4 was calculated from these data. Fast pH measurements can be done between pH 6 and 10.5 depending on the measuring technique. It is possible to determine pH with an accuracy of 0.1 pH unit between pH 8 and 10.5 (RSD, 0.5-2%). Redox transitions typical for PANI films were also observed for water solutions of PANI nanoparticles in the presence of the hexacyanoferrate(II/III) and the iron(II/III) oxalate redox couples. The absorbance at lambda = 875 nm is linearly dependent on the logarithm of the concentration ratio (0.1-10) of the iron oxalate redox couple.

  3. Water soluble drug releasing soft contact lens in response to pH of tears

    NASA Astrophysics Data System (ADS)

    Kim, G.; Noh, H.

    2016-06-01

    Human tear characteristics including pH and compositions can vary significantly depending on physical and environmental factors. Contact lenses directly contact with human tears can be swelled or de-swelled depending on the pH of the solution due to the nature of the hydrogel. For examples, anionic hydrogels, when the solution's pH is low, is shrunken due to the electric attraction force within the hydrogel network; the opposite phenomenon appears when the solution is basic. The purpose of this study was to evaluate the extent of water soluble drug, hydroxyl propyl methyl cellulose, released from contact lens according to the pH of the artificial tears. Artificial tears are prepared by mixing lysozyme, albumin, sodium chloride, potassium chloride, and calcium chloride following physiological concentrations. Hydrogel contact lens was thermally polymerized using HEMA, EGDMA, and AIBN. The prepared hydrogel lens was immersed in drug for 3 hours and the eluted drug mass was measured as a function of the time. As a result, the drug was released from the lens for 12 hours in all the pH of artificial tears. At the lower pH of artificial tears (pH 5.8), the total amount of dye emitted from the lens was increased than the total amount of dye emitted at the basic tear (pH 8.4). Also, initial burst at acidic tears was increased within 1 hour. Release pattern of water-soluble drug from hydrogel lens turned out to be different depending on the pH of the artificial tears. When designing drug releasing contact lens, physiological pH of tears should be considered.

  4. Particle water and pH in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Guo, H.; Xu, L.; Bougiatioti, A.; Cerully, K. M.; Capps, S. L.; Hite, J. R.; Carlton, A. G.; Lee, S.-H.; Bergin, M. H.; Ng, N. L.; Nenes, A.; Weber, R. J.

    2014-10-01

    including contributions of organic water has a minor effect on pH (changes pH by 0.15 to 0.23 units). pH diurnal trends followed liquid water and were driven mainly by variability in RH; in SOAS nighttime pH was near 1.5 and during day 0.5. pH ranged from 0.5 to 2 in summer and 1 to 3 in the winter at other sites. The systematically low levels of predicted pH in the southeast may have important ramifications, such as significantly influencing acid-catalyzed reactions, gas-aerosol partitioning, and mobilization of redox metals and minerals.

  5. Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria.

    PubMed

    Kihara, M; Macnab, R M

    1981-03-01

    Bacteria migrate away from an acid pH and from a number of chemicals, including organic acids such as acetate; the basis for detection of these environmental cues has not been demonstrated. Membrane-permeant weak acids caused prolonged tumbling when added to Salmonella sp. or Escherichia coli cells at pH 5.5. Tethered Salmonella cells went from a prestimulus behavior of 14% clockwise rotation to 80% clockwise rotation when 40 mM acetate was added and remained this way for more than 30 min. A low external pH in the absence of weak acid did not markedly affect steady-state tumbling frequency. Among the weak acids tested, the rank for acidity (salicylate greater than benzoate greater than acetate greater than 5,5-dimethyl-2,4-oxazolidinedione) was the same as the rank for the ability to collapse the transmembrane pH gradient and to cause tumbling. At pH 7.0, the tumbling responses caused by the weak acids were much briefer. Indole, a non-weak-acid repellent, did not cause prolonged tumbling at low pH. Two chemotaxis mutants (a Salmonella mutant defective in the chemotaxis methylesterase and an E. coli mutant defective in the methyl-accepting protein in MCP I) showed inverse responses of enhanced counterclockwise rotation in the first 1 min after acetate addition. The latter mutant had been found previously to be defective in the sensing of gradients of extracellular pH and (at neutral pH) of acetate. We conclude (i) that taxes away from acid pH and membrane-permeant weak acids are both mediated by a pH-sensitive component located either in the cytoplasm or on the cytoplasmic side of the membrane, rather than by an external receptor (as in the case of the attractants), and (ii) that both of these taxes involve components of the chemotaxis methylation system, at least in the early phase of the response.

  6. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    PubMed Central

    Mullett, Mark; Fornarelli, Roberta; Ralph, David

    2014-01-01

    Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met. PMID:24957170

  7. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge.

    PubMed

    Mullett, Mark; Fornarelli, Roberta; Ralph, David

    2014-03-27

    Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met.

  8. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids.

  9. Effect of systemic pH on pH sub i and lactic acid generation in exhaustive forearm exercise

    SciTech Connect

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S. Univ. of Vermont College of Medicine, Burlington )

    1988-09-01

    To investigate whether changes in systemic pH affect intracellular pH (pH{sub i}), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH{sub 4}Cl (acidosis; A) or NaHCO{sub 3} (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH{sub i} and phosphocreatine (PCr) content were measured with {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH{sub i} did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability.

  10. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  11. Faecal pH, bile acid and sterol concentrations in premenopausal Indian and white vegetarians compared with white omnivores.

    PubMed

    Reddy, S; Sanders, T A; Owen, R W; Thompson, M H

    1998-06-01

    Faecal bulk, pH, water content, the concentrations of neutral sterols and bile acids and dietary intakes were measured in twenty-two Indian vegetarian, twenty-two white omnivorous and eighteen white vegetarian premenopausal women. Faecal bulk and water content were greater and pH lower in the Indian vegetarians. Total faecal animal sterol and coprostanol concentrations expressed on a dry-weight basis were lower in the vegetarians compared with the omnivores. The faecal sterol concentrations were correlated with dietary cholesterol intake. Primary bile acids were detected in six Indian vegetarians, two white vegetarians and two white omnivores; secondary bile acids were detected in all the white omnivores and vegetarian subjects but not in two of the Indian vegetarians. Total faecal free bile acid and conjugated bile acid concentrations were lower in the white vegetarians compared with the omnivores. Faecal lithocholic acid concentrations were lower in both Indian and white vegetarians. The lithocholic: deoxycholic acid ratio and coprostanol: total animal sterols ratio were significantly lower in the Indian vegetarians compared with the omnivores. Both ratios were positively correlated with faecal pH. Stepwise multiple regression analyses were undertaken in order to identify which nutrients influenced faecal pH, lithocholic and deoxycholic acid concentrations. The intakes of starch and dietary fibre were negatively associated with faecal concentrations of lithocholic and deoxycholic acid. Starch intake alone was negatively associated with faecal pH. The results of this study confirm that diets high in dietary fibre decrease faecal bile acid concentrations and suggest that the complex carbohydrates present in Indian vegetarian diets influence faecal pH and inhibit the degradation of faecal steroids.

  12. Buffering the aqueous phase pH in water-in-CO{sub 2} microemulsions

    SciTech Connect

    Holmes, J.D.; Ziegler, K.J.; Audriani, M.; Lee, C.T. Jr.; Bhargava, P.A.; Johnston, K.P.; Steytler, D.C.

    1999-07-08

    Water-in-oil (w/o) microemulsions have been exploited for use in a wide range of applications, including chemical and enzymatic reactions, protein and metal extraction, and the production of nanoparticles. Microemulsions are attractive systems for studying such applications because they have the ability to function as a universal solvent medium by solubilizing high concentrations of both polar and apolar molecules within their dispersed aqueous and continuous oil phases, respectively. The addition of organic and inorganic buffers to nanometer size water-in-CO{sub 2} microemulsion droplets stabilized by ammonium perfluoropolyether (PFPE-NH{sub 4}) results in an increase in pH from 3 to values of 5--7. The effects of temperature, pressure, buffer type, buffer concentration, ionic strength, and CO{sub 2} solubility on the pH inside water-in-CO{sub 2} microemulsions and on biphasic water-CO{sub 2} systems were measured by the hydrophilic indicator 4-nitrophenyl-2-sulfonate and were predicted accurately with thermodynamic models. In both systems, modest buffer loadings result in a steep pH jump from 2.5 pH units. Further increases in pH require large amounts of base to overcome buffering due to the carbonic acid-bicarbonate equilibrium. A pH approaching neutrality was obtained in w/c microemulsions with approximately 1.5 mol kg{sup {minus}1} NaOH. At high buffer loadings, the effects of temperature and pressure on pH values are negligible.

  13. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  14. PROPERTIES OF MONOLAYERS OF OMEGAMONOHALOGENATED FATTY ACIDS AND ALCOHOLS ABSORBED ON WATER.

    DTIC Science & Technology

    FATTY ACIDS , *ALCOHOLS, MONOMOLECULAR FILMS, MONOMOLECULAR FILMS, HALOGENS, CHLORINE COMPOUNDS, FLUORINE COMPOUNDS, IODINE COMPOUNDS, SURFACE PROPERTIES, SURFACES, DIPOLE MOMENTS, IONS, PH FACTOR, WATER, ADSORPTION.

  15. Extremely alkaline (pH > 12) ground water hosts diverse microbial community.

    PubMed

    Roadcap, George S; Sanford, Robert A; Jin, Qusheng; Pardinas, José R; Bethke, Craig M

    2006-01-01

    Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.

  16. The PH gene determines fruit acidity and contributes to the evolution of sweet melons.

    PubMed

    Cohen, Shahar; Itkin, Maxim; Yeselson, Yelena; Tzuri, Galil; Portnoy, Vitaly; Harel-Baja, Rotem; Lev, Shery; Sa'ar, Uzi; Davidovitz-Rikanati, Rachel; Baranes, Nadine; Bar, Einat; Wolf, Dalia; Petreikov, Marina; Shen, Shmuel; Ben-Dor, Shifra; Rogachev, Ilana; Aharoni, Asaph; Ast, Tslil; Schuldiner, Maya; Belausov, Eduard; Eshed, Ravit; Ophir, Ron; Sherman, Amir; Frei, Benedikt; Neuhaus, H Ekkehard; Xu, Yimin; Fei, Zhangjun; Giovannoni, Jim; Lewinsohn, Efraim; Tadmor, Yaakov; Paris, Harry S; Katzir, Nurit; Burger, Yosef; Schaffer, Arthur A

    2014-06-05

    Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.

  17. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target

    PubMed Central

    Gilbert, Hamish T. J.; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M.; Hoyland, Judith A.

    2016-01-01

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration. PMID:27853274

  18. Sulfate reduction at low pH to remediate acid mine drainage.

    PubMed

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Bijmans, Martijn F M; Stams, Alfons J M

    2014-03-30

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  19. The influence of water pH on the genesis of cadmium-induced cancer in a rat model.

    PubMed

    Alborghetti Nai, Gisele; Soria Golghetto, Gisele Maria; Soriano Estrella, Mariani Paulino; Di Santi Teixeira, Larissa; do Carmo Moura, Felipe; Bremer Neto, Hermann; Santos Parizi, José Luiz

    2015-01-01

    Cadmium is a heavy metal that is widely used in industry and can cause tumours in multiple organs. The purpose of our study was to investigate the effect of water pH in the genesis of cadmium-induced cancer. We divided 98 male Wistar rats into 7 groups: group A - 15 rats that received cadmium chloride (CdCl₂- 400 mg/L) in their drinking water at a neutral pH of 7.0; group B - 15 rats that received CdCl₂(400 mg/L) in their drinking water at an acidic pH of 5.0; group C - 15 rats that received CdCl₂(400 mg/L) in their drinking water at a basic pH of 8.0; group D - 15 rats that received water at an acidic pH of 5.0; group E - 15 rats that received water at a basic pH of 8.0; group F - 15 rats that received water at a neutral pH of 7.0; and group G - 8 rats that were subcutaneously injected with a single dose of cyclophosphamide (50 mg/kg). Groups A through F were euthanised 6 months after the start of the experiment and group G was euthanised 24 hours after cyclophosphamide injection. We collected the liver, kidneys, pancreas, prostate, seminal vesicles and testes for histopathological analysis and the bone marrow for micronuclei testing. In all of the groups, neither neoplastic lesions nor an increase in micronuclei (p>0.05) were observed in the liver, kidney, pancreas, seminal vesicles and testes. We found that animals exposed to cadmium had grade one prostatic intraepithelial neoplasia, but this was found more frequently in animals from group B (p<0.05). The acidic pH increased the formation of pre-neoplastic lesions in the prostate glands of cadmium-exposed animals.

  20. Sensitivity of greenback cutthroat trout to acidic pH and elevated aluminum

    SciTech Connect

    Woodward, D.F. ); Farag, A.M. ); Little E.E.; Steadman, B. ); Yancik, R. )

    1991-01-01

    The greenback cutthroat trout Oncorhynchus clarki stomias is a threatened subspecies native to the upper South Platte and Arkansas rivers between Denver and Fort Collins, Colorado, an area also susceptible to acid deposition. In laboratory studies, the authors exposed this subspecies to nominal pHs of 4.5-6.5 and to nominal aluminum concentrations of 0, 50, 100, and 300 {mu}g/L; the control was pH 6.5 treatment without Al. The authors used soft water that contained 1.3 mg Ca/L. Exposures of 7 days each were made for four early life stages: fertilized egg, eyed embryo, alevin, and swim-up larva. Effects were measured at the end of exposure and again after a recovery period lasting until 40 days posthatch. The alevin stage was the most sensitive: at pH 5.0 with no Al, survival was reduced by 68% and swimming duration by 76%, at pH 6.0 and 50 {mu}g Al/L, swimming duration was reduced by 62%, but survival was not affected. Reductions in whole-body concentrations of Na, K, and Ca indicated organism stress. Sodium was reduced most-about 50% in alevins exposed to pH 5.0 without Al and to pH 6.0 with 50 {mu}g Al/L. Growth and the ratio of RNA to DNA were not affected by any exposure. All responses that were affected during exposure returned to normal by 40 days posthatch. Overall, it appeared that pH 6.0 and 50 {mu}g Al/L might be detrimental to greenback cutthroat trout populations.

  1. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  2. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  3. Combined impact of pH and organic acids on iron uptake by Caco-2 cells.

    PubMed

    Salovaara, Susan; Sandberg, Ann-Sofie; Andlid, Thomas

    2003-12-17

    Previous studies have shown that organic acids have an impact on both Fe(II) and Fe(III) uptake in Caco-2 cell. However, to what extent this effect is correlated with the anion of organic acids per se, or with the resulting decrease in pH, has not yet been clarified. Therefore, we studied the effect of five organic acids (tartaric, succinic, citric, oxalic, and propionic acid) on the absorption of Fe(II) and Fe(III) in Caco-2 cells and compared this with sample solutions without organic acids but set to equivalent pH by HCl. The results showed that the mechanisms behind the enhancing effect of organic acids differed for the two forms of iron. For ferric iron the organic acids promoted uptake both by chelation and by lowering the pH, whereas for ferrous iron the promoting effect was caused only by the lowered pH.

  4. Electrolytes, sugar, calories, osmolarity and pH of beverages and coconut water.

    PubMed

    Chavalittamrong, B; Pidatcha, P; Thavisri, U

    1982-09-01

    Oral rehydration has been recommended in patients with diarrhoea to replace fluid loss from the gastrointestinal tract and reduce the need for intravenous therapy. Beverages (i.e. Cola, Sprite etc.) and coconut water may be used as sources of oral fluid when glucose-electrolyte solution is not available. To evaluate the usefulness and effectiveness of these soft drinks, the basic data such as electrolytes, sugar, calories, osmolarity and pH were determined. The electrolytes of the beverages were significantly lower (p less than 0.001) than the coconut water, especially potassium. The osmolarity of the beverages, which were 693 mOsm/l, was significantly higher (p less than 0.001) than the coconut water (288 mOsm/l); pH of the beverages (3.1) was more acidic (p less than 0.001) than the coconut water (5.4). While the sugar content of the beverages, which were 8.7 gm/dl, was significantly higher (p less than 0.001) than the coconut water (1.1 gm/dl). On comparison, all brands of beverages would give more calories than the coconut water however the coconut water would be absorbed more easily than any brand of soft drink beverage.

  5. Influence of soil pH on properties of the soil-water interface

    NASA Astrophysics Data System (ADS)

    Diehl, Doerte

    2010-05-01

    Surface characteristics of soils are one of the main factors controlling processes at the soil-water interface like wetting, sorption or dissolution processes and, thereby, have a high impact on natural soil functions like habitat, filter, buffer, storage and transformation functions. Since surface characteristics, like wettability or repellency, are not static soil properties but continuously changing, the relevant processes and mechanisms are in the focus of the presented study. These mechanisms help to gain further insight into the behaviour of soil and its dynamics under changing environmental conditions. The influence of water content, relative air humidity and drying temperature on soil water repellency has been investigated in many studies. In contrast, few studies have systematically investigated the relationship between soil water repellency (SWR) and soil pH. Several studies found alkaline soils to be less prone to SWR compared to acidic soils (e.g., Cerdà, and Doerr 2007; Mataix-Solera et al. 2007). Furthermore, SWR has been successfully reduced in acidic soils by increasing soil pH via liming (e.g., Karnok et al. 1993; Roper 2005). However, SWR has also been reported in calcareous soils in the Netherlands (Dekker and Jungerius 1990), California, USA (Holzhey 1968) and Spain (Mataix-Solera and Doerr 2004). The hypothesis that the pH may control repellency via changes in the variable surface charge of soil material has not yet been tested. Previously it has been shown that it is necessary to eliminate the direct influence of changes in soil moisture content so that the unique relationship between pH and SWR can be isolated (Bayer and Schaumann 2007). A method has been developed which allows adjustment of the pH of soils with low moisture content via the gas phase with minimal change in moisture content. The method was applied to 14 soil samples from Germany, Netherlands, the UK and Australia, using the water drop penetration time (WDPT) as the indicator

  6. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.

    PubMed

    Senouci-Rezkallah, Khadidja; Schmitt, Philippe; Jobin, Michel P

    2011-05-01

    This study investigated the involvement of glutamate-, arginine- and lysine-dependent systems in the Acid Tolerance Response (ATR) of Bacillus cereus ATCC14579 strain. Cells were grown in a chemostat at external pH (pH(e)) 7.0 and 5.5. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted) compared with cells grown at pH 7.0 (unadapted), indicating that B. cereus cells grown at low pH(e) were able to induce a marked ATR. Glutamate, arginine and lysine enhanced the resistance of unadapted cells to pH 4.0 acid shock of 1-log or 2-log populations, respectively. Amino acids had no detectable effect on acid resistance in acid-adapted cells. An acid shock at pH 4.0 resulted in a marked drop in internal pH (pH(i)) in unadapted cells compared with acid-adapted cells. When acid shock was achieved in the presence of glutamate, arginine or lysine, pH(i) was maintained at higher values (6.31, 6.69 or 6.99, respectively) compared with pH(i) in the absence of amino acids (4.88). Acid-adapted cells maintained their pH(i) at around 6.4 whatever the condition. Agmatine (a competitive inhibitor of arginine decarboxylase) had a negative effect on the ability of B. cereus cells to survive and maintain their pH(i) during acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. This adaptation depends on pH(i) homeostasis and is enhanced in the presence of glutamate, arginine and lysine. Hence evaluations of the pathogenicity of B. cereus must take into account its ability to adapt to acid stress.

  7. Effects of pH on the chlorination process of phenols in drinking water.

    PubMed

    Ge, Fei; Zhu, Lizhong; Chen, Hairong

    2006-05-20

    Toxic organic compounds detected generally in source water could combine with chlorine and contribute significantly to chlorination disinfection by-products (CDBPs). The effects of pH on species distribution of CDBPs and the kinetics of chlorination were investigated using phenol as a model of ionizable toxic organic compounds in the pH range of 6.0-9.0. It was found that five chlorination products including 2-monochlorophenol (2-MCP), 4-monochlorophenol (4-MCP), 2,6-dichlorophenol (2,6-DCP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (TCP) were produced by successive chlorination substitution. MCP (2-MCP and 4-MCP) were the dominant products and phenol partly remained in acid media, while TCP and DCP (2,6-DCP and 2,4-DCP) were the main components in neutral and alkaline media. A steady equilibrium of phenol and its chlorination products was reached in 20-30 min in acid-, neutral- and slightly alkaline media, and was delayed to 60-180 min in alkaline media. The difference in properties between phenols and phenolates, and those between HOCl and ClO(-) should be considered simultaneously in explaining the effects of pH on the chlorination process with the theory of electrophilic substitution. These results show that pH plays an important regulating role in the species distribution of CDBPs and the kinetics of chlorination for ionizable toxic organic compounds in chlorination.

  8. First-Principles Calculation of Thermodynamic Stability of Acids and Bases under pH Environment: A Microscopic pH Theory

    SciTech Connect

    Kim, Y. H.; Kim, K.; Zhang, S. B.

    2012-04-07

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H{sup +}, OH{sup -}, NH{sub 3}, NH{sub 4}{sup +}, HCOOH, and HCOO{sup -} in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH{sub 3} and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  9. First-principles calculation of thermodynamic stability of acids and bases under pH environment: a microscopic pH theory.

    PubMed

    Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S B

    2012-04-07

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H(+), OH(-), NH(3), NH(4)(+), HCOOH, and HCOO(-) in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH(3) and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  10. pH corrections and protein ionization in water/guanidinium chloride.

    PubMed

    Garcia-Mira, M M; Sanchez-Ruiz, J M

    2001-12-01

    More than 30 years ago, Nozaki and Tanford reported that the pK values for several amino acids and simple substances in 6 M guanidinium chloride differed little from the corresponding values in low salt (Nozaki, Y., and C. Tanford. 1967. J. Am. Chem. Soc. 89:736-742). This puzzling and counter-intuitive result hinders attempts to understand and predict the proton uptake/release behavior of proteins in guanidinium chloride solutions, behavior which may determine whether the DeltaG(N-D) values obtained from guanidinium chloride-induced denaturation data can actually be interpreted as the Gibbs energy difference between the native and denatured states (Bolen, D. W., and M. Yang. 2000. Biochemistry. 39:15208-15216). We show in this work that the Nozaki-Tanford result can be traced back to the fact that glass-electrode pH meter readings in water/guanidinium chloride do not equal true pH values. We determine the correction factors required to convert pH meter readings in water/guanidinium chloride into true pH values and show that, when these corrections are applied, the effect of guanidinium chloride on the pK values of simple substances is found to be significant and similar to that of NaCl. The results reported here allow us to propose plausible guanidinium chloride concentration dependencies for the pK values of carboxylic acids in proteins and, on their basis, to reproduce qualitatively the proton uptake/release behavior for the native and denatured states of several proteins (ribonuclease A, alpha-chymotrypsin, staphylococcal nuclease) in guanidinium chloride solutions. Finally, the implications of the pH correction for the experimental characterization of protein folding energetics are briefly discussed.

  11. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters.

    PubMed

    Kumpulainen, Sirpa; von der Kammer, Frank; Hofmann, Thilo

    2008-04-01

    In acid conditions, as in acid mine drainage waters, iron oxide particles are positively charged, attracting negatively charged organic particles present in surrounding natural waters. Schwertmannite (Fe8O8(OH)6SO4) and goethite (alpha-FeOOH) are the most typical iron oxide minerals found in mine effluents. We studied schwertmannite formation in the presence of humic acid. Further, surface charge and adsorption of humic acid on synthetic schwertmannite and goethite surfaces in pH 2-9 and in humic acid concentrations of 0.1-100 mg/L C were examined. Schwertmannite did precipitate despite the presence of humic acid, although it contained more sulphate and had higher specific surface area than ordinary schwertmannite. Specific surface area weighted results showed that schwertmannite and goethite had similar humic acid adsorption capacities. Sulphate was released from schwertmannite surfaces with increasing pH, resulting in an increase in specific surface area. Presence of sulphate in solution decreased the surface charge of schwertmannite and goethite similarly, causing coagulation. In acid conditions (pH 2-3.5), according to the zeta potential, schwertmannite is expected to coagulate even in the presence of high concentrations of humic acid (< or = 100 mg/L C). However, at high humic acid concentrations (10-100 mg/L C) with moderate acid conditions (pH>3.5), both schwertmannite and goethite surfaces are strongly negatively charged (zeta potential < -30 mV) thus posing a risk for colloid stabilization and colloidal transport.

  12. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae.

    PubMed

    Stratford, Malcolm; Nebe-von-Caron, Gerhard; Steels, Hazel; Novodvorska, Michaela; Ueckert, Joerg; Archer, David B

    2013-02-15

    Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation.

  13. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  14. Reduced Acid Dissociation of Amino-Acids at the Surface of Water

    PubMed Central

    2017-01-01

    We use surface-specific intensity vibrational sum-frequency generation and attenuated total reflection spectroscopy to probe the ionization state of the amino-acids l-alanine and l-proline at the air/water surface and in the bulk. The ionization state is determined by probing the vibrational signatures of the carboxylic acid group, representing the nondissociated acid form, and the carboxylate anion group, representing the dissociated form, over a wide range of pH values. We find that the carboxylic acid group deprotonates at a significantly higher pH at the surface than in the bulk. PMID:28177623

  15. Reduced Acid Dissociation of Amino-Acids at the Surface of Water.

    PubMed

    Strazdaite, Simona; Meister, Konrad; Bakker, Huib J

    2017-03-15

    We use surface-specific intensity vibrational sum-frequency generation and attenuated total reflection spectroscopy to probe the ionization state of the amino-acids l-alanine and l-proline at the air/water surface and in the bulk. The ionization state is determined by probing the vibrational signatures of the carboxylic acid group, representing the nondissociated acid form, and the carboxylate anion group, representing the dissociated form, over a wide range of pH values. We find that the carboxylic acid group deprotonates at a significantly higher pH at the surface than in the bulk.

  16. Responses of an Amazonian teleost, the tambaqui (Colossoma macropomum), to low pH in extremely soft water.

    PubMed

    Wood, C M; Wilson, R W; Gonzalez, R J; Patrick, M L; Bergman, H L; Narahara, A; Val, A L

    1998-01-01

    Our goal was to compare the internal physiological responses to acid challenge in an acidophilic tropical teleost endemic to dilute low-pH waters with those in nonacidophilic temperate species such as salmonids, which have been the subjects of most previous investigations. The Amazonian tambaqui (Colossoma macropomum), which migrates between circumneutral water and dilute acidic "blackwater" of the Rio Negro, was exposed to a graded low-pH and recovery regime in representative soft water (Na+ = 15, Cl- = 16, Ca2+ = 20 mumol L-1). Fish were fitted with arterial catheters for repetitive blood sampling. Water pH was altered from 6.5 (control) to 5.0, 4.0, 3.0, and back to 6.5 (recovery) on successive days. Some deaths occurred at pH 3.0. Throughout the regime, there were no disturbances of blood gases (O2 and CO2 tensions and contents) or lactate levels, and only very minor changes in acid-base status of plasma and red cells. However, erythrocytic guanylate and adenylate levels increased at pH's less than or equal to 5.0. Down to pH 4.0, plasma glucose, cortisol, and total ammonia levels remained constant, but all increased at pH 3.0, denoting a stress response. Plasma Na+ and Cl- levels declined and plasma protein concentration increased at pH 3.0, indicative of ionoregulatory and fluid volume disturbance, and neither recovered upon return to pH 6.5. Cortisol and ammonia elevations also persisted. Transepithelial potential changed progressively from highly negative values (inside) at pH 6.5 to highly positive values at pH 3.0; these alterations were fully reversible. Experimental elevations in water calcium levels drove the transepithelial potential positive at circumneutral pH, attenuated or prevented changes in transepithelial potential at low pH, and reduced Na+ and Cl- loss rates to the water during acute low-pH challenges. In general, tambaqui exhibited responses to low pH that were qualitatively similar but quantitatively more resistant than those previously

  17. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  18. Inactivation of H1N1 viruses exposed to acidic ozone water

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Kwang H.; Seong, Baik L.

    2009-10-01

    The inactivation of H1N1 viruses upon exposure to acidic ozone water was investigated using chicken allantoic fluids of different dilutions, pH values, and initial ozone concentrations. The inactivation effect of the acidic ozone water was found to be stronger than the inactivation effect of the ozone water combined with the degree of acidity, indicating a synergic effect of acidity on ozone decay in water. It is also shown that acidic ozone water with a pH value of 4 or less is very effective means of virus inactivation if provided in conjunction with an ozone concentration of 20 mg/l or higher.

  19. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  20. A structural transition in class II major histocompatibility complex proteins at mildly acidic pH

    PubMed Central

    1996-01-01

    Peptide binding by class II major histocompatibility complex proteins is generally enhanced at low pH in the range of hydrogen ion concentrations found in the endosomal compartments of antigen- presenting cells. We and others have proposed that class II molecules undergo a reversible conformational change at low pH that is associated with enhanced peptide loading. However, no one has previously provided direct evidence for a structural change in class II proteins in the mildly acidic pH conditions in which enhanced peptide binding is observed. In this study, susceptibility to denaturation induced by sodium dodecyl sulfate (SDS) detergent or heat was used to probe the conformation of class II at different hydrogen ion concentrations. Class II molecules became sensitive to denaturation at pH 5.5-6.5 depending on the allele and experimental conditions. The observed structural transition was fully reversible if acidic pH was neutralized before exposure to SDS or heat. Experiments with the environment- sensitive fluorescent probe ANS (8-anilino-1-naphthalene-sulfonic acid) provided further evidence for a reversible structural transition at mildly acidic pH associated with an increase in exposed hydrophobicity in class II molecules. IAd conformation was found to change at a higher pH than IEd, IEk, or IAk, which correlates with the different pH optimal for peptide binding by these molecules. We conclude that pH regulates peptide binding by influencing the structure of class II molecules. PMID:8551215

  1. Continuous intra-arterial blood pH monitoring in rabbits with acid-base disorders.

    PubMed

    Jin, Weizhong; Jiang, Jinjun; Wang, Xun; Zhu, Xiaodan; Wang, Guifang; Song, Yuanlin; Bai, Chunxue

    2011-07-31

    The acid-base balance of arterial blood is important for the clinical management of seriously ill patients, especially patients with acute lung injury or acute respiratory distress syndrome. We developed a novel fluorosensor for continuous blood pH monitoring and evaluated its performance both in vitro and in vivo in rabbits with acid-base disorders. The pH sensor is made of N-allyl-4-piperazinyl-1, 8-napthalimide and 2-hydroxyethyl methacrylate, which were bonded at the distal end of the optical fiber. The fluorescence intensity increased as the pH decreased with good reproducibility, selectivity and linearity in the pH range of 6-8. The pH measurement precision was 0.03 ± 0.03 pH units with a bias of -0.02 ± 0.04 (n = 105) and -0.00 ± 0.05 pH units (n=189) in rabbits with metabolic and respiratory acid-base orders, respectively. The optical pH sensor can accurately measure pH fluctuations with a fast response and is a promising candidate for continuous in-line measurements of blood pH in critical care patients.

  2. A novel acidic pH fluorescent probe based on a benzothiazole derivative.

    PubMed

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-15

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H(+) in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  3. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  4. Cut-off net acid generation pH in predicting acid-forming potential in mine spoils.

    PubMed

    Liao, B; Huang, L N; Ye, Z H; Lan, C Y; Shu, W S

    2007-01-01

    Acidification of mine wastes can lead to a series of environmental problems, such as acid drainage, heavy metal mobilization, and ecosystem degradation. Prediction of acid-forming potential is one of the key steps in management of sulfide-bearing mine wastes. In this paper, the acid-forming potential of 180 mine waste samples collected from 17 mine sites in China were studied using a net acid generation (NAG) method. The samples contained different contents of total sulfur (ranging from 0.6 to 200 g kg(-1)), pyritic sulfur (ranging from 0 to 100 g kg(-1)), and acid neutralization capacity (ANC, ranging from -41 to 274 kg H2SO4 t(-1)). Samples with high acid-forming potential are generally due to their high sulfur content or low acid neutralization capacity. After the samples were oxidized by H2O2, the amounts of acid generation and the final NAG pH were measured. Results indicated that the final NAG pH gave a well-defined demarcation between acid-forming and non-acid-forming materials. Samples with final NAG pH >or= 5 could be classified as non-acid-forming materials, while those with NAG pH acid-forming materials. Materials with NAG pH > 2.5, but < 5, had low risk of being acid-forming. The confirmation of cut-off NAG pH will be used as a rapid and cost-effective operational monitoring tool for the in-pit prediction of acid-forming potential of mine wastes and classification of waste types.

  5. Acidic pH of the lateral intercellular spaces of MDCK cells cultured on permeable supports.

    PubMed

    Chatton, J Y; Spring, K R

    1994-06-01

    The pH of the lateral intercellular space (LIS) of Madin-Darby canine kidney (MDCK) cell monolayers grown on permeable supports was investigated by microspectrofluorimetry using BCECF (2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein). The permeability of the support was selectively reduced by growing Zn-Al-silicate crystals inside its pores. The diffusion of BCECF across the filter was sufficiently retarded to allow measurements of fluorescence in the LIS. The LIS pH and intracellular pH of the cells surrounding them were determined in HEPES-buffered solutions. When the perfusate pH was 7.4, the LIS pH was more acidic (7.06 +/- 0.02) and equaled the cytoplasmic pH (7.08 +/- 0.05). When perfusate was changed to pH 7.0 or 7.8, the LIS changed linearly by about half the magnitude of the perfusate pH. Intracellular pH followed LIS pH variations between perfusate pH 7.0 and 7.4 but was significantly higher when perfusate pH was 7.8. Tight junctional H+ permeability was undetectably low. The low steady-state pH in the LIS was not altered by inhibitors of acid transport or low temperature. Rapid perturbations of pH in the LIS showed that protons were not immobilized in the LIS. The acidic microenvironment within the LIS may be the result of buffering by the cell surface proteins.

  6. Retention of ionizable compounds on HPLC. 4. Mobile-phase pH measurement in methanol/water

    PubMed

    Canals; Portal; Bosch; Roses

    2000-04-15

    The different procedures used in HPLC to measure the pH of a mobile phase are evaluated in terms of the rigorous IUPAC definition of pH. The three procedures evaluated are as follows: measurement of the pH of the aqueous HPLC buffer before mixing it with the organic modifier, measurement of the pH of the HPLC buffer after mixing it with the organic modifier using a pH electrode system calibrated with aqueous buffers, and measurement of the pH of the HPLC buffer after mixing it with the organic modifier but calibrating the electrode system with reference buffers prepared in the same mixed solvent used as mobile phase. Following IUPAC definitions and recommendations, the three pH values can be related with the pH scales: w(w)pH, s(w)pH, and s(s)pH, respectively. The relationships between these three pH scales are also presented. The retention of several compounds with acid/base behavior in a C-18 and a polymeric column with buffered methanol/water as mobile phase is related to the mobile phase pH value measured in the three pH scales. It is demonstrated that the s(w)pH and s(s)pH scales give better relationships than the w(w)pH scale (pH measured in the aqueous buffer before mixing it with the organic modifier), commonly used on HPLC. The s(w)pH scale is specially recommended because of its simplicity of measurement: the pH is measured after mixing the aqueous buffer with the organic modifier, but the pH calibration is performed with the common aqueous reference buffers.

  7. Observation of PH-Induced Protein Reorientation at the Water Surface.

    PubMed

    Meister, Konrad; Roeters, Steven Joop; Paananen, Arja; Woutersen, Sander; Versluis, Jan; Szilvay, Géza R; Bakker, Huib J

    2017-03-27

    Hydrophobins are surface-active proteins that form a hydrophobic, water-repelling film around aerial fungal structures. They have a compact, particle-like structure, in which hydrophilic and hydrophobic regions are spatially separated. This surface property renders them amphiphilic and is reminiscent of synthetic Janus particles. Here we report surface-specific chiral and non-chiral vibrational sum-frequency generation spectroscopy (VSFG) measurements of hydrophobins adsorbed to their natural place of action, the air-water interface. We observe that hydrophobin molecules undergo a reversible change in orientation (tilt) at the interface when the pH is varied. We explain this local orientation toggle from the modification of the inter-protein interactions and the interaction of hydrophobin with the water solvent, following the pH-induced change of the charge state of particular amino acids.

  8. Peracetic acid: A new biocide for industrial water applications

    SciTech Connect

    Kramer, J.F.

    1997-12-01

    Peracetic acid is rapidly cidal at low concentrations against a broad spectrum of microorganisms, including gram-positive and gram-negative bacteria, yeasts, molds, and algae under a wide variety of conditions. It is also effective against anaerobic and spore forming bacteria. Peracetic acid is effective at killing biofilm microorganisms at low concentrations and short contact times. Unlike a number of other biocides, the biocidal activity of peracetic acid is not affected by pH or water hardness and biocidal activity is retained even in the presence of organic matter. For these reasons, peracetic acid is well suited as a biocide in industrial cooling water and papermaking systems. Peracetic acid is compatible with additives commonly used in these systems. Although peracetic acid is a potent biocide, it is unique in that it does not produce toxic byproducts and its decomposition products, acetic acid, water and oxygen, are innocuous and environmentally acceptable.

  9. Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid.

    PubMed

    Qu, Yan; Zhang, Chao-Jie; Chen, Pei; Zhou, Qi; Zhang, Wei-Xian

    2014-07-01

    The effects of initial solution pH on the decomposition of perfluorooctanoic acid (PFOA) with hydrated electrons as reductant were investigated. The reductive decomposition of PFOA depends strongly on the solution pH. In the pH range of 5.0-10.0, the decomposition and defluorination rates of PFOA increased with the increase of the initial solution pH. The rate constant was 0.0295 min(-1) at pH 10.0, which was more than 49.0 times higher than that at pH 5.0. Higher pH also inhibits the generation of toxic intermediates during the PFOA decomposition. For example, the short-chain PFCAs reached a lower maximum concentration in shorter reaction time as pH increasing. The peak areas of accumulated fluorinated and iodinated hydrocarbons detected by GC/MS under acidic conditions were nearly 10-100 times more than those under alkaline conditions. In short, alkaline conditions were more favorable for photo-induced reduction of PFOA as high pH promoted the decomposition of PFOA and inhibited the accumulation of intermediate products. The concentration of hydrated electron, detected by laser flash photolysis, increased with the increase of the initial pH. This was the main reason why the decomposition of PFOA in the UV-KI system depended strongly on the initial pH.

  10. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  11. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  12. pH Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments

    PubMed Central

    Crayton, Samuel H.; Tsourkas, Andrew

    2011-01-01

    A wide variety of nanoparticle platforms are being developed for the diagnosis and treatment of malignancy. While many of these are passively targeted or rely on receptor-ligand interactions, metabolically directed nanoparticles provide a complementary approach. It is known that both primary and secondary events in tumorigensis alter the metabolic profile of developing and metastatic cancers. One highly conserved metabolic phenotype is a state of up-regulated glycolysis and reduced use of oxidative phosphorylation, even when oxygen tension is not limiting. This metabolic shift, termed the Warburg effect, creates a “hostile” tumor microenvironment with increased levels of lactic acid and low extracellular pH. In order to exploit this phenomenon and improve the delivery of nanoparticle platforms to a wide variety of tumors, a pH-responsive iron oxide nanoparticle was designed. Specifically, glycol chitosan (GC), a water-soluble polymer with pH titratable charge, was conjugated to the surface of superparamagnetic iron oxide nanoparticles (SPIO) to generate a T2*-weighted MR contrast agent that responds to alterations in its surrounding pH. Compared to control nanoparticles that lack pH sensitivity, these GC-SPIO nanoparticles demonstrated potent pH-dependent cellular association and MR contrast in vitro. In murine tumor models GC-SPIO also generated robust T2*-weighted contrast, which correlated with increased delivery of the agent to the tumor site, measured quantitatively by inductively coupled plasma mass spectrometry. Importantly, the increased delivery of GC-SPIO nanoparticles cannot be solely attributed to the commonly observed enhanced permeability and retention effect, since these nanoparticles have similar physical properties and blood circulation times as control agents. PMID:22035454

  13. Influence of glutamic acid residues and pH on the properties of transmembrane helices.

    PubMed

    Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2017-03-01

    Negatively charged side chains are important for the function of particular ion channels and certain other membrane proteins. To investigate the influence of single glutamic acid side chains on helices that span lipid-bilayer membranes, we have employed GWALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-amide) as a favorable host peptide framework. We substituted individual Leu residues with Glu residues (L12E or L14E or L16E) and incorporated specific (2)H-labeled alanine residues within the core helical region or near the ends of the sequence. Solid-state (2)H NMR spectra reveal little change for the core labels in GWALP23-E12, -E14 and -E16 over a pH range of 4 to 12.5, with the spectra being broader for samples in DOPC compared to DLPC bilayers. The spectra for samples with deuterium labels near the helix ends on alanines 3 and 21 show modest pH-dependent changes in the extent of unwinding of the helix terminals in DLPC and DOPC bilayers. The combined results indicate minor overall responses of these transmembrane helices to changes in pH, with the most buried residue E12 showing no pH dependence. While the Glu residues E14 and E16 may have high pKa values in the lipid bilayer environment, it is also possible that a paucity of helix response is masking the pKa values. Interestingly, when E16 is present, spectral changes at high pH report significant local unwinding of the core helix. Our results are consistent with the expectation that buried carboxyl groups aggressively hold their protons and/or waters of hydration.

  14. A neutral ceramidase homologue from Dictyostelium discoideum exhibits an acidic pH optimum.

    PubMed Central

    Monjusho, Hatsumi; Okino, Nozomu; Tani, Motohiro; Maeda, Mineko; Yoshida, Motonobu; Ito, Makoto

    2003-01-01

    The nucleotide sequence reported for the Dictyostelium discoideum ceramidase is available on the DNA Data Bank of Japan (DDBJ). Ceramidases (CDases) are currently classified into three categories (acid, neutral and alkaline) based on their optimal pHs and primary structures. Here, we report the first exception to this rule. We cloned the CDase cDNA, consisting of 2142 nucleotides encoding 714 amino-acid residues, from the slime mould, Dictyostelium discoideum. The putative amino-acid sequence indicates 32-42% identity with various neutral CDases, but does not show any similarity to the acid and alkaline CDases, indicating the enzyme should be classified as a neutral CDase. However, overexpression of the cDNA in D. discoideum resulted in increased CDase activity at an acidic, but not a neutral pH range. Knockout of the gene in slime mould eliminated CDase activity at acidic pH. The recombinant enzyme expressed in the slime mould was purified and then characterized. Consequently, the purified CDase was found to exhibit the maximal activity at approx. pH 3.0. The singular pH dependency of slime mould CDase is not derived from the specific post-translational modification in the slime mould, because the enzyme showed an acidic pH optimum even when expressed in Chinese hamster ovary cells, whereas rat neutral-CDase exhibited a neutral pH optimum when expressed in slime mould. PMID:12943537

  15. Acid-coated Textiles (pH 5.5-6.5)--a New Therapeutic Strategy for Atopic Eczema?

    PubMed

    Jaeger, Teresa; Rothmaier, Markus; Zander, Holger; Ring, Johannes; Gutermuth, Jan; Anliker, Mark D

    2015-07-01

    Increased transepidermal water loss (TEWL) and decreased skin capacitance are characteristic features of the disturbed epidermal barrier in atopic eczema (AE). The "acid mantle", which is a slightly acidic film on the surface of the skin has led to the development of acidic emollients for skin care. In this context, the effect of citric acid-coated textiles on atopic skin has not been examined to date. A textile carrier composed of cellulose fibres was coated with a citric acid surface layer by esterification, ensuring a constant pH of 5.5-6.5. Twenty patients with AE or atopic diathesis were enrolled in the study. In a double-blind, half-side experiment, patients had to wear these textiles for 12 h a day for 14 days. On day 0 (baseline), 7 and 14, tolerability (erythema, pruritus, eczema, wearing comfort) and efficacy on skin barrier were assessed by TEWL skin hydration (corneometry/capacitance), pH and clinical scoring of eczema (SCORAD). Citric acid-coated textiles were well tolerated and improved eczema and objective parameters of skin physiology, including barrier function and a reduced skin surface pH, with potential lower pathogenic microbial colonisation.

  16. Volatile fatty acids distribution during acidogenesis of algal residues with pH control.

    PubMed

    Li, Yan; Hua, Dongliang; Zhang, Jie; Zhao, Yuxiao; Xu, Haipeng; Liang, Xiaohui; Zhang, Xiaodong

    2013-06-01

    The anaerobic acidification of protein-rich algal residues with pH control (4, 6, 8, 10) was studied in batch reactors, which was operated at mesophilic(35 °C) condition. The distribution of major volatile fatty acids (VFAs) during acidogenesis was emphasized in this paper. The results showed that the acidification efficiency and VFAs distribution in the acid reactor strongly depended on the pH. The main product for all the runs involved acetic acid except that the proportion of butyric acid acidified at pH 6 was relatively higher. The other organic acids remained at lower levels. The VFAs yield reached the maximum value with about 0.6 g VFAs/g volatile solid (VS) added as pH was 8, and also the content of total ammonia nitrogen (TAN) reached the highest values of 9,629 mg/l. Low acidification degrees were obtained under the conditions at pH 4 and 10, which was not suitable for the metabolism of acidogens. Hydralic retention time (HRT) required for different conditions varied. As a consequence, it was indicated that pH was crucial to the acidification efficiency and products distribution. The investigation of acidogenesis process, which was producing the major substrates, short-chain fatty acids, would play the primary role in the efficient operation of methanogenesis.

  17. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    PubMed

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling

  18. Peracetic acid: A new biocide for industrial water applications

    SciTech Connect

    Kramer, J.F.

    1997-08-01

    Peracetic acid is rapidly cidal at low concentrations against a broad spectrum of microorganisms, including gram-positive and gram-negative bacteria, yeasts, molds, and algae under a wide variety of conditions. It is also effective against anaerobic and spore-forming bacteria. Peracetic acid is effective at killing biofilm microorganisms at low concentrations and short contact times. Unlike a number of other biocides, the biocidal activity of peracetic acid is not affected by pH or water hardness and is retained even in the presence of organic matter. For these reasons, peracetic acid is well-suited as a biocide in industrial cooling water and paper-making systems. It is also compatible with additives commonly used in these systems. Although peracetic acid is a potent biocide, it is unique in that it does not produce toxic byproducts and its decomposition products (acetic acid, water, and oxygen) are innocuous and environmentally acceptable.

  19. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    PubMed

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred.

  20. Influence of metal ions and pH on the hydraulic properties of potential acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Le, T. M. H.; Collins, R. N.; Waite, T. D.

    2008-07-01

    SummaryAcid sulfate soils (ASS) cover extensive areas of east Australian coastal floodplains. Upon oxidation, these hydromorphic pyritic sediments produce large quantities of sulfuric acid. In addition, due to their geographic location, these soils may also come in contact with high ionic strength estuarine tidal waters. As a result, there is typically a large variation in acidity (pH) and cation concentrations in soil porewaters and adjacent aquatic systems (e.g., agricultural field drains, rivers, estuaries, etc.). Acid sulfate soils, especially from the unoxidized gelatinous deeper layers, contain a relatively high proportion of montmorillonite, which is wellknown for its shrink-swell properties. Variations in cation concentrations, including H3O+, can influence montmorillonite platelet interactions and may, thus, also significantly affect the hydraulic conductivity of materials containing this clay. In this paper we report on the effect of four common cations, at reasonable environmental concentrations, on the hydraulic properties of potential (unoxidized) acid sulfate soil materials. The natural system was simplified by examining individually the effects of each cation (H+, Ca2+, Fe2+ and Na+) on a soil-water suspension in a filtration cell unit. Moisture ratio, hydraulic conductivity and the consolidation coefficient of the deposited filter cakes were calculated using material coordinates theory. The results indicate that the hydraulic conductivity of potential acid sulfate soils increases at low pH and with cation concentration. Although an increase in the charge of amphoteric edge groups on montmorillonite clays may result in some aggregation between individual clay platelets, we conclude that the extent of these changes are unlikely to cause significant increases in the transportation of acidity (and contaminants) through potential acid sulfate soils as the hydraulic conductivity of these materials remain low (<10-9 m/s) at pH and ionic conditions normally

  1. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  2. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage.

  3. Dynamics of pH modification of an acidic protein bait used for tropical fruit flies (Diptera: Tephritidae).

    PubMed

    Heath, Robert R; Vazquez, Aime; Schnell, Elena Q; Villareal, Janett; Kendra, Paul E; Epsky, Nancy D

    2009-12-01

    Several species of Anastrepha and Bactrocera fruit flies (Diptera: Tephritidae) are captured in traps baited with the protein bait NuLure combined with borax (sodium tetraborate decahydrate) in an aqueous solution, typically 9% NuLure (vol:vol) with 3% borax (wt:vol). NuLure is an acid hydrolysate of corn and has an acidic pH. Addition of borax makes the solution more alkaline, and increase in alkalinity results in increase of ammonia release from the bait solution. This is a very dynamic system, with resultant pH affected by factors such as the amount of borax added, the pH of the water used for preparation, the age of the bait solution, and the development of microbial growth. Problems with borax include amount needed to increase alkalinity of NuLure solutions, which creates difficulties in disposing of spent bait in fruit fly trapping programs. Therefore, research was conducted to evaluate NaOH as an alternative method to increase alkalinity of NuLure solutions. Laboratory experiments compared effect of NaOH versus borax for pH modification on changes in pH and ammonia content of NuLure solutions over time. Although NuLure/NaOH solutions could be adjusted to a more alkaline pH than NuLure/borax solutions, borax plays a critical role in pH stability over time. However, the pH of NuLure/NaOH is stabilized when propylene glycol (10% vol:vol) was used to prepare the bait solution. The use of NaOH can provide an alternative to the use of borax to increase bait solution alkalinity.

  4. Scale prevention at high LSI, high cycles, and high pH without the need for acid feed

    SciTech Connect

    Perez, L.A.; Freese, D.T.

    1997-08-01

    Open recirculating cooling water systems are widely used in different industries, such as refineries, petrochemical, fertilizer, air conditioning, manufacturing operations, utility power stations, etc. Scale control at high LSI and high pH without acid feed is difficult to achieve. The problem dramatically increases in cooling towers when PVC tower film fill is used. Compounds that are able to enhance the performance of typical scale inhibitors have been developed. When topped off with these enhancing compounds, typical scale inhibitors are able to control calcium carbonate and silicate-related scale formation on metal heat exchanger and cooling water tower film fill surfaces in cycled waters having high LSI ({approximately} 3.0), high alkalinity (500--700 mg/L as CaCO{sub 3}), and high pH (8.5 or higher). The enhancing compounds have excellent chlorine and soluble iron tolerance and are compatible with traditional biocides.

  5. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.

  6. Hydrogen Peroxide Formation and pH Changes at Rock-Water Interface during Stressing

    NASA Astrophysics Data System (ADS)

    Xie, S.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Balk, M.; Rothschild, L. J.; Freund, F. T.

    2008-12-01

    Common igneous and high-grade metamorphic rocks contain dormant defects, which become activated when stressed. They release electronic charge carriers, in particular defect electrons associated with O- states in a matrix of O2-. Known as 'positive holes' or pholes for short, the O- states can spread out of the stressed rock volume, travel along stress gradients over distances on the order of meters in the lab and probably over kilometers in the field. They carry a current, which can flow through meters of rock in the laboratory, probably tens of kilometers in the field. At rock-water interfaces the O- states turn into O radicals, which subtract H from H2O, forming OH- in the rock surface and PH radicals in the water. Two OH combine to H2O2. In the process the pH becomes more acidic. The discovery of H2O2 formation at rock-water interfaces as part of stress- activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life.

  7. Insulin Fibrillization at Acidic and Physiological pH Values is Controlled by Different Molecular Mechanisms.

    PubMed

    Noormägi, Andra; Valmsen, Karin; Tõugu, Vello; Palumaa, Peep

    2015-12-01

    Formation of amyloid-like fibrils by insulin was studied at different insulin concentrations, pH and temperatures. At low pH (pH 2.5) the insulin fibrillization occurred only at high ([10 lM) peptide concentrations, whereas at physiological pH values the fibril formation is inhibited at higher insulin concentrations. The enthalpy of activation Ea of the fibril growth at pH 2.5 equals to 33 kJ/mol, which is considerably lower than 84 kJ/mol at physiological pH. The fibrillization rate of insulin decreases with increasing pH at high, 250 lM concentration, which was opposite to the pH effect observed in 2.5 lM insulin solutions. The latter effect indicates that protonation of histidine residues seems to be important for the fibrillization of monomeric insulin, whereas the pH effect at high concentration may result from off-pathway oligomerization propensity. Together, the different effect of environmental factors on the insulin fibrillization suggest that the reaction rate is controlled by different molecular events in acidic conditions and at physiological pH values.

  8. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  9. Sensitivity of acid-adapted and acid-shocked Shigella flexneri to reduced pH achieved with acetic, lactic, and propionic acids.

    PubMed

    Tetteh, G L; Beuchat, L R

    2001-07-01

    Survival and growth characteristics of unadapted, acid-adapted, and acid-shocked Shigella flexneri 2a cells in acidified (pH 3.5 to 5.5) tryptic soy broth with 0.25% glucose (TSB) and tryptic soy agar (TSA) were determined. S. flexneri was grown at 37 degrees C for 18 h in tryptic soy broth without glucose (TSBNG) (unadapted) and TSBNG supplemented with 1% glucose (TSBG) (acid-adapted). Cells grown in TSBNG were acid shocked by adjusting 16-h cultures to pH 5.05 +/- 0.05 with lactic acid. Cells were then inoculated into TSB acidified with acetic, lactic, or propionic acids to pH 5.5, 4.5, or 3.5 and incubated at 37 degrees C for 6 h. The order of lethality at a given pH was lactic acid < acetic acid < propionic acid. Significantly (P < or = 0.05) higher numbers of acid-adapted cells, compared to acid-shocked and unadapted cells, were recovered from TSB acidified (pH 3.5) with lactic or acetic acids. None of the cells survived a 30-min exposure in TSB acidified with propionic acid to pH 3.5. When the three cell types were plated on TSA acidified with lactic, acetic, or propionic acids at pH < or = 4.5, < or = 5.5, and < or = 5.5, respectively, visible colonies were not detected. Viable unadapted, acid-adapted, and acid-shocked cells were, however, recovered from TSA acidified with all three acids at pH > or = 4.5. Acid-adapted and, to a lesser extent, acid-shocked cells survived at lower pH than did unadapted cells, indicating that prior exposure to mild acidic environment results in increased acid resistance. Survival of S. flexneri at a given pH was influenced by the type of acidulant used, a response characteristic exhibited by other gram-negative enteric pathogens.

  10. Effect of pH on conjugated linoleic acid (CLA) formation of linolenic acid biohydrogenation by ruminal microorganisms.

    PubMed

    Lee, Yongjae

    2013-08-01

    Conventional beliefs surrounding the linolenic acid (LNA; cis-9 cis-12 cis-15 C18:3) biohydrogenation (BH) pathway propose that it converts to stearic acid (SA) without the formation of conjugated linoleic acid (CLA) as intermediate isomers. However, an advanced study (Lee and Jenkins, 2011) verified that LNA BH yields multiple CLAs. This study utilized the stable isotope tracer to investigate the BH intermediates of (13)C-LNA with different pH conditions (5.5 and 6.5). The (13)C enrichment was calculated as a (13)C/(12)C ratio of labeled minus unlabeled. After 24 h, eight CLA isomers were significantly enriched on both pH treatment, this result verifies that these CLAs originated from (13)C-LNA BH which supports the results of Lee and Jenkins (2011). The enrichment of cis-cis double bond CLAs (cis-9 cis-11 and cis-10 cis-12 CLA) were significantly higher at low pH conditions. Furthermore, the concentration of cis-10 cis-12 CLA at low pH was four times higher than at high pH conditions after a 3 h incubation. These differences support the LNA BH pathways partial switch under different pH conditions, with a strong influence on the cis-cis CLA at low pH. Several mono-, di-, and tri-enoic fatty acid isomers were enriched during 24 h of incubation, but the enrichment was decreased or restricted at low pH treatment. Based on these results, it is proposed that low pH conditions may cause a changed or limited capacity of the isomerization and reduction steps in BH.

  11. Acid Base Equilibrium in a Lipid/Water Gel

    NASA Astrophysics Data System (ADS)

    Streb, Kristina K.; Ilich, Predrag-Peter

    2003-12-01

    A new and original experiment in which partition of bromophenol blue dye between water and lipid/water gel causes a shift in the acid base equilibrium of the dye is described. The dye-absorbing material is a monoglyceride food additive of plant origin that mixes freely with water to form a stable cubic phase gel; the nascent gel absorbs the dye from aqueous solution and converts it to the acidic form. There are three concurrent processes taking place in the experiment: (a) formation of the lipid/water gel, (b) absorption of the dye by the gel, and (c) protonation of the dye in the lipid/water gel environment. As the aqueous solution of the dye is a deep purple-blue color at neutral pH and yellow at acidic pH the result of these processes is visually striking: the strongly green-yellow particles of lipid/water gel are suspended in purple-blue aqueous solution. The local acidity of the lipid/water gel is estimated by UV vis spectrophotometry. This experiment is an example of host-guest (lipid/water gel dye) interaction and is suitable for project-type biophysics, physical chemistry, or biochemistry labs. The experiment requires three, 3-hour lab sessions, two of which must not be separated by more than two days.

  12. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan12

    PubMed Central

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Obando, Alina Soto; Hoxha, Sany; Ja, William W

    2015-01-01

    Background: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. Objectives: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. Methods: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. Results: An acidic diet increased Drosophila gustatory responses (40–230%) and food intake (5–50%) and extended survival (10–160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5–20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Conclusions: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and

  13. Properties of acid whey as a function of pH and temperature.

    PubMed

    Chandrapala, Jayani; Duke, Mikel C; Gray, Stephen R; Zisu, Bogdan; Weeks, Mike; Palmer, Martin; Vasiljevic, Todor

    2015-07-01

    Compositional differences of acid whey (AW) in comparison with other whey types limit its processability and application of conventional membrane processing. Hence, the present study aimed to identify chemical and physical properties of AW solutions as a function of pH (3 to 10.5) at 4 different temperatures (15, 25, 40, or 90°C) to propose appropriate membrane-processing conditions for efficient use of AW streams. The concentration of minerals, mainly calcium and phosphate, and proteins in centrifuged supernatants was significantly lowered with increase in either pH or temperature. Lactic acid content decreased with pH decline and rose at higher temperatures. Calcium appeared to form complexes with phosphates and lactates mainly, which in turn may have induced molecular attractions with the proteins. An increase in pH led to more soluble protein aggregates with large particle sizes. Surface hydrophobicity of these particles increased significantly with temperature up to 40°C and decreased with further heating to 90°C. Surface charge was clearly pH dependent. High lactic acid concentrations appeared to hinder protein aggregation by hydrophobic interactions and may also indirectly influence protein denaturation. Processing conditions such as pH and temperature need to be optimized to manipulate composition, state, and surface characteristics of components of AW systems to achieve an efficient separation and concentration of lactic acid and lactose.

  14. Effects of pH on Water-Solubilization of Carbon Nanotube Using Microplasma in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Imasaka, Kiminobu; Kato, Yuki; Khaled, Usama; Suehiro, Junya

    2009-06-01

    The authors have previously proposed a novel technique for the preparation of water-soluble carbon nanotubes (CNTs) using microplasma generated by a pulsed streamer discharge in water. This paper describes effects of pH values on water-solubility of single-walled CNT (SWCNT) treated by the microplasma. The SWCNT treated under basic conditions showed two times higher solubility compared to that treated under neutral condition, whereas the SWCNT solubility considerably decreased under acidic conditions. Based on optical emission measurements of microplasma showed that radical formation was not pH sensitive. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis showed that the microplasma treated SWCNT was functionalized with -COO- groups with little pH dependence. In contrary, clear pH dependence was observed for zeta potential of the microplasma-treated SWCNT. The lowest zeta potential was -46 mV, which was obtained with basic solution adjusted by NH3 (pH ≈9). The SWCNT treated under basic conditions was more negatively charged due to suppressed protonation of -COO- groups. As a result, the electrostatic repulsion force between SWCNTs could overcome van der Waals force improving their solubility and dispersibility in water.

  15. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide.

    PubMed

    Zhang, Y; Scorpio, A; Nikaido, H; Sun, Z

    1999-04-01

    Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.

  16. Experimental evaluation of the contribution of acidic pH and Fe concentration to the structure, function and tolerance to metals (Cu and Zn) exposure in fluvial biofilms.

    PubMed

    Luís, Ana Teresa; Bonet, Berta; Corcoll, Natàlia; Almeida, Salomé F P; da Silva, Eduardo Ferreira; Figueira, Etelvina; Guasch, Helena

    2014-09-01

    An indoor channel system was colonised with fluvial biofilms to study the chronic effects of high Fe and SO4(2-) concentrations and acidic pH, the water chemistry in the surrounding streams of Aljustrel mining area (Alentejo, Portugal), and their contribution to community (in)tolerance to metal toxicity by short-term experiments with Cu and Zn. Biofilms were subjected to four different treatments during 8 weeks: high Fe and SO4(2-) concentrations (1 mg Fe l(-1)+ 700 mg SO4(2-) l(-1)) and acidic pH, high Fe and SO4(2-) at alkaline pH; lower Fe and SO4(2-) at acidic pH: and lower Fe and SO4(2-) concentrations at alkaline pH as negative control. During chronic exposure, acidic pH affected growth negatively, based on low values of algal biomass and the autotrophic index, high values of the antioxidant enzyme activities and low diversity diatom communities, dominated by acidophilic species (Pinnularia aljustrelica) in acidic treatments, being the effects more marked with high Fe and SO4(2-). Co-tolerance to metals (Cu and Zn) was also shown in biofilms from the acidic treatments, contrasting with the higher sensitivity observed in the alkaline treatments. We can conclude that the Aljustrel mining area acidic environment limits algal growth and exerts a strong selection pressure on the community composition which is in turn, more tolerant to metal exposure.

  17. Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH.

    PubMed

    Uversky, V N; Gillespie, J R; Millett, I S; Khodyakova, A V; Vasiliev, A M; Chernovskaya, T V; Vasilenko, R N; Kozlovskaya, G D; Dolgikh, D A; Fink, A L; Doniach, S; Abramov, V M

    1999-11-09

    Prothymosin alpha has previously been shown to be unfolded at neutral pH, thus belonging to a growing family of "natively unfolded" proteins. The structural properties and conformational stability of recombinant human prothymosin alpha were characterized at neutral and acidic pH by gel filtration, SAXS, circular dichroism, ANS fluorescence, (1)H NMR, and resistance to urea-induced unfolding. Interestingly, prothymosin alpha underwent a cooperative transition from the unfolded state into a partially folded conformation on lowering the pH. This conformation of prothymosin alpha is a compact denatured state, with structural properties different from those of the molten globule. The formation of alpha-helical structure by the glutamic acid-rich elements of the protein accompanied by the partial hydrophobic collapse is expected at lower pH due to the neutralization of the negatively charged residues. It is possible that such conformational changes may be associated with the protein function.

  18. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids.

    PubMed

    Neta, E R D; Johanningsmeier, S D; Drake, M A; McFeeters, R F

    2009-01-01

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on sour taste of equimolar protonated organic acid solutions and to investigate the potential roles of organic anions and sodium ions on sour taste perception. Despite equal concentrations of protonated acid species, sour taste intensity decreased significantly with increased pH for acetic, lactic, malic, and citric acids (P < 0.05). Total organic anion concentration did not explain the suppression of sour taste in solutions containing a blend of 3 organic acids with constant concentration of protonated organic acid species and hydrogen ions and variable organic anion concentrations (R(2)= 0.480, P = 0.12). Sour taste suppression in these solutions seemed to be more closely related to sodium ions added in the form of NaOH (R(2)= 0.861, P = 0.007). Addition of 20 mM NaCl to acid solutions resulted in significant suppression of sour taste (P = 0.016). However, sour taste did not decrease with further addition of NaCl up to 80 mM. Presence of sodium ions was clearly shown to decrease sour taste of organic acid solutions. Nonetheless, suppression of sour taste in pH adjusted single acid solutions was greater than what would be expected based on the sodium ion concentration alone, indicating an additional suppression mechanism may be involved.

  19. Cadmium triggers Elodea canadensis to change the surrounding water pH and thereby Cd uptake.

    PubMed

    Javed, M Tariq; Greger, Maria

    2011-01-01

    This study was aimed to investigate the influence of Elodea canadensis shoots on surrounding water pH in the presence of cadmium and the effect of plant-induced pH on cadmium uptake. The pH change in the surrounding nutrient solution and Cd uptake by Elodea shoots were investigated after cultivation of various plant densities (1, 3, 6 plants per 500 ml) in hydroponics at a starting pH of 4.0 and in the presence of different concentrations of cadmium (0, 0.1, 0.5 microM). Cadmium uptake was also investigated at different constant pH (4.0, 4.5, 5.5 and 6.5). To investigate if the pH change arose from photosynthetic activities, plants were grown under light, darkness or in the presence of a photosynthetic inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and 0.5 microM cadmium in the solution. Elodea had an ability to increase the surrounding water pH, when the initial pH was low, which resulted in increased accumulation of Cd. The higher the plant density, the more pronounced was the pH change. The pH increase was not due to the photosynthetic activity since the pH rise was more pronounced under darkness and in the presence of DCMU. The pH increase by Elodea was triggered by cadmium.

  20. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  1. Acidic duodenal pH alters gene expression in the cystic fibrosis mouse pancreas.

    PubMed

    Kaur, Simran; Norkina, Oxana; Ziemer, Donna; Samuelson, Linda C; De Lisle, Robert C

    2004-08-01

    The duodenum is abnormally acidic in cystic fibrosis (CF) due to decreased bicarbonate ion secretion that is dependent on the CF gene product CFTR. In the CFTR null mouse, the acidic duodenum results in increased signaling from the intestine to the exocrine pancreas in an attempt to stimulate pancreatic bicarbonate ion secretion. Excess stimulation is proposed to add to the stress/inflammation of the pancreas in CF. DNA microarray analysis of the CF mouse revealed altered pancreatic gene expression characteristic of stress/inflammation. When the duodenal pH was corrected genetically (crossing CFTR null with gastrin null mice) or pharmacologically (use of the proton pump inhibitor omeprazole), expression levels of genes measured by quantitative RT-PCR were significantly normalized. It is concluded that the acidic duodenal pH in CF contributes to the stress on the exocrine pancreas and that normalizing duodenal pH reduces this stress.

  2. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGES

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; ...

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  3. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  4. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  5. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  6. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Stream water pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southwast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site. 10 references, 2 tables.

  7. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    PubMed Central

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  8. [Effects of simulated acid rain on water physiological characteristics of Myrica rubra seedlings].

    PubMed

    Yaho, Zhao-bin; Jiang, Hong; Yu, Shu-quan; Lu, Mei-juan

    2011-08-01

    Taking the seedlings of typical subtropical economic tree species Myrica rubra in Zhejiang Province as test materials, a pot experiment was conducted to study their water physiological characteristics under effects of simulated acid rain (pH 2.5 and pH 4.0), with water (pH 5.6) as the control. Season, year, and acid rain all had significant effects on the photosynthetic rate (Pn). Among the treatments, the Pn had a greater difference in summer than in spring and autumn, and was higher in treatment acid rain (pH 4.0). Season, year, acid rain, and the interactions of season and year and of the three factors had significant effects on the stomata conductance (Gs), and also, the Gs had a greater difference among the treatments in summer than in spring and autumn. Acid rain had inhibitory effect on Gs. Season, year, acid rain, and the interactions of season and year and of season and acid rain affected the transpiration rate (Tr) significantly. Same as Pn and Gs, the Tr had a greater difference among the treatments in summer than in spring and autumn. Acid rain (pH 2.5) had the strongest inhibitory effect on Tr. Acid rain and the interactions of season and year and of season and acid rain had significant effects on the water use efficiency (WUE), and acid rain (pH 2.5) had definitely positive effect on the WUE.

  9. Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements.

    PubMed

    Javed, M Tariq; Stoltz, Eva; Lindberg, Sylvia; Greger, Maria

    2013-03-01

    The presence of Eriophorum angustifolium in mine tailings of pyrite maintains a neutral pH, despite weathering, thus lowering the release of toxic elements into acid mine drainage water. We investigated if the presence of slightly elevated levels of free toxic elements triggers the plant rhizosphere to change the pH towards neutral by increasing organic acid contents. Plants were treated with a combination of As, Pb, Cu, Cd, and Zn at different concentrations in nutrient medium and in soil in a rhizobox-like system for 48-120 h. The pH and organic acids were detected in the mucilage dissolved from root surface, reflecting the rhizospheric solution. Also the pH of root-cell apoplasm was investigated. Both apoplasmic and mucilage pH increased and the concentrations of organic acids enhanced in the mucilage with slightly elevated levels of toxic elements. When organic acids concentration was high, also the pH was high. Thus, efflux of organic acids from the roots of E. angustifolium may induce rhizosphere basification.

  10. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  11. Optimization of pH values to formulate the bireagent kit for serum uric acid assay.

    PubMed

    Huang, Ya; Chen, Yuanxiang; Yang, Xiaolan; Zhao, Hua; Hu, Xiaolei; Pu, Jun; Liao, Juan; Long, Gaobo; Liao, Fei

    2015-01-01

    A new formulation of the bireagent kit for serum uric acid assay was developed based on the effects of pH on enzyme stability. At 4 °C, half-lives of uricases from Bacillus fastidious and Arthrobacter globiforms were longer than 15 months at pH 9.2, but became shorter at pH below 8.0; half-lives of ascorbate oxidase and peroxidase were comparable at pH 6.5 and 7.0, but became much shorter at pH higher than 7.4. In the new formulation of the bireagent kit, Reagent A contained peroxidase, 4-aminoantipyrine, and ascorbate oxidase in 50 mM phosphate buffer at pH 6.5; Reagent B contained B. fastidious or A. globiforms uricase in 50 mM sodium borate buffer at pH 9.2; Reagents A and B were mixed at 4:1 to produce a final pH from 7.2 to 7.6 for developing a stable color. The new bireagent kit consumed smaller quantities of three enzymes for the same shelf life. With the new bireagent kit, there were linear responses of absorbance at 546 nm to uric acid up to 34 mM in reaction mixtures and a good correlation of uric acid levels in clinical sera with those by a commercial kit, but stronger resistance to ascorbate. Therefore, the new formulation was advantageous.

  12. Vaginal pH and Microbicidal Lactic Acid When Lactobacilli Dominate the Microbiota

    PubMed Central

    O’Hanlon, Deirdre E.; Moench, Thomas R.; Cone, Richard A.

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid. PMID:24223212

  13. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    PubMed

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  14. Past and future seasonal variation in pH and metal concentrations in runoff from river basins on acid sulphate soils in Western Finland.

    PubMed

    Saarinen, Tuomas S; Kløve, Bjørn

    2012-01-01

    Drainage of acid sulphate soils (ASS) increases oxidation, leading to extensive leaching of acidity and metals to rivers (Al, Cd, Cr, Fe, Ni and Zn). This is often apparent during high runoff periods in spring and autumn after long dry periods with low groundwater levels and associated ASS oxidation. Regression models were used to study changes in these water quality variables according to various discharge scenarios. The knowledge of seasonal patterns of water quality variables in future is important for planning land use of the catchments in relation to WFD of European Union. The data showed that river water acidity (pH and metals) increased with discharge, with the correlation being strongest in low runoff periods in winter and summer and less clear in spring. With future climate change, river acidity can increase radically, especially during winters following extremely dry summers, and pH and metal peaks may occur even during winter.

  15. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    PubMed

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  16. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    PubMed Central

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  17. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  18. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  19. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome.

    PubMed

    Euterpio, Maria Anna; Cavaliere, Chiara; Capriotti, Anna Laura; Crescenzi, Carlo

    2011-11-01

    Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.

  20. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization.

  1. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    PubMed

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg(2+)) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu(2+)) are therefore not beneficial places for peptide bond formation on the primitive

  2. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  3. Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60-6.50

    NASA Astrophysics Data System (ADS)

    Čučulović, Ana; Veselinović, Dragan

    2015-12-01

    The desorption of 137Cs from the moss Brachythecium mildeanum (Schimp.) was performed using the following solutions: H2SO4 ( I), HNO3 ( II), H2SO4 + HNO3 ( III) with pH values of 4.60, 5.15, and 5.75, respectively, as well as distilled water (D) with pH 6.50. After five successive desorptions, each lasting 24 h, 20.5-37.6% 137Cs was desorbed from the moss using these solutions, while 30.7% of the starting content was desorbed using distilled water. The first desorption removed the highest percent of the original content of 137Cs in the moss (11.3-18.4%). This was determined by measuring 137Cs activity. If the current results are compared with those obtained earlier it may be concluded that 137Cs desorption from mosses is not species-dependent. The obtained results indicate the necessity of investigating the influence of acid rain, or rather, of H+ ions, on desorption of other ions from biological systems, i.e., the role of H+ ions in spreading other polluting compounds and thus producing secondary environmental pollution. From the results of this study it follows that acid rain will lead, through H+ ion action, to a similar increasing pollution of fallout waters with other ionic compounds which may not be present in the water before the contact with the plants and thus enable the pollution spreading. In the investigated system, the replacement of H+ ions from acid rains by more dangerous radioactive ions occured, increasing the concentration of the radioactive ions in the water, which demonstrates that the same process takes place in fallout water.

  4. Effects of Atmospheric Air Plasma Irradiation on pH of Water

    NASA Astrophysics Data System (ADS)

    Sarinont, Thapanut; Koga, Kazunori; Kitazaki, Satoshi; Uchida, Giichirou; Hayashi, Nobuya; Shiratani, Masaharu

    We have studied the effects of atmospheric air plasma irradiation to water using a scalable dielectric barrier discharge device. Measurements of the pH of water treated by the plasmas have shown the pH decreases due to peroxide molecules generated by plasma irradiation and depends on material of water container. We also found this plasma treated water has little effect on the growth enhancement on Radish sprouts compare with plasma irradiation on dry seeds and the plasma irradiation can affect them through the water buffer of 0.2 mm in thickness.

  5. pH responsive poly amino-acid hydrogels formed via silk sericin templating.

    PubMed

    Kurland, Nicholas E; Ragland, Robert B; Zhang, Aolin; Moustafa, Mahmoud E; Kundu, Subhas C; Yadavalli, Vamsi K

    2014-09-01

    Poly(amino acid) hydrogels have attracted a great deal of attention as biodegradable biomaterials that can limit products of synthetic polymer degradation. Here we report on a stimuli-responsive, porous, composite biomaterial based on the protein templating of the poly(amino acid) hydrogel from poly(aspartic acid) with the silk protein sericin. This low-cost, biocompatible and biodegradable hydrogel demonstrates a greatly increased porosity and improvement in volumetric swelling over networks formed from pure poly(aspartic acid). The swelling capacity measured over a range of pH values surrounding physiological pH 7.0 demonstrates a linear profile, in which hydrogel volume and mass increase to a maximum, with an increase as a function of higher sericin content. In comparison to pure poly(aspartic acid), this demonstrates a nearly 3-fold increase in retention volume at basic pH. The increase in swelling is also demonstrated by the increase in porosity and internal micro-architecture of the hydrogel networks. The biomaterial is then shown to perform well as a scaffold for cells with high mechanical strength and integrity. This protein- and homo poly(amino acid)-based super-swelling hydrogel has applications in drug delivery and tissue engineering as an economical and environmentally friendly biomaterial, in addition to ensuring the species incorporated maintain their biocompatibility during processing.

  6. Effect of pH changes on water release values in hydrophobic interaction chromatographic systems.

    PubMed

    Xia, Fang; Nagrath, Deepak; Cramer, Steven M

    2005-06-24

    The effect on pH on protein binding in HIC systems was investigated. Isocratic experiments were carried out to determine the capacity factors of various proteins as a function of temperature, pH and salt type. This paper presents a framework based on the Maxwell linkage function for estimating the number of released water molecules during the adsorption/desorption process due to a change of buffer pH. This approach also enables one to predict the effect of pH change on the water released values upon binding at any temperature condition. The results indicate that the total number of released water molecules (delta nu) for a pH change increased more on aromatic surfaces (phenyl Sepharose) than on aliphatic resins (butyl Sepharose). The results also indicate that the total number of released water molecules (deltanu) for a pH change increased with salt concentration and when changing from chaotropic to kosmotropic salts. The (deltanu) values also increased as the buffer pH approached the protein's pI, and decreased away from its pI. This work helps to establish a framework for the investigation of pH effects on protein selectivity in HIC systems.

  7. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  8. Characterization of haloacetic acid precursors in source water.

    PubMed

    Kanokkantapong, Vorapot; Marhaba, Taha F; Pavasant, Prasert; Panyapinyophol, Bunyarit

    2006-08-01

    Raw water from the Bangkok (Thailand) main municipal water supply canal was examined for its natural organic composition by fractionation with adsorption resins. DAX-8 resin was the first resin employed to fractionate the hydrophobic fractions. Fractionation at neutral pH resulted in the separation of the hydrophobic neutral components; at a high pH level (approx. 10) separation of the hydrophobic base components occurred; and at a low pH level (approx. 2) the hydrophobic acid components were separated. AG-MP-50 cationic resin was then used to separate the hydrophilic base components, and WA-10, a weak anionic resin, was applied finally to fractionate the hydrophilic acid and neutral components. Subsequently, each fraction was tested for its chlorine disinfection by-product (DBP) formation potential. The HAA formation tests demonstrated that the various organic fractions had different reactivity levels for the formation of haloacetic acids (HAAs). For this source water, the hydrophilic neutral fraction dominated over the other five fractions in being the main organic component and the most significant precursor of HAAs formation. On the other hand, in terms of specific HAA formation potential (FP), the hydrophobic and hydrophilic base fractions were the most reactive precursors to the formation of HAAs. In all cases, the quantity of HAAs formed depended linearly upon the amount of organic constituents in the water sample.

  9. A colorimetric pH indicators and boronic acids ensemble array for quantitative sugar analysis.

    PubMed

    Ghosh, Krishna Kanta; Yap, Eunice; Kim, Hanjo; Lee, Jun-Seok; Chang, Young-Tae

    2011-04-07

    The colorimetric response patterns of pH indicators and boronic acids ensemble array were used to analyze serial concentrations of mono-, disaccharides quantitatively. Furthermore, this ensemble array was successfully applied to quantify the sugar content in clinically used saline solutions.

  10. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  11. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    SciTech Connect

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; Ye, X. Philip; Borole, Abhijeet P.; Tsouris, Costas

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organic solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.

  12. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation.

  13. Thermo and pH dual-responsive materials for controllable oil/water separation.

    PubMed

    Cao, Yingze; Liu, Na; Fu, Changkui; Li, Kan; Tao, Lei; Feng, Lin; Wei, Yen

    2014-02-12

    Thermo and pH dual-controllable oil/water separation materials are successfully fabricated by photo initiated free radical polymerization of dimethylamino ethyl methacrylate (DMAEMA). The PDMAEMA hydrogel coated mesh shows superhydrophilicity and underwater superoleophobicity at certain temperature and pH. Due to the double responsiveness of PDMAEMA hydrogel, the as-prepared mesh can selectively separate water from oil/water mixtures and make water and oil permeate through the mesh orderly and be collected separately by adjusting the temperature or pH. Water can pass through the as-prepared mesh under 55 °C (pH 7) and pH less than 13 (T = 25 °C) while oil is kept on the mesh. When the temperature is above 55 °C or pH is larger than 13, the water retention capacity of PDMAEMA hydrogel is significantly reduced and the swelling volume is decreased. Therefore, oil can permeate through the mesh and be collected in situ. Additionally, this material has excellent potential to be used in practical applications and has created a new field for water/oil separation in which the process can be diversified and more intelligent.

  14. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Weber, Rodney; Nenes, Athanasios; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    contributed about 27.5 % to the total aerosol water, mostly during early morning, late evening, and nighttime hours.

    The aerosol was found to be highly acidic with calculated aerosol pH varying from 0.5 to 2.8 throughout the study period. Biomass burning aerosol presented the highest values of pH in the submicron fraction and the lowest values in total water mass concentration. The low pH values observed in the submicron mode and independently of air mass origin could increase nutrient availability and especially P solubility, which is the nutrient limiting sea water productivity of the eastern Mediterranean.

  15. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream-flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid-forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Streamwater pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by calcium, magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southeast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site.

  16. [Effect of pH and fermentation time on yield and optical purity of lactic acid from kitchen wastes fermentation].

    PubMed

    Zhang, Bo; He, Pin-Jing; Shao, Li-Ming

    2007-04-01

    Batch experiments were carried out to analyze the effect of pH and fermentation time on the yield of total lactic acid and the distribution of L- and D-lactic acid among total lactic acid during the non-sterilized fermentation of kitchen wastes. The results show that the concentration of reduced sugar (calculated as organic carbon) is low, and its concentration was higher at neutral and alkali conditions (pH 6 - 8) than at acidic conditions (non-controlled pH and pH = 5). The maximum total lactic acid production rate and yield is 0.59 g x (L x h)(-1) and 0.62 g per gram VS at pH 7, respectively. The proportion of lactic acid (calculated as organic carbon) among the TOC reaches 78% and 89% at controlled pH 7 and 8, respectively. The L-lactic acid is the predominant isomer form at pH 8. Lactic acid concentration depends on pH, fermentation time and interaction from the response surface analysis. pH and fermentation time have a significant effect on the optical purity of lactic acid. At acidic conditions, the ratio of L-lactic acid to the total lactic acid increases with the fermentation time before 120 h, and the ratio reaches 0.9 at 120 h. At alkaline conditions, the ratio keeps at above 0.86 in the whole experimental fermentation time and reachs the maximum value (0.93) at 48 h. It decreases with fermentation time at pH 7. To obtain high lactic acid yield and optical purity simultaneously, it is suggested that pH should be contralled at 8.

  17. Fine-particle water and pH in the southeastern United States

    EPA Science Inventory

    Particle water and pH are predicted using meteorological observations (relative humidity (RH), temperature (T)), gas/particle composition, and thermodynamic modeling (ISORROPIA-II). A comprehensive uncertainty analysis is included, and the model is validated. We investigate mass ...

  18. Recovery of carboxylic acids at pH greater than pKa

    SciTech Connect

    Tung, Lisa A.

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pKa and regenerability depend on sorbent basicity; apparent pKa and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  19. Particle water and pH in the Eastern Mediterranean: sources variability and implications for nutrients availability

    NASA Astrophysics Data System (ADS)

    Nikolaou, P.; Bougiatioti, A.; Stavroulas, I.; Kouvarakis, G.; Nenes, A.; Weber, R.; Kanakidou, M.; Mihalopoulos, N.

    2015-10-01

    during early morning, late evening and nighttime hours. The aerosol was found to be highly acidic with calculated aerosol pH varying from 0.5 to 2.8 throughout the study period. Biomass burning aerosol presented the highest values of pH in the submicron fraction and the lowest values in total water mass concentration. The low pH values observed in the submicron mode and independently of air masses origin could increase nutrient availability and especially P solubility, which is the nutrient limiting sea water productivity of the eastern Mediterranean.

  20. Evaluation of net acid generation pH as a single indicator for acid forming potential of rocks using geochemical properties.

    PubMed

    Oh, Chamteut; Ji, Sangwoo; Yim, Giljae; Cheong, Youngwook

    2017-04-01

    The main purpose of this research was to evaluate the geochemical properties of rocks for a single indicator of acid-forming potential. The indicators, such as net acid generation (NAG), NAG pH and total S, were applied to 312 rock samples of various geological characteristics. Additional indicators, such as a Modified NAG pH, paste pH and available acid neutralizing capacity (ANC), were applied to 22 selected samples. Among them, NAG pH was considered the most plausible single indicator in evaluating acid-forming potential, as it is simple to measure, widely applicable to various samples and can be used to estimate the NAG value. The acid-forming potential of 287 samples (92% of samples examined in this research) was classified as either non-acid forming (NAF) or potentially acid forming (PAF) by NAG pH, with an NAF criteria of <3.21 and PAF of >4.52. The NAG pH was also a good estimate of the risk of short-term acid release when combined with paste pH information. However, application of NAG pH to coal mine wastes, with high organic carbon contents, produced erroneous results due to the generation of organic acid during the NAG test. In this research, a Modified NAG pH was assessed as an alternative to NAG pH in such situations.

  1. Effect of Time, Water Flow, and pH on Centripetal Passage of Radiophosphorus across Roots of Intact Plants 1

    PubMed Central

    Emmert, Fred H.

    1972-01-01

    The effects of time, rate of the water flow, and ambient pH on centripetal passage of radiophosphorus across intact bean roots to the xylem were studied. Isotope which completed passage and entered the xylem stream, as well as amounts delivered to the plant top, served to measure centripetal passage. Centripetal passage of radiophosphorus increased parabolically reaching a maximum after 1 hr and maintained this level during the 2nd hr. This pattern was consistent for all conditions studied. The curve suggested that passage did not progress as an abrupt front, but rather that it occurred through a phosphorus pool before reaching the xylem. Differences in rate of water flow through test plants, accomplished by adjusting the humidity of the foliage environment, did not significantly affect centripetal passage of radiophosphorus. Water flow did, however, profoundly influence composition of the xylem stream by altering the solvent to isotope ratio. Centripetal passage of radiophosphorus was not affected by solution pH in the acid range (pH 4.8, 5.2, 6.4), but was inhibited in the more alkaline range (pH 7.0, 7.5, 8.0). The similarity of these findings to those in the literature for phosphorus uptake by individual cells suggests that cell uptake may constitute the primary rate-limiting step in the over-all process of ion passage to the xylem. PMID:16658169

  2. An evaluation of in-situ measurements of water temperature, specific conductance, and pH in low ionic strength streams

    USGS Publications Warehouse

    Ranalli, A.J.

    1998-01-01

    Survey for continuous measurement of water temperature, specific conductance, and pH in four low ionic strength streams in the Catskill Mountains of New York was evaluated through a calculation of their bias, precision, and accuracy and by comparison with laboratory measurements of specific conductance and pH on samples collected concurrently. Results indicate that the mini-monitor measurements of specific conductance and pH in an acidic stream (acid-neutralizing capacity always less than 0) agreed with laboratory measurements well enough that the minimonitors can be used to supplement laboratory measurements (mean difference in pH was 0.02 pH unit and mean difference in specific conductance was 0.72 ??S cm-1. This mean difference was 0.32 ??S cm-1 if the minimonitor data were adjusted by the bias). In less acidic streams (two streams in which the acid-neutralizing capacity was always greater than 0 and one in which the acid-neutralizing capacity was greater than 0 except during high flows), there was poor agreement between laboratory and minimonitor measurements of specific conductance at high flows and pH at all flows. The water-temperature probes measured with sufficiently small bias (-0.1 ??C) and adequate precision (??0.70 ??C) for use with most applications.

  3. Degradation of Kresoxim-Methyl in Water: Impact of Varying pH, Temperature, Light and Atmospheric CO2 Level.

    PubMed

    Khandelwal, Ashish; Gupta, Suman; Gajbhiye, Vijay T; Varghese, Eldho

    2016-01-01

    In the present investigation, persistence of kresoxim-methyl (a broad spectrum strobilurin fungicide) was studied in water. Results revealed that kresoxim-methyl readily form acid metabolite. Therefore, residues of kresoxim-methyl were quantified on the basis of parent molecule alone and sum total of kresoxim-methyl and its acid metabolite. In water, influence of various abiotic factors like pH, temperature, light and atmospheric carbon dioxide level on dissipation of kresoxim-methyl was studied. The half life value for kresoxim-methyl and total residue varied from 1 to 26.1 and 6.1 to 94.0 days under different conditions. Statistical analysis revealed the significant effect of abiotic factors on the dissipation of kresoxim-methyl from water.

  4. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature.

  5. Influence of Sodium Carbonate on Decomposition of Formic Acid by Discharge inside Bubble in Water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2015-09-01

    An influence of sodium carbonate on decomposition of formic acid by discharge inside bubble in water was investigated. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of addition of sodium carbonate, the pH value increased with decomposition of the formic acid. In the case of oxygen injection, the increase of pH value contributed to improve an efficiency of the formic acid decomposition because the reaction rate of ozone and formic acid increased with increasing pH value. In the case of argon injection, the decomposition rate was not affected by the pH value owing to the high rate constants for loss of hydroxyl radicals.

  6. Extremely acid Permian lakes and ground waters in North America

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.; Wopenka, B.; Burruss, R.C.; Pasteris, J.D.

    1998-01-01

    Evaporites hosted by red beds (red shales and sandstones), some 275-265 million years old, extend over a large area of the North American mid- continent. They were deposited in non-marine saline lakes, pans and mud- flats, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH < 1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH ~2-4) in southern Australia. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.

  7. [Effects of thiourea on pH and availability of metal ions in acid red soil].

    PubMed

    Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong

    2014-03-01

    Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.

  8. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  9. Effects of pH, dissolved oxygen, and ionic strength on the survival of Escherichia coli O157:H7 in organic acid solutions.

    PubMed

    Kreske, Audrey C; Bjornsdottir, Kristin; Breidt, Fred; Hassan, Hosni

    2008-12-01

    The ability of Escherichia coli O157:H7 to survive in acidified vegetable products is of concern because of previously documented outbreaks associated with fruit juices. A study was conducted to determine the survival of E. coli O157:H7 in organic acids at pH values typical of acidified vegetable products (pH 3.2 and 3.7) under different dissolved oxygen conditions (< or = 0.05 and 5 mg/liter) and a range of ionic strengths (0.086 to 1.14). All solutions contained 20 mM gluconic acid, which was used as a noninhibitory low pH buffer to compare the individual acid effect to that of pH alone on the survival of E. coli O157:H7. E. coli O157:H7 cells challenged in buffered solution with ca. 5-mg/liter dissolved oxygen (present in tap water) over a range of ionic strengths at pH 3.2 exhibited a decrease in survival over 6 h at 30 degrees C as the ionic strength was increased. Cells challenged in 40 mM protonated L-lactic and acetic acid solutions with ionic strength of 0.684 achieved a > 4.7-log CFU/ml reduction at pH 3.2. However, under oxygen-limiting conditions in an anaerobic chamber, with < or = 0.05-mg/ liter oxygen, E. coli O157:H7 cells showed < or = 1.55-log CFU/ml reduction regardless of pH, acid type, concentration, or ionic strength. Many acid and acidified foods are sold in hermetically sealed containers with oxygen-limiting conditions. Our results demonstrate that E. coli O157:H7 may survive better than previously expected from studies with acid solutions containing dissolved oxygen.

  10. NEUTRALIZATION OF ACIDIC GROUND WATER NEAR GLOBE, ARIZONA.

    USGS Publications Warehouse

    Eychaner, James H.; Stollenwerk, Kenneth G.; ,

    1985-01-01

    Highly acidic contaminated water is moving through a shallow aquifer and interacting with streams near Globe, Arizona. Dissolved concentrations reach 3,000 mg/L iron, 150 mg/L copper, and 16,400 mg/L total dissloved solids; pH is as low as 3. 6. Samples from 16 PVC-cased observation wells include uncontaminated, contaminated, transition, and neutralized waters. Chemical reaction with sediments and mixing with uncontaminated water neutralizes the acidic water. The reactions form a transition zone where gypsum replaces calcite and most metals precipitate. Ferric hydroxide also precipitates if sufficient oxygen is available. Abundant gypsum crystals and ferric hydroxide coatings have been recovered from well cuttings. Large sulfate concentrations produce sulfate complexes with many metals that inhibit removal of metals from solution.

  11. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing.

  12. Dependence of coastal water pH increases on submarine groundwater discharge off a volcanic island

    NASA Astrophysics Data System (ADS)

    Lee, Junghyun; Kim, Guebuem

    2015-09-01

    During the past few decades, excessive input of nutrients and organic matter, in addition to global ocean acidification, has resulted in significant changes in the water pH of coastal ocean. In this study, we investigated the effect of submarine groundwater discharge (SGD) on pH variations in the coastal waters of Hwasun Bay off the volcanic island of Jeju, Korea, which is situated in the oligotrophic open ocean. In this region, salinities of all coastal waters depend primarily on SGD because of the lack of any contributions from the river or stream waters. We observed a significant increase in pH along the lower-salinity plume zone, extending 0.5 km horizontally from the bottom to the surface (< 15 m water depth). The observed data for the entire bay-water column showed a significant negative correlation (r2 = 0.82) between salinity and pH. A simple two-endmember (submarine groundwater and offshore seawater) mixing model showed that this pH increase was caused by an enhanced biological production, which resulted from the SGD-driven nutrient inputs, rather than from groundwater dilution itself. Since a number of local and regional studies showed that SGD-driven fluxes of nutrients are comparable to or higher than their riverine fluxes, our results from an SGD-dominated environment suggest that SGD may have a significant influence on the coastal biogeochemical changes such as acidification, deoxygenation, and eutrophication.

  13. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  14. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    PubMed

    Khan, Javed M; Qadeer, Atiyatul; Ahmad, Ejaz; Ashraf, Raghib; Bhushan, Bharat; Chaturvedi, Sumit K; Rabbani, Gulam; Khan, Rizwan H

    2013-01-01

    Banana lectin (BL) is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS) binding, size exclusion chromatography (SEC) and dynamic light scattering (DLS). During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml) at pH 2.0 while single peak (61.45 ml) at pH 7.4. The hydrodynamic radii (R h) of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  15. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  16. Aggregation and stability of Fe2O3:Influence of humic acid concentration, Fe2O3 concentration and pH

    NASA Astrophysics Data System (ADS)

    Ahmad, Nur Suraya; Radiman, Shahidan; Yaacob, Wan Zuhairi Wan

    2016-11-01

    The scenario of released nanoparticles from consumer product into the environment especially natural waters are increased concern nowadays. Assessing their aggregation and stability under environmental conditions are important to determining their fate and behavior in natural waters. The aggregation behavior of Fe2O3 nanoparticles (NPs) was investigated at variable concentration of humic acid, Fe2O3 NPs concentration and pH variation in solution using dynamic light scattering to measure their z-average hydrodynamic diameter and zeta potential value. The stability are then evaluated by assessing their aggregation and disaggregation. Increasing humic acid concentration induced the disaggregation of Fe2O3 NPs. At a lower concentrations of Fe2O3 (< 30 mg/L), aggregate formed and disaggregation take place with increasing Fe2O3 concentration (50, 100, 150, 200 mg/L). The maximum aggregation was found in pH 4 at a constant concentration of humic acid of 100 mg/L and concentration of Fe2O3 (100 mg/L). High pH (>5) of solution induced disaggregation of suspensions and make it stable in the solution. TEM imaging have confirmed that Fe2O3 NPs aggregate and disaggregate in the presence of humic acid. Our study result shows that aggregation and stability of Fe2O3 NPs were depends on concentration of humic acid, concentration of NPs itself and the pH of the solutions.

  17. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  18. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF.

  19. A partly folded state of acidic fibroblast growth factor at low pH.

    PubMed

    Sanz, J M; Giménez-Gallego, G

    1997-06-01

    Acid denaturation of acidic fibroblast growth factor (aFGF) at low ionic strength was monitored by far-ultraviolet circular dichroism and intrinsic fluorescence. The two spectroscopic probes displayed non-coincident transitions, which suggested the accumulation of partly folded species around pH 4.0. Although under these conditions the fluorescence of aFGF resembled that of the unfolded form of the protein, far-ultraviolet circular dichroism and proton nuclear magnetic resonance spectra indicated the presence of persistent secondary and tertiary structure. Moreover, at pH 4.0, aFGF showed cooperative thermal denaturation and interacted weakly with the hydrophobic probe N-phenyl-1-naphthylamine, showing a relatively high level of structure that did not fit into the classical molten globule category. This intermediate is also capable of interacting with liposomes and might represent a membrane translocation-competent form.

  20. Acid tolerance of acid-adapted and nonadapted Escherichia coli O157:H7 following habituation (10 degrees C) in fresh beef decontamination runoff fluids of different pH values.

    PubMed

    Samelis, John; Kendall, Patricia; Smith, Gary C; Sofos, John N

    2004-04-01

    This study evaluated survival of Escherichia coli O157:H7 strain ATCC 43895 during exposure to pH 3.5 following its habituation for 2 or 7 days at 10 degrees in fresh beef decontamination waste runoff fluid mixtures (washings) containing 0, 0.02, or 0.2% of lactic or acetic acids. Meat washings and sterile water (control) were initially inoculated with approximately 5 log CFU/ml of acid- and nonadapted E. coli O157:H7 cells cultured (30 degrees C, 24 h) in broth with and without 1% glucose, respectively. After 2 days, E. coli O157:H7 survivors from acetate washings (pH 3.7 to 4.7) survived at pH 3.5 better than E. coli O157:H7 survivors from lactate washings (pH 3.1 to 4.6), especially when the original inoculum was acid adapted. Also, although E. coli O157:H7 habituated in sterile water for 2 days survived well at pH 3.5, the corresponding survivors from nonacid water meat washings (pH 6.8) were rapidly killed at pH 3.5, irrespective of acid adaptation. After 7 days, E. coli O157:H7 survivors from acetate washings (pH 3.6 to 4.7) continued to resist pH 3.5, whereas those from lactate washings died off. This loss of acid tolerance by E. coli O157:H7 was due to either its low survival in 0.2% lactate washings (pH 3.1) or its acid sensitization in 0.02% lactate washings, in which a Pseudomonas-like natural flora showed extensive growth (> 8 log CFU/ml) and the pH increased to 6.5 to 6.6. Acid-adapted E. coli O157:H7 populations habituated in water washings (pH 7.1 to 7.3) for 7 days continued to be acid sensitive, whereas nonadapted populations increased their acid tolerance, a response merely correlated with their slight (< 1 log) growth at 10 degrees C. These results indicate that the expression of high acid tolerance by acid-adapted E. coli O157:H7 can be maintained or enhanced in acid-diluted meat decontamination waste runoff fluids of pH levels that could permit long-term survival at 10 degrees C. Previous acid adaptation, however, could reduce the growth

  1. Indomethacin inhibits tetrodotoxin-resistant Na(+) channels at acidic pH in rat nociceptive neurons.

    PubMed

    Nakamura, Michiko; Jang, Il-Sung

    2016-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain.

  2. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  3. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  4. Fine particle water and pH in the Eastern Mediterranean: Sources, variability and implications for nutrients availability

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Nenes, Athanasios; Weber, Rodney; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    total calculated water. Particle pH is also calculated with the help of ISORROPIA-II, and during the studied period, values varied from 0.5 to 2.8, indicating that the aerosol was highly acidic. pH values were also studied depending on the source/origin of the sampled air masses and biomass burning aerosol was found to exhibit the highest values of PM1 pH and the lowest values in total water mass concentrations. The two natural sources, namely mineral and marine origin, contained the largest amounts of total submicron water and the lowest contribution of organic water, as expected. The low pH values estimated for the studied period in the submicron mode and independently of the air masses' origin could potentially have important implications for nutrient availability, especially for phosphorus solubility, which is the nutrient limiting sea water productivity of the Eastern Mediterranean.

  5. Shear rigidity of spread stearic acid monolayers on water

    SciTech Connect

    Abraham, B.M.; Ketterson, J.B.; Miyano, K.; Kueny, A.

    1981-01-01

    The effect of Al/sup 3 +/, Fe/sup 3 +/, Ca/sup 2 +/, and Mg/sup 2 +/ ions and of pH on the two-dimensional shear modulus of stearic acid spread on a water substrate was determined. A large shear modulus was displayed by the films when the subphase contained Al/sup 3 +/ and Fe/sup 3 +/ ions at the self buffered pH. With Fe/sup 3 +/ dissolved in the subphase, the film displayed a viscous relaxation when strained but no residual stress was observed. No effect was observed with the Ca/sup 2 +/ or Mg/sup 2 +/. Reducing the pH value in the subphase with the trivalent ions caused the shear modulus to disappear. The observations are interpreted in terms of hydrogen bonding.

  6. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  7. Effects of Oxygen Availability on Acetic Acid Tolerance and Intracellular pH in Dekkera bruxellensis

    PubMed Central

    Capusoni, Claudia; Arioli, Stefania; Zambelli, Paolo; Moktaduzzaman, M.; Mora, Diego

    2016-01-01

    ABSTRACT The yeast Dekkera bruxellensis, associated with wine and beer production, has recently received attention, because its high ethanol and acid tolerance enables it to compete with Saccharomyces cerevisiae in distilleries that produce fuel ethanol. We investigated how different cultivation conditions affect the acetic acid tolerance of D. bruxellensis. We analyzed the ability of two strains (CBS 98 and CBS 4482) exhibiting different degrees of tolerance to grow in the presence of acetic acid under aerobic and oxygen-limited conditions. We found that the concomitant presence of acetic acid and oxygen had a negative effect on D. bruxellensis growth. In contrast, incubation under oxygen-limited conditions resulted in reproducible growth kinetics that exhibited a shorter adaptive phase and higher growth rates than those with cultivation under aerobic conditions. This positive effect was more pronounced in CBS 98, the more-sensitive strain. Cultivation of CBS 98 cells under oxygen-limited conditions improved their ability to restore their intracellular pH upon acetic acid exposure and to reduce the oxidative damage to intracellular macromolecules caused by the presence of acetic acid. This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can protect against the damage caused by the presence of acetic acid. This aspect is important for optimizing industrial processes performed in the presence of acetic acid. IMPORTANCE This study reveals an important role of oxidative stress in acetic acid tolerance in D. bruxellensis, indicating that reduced oxygen availability can have a protective role against the damage caused by the presence of acetic acid. This aspect is important for the optimization of industrial processes performed in the presence of acetic acid. PMID:27235432

  8. Influence of Soil and Irrigation Water pH on the Availability of Phosphorus in Struvite Derived from Urine through a Greenhouse Pot Experiment.

    PubMed

    Liu, Xiaoning; Tao, Yi; Wen, Guoqi; Kong, Fanxin; Zhang, Xihui; Hu, Zhengyi

    2016-05-04

    One greenhouse pot experiment was used to investigate the availability of phosphorus in struvite derived from urine affected by soil pH (cinnamon soil, pH 7.3; paddy soil, pH 5.3) and irrigation water (pH 6.0 and 7.5) with bird rapeseed (Brassica campestris L.). The biomass of applied struvite in paddy soil was significantly greater than that of applied calcium superphosphate. However, statistically significant differences were not observed in cinnamon soil. Soil-applied struvite had a higher Olsen P compared to soil-applied calcium superphosphate irrespective of soil type. The biomass of applied struvite and irrigation with pH 6.0 water was greater compared to that with irrigation with pH 7.3 water irrespective of soil type, accompanied with significantly higher leaf chlorophyll concentration. Therefore, struvite has the potential to be an effective P fertilizer, and acidic irrigation water has greater influence on the availability of phosphorus in struvite than does acidic soil.

  9. Relationships between the resistance of yeasts to acetic, propanoic and benzoic acids and to methyl paraben and pH.

    PubMed

    Warth, A D

    1989-07-01

    Minimum inhibitory concentrations of acetic, propanoic and benzoic acids and methyl paraben were determined at pH 3.50 for 22 isolates of 11 yeast species, differing in their resistance to preservatives. Growth in the presence of benzoic acid enhanced the resistance of yeasts to benzoic and the other weak acid preservatives, but not to methyl paraben. Resistance to acetic, propanoic and benzoic acids was strongly correlated, but was not closely related to resistance to methyl paraben. Minimum pH for growth was not related to resistance to the weak acids. The results suggest that growth in the presence of weak-acid preservatives involves a common resistance mechanism.

  10. Attributing seasonal pH variability in surface ocean waters to governing factors

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Middelburg, J. J.

    2016-12-01

    On-going ocean acidification and increasing availability of high-frequency pH data have stimulated interest to understand seasonal pH dynamics in surface waters. Here we show that it is possible to accurately reproduce observed pH values by combining seasonal changes in temperature (T), dissolved inorganic carbon (DIC), and total alkalinity (TA) from three time series stations with novel pH sensitivity factors. Moreover, we quantify the separate contributions of T, DIC, and TA changes to winter-to-summertime differences in pH, which are in the ranges of -0.0334 to -0.1237, 0.0178 to 0.1169, and -0.0063 to 0.0234, respectively. The effects of DIC and temperature are therefore largely compensatory, and are slightly tempered by changes in TA. Whereas temperature principally drives pH seasonality in low-latitude to midlatitude systems, winter-to-summer DIC changes are most important at high latitudes. This work highlights the potential of pH sensitivity factors as a tool for quantifying the driving mechanisms behind pH changes.

  11. Kinetics of hyaluronan hydrolysis in acidic solution at various pH values.

    PubMed

    Tømmeraas, Kristoffer; Melander, Claes

    2008-06-01

    Hyaluronic acid (HA) was hydrolyzed using varying temperatures (40, 60, and 80 degrees C) and acid concentrations (0.0010, 0.010, 0.10, 0.50, 1.0, and 2.0 M HCl). The degradation process was monitored by determination of weight average molecular weight ( M w) by size-exclusion chromatography with online multiangle laser light scattering, refractive index, and intrinsic viscosity detectors (SEC-MALLS-RI-visc) on samples taken out continuously during the hydrolysis. SEC-MALLS-RI-visc showed that the degradation gave narrow molecular weight distributions with polydispersity indexes ( M w/ M n) of 1.3-1.7. Kinetic plots of 1/ M w versus time gave linear plots showing that acid hydrolysis of HA is a random process and that it follows a first order kinetics. For hydrolysis in HCl at 60 and 80 degrees C, it was shown that the kinetic rate constant ( k h) for the degradation depended linearly on the acid concentration. Further, the dependence of temperature on the hydrolysis in 0.1 M HCl was found to give a linear Arrhenius plot (ln k h vs 1/ T), with an activation energy ( E a) of 137 kJ/mol and Arrhenius constant ( A) of 7.86 x 10 (15) h (-1). (1)H NMR spectroscopy was used to characterize the product of extensive hydrolysis (48 h at 60 degrees C in 0.1 M HCl). No indication of de- N-acetylation of the N-acetyl glucosamine (GlcNAc) units or other byproducts were seen. Additionally, a low molecular weight HA was hydrolyzed in 0.1 M DCl for 4 h at 80 degrees C. It was shown that it was primarily the beta-(1-->4)-linkage between GlcNAc and glucuronic acid (GlcA) that was cleaved during hydrolysis at pH < p K a,GlcA. The dependence of the hydrolysis rate constant was further studied as a function of pH between -0.3 and 5. The degradation was found to be random (linear kinetic plots) over the entire pH range studied. Further, the kinetic rate constant was found to depend linearly on pH in the region -0.3 to 3. Above this pH (around the p K a of HA), the kinetic constant

  12. Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Asbill-Case, Jessica R.; Deas, Michael L.

    2013-01-01

    A hydrodynamic, water temperature, and water-quality model of the Link River to Keno Dam reach of the upper Klamath River was updated to account for macrophytes and enhanced pH buffering from dissolved organic matter, ammonia, and orthophosphorus. Macrophytes had been observed in this reach by field personnel, so macrophyte field data were collected in summer and fall (June-October) 2011 to provide a dataset to guide the inclusion of macrophytes in the model. Three types of macrophytes were most common: pondweed (Potamogeton species), coontail (Ceratophyllum demersum), and common waterweed (Elodea canadensis). Pondweed was found throughout the Link River to Keno Dam reach in early summer with densities declining by mid-summer and fall. Coontail and common waterweed were more common in the lower reach near Keno Dam and were at highest density in summer. All species were most dense in shallow water (less than 2 meters deep) near shore. The highest estimated dry weight biomass for any sample during the study was 202 grams per square meter for coontail in August. Guided by field results, three macrophyte groups were incorporated into the CE-QUAL-W2 model for calendar years 2006-09. The CE-QUAL-W2 model code was adjusted to allow the user to initialize macrophyte populations spatially across the model grid. The default CE-QUAL-W2 model includes pH buffering by carbonates, but does not include pH buffering by organic matter, ammonia, or orthophosphorus. These three constituents, especially dissolved organic matter, are present in the upper Klamath River at concentrations that provide substantial pH buffering capacity. In this study, CE-QUAL-W2 was updated to include this enhanced buffering capacity in the simulation of pH. Acid dissociation constants for ammonium and phosphoric acid were taken from the literature. For dissolved organic matter, the number of organic acid groups and each group's acid dissociation constant (Ka) and site density (moles of sites per mole of

  13. Investigation of pH Influence on Skin Permeation Behavior of Weak Acids Using Nonsteroidal Anti-Inflammatory Drugs.

    PubMed

    Chantasart, Doungdaw; Chootanasoontorn, Siriwan; Suksiriworapong, Jiraphong; Li, S Kevin

    2015-10-01

    As a continuing effort to understand the skin permeation behavior of weak acids and bases, the objectives of the present study were to evaluate skin permeation of nonsteroidal anti-inflammatory drugs (NSAIDs) under the influence of pH, investigate the mechanism of pH effect, and examine a previous hypothesis that the effective skin pH for drug permeation is different from donor solution pH. In vitro permeability experiments were performed in side-by-side diffusion cells with diclofenac, ibuprofen, flurbiprofen, ketoprofen, and naproxen and human skin. The donor solution pH significantly affected skin permeation of NSAIDs, whereas no effect of the receiver pH was observed. Similar to previous observations, the apparent permeability coefficient versus donor solution pH relationships deviated from the predictions (fractions of unionized NSAIDs) according to the acid/base theory. The influences of the viable epidermis barrier, polar pathway transport, ion permeation across skin, and effective skin pH were investigated. The effective pH values for skin permeation determined using the NSAIDs (weak acids) in this study were different from those obtained previously with a weak base at the same donor solution pH conditions, suggesting that the observed permeability-pH relationships could not be explained solely by possible pH differences between skin and donor solution.

  14. Preferential intracellular pH regulation represents a general pattern of pH homeostasis during acid-base disturbances in the armoured catfish, Pterygoplichthys pardalis.

    PubMed

    Harter, T S; Shartau, R B; Baker, D W; Jackson, D C; Val, A L; Brauner, C J

    2014-08-01

    Preferential intracellular pH (pHi) regulation, where pHi is tightly regulated in the face of a blood acidosis, has been observed in a few species of fish, but only during elevated blood PCO2. To determine whether preferential pHi regulation may represent a general pattern for acid-base regulation during other pH disturbances we challenged the armoured catfish, Pterygoplichthys pardalis, with anoxia and exhaustive exercise, to induce a metabolic acidosis, and bicarbonate injections to induce a metabolic alkalosis. Fish were terminally sampled 2-3 h following the respective treatments and extracellular blood pH, pHi of red blood cells (RBC), brain, heart, liver and white muscle, and plasma lactate and total CO2 were measured. All treatments resulted in significant changes in extracellular pH and RBC pHi that likely cover a large portion of the pH tolerance limits of this species (pH 7.15-7.86). In all tissues other than RBC, pHi remained tightly regulated and did not differ significantly from control values, with the exception of a decrease in white muscle pHi after anoxia and an increase in liver pHi following a metabolic alkalosis. Thus preferential pHi regulation appears to be a general pattern for acid-base homeostasis in the armoured catfish and may be a common response in Amazonian fishes.

  15. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance.

    PubMed

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín

    2015-11-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.

  16. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons

    PubMed Central

    Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon

    2017-01-01

    The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K+ and Ca2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K+ currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K+ currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs+ (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions. PMID:28280415

  17. [Effects of temperature and pH on the distribution of aluminum species in drinking water].

    PubMed

    Wang, Wen-dong; Yang, Hong-wei; Jiang, Jing; Zhu, Wan-peng; Jiang, Zhan-peng

    2009-08-15

    The effects of aluminum on water distribution system and human health are mainly attributable to their presence in drinking water. Laboratory experiments were performed to investigate the influence of temperature and pH on the distribution of aluminum species applying alum synthetic water. Aluminum species studied in the experiments included monomeric aluminum, soluble aluminum, suspended aluminum, and polymeric aluminum, which were determined by fluorescence spectrophotometry method. Results indicated that suspended aluminum was the major species at pH 6.5, occupied about 62.2% in the total aluminum mass concentration. While at pH above 7.0, monomeric aluminum was the major species; and varied little as reaction time increased. Polymeric aluminum mass concentration was low at studied water quality condition and also varied little as reaction time increased. The influence of temperature on aluminum species distribution was similar to solution pH; and both could be explained by pOH. Aluminum species in drinking water could be controlled by adjusting the pOH value, which provided theoretical guidance for the operation of the water distribution system and aluminum toxicity control.

  18. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects.

    PubMed

    Zhao, Yanping; Geng, Jinju; Wang, Xiaorong; Gu, Xueyuan; Gao, Shixiang

    2011-07-01

    Contamination of environmental matrixes by human and animal wastes containing antibiotics is a growing health concern. Because tetracycline is one of the most widely-used antibiotics in the world, it is important to understand the factors that influence its mobility in soils. This study investigated the effects of pH, background electrolyte cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), heavy metal Cu(2+) and humic acid (HA) on tetracycline adsorption onto kaolinite. Results showed that tetracycline was greatly adsorbed by kaolinite over pH 3-6, then decreased with the increase of pH, indicating that tetracycline adsorption mainly through ion exchange of cations species and complexation of zwitterions species. In the presence of five types of cations (Li(+), Na(+), K(+), Ca(2+) and Mg(2+)), tetracycline adsorption decreased in accordance with the increasing of atomic radius and valence of metal cations, which suggested that outer-sphere complexes formed between tetracycline and kaolinite, and the existence of competitor ions lead to the decreasing adsorption. The presence of Cu(2+) greatly enhanced the adsorption probably by acting as a bridge ion between tetracycline species and the edge sites of kaolinite. HA also showed a major effect on the adsorption: at pH < 6, the presence of HA increased the adsorption, while the addition of HA showed little effect on tetracycline adsorption at higher pH. The soil environmental conditions, like pH, metal cations and soil organic matter, strongly influence the adsorption behavior of tetracycline onto kaolinite and need to be considered when assessing the environmental toxicity of tetracycline.

  19. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  20. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

  1. Incorporation of stratospheric acids into water ice

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1990-01-01

    Hydrochloric and hydrofluoric acids are absorbed within the water ice lattice at mole fractions maximizing below 0.00001 and 0.0001 in a variety of solid impurity studies. The absorption mechanism may be substitutional or interstitial, leading in either case to a weak permeation of stratospheric ices by the acids at equilibrium. Impurities could also inhabit grain boundaries, and the acid content of atmospheric ice crystals will then depend on details of their surface and internal microstructures. Limited evidence indicates similar properties for the absorption of HNO3. Water ice lattices saturated with acid cannot be a significant local reservoir for HCl in the polar stratosphere.

  2. Effect of pH on Penetration of Naphthaleneacetic Acid and Naphthaleneacetamide Through Isolated Pear Leaf Cuticle 1

    PubMed Central

    Norris, Robert F.; Bukovac, Martin J.

    1972-01-01

    Penetration of naphthaleneacetic acid through enzymatically isolated upper pear (Pyrus communis L. cv. Bartlett) leaf cuticle increased as the donor pH was decreased. Naphthaleneacetamide penetration was not influenced by donor pH. The effect of pH on naphthaleneacetic acid penetration was reversible. Higher receiver (simulated leaf interior) pH favored penetration of naphthaleneacetic acid. Changes in the degree of dissociation, and hence polarity, as controlled by hydrogen ion concentration was the prime factor in the response of naphthaleneacetic acid to pH. At pH values lower than the pK (4.2 for naphthaleneacetic acid), the molecule was primarily undissociated, lipophilic, and penetrated into the cuticle; whereas, at pH values above the pK naphthaleneacetic acid was ionized, hydrophilic, and penetrated the cuticle with difficulty or not at all. Data presented are consistent with the hypothesis that naphthaleneacetic acid and naphthaleneacetamide penetration through the cuticle takes place by diffusion. PMID:16658011

  3. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash.

    PubMed

    Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan

    2006-06-01

    The effects of lactic and acetic acids on ethanol production by Saccharomyces cerevisiae in corn mash, as influenced by pH and dissolved solids concentration, were examined. The lactic and acetic acid concentrations utilized were 0, 0.5, 1.0, 2.0, 3.0 and 4.0% w/v, and 0, 0.1, 0.2, 0.4, 0.8 and 1.6% w/v, respectively. Corn mashes (20, 25 and 30% dry solids) were adjusted to the following pH levels after lactic or acetic acid addition: 4.0, 4.5, 5.0 or 5.5 prior to yeast inoculation. Lactic acid did not completely inhibit ethanol production by the yeast. However, lactic acid at 4% w/v decreased (P<0.05) final ethanol concentration in all mashes at all pH levels. In 30% solids mash set at pH < or =5, lactic acid at 3% w/v reduced (P<0.05) ethanol production. In contrast, inhibition by acetic acid increased as the concentration of solids in the mash increased and the pH of the medium declined. Ethanol production was completely inhibited in all mashes set at pH 4 in the presence of acetic acid at concentrations > or =0.8% w/v. In 30% solids mash set at pH 4, final ethanol levels decreased (P<0.01) with only 0.1% w/v acetic acid. These results suggest that the inhibitory effects of lactic acid and acetic acid on ethanol production in corn mash fermentation when set at a pH of 5.0-5.5 are not as great as that reported thus far using laboratory media.

  4. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  5. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    PubMed

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility.

  6. Kinetic investigation of recombinant human hyaluronidase PH20 on hyaluronic acid.

    PubMed

    Fang, Shiping; Hays Putnam, Anna-Maria A; LaBarre, Michael J

    2015-07-01

    The kinetic investigation of hyaluronidases using physiologically relevant hyaluronic acid (HA or hyaluronan) substrate will provide useful and important clues to their catalytic behavior and function in vivo. We present here a simple and sensitive method for kinetic measurement of recombinant human hyaluronidase PH20 (rHuPH20) on HA substrates with sizes ranging from 90 to 752 kDa. The method is based on 2-aminobenzamide labeling of hydrolyzed HA products combined with separation by size exclusion-ultra performance liquid chromatography coupled with fluorescence detection. rHuPH20 was found to follow Michaelis-Menten kinetics during the initial reaction time. Optimal reaction rates were observed in the pH range of 4.5-5.5. The HA substrate size did not have significant effects on the initial rate of the reaction. By studying HA substrates of 215, 357, and 752 kDa, the kinetic parameters Km, Vmax, and kcat were determined to be 0.87-0.91 mg/ml, 1.66-1.74 NM s(-1), and 40.5-42.4 s(-1), respectively. This method allows for direct measurement of kinetics using physiologically relevant HA substrates and can be applied to other hyaluronidase kinetic measurements.

  7. Copolymers sensitive to temperature and pH in water and in water+oil mixtures: A DSC, ITC and volumetric study.

    PubMed

    De Lisi, Rosario; Giammona, Gabriele; Lazzara, Giuseppe; Milioto, Stefana

    2011-02-15

    Block copolymer micelles are receiving an increasing interest because of the variety of structures and the possibilities to tune them by changing external and internal parameters achieving the desired properties for a specific purpose. We have investigated the acid/base behavior, self-assembling and solubilization ability towards polar oils of star-like copolymers named Tetronics. They are composed of branched four-arms each one consisting of two blocks made of EO and PO units linked to the diethylenediamine group, which confers pH response ability. The copolymers T1107 and T90R4 were studied with a sequential and reverse architecture. The thermodynamics of the acid/base equilibrium was studied by ITC. The aggregation of T1107 in water was analyzed as functions of pH, composition and temperature. The enhanced oil solubilization in the aqueous T1107 aggregates was widely investigated highlighting the role of the oil structure, composition, temperature and pH. As a general result, the oil induces the copolymer aggregation and the solubilization power of micelles is tunable by changing the pH. Efforts have been devoted to model the calorimetric data in order to achieve the thermodynamic properties of the involved process. Finally, we showed that the Tetronic micelles are more promising than the conventional surfactants micelles because of the larger solubilization power and flexibility of the macromolecular system.

  8. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling.

  9. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    PubMed

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.

  10. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  11. A novel "off-on" colorimetric and fluorescent rhodamine-based pH chemosensor for extreme acidity

    NASA Astrophysics Data System (ADS)

    Tan, Jia-Lian; Zhang, Mu-Xue; Zhang, Fang; Yang, Ting-Ting; Liu, Yu; Li, Zhu-Bo; Zuo, Hua

    2015-04-01

    A novel "off-on" colorimetric and fluorescent rhodamine analogue was synthesized and characterized, and used to monitor extreme acidity (below pH 3.5) via the photophysical response to pH. The colorless spirocyclic structure at high pH (pH ⩾ 7.0) opened to the colored and highly fluorescent form at very low pH (pH < 3.0). This sensitive pH probe was characterized with short response time, good reversibility and no interaction with interfering metal ions, and the quantitative relationship between the fluorescence intensity and pH value was consistent with the equilibrium equation pH = pKa - log[(Imax - I)/(I - Imin)]. The fluorescent response to strong acidity was further verified by fluorescent imaging of bacteria, Escherichia coli, which contributed to the development of more useful colorimetric and fluorescent sensors based on the rhodamine platform for measuring intracellular pH in extremely acidic conditions.

  12. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  13. Mycorrhizal response to experimental pH and P manipulation in acidic hardwood forests.

    PubMed

    Kluber, Laurel A; Carrino-Kyker, Sarah R; Coyle, Kaitlin P; DeForest, Jared L; Hewins, Charlotte R; Shaw, Alanna N; Smemo, Kurt A; Burke, David J

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  14. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    PubMed

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pHi) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pHi homeostasis. Unfortunately, accurate pHi quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pHi at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pHi in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pHi and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pHi regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies.

  15. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  16. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  17. Effect of pH and KCl concentration on the octanol-water distribution of methylanilines

    SciTech Connect

    Johnson, C.A.; Westall, J.C. )

    1990-12-01

    The distributions of aniline, 4-methylaniline, 3,4-dimethylaniline, and 2,4,5-trimethylaniline between octanol and water were determined as a function of pH and KCl concentration in the aqueous phase. The data were interpreted in terms of a multicomponent equilibrium model with anilinium in the water-saturated octanol as free ions and ion pairs. The implications of these results to the use of the octanol-water reference system for organic bases and to the sorbent-water distribution of organic bases in the environment is discussed.

  18. The Relative Acidities of Water and Methanol

    NASA Astrophysics Data System (ADS)

    Abrash, Henry I.

    2001-11-01

    The experimental evidence for the relative acidities of water and methanol is reviewed. Because of solvent effects, a comparison of either autoprotolysis constants or dissociation constants measured in different media does not provide a reliable indication of these relative values. The most suitable measure of the relative acidities of water and methanol is the equilibrium constant for the proton transfer between water and methoxide ion (H2O + CH3O- OHO- + CH3OH) in various water-methanol mixtures. Experimental measurements of this thermodynamic equilibrium constant, in particular the contributions of Unmack, show considerable uncertainty owing to the difficulties in estimating activity coefficients, but they strongly indicate that methanol is about twice as acidic as water. This result shows that substitution of a methyl group for a hydrogen atom does not always destabilize a negative charge on a nearby oxygen atom. The question of whether to present acidities, particularly those of solvents, in terms of dissociation constants based on concentrations rather than activities is considered. In view of the slight consideration given to the relative acidities of water and alcohols in current organic chemistry tests and the discontinuity for students caused by use of concentration-based constants in organic chemistry only, thermodynamic constants remain the most suitable way to present acidities.

  19. Effect of pH on complex formation between debranched waxy rice starch and fatty acids.

    PubMed

    Yotsawimonwat, Songwut; Sriroth, Klanarong; Kaewvichit, Sayam; Piyachomkwan, Kaukoon; Jane, Jay-Lin; Sirithunyalug, Jakkapan

    2008-08-15

    Complex formations between debranched waxy rice starch (DBS) and fatty acids (FA) of different hydrocarbon chain lengths (8:0, 10:0, 12:0, 14:0, 16:0, and 18:0) were studied in an aqueous solution by measuring the blue colour stained with iodine. The objective of this study was to understand the effects of the solubility and hydrophobicity of guest molecules (FA) on the complex formation with DBS. Lauric acid (12:0) displayed the greatest complex forming ability with DBS by showing the least blue colour developed with iodine. The effect of pH (3-7) on the DBS/FA complex formation was evaluated by measuring the iodine-scanning spectra of the mixture. Short-chain FA (8:0) displayed less complex formation at pH>or=5, above the pK(a) of fatty acid (approximately 4.8), which suggested that the charge formation of the short-chain FA caused a lower partitioning of the FA into the hydrophobic cavity of the DBS single helix. On the contrary, FA of 10:0-18:0 displayed an increased complex formation at pH>5, which could be attributed to increased solubility of these longer-chain FA at a dissociated and ionized form. The hydrocarbon chain length of the FA had an important impact on the extent of the complex formation. A FA that had a shorter hydrocarbon chain was more soluble in an aqueous solution and more readily formed a complex with DBS. At pH 6 and 7 (above the pK(a)), 10:0 formed less inclusion complexes with DBS than did 12:0. Iodine-scanning spectra showed that the absorbances of all iodine-stained DBS/FA solutions at higher wavelength were substantially lower than that of the iodine-stained DBS alone, suggesting that FA preferentially formed inclusion complexes with DBS of longer chains.

  20. Relation between blood pH and ionized calcium during acute metabolic alteration of the acid-base balance in vivo.

    PubMed

    Gaiter, A M; Bonfant, G; Manes, M; Belfanti, P; Alloatti, S

    1997-07-01

    We induced metabolic alkalosis and acidosis in 10 healthy volunteers in order to analyse in vivo relation between pH and ionized calcium (cCa2+). In the alkalinization test, 2.7 mol/kg NaHCO3 was injected. In the acidification test, volunteers took 4 mmol/kg NH4Cl. Blood pH and cCa2+ (mmol/l) mean values (SD) baseline, after alkalinization and acidification tests, were: 7.363 (0.018), 7.456 (0.031), 7.244 (0.031), 1.27 (0.03), 1.14 (0.03) and 1.38 (0.04). Mean slope of regression log cCa2+/pH was -0.39 (SD 0.11). Such a slope differs after in vivo or in vitro changes, due to the in vivo rapid restoration of equilibrium between the plasmatic and interstitial compartments following changes in water and electrolyte concentrations. The type of acid-base alteration-respiratory or metabolic-influences pH changes, and consequently the regression slope. The in vivo slope for log cCa2+/pH in normal subjects (-0.21) is much the same as in acute respiratory alterations (-0.17), whereas it differs in acute metabolic alterations (present study). Bicarbonates play different roles: the same changes in pH cause greater changes in cCa2+ after acute metabolic rather than respiratory alterations. Ca2+ homeostasis is maintained in acute respiratory acid-base imbalance, despite wide shifts in pH, whereas in acute metabolic alterations even small pH changes have striking repercussions on cCa2+. The experimental angular coefficient for in vivo acute metabolic acid-base alterations differs from the theoretical one calculated by Thode's differential equation (-0.25).

  1. Impact of pH and DIC on Lead Mineralology and Solubility in Drinking Water

    EPA Science Inventory

    In order to remain compliant with the U.S. EPA’s Lead and Copper rule, it is pivotal to understand the relationship between factors affecting lead release in drinking water distribution systems. Lead solids were synthesized in cell experiments using a pH range of 6-11 with both...

  2. Relationship Between Redox Potential, Disinfectant, and pH in Drinking Water

    EPA Science Inventory

    This work will examine the effects of pH and oxidant type (chlorine [Cl2], oxygen [O2], hydrogen peroxide [H2O2], monochloramine [MCA], and potassium permanganate [KMnO4]) and concentration (mg/L) on the redox potential of buffered test water. Also, the effects of incrementing ir...

  3. A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution - abstract

    EPA Science Inventory

    Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...

  4. A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution

    EPA Science Inventory

    Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...

  5. Analysis of a mixture of a known and an unknown weak acid by titration to a preset pH.

    PubMed

    Livaska, A

    1975-12-01

    The preset-pH titration method has been used to indicate the presence of a second acid when the titration curve (pH vs. volume of added titrant) seems to indicate only one acid. By use of the method even small amounts of propionic acid can be detected in an acetic acid solution despite the small value of Delta log K(H)(HA) = 0.18. Binary mixtures of acids may bs analysed when one acid is known, and log k(H)(HA) for the unknown acid may be found. Acetic acid, as the known acid, has been determined together with hydrochloric, mandelic, hydroxyacetic or boric acid or ammonium ion, with an error of about 1%. The method can be used in some cases for titration of ternary mixtures of one known and two unknown acids. Only the sum of the unknown acids can then be determined together with the known acid.

  6. Effects of pH and magnetic material on immunomagnetic separation of Cryptosporidium oocysts from concentrated water samples.

    PubMed

    Kuhn, Ryan C; Rock, Channah M; Oshima, Kevin H

    2002-04-01

    In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted.

  7. Effects of pH and acid concentration on erosive dissolution of enamel, dentine, and compressed hydroxyapatite.

    PubMed

    Shellis, R P; Barbour, M E; Jones, S B; Addy, M

    2010-10-01

    The aims of this study were to determine the effects of pH and acid concentration on the dissolution of enamel, dentine, and compressed hydroxyapatite (HA) in citric acid solutions (15.6 and 52.1 mmol l(-1) ; pH 2.45, 3.2, and 3.9), using a pH-stat system. After an initial adjustment period, the dissolution rates of enamel and HA were constant, while that of dentine decreased with time. The dissolution rate increased as the pH decreased, and this was most marked for enamel. To compare substrates, the rate of mineral dissolution was normalized to the area occupied by mineral at the specimen surface. For a given acid concentration, the normalized dissolution rate of HA was always less than that for either dentine or enamel. The dissolution rate for dentine mineral was similar to that for enamel at pH 2.45 and greater at pH 3.2 and pH 3.9. The concentration of acid significantly affected the enamel dissolution rate at pH 2.45 and pH 3.2, but not at pH 3.9, and did not significantly affect the dissolution rates of dentine or HA at any pH. The variation in response of the dissolution rate to acid concentration/buffer capacity with respect to pH and tissue type might complicate attempts to predict erosive potential from solution composition.

  8. Monitoring and assessment of surface water acidification following rewetting of oxidised acid sulfate soils.

    PubMed

    Mosley, Luke M; Zammit, Benjamin; Jolley, Ann-Marie; Barnett, Liz; Fitzpatrick, Rob

    2014-01-01

    Large-scale exposure of acid sulfate soils during a hydrological drought in the Lower Lakes of South Australia resulted in acidification of surface water in several locations. Our aim was to describe the techniques used to monitor, assess and manage these acidification events using a field and laboratory dataset (n = 1,208) of acidic to circum-neutral pH water samples. The median pH of the acidified (pH < 6.5) samples was 3.8. Significant (p < 0.05) increases in soluble metals (Al, Co, Mn, Ni and Zn above guidelines for ecosystem protection), SO4 (from pyrite oxidation), Si (from aluminosilicate dissolution) and Ca (from carbonate dissolution and limestone addition), were observed under the acidic conditions. The log of the soluble metal concentrations, acidity and SO4/Cl ratio increased linearly with pH. The pH, alkalinity and acidity measurements were used to inform aerial limestone dosing events to neutralise acidic water. Field measurements correlated strongly with laboratory measurements for pH, alkalinity and conductivity (r (2) ≥ 0.97) but only moderately with acidity (r (2) = 0.54), which could be due to difficulties in determining the indicator-based field titration endpoint. Laboratory measured acidity correlated well with calculated acidity (r (2) = 0.87, acidity present as Al(III) > H(+) ≈ Mn(II) > Fe(II/III)) but was about 20 % higher on average. Geochemical speciation calculations and XRD measurements indicated that solid phase minerals (schwertmannite and jarosite for Fe and jurbanite for Al) were likely controlling dissolved metal concentrations and influencing measured acidity between pH 2 and 5.

  9. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-01-08

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism.

  10. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  11. Effect of water pH on the toxicity of 2,4,5-trichlorophenol to four species of freshwater animals

    SciTech Connect

    Brooke, L.T.; Markee, T.; Vande Venter, F.; Spehar, R.; Erickson, R.

    1994-12-31

    2,4,5-Trichlorophenol (TCP) is a weak acid with a pH of approximately 7.2 which is expected to have a significant effect upon its toxicity. Lumbriculus variegatus, Oncorhynchus mykiss, Pimephales promelas, and Hyalella azteca were exposed to TCP in 96 h flow-through toxicity tests. For the first two species, simultaneous tests were conducted at three pH values (7.0, 7.8, 8.6). The other two species were tested at six pH values conducted in two sets of three simultaneous tests (6.2, 7.4, 8.6 and 6.8, 8.0, 9.2). All species tested showed decreased sensitivity to TCP with increased pH of the water. Over the pH range tested, LC50s for L. variegatus varied by about 5-fold, for P. promelas by 12-fold, for H. azteca by 10-fold, and for O. mykiss by 1.5-fold. The effects of pH on TCP toxicity to P. promelas was also tested in 30 day chronic tests at pH 7.0, 7.8 and 8.6. Survival in these tests was affected by pH similarly to the acute tests. Growth also was less severely affected at higher pH.

  12. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  13. Partition coefficients for acetic, propionic, and butyric acids in a crude oil/water system

    SciTech Connect

    Reinsel, M.A.; Borkowski, J.J.; Sears, J.T. . National Science Foundation Engineering Research Center for Biofilm Engineering)

    1994-07-01

    The effects of pH, temperature, and organic acid concentration on the partition coefficients for short-chain organic acids were measured in a crude oil/water system. Acetic, propionic, and butyric acids, as probable substrates for microbial souring of oil reservoirs, were used in conjunction with two types of crude oil. Temperatures of 35--75 C, pH values of 4.0--7.0, and acid concentrations of 10--1,000 mg/L were studied. Initial naturally occurring levels of organic acids in the crude oils were also determined. pH had by far the largest effect on the partition coefficient for all three organic acids for both types oil. At conditions normally seen in an oil reservoir (pH 5--7), the great percentage (85+%) of these acids were dissolved in the aqueous phase. The log of the partition coefficient K increased approximately linearly with the number of carbon atoms in the acid. It was seen that organic acids are readily available carbon sources for sulfate-reducing bacteria (SRB) at normal reservoir conditions, and that crude oil may provide a source of organic acids in a low-pH, water-flooded reservoir.

  14. Hydrothermal carbonization of sewage sludge: The effect of feed-water pH on fate and risk of heavy metals in hydrochars.

    PubMed

    Zhai, Yunbo; Liu, Xiangmin; Zhu, Yun; Peng, Chuan; Wang, Tengfei; Zhu, Luo; Li, Caiting; Zeng, Guangming

    2016-10-01

    In this study, the effect of feed-water pH (pH=2-12) on fate and risk of heavy metals (HMs) in hydrochars (HCs) was investigated. Hydrothermal carbonization (HTC) of sewage sludge (SS) was carried out with different feed-water pH at 270°C. The research results showed that changing feed-water pH had a positive effect on accumulating Pb, Ni, Cd and Zn in HCs. Chemical forms of Cu and Cr converted from an unstable state to stable in the alkaline environment while in the acidic condition was opposite. The effect of feed-water pH on the chemical forms of HMs was variable but not significant. Risk assessments of Igeo, Er(i), RAC and RI were applied to evaluate the accumulation levels of individual metal, the potential ecological risks, the bio-availabilities and the comprehensive toxicity and sensitivity of HMs, respectively. The lowest pollution level of HMs was obtained at 270°C with pH=11.

  15. Basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH

    SciTech Connect

    Krogstad, D.J.; Schlesinger, P.H.

    1987-03-01

    Biologically active concentrations of chloroquine increase the pH of the parasite's acid vesicles within 3-5 min. This increase in pH results from two mechanisms, one of which is markedly reduced in chloroquine-resistant parasites. Because chloroquine is a weak base, it increases vesicle pH by that mechanism in chloroquine-susceptible and resistant parasites and mammalian cells (based on its two pKs and on the delta pH between the acid vesicle and the extracellular environment). In chloroquine-susceptible parasites, but not resistant parasites or mammalian cells, chloroquine increases the pH of acid vesicles 700- to 800-fold more than can be accounted for by its properties as a weak base. The increase in acid vesicle pH caused by these non-weak base effects of nanomolar chloroquine in susceptible parasites suggests that chloroquine acts by interfering with acid vesicle functions in the parasite such as the endocytosis and proteolysis of hemoglobin, and the intracellular targeting of lysosomal enzymes. The non-weak base effects of nanomolar chloroquine on parasite vesicle pH are also responsible for its safety because these chloroquine concentrations do not affect mammalian cells.

  16. Continuous volatile fatty acid production from waste activated sludge hydrolyzed at pH 12.

    PubMed

    Yang, Xue; Wan, Chunli; Lee, Duu-Jong; Du, Maoan; Pan, Xiangliang; Wan, Fang

    2014-09-01

    This study adopted rapid alkaline treatment at pH 12 to hydrolyze 66% of total chemical oxygen demands. Then the hydrolyzed liquor was fermented in a continuous-flow stirred reactor to produce volatile fatty acids (VFAs) at 8-h hydraulic retention time and at 35 °C. The maximum VFA productivity reached 365 mg VFAs g(-1) volatile suspended solids in a 45-d operation, with most produced VFAs being acetate and propionate, principally produced by protein degradation. The Bacteroidia, ε-proteobacteria and the Clostridia were identified to be the classes correlating with the fermentation processes. The fermented liquor was applied to denitrifying phosphorus removal process as alternative carbon source after excess phosphorus and nitrogen being recycled via struvite precipitation. Fermented liquors from alkaline hydrolysis-acid fermentation on waste activated sludge are a potential renewable resource for applications that need organic carbons.

  17. A submersible autonomous sensor for spectrophotometric pH measurements of natural waters.

    PubMed

    Martz, Todd R; Carr, Jeffrey J; French, Craig R; DeGrandpre, Michael D

    2003-04-15

    An autonomous sensor for long-term in situ measurements of the pH of natural waters is described. The system is based upon spectrophotometric measurements of a mixture of sample and sulfonephthalein indicator. A simple plumbing design, using a small, low-power solenoid pump and valve, avoids the need for quantitative addition of indicator. A approximately 50-microL slug of indicator is pulled into the sample stream by the pump, and subsequent pumping and mixing results in a section of indicator and sample where absorbance measurements can be made. The design also permits direct determination of the indicator pH perturbation. Absorbances are recorded at three wavelengths (439, 579, and 735 nm) using a custom-built 1.7-cm path length fiber-optic flow cell. Solution blanks are obtained by periodically flushing the cell with sample. Field tests were performed in a local river over an 8-day period. The in situ accuracy, based on comparison with laboratory spectrophotometric pH measurements, was -0.003 pH unit (n = 16), similar to the measurement precision. No drift was observed during the 8-day period. The absorbance ratio used to calculate pH, in combination with a simple and robust optical design, imparts an inherent stability not achievable with conventional potentiometric methods, making the design feasible for long-term autonomous pH measurements.

  18. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  19. Acidic pH resistance of grafted chitosan on dental implant.

    PubMed

    Campos, Doris M; Toury, Bérengère; D'Almeida, Mélanie; Attik, Ghania N; Ferrand, Alice; Renoud, Pauline; Grosgogeat, Brigitte

    2015-05-01

    Over the last decade, access to dental care has increasingly become a service requested by the population, especially in the case of dental implants. However, the major cause of implant failure is an inflammatory disease: peri-implantitis. Currently, the adhesion strength of antibacterial coatings at implant surfaces remains a problem to solve. In order to propose a functionalized implant with a resistant antibacterial coating, a novel method of chitosan immobilization at implant surface has been investigated. Functionalization of the pre-active titanium (Ti) surface was performed using triethoxysilylpropyl succinic anhydride (TESPSA) as a coupling agent which forms a stable double peptide bond with chitosan. The chitosan presence and the chemical resistibility of the coating under acid pH solutions (pH 5 and pH 3) were confirmed by FTIR-ATR and XPS analyses. Furthermore, peel test results showed high adhesive resistance of the TESPSA/chitosan coating at the substrate. Cytocompatibility was evaluated by cell morphology with confocal imaging. Images showed healthy morphology of human gingival fibroblasts (HGF-1). Finally, the reported method for chitosan immobilization on Ti surface via peptide bindings allows for the improvement of its adhesive capacities and resistibility while maintaining its cytocompatibility. Surface functionalization using the TESPSA/chitosan coupling method is noncytotoxic and stable even in drastic environments as found in oral cavity, thus making it a valuable candidate for clinical implantology applications.

  20. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Seco, A; Ferrer, J; Serralta, J

    2012-11-01

    Respirometric techniques have been used to determine the effect of pH, free nitrous acid (FNA) and substrate concentration on the activity of the ammonium oxidizing bacteria (AOB) present in an activated sludge reactor. With this aim, bacterial activity has been measured at different pH values (ranging from 6.2 to 9.7), total ammonium nitrogen concentrations (ranging from 0.1 to 10 mg TAN L(-1)) and total nitrite concentrations (ranging from 3 to 43 mg NO(2)-NL(-1)). According to the results obtained, the most appropriate kinetic expression for the growth of AOB in activated sludge reactors has been established. Substrate half saturation constant and FNA and pH inhibition constants have been obtained by adjusting model predictions to experimental results. Different kinetic parameter values and different Monod terms should be used to model the growth of AOB in activated sludge processes and SHARON reactors due to the different AOB species that predominate in both systems.

  1. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids

    PubMed Central

    Danhof, Heather A.; Vylkova, Slavena; Vesely, Elisa M.; Ford, Amy E.; Gonzalez-Garay, Manuel

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, α-ketoglutarate (αKG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize αKG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded αKG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1Δ stp2Δ mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. PMID:27935835

  2. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  3. DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature.

    PubMed

    Liu, Boning; Reckhow, David A

    2013-10-15

    This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.

  4. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-05

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  5. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~ 4 and ~ 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH ~ 14 and brown at pH ~ 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH ~ 14 and Forms "A", "D", and "P" at pH ~ 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH ~ 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at ~ 1548 cm- 1 in NRS while in the SERS window this appears at ~ 1580 cm- 1. Similar observation was also made for CZA at pH ~ 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at ~ 447 cm- 1 in the SERS spectrum as well as other bands at ~ 850, ~ 1067 and ~ 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH ~ 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH ~ 14). The DFT

  6. Thermodynamics of the interaction of globular proteins with powdered stearic acid in acid pH.

    PubMed

    Mitra, Atanu; Chattoraj, D K; Chakraborty, P

    2006-06-01

    Adsorption isotherms of different globular proteins and gelatin on strearic acid particles have been studied as a function of biopolymer concentration, ionic strength of the medium, and temperature. The effect of neutral salts including CaCl2, Na3PO4, and urea on the adsorption isotherms has been also investigated. It is observed that the extent of adsorption (Gamma2(1)) increases in two steps with the increase of biopolymer concentration (C2) in the bulk. Gamma2(1) increases with an increase of C2 until a steady maximum value Gamma2(m) is reached at a critical concentration C2(m). After initial saturation, Gamma2(1) again increases from Gamma2(m) without reaching any limiting value due to the surface aggregation of the protein. The values of the standard free energy change for adsorption have been calculated on the basis of the Gibbs equation. The standard entropy and enthalpy changes are also calculated.

  7. PH adjustment of power plant cooling water with flue gas/fly ash

    DOEpatents

    Brady, Patrick V.; Krumhansl, James L.

    2015-09-22

    A system including a vessel including a heat source and a flue; a turbine; a condenser; a fluid conduit circuit disposed between the vessel, the turbine and the condenser; and a diverter coupled to the flue to direct a portion of an exhaust from the flue to contact with a cooling medium for the condenser water. A method including diverting a portion of exhaust from a flue of a vessel; modifying the pH of a cooling medium for a condenser with the portion of exhaust; and condensing heated fluid from the vessel with the pH modified cooling medium.

  8. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    PubMed

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications.

  9. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  10. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  11. Solubility of water in lunar basalt at low pH2O

    NASA Astrophysics Data System (ADS)

    Newcombe, M. E.; Brett, A.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2017-03-01

    We report the solubility of water in Apollo 15 basaltic "Yellow Glass" and an iron-free basaltic analog composition at 1 atm and 1350 °C. We equilibrated melts in a 1-atm furnace with flowing H2/CO2 gas mixtures that spanned ∼8 orders of magnitude in fO2 (from three orders of magnitude more reducing than the iron-wüstite buffer, IW-3.0, to IW+4.8) and ∼4 orders of magnitude in pH2/pH2O (from 0.003 to 24). Based on Fourier transform infrared spectroscopy (FTIR), our quenched experimental glasses contain 69-425 ppm total water (by weight). Our results demonstrate that under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is <∼4 ppm, even at oxygen fugacities as low as IW-2.3 and pH2/pH2O as high as 11; (5) Secondary ion mass spectrometry (SIMS) analyses of water in iron-rich glasses equilibrated under variable fO2 conditions may be strongly influenced by matrix effects, even when the concentration of water in the glasses is low; and (6) Our results can be used to constrain the entrapment pressure of lunar melt inclusions and the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads. We find that the most water-rich melt inclusion of Hauri et al. (2011) would be in equilibrium with a vapor with pH2O ∼ 3 bar and pH2 ∼ 8 bar. We constrain the partial pressures of water and molecular hydrogen in the carrier gas of the lunar pyroclastic glass beads to be 0.0005 bar and 0.0011 bar respectively. We calculate that batch degassing of lunar magmas containing initial volatile contents of 1200 ppm H2O (dissolved primarily as hydroxyl) and 4-64 ppm C would produce enough vapor to reach the critical vapor

  12. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH.

    PubMed

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ε-aminocaproic acid) and α-amino-n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies (∆G (o)) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G (o) values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G (o) values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  13. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ∆G o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  14. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  15. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  16. All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.

    PubMed

    Huang, Yandong; Chen, Wei; Wallace, Jason A; Shen, Jana

    2016-11-08

    Development of a pH stat to properly control solution pH in biomolecular simulations has been a long-standing goal in the community. Toward this goal recent years have witnessed the emergence of the so-called constant pH molecular dynamics methods. However, the accuracy and generality of these methods have been hampered by the use of implicit-solvent models or truncation-based electrostatic schemes. Here we report the implementation of the particle mesh Ewald (PME) scheme into the all-atom continuous constant pH molecular dynamics (CpHMD) method, enabling CpHMD to be performed with a standard MD engine at a fractional added computational cost. We demonstrate the performance using pH replica-exchange CpHMD simulations with titratable water for a stringent test set of proteins, HP36, BBL, HEWL, and SNase. With the sampling time of 10 ns per replica, most pKa's are converged, yielding the average absolute and root-mean-square deviations of 0.61 and 0.77, respectively, from experiment. Linear regression of the calculated vs experimental pKa shifts gives a correlation coefficient of 0.79, a slope of 1, and an intercept near 0. Analysis reveals inadequate sampling of structure relaxation accompanying a protonation-state switch as a major source of the remaining errors, which are reduced as simulation prolongs. These data suggest PME-based CpHMD can be used as a general tool for pH-controlled simulations of macromolecular systems in various environments, enabling atomic insights into pH-dependent phenomena involving not only soluble proteins but also transmembrane proteins, nucleic acids, surfactants, and polysaccharides.

  17. Early changes of the pH of the apoplast are different in leaves, stem and roots of Vicia faba L. under declining water availability.

    PubMed

    Karuppanapandian, T; Geilfus, C-M; Mühling, K-H; Novák, O; Gloser, V

    2017-02-01

    Changes in pH of the apoplast have recently been discussed as an important factor in adjusting transpiration and water relations under conditions of drought via modulatory effect on abscisic acid (ABA) concentration. Using Vicia faba L., we investigated whether changes in the root, shoot and leaf apoplastic pH correlated with (1) a drought-induced reduction in transpiration and with (2) changes in ABA concentration. Transpiration, leaf water potential and ABA in leaves were measured and correlated with root and shoot xylem pH, determined by a pH microelectrode, and pH of leaf apoplast quantified by microscopy-based in vivo ratiometric analysis. Results revealed that a reduction in transpiration rate in the early phase of soil drying could not be linked with changes in the apoplastic pH via effects on the stomata-regulating hormone ABA. Moreover, drought-induced increase in pH of xylem or leaf apoplast was not the remote effect of an acropetal transport of alkaline sap from root, because root xylem acidified during progressive soil drying, whereas the shoot apoplast alkalized. We reason that other, yet unknown signalling mechanism was responsible for reduction of transpiration rate in the early phase of soil drying.

  18. Differences in the Effect of Coal Pile Runoff (Low pH, High Metal Concentrations) Versus Natural Carolina Bay Water (Low pH, Low Metal Concentrations) on Plant Condition and Associated Bacterial Epiphytes of Salvinia minima.

    PubMed

    Lindell, A H; Tuckfield, R C; McArthur, J V

    2016-05-01

    Numerous wetlands and streams have been impacted by acid mine drainage (AMD) resulting in lowered pH and increased levels of toxic heavy metals. Remediation of these contaminated sites requires knowledge on the response of microbial communities (especially epiphytic) and aquatic plants to these altered environmental conditions. We examined the effect of coal pile runoff waters as an example of AMD in contrast to natural water from Carolina Bays with low pH and levels of metals on Salvinia minima, a non-native, metal accumulating plant and associated epiphytic bacteria. Treatments included water from two Carolina Bays, one AMD basin and Hoagland's Solution at two pH levels (natural and adjusted to 5.0-5.5). Using controlled replicated microcosms (N = 64) we determined that the combination of low pH and high metal concentrations has a significant negative impact (p < 0.05) on plant condition and epiphytes. Solution metal concentrations dropped indicating removal from solution by S. minima in all microcosms.

  19. Protoplasmic pH modifies water and solute transfer in beta vulgaris root vacuoles.

    PubMed

    Amodeo, G; Sutka, M; Dorr, R; Parisi, M

    2002-06-01

    Volume changes were studied in Beta vulgaris storage root vacuoles, using video microscopy, when exposed to hypotonic conditions. The osmotic gradient was either step-applied or progressively imposed in perfusion experiments. Preincubation at low pH (6.6) or with HgCl2 strongly reduced the vacuoles' water permeability, measured in step experiments. Furthermore, the volumetric response depended on the rate with which the aniso-osmotic condition was established. In perfusion experiments a "plateau value" (osmotic equilibrium or steady-state volume value) was observed, which was significantly lower than the theoretically expected one. Furthermore, if vacuoles were preincubated in presence of HgCl2 or at low pH and then the hypo-osmotic challenge was applied in perfusion experiments, a still lower "plateau value" was observed. This reduction was concentration-dependent and completely reversible. In these conditions, when HgCl2 concentration was 300 mM or medium pH was 6.6, the volume change was abolished. In other experiments, when urea iso-osmotically replaced mannitol, a reversible, pH-dependent volumetric response was observed. These results can be interpreted accepting that 1) mercury-sensitive water channels, present in the studied structure, were blocked by low pH during the hypo-osmotic challenge; 2) modification of water permeability prevents excessive swelling during the osmotic shock; 3) the effectiveness of this last mechanism depended on the osmotic challenge rate; and 4) additionally, urea reflection coefficients were also modified by reduced medium pH.

  20. Optical fiber pH sensors for high temperature water. Final report

    SciTech Connect

    McCrae, D.; Saaski, E.

    1994-11-01

    The goal of this program was the development of an optical pH measurement system capable of operating in a high-temperature aqueous environment. This project built upon a dual-wavelength fiber optic sensing system previously developed by Research International which utilizes light-emitting diodes as light sources and provides remote absorption spectroscopy via a single bidirectional optical fiber. Suitable materials for constructing an optical pH sensing element were identified during the program. These included a sapphire/Ti/Pt/Au thin-film reflector, quartz and sapphire waveguides, a poly(benzimidazole) matrix, and an azo chromophore indicator. By a suitable combination of these design elements, it appears possible to optically measure pH in aqueous systems up to a temperature of about 150{degrees}C. A pH sensing system capable of operating in high-purity, low-conductivity water was built using quasi-evanescent wave sensing techniques. The sensing element incorporated a novel, mixed cellulose/cellulose acetate waveguide to which an azo indicator was bound. Testing revealed that the system could reproducibly respond to pH changes arising from 1 ppm differences in the morpholine content of low-conductivity water without influencing the measurement. The sensing system was stable for 150 hrs at room temperature, and no loss or degradation of the pH-responsive optical indicator was seen in 160 hrs at 50{degrees}C. However, the prototype polymer waveguide lost transparency at 1.7% per day during this same 50{degrees}C test. Additional effort is warranted in the areas of water-compatible waveguides and evanescent-wave detection methods.

  1. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity.

  2. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  3. Binary nucleation in acid-water systems. II. Sulfuric acid-water and a comparison with methanesulfonic acid-water

    NASA Astrophysics Data System (ADS)

    Wyslouzil, B. E.; Seinfeld, J. H.; Flagan, R. C.; Okuyama, K.

    1991-05-01

    This work presents a systematic investigation of binary nucleation rates for sulfuric acid and water and the effect of temperature on these rates at isothermal, subsaturated conditions. The results from nucleation rate measurements for the sulfuric acid (H2SO4) -water system are discussed and compared to those previously presented for methanesulfonic acid (MSA)-water [B. E. Wyslouzil, J. H. Seinfeld, R. C. Flagan, and K. Okuyama, J. Chem. Phys. (submitted)]. Experiments were conducted at relative humidities (Rh) ranging from 0.006acidities (Ra) in the range of 0.04water experiments, but particle size distribution measurements confirm that most of the particles formed are being observed. The ratio of experimental to theoretical nucleation rates, Jexpt/Jtheor, was found to be a strong function of the predicted number of acid molecules in the critical nucleus for both the H2SO4 -water and MSA-water systems.

  4. The effect of linoleic acid on pH inside sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles in isooctane and on the enzymic activity of soybean lipoxygenase.

    PubMed

    Rodakiewicz-Nowak, J; Maślakiewicz, P; Haber, J

    1996-06-01

    The effective pH of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles (pHrm), containing buffers of different pH (pHst) and various amounts of linoleic acid, was studied within the range of compositions used to study the activity of soybean lipoxygenase in reverse micelles. Significant shifts of pHrm versus pHst were observed for the solutions of relatively higher pHst, dependent on linoleic acid and buffer concentrations. The effect diminished as pHst became closer to 7. When low-ionic-strength buffers were added to AOT solutions in isooctane, a significant buffering effect of linoleic acid in reverse micelles was observed. Solubilization of > 3 mM linoleic acid in micellar solutions containing 25 mM buffers gave the observed pHrm values almost independent of pHst. This effect diminished with the ionic strength of the buffering solution, but did not vanish even at 200 mM buffer. The observed effects result from the balance between ionization of linoleic acid and its partition between the water pool and the micellar interface. The enzymic activity of soybean lipoxygenase in the AOT reverse micellar solutions of the determined pHrm values was also studied. A significant reduction of the kinetics of the enzymic activity was observed, for all studied reverse micellar solutions. Changes of pHrm, caused by the presence of acidic substrate (linoleic acid) do not explain the observed reduction of activity directly through the effect on the enzyme. Due to unfavourable partition of the substrate between the microphases present in the systems, enhanced by reduction of pH at higher total concentrations of linoleic acid, the saturation of the enzyme with the substrate was not observed in the system and is difficult to attain experimentally in reverse micelles. A shift of the lipoxygenase activity/pHrm profile but negligible shift of the activity/pHst profile, with respect to aqueous buffer solutions, were observed. This indicates that either the information given

  5. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  6. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    contrast LVHP vs. LVLP). The k Val/Cr was faster under low pH, but decreasing digesta volume under high pH did not elicit such a response. The correlation between the absorptive surface area per square centimeter of rumen wall and the mean of the 3 k Val/Cr values of each cow was 0.90 (P < 0.01). Cows capable of maintaining a less-acidic rumen environment had greater inflow of water into the digestive cavity, had a more developed rumen mucosa, and were more efficient VFA absorbers.

  7. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  8. Acid generation upon thermal concentration of natural water: The critical water content and the effects of ionic composition

    NASA Astrophysics Data System (ADS)

    Pulvirenti, April L.; Needham, Karen M.; Adel-Hadadi, Mohamad A.; Marks, Charles R.; Gorman, Jeffrey A.; Shettel, Donald L.; Barkatt, Aaron

    2009-10-01

    Thermal evaporation of a variety of simulated pore waters from the region of Yucca Mountain, Nevada, produced acidic liquids and gases during the final stages of evaporation. Several simulated pore waters were prepared and then thermally distilled in order to collect and analyze fractions of the evolved vapor. In some cases, distillates collected towards the end of the distillation were highly acidic; in other cases the pH of the distillate remained comparatively unchanged during the course of the distillation. The results suggest that the pH values of the later fractions are determined by the initial composition of the water. Acid production stems from the hydrolysis of magnesium ions, especially at near dryness. Near the end of the distillation, magnesium nitrate and magnesium chloride begin to lose water of hydration, greatly accelerating their thermal decomposition to form acid. Acid formation is promoted further when precipitated calcium carbonate is removed. Specifically, calcium chloride-rich pore waters containing moderate (10-20 ppm) levels of magnesium and nitrate and low levels of bicarbonate produced mixtures of nitric and hydrochloric acid, resulting in a precipitous drop in pH to values of 1 or lower after about 95% of the original volume was distilled. Waters with either low or moderate magnesium content coupled with high levels of bicarbonate produced slightly basic fractions (pH 7-9). If calcium was present in excess of bicarbonate, waters containing moderate levels of magnesium produced acid even in the presence of bicarbonate, due to the precipitation of calcium carbonate. Other salts such as halite and anhydrite promote the segregation of acidic vapors from residual basic solids. The concomitant release of wet acid gas has implications for the integrity of the alloys under consideration for containers at the Yucca Mountain nuclear waste repository. Condensed acid gases at very low pH, especially mixtures of nitric and hydrochloric acid, are

  9. Measurement of luminal pH of acidic stores as a readout for NAADP action.

    PubMed

    Galione, Antony; Chuang, Kai-Ting; Funnell, Tim M; Davis, Lianne C; Morgan, Anthony J; Ruas, Margarida; Parrington, John; Churchill, Grant C

    2014-10-01

    In addition to mobilizing Ca²⁺, NAADP plays a role in modulating the luminal pH (pHL) of acidic stores of the endolysosomal system. The effects of NAADP on pHL have been most extensively studied in the sea urchin egg, both in the intact egg and in egg homogenates. Related observations have also been made in mammalian systems (e.g., guinea pig atrial myocytes and pancreatic acinar cells). Although the connection between Ca²⁺ mobilization and increase in pHL is not understood, pHL can be a useful parameter to measure when studying NAADP-mediated signaling. This protocol describes the fluorescent measurement of pHL of acidic stores. It relies on the use of acridine orange (AO), a standard dye for pHL. AO selectively accumulates to high concentrations in the lumen of organelles as a function of acidity; at these high concentrations it self-quenches. When pHL increases, some AO is lost from the vesicle. As a result, the lower luminal AO concentration relieves the quenching and fluorescence increases in the lumen.

  10. Predicted pH at the domestic and public supply drinking water depths, Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.

    2017-03-08

    This scientific investigations map is a product of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project modeling and mapping team. The prediction grids depicted in this map are of continuous pH and are intended to provide an understanding of groundwater-quality conditions at the domestic and public supply drinking water zones in the groundwater of the Central Valley of California. The chemical quality of groundwater and the fate of many contaminants is often influenced by pH in all aquifers. These grids are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to pH. In this work, the median well depth categorized as domestic supply was 30 meters below land surface, and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically boosted regression trees (BRT) with a Gaussian error distribution within a statistical learning framework within the computing framework of R (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1,337 wells and was compiled from two sources: USGS National Water Information System (NWIS) database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993–2014 was used. A total of 1,003 wells (training dataset) were used to train the BRT

  11. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  12. A photo Lewis acid generator (PhLAG): controlled photorelease of B(C6F5)3.

    PubMed

    Khalimon, Andrey Y; Piers, Warren E; Blackwell, James M; Michalak, David J; Parvez, Masood

    2012-06-13

    A molecule that releases the strong organometallic Lewis acid B(C(6)F(5))(3) upon irradiation with 254 nm light has been developed. This photo Lewis acid generator (PhLAG) now enables the photocontrolled initiation of several reactions catalyzed by this important Lewis acid. Herein is described the synthesis of the triphenylsulfonium salt of a carbamato borate based on a carbazole function, its establishment as a PhLAG, and the application of the photorelease of B(C(6)F(5))(3) to the fabrication of thin films of a polysiloxane material.

  13. Advances in the hydrogeochemistry and microbiology of acid mine waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2000-01-01

    The last decade has witnessed a plethora of research related to the hydrogeochemistry and microbiology of acid mine waters and associated tailings and waste-rock waters. Numerous books, reviews, technical papers, and proceedings have been published that examine the complex bio-geochemical process of sulfide mineral oxidation, develop and apply geochemical models to site characterization, and characterize the microbial ecology of these environments. This review summarizes many of these recent works, and provides references for those investigating this field. Comparisons of measured versus calculated Eh and measured versus calculated pH for water samples from several field sites demonstrate the reliability of some current geochemical models for aqueous speciation and mass balances. Geochemical models are not, however, used to predict accurately time-dependent processes but to improve our understanding of these systems and to constrain possible processes that contribute to actual or potential water quality issues. Microbiological studies are demonstrating that there is much we have yet to learn about the types of different microorganisms and their function and ecology in mine-waste environments. A broad diversity of green algae, bacteria, archaea, yeasts, and fungi are encountered in acid mine waters, and a better understanding of their ecology and function may potentially enhance remediation possibilities as well as our understanding of the evolution of life.

  14. Ethanolamine properties and use for feedwater pH control: A pressurized water reactor case study

    SciTech Connect

    Keeling, D.L.; Polidoroff, C.T.; Cortese, S.; Cushner, M.C.

    1995-12-31

    Ethanolamine (ETA) as a feedwater pH control additive has been recently used to minimize corrosion of secondary water components in the nuclear power industry pressurized water reactors (PWRs). The use of ETA is compared with ammonia. Relative volatility effects on various parts of the system are analyzed and chemistry changes are presented. Materials of construction and the use of existing plant equipment for ETA service are discussed. Properties of ETA as well as safety, storage and handling issues are compared with ammonia. Health d aquatic toxicity are reviewed. warnings, safety, handling guidelines, biodegradability an Diablo Canyon Power Plant used ammonia for pH control from 1985 until a change over to ETA in 1993/1994. Full flow condensate polishers that are required to protect the plant from saltwater cooling incursions limit the amount of pH additive. Iron levels in the secondary water systems are compared before and after changing to ETA and replacement of corrosion-susceptible piping. Iron reduction benefits are assessed along with other effects on the feedwater nozzles, low pressure turbine, polisher resin capacity and polisher regeneration system.

  15. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation.

    PubMed

    Jankowska, Ewelina; Chwiałkowska, Joanna; Stodolny, Mikołaj; Oleskowicz-Popiel, Piotr

    2015-08-01

    Mixed culture fermentation consists of stable microbial population hence waste could be potentially used as a substrates. The aim of the work was to investigate the impact of pH and retention time on the anaerobic mixed culture fermentation. Trials at different pH (4-12) in unbuffered systems were conducted for 5, 10 and 15days. The highest VFAs concentration was achieved after 15days at pH 10 (0.62g/gVSadded), promising results were also achieved for pH 11 (0.54g/gVSadded). For pH 4 and short retention time propionic acid was the major product instead of acetic acid. For batches run at 15days (besides pH 6) caproic acid presence was noticed whereas at pH 11 occurrence of succinic was quantified. Significant correlation between operational factors and fermentation's effluents was proved. Throughout changing simple operating parameters one could design process to produce desirable concentration and composition of VFAs.

  16. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    PubMed

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb(3+) ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H(+) is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb(3+). The long luminescence lifetime of Tb(3+) allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H(+) in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands.

  17. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    NASA Astrophysics Data System (ADS)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  18. Sulfidogenic fluidized bed treatment of real acid mine drainage water.

    PubMed

    Sahinkaya, Erkan; Gunes, Fatih M; Ucar, Deniz; Kaksonen, Anna H

    2011-01-01

    The treatment of real acid mine drainage water (pH 2.7-4.3) containing sulfate (1.5-3.34 g/L) and various metals was studied in an ethanol-fed sulfate-reducing fluidized bed reactor at 35°C. The robustness of the process was tested by increasing stepwise sulfate, ethanol and metal loading rates and decreasing feed pH and hydraulic retention time. Highest sulfate reduction rate (4.6g/L day) was obtained with feed sulfate concentration of 2.5 g/L, COD/sulfate ratio of 0.85 and HRT of 12 h. The corresponding sulfate and COD removal efficiencies were about 90% and 80%, respectively. The alkalinity produced in sulfidogenic ethanol oxidation neutralized the acidic mine water. Highest metal precipitation efficiencies were observed at HRT of 24 h, the percent metal removal being over 99.9% for Al (initial concentration 55 mg/L), Co (9.0 mg/L), Cu (49 mg/L), Fe (435 mg/L), Ni (3.8 mg/L), Pb (7.5 mg/L) and Zn (6.6 mg/L), and 94% for Mn (7.21 mg/L).

  19. Lability of drinking water treatment residuals (WTR) immobilized phosphorus: aging and pH effects.

    PubMed

    Agyin-Birikorang, Sampson; O'Connor, George A

    2007-01-01

    Time constraints associated with conducting long-term (>20 yr) field experiments to test the stability of drinking water treatment residuals (WTR) sorbed phosphorus (P) inhibit improved understanding of the fate of sorbed P in soils when important soil properties (e.g., pH) change. We used artificially aged samples to evaluate aging and pH effects on lability of WTR-immobilized P. Artificial aging was achieved through incubation at elevated temperatures (46 or 70 degrees C) for 4.5 yr, and through repeated wetting and drying for 2 yr. Using a modified isotopic ((32)P) dilution technique, coupled with a stepwise acidification procedure, we monitored changes in labile P concentrations over time. This technique enabled evaluation of the effect of pH on the lability of WTR-immobilized P. Within the pH range of 4 to 7, WTR amendment, coupled with artificial aging, ultimately reduced labile P concentrations by > or = 75% relative to the control (no-WTR) samples. Soil samples with different physicochemical properties from two 7.5-yr-old, one-time WTR-amended field sites were utilized to validate the trends observed with the artificially aged samples. Despite the differences in physicochemical properties among the three (two field-aged and one artificially aged) soil samples, similar trends of aging and pH effects on lability of WTR-immobilized P were observed. Labile P concentrations of the WTR-amended field-aged samples of the two sites decreased 6 mo after WTR amendment and the reduction persisted for 7.5 yr, ultimately resulting in > or = 70% reduction, compared to the control plots. We conclude that WTR application is capable of reducing labile P concentration in P-impacted soils, doing so for a long time, and that within the commonly encountered range of pH values for agricultural soils WTR-immobilized P should be stable.

  20. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  1. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    PubMed

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries.

  2. DC diaphragm discharge in water solutions of selected organic acids

    NASA Astrophysics Data System (ADS)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  3. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  4. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.

    PubMed

    McDonald, Michael B; Bruce, Jared P; McEleney, Kevin; Freund, Michael S

    2015-08-24

    The integration of light absorbers and catalysts for the water splitting process requires a membrane capable of both ion and electron management and product separation to realize efficient solar fuels systems. Bipolar membranes can maintain a pH gradient for optimal reaction conditions by the dissociation of water. Such membranes that contain graphene in the interfacial layer are fabricated by the chemical reduction of a uniformly deposited graphene oxide layer to convert sp(3) catalyst regions to sp(2) conductive regions. The resulting electrical and water dissociation properties are optimized by adjusting the exposure conditions, and treatments of less than 5 min render an interface that exceeds the conductivity requirements for integrated solar water splitting and increases the overpotential by <0.3 V. Integration with photoelectrodes is examined by characterizing the electrical interface formed between graphene and Si microwires, and we found that efficient Ohmic junctions are possible.

  5. Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration.

    PubMed

    Dambies, Laurent; Jaworska, Agnieszka; Zakrzewska-Trznadel, Grazyna; Sartowska, Bozena

    2010-06-15

    In this study, three sulfonated water-soluble polymers based on poly(vinyl alcohol) of different molecular weights (10,000, 50,000 and 100,000 Da) were prepared and tested against commercially available poly(acrylic acid) for the removal of cobalt using polymer assisted ultrafiltration. High rejection rates were obtained between pH 3 and 6 with sulfonated poly(vinyl alcohol) (PVA 10,000 and 50,000 Da) whereas poly(acrylic acid) (PAA) of similar molecular weights performed rather poorly in this pH range. Sulfonation improved significantly sorption capability of PVA. Sulfonated PVA 10,000 was the best complexing agent with rejection rate above 95% between pH 3 and 6. For unmodified PVA the rejection rate was only 30-45% at pH 6 and there was no rejection at pH 3 at all. PAA rejection rate was above 90% at pH 6 and only about 10% at pH 3. Large scale experiment in cross-flow, continuous apparatus conducted by using PVA-SO(3)H 10,000 Da to remove (60)Co radioisotope from water solutions showed excellent results demonstrating the potential of this polymer to purify acidic radioactive wastes containing cobalt radioisotopes.

  6. The pH Game.

    ERIC Educational Resources Information Center

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  7. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  8. Manipulation of the apoplastic pH of intact plants mimics stomatal and growth responses to water availability and microclimatic variation.

    PubMed

    Wilkinson, Sally; Davies, William J

    2008-01-01

    The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.

  9. Nitrification in a Biofilm at Low pH Values: Role of In Situ Microenvironments and Acid Tolerance

    PubMed Central

    Gieseke, Armin; Tarre, Sheldon; Green, Michal; de Beer, Dirk

    2006-01-01

    The sensitivity of nitrifying bacteria to acidic conditions is a well-known phenomenon and generally attributed to the lack and/or toxicity of substrates (NH3 and HNO2) with decreasing pHs. In contrast, we observed strong nitrification at a pH around 4 in biofilms grown on chalk particles and investigated the following hypotheses: the presence of less acidic microenvironments and/or the existence of acid-tolerant nitrifiers. Microelectrode measurements (in situ and under various experimental conditions) showed no evidence of a neutral microenvironment, either within the highly active biofilm colonizing the chalk surface or within a control biofilm grown on a nonbuffering (i.e., sintered glass) surface under acidic pH. A 16S rRNA approach (clone libraries and fluorescence in situ hybridizations) did not reveal uncommon nitrifying (potentially acid-tolerant) strains. Instead, we found a strongly acidic microenvironment, evidence for a clear adaptation to the low pH in situ, and the presence of nitrifying populations related to subgroups with low Kms for ammonia (Nitrosopira spp., Nitrosomonas oligotropha, and Nitrospira spp.). Acid-consuming (chalk dissolution) and acid-producing (ammonia oxidation) processes are equilibrated on a low-pH steady state that is controlled by mass transfer limitation through the biofilm. Strong affinity to ammonia and possibly the expression of additional functions, e.g., ammonium transporters, are adaptations that allow nitrifiers to cope with acidic conditions in biofilms and other habitats. PMID:16751543

  10. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    PubMed

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  11. Acid precipitation: Effects on fresh water ecosystems. (Latest citations from the Life Sciences Collection database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the effects of acidification on fresh water ecosystems. Algae and diatom distribution, survival and reproduction rates of specific fish species under acid lake conditions, and tolerance to stress caused by acidic conditions in fresh water ecosystems are studied. Effects of water pH on trace metal toxicity to fresh water organisms are briefly considered. Control and reduction of acidification are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  12. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  13. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  14. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  15. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  16. Water and UV degradable lactic acid polymers

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.

    1990-06-26

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylane glycols (PVB 6/22/90), propylene and and polypropylene (PVB 6/22/90) glycols, P-dioxanone, 1, 5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  17. Relative acute effects of low pH and high iron on the hatching and survival of the water mite (Arrenurus manubriator) and the aquatic insect (Chironomus riparius)

    SciTech Connect

    Rousch, J.M.; Simmons, T.W.; Kerans, B.L.; Smith, B.P.

    1997-10-01

    The authors investigated the relative effects of low pH and high iron on a water mite, Arrenurus manubriator and an aquatic insect, Chironomus riparius. Eggs and active stages were exposed in static renewal toxicity tests to pH 6, 5, 4, 3, and 2, made by adding sulfuric acid to reconstituted soft water, or to iron levels of 200, 400, 600, 800, and 1,000 mg/L, made by adding ferrous sulfate to soft water at pH 4. Experiments were conducted at 22 C with a 16:8-h photoperiod, and treatments were replicated three times with at least nine individuals per treatment. Data were analyzed with a logistic response function and one-way ANOVA for pH and iron tests, respectively. Egg hatching was reduced at pH 2 for midges and at pH 3 for mites. Iron had no effect on hatching for either species. Survival of midge larvae was partially reduced at pH 4, and survival of mite deutonymphs, larvae, female and male adults was reduced at pH 3. Survival of midge larvae, and mite deutonymphs and male adults was reduced at 400, 200, and 1,000 mg Fe/L, respectively. Mite female adults and larvae were unaffected by iron. Higher metabolic requirements of unfed immature stages, the gelatinous covering of mite and insect eggs, the longer incubation period of mite eggs, and the greater osmoregulatory potential of adult mites may have contributed to the differences observed.

  18. Coal ash basin effects (particulates, metals, acidic pH) upon aquatic biota: an eight-year evaluation. [Gambusia affinis; Plathemis lydia; Libellula spp

    SciTech Connect

    Cerry, D.S.; Guthrie, R.K.; Davis, E.M.; Harvey, R.S.

    1984-08-01

    Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swanmp drainage system over an eight-year period. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions, and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic pH excursions after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long-chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the US Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquito-fish populations recovered within one year afterward.

  19. Chemical and photophysical mechanism of fluorescence enhancement of 3-quinolineboronic acid upon change of pH and binding with carbohydrates.

    PubMed

    Shen, Qian Jin; Jin, Wei Jun

    2011-01-01

    The free 3-quinolineboronic acid (3-QBA) with the lowest (n-π*) excited singlet is non- or weakly fluorescent while protonated 3-QBA has the lowest (π-π*) excited singlet state and is highly fluorescent. The hybridization of boronic atom or charge transfer from aromatic ring to boronic acid group plays a secondary role in affecting fluorescence intensity. Binding with carbohydrate at a proper acidity, the hybridization of boron atom changes from sp(2) to sp(3) and the nitrogen atom in the quinoline ring is partially protonated, resulting in large enhancement of fluorescence. Meanwhile, the fluorescent lifetime of 3-QBA produces obvious change by binding with carbohydrates. Quinoline boronic acid is an important water-soluble fluorescence sensor for carbohydrate recognition. Both the remarkable changes in intensity and lifetime of 3-QBA can act as working parameters in recognition of carbohydrates at physiological pH.

  20. Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent.

    PubMed

    Chang, Chen-Yu; Hsieh, Yung-Hsu; Cheng, Kai-Yuan; Hsieh, Ling-Ling; Cheng, Ta-Chih; Yao, Kuo-Shan

    2008-01-01

    This study estimates the yield of hydroxyl radical using salicylic acid as the trapping reagent and investigates the relationship between hydroxyl radical and pH value. The formation and variation of hydroxyl radical under different pH values were evaluated using reaction products, 2,3-DHBA, 2,5-DHBA, and catechol. The formation rate of hydroxyl radical was dependent on the ratio of ferrous ion to hydrogen peroxide and pH values. The difference between various pH values was explored. The kinetics and mechanisms of hydroxyl radical reactions were established in the Fenton process. Experimental results showed that the best reaction conditions were 8.5 mM H(2)O(2), 1.25 mM Fe(2 + ), Fe(2 + )/H(2)O(2) = 0.147 at pH 3 and the formation rate constant of hydroxyl radical was 1.12 x 10(11) M(-1) s(-1).

  1. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.

    PubMed

    Takácsi-Nagy, Anna; Kilár, Ferenc; Thormann, Wolfgang

    2017-03-01

    This paper comprises a continuation of computer simulation studies dealing with carrier ampholyte based CIEF in presence of narrow pH gradients. With this technique, amphoteric sample components with pI values outside the pH gradient are migrating isotachophoretically toward the cathode or anode whereas components with pI values within the gradient become focused. In order to understand the processes occurring in presence of the electric field, the behavior of both carrier ampholytes and amphoteric sample components is investigated by computer modeling. Characteristics of two pH unit gradients with end components having pI values at or around 7.00 and conditions that lead to the formation of a water zone at neutrality were investigated. Data obtained reveal that a zone of water is formed in focusing with carrier ampholytes when the applied pH range does not cover the neutral region, ends at pH 7.00 or begins at pH 7.00. The presence of additional amphoteric components that cover the neutrality region prevent water zone formation under current flow. This situation is met in experiments with narrow pH gradients that end or begin around neutrality. Simulation data reveal that no water zone evolves when atmospheric carbon dioxide dissolved in the catholyte causes the migration of carbonic acid (in the form of carbonate and/or hydrogen carbonate ions) from the catholyte through the focusing structure. An electrolyte change in the electrode solution does not have an impact on the focusing part but does change the isotachophoretic pattern migrating behind the leading ion.

  2. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor.

  3. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  4. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  5. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  6. Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation.

    PubMed

    Gong, Houjian; Xu, Guiying; Liu, Teng; Xu, Long; Zhai, Xueru; Zhang, Jian; Lv, Xin

    2012-09-25

    The block polyethers PEO-PPO-ph-PPO-PEO (BPE) and PPO-PEO-ph-PEO-PPO (BEP) are synthesized by anionic polymerization using bisphenol A as initiator. Compared with Pluronic P123, the aggregation behaviors of BPE and BEP at an air/water interface are investigated by the surface tension and dilational viscoelasticity. The molecular construction can influence the efficiency and effectiveness of block polyethers in decreasing surface tension. BPE has the most efficient ability to decrease surface tension of water among the three block polyethers. The maximum surface excess concentration (Γ(max)) of BPE is larger than that of BEP or P123. Moreover, the dilational modulus of BPE is almost the same as that of P123, but much larger than that of BEP. The molecular dynamics simulation provides the conformational variations of block polyethers at the air/water interface.

  7. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    PubMed

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  8. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater.

  9. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence

    PubMed Central

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-01-01

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128C Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence. DOI: http://dx.doi.org/10.7554/eLife.06792.001 PMID:26002083

  10. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    PubMed

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water.

  11. The effects of four acidifying sprays, vinegar, and water on canine cutaneous pH levels.

    PubMed

    Matousek, Jennifer L; Campbell, Karen L; Kakoma, Ibulaimu; Schaeffer, David J

    2003-01-01

    This study determined the extent and duration of cutaneous acidification caused by a single application of four acidifying sprays, vinegar, and water. Multivariate repeated measures analysis of variance revealed a significant difference between the six sprays (F = 15.3; P < or = 0.001). Linear contrast tests showed that the effects of the acidifying sprays were significantly different from vinegar and water (F = 6.0; P < or = 0.001), and vinegar was significantly different from water (F = 13.8; P < or = 0.001). The acidifying sprays decreased cutaneous pH to < 6.0 for a mean range of 50 to 65 hours, while vinegar did so for a mean of 12 hours.

  12. Surface behavior of malonic acid adsorption at the air/water interface.

    PubMed

    Blower, Patrick G; Shamay, Eric; Kringle, Loni; Ota, Stephanie T; Richmond, Geraldine L

    2013-03-28

    The presence of organic materials adsorbed to the surfaces of aerosol particles has been demonstrated to be a determining factor in relevant atmospheric processes. Malonic acid is a small, water-soluble organic acid that is common in aerosols and is surface-active. A comprehensive investigation of the adsorption of malonic acid to the air/water interface was accomplished using vibrational sum frequency spectroscopy (VSFS) and surface tension measurements as functions of concentration and pH. Malonic acid was found to be weakly solvated at the air/water interface, and its orientation as a function of concentration was explored through different VSFS polarization schemes. pH-dependent experiments revealed that the surface-active species is the fully protonated species. Computational analyses were used to obtain depth-specific geometries of malonic acid at the air/water interface that confirm and enrich the experimental results.

  13. In situ Measurement of Pore-Water pH in Anoxic Sediments Using Laser Raman Spectrometry

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Luna, M.; Walz, P. M.; Zhang, X.; Brewer, P. G.

    2010-12-01

    Accurate measurement of the geochemical properties of sediment pore waters is of fundamental importance in ocean geochemistry and microbiology. Recent work has shown that the properties of pore waters can be measured rapidly in situ with a novel Raman based insertion probe (Zhang et al., 2010), and that data obtained from anoxic sediments on in situ dissolved methane concentrations are very different (~30x) than from recovered cores due the large scale degassing that occurs during core recovery (Zhang et al., submitted). Degassing of methane must carry with it via Henry’s Law partioning significant quantities of H2S, which is clearly detectable by smell during sample processing, and thus in situ measurement of H2S is also highly desirable. In practice, dissolved H2S is partitioned between the HS- and H2S species as a function of pH with pKa ~7 for the acid dissociation reaction. Since both species are Raman active full determination of the sulfide system is possible if the relative Raman cross sections are known. The diagenetic equations for these reactions are commonly summarized as: 2CH2O + SO4= ↔ 2HCO3- + H2S CH4 + SO4= ↔ HCO3- + HS- + H2O Three of the major components of these equations, CH4, SO4=, and H2S/HS-, are all observable directly by Raman spectroscopy; but the detection of HCO3- presents a challenge due to its low Raman cross section and thus poor sensitivity. We show that pore water pH, which is a good estimator of HCO3- if total CO2 or alkalinity are known, can be measured by observing the H2S / HS- ratio via the equation: pH = pKa + log([HS-]/[H2S]) thereby fully constraining these equations within a single measurement protocol. The Raman peak for HS- is at 2573 cm-1 and for H2S is at 2592 cm-1; thus the peaks are well separated and may easily be deconvoluted from the observed spectrum. We have determined the relative Raman cross sections by a series of laboratory measurements over a range of pH and by using the definition that when pH = p

  14. Vitamin C (ascorbic acid) induced hydroxyl radical formation in copper contaminated household drinking water: role of bicarbonate concentration.

    PubMed

    Jansson, Patric J; Asplund, Klara U M; Mäkelä, Johanna C; Lindqvist, Christer; Nordström, Tommy

    2003-08-01

    We have previously shown that Vitamin C (ascorbic acid) can trigger hydroxyl radical formation in copper contaminated household drinking water. We report here that the capacity of ascorbic acid to catalyze hydroxyl radical generation in the drinking water samples is strongly dependent on the bicarbonate concentration (buffer capacity and pH) of the samples. We found that at least 50 mg/l bicarbonate was required in the water samples to maintain the pH over 5.0 after ascorbic acid addition. At this pH, that is higher than the pKa1 4.25 of ascorbic acid, a hydroxyl radical generating redox cycling reaction involving the mono-anion of vitamin C and copper could take place. The ascorbic acid induced hydroxyl radical generating reaction could easily be mimicked in Milli-Q water by supplementing the water with copper and bicarbonate. Our results demonstrate that ascorbic acid can induce a pH dependent hydroxyl radical generating reaction in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed.

  15. Effect of Acidic pH on Expression of Surface-Associated Proteins of Streptococcus oralis

    PubMed Central

    Wilkins, Joanna C.; Beighton, David; Homer, Karen A.

    2003-01-01

    Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions. PMID:12957916

  16. Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-03-20

    In the present work dissociation constants of commonly used buffering species, formic acid, piperazine, tris(hydroxymethyl)-aminomethane, boric acid and carbonate, have been determined for several acetonitrile-water mixtures. From these pK(a) values a previous model has been successfully evaluated to estimate pH values in acetonitrile-aqueous buffer mobile phases from the aqueous pH and concentration of the above mentioned buffers up to 60% of acetonitrile, and aqueous buffer concentrations between 0.005 (0.001 mol L(-1) for formic acid-formate) and 0.1 mol L(-1). The relationships derived for the presently studied buffers, together with those established for previously considered buffering systems, allow a general prediction of the pH variation of the most commonly used HPLC buffers when the composition of the acetonitrile-water mobile phase changes during the chromatographic process, such as in gradient elution. Thus, they are an interesting tool that can be easily implemented in general retention models to predict retention of acid-base analytes and optimize chromatographic separations.

  17. Sorption of chlorophenols on microporous minerals: mechanism and influence of metal cations, solution pH, and humic acid.

    PubMed

    Yang, Hui; Hu, Yuanan; Cheng, Hefa

    2016-10-01

    Sorption of 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) on a range of dealuminated zeolites were investigated to understand the mechanism of their sorption on microporous minerals, while the influence of common metal cations, solution pH, and humic acid was also studied. Sorption of chlorophenols was found to increase with the hydrophobicity of the sorbates and that of the microporous minerals, indicating the important role of hydrophobic interactions, while sorption was also stronger in the micropores of narrower sizes because of greater enhancement of the dispersion interactions. The presence of metal cations could enhance chlorophenol sorption due to the additional electrostatic attraction between metal cations exchanged into the mineral micropores and the chlorophenolates, and this effect was apparent on the mineral sorbent with a high density of surface cations (2.62 sites/nm(2)) in its micropores. Under circum-neutral or acidic conditions, neutral chlorophenol molecules adsorbed into the hydrophobic micropores through displacing the "loosely bound" water molecules, while their sorption was negligible under moderately alkaline conditions due to electrostatic repulsion between the negatively charged zeolite framework and anionic chlorophenolates. The influence of humic acid on sorption of chlorophenols on dealuminated Y zeolites suggests that its molecules did not block the micropores but created a secondary sorption sites by forming a "coating layer" on the external surface of the zeolites. These mechanistic insights could help better understand the interactions of ionizable chlorophenols and metal cations in mineral micropores and guide the selection and design of reusable microporous mineral sorbents for sorptive removal of chlorophenols from aqueous stream.

  18. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure.

  19. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  20. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core⿿hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  1. A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment.

    PubMed

    Yu, Xifei; Yang, Xiaoqiang; Horte, Sonja; Kizhakkedathu, Jayachandran N; Brooks, Donald E

    2014-01-01

    Solid tumors generally exhibit an acidic microenvironment which has been recognized as a potential route to distinguishing tumor from normal tissue for purposes of drug delivery or imaging. To this end we describe a pH and temperature sensitive polymeric adhesive that can be derivatized to carry drugs or other agents and can be tuned synthetically to bind to tumor cells at pH 6.8 but not at pH 7.4 at 37 °C. The adhesive is based on the universal reaction between membrane phosphatidyl choline (PC) molecules and polymers derivatized with multiple copies of the inverse motif, choline phosphate (CP). The polymer family we use is a linear copolymer of a CP terminated tetraethoxymethacrylate and dimethylaminoethyl (DMAE) methacrylate, the latter providing pH sensitivity. The copolymer exhibits a lower critical solution temperature (LCST) just below 37 °C when the DMAE is uncharged at pH 7.4 but the LCST does not occur when the group is charged at pH 6.8 due to the ionization hydrophilicity. At 37 °C the polymer binds strongly to mammalian cells at pH 6.8 but does not bind at pH 7.4, potentially targeting tumor cells existing in an acidic microenvironment. We show the binding is strong, reversible if the pH is raised and is followed rapidly by cellular uptake of the fluorescently labeled material. Drug delivery utilizing this dually responsive family of polymers should provide a basis for targeting tumor cells with minimal side reactions against untransformed counterparts.

  2. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  3. Effects of ionic liquid as additive and the pH of the mobile phase on the retention factors of amino benzoic acids in RP-HPLC.

    PubMed

    Zheng, J; Polyakova, Y; Row, K H

    2007-01-01

    As an organic salt, ionic liquids are widely used as new solvent media. In this paper, three positional isomers, such as o-amino benzoic acid, m-amino benzoic acid, and p-amino benzoic acid are separated with four different ionic liquids as additives to the mobile phase using reversed-phase (RP) high-performance liquid chromatography (HPLC). Amino benzoic acids are biologically active substances; the p-isomer is present in a group of water-soluble vitamins and is widely known as a sunscreen agent. The ionic liquids used are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium methylsulfate, and 1-octyl-3-methylimidazolium methylsulfate. The effects of the length of the alkyl group on the imidazolium ring and its counterion, the concentrations of the ionic liquid, and the effect of the pH of the mobile phase on the retention factor of the amino benzoic acid isomers are studied. Separation with the ionic liquid in the eluent was better than the separation without the ionic liquid. The pH mainly affected the retention and elution order of the solutes in RP-HPLC.

  4. Alicyclobacillus fodiniaquatilis sp. nov., isolated from acid mine water.

    PubMed

    Zhang, Bo; Wu, Yu-Fan; Song, Jin-Long; Huang, Zhong-Sheng; Wang, Bao-Jun; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2015-12-01

    Two novel, Gram-stain-variable, moderately thermophilic, acidophilic, rod-shaped, endospore-forming bacteria, G45-16T and G45-17, were isolated from acid mine water of Zijin copper mine in Fujian Province, China. Phylogenetic analysis of 16S rRNA gene sequences showed that they were closely related to Alicyclobacillus acidoterrestris ATCC 49025T with sequence similarities of 96.8 %. Cells grew aerobically at 20-45 °C (optimum, 40 °C), at pH 2.5-5.5(optimum, pH 3.5) and in the presence of 0-4.0 % (w/v) NaCl. Strains contained MK-7 as the major menaquinone and the major cellular fatty acids were ω-cyclohexane C19 : 0 and ω-cyclohexane C17 : 0. The DNA G+C content was 51.3 and 49.8 mol% (Tm) for G45-16T and G45-17, respectively. On the basis of phenotypic, chemotaxonomic and phylogenetic comparisons with their relatives and DNA-DNA relatedness values, it is concluded that strains G45-16T and G45-17 represent a novel species within the genus Alicyclobacillus, for which the name Alicyclobacillus fodiniaquatilis sp. nov. is proposed; the type strain is G45-16T(=CGMCC 1.15049T=NBRC 111483T).

  5. Effect of acidity consumption/production on the pH of aeration tank during the biodegradation of acetic acid/epichlorohydrin.

    PubMed

    Yoon, Seong-Hoon; Kim, Hyung-Soo; Chung, Yun-Chul

    2002-06-01

    In order to elucidate the biologically driven pH fluctuation phenomena in industrial wastewater treatment, the contrary effects of acetic acid (AA) and epichlorohydrin (ECH) on the pH of aeration tank were investigated. Two simple equations were derived to estimate optimum neutralization pHs for the biological AA/ECH wastewater treatment, and the calculated optimum neutralization pHs were compared with experimental results. The pH in aeration tank was expected to fluctuate sharply with the smallest deviation of neutralization pH from the optimum value. However experimental results showed that real pH fluctuation is smaller than the theoretical one. It was considered that carbonate buffer in aqueous system relieves the pH fluctuation. The deviation between experimental and theoretical optimum neutralization pH could be mainly caused by volatility of AA and ECH. The deviation was larger with ECH wastewater of which volatility is larger than AA. Finally, this theory was successfully applied to the real petrochemical wastewater treatment. The pH of aeration tank was properly maintained when acidified wastewater (pH 3.4) was supplied.

  6. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.

    PubMed

    Pettibone, John M; Cwiertny, David M; Scherer, Michelle; Grassian, Vicki H

    2008-06-01

    In this study, the adsorption of two organic acids, oxalic acid and adipic acid, on TiO2 nanoparticles was investigated at room temperature, 298 K. Solution-phase measurements were used to quantify the extent and reversibility of oxalic acid and adipic acid adsorption on anatase nanoparticles with primary particle sizes of 5 and 32 nm. At all pH values considered, there were minimal differences in measured Langmuir adsorption constants, K ads, or surface-area-normalized maximum adsorbate-surface coverages, Gamma max, between 5 and 32 nm particles. Although macroscopic differences in the reactivity of these organic acids as a function of nanoparticle size were not observed, ATR-FTIR spectroscopy showed some distinct differences in the absorption bands present for oxalic acid adsorbed on 5 nm particles compared to 32 nm particles, suggesting different adsorption sites or a different distribution of adsorption sites for oxalic acid on the 5 nm particles. These results illustrate that molecular-level differences in nanoparticle reactivity can still exist even when macroscopic differences are not observed from solution phase measurements. Our results also allowed the impact of nanoparticle aggregation on acid uptake to be assessed. It is clear that particle aggregation occurs at all pH values and that organic acids can destabilize nanoparticle suspensions. Furthermore, 5 nm particles can form larger aggregates compared to 32 nm particles under the same conditions of pH and solid concentrations. The relative reactivity of 5 and 32 nm particles as determined from Langmuir adsorption parameters did not appear to vary greatly despite differences that occur in nanoparticle aggregation for these two different size nanoparticles. Although this potentially suggests that aggregation does not impact organic acid uptake on anatase particles, these data clearly show that challenges remain in assessing the available surface area for adsorption in nanoparticle aqueous suspensions

  7. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    NASA Astrophysics Data System (ADS)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  8. Gum arabic and Fe²⁺ synergistically improve the heat and acid stability of norbixin at pH 3.0-5.0.

    PubMed

    Guan, Yongguang; Zhong, Qixin

    2014-12-31

    Thermal and acid stabilities of norbixin are challenges for its application as a food colorant. In this work, gum arabic and Fe(2+) were studied for the possibility to improve the thermal and acid stabilities of norbixin. Norbixin was dissolved at 0.004% w/v in deionized water with and without 0.2% w/v gum arabic and/or 0.15 mM ferrous chloride, adjusted to pH 3.0-5.0, and heated at 90 or 126 °C for 30 min. Before heating, norbixin precipitated at pH 3.0-4.0, which was prevented by gum arabic. The thermal stability of norbixin was improved by the combination of gum arabic and Fe(2+). Fluorescence analyses indicated the complex formation between norbixin and gum arabic with and without Fe(2+). Particle size and atomic force microscopy results suggested Fe(2+) and gum arabic synergistically prevented the aggregation of norbixin at acidic pH and during heating. It was hypothesized that the core of gum arabic-norbixin complexes was strengthened by Fe(2+) to enable the synergy.

  9. On the pH dependent behavior of the firefly bioluminescence: protein dynamics and water content in the active pocket.

    PubMed

    Kim, Hyun Woo; Rhee, Young Min

    2013-06-20

    Understanding bioluminescence presents fascinating challenges for fundamental sciences and numerous opportunities for practical applications. As a representative example, the firefly bioluminescent system has been intensively studied in both experimental and computational areas. However, there are still remaining questions regarding especially the detailed protein dynamics and the mechanisms of its color modulation. Here, we report on the pH dependent behavior of the firefly bioluminescence primarily based on molecular dynamics simulations. We find that the overall protein structure is generally resilient to pH variations. As the protein does not exhibit any structural distortions that can affect the emission property, we next focus on the dynamics in the active pocket and its effect on color modulation by adopting different protonation states in the pocket. With this, we observe red-shifted emissions at acidic conditions as consistent with previous studies. Most importantly, we find that a water molecule in the active pocket can mediate flexible motions of neighboring groups, which can subsequently modify the emission properties to a substantial degree. Based on the observations, we propose that the active pocket is in a dry condition during the luminescence process. Our results highlight the importance of understanding the role of the dynamics near the active pocket in modulating bioluminescence.

  10. Major origin of mutagenicity of chlorinated drinking water in China: humic acid or pollutants.

    PubMed

    Zhou, S W; Xu, F D; Li, S M; Song, R X; Qi, S; Zhang, Y; Bao, Y P

    1997-04-01

    Since Loper and Glatz (J. Toxicol. Environ. Health, 4:919-938;1978) discovered the presence of the mutagenicity in drinking water after chlorination in 1978, humic acid (HA) has been considered as an important source. But our research results show that only 1/8 of observed direct frameshift mutagenicity in tap water originated from chlorination of HA isolated from raw water. Contamination from industrial waste and human settlement (night soil) are important potential sources of mutagenicity in chlorinated drinking water. The results show that mutagenicity from night soil after chlorination depended upon pH of sample. Production of mutagenicity at pH 6 is ten times of that at pH 8, and decomposition process is necessary condition for mutagenicity production. Season variation of mutagenicity of tap is also presented in the paper.

  11. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    PubMed

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15).

  12. Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property.

    PubMed

    Tsega, Moges; Dejene, F B

    2017-02-01

    Titanium dioxide (TiO2) nanoparticles were prepared by the sol-gel method at different pH values (3.2-6.8) with a hydrochloric acid (HCl) solution. Raw samples were calcined at 500 °C for 2 h. The effects of pH on the structural, morphological and optical properties of TiO2 nanoparticles were investigated. At pH 4.4-6.8, only the anatase phase of TiO2 was observed. Under strong acidic condition at pH 3.2 rutile, brookite and anatase co-exist, but rutile is the predominant phase. The strain value increased and the crystallite size decreased as the HCl content increased. The increased crystallite sizes in the range 21-24 nm and enhanced blue emission intensity around 432 nm was obtained for the sample at pH 5.0. Experimental results showed that TiO2 nanoparticles synthesized at pH 5.0 exhibited the best luminescence property with pure anatase phase.

  13. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  14. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  15. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  16. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.

    PubMed

    Nicoll, Andrew J; Allemann, Rudolf K

    2004-08-07

    A 31-residue peptide (Art-Est) was designed to catalyse the hydrolysis of p-nitrophenyl esters through histidine catalysis on the solvent exposed face of the alpha-helix of bovine pancreatic polypeptide. NMR spectroscopy indicated that Art-Est adopted a stable 3-dimensional structure in solution. Art-Est was an efficient catalyst with second order rate constants of up to 0.050 M(-1) s(-1). The activity of Art-Est was a consequence of the increased nucleophilicity of His-22, which had a reduced pK(a) value of 5.5 as a consequence of its interaction with His-18 and the positively charged Arg-25 and Arg-26. Mass spectrometry and NMR spectroscopy confirmed that the Art-Est catalysed hydrolysis of p-nitrophenyl esters proceeded through an acyl-enzyme intermediate. A solvent kinetic isotope effect of 1.8 indicated that the transition state preceding the acyl intermediate was stabilised through interaction with the protonated side-chain of His-18 and indicated a reaction mechanism similar to that generally observed for natural esterases. The involvement in the reaction of two histidine residues with different pK(a) values led to a bell-shaped dependence of the reaction rate on the pH of the solution. The catalytic behaviour of Art-Est indicated that designed miniature enzymes can act in a transparent mechanism based fashion with enzyme-like behaviour through the interplay of several amino acid residues.

  17. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    NASA Astrophysics Data System (ADS)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  18. DISSOLVED ORGANIC MATTER AND METALS: EFFECTS OF PH ON PARTITIONING NATURAL ORGANIC MATTER IN SOILS AND WATER

    EPA Science Inventory

    Eighteen Dutch soils were extracted in aqueous solutions at varying pH. Extracts were analyzed for Cd, Cu, Ni, Pb, and Zn by ICP-AES. Extract dissolved organic carbon (DOC) was fractionated into three operationally defined fractions: hydrophilic acids (Hyd), fulvic acids (FA), an...

  19. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments.

    PubMed

    Perez, Marta; Calles-Enríquez, Marina; Nes, Ingolf; Martin, Maria Cruz; Fernandez, Maria; Ladero, Victor; Alvarez, Miguel A

    2015-04-01

    Enterococcus faecalis is a commensal bacterium of the human gut that requires the ability to pass through the stomach and therefore cope with low pH. E. faecalis has also been identified as one of the major tyramine producers in fermented food products, where they also encounter acidic environments. In the present work, we have constructed a non-tyramine-producing mutant to study the role of the tyramine biosynthetic pathway, which converts tyrosine to tyramine via amino acid decarboxylation. Wild-type strain showed higher survival in a system that mimics gastrointestinal stress, indicating that the tyramine biosynthetic pathway has a role in acid resistance. Transcriptional analyses of the E. faecalis V583 tyrosine decarboxylase cluster showed that an acidic pH, together with substrate availability, induces its expression and therefore the production of tyramine. The protective role of the tyramine pathway under acidic conditions appears to be exerted through the maintenance of the cytosolic pH. Tyramine production should be considered important in the adaptability of E. faecalis to acidic environments, such as fermented dairy foods, and to survive passage through the human gastrointestinal tract.

  20. pH pre-corrected liquid hot water pretreatment on corn stover with high hemicellulose recovery and low inhibitors formation.

    PubMed

    Li, Hong-Qiang; Jiang, Wei; Jia, Jing-Xia; Xu, Jian

    2014-02-01

    A challenge for lignocellulosic pretreatment is how to retain hemicellulose as much as possible. To reduce the degradation of hemicellulose and increase the recovery of sugars, an effective pH pre-corrected liquid hot water pretreatment (LHWP) was developed by employing a small amount of NaOH (⩽5/100g substrate) to accelerate the hemicellulose deacetylation and simultaneously pre-correct the acid hydrolyzate in situ. The results showed that the pH pre-correction can control the hydrolyzate pH. Under the pretreatment severity (PS) of 4.0, the pH pre-corrected LHWP reduced the hemicellulose degradation by 35.3-92.3%, decreased furfural formation by 90.5-99.8%. The highest hemicellulose recovery of 96.38% was obtained with pH pre-corrected by 2g NaOH/100g substrate. Enzymatic hydrolysis (EH) and simultaneous saccharification and fermentation (SSF) on the whole slurry from the pH pre-corrected LHWP showed that the hemicellulose retained in the solid residue did not bring significant resistance to cellulose EH (p=0.837).

  1. Oxidative stress parameters in silver catfish (Rhamdia quelen) juveniles infected with Ichthyophthirius multifiliis and maintained at different levels of water pH.

    PubMed

    Garcia, L O; Becker, A G; Bertuzzi, T; Cunha, M A; Kochhann, D; Finamor, I A; Riffel, A P K; Llesuy, S; Pavanato, M A; Baldisserotto, B

    2011-05-31

    The aim of this study was to determine oxidative stress parameters in the liver, gill and muscle of silver catfish juveniles infected with Ichthyophthirius multifiliis and maintained at pH 5.0 or 7.0 for three days. Juveniles were infected by adding one I. multifiliis-infected juvenile and water containing theronts to tanks. After the appearance of white spots on the skin, infected juveniles exposed to pH 5.0 and 7.0 showed significantly higher thiobarbituric acid reactive substances (TBARS) levels in the liver and gills compared to uninfected juveniles. Liver of infected juveniles exposed to pH 7.0 showed higher catalase (CAT) and lower glutathione-S-transferase (GST) activities, but those maintained at pH 5.0 showed significantly higher GST activity than uninfected juveniles. The gills of infected juveniles showed significantly higher CAT (day two) and GST activity at both pH 5.0 and 7.0 compared to uninfected juveniles. Muscle of infected juveniles showed significantly lower CAT and GST activity and TBARS levels (at day three) when maintained at both pH 5.0 and 7.0 compared to uninfected juveniles. In conclusion, I. multifiliis infection induces liver and gill damage via lipid peroxidation products in silver catfish, but higher antioxidant enzyme activity could indicate a greater degree of protection against this parasite.

  2. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  3. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  4. Studies on tolfenamic acid-chitosan intermolecular interactions: effect of pH, polymer concentration and molecular weight.

    PubMed

    Ahmed, Sofia; Sheraz, Muhammad Ali; Rehman, Ihtesham Ur

    2013-06-01

    Solid-state properties of tolfenamic acid (TA) and its complexes with chitosan (CT) have been studied. Effect of medium pH, molecular weight of polymer and its different concentrations on these TA-CT complexes were studied in detail. Low and medium molecular weight CT have been used in different ratios at pH ranging from 4 to 6 and freeze-drying technique has been employed to modify the appearance of crystalline TA. Physical properties of the formed complexes have been studied by employing X-ray diffraction, differential scanning calorimetry and scanning electron microscopy; chemical structure has been studied using Fourier transform infrared spectroscopy. The results showed that both forms of the polymer exhibited complete conversion in 1:8 ratio at pH 4, 1:4 at pH 5 and 1:1 at pH 6 indicating a marked effect of pH on drug-polymer complexation. The percent crystallinity calculations indicated low molecular weight CT slightly more effective than the other form. No changes in the complexes have been observed during the 12 week storage under controlled conditions. Both forms of CT at different pH values indicated retardation of recrystallization in TA during cooling of the melt from 1:1 ratios exhibiting formation of strong intermolecular hydrogen bonding between the drug and the polymer.

  5. Effect of organic acids and temperature on survival of Shigella flexneri in broth at pH 4.

    PubMed

    Zaika, Laura L

    2002-09-01

    The survival of bacterial pathogens in acidified foods depends not only on the hydrogen ion concentration, but also on the type of acid and the storage temperature. Shigella flexneri is a foodborne pathogen that is acid tolerant. The survival of S. flexneri 5348 in brain heart infusion broth supplemented with 0.04 M acetic, citric, lactic, malic, or tartaric acid and adjusted to pH 4 with HCI or NaOH was studied. The control medium was brain heart infusion broth adjusted to pH 4 with HCI. Stationary-phase cells were inoculated into media at initial populations of 6 to 7 log10 CFU/ml and incubated at 4, 19, 28, and 37 degrees C. A two-phase linear inactivation model was applied to plate count data to derive lag times (tL) and slopes of the curves, from which D-values and time required for a 4-log10 decrease in population (T4D) were calculated. In all cases, survival increased with decreasing temperature. For each acid, tL, the D-value, and T4D increased with decreasing temperature. All acids inhibited S. flexneri to some extent but to differing degrees as follows: lactic acid, acetic acid > citric acid, malic acid, tartaric acid > HCl. The T4D values for the control medium and for media containing acetic, citric, lactic, malic, and tartaric acids were 64, 47, 50, 34, 58, and 52 h, respectively, at 37 degrees C and 2,607, 1,498, 1,905, 1,346, 1,726, and 2,134 h, respectively, at 4 degrees C. The results of this study indicate that organic acids may aid in the inactivation of Shigella. However, these data also suggest that foods stored at or below room temperature containing low levels (< 1%) of acids could cause illness if contaminated with Shigella.

  6. Growth Limits of Listeria monocytogenes as a Function of Temperature, pH, NaCl, and Lactic Acid

    PubMed Central

    Tienungoon, S.; Ratkowsky, D. A.; McMeekin, T. A.; Ross, T.

    2000-01-01

    Models describing the limits of growth of pathogens under multiple constraints will aid management of the safety of foods which are sporadically contaminated with pathogens and for which subsequent growth of the pathogen would significantly increase the risk of food-borne illness. We modeled the effects of temperature, water activity, pH, and lactic acid levels on the growth of two strains of Listeria monocytogenes in tryptone soya yeast extract broth. The results could be divided unambiguously into “growth is possible” or “growth is not possible” classes. We observed minor differences in growth characteristics of the two L. monocytogenes strains. The data follow a binomial probability distribution and may be modeled using logistic regression. The model used is derived from a growth rate model in a manner similar to that described in a previously published work (K. A. Presser, T. Ross, and D. A. Ratkowsky, Appl. Environ. Microbiol. 64:1773–1779, 1998). We used “nonlinear logistic regression” to estimate the model parameters and developed a relatively simple model that describes our experimental data well. The fitted equations also described well the growth limits of all strains of L. monocytogenes reported in the literature, except at temperatures beyond the limits of the experimental data used to develop the model (3 to 35°C). The models developed will improve the rigor of microbial food safety risk assessment and provide quantitative data in a concise form for the development of safer food products and processes. PMID:11055952

  7. Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.

    PubMed

    Adra, Areej; Morin, Guillaume; Ona-Nguema, Georges; Menguy, Nicolas; Maillot, Fabien; Casiot, Corinne; Bruneel, Odile; Lebrun, Sophie; Juillot, Farid; Brest, Jessica

    2013-11-19

    Ferrihydrite (Fh) is a nanocrystalline ferric oxyhydroxide involved in the retention of pollutants in natural systems and in water-treatment processes. The status and properties of major chemical impurities in natural Fh is however still scarcely documented. Here we investigated the structure of aluminum-rich Fh, and their role in arsenic scavenging in river-bed sediments from a circumneutral river (pH 6-7) impacted by an arsenic-rich acid mine drainage (AMD). Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Fe K-edge shows that Fh is the predominant mineral phase forming after neutralization of the AMD, in association with minor amount of schwertmannite transported from the AMD. TEM-EDXS elemental mapping and SEM-EDXS analyses combined with EXAFS analysis indicates that Al(3+) substitutes for Fe(3+) ions into the Fh structure in the natural sediment samples, with local aluminum concentration within the 25-30 ± 10 mol %Al range. Synthetic aluminous Fh prepared in the present study are found to be less Al-substituted (14-20 ± 5 mol %Al). Finally, EXAFS analysis at the arsenic K-edge indicates that As(V) form similar inner-sphere surface complexes on the natural and synthetic Al-substituted Fh studied. Our results provide direct evidence for the scavenging of arsenic by natural Al-Fh, which emphasize the possible implication of such material for scavenging pollutants in natural or engineered systems.

  8. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general.

  9. Distribution of hydrophobic ionogenic organic compounds between octanol and water: Organic acids

    SciTech Connect

    Jafvert, C.T. ); Westall, J.C. ); Grieder, E.; Schwarzenbach, R.P. )

    1990-12-01

    The octanol-water distributions of 10 environmentally significant organic acid compounds were determined as a function of aqueous-phase salt concentration (0.05-0.2 M LiCl, NaCl, KCl, CaCl{sub 2}, or MgCl{sub 2}) and pH. The compounds were pentachlorophenol, 2,3,4,5-tetrachlorophenol, (2,4,5-trichlorophenoxy)acetic acid, 4-chloro-{alpha}-(4-chlorophenyl)benzeneacetic acid, 2-methyl-4,6-dinitrophenol, (2,4-dichlorophenoxy) acetic acid, 4-(2,4-dichlorophenoxy) butanoic acid, 3,6-dichloro-2-methoxybenzoic acid, 2,3,6-trichlorobenzeneacetic acid, and 2-(2,4,5-trichlorophenoxy)propionic acid. The experimental results were interpreted quantitatively with an equilibrium model that accounts for acid dissociation in the aqueous phase and partitioning into the octanol phase by the neutral organic species, free inorganic and organic ions, and ion pairs. The partition constants for the neutral ion pairs correlate well with the partition constants of the neutral acids. Two experiments address the applicability of these octanol-water distribution data to the distribution of ionogenic compounds in the environment: the distribution of 2-methyl-4,6-dinitrophenol on a natural sorbent as a function of salt concentration (NaCl and CaCl{sub 2}) and pH, and competitive adsorption of pentachlorophenol and 2,3,4,5-tetrachlorophenol on an environmental sorbent.

  10. The effects of high salt and low pH on the water-holding of meat.

    PubMed

    Puolanne, E; Peltonen, J

    2013-02-01

    The study investigated the water-holding (WH) in meat in the pH-NaCl (ionic strength) combinations that prevail in dry sausages during fermentation and drying. WH in raw beef homogenates, with 230% added water, was determined by centrifugation at pH values of 5.47-4.60, and ionic strengths (μ) 0.50-1.50. The minimum WH in relation to pH was at pH 4.8, but at higher pH values, the WH optimum was at 1.0-1.5 μ; at lower pH-values (<5.0) the optimum was more pronounced at 1.0 μ. The WH reducing effect by pH decrease was stronger than the effect of μ. At lower pH values, the relative effect of μ on WH was higher compared to that of pH than at higher pH values. The pH-salt combinations prevailing in fermented sausage in the beginning of the ripening produced a high WH, which decreased, first with pH decrease and then in the last period of ripening mainly due to the increase of ionic strength.

  11. Effects of pH and Magnetic Material on Immunomagnetic Separation of Cryptosporidium Oocysts from Concentrated Water Samples

    PubMed Central

    Kuhn, Ryan C.; Rock, Channah M.; Oshima, Kevin H.

    2002-01-01

    In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted. PMID:11916735

  12. Effects of outside storage on the energy potential of hardwood particulate fuels. Part III. Specific gravity, ash content, and pH of water solubles

    SciTech Connect

    White, M.S.; Argent, R.M.; Sarles, R.L.

    1986-04-01

    Approximately 150 tons of green, hardwood whole-tree fuel chips were stored outdoors in a 20-foot-high, conical pile at Blacksburg, Va. The pile was monitored for one year to determine the effect of outside storage on the rate of fiber loss, the level of noncombustibles in the fuel, and the pH of water-soluble matter. Chip samples were extracted from within the pile on a regular schedule. Tests for specific gravity, ash content, and pH of water solubles were conducted. At ambient temperatures above 20 degrees C, wood substance loss occurred at a uniform rate 1.5 percent per month. Ash content increased by 0.23 percentage points per month after the first 4 months of storage. This increased ash content may burden fly ash and grate ash disposal systems unless they are properly designed. The adverse effects of fiber loss and ash content can be virtually eliminated by storage of frozen whole-tree chips during winter months in temperate climates. Water-soluble fractions of wood and bark were highly acidic (4.1 and 3.7 pH, respectively) and changed little over the year long study period. Uncontrolled, the leachate from storage piles may be harmful to the environment. Use of corrosion resistant materials is recommended to counter the effects of acids on conversion, storage, and handling equipment. 18 references.

  13. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH.

    PubMed Central

    Allison, S L; Schalich, J; Stiasny, K; Mandl, C W; Kunz, C; Heinz, F X

    1995-01-01

    The flavivirus envelope protein E undergoes irreversible conformational changes at a mildly acidic pH which are believed to be necessary for membrane fusion in endosomes. In this study we used a combination of chemical cross-linking and sedimentation analysis to show that the envelope proteins of the flavivirus tick-borne encephalitis virus also change their oligomeric structure when exposed to a mildly acidic environment. Under neutral or slightly alkaline conditions, protein E on the surface of native virions exists as a homodimer which can be isolated by solubilization with the nonionic detergent Triton X-100. Solubilization with the same detergent after pretreatment at an acidic pH, however, yielded homotrimers rather than homodimers, suggesting that exposure to an acidic pH had induced a simultaneous weakening of dimeric contacts and a strengthening of trimeric ones. The pH threshold for the dimer-to-trimer transition was found to be 6.5. Because the pH dependence of this transition parallels that of previously observed changes in the conformation and hydrophobicity of protein E and that of virus-induced membrane fusion, it appears likely that the mechanism of fusion with endosomal membranes involves a specific rearrangement of the proteins in the viral envelope. Immature virions in which protein E is associated with the uncleaved precursor (prM) of the membrane protein M did not undergo a low-pH-induced rearrangement. This is consistent with a protective role of protein prM for protein E during intracellular transport of immature virions through acidic compartments of the trans-Golgi network. PMID:7529335

  14. Addition of formic acid or starter cultures to liquid feed. Effect on pH, microflora composition, organic acid concentration and ammonia concentration.

    PubMed

    Canibe, N; Miquel, N; Miettinen, H; Jensen, B B

    2001-01-01

    Some of the charateristics of good quality fermented liquid feed (FLF) are low pH, high numbers of lactic acid bacteria, and low numbers of enterobacteria. In order to test strategies to avoid a proliferation of enterobacteria during the initial phase of FLF elaboration, two in vitro studies were carried out. Addition of various doses of formic acid or two different starter cultures were tested. Adding 0.1% formic acid or L. plantarum VTT E-78076 to the liquid feed seemed to be addecuate ways of inhibiting the growth of enterobacteria, without depleting the growth of lactic acid bacteria.

  15. [Study advance on haloacetic acids in drinking water].

    PubMed

    Ye, Bi-Xiong; Wang, Wu-Yi; Yang, Lin-Sheng; Wang, Yong-Hua

    2006-05-01

    Haloacetic acids (HAAs) in drinking water have attracted more and more attention of researchers due to their higher potential combination of chlorine, their carcinogenic and mutagenic effects and higher carcinogenic. The formation mechanism, analytical methods, the effects of many factors on HAAs formation such as precursor types, chlorine doses, pH, temperature, bromide, reaction time and seasonal change, toxicological character and the minimizing technology of HAAs in resent studies about HAAs are discussed in details in this paper. Further researches are still needed to clarify the formation mechanism of HAAs and find a feasible minimizing technology. New concerns including toxicological characters that correlate with human and other HAAs exposure routes besides oral ingestion (i.e., inhalation and dermal adsorption) should be put forward.

  16. Effect of low pH start-up on continuous mixed-culture lactic acid fermentation of dairy effluent.

    PubMed

    Choi, Gyucheol; Kim, Jaai; Lee, Changsoo

    2016-12-01

    Mixed-culture fermentation that does not require an energy-intensive sterilization process is a viable approach for the economically feasible production of lactic acid (LA) due to the potential use of organic waste as feedstock. This study investigated mixed-culture LA fermentation of whey, a high-strength organic wastewater, in continuous mode. Variations in the hydraulic retention time (HRT) from 120 to 8 h under different pH regimes in two thermophilic reactors (55 °C) were compared for their fermentation performance. One reactor was maintained at a low pH (pH 3.0) during operation at HRTs of 120 to 24 h and then adjusted to pH 5.5 in the later phases of fermentation at HRTs of 24 to 8 h (R1), while the second reactor was maintained at pH 5.5 throughout the experiment (R2). Although the LA production in R1 was negligible at low pH, it increased dramatically after the pH was raised to 5.5 and exceeded that in R2 when stabilized at HRTs of 8 and 12 h. The maximum yield (0.62 g LA/g substrate fed as the chemical oxygen demand (COD) equivalent), the production rate (11.5 g/L day), and the selectivity (95 %) of LA were all determined at a 12-h HRT in R1. Additionally, molecular and statistical analyses revealed that changes in the HRT and the pH significantly affected the bacterial community structure and thus the fermentation characteristics of the experimental reactors. Bacillus coagulans was likely the predominant LA producer in both reactors. The overall results suggest that low pH start-up has a positive effect on yield and selectivity in mixed-culture LA fermentation.

  17. Acidic deposition--ecological effects on surface waters

    SciTech Connect

    Harter, P.

    1989-01-01

    The acidification of soft water aquatic ecosystems, with consequent damage to the flora and fauna, is considered in this report. The evidence that environmental effects are ocurring is examined to see if a trend of increasing acidification can be related to changes in atmospheric deposition of sulphates and nitrates. Possible causes of change are considered, to clarify the contributions of variations in human activities and natural factors. It is concluded that acidic deposition, originating partly from emissions of sulphur and nitrogen compounds arising from man-made sources including combustion of fossil fuels, is causing acidification of surface waters in some areas of Europe and North America. There is proof that acidification of surface waters (to less than pH 6) is deleterious to many of the organisms whose habitat it forms. Acidified surface waters in some of the impacted areas are showing signs of recovery, where emissions of sulphur and nitrogen compounds from human activities are decreasing. There is some evidence that reversibility of acidification has started to occur, in some instances, about a decade after emissions were reduced. 219 refs., 13 figs., 9 tabs.

  18. Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels.

    PubMed

    Yu, J; Wang, J

    2001-06-20

    Ralstonia eutropha grows on and produces polyhydroxyalkanoates (PHAs) from fermentation acids. Acetic acid, one major organic acid from acidogenesis of organic wastes, has an inhibitory effect on the bacterium at slightly alkaline pH (6 g HAc/L at pH 8). The tolerance of R. eutropha to acetate, however, was increased significantly up to 15 g/L at the slightly alkaline pH level with high cell mass concentration. A metabolic cell model with five fluxes is proposed to depict the detoxification mechanism including mass transfer and acetyl-CoA formation of acetic acid and the formation of three final metabolic products, polyhydroxybutyrate (PHB), active biomass, and CO(2). The fluxes were measured under different conditions such as cell mass concentration, acetic acid concentration, and medium composition. The experimental results indicate that the acetate detoxification by high cell mass concentration is attributed to the increased fluxes at high extracellular acetate concentrations. The fluxes could be doubled to reduce and hence detoxify the accumulated intracellular acetate anions.

  19. Effects of acid mine drainage on water, sediment and associated benthic macroinvertebrate communities

    SciTech Connect

    Rutherford, L.G.; Cherry, D.S.; Dobbs, M.G.; Cairns, J. Jr.; Zipper, C.E.

    1995-12-31

    The toxic constituents of abandoned mined land (AML) discharges (acidic pH, heavy metals, total suspended solids) are extremely toxic to aquatic life . Studies were undertaken to ascertain environmental impacts to the upper Powell River, Lee and Wise Counties, Va. These impacts included disruptions in physical water quality, sediment quality, altered benthic macroinvertebrate assemblages, and toxicity of the water column and sediments from short-term impairment bioassays, and the potential to bioaccumulate selected metals (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) by periphyton and resident bivalves. Water chemistry and macroinvertebrate assemblages were collected at upstream control, just below acid mine drainage and other downstream sites. Selected trace metal concentrations (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) were determined for water, sediment and resident bivalves using ICP-AES. Acidic pH ranged from 2.15--3.3 at three AML-influenced seeps and varied from 6.4--8.0 at reference stations. At one AML-influenced creek, acidic pH conditions worsened from summer to fall and eradicated aquatic life throughout a 1.5 km stretch of that creek as it flowed into another creek. An additional dilution of 3.4 km in the second creek was needed to nearly neutralize the acidic pH problem. Conductivity (umhos/cm) ranged from 32--278 at reference sites and from 245--4,180 at AML-impact sites. Benthic macroinvertebrate abundance and taxon richness were essentially eliminated in the seeps or reached numbers of 1 -3 taxa totaling < 10 organisms relative to reference areas where richness values were 12--17 and comprised 300--977 organisms. Concentrations of Fe, Al, Mg and Cu and Zn were highest in the environmentally stressed stations of low pH and high conductivity relative to the reference stations. Iron was, by far, the element in highest concentration followed by Al and Mg.

  20. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    PubMed

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable.

  1. Enhancement of bromate formation by pH depression during ozonation of bromide-containing water in the presence of hydroxylamine.

    PubMed

    Yang, Jingxin; Li, Ji; Dong, Wenyi; Ma, Jun; Yang, Yi; Li, Jiayin; Yang, Zhichao; Zhang, Xiaolei; Gu, Jia; Xie, Wanying; Cang, Yan

    2017-02-01

    This work investigated the fate of bromate formation during ozonation in the presence of hydroxylamine (HA). Results indicated that pH depression, as a commonly feasible control strategy for bromate formation during ozonation, unexpectedly enhanced the bromate formation during ozonation in the presence of HA. A dramatically high level of bromate was observed at acidic pH in the ozone/HA process. The scavenging experiments demonstrated the essential role of OH produced in the reaction of ozone with HA in bromate formation. In the process, OH mainly oxidizes bromide to Br, which is further oxidized by ozone and eventually converts to bromate. Further investigations suggested that the unexpected enhancement on bromate formation by pH depression can be mainly ascribed to the pH-dependent ozone decay, OH exposures and formation rate of Br. As pH decreased from 7 to 5, the reduced OH scavenging capacity of HA led to higher OH exposures, which contributed to the enhancement of bromate formation. As pH decreased from 5 to 3, the enhanced formation rate of Br largely augmented the formation of bromate. In addition, the ozone decay slowed down by pH depression provided more available ozone for the oxidation of the formed Br to bromate. The enhanced effect of pH depression on bromate formation was still observed in the real water samples in the ozone/HA process. Accordingly, pH depression might be avoided to control the bromate formation during ozonation in the presence of HA.

  2. Investigating Effects of Acidic pH on Proliferation, Invasion and Drug-Induced Apoptosis in Lymphoblastic Leukemia.

    PubMed

    Bohloli, Mahbobeh; Atashi, Amir; Soleimani, Masoud; Kaviani, Saeid; Anbarlou, Azadeh

    2016-12-01

    Some studies have shown that extracellular pH in tumors, which results in tumor progression, is less than that in normal tissues. The aim of this study was to investigate the effects of extracellular acidic pH on proliferation, invasion, and drug-induced apoptosis in acute lymphoblastic cells. The cells were cultured in different pH (pH 6.6 and pH 7.4) for 12 days. Cell proliferation was assessed by MTT assay and cell invasion was assayed by invasion assay and gene expression analysis of MMP-9. Drug-induced apoptosis was evaluated after exposure to doxorubicin for 24 hours by annexin V/PI staining and gene expression analysis of BAX pro-apoptotic protein. The results indicated the enhanced growth and invasion of leukemic cells at pH 6.6 (P ≤ 0.05). Furthermore, the cells at pH 6.6 were resistant to apoptosis by doxorubicin (P ≤ 0.05). It can be concluded that acidic pH increases the proliferation, invasion and reduces the drug-induced apoptosis in acute lymphoblastic leukemia. Extracellular acidity can influence the behavior of leukemic cells and therefore, the manipulation of extracellular liquid can be selected as a therapeutic strategy for leukemia, especially for acute lymphoblastic leukemia.

  3. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  4. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  5. Acid water interferes with salamander-green algae symbiosis during early embryonic development.

    PubMed

    Bianchini, Kristin; Tattersall, Glenn J; Sashaw, Jessica; Porteus, Cosima S; Wright, Patricia A

    2012-01-01

    The inner egg capsule of embryos of the yellow-spotted salamander (Ambystoma maculatum) are routinely colonized by green algae, such as Oophila amblystomatis, that supply O(2) in the presence of light and may consume nitrogenous wastes, forming what has been proposed to be a mutualistic relationship. Given that A. maculatum have been reported to breed in acidic (pH <5.0) and neutral lakes, we hypothesized that low water pH would negatively affect these symbiotic organisms and alter the gradients within the jelly mass. Oxygen gradients were detected within jelly masses measured directly in a natural breeding pond (pH 4.5-4.8) at midday in full sunlight. In the lab, embryo jelly masses reared continuously at pH 4.5 had lower P(O)₂and higher ammonia levels relative to jelly masses held at pH 8.0 (control). Ammonia and lactate concentrations in embryonic tissues were approximately 37%-93% higher, respectively, in embryos reared at water pH 4.5 compared with pH 8.0. Mass was also reduced in embryos reared at pH 4.5 versus pH 8.0. In addition, light conditions (24 h light, 12L : 12D, or 24 h dark) and embryonic position (periphery vs. center) in the jelly mass affected P(O)₂but not ammonia gradients, suggesting that algal symbionts generate O(2) but do not significantly impact local ammonia concentrations, regardless of the pH of the water. We conclude that chronic exposure to acidic breeding ponds had a profound effect on the microenvironment of developing A. maculatum embryos, which in turn resulted in an elevation of potentially harmful metabolic end products and inhibited growth. Under acidic conditions, the expected benefit provided by the algae to the salamander embryo (i.e., high O(2) and low ammonia microenvironment) is compromised, suggesting that the A. maculatum-algal mutualism is beneficial to salamanders only at higher water pH values.

  6. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  7. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  8. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    PubMed

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR.

  9. Spatial variability of surface-sediment porewater pH and related water-column characteristics in deep waters of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Shao, Changgao; Sui, Yi; Tang, Danling; Legendre, Louis

    2016-12-01

    This study analyzes the pH of surface-sediment porewater (i.e. 2-3 cm below the water-sediment interface), and concentrations of CaCO3 and organic carbon (OC) in 1192 sediment cores from the northern South China Sea, in water depths ranging from 137 to 3702 m. This is the first study in the literature to analyze the large-scale spatial variability of deep-water surface-sediment pH over a large ocean basin. The data showed strong spatial variations in pH. The lowest pH values (<7.3) were observed south of Hainan Island, an area that is affected by summer upwelling and freshwater runoff from the Pearl and Red Rivers. Moderately low pH values (generally 7.3-7.5) occurred in two other areas: a submarine canyon, where sediments originated partly from the Pearl River and correspond to a paleo-delta front during the last glacial period; and southwest of Taiwan Island, where waters are affected by the northern branch of the Kuroshio intrusion current (KIC) and runoff from Taiwan rivers. The surface sediments with the highest pH (⩾7.5, and up to 8.3) were located in a fourth area, which corresponded to the western branch of the KIC where sediments have been intensively eroded by bottom currents. The pH of surface-sediment porewater was significantly linearly related to water depth, bottom-water temperature, and CaCO3 concentration (p < 0.05 for the whole sampling area). This study shows that the pH of surface-sediment porewater can be sensitive to characteristics of the overlying water column, and suggests that it will respond to global warming as changes in surface-ocean temperature and pH progressively reach deeper waters.

  10. Effects of pH and dissolved oxygen on the photodegradation of 17α-ethynylestradiol in dissolved humic acid solution.

    PubMed

    Ren, Dong; Huang, Bin; Bi, Tingting; Xiong, Dan; Pan, Xuejun

    2016-01-01

    To probe the mechanisms responsible for pH and dissolved oxygen (DO) affecting the photodegradation of 17α-ethynylestradiol (EE2) in dissolved humic acid (HA) solution, EE2 aqueous solutions with pH values ranging from 3.0 to 11.0 and different DO conditions were irradiated by using a 300 W mercury lamp equipped with 290 nm light cutoff filters. In 5.0 mg L(-1) HA solutions (pH 8.0), EE2 was degraded at a rate of 0.0739 h(-1) which was about 4-fold faster than that in Milli-Q water. The degradation of EE2 was mainly caused by the oxidation of photogenerated reactive species (RS), and the contribution of direct photodegradation to EE2 degradation was always lower than 27%. Both the direct and indirect photodegradation of EE2 were closely dependent on the EE2 initial concentration, pH value and DO concentration. The photodegradation rate of EE2 decreased with increased initial concentration of EE2 due to the limitation of photon flux. With pH and DO increasing, the degradation rate of EE2 increased significantly due to the increase in the yields of excited EE2 and RS. Among the photogenerated RS, HO˙ and (3)HA* were determined to be the key contributors, and their global contribution to EE2 photodegradation was about 50%. Although HA could generate more (1)O2 than HO˙, the contribution of (1)O2 to EE2 degradation was lower than 13% due to its low reactivity towards EE2. This study could enlarge our knowledge on the photochemical behaviors of steroid estrogens in natural sunlit waters.

  11. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria.

    PubMed

    Nancucheo, Ivan; Johnson, D Barrie

    2012-01-01

    Two continuous-flow bench-scale bioreactor systems populated by mixed communities of acidophilic sulfate-reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor pH of ≈ 2.2-2.5. The second system was fed with acidic (pH 2.5) synthetic mine water containing 3 mM of both zinc and ferrous iron, and varying concentrations (0.5-30 mM) of aluminium. Selective precipitation of zinc sulfide was possible by operating the bioreactor at pH 4.0 and supplementing the synthetic mine water with 4 mM glycerol. Analysis of the microbial populations in the bioreactors showed that they changed with varying operational parameters, and novel acidophilic bacteria (including one sulfidogen) were isolated from the bioreactors. The acidophilic sulfidogenic bioreactors provided 'proof of principle' that segregation of metals present in mine waters is possible using simple online systems within which controlled pH conditions are maintained. The modular units are versatile and robust, and involve minimum engineering complexity.

  12. Rate of phosphoantimonylmolybdenum blue complex formation in acidic persulfate digested sample matrix for total dissolved phosphorus determination: importance of post-digestion pH adjustment.

    PubMed

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2008-10-19

    Acidic persulfate oxidation is one of the most common procedures used to digest dissolved organic phosphorus compounds in water samples for total dissolved phosphorus determination. It has been reported that the rates of phosphoantimonylmolybdenum blue complex formation were significantly reduced in the digested sample matrix. This study revealed that the intermediate products of persulfate oxidation, not the slight change in pH, cause the slowdown of color formation. This effect can be remedied by adjusting digested samples pH to a near neural to decompose the intermediate products. No disturbing effects of chlorine on the phosphoantimonylmolybdenum blue formation in seawater were observed. It is noted that the modification of mixed reagent recipe cannot provide near neutral pH for the decomposition of the intermediate products of persulfate oxidation. This study provides experimental evidence not only to support the recommendation made in APHA standard methods that the pH of the digested sample must be adjusted to within a narrow range of sample, but also to improve the understanding of role of residue from persulfate decomposition on the subsequent phosphoantimonylmolybdenum blue formation.

  13. Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Zhong, Lin-Xin; Peng, Feng; Sun, Run-Cang

    2011-08-10

    Exploitation of biomaterials derived from renewable resources is an important approach to address environmental and resource problems in the world today. In this paper, novel ionic hydrogels based on xylan-rich hemicelluloses were prepared by free radical graft copolymerization of acrylic acid (AA) and xylan-rich hemicelluloses (XH) by using N,N-methylene-bis(acrylamide) (MBA) as cross-linker and ammonium persulfate/N,N,N',N'-tetramethylethylenediamine (APS/TMEDA) as redox initiator system. The network characteristics of the ionic hydrogels were investigated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), as well as by determination of mechanical properties, swelling, and stimuli responses to pH, salts, and organic solvents. The results showed that an increase in the MBA/XH or AA/XH ratio resulted in higher cross-linking density of the network and thus decreased the swelling ratio. Expansion of the network hydrogels took place at high pH, whereas shrinkage occurred at low pH or in salt solutions as well as in organic solvents. The ionic hydrogels had high water adsorption capacity and showed rapid and multiple responses to pH, ions, and organic solvents, which may allow their use in several areas such as adsorption, separation, and drug release systems.

  14. Tolerance of acid-adapted and non-adapted Escherichia coli O157:H7 cells to reduced pH as affected by type of acidulant.

    PubMed

    Deng, Y; Ryu, J H; Beuchat, L R

    1999-02-01

    A study was carried out to determine if three strains of Escherichia coli O157:H7 grown (18 h) in Tryptic Soy Broth (TSB) and TSB supplemented with 1.25% glucose (TSBG), i.e. unadapted and acid-adapted cells, respectively, exhibited changes in tolerance to reduced pH when plated on Tryptic Soy Agar (TSA) acidified (pH 3.9, 4.2, 4.5, 4.8, 5.1 and 5.4) with acetic, citric or malic acids. All test strains grew well on TSA acidified with acetic acid at pH > or = 5.4 or malic acid at pH > or = 4.5; two strains grew on TSA acidified with citric acid at pH > or = 4.5, while the third strain grew at pH > or = 4.8. Acid-adapted and control (unadapted) cells differed little in their ability to form visible colonies on TSA containing the same acid at the same pH. However, on plates not showing visible colonies, acid-adapted cells retained higher viability than unadapted cells when plated on acidified TSA. Growth of acid-adapted and control cells of E. coli O157:H7 inoculated into TSB containing acetic acid (pH 5.4 and 5.7) and citric or malic acids (pH 4.2 and 4.5) was also studied. There was essentially no difference in growth characteristics of the two types of cells in TSB acidified at the same pH with a given acid. Tolerance of acid-adapted and control cells on subsequent exposure to low pH is influenced by the type of acidulant. The order of sensitivity at a given pH is acetic > citric > malic acid. When performing acid challenge studies to determine survival and growth characteristics of E. coli O157:H7 in foods, consideration should be given to the type of acid to which cells have been exposed previously, the procedure used to achieve acidic environments and possible differences in response among strains. The use of strains less affected by pH than type of acidulant or vice versa could result in an underestimation of the potential for survival and growth of E. coli O157:H7 in acid foods.

  15. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  16. Determinants of cyanuric acid and melamine assembly in water.

    PubMed

    Ma, Mingming; Bong, Dennis

    2011-07-19

    While the recognition of cyanuric acid (CA) by melamine (M) and their derivatives has been known to occur in both water and organic solvents for some time, analysis of CA/M assembly in water has not been reported (Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. J. Am. Chem. Soc.1999, 121, 1752-1753; Mathias, J. P.; Simanek, E. E.; Seto, C. T.; Whitesides, G. M. Macromol. Symp.1994, 77, 157-166; Zerkowski, J. A.; MacDonald, J. C.; Seto, C. T.; Wierda, D. A.; Whitesides, G. M. J. Am. Chem. Soc.1994, 116, 2382-2391; Mathias, J. P.; Seto, C. T.; Whitesides, G. M. Polym. Prepr.1993, 34, 92-93; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1993, 115, 905-916; Zerkowski, J. A.; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1992, 114, 5473-5475; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1990, 112, 6409-6411; Wang, Y.; Wei, B.; Wang, Q. J. Chem. Cryst.1990, 20, 79-84; ten Cate, M. G. J.; Huskens, J.; Crego-Calama, M.; Reinhoudt, D. N. Chem.-Eur. J.2004, 10, 3632-3639). We have examined assembly of CA/M, as well as assembly of soluble trivalent CA and M derivatives (TCA/TM), in aqueous solvent, using a combination of solution phase NMR, isothermal titration and differential scanning calorimetry (ITC/DSC), cryo-transmission electron microscopy (cryo-TEM), and synthetic chemistry. While the parent heterocycles coprecipitate in water, the trivalent system displays more controlled and cooperative assembly that occurs at lower concentrations than the parent and yields a stable nanoparticle suspension. The assembly of both parent and trivalent systems is rigorously 1:1 and proceeds as an exothermic, proton-transfer coupled process in neutral pH water. Though CA and M are considered canonical hydrogen-bonding motifs in organic solvents, we find that their assembly in water is driven in large part by enthalpically favorable surface-area burial, similar to what is observed with nucleic acid recognition. There are currently few synthetic systems capable of robust molecular

  17. Effect of water-column pH on sediment-phosphorus release rates in Upper Klamath Lake, Oregon, 2001

    USGS Publications Warehouse

    Fisher, Lawrence H.; Wood, Tamara M.

    2004-01-01

    Sediment-phosphorus release rates as a function of pH were determined in laboratory experiments for sediment and water samples collected from Shoalwater Bay in Upper Klamath Lake, Oregon, in 2001. Aerial release rates for a stable sediment/water interface that is representative of the sediment surface area to water column volume ratio (1:3) observed in the lake and volumetric release rates for resuspended sediment events were determined at three different pH values (8.1, 9.2, 10.2). Ambient water column pH (8.1) was maintained by sparging study columns with atmospheric air. Elevation of the water column pH to 9.2 was achieved through the removal of dissolved carbon dioxide by sparging with carbon dioxide-reduced air, partially simulating water chemistry changes that occur during algal photosynthesis. Further elevation of the pH to 10.2 was achieved by the addition of sodium hydroxide, which doubled average alkalinities in the study columns from about 1 to 2 milliequivalents per liter. Upper Klamath Lake sediments collected from the lake bottom and then placed in contact with lake water, either at a stable sediment/water interface or by resuspension, exhibited an initial capacity to take up soluble reactive phosphorus (SRP) from the water column rather than release phosphorus to the water column. At a higher pH this initial uptake of phosphorus is slowed, but not stopped. This initial phase was followed by a reversal in which the sediments began to release SRP back into the water column. The release rate of phosphorus 30 to 40 days after suspension of sediments in the columns was 0.5 mg/L/day (micrograms per liter per day) at pH 8, and 0.9 mg/L/day at pH 10, indicating that the higher pH increased the rate of phosphorus release by a factor of about two. The highest determined rate of release was approximately 10% (percent) of the rate required to explain the annual internal loading to Upper Klamath Lake from the sediments as calculated from a lake-wide mass balance

  18. Retention of ionisable compounds on high-performance liquid chromatography XIX. pH variation in mobile phases containing formic acid, piperazine and tris as buffering systems and methanol as organic modifier.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2009-07-10

    In previous works a model to estimate the pH of methanol-aqueous buffer mobile phases from the aqueous pH and concentration of the buffer and the fraction of organic modifier was developed. This model was successfully applied and validated for buffers prepared from ammonia, acetic, phosphoric and citric acids. In the present communication this model has been extended to formic acid, piperazine and tris(hydroxymethyl)aminomethane buffers. Prior to the modelling work, the pK(a) values of the studied buffers at several methanol-water compositions were determined.

  19. Double pH control on humic substance-borne trace elements distribution in soil waters as inferred from ultrafiltration.

    PubMed

    Pédrot, Mathieu; Dia, Aline; Davranche, Mélanie

    2009-11-15

    Colloidal dissolved organic carbon (DOC) is an important carrier phase for trace elements (TE) in subsurface environments. As suggested by previously published field observations, preferential sorption of DOC onto mineral surfaces tends to enrich the solid phase in humic acids. This DOC fractionation may affect the mobility of TE. pH is known to play an important role in the stability of colloids. This study was therefore dedicated to identifying the influence of DOC fractionation on TE mobility. Sequential extraction has been used to provide information on the possible TE carriers within soil (as exchangeable, weak acid soluble, reducible, oxidizable, and nonextractible metal fractions). Batch experiments were carried out to investigate the influence of pH on the detachment of colloids and associated TE. Different groups of elements were identified according to TE behavior during pH changes. Several elements displayed increasing concentrations with decreasing pH. These concentrations can represent an important fraction of the total soil concentration. By contrast, other elements showed increasing concentrations following increasing pH, in association with an increasing amount of colloids in soil solution. Concerning this latter group, two colloidal carrier phases were identified during the pH increase: (i) the first one concerned the majority of elements, which were associated with humic substances remaining in solution, and (ii) the second one involved several TE rather associated with nanooxides. Therefore, DOC fractionation plays a key role in the TE concentration in soil solution during pH changes.

  20. Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula.

    PubMed

    Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2017-01-01

    Effect of acidic pH (4, 5, 6 and uncontrolled) on lactic acid (LA) fermentation from food waste was investigated by batch fermentation experiments using methanogenic sludge, fresh food waste and anaerobic activated sludge as inocula. Results showed that due to the increase of hydrolysis, substrate degradation rate and enzyme activity, the optimal LA concentration and yield were obtained at pH 5, regardless of the inoculum used. The highest LA concentration (28.4g/L) and yield (0.46g/g-TS) were obtained with fresh food waste as inoculum. Moreover, after the substrate was completely utilized, the lactic acid bacteria population sharply decreased, and the LA produced was converted to volatile fatty acids (VFAs) at pH 6 within a short period. The VFA components varied with the inoculum supplied. Microbial community analysis using high-throughput pyrosequencing revealed that diversity decreased and a high abundance of Lactobacillus (83.4-98.5%) accumulated during fermentation with all inocula.

  1. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids

    PubMed Central

    Liang, Wanling; Kwok, Philip C.L.; Chow, Michael Y.T.; Tang, Patricia; Mason, A. James; Chan, Hak-Kim; Lam, Jenny. K.W.

    2013-01-01

    Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impaction (NGI), gel retardation and in vitro transfection via a twin-stage impinger (TSI) following aerosolisation by a dry powder inhaler (Osmohaler™). Although the aerodynamic performance and transfection efficacy of both powders were good, the overall performance revealed SD powders to have a number of advantages over SFD powders and are the more effective formulation with potential for efficient nucleic acid delivery through inhalation. PMID:23702276

  2. The acidic milieu of the horny layer: new findings on the physiology and pathophysiology of skin pH.

    PubMed

    Rippke, Frank; Schreiner, Volker; Schwanitz, Hans-Joachim

    2002-01-01

    The acidic pH of the horny layer, measurable on the skin surface, has long been regarded as a result of exocrine secretion of the skin glands. The 'acid mantle' was thought to regulate the bacterial skin flora and to be sensitive primarily to skin cleansing procedures. In recent years, an increasing number of investigations have been published on the changes in, and constituents and functions of, the pH of the deeper layers of the stratum corneum, as well as on the influence of physiological and pathological factors. A central role for the acidic milieu as a regulating factor in stratum corneum homeostasis is now emerging. This has relevance to the integrity of the barrier function, from normal maturation of the stratum corneum lipids through to desquamation. Changes in the pH and the organic factors influencing it appear to play a role, not only in the pathogenesis, prevention and treatment of irritant contact dermatitis, but also of atopic dermatitis and ichthyosis and in wound healing. On the basis of these findings, a broader concept, exceeding the superficial 'acid mantle' theory, has been formulated.

  3. Influence of pH, type of acid and recovery media on the thermal inactivation of Listeria innocua.

    PubMed

    Miller, Fátima A; Ramos, Bárbara; Gil, Maria M; Brandão, Teresa R S; Teixeira, Paula; Silva, Cristina L M

    2009-07-31

    Acidification of foods with organic acids, either by fermentation or by intentional addition, is an important and common mechanism for controlling foodborne pathogens in a diversity of food products. The objective of this work was to study thermal inactivation of Listeria innocua, an acid tolerant microorganism, at 52.5, 60.0 and 65.0 degrees C, at different pH values (4.5, 6.0 and 7.5), using three types of acid (lactic, acetic and hydrochloric) and three different plating media (Tryptic Soy Agar with 0.6% yeast extract-TSAYE; TSAYE plus 5% NaCl-TSAYE+5%NaCl; and Palcam Agar with selective supplement-Palcam Agar), according to a 3(4) factorial experimental design. Survival data experimentally obtained were fitted with a Gompertz-inspired model and kinetic parameters (shoulder, maximum inactivation rate-k(max), and tail) were estimated for all conditions considered. The influence of temperature, pH, type of acid and enumeration media on kinetic parameters was assessed. Results showed that, with the exception of the type of acid, all the remaining factors and their combinations significantly affected the shoulder period and k(max). In relation to tail, temperature and recovery media were the affectable factors. It was concluded that the survival of this bacteria is higher when combining low temperature with neutral pH, and when TSAYE is the enumeration medium. Bigelow-inspired models were successfully developed and describe accurately the temperature and pH effects on the kinetic parameters.

  4. Growth of Leuconostoc mesenteroides NRRL-B523 in an alkaline medium: suboptimal pH growth inhibition of a lactic acid bacterium.

    PubMed

    Wolf, Barry F; Fogler, H Scott

    2005-01-05

    Bacterial profile modification (BPM), a form of tertiary oil recovery, diverts water from the water-flooded high-permeability zone into the oil-bearing low-permeability zone. During field use, exopolymer-producing bacteria plug the high-permeability zone only in the immediate vicinity of the injection point (the near-well bore region). For effective BPM the plug must penetrate far into the formation. Slowing the specific growth rate, lengthening the lag phase, and slowing the polymerization rate are techniques that can prolong the onset of biopolymer gelation and extend the depth of the biological plug. In batch experiments, the growth of Leuconostoc mesenteroides NRRL-B523 was inhibited by the synergistic effects of high substrate loading and an alkaline pH. Exponential growth was delayed up to 190 h. It was observed that cell division was significantly retarded until the medium pH, reduced by the acid byproducts of fermentation, reached a critical value of 6.79 +/- 0.06. A mathematical model was developed to describe the relationship between specific growth rate, lag time, and medium pH.

  5. Treatment of iron(II)-rich acid mine water with limestone and oxygen.

    PubMed

    Mohajane, G B; Maree, J P; Panichev, N

    2014-01-01

    The main components of acid mine water are free acid, sulphate, and Fe²⁺. Limestone is the most cost-effective alkali that can be used for neutralization. The purpose of this investigation was to identify conditions where Fe²⁺ is removed with limestone and simultaneously oxidized with oxygen to Fe³⁺, in a polyvinyl chloride pipe under pressure. Gypsum scaling is prevented by passing rubber balls through the pipe of the so-called Oxygen-Pipe-Neutralization (OPeN) process pilot plant. Two synthetic waters were treated: (A) acid mine water containing 123 mg L⁻¹ Fe²⁺ representing gold mine water, and (B) acid mine water containing 6,032 mg L⁻¹ Fe²⁺ representing coal mine water. Batch studies were carried out in a pipe reactor and showed that the rate of Fe²⁺ oxidation depended on the Fe²⁺ concentration, oxygen pressure, amount of recycled sludge, limestone dosage and the mixing rate. Continuous studies in an OPeN process pilot plant resulted in 100% removal of total acidity from synthetic coal mine water and a 98% removal from synthetic gold mine water. Fe²⁺ was removed completely as precipitated Fe(OH)₃ from both synthetic coal and gold mine water at around pH 7 at 200 and 100 kPa oxygen pressure, respectively.

  6. An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete

    USGS Publications Warehouse

    Nimick, D.A.; Gurrieri, J.T.; Furniss, G.

    2009-01-01

    Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units

  7. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  8. Influence of pH on hydrothermal treatment of swine manure: Impact on extraction of nitrogen and phosphorus in process water.

    PubMed

    Ekpo, U; Ross, A B; Camargo-Valero, M A; Fletcher, L A

    2016-08-01

    This study investigates the influence of pH on extraction of nitrogen and phosphorus from swine manure following hydrothermal treatment. Conditions include thermal hydrolysis (TH) at 120°C and 170°C, and hydrothermal carbonisation (HTC) at 200°C and 250°C in either water alone or in the presence of 0.1M NaOH, H2SO4, CH3COOH or HCOOH. Phosphorus extraction is pH and temperature dependent and is enhanced under acidic conditions. The highest level of phosphorus is extracted using H2SO4 reaching 94% at 170°C. The phosphorus is largely retained in the residue for all other conditions. The extraction of nitrogen is not as significantly influenced by pH, although the maximum N extraction is achieved using H2SO4. A significant level of organic-N is extracted into the process waters following hydrothermal treatment. The results indicate that operating hydrothermal treatment in the presence of acidic additives has benefits in terms of improving the extraction of phosphorus and nitrogen.

  9. Improvement of chemical monitoring of water-chemistry conditions at thermal power stations based on electric conductivity and pH measurements

    NASA Astrophysics Data System (ADS)

    Larin, A. B.; Larin, B. M.

    2016-05-01

    The increased requirements to the quality of the water heat conductor for working superhigh (SHP) and supercritical (SCP) pressure power plants and promising units, including combined-cycle gas turbine (CCGT) units and power plants with ultrasupercritical parameters (USCPs), can largely be satisfied through specific electric conductivity and pH measurements for cooled heat conductor samples combined with calculations of ionic equilibria and indirect measurements of several specified and diagnostic parameters. The possibility of calculating the ammonia and chloride concentrations and the total concentration of hardness and sodium cations in the feed water of drum-type boilers and the phosphate and salt contents in boiler water was demonstrated. An equation for evaluating the content of potentially acid substances in the feed water of monotube boilers was suggested. The potential of the developed procedure for evaluating the state of waterchemistry conditions (WCCs) in power plants with CCGT units was shown.

  10. Estimation of water activity from pH and °Brix values of some food products.

    PubMed

    Gabriel, Alonzo A

    2008-06-01

    In this study, a predictive model for the estimation of water activity (aw(25°C)) as a function of pH (1.00-8.00) and °Brix (0-82.00) values of simulated food solutions (SFS) was developed, through response surface methodology. Response fit analyses resulted in a highly significant (pH<0.0001) square root polynomial model that can predict aw(25°C) of SFS in terms of pH and °Brix values within the defined variable ranges. The linear, quadratic and interactive influences of pH and °Brix on aw(25°C) were all significant (pH<0.0001). Model validations in SFS and in a number of actual food systems showed that the model had acceptable predictive performance, as indicated by the calculated accuracy and bias indices.

  11. Sonochemical decomposition of hydrazine in water: effects of coal ash and pH on the decomposition and adsorption behavior.

    PubMed

    Nakui, Hiroyuki; Okitsu, Kenji; Maeda, Yasuaki; Nishimura, Rokurou

    2009-07-01

    Sonochemical decomposition of hydrazine in aqueous suspension of coal ash particles was investigated in the different pH solutions. It was clearly found that the initial rate of hydrazine decomposition and adsorption is strongly dependent on the amount of coal ash and pH. At pH1, the amount of the hydrazine adsorption on coal ash was very small and hydrazine was mainly decomposed by ultrasonic irradiation. At pH4, hydrazine was mainly adsorbed on coal ash and not decomposed by ultrasonic irradiation. At pH8, the sonochemical decomposition and the adsorption on coal ash proceeded simultaneously. These results were due to the interactions between the degree of the protonation of hydrazine, the electric charge of coal ash and the amount of OH radicals formed in the sonolysis of water.

  12. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pKa Calculations.

    PubMed

    Dobrev, Plamen; Donnini, Serena; Groenhof, Gerrit; Grubmüller, Helmut

    2017-01-10

    Correct protonation of titratable groups in biomolecules is crucial for their accurate description by molecular dynamics simulations. In the context of constant pH simulations, an additional protonation degree of freedom is introduced for each titratable site, allowing the protonation state to change dynamically with changing structure or electrostatics. Here, we extend previous approaches for an accurate description of chemically coupled titrating sites. A second reaction coordinate is used to switch between two tautomeric states of an amino acid with chemically coupled titratable sites, such as aspartate (Asp), glutamate (Glu), and histidine (His). To this aim, we test a scheme involving three protonation states. To facilitate charge neutrality as required for periodic boundary conditions and Particle Mesh Ewald (PME) electrostatics, titration of each respective amino acid is coupled to a "water" molecule that is charged in the opposite direction. Additionally, a force field modification for Amber99sb is introduced and tested for the description of carboxyl group protonation. Our three states model is tested by titration simulations of Asp, Glu, and His, yielding a good agreement, reproducing the correct geometry of the groups in their different protonation forms. We further show that the ion concentration change due to the neutralizing "water" molecules does not significantly affect the protonation free energies of the titratable groups, suggesting that the three states model provides a good description of biomolecular dynamics at constant pH.

  13. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry

    PubMed Central

    Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F. Luis; Alleva, Karina

    2016-01-01

    Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane. PMID:27028641

  14. PIP Water Transport and Its pH Dependence Are Regulated by Tetramer Stoichiometry.

    PubMed

    Jozefkowicz, Cintia; Sigaut, Lorena; Scochera, Florencia; Soto, Gabriela; Ayub, Nicolás; Pietrasanta, Lía Isabel; Amodeo, Gabriela; González Flecha, F Luis; Alleva, Karina

    2016-03-29

    Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.

  15. Penicillanic acid sulfone: interaction with RTEM beta-lactamase from Escherichia coli at different pH values.

    PubMed

    Kemal, C; Knowles, J R

    1981-06-23

    The interaction of the sulfone of penicillanic acid with the TEM-2 beta-lactamase from Escherichia coli has been investigated as a function of pH between pH 7.0 and 9.6. The first-formed acyl-enzyme suffers one of three fates: deacylation, tautomerization to a bound enamine that transiently inhibited the enzyme, and a process (possibly transimination) that leads to enzyme inactivation. The observed changes in ultraviolet absorbance are consistent with the initially observed product of deacylation being the enamine tautomer (4) of the imine from malonsemialdehyde and penicillamine sulfinate. The same enamine can be generated nonenzymically from the sulfone at high pH. The transiently inhibited enzyme appears to be the same enamine attached to the enzyme by an ester linkage. The rather complex kinetic behavior can be deconvuluted by exploiting the effect of pH on the partitioning of the acyl-enzyme between deacylation and the transiently inhibited form of the enzyme. The pathways followed by penicillanic acid sulfone provide a model for the behavior of a number of other reagents that inactivate the beta-lactamase.

  16. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  17. Reduction of Salmonella enterica on alfalfa seeds with acidic electrolyzed oxidizing water and enhanced uptake of acidic electrolyzed oxidizing water into seeds by gas exchange.

    PubMed

    Stan, Silvia D; Daeschel, Mark A

    2003-11-01

    Alfalfa sprouts have been implicated in several salmonellosis outbreaks in recent years. The disinfectant effects of acidic electrolyzed oxidizing (EO) water against Salmonella enterica both in an aqueous system and on artificially contaminated alfalfa seeds were determined. The optimum ratio of seeds to EO water was determined in order to maximize the antimicrobial effect of EO water. Seeds were combined with EO water at ratios (wt/vol) of 1:4, 1:10, 1:20, 1:40, and 1:100, and the characteristics of EO water (pH, oxidation reduction potential [ORP], and free chlorine concentration) were determined. When the ratio of seeds to EO water was increased from 1:4 to 1:100, the pH decreased from 3.82 to 2.63, while the ORP increased from +455 to +1,073 mV. EO water (with a pH of 2.54 to 2.38 and an ORP of +1,083 to +1,092 mV) exhibited strong potential for the inactivation of S. enterica in an aqueous system (producing a reduction of at least 6.6 log CFU/ml). Treatment of artificially contaminated alfalfa seeds with EO water at a seed-to-EO water ratio of 1:100 for 15 and 60 min significantly reduced Salmonella populations by 2.04 and 1.96 log CFU/g, respectively (P < 0.05), while a Butterfield's buffer wash decreased Salmonella populations by 0.18 and 0.23 log CFU/g, respectively. After treatment, EO water was Salmonella negative by enrichment with or without neutralization. Germination of seeds was not significantly affected (P > 0.05) by treatment for up to 60 min in electrolyzed water. The uptake of liquid into the seeds was influenced by the internal gas composition (air, N2, or O2) of seeds before the liquid was added.

  18. Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism.

    PubMed

    Wolski, Pawel; Nieszporek, Krzysztof; Panczyk, Tomasz

    2017-03-29

    This work deals with an analysis of the covalent functionalization of a carbon nanotube using polyethylene glycol chains terminated by folic acid fragments. The analysis is focused on theoretical predictions, using molecular dynamics simulations, of the properties of such constructs as pH controlled carriers of the anticancer drug doxorubicin. The analyzed systems are expected to hold the doxorubicin in the inner cavity of the carbon nanotube at neutral pH and unload the drug at slightly acidic pH. This property comes from incorporation into the nanotube of some dye molecules (p-phenylenediamine or neutral red) which undergo protonation at slightly acidic pH. We found that both dyes lead to the formation of a stable, co-absorbed phase of a doxorubicin-dye mixture inside the nanotube at physiological pH. At acidic pH we observed a spontaneous release of dyes from the nanotube, leading finally to the state with only doxorubicin encapsulated in the nanotube interior. Thus, the analyzed constructs can be considered as carriers of doxorubicin that are selective to tumor microenvironments (which exhibit reduced pH due to hypoxia and overexpression of folate receptors). However, we also found that the release of doxorubicin from the nanotube at acidic pH is kinetically blocked, at least in the case of the system sizes studied here. Thus, we also discussed some possible ways of reducing the activation barriers against doxorubicin release at acidic pH.

  19. Control of Diapause by Acidic pH and Ammonium Accumulation in the Hemolymph of Antarctic Copepods

    PubMed Central

    Schründer, Sabine; Schnack-Schiel, Sigrid B.; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4+) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4+). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  20. α-Cyclodextrin/aminobenzoic acid binding in salt solutions at different pH: dependence on guest structure.

    PubMed

    Romanova, Anastasia; Chibunova, Ekaterina; Kumeev, Roman; Fedorov, Maxim; Terekhova, Irina

    2013-06-01

    Influence of Na(+) and K(+) cations on α-cyclodextrin guest-host complex formation with isomeric aminobenzoic acids was examined at different pH and temperature of 298.15 K by (1)H NMR and calorimetry methods. More pronounced influence of Na(+) on inclusion complex formation of α-CD with aminobenzoic acid anions compare to the effects of Na(+) on α-CD complex formation with zwitterionic aminobenzoic acid molecules was revealed. For the first time, the dependence of salt effects on the structure, ionization and the hydration state of the guest molecule was demonstrated and analysed on the basis of the obtained thermodynamic parameters of complex formation and calculated free energy of hydration of different ionized forms of aminobenzoic acids.

  1. Solubility controls on aluminum in drinking water at relatively low and high pH.

    PubMed

    Kvech, Steve; Edwards, Marc

    2002-10-01

    Potential control of soluble aluminum in drinking water by formation of solids other than Al(OH)3 was examined. At pHs below 6.0, Al(+3) solids containing sulfate, silica or potassium are thermodynamically favored versus amorphous Al(OH)3; however, in this work no evidence could be obtained that solids other than Al(OH)3 would form in practice. At pHs above 9, aluminum and magnesium were discovered to form complex solid phases of approximate composition AlMg2(OH)7, AlMg2SiO2(OH)7 or Al(SiO2)2(OH)3 dependent on circumstance. Formation of these solids provide a mechanistic explanation for enhancements to precipitative softening obtained in practice by dosing Al(+3) salts; that is, improved flocculation/settling and removal of silica from water that interferes with calcium precipitation. The solids also maintain residual aluminum below regulatory guidelines at high pH > 9.5.

  2. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins.

    PubMed

    Fiorica, Calogero; Pitarresi, Giovanna; Palumbo, Fabio Salvatore; Di Stefano, Mauro; Calascibetta, Filippo; Giammona, Gaetano

    2013-11-30

    Atom transfer radical polymerization (ATRP) has been successfully employed to obtain a new derivative of hyaluronic acid (HA) able to change its solubility as a function of external pH and then to be potentially useful for intestinal release of bioactive molecules, included enzymes and proteins. In particular, a macroinitiator has been prepared by linking 2-bromo-2-methypropionic acid (BMP) to the amino groups of ethylenediamino derivative of tetrabutyl ammonium salt of HA (HA-TBA-EDA). This macroinititor, named HA-TBA-EDA-BMP has been used for the ATRP of sodium methacrylate (MANa) using a complex of Cu(I) and 2,2'-bipyridyl (Byp) as a catalyst. The resulting copolymer, named HA-EDA-BMP-MANa, has been characterized by (1)H NMR and size exclusion chromatography (SEC) analyses. A turbidimetric analysis has showed its pH sensitive behavior, being insoluble in simulated gastric fluid but soluble when pH increases more than 2.5. To confirm the ability of HA-EDA-BMP-MANa in protecting peptides or proteins from denaturation in acidic medium, α-chymotrypsin has been chosen as a model of protein molecule and its activity has been evaluated after entrapment into HA-EDA-BMP-MANa chains and treatment under simulated gastric conditions. Finally, cell compatibility has been evaluated by performing a MTS assay on murine dermal fibroblasts cultured with HA-EDA-BMP-MANa solutions.

  3. Modeling the effects of sodium chloride, acetic acid, and intracellular pH on survival of Escherichia coli O157:H7.

    PubMed

    Hosein, Althea M; Breidt, Frederick; Smith, Charles E

    2011-02-01

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primary antimicrobial compounds in these products are acetic acid and NaCl, which can alter the intracellular physiology of E. coli O157:H7, leading to cell death. For combinations of acetic acid and NaCl at pH 3.2 (a pH value typical for non-heat-processed acidified vegetables), survival curves were described by using a Weibull model. The data revealed a protective effect of NaCl concentration on cell survival for selected acetic acid concentrations. The intracellular pH of an E. coli O157:H7 strain exposed to acetic acid concentrations of up to 40 mM and NaCl concentrations between 2 and 4% was determined. A reduction in the intracellular pH was observed for increasing acetic acid concentrations with an external pH of 3.2. Comparing intracellular pH with Weibull model predictions showed that decreases in intracellular pH were significantly correlated with the corresponding times required to achieve a 5-log reduction in the number of bacteria.

  4. Effects of iron on arsenic speciation and redox chemistry in acid mine water

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2005-01-01

    Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.

  5. Influence of anionic species on uranium separation from acid mine water using strong base resins.

    PubMed

    Ladeira, Ana Claudia Queiroz; Gonçalves, Carlos Renato

    2007-09-30

    The presence of uranium and other elements in high concentrations in acid mine drainage at Poços de Caldas Uranium Mine (Brazil) is a matter of concern. The acid water pH is around 2.7, the uranium concentration is in the range of 6-14 mg L(-1), sulfate concentration near 1400 mg L(-1), fluoride 140 mg L(-1) and iron 180 mg L(-1). In this solution, where sulfate is present in elevated concentrations, uranium is basically in the form of UO(2)(SO(4))(3)(4-). This study investigated the separation of uranium from the other anions present in the acid water under batch and column mode using ion exchange technique. The pH studied was 2.7 and 3.9. Two strong base anionic resins were tested. The influence of ions, commonly found in acid waters like sulfate and fluoride, on ion exchange process was also assessed. Equilibrium studies were carried out to determine the maximum adsorption capacities of the resins. The resins showed a significant capacity for uranium uptake which varied from 66 to 108 mg g(-1) for IRA 910U and 53 to 79 mg g(-1) for Dowex A. The results also showed that SO(4)(2-) is the most interfering ion and it had a deleterious effect on the recovery in the pH range studied. Fluoride did not affect uranium removal.

  6. Characterization of an organic acid analog model in Adirondack, New York, surface waters

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.

    2013-12-01

    Natural waters include a variety of organic matter that differs in composition and functional groups. Dissolved organic matter is important but difficult to characterize acidic and metal binding (e.g., Al) functional groups in chemical equilibrium models. In this study data from Adirondack Lake Survey were used to calibrate an organic acid analog model in order to quantify the influence of organic acids on surface water chemistry. The study sites in the Adirondack region of New York have diverse levels of dissolved organic carbon (DOC), used as a surrogate for organic acids. DOC in 55 Adirondack surface waters varies from 180 μmol C/l (in Little Echo Pond) to 1263 μmol C/l (in Sunday Pond). To reduce the variability inherited in the large raw data set, suite of mean observations was constructed by grouping and averaging measured data into pH intervals of 0.05 pH units from pH 4.15 to 7.3. A chemical equilibrium model, which includes major solutes in natural waters, was linked to an optimization algorithm (genetic algorithm) to calibrate a triprotic organic analog model which includes proton and aluminum binding by adjusting the dissociation constants and site density of DOC. The object of fitting procedure was to simultaneously minimize the discrepancy between observed and simulated pH, acid neutralizing capacity (ANC), organic monomeric aluminum and inorganic monomeric aluminum. A sensitivity analysis on calibrated values indicate that the speciation of the modeled solutes are most responsive to the dissociation constant of AlOrg= Al3+ + Org3- reaction (Org3- represents organic anion), the site density of DOC and the second H+ dissociation constant of the triprotic organic analog (i.e. H2Org- = 2H+ + Org3- reaction).

  7. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  8. Influence of Humic Acid on Stability and Attachment of nTiO2 Particles to Sand at Different pH

    NASA Astrophysics Data System (ADS)

    Cheng, T.

    2015-12-01

    Stability of nano-scale or micro-scale titanium dioxide particles (nTiO2) and their attachment to sediment grains have important implications to the fate and transport of nTiO2 in subsurface environments. nTiO2 may carry either positive or negative charges in natural water, therefore, environmental factors such as pH, humic substances, and Fe oxyhydroxide coatings on sediment grains, which are known to control the stability and transport of negatively charged colloids, may influence nTiO2 in different manners. The objective of this study is to investigate the effects of pH and humic acid (HA) on the stability and attachment of nTiO2 to sand, with special attention to low HA concentration ranges that are relevant to groundwater conditions. Stability and attachment of nTiO2 to quartz sand and Fe oxyhydroxide coated quartz sand were experimentally measured under a range of low HA concentrations at pH 5 and 9. Results showed that HA can either promote or hinder nTiO2 stability, depending on pH and HA concentration. We also found that HA can either enhance or reduce nTiO2 attachment to Fe oxyhydroxide coating at pH 5, depending on HA concentration. Results further showed that at pH 5, Fe oxyhydroxide coating reduced nTiO2 attachment to sand in the absence of HA but increased nTiO2 attachment in the presence of low concentration of HA. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was invoked to analyze particle-to-particle and particle-to-sand interactions in order to elucidate the roles of pH, HA, quartz, and Fe coating in nTiO2 stability and attachment. Overall, this study showed that changes in zeta potential of nTiO2 and Fe coating due to pH changes and/or HA adsorption are the key factors that influence stability and attachment of nTiO2.

  9. Cytoplasmic pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy.

    PubMed

    Martinez, Keith A; Kitko, Ryan D; Mershon, J Patrick; Adcox, Haley E; Malek, Kotiba A; Berkmen, Melanie B; Slonczewski, Joan L

    2012-05-01

    The ability of Escherichia coli and Bacillus subtilis to regulate their cytoplasmic pH is well studied in cell suspensions but is poorly understood in individual adherent cells and biofilms. We observed the cytoplasmic pH of individual cells using ratiometric pHluorin. A standard curve equating the fluorescence ratio with pH was obtained by perfusion at a range of external pH 5.0 to 9.0, with uncouplers that collapse the transmembrane pH difference. Adherent cells were acid stressed by switching the perfusion medium from pH 7.5 to pH 5.5. The E. coli cytoplasmic pH fell to a value that varied among individual cells (range of pH 6.2 to 6.8), but a majority of cells recovered (to pH 7.0 to 7.5) within 2 min. In an E. coli biofilm, cells shifted from pH 7.5 to pH 5.5 failed to recover cytoplasmic pH. Following a smaller shift (from pH 7.5 to pH 6.0), most biofilm cells recovered fully, although the pH decreased further than that of isolated adherent cells, and recovery took longer (7 min or longer). Some biofilm cells began to recover pH and then failed, a response not seen in isolated cells. B. subtilis cells were acid shifted from pH 7.5 to pH 6.0. In B. subtilis, unlike the case with E. coli, cytoplasmic pH showed no "overshoot" but fell to a level that was maintained. This level of cytoplasmic pH post-acid shift varied among individual B. subtilis cells (range of pH, 7.0 to 7.7). Overall, the cytoplasmic pHs of individual bacteria show important variation in the acid stress response, including novel responses in biofilms.

  10. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.

    PubMed

    Matsushika, Akinori; Sawayama, Shigeki

    2012-12-01

    The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0-6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150-200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.

  11. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States

    NASA Astrophysics Data System (ADS)

    Guo, Hongyu; Sullivan, Amy P.; Campuzano-Jost, Pedro; Schroder, Jason C.; Lopez-Hilfiker, Felipe D.; Dibb, Jack E.; Jimenez, Jose L.; Thornton, Joel A.; Brown, Steven S.; Nenes, Athanasios; Weber, Rodney J.

    2016-09-01

    Particle pH is a critical but poorly constrained quantity that affects many aerosol processes and properties, including aerosol composition, concentrations, and toxicity. We assess PM1 pH as a function of geographical location and altitude, focusing on the northeastern U.S., based on aircraft measurements from the Wintertime Investigation of Transport, Emissions, and Reactivity campaign (1 February to 15 March 2015). Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to observed partitioning of inorganic nitrate between the gas and particle phases. Good agreement was found for relative humidity (RH) above 40%; at lower RH observed particle nitrate was higher than predicted, possibly due to organic-inorganic phase separations or nitrate measurement uncertainties associated with low concentrations (nitrate < 1 µg m-3). Including refractory ions in the pH calculations did not improve model predictions, suggesting they were externally mixed with PM1 sulfate, nitrate, and ammonium. Sample line volatilization artifacts were found to be minimal. Overall, particle pH for altitudes up to 5000 m ranged between -0.51 and 1.9 (10th and 90th percentiles) with a study mean of 0.77 ± 0.96, similar to those reported for the southeastern U.S. and eastern Mediterranean. This expansive aircraft data set is used to investigate causes in variability in pH and pH-dependent aerosol components, such as PM1 nitrate, over a wide range of temperatures (-21 to 19°C), RH (20 to 95%), inorganic gas, and particle concentrations and also provides further evidence that particles with low pH are ubiquitous.

  12. Survival of lactic acid and chlorine dioxide treated Campylobacter jejuni under suboptimal conditions of pH, temperature and modified atmosphere.

    PubMed

    Smigic, Nada; Rajkovic, Andreja; Nielsen, Dennis Sandris; Arneborg, Nils; Siegumfeldt, Henrik; Devlieghere, Frank

    2010-07-31

    As mild decontamination treatments are gaining more and more interest due to increased consumer demands for fresh foods, it is of great importance to establish the influence of decontamination treatments on the subsequent bacterial behaviour under suboptimal storage conditions. For this purpose Campylobacter jejuni cells treated with lactic acid (LA, 3% lactic acid, pH 4.0, 2 min) or chlorine dioxide (ClO(2), 20 ppm, 2 min) were inoculated in Bolton broth (pH 6.0) and incubated under 80% O(2)/20% N(2), 80% CO(2)/20% N(2), air or micro-aerophilic (10% CO(2)/85% N(2)/5% O(2)) atmosphere, at 4 degrees C during 7 days. Treatment with water served as a control. The most suppressive atmosphere for the survival of C. jejuni was O(2)-rich atmosphere, followed by air, micro-aerophilic and CO(2)-rich atmosphere. The survival of C. jejuni was dependent on the type of initial decontamination treatment, with water treated cells showing the greatest survival followed by LA and ClO(2) treated cells. Intracellular pH (pH(i)) of individual C. jejuni cells was determined using Fluorescence Ratio Imaging Microscopy (FRIM). At all tested conditions, different subpopulation of the cells could be distinguished based on their pH(i) values. The pH(i) response was independent on the surrounding atmosphere since similar distribution of the subpopulations was observed for all tested atmospheres. However, the pH(i) response was dependent on the initial decontamination treatment. The investigation of intracellular parameters gave an insight into pathogen behaviour under stressful conditions at intracellular level. The results obtained in this study highlighted the importance of combining decontamination technologies with subsequent preservation techniques to the control survival and growth of foodborne pathogens.

  13. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites.

    PubMed

    Louisse, Jochem; Bai, Yanqing; Verwei, Miriam; van de Sandt, Johannes J M; Blaauboer, Bas J; Rietjens, Ivonne M C M

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH(i)) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH(i)in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH(i) of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na(+)/H(+)-antiporter, corroborating an important role of the pH(i) in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH(i) may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  14. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    SciTech Connect

    Louisse, Jochem; Verwei, Miriam; Sandt, Johannes J.M. van de; Rietjens, Ivonne M.C.M.

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH{sub i}) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH{sub i}in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH{sub i} of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na{sup +}/H{sup +}-antiporter, corroborating an important role of the pH{sub i} in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH{sub i} may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  15. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH.

    PubMed

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-03-05

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe ) 7.0 or 5.5 and at a growth rate of 0.2 h(-1) . Population reduction and internal pH (pHi ) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells.

  16. Effects of pH and stress intensity on crack growth rate in Alloy 600 in lithiated + borated water at high temperatures

    SciTech Connect

    Rebak, R.B.; Szklarska-Smialowska, Z.; McIlree, A.R.

    1992-12-31

    Primary water stress corrosion cracking studies were performed on Alloy 600. Constant load tests were conducted at 330 and 350{degrees}C in solutions containing dissolved hydrogen, boric acid (0 < B < 1200 ppm) and lithium hydroxide (0 < Li < 10 ppm). In the PWR working conditions range, that is, 6.9 < pH < 7.4 (or 0.5 ppm < Li < 3.5), there is little effect of the solution pH on the intergranular crack growth rate (IGSCC). However, there is a strong influence of the stress intensity on the IGSCC. K{sub ISCC} {approx} 5-10 MPa{radical}m. Dissolution plays an important role in the IGSCC process.

  17. Effects of carbon, nitrogen and pH on the growth of Aspergillus parasiticus and aflatoxins production in water.

    PubMed

    Al-Gabr, Hamid Moh; Ye, Chengsong; Zhang, Yongli; Khan, Sardar; Lin, Huirong; Zheng, Tianling

    2013-04-01

    Mycotoxins are considered as the most hazardous fungal metabolites for human, animals and plant health. Recently, more attention has been paid on the occurrence of this group of fungi in different water sources throughout the globe. In this study, Aspergillus parasiticus ATCC strain was used as representative strain producing aflatoxins in drinking water. This study aimed to investigate the activation of fungi in drinking water and their ability to produce aflatoxins (B1, B2, G1, and G2) in water under different ratios of C:N using different concentrations of total organic carbon (TOC) and total nitrogen (TN). Glucose and ammonium sulphate were used for changing the levels of TOC and TN in the selected water media. Similarly, the effects of different water pH levels from 4.5 to 8.2 on the growth of this group of fungi and aflatoxins production were also investigated. The results indicate that the growth of fungi was highest, at C:N ratio of 1:1 as compared to other selected ratios. Furthermore, the findings indicate that the pH levels 5.5-6.5 showed best growth of fungi as compared to other pH levels. Aflatoxin concentrations were measured in the water samples using HPLC technique, but selected fungi were not able to produce aflatoxins in water at applied concentrations of TOC and TN mimicking the ratios and concentrations present in the natural aquatic environment.

  18. Investigation of acidity and other water-quality characteristics of Upper Oyster Creek, Ocean County, New Jersey

    USGS Publications Warehouse

    Fusillo, Thomas V.; Schornick, J.C.; Koester, H.E.; Harriman, D.A.

    1980-01-01

    Water-quality data collected in the upper Oyster Creek drainage basin, Ocean County, N.J., indicate that the stream has excellent water quality except for a persistently low pH. The mean concentrations of the major inorganic ions were all less than 6.0 milligrams per liter. Mean concentrations of total nitrogen and total phosphorus were 0.15 mg/L and 0.01 mg/L, respectively. Dissolved oxygen averaged 8.7 mg/L and 81% saturation. Low pH levels are typical of streams draining cedar swamps. In Oyster Creek, the pH tended to decrease downstream due to chemical and biological processes. The pH levels in swamps were one-half unit or more lower than the pH levels in the adjacent stream. Sharp declines in stream pH were noted during runoff periods as the result of the mixing of poorly-buffered stream water with more highly acidic water from surrounding swamp areas. The quality of ground water within the study area was similar to the quality of streamflow, except for higher iron and ammonia-nitrogen concentrations and a higher pH range of 4.9 to 6.5. Precipitation represented a major source of many chemical constituents in the ground- and surface-waters of the Oyster Creek basin. (USGS)

  19. Multivariate curve resolution of synchronous fluorescence spectra matrices of fulvic acids obtained as a function of pH.

    PubMed

    Esteves da Silva, Joaquim C G; Tauler, Romá

    2006-11-01

    Synchronous fluorescence spectra (excitation wavelength range between 280 and 510 nm and wavelength interval of 25 nm) of three samples of fulvic acids (FA) were obtained as a function of the pH, in the range from 2.0 to 10.5, and as a function of the FA concentration, in the range from 20 to 180 mg/L. FA were obtained from composted livestock materials (lsFA), composted sewage sludge (csFA), and Laurentian soil (laFA). Three-dimensional spectral matrices were obtained (wavelength, pH, and FA concentration) and multivariate curve resolution (MCR) was used to calculate spectra and fluorescence intensity profiles for the detected components. Cluster analysis of the calculated spectra showed the existence of similar and unique fluorescent properties in the three FA samples. Some of the calculated fluorescence intensity profiles have a shape compatible with acid-base species distribution diagrams, which allowed pKa values to be estimated, namely, a well-defined acid-base equilibrium with pKa 5.7 +/- 0.2 (lsFA), 6.9 +/- 0.4 (csFA), and 5.5 +/- 0.2 (laFA); and other acid-base systems not well defined with pKa at about 3.0 and 8.6. Other spectral variations revealed the existence of inner-filter effects or self-quenching as the concentration of FA increases.

  20. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    SciTech Connect

    Cingolani, Gino Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  1. Measuring Plant Cell Wall Extension (Creep) Induced by Acidic pH and by Alpha-Expansin

    PubMed Central

    Durachko, Daniel M.; Cosgrove, Daniel J.

    2009-01-01

    Growing plant cell walls characteristically exhibit a property known as 'acid growth', by which we mean they are more extensible at low pH (< 5) 1. The plant hormone auxin rapidly stimulates cell elongation in young stems and similar tissues at least in part by an acid-growth mechanism 2, 3. Auxin activates a H+ pump in the plasma membrane, causing acidification of the cell wall solution. Wall acidification activates expansins, which are endogenous cell wall-loosening proteins 4, causing the cell wall to yield to the wall tensions created by cell turgor pressure. As a result, the cell begins to enlarge rapidly. This 'acid growth' phenomenon is readily measured in isolated (nonliving) cell wall specimens. The ability of cell walls to undergo acid-induced extension is not simply the result of the structural arrangement of the cell wall polysaccharides (e.g. pectins), but depends on the activity of expansins 5. Expansins do not have any known enzymatic activity and the only way to assay for expansin activity is to measure their induction of cell wall extension. T