Science.gov

Sample records for acid water solution

  1. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  2. Evaporation kinetics of acetic acid-water solutions

    NASA Astrophysics Data System (ADS)

    Duffey, K.; Wong, N.; Saykally, R.; Cohen, R. C.

    2012-12-01

    The transport of water molecules across vapor-liquid interfaces in the atmosphere is a crucial step in the formation and evolution of cloud droplets. Despite decades of study, the effects of solutes on the mechanism and rate of evaporation and condensation remain poorly characterized. The present work aims to determine the effect of atmospherically-relevant solutes on the evaporation rate of water. In our experiments, we create a train of micron-sized droplets and measure their temperature via Raman thermometry as they undergo evaporation without condensation. Analysis of the cooling rate yields the evaporation coefficient (γ). Previous work has shown that inorganic salts have little effect on γ, with surface-adsorbing anions causing a slight reduction in the coefficient from that measured for pure water. Organic acids are ubiquitous in aqueous aerosol and have been shown to disrupt the surface structure of water. Here we describe measurements of the evaporation rate of acetic acid solutions, showing that acetic acid reduces γ to a larger extent than inorganic ions, and that γ decreases with increasing acetic acid concentration.

  3. DC diaphragm discharge in water solutions of selected organic acids

    NASA Astrophysics Data System (ADS)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  4. Adaptation of sweeteners in water and in tannic acid solutions.

    PubMed

    Schiffman, S S; Pecore, S D; Booth, B J; Losee, M L; Carr, B T; Sattely-Miller, E; Graham, B G; Warwick, Z S

    1994-03-01

    Repeated exposure to a tastant often leads to a decrease in magnitude of the perceived intensity; this phenomenon is termed adaptation. The purpose of this study was to determine the degree of adaptation of the sweet response for a variety of sweeteners in water and in the presence of two levels of tannic acid. Sweetness intensity ratings were given by a trained panel for 14 sweeteners: three sugars (fructose, glucose, sucrose), two polyhydric alcohols (mannitol, sorbitol), two terpenoid glycosides (rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), one sulfamate (sodium cyclamate), one protein (thaumatin), two N-sulfonyl amides (acesulfame-K, sodium saccharin), and one dihydrochalcone (neohesperidin dihydrochalcone). Panelists were given four isointense concentrations of each sweetener by itself and in the presence of two concentrations of tannic acid. Each sweetener concentration was tasted and rated four consecutive times with a 30 s interval between each taste and a 2 min interval between each concentration. Within a taste session, a series of concentrations of a given sweetener was presented in ascending order of magnitude. Adaptation was calculated as the decrease in intensity from the first to the fourth sample. The greatest adaptation in water solutions was found for acesulfame-K, Na saccharin, rebaudioside-A, and stevioside. This was followed by the dipeptide sweeteners, alitame and aspartame. The least adaptation occurred with the sugars, polyhydric alcohols, and neohesperidin dihydrochalcone. Adaptation was greater in tannic acid solutions than in water for six sweeteners. Adaptation of sweet taste may result from the desensitization of sweetener receptors analogous to the homologous desensitization found in the beta adrenergic system.

  5. Temperature dependence of hydrogen-bond dynamics in acetic acid-water solutions.

    PubMed

    D'Amico, Francesco; Bencivenga, Filippo; Gessini, Alessandro; Masciovecchio, Claudio

    2010-08-19

    An inelastic UV scattering experiment has been carried out on acetic acid-water solutions as a function of temperature and concentration. The analysis of experimental data indicates the presence of a crossover temperature (T(c) approximately 325 +/- 10 K). Above T(c), the energy of hydrogen bonds responsible for water-acetic acid and acetic acid-acetic acid interactions is strongly reduced. This leads to a reduction in the average number of water molecule interacting with acetic acid, as well as to a lower number of acetic acid clusters. The latter behavior can be mainly ascribed to a temperature change in the activation energy of carboxylic groups of acetic acid. These results may be also relevant to better understand the folding mechanism in protein-water solutions. PMID:20701390

  6. Recovery of water and acid from leach solutions using direct contact membrane distillation.

    PubMed

    Kesieme, Uchenna K; Milne, Nicholas; Cheng, Chu Yong; Aral, Hal; Duke, Mikel

    2014-01-01

    This paper describes for the first time the use of direct contact membrane distillation (DCMD) for acid and water recovery from a real leach solution generated by a hydrometallurgical plant. The leach solutions considered contained H2SO4 or HCl. In all tests the temperature of the feed solution was kept at 60 °C. The test work showed that fluxes were within the range of 18-33 kg/m(2)/h and 15-35 kg/m(2)/h for the H2SO4 and HCl systems, respectively. In the H2SO4 leach system, the final concentration of free acid in the sample solution increased on the concentrate side of the DCMD system from 1.04 M up to 4.60 M. The sulfate separation efficiency was over 99.9% and overall water recovery exceeded 80%. In the HCl leach system, HCl vapour passed through the membrane from the feed side to the permeate. The concentration of HCl captured in the permeate was about 1.10 M leaving behind only 0.41 M in the feed from the initial concentration of 2.13 M. In all the experiments, salt rejection was >99.9%. DCMD is clearly viable for high recovery of high quality water and concentrated H2SO4 from spent sulfuric acid leach solution where solvent extraction could then be applied to recover the sulfuric acid and metals. While HCl can be recovered for reuse using only DCMD.

  7. A theoretical study on clusters of benzoic acid water in benzene solutions

    NASA Astrophysics Data System (ADS)

    Sagarik, Kritsana; Chaiwongwattana, Sermsiri; Sisot, Phittaya

    2004-11-01

    Structures and stability of benzoic acid dimer ((BA)2) and benzoic acid-water (BA-H2O) m:n complexes, with m and n = 1, 2, were studied in benzene solutions, using molecular dynamics (MD) simulations. It appeared that nearly all hydrogen bond (H-bond) complexes suggested from different partition experiments existed in MD simulations, with the probability depending on their size and temperature. The MD results revealed the probability of finding H-bonds between water molecules, as well as the non-self-association of water molecules in benzene solutions. Although the H-bonds in (BA)2 are quite strong in the gas phase and pure benzene, they can be opened by water molecules, forming microhydrates in benzene solutions. It was shown that, in order to provide insights into the structures and stability of the BA-H2O complexes in benzene solution, solvent molecules as well as dynamic and temperature effects have to be included in theoretical investigation.

  8. Recovery of water and acid from leach solutions using direct contact membrane distillation.

    PubMed

    Kesieme, Uchenna K; Milne, Nicholas; Cheng, Chu Yong; Aral, Hal; Duke, Mikel

    2014-01-01

    This paper describes for the first time the use of direct contact membrane distillation (DCMD) for acid and water recovery from a real leach solution generated by a hydrometallurgical plant. The leach solutions considered contained H2SO4 or HCl. In all tests the temperature of the feed solution was kept at 60 °C. The test work showed that fluxes were within the range of 18-33 kg/m(2)/h and 15-35 kg/m(2)/h for the H2SO4 and HCl systems, respectively. In the H2SO4 leach system, the final concentration of free acid in the sample solution increased on the concentrate side of the DCMD system from 1.04 M up to 4.60 M. The sulfate separation efficiency was over 99.9% and overall water recovery exceeded 80%. In the HCl leach system, HCl vapour passed through the membrane from the feed side to the permeate. The concentration of HCl captured in the permeate was about 1.10 M leaving behind only 0.41 M in the feed from the initial concentration of 2.13 M. In all the experiments, salt rejection was >99.9%. DCMD is clearly viable for high recovery of high quality water and concentrated H2SO4 from spent sulfuric acid leach solution where solvent extraction could then be applied to recover the sulfuric acid and metals. While HCl can be recovered for reuse using only DCMD. PMID:24569289

  9. Single particle and pair dynamics in water-formic acid mixtures containing ionic and neutral solutes: nonideality in dynamical properties.

    PubMed

    Gupta, Rini; Chandra, Amalendu

    2008-05-14

    A series of molecular dynamics simulations of water-formic acid mixtures containing either an ionic solute or a neutral hydrophobic solute has been performed to study the extent of nonideality in the dynamics of these solutes for varying composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to show nonideal behavior with variation of composition, and similar nonideality is also observed for the diffusion and orientational relaxation of solvent molecules in these mixtures. The diffusion coefficient of a neutral hydrophobic solute, however, decreases monotonically with increase in water concentration. We have also investigated some of the pair dynamical properties such as water-water and water-formic acid hydrogen bond relaxation and residence dynamics of water molecules in water and formic acid hydration shells. The lifetimes of water-water hydrogen bonds are found to be longer than those between formic acid carbonyl oxygen-water hydrogen bonds, whereas the lifetimes of formic acid hydroxyl hydrogen-water hydrogen bonds are longer than those of water-water hydrogen bonds. In general, the hydrogen bond lifetimes for both water-water and water-formic acid hydrogen bonds are found to decrease with increase in water concentration. Residence times of water molecules also show the same trend with increase in formic acid concentration. Interestingly, these pair dynamical properties show a monotonic dependence on composition without any maximum or minimum and behave almost ideally with respect to changes in the composition of the mixtures. The present calculations are performed with fixed-charge nonpolarizable models of the solvent and solute molecules without taking into account many-body polarization effects in an explicit manner. PMID:18532825

  10. Electrical resistance response of polyaniline films to water, ethanol, and nitric acid solution

    NASA Astrophysics Data System (ADS)

    Yin, Hong-Xing; Li, Meng-Meng; Yang, H.; Long, Yun-Ze; Sun, Xin

    2010-08-01

    This paper reports on electrical resistance vs. aging time for the response of polyaniline films under exposure to water, ethanol and nitric acid (HNO3) solution. Camphor sulfonic acid-doped polyaniline films were prepared by a “doping-dedoping-redoping" method, the morphology and microstructures of the films were characterized by a scanning electron microscope and an x-ray diffractometer, the electrical resistance was measured by a four-probe method. It was found that a lower amount of water molecules infiltrating the film can decrease the film's resistance possibly due to an enhancement of charge carrier transfer between polyaniline chains, whereas excessive water molecules can swell inter-chain distances and result in a quick increase of resistance. The resistance of the film under exposure to ethanol increases and becomes much larger than the original value. However, HNO3 solution can decrease the film's resistance sharply possibly owing to doping effect of protonic acid. These results can help to understand the conduction mechanism in polyaniline films, and also indicate that the films have potential application in chemical sensors.

  11. A computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution

    NASA Astrophysics Data System (ADS)

    Mammino, Liliana; Kabanda, Mwadham M.

    2,4,6-Trihydroxybenzoic acid (FA) is the carboxylic acid of phloroglucinol and, in turn, the parent compound of many biologically active compounds. The biological activities of FA are "extreme" among trihydroxybenzoic acids (e.g., lowest antioxidant activity, highest toxicity toward crustaceans). A complete MP2/6-31++G(d,p) conformational study in vacuo shows that the lowest energy conformers contain two intramolecular hydrogen bonds between the COOH function and the two ortho phenolic OH, with the Z form of COOH preferred over the E form. Comparisons with conformers in which the H-bonds are removed enable fairly reliable evaluations of their energy, because of an off-plane shift of COOH on H-bond removal, decreasing the effects of lone pair repulsion. Comparisons with the other hydroxybenzoic acids (extensively calculated in vacuo at the same level of theory) suggest that FA has the strongest intramolecular H-bonds. PCM calculations of FA in water solution show the same sequence of relative stabilities as in vacuo, with narrower differences because of the greater solvent stabilization of higher energy conformers. Calculations of adducts with water molecules H-bonded to different donor-acceptor centers of FA show the preferred arrangements of water molecules around the different regions of FA and confirm that the stronger intramolecular H-bonds are not broken on competition with the possibility of formation of intermolecular H-bonds. HF/6-31++G(d,p) calculations of adducts, in which the FA molecule is completely surrounded by water molecules, show that 14-16 water molecules (depending on the FA conformer geometry) realize arrangements corresponding to a presumable first solvation layer, with all the water molecules directly H-bonded to donor-acceptor centers of FA or bridging water molecules directly H-bonded to them.

  12. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge

    NASA Astrophysics Data System (ADS)

    Vinitnantharat, Soydoa; Kositchaiyong, Sriwilai; Chiarakorn, Siriluk

    2010-06-01

    This paper reports the use of a pellet of adsorbent made from water treatment sludge (S) and acid activated water treatment sludge (SH) for removal of fluoride in the batch equilibration technique. The influence of pH, adsorbent dosage, temperature and effect of other ions were employed to find out the feasibility of acid activated adsorbent to remove fluoride to the permissible concentration of 0.7 mg/L. The results from the adsorption isotherm followed both Langmuir and Freundlich models and the highest fluoride removal was found for adsorbent activated with acetic acid at 2.0 mol/L. The optimum adsorbent dosage was found at 40 g/L, 0.01 mol/L acid activated adsorbent which was able to adsorb fluoride from 10 down to 0.11 mg/L. The adsorption capacity was decreased when the temperature increased. This revealed that the adsorption of fluoride on SH was exothermic. In the presence of nitrate and carbonate ions in the aqueous solution, fluoride removal efficiency of SH decreased from 94.4% to 86.6% and 90.8%, respectively. However, there is no significant effect in the presence of sulfate and chloride ions.

  13. Thermodynamic characteristics of the acid dissociation of dopamine hydrochloride in water-ethanol solutions

    NASA Astrophysics Data System (ADS)

    Ledenkov, S. F.; Vandyshev, V. N.; Molchanov, A. S.

    2012-06-01

    Enthalpies of the interaction of protonated dopamine with a hydroxide ion in water-ethanol mixtures in the concentration range of 0-0.8 EtOH mole fractions are measured calorimetrically. The neutralization process of dopamine hydrochloride is shown to occur endothermally in solvents with an ethanol concentration of ≥0.5 mole fractions. Standard thermodynamic characteristics (Δr H ○, Δr G ○, and Δr S ○) of the first-step acid dissociation of dopamine hydrochloride in solutions are calculated with regard to the autoprotolysis enthalpy of binary solvents. It is found that dissociation enthalpies vary within 9.1-64.8 kJ/mol, depending on the water-ethanol solvent composition.

  14. Differential proteomics to explore the inhibitory effects of acidic, slightly acidic electrolysed water and sodium hypochlorite solution on Vibrio parahaemolyticus.

    PubMed

    Chen, Tai-Yuan; Kuo, Shu-Hao; Chen, Shui-Tein; Hwang, Deng-Fwu

    2016-03-01

    Slightly acidic electrolysed water (SlAEW) and acidic electrolysed water (AEW) have been demonstrated to effectively inactivate food-borne pathogens. However, the underlying mechanism of inactivation remains unknown. Therefore, in this study, a differential proteomic platform was used to investigate the bactericidal mechanism of SlAEW, AEW, and sodium hypochlorite (NaOCl) solutions against Vibrio parahaemolyticus. The upregulated proteins after SlAEW, AEW, and NaOCl treatments were identified as outer membrane proteins K and U. The downregulated proteins after the SlAEW, AEW, and NaOCl treatments were identified as adenylate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and enolase, all of which are responsible for energy metabolism. Protein synthesis-associated proteins were downregulated and identified as elongation factor Tu and GAPDH. The inhibitory effects of SlAEW and AEW solutions against V. parahaemolyticus may be attributed to the changes in cell membrane permeability, protein synthesis activity, and adenosine triphosphate (ATP) biosynthesis pathways such as glycolysis and ATP replenishment.

  15. Differential proteomics to explore the inhibitory effects of acidic, slightly acidic electrolysed water and sodium hypochlorite solution on Vibrio parahaemolyticus.

    PubMed

    Chen, Tai-Yuan; Kuo, Shu-Hao; Chen, Shui-Tein; Hwang, Deng-Fwu

    2016-03-01

    Slightly acidic electrolysed water (SlAEW) and acidic electrolysed water (AEW) have been demonstrated to effectively inactivate food-borne pathogens. However, the underlying mechanism of inactivation remains unknown. Therefore, in this study, a differential proteomic platform was used to investigate the bactericidal mechanism of SlAEW, AEW, and sodium hypochlorite (NaOCl) solutions against Vibrio parahaemolyticus. The upregulated proteins after SlAEW, AEW, and NaOCl treatments were identified as outer membrane proteins K and U. The downregulated proteins after the SlAEW, AEW, and NaOCl treatments were identified as adenylate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and enolase, all of which are responsible for energy metabolism. Protein synthesis-associated proteins were downregulated and identified as elongation factor Tu and GAPDH. The inhibitory effects of SlAEW and AEW solutions against V. parahaemolyticus may be attributed to the changes in cell membrane permeability, protein synthesis activity, and adenosine triphosphate (ATP) biosynthesis pathways such as glycolysis and ATP replenishment. PMID:26471589

  16. Zwitterion/Brønsted Acid Mixtures Showing Controlled Lower Critical Solution Temperature-Type Phase Changes with Water.

    PubMed

    Mieno, Yuki; Kohno, Yuki; Saita, Shohei; Ohno, Hiroyuki

    2016-08-22

    A new ammonium-type zwitterion (ZI), N,N-dihexyl-N-monopentyl-3-sulfonyl-1-propaneammonium (N665 C3S) with adequate hydrophobicity showed reversible and highly temperature-sensitive lower critical solution temperature (LCST)-type phase transitions after being mixed with pure water. Generally for such compounds, those with longer alkyl chains were immiscible with water and those with shorter chains were miscible with water, regardless of temperature. A slightly more hydrophobic ZI than N665 C3S showed LCST-type phase behavior with water when it was mixed with equimolar amounts of a Brønsted acid such as trifluoromethanesulfonic acid (HTfO). The phase-transition temperature of the ZI/Brønsted acid mixed aqueous solution was controllable by water content. PMID:27310140

  17. Hematite-Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono- and Multilayers of Iridium Oxygen-Evolution Catalysts.

    PubMed

    Li, Wei; Sheehan, Stafford W; He, Da; He, Yumin; Yao, Xiahui; Grimm, Ronald L; Brudvig, Gary W; Wang, Dunwei

    2015-09-21

    Solar water splitting in acidic solutions has important technological implications, but has not been demonstrated to date in a dual absorber photoelectrochemical cell. The lack of functionally stable water-oxidation catalysts (WOCs) in acids is a key reason for this slow development. The only WOCs that are stable at low pH are Ir-based systems, which are typically too expensive to be implemented broadly. It is now shown that this deficiency may be corrected by applying an ultra-thin monolayer of a molecular Ir WOC to hematite for solar water splitting in acidic solutions. The turn-on voltage is observed to shift cathodically by 250 mV upon the application of a monolayer of the molecular Ir WOC. When the molecular WOC is replaced by a heterogeneous multilayer derivative, stable solar water splitting for over 5 h is achieved with near-unity Faradaic efficiency.

  18. Abscisic Acid Movement into the Apoplastic solution of Water-Stressed Cotton Leaves

    PubMed Central

    Hartung, Wolfram; Radin, John W.; Hendrix, Donald L.

    1988-01-01

    Leaves of cotton (Gossypium hirsutum L.) were subjected to overpressures in a pressure chamber, and the exuded sap was collected and analyzed. The exudate contained low concentrations of solutes that were abundant in total leaf extracts, and photosynthetic rates and stomatal conductance were completely unaffected by a cycle of pressurization and rehydration. These criteria and others indicate that the experimental techniques inflicted no damage upon the leaf cells. The pH and abscisic acid (ABA) content of the apoplastic fluid both increased greatly with pressure-induced dehydration. Although ABA concentrations did not reach a steady state, the peak levels were above 1 micromolar, an order of magnitude greater than bulk ABA concentrations of the leaf blades. Treatment of leaves with fusicoccin decreased the K+ concentration, greatly reduced the pH rise, and completely eliminated the increase in ABA in the apoplast upon dehydration. When water-stressed leaves were pressurized, the pH of the exuded sap was increased by 0.2 units per 1 megapascal decrease in initial leaf water potential. Buffer capacity of the sap was least in the pH range of interest (6.5-7.5), allowing extremely small changes in H+ fluxes to create large changes in apoplastic pH. The data indicate that dehydration causes large changes in apoplastic pH, perhaps by effects on ATPases; the altered pH then enhances the release of ABA from mesophyll cells into the apoplastic fluid. PMID:16666007

  19. [Bactericidal effect of acidic electrolyzed water--comparison of chemical acidic sodium hydrochloride (NaOCl) solution].

    PubMed

    Iwasawa, A; Nakamura, Y

    1996-09-01

    Acidic electrolyzed water is made recently by various kinds of machines and is widely utilized. In this study, we intended to clarify the relationship between the concentration of chloride and pH in the bactericidal effects with acidic electrolyzed water. The effects of weak or strong acidic electrolyzed water were compared with a pseudo-acidic water of pH adjusted by diluted hydrochloric acid and sodium hydroxide, on Staphylococcus aureus, Staphylococcus epidermidis and Pseudomononas aeruginosa. At pH 5.0 approximately 6.0, 3 bacterial strains were killed soon after being exposed to the acidic water containing chloride 50 mg/liter, and the amount of chloride did not change after allowing to stand open for 6 hours. At pH 2.67 approximately 2.80, the bactericidal effects was observed at the concentration of chloride 5 mg/liter, and 80% of chloride remained after allowing to stand for 6 hours. These results indicated that newly made strong acidic water is more effective under a smaller amount of chloride at pH 2.7, and that weak acidic electrolyzed water should be used, if stable bactericidal effect is expected in cleaning the surroundings. PMID:8921674

  20. Calcium and ascorbic acid affect cellular structure and water mobility in apple tissue during osmotic dehydration in sucrose solutions.

    PubMed

    Mauro, Maria A; Dellarosa, Nicolò; Tylewicz, Urszula; Tappi, Silvia; Laghi, Luca; Rocculi, Pietro; Rosa, Marco Dalla

    2016-03-15

    The effects of the addition of calcium lactate and ascorbic acid to sucrose osmotic solutions on cell viability and microstructure of apple tissue were studied. In addition, water distribution and mobility modification of the different cellular compartments were observed. Fluorescence microscopy, light microscopy and time domain nuclear magnetic resonance (TD-NMR) were respectively used to evaluate cell viability and microstructural changes during osmotic dehydration. Tissues treated in a sucrose-calcium lactate-ascorbic acid solution did not show viability. Calcium lactate had some effects on cell walls and membranes. Sucrose solution visibly preserved the protoplast viability and slightly influenced the water distribution within the apple tissue, as highlighted by TD-NMR, which showed higher proton intensity in the vacuoles and lower intensity in cytoplasm-free spaces compared to other treatments. The presence of ascorbic acid enhanced calcium impregnation, which was associated with permeability changes of the cellular wall and membranes. PMID:26575708

  1. Recovery of transplutonium elements from aqueous and water-ethanol solutions of sulfuric acid and their separation from other actinides

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-05-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on anion and cation exchangers in aqueous and water-ethanol solutions of sulfuric acid as a function of the various components of the solution has been investigated. It has been discovered that the presence of ethanol in sulfuric acid solutions causes an increase in the distribution coefficients both on cation exchangers and on anion exchangers. The possibility of the use of ion exchangers for the preconcentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements which form strong complexes with sulfate ions over a broad range of concentrations of sulfuric acid has been demonstrated.

  2. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  3. Anion-exchange separation techniques with methanol-water solutions of hydrochloric and nitric acids.

    PubMed

    Morrow, R J

    1966-09-01

    Mixed methanol-water systems were shown to be of use in the analysis of samples containing 500-mg amounts of metallic impurities for rare earths and actinides. Detailed study of the hydrochloric acid-methanol system led to improved separation of einsteinium and californium from americium and curium as well as to lanthanideactinide separations. Comparisons of elution orders are also drawn between these systems and the corresponding lithium salt systems, with emphasis on ion-hydration theories.

  4. GIAO-DFT isotropic magnetic shielding constants and spin-spin coupling of tartaric acid in water solution

    NASA Astrophysics Data System (ADS)

    Fideles, Bruna; Oliveira, Leonardo B. A.; Colherinhas, Guilherme

    2016-01-01

    We investigate the nuclear isotropic shielding constants and spin-spin coupling for oxygen and carbons atoms of isomers of tartaric acid in gas phase and in water solutions by Monte Carlo simulation and quantum mechanics calculations using the GIAO-B3LYP approach. Solute polarization effects are included iteratively and play an important role in the quantitative determination of shielding constants. Our MP2/aug-cc-pVTZ results show substantial increases of the dipole moment in solution as compared with the gas phase results (61-221%). The solvent effects on the σ(13O) values are in general small. More appreciable solvent effects can be seen on the σ(17O) and J(Csbnd O).

  5. [Study on the stability variation mechanism of humic acid water solution after radiated by the UV light].

    PubMed

    Wang, Wen-Dong; Zhou, Li-chuan; Ding, Zhen-Zhen; Wang, Hong-Ping; Sun, Xue-Jun

    2013-10-01

    Humic acid widely presents in various surface waters. Molecular structure has significant impacts on its physical and chemical properties. To explore the stability variation of humic acid before and after the UV light radiation, spectroscopic and electrochemical analysis were applied in this paper. Structural parameters selected in the experiments include reactive sites, such as phenolic hydroxyl and carboxyl contents, Zeta potential, and colloidal size. It was found that there was little humic acid being removed in the solution without UV radiation pretreatment; while its remove ratio increased notably with radiation time. After 3 h pretreatment, humic acid removal ratio was above 80% in coagulation. Spectroscopy analysis results showed that partial of the groups with fluorescent effects might be shed or rearranged after the radiation; while its aromatic structure was not destroyed. Both the Zeta potential and average colloidal size decreased with the radiation time, which was not conducive to the aggregation of humic acid. However, -OH content decreased slightly after the UV radiation, and new carboxyl and carbonyl groups formed simultaneously. The increasing of the reactive sites and the improvement of the reaction effectiveness were the major reasons leading to humic acid stability decrease in PAC! coagulation. PMID:24364311

  6. [Study on the stability variation mechanism of humic acid water solution after radiated by the UV light].

    PubMed

    Wang, Wen-Dong; Zhou, Li-chuan; Ding, Zhen-Zhen; Wang, Hong-Ping; Sun, Xue-Jun

    2013-10-01

    Humic acid widely presents in various surface waters. Molecular structure has significant impacts on its physical and chemical properties. To explore the stability variation of humic acid before and after the UV light radiation, spectroscopic and electrochemical analysis were applied in this paper. Structural parameters selected in the experiments include reactive sites, such as phenolic hydroxyl and carboxyl contents, Zeta potential, and colloidal size. It was found that there was little humic acid being removed in the solution without UV radiation pretreatment; while its remove ratio increased notably with radiation time. After 3 h pretreatment, humic acid removal ratio was above 80% in coagulation. Spectroscopy analysis results showed that partial of the groups with fluorescent effects might be shed or rearranged after the radiation; while its aromatic structure was not destroyed. Both the Zeta potential and average colloidal size decreased with the radiation time, which was not conducive to the aggregation of humic acid. However, -OH content decreased slightly after the UV radiation, and new carboxyl and carbonyl groups formed simultaneously. The increasing of the reactive sites and the improvement of the reaction effectiveness were the major reasons leading to humic acid stability decrease in PAC! coagulation.

  7. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  8. Solution nonideality related to solute molecular characteristics of amino acids.

    PubMed Central

    Keener, C R; Fullerton, G D; Cameron, I L; Xiong, J

    1995-01-01

    By measuring the freezing-point depression for dilute, aqueous solutions of all water-soluble amino acids, we test the hypothesis that nonideality in aqueous solutions is due to solute-induced water structuring near hydrophobic surfaces and solute-induced water destructuring in the dipolar electric fields generated by the solute. Nonideality is expressed with a single solute/solvent interaction parameter I, calculated from experimental measure of delta T. A related parameter, I(n), gives a method of directly relating solute characteristics to solute-induced water structuring or destructuring. I(n)-values correlate directly with hydrophobic surface area and inversely with dipolar strength. By comparing the nonideality of amino acids with progressively larger hydrophobic side chains, structuring is shown to increase with hydrophobic surface area at a rate of one perturbed water molecule per 8.8 square angstroms, implying monolayer coverage. Destructuring is attributed to dielectric realignment as described by the Debye-Hückel theory, but with a constant separation of charges in the amino-carboxyl dipole. By using dimers and trimers of glycine and alanine, this destructuring is shown to increase with increasing dipole strength using increased separation of fixed dipolar charges. The capacity to predict nonideal solution behavior on the basis of amino acid characteristics will permit prediction of free energy of transfer to water, which may help predict the energetics of folding and unfolding of proteins based on the characteristics of constituent amino acids. Images FIGURE 6 PMID:7711253

  9. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  10. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards. PMID:8125066

  11. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.

    PubMed

    Rilbe, H

    1993-10-01

    Exact relations between pH and concentrations of water solutions of acids, bases, and simple ampholytes are presented in the form of computer-created curves. These are mathematically analysed with respect to linearity and inflexion points. The extreme invariance of pH in the immediate vicinity of the isoelectric points of ampholytes is demonstrated in curves of the logarithm of molarity as a function of the logarithm of magnitude of pH-pI magnitude of. These considerations include a discussion of the suitability of ampholytes as pH standards.

  12. 2010 Water & Aqueous Solutions

    SciTech Connect

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  13. Role of Organic Solutes in the Chemistry Of Acid-Impacted Bog Waters of the Western Czech Republic

    NASA Astrophysics Data System (ADS)

    HrušKa, Jakub; Johnson, Chris E.; KráM, Pavel

    1996-04-01

    In many regions, naturally occurring organic acid anions can effectively buffer mineral acid inputs from atmospheric deposition, moderating their effect on surface water pH. We studied the effect of chronically high inputs of acid rain on the chemistry of three brown-water streams in the western Czech Republic. The dissolved organic acids in the streams were similar in character to those of other systems in Europe and North America. The site densities (the carboxyl group content per mass of C) were similar to values reported from Fenno-Scandia, and the relationship between the apparent pKa and pH conformed to those from two North American studies. Sulfate and organic acid anions (OA-) were the dominant anions in all three streams, yet despite high dissolved organic carbon and total organic acid concentrations, OA - comprised only 21-32% of total anion charge. This pattern was due to very high sulfate concentrations and, in two of the streams, a low degree of dissociation of the organic acids, probably the results of high long-term inputs of strong acids. Stream water pH was highly correlated to sulfate concentration, but uncorrelated with OA-, suggesting that free acidity is controlled by strong mineral acids rather than organic acids. Thus future reductions in strong acid inputs should result in increased pH and a return to organic control over acid-base chemistry.

  14. Reprint of The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    PubMed

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-12-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. PMID:26508275

  15. The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    PubMed

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-10-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated.

  16. Reprint of The improvement of the energy resolution in epi-thermal neutron region of Bonner sphere using boric acid water solution moderator.

    PubMed

    Ueda, H; Tanaka, H; Sakurai, Y

    2015-12-01

    Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated.

  17. Freezing temperatures of aqueous iron(III) sulfate solutions and crystallization of a new acidic water-rich sulfate

    NASA Astrophysics Data System (ADS)

    Hennings, E.; Zürner, P.; Schmidt, H.; Voigt, W.

    2013-09-01

    An important question concerning the possibility of life under martian conditions is the existence of liquid water at low temperatures. On the martian surface, the existence of iron(III) sulfate is expected. The influence of iron(III) sulfate salt on ice deposits in respect to the formation of liquid salt brines was not investigated in the past. In this contribution, the investigation of the phase diagram of the system iron(III) sulfate-water and the influence of sulfuric acid to this system are presented. A new crystalline acidic iron(III) sulfate hydrate has been found in the ternary system iron(III) sulfate-water-sulfuric acid, which represents the most water-rich iron salt phase ever detected.

  18. Salinity, water hardness, and dissolved organic carbon modulate degradation of peracetic acid (PAA) compounds in aqueous solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is used in aquaculture under different conditions for disinfection purposes. However, there is a lack of information about its environmental fate, particularly its persistence in aquatic systems with different chemistries. Therefore, the impact of water hardness, salinity, and d...

  19. Electrical conductivity of acidic sulfate solution

    NASA Astrophysics Data System (ADS)

    Majima, Hiroshi; Peters, Ernest; Awakura, Yasuhiro; Park, Sung Kook

    1987-03-01

    The electrical conductivities of the aqueous solution system of H2SO4-MSO4 (involving ZnSO4, MgSO4, Na2SO4, and (NH4)2SO4), reported by Tozawa et al., were examined in terms of a (H2O) and H+ ion concentration. The equations to compute the concentrations of various species in aqueous sulfuric acid solutions containing metal sulfates were derived for a typical example of the H2SO4-ZnSO4-MgSO4-(Na2SO4)-H2O system. It was found that the H+ ion concentrations in concentrated sulfuric acid solutions corresponding to practical zinc electrowinning solutions are very high and remain almost constant with or without the addition of metal sulfates. The addition of metal sulfates to aqueous sulfuric acid solution causes a decrease in electrical conductivity, and this phenomenon is attributed to a decrease in water activity, which reflects a decrease in the amount of free water. The relationship between conductivity and water activity at a constant H+ ion concentration is independent of the kind of sulfates added. On the other hand, any increase in H+ ion concentration results in an increase in electrical conductivity. A novel method for the prediction of electrical conductivity of acidic sulfate solution is proposed that uses the calculated data of water activity and the calculated H+ ion concentration. Also, the authors examined an extension of the Robinson-Bower equation to calculate water activity in quarternary solutions based on molarity instead of molality, and found that such calculated values are in satisfactory agreement with those determined experimentally by a transpiration method.

  20. Water treatment by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate in water and tannic acid solution.

    PubMed

    Czech, Bożena; Oleszczuk, Patryk; Wiącek, Agnieszka Ewa; Barczak, Mariusz

    2015-12-01

    The objective of the study was to estimate how water treatment (stimulation of real conditions) by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate (stability/aggregation) in water and tannic acid solution. The processes studied had only a slight effect on SBET, porosity, and surface composition of CNTs. There was a change in the morphology of CNTs. After H2O2 and/or UV treatment, CNTs underwent shortening, opening up of their ends, and exfoliation. Treatment with H2O2 increased the content of oxygen in CNTs. A decrease was observed in the surface charge and in the mobility of CNTs, which caused an increase in their stability. UV irradiation of CNTs led to an increased incidence of defects that were manifested by both an increase of zeta potential and an increased mobility of CNT, whereas the presence of H2O2 during UV irradiation had only a slight effect on the parameters of the porous structure of nanotubes.

  1. Water treatment by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate in water and tannic acid solution.

    PubMed

    Czech, Bożena; Oleszczuk, Patryk; Wiącek, Agnieszka Ewa; Barczak, Mariusz

    2015-12-01

    The objective of the study was to estimate how water treatment (stimulation of real conditions) by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate (stability/aggregation) in water and tannic acid solution. The processes studied had only a slight effect on SBET, porosity, and surface composition of CNTs. There was a change in the morphology of CNTs. After H2O2 and/or UV treatment, CNTs underwent shortening, opening up of their ends, and exfoliation. Treatment with H2O2 increased the content of oxygen in CNTs. A decrease was observed in the surface charge and in the mobility of CNTs, which caused an increase in their stability. UV irradiation of CNTs led to an increased incidence of defects that were manifested by both an increase of zeta potential and an increased mobility of CNT, whereas the presence of H2O2 during UV irradiation had only a slight effect on the parameters of the porous structure of nanotubes. PMID:26304806

  2. Acidic ionic liquid/water solution as both medium and proton source for electrocatalytic H2 evolution by [Ni(P2N2)2]2+ complexes

    PubMed Central

    Pool, Douglas H.; Stewart, Michael P.; O’Hagan, Molly; Shaw, Wendy J.; Roberts, John A. S.; Bullock, R. Morris; DuBois, Daniel L.

    2012-01-01

    The electrocatalytic reduction of protons to H2 by (where in the highly acidic ionic liquid dibutylformamidium bis(trifluoromethanesulfonyl)amide shows a strong dependence on added water. A turnover frequency of 43,000–53,000 s-1 has been measured for hydrogen production at 25 °C when the mole fraction of water (χH2O) is 0.72. The same catalyst in acetonitrile with added dimethylformamidium trifluoromethanesulfonate and water has a turnover frequency of 720 s-1. Thus, the use of an ionic liquid/aqueous solution enhances the observed catalytic rate by more than a factor of 50, compared to a similar acid in a traditional organic solvent. Complexes (X = H, OMe,CH2P(O)(OEt)2, Br) are also catalysts in the ionic liquid/water mixture, and the observed catalytic rates correlate with the hydrophobicity of X. PMID:22685211

  3. Composition and stability of complexes of maleic and succinic acids with Cu2+ ions in water-ethanol solutions at 298 K

    NASA Astrophysics Data System (ADS)

    Tukumova, N. V.; Usacheva, T. R.; Thuan, Tran Thi Dieu; Sharnin, V. A.

    2014-10-01

    The composition and stability of coordination compounds of the anions of maleic (H2L) and succinic (H2Y) acids with copper(II) ions in water-ethanol solutions is studied by means of potentiometric titration at a sodium perchlorate ionic strength of 0.1 and a temperature of 298.15 K. The composition of the water-ethanol solvent was varied from 0 to 0.7 molar parts of ethanol for maleic acid and from 0 to 0.4 molar parts for succinic acid. The stability of monoligand complexes of copper ions with the anions of maleic and succinic acids grows with increase of ethanol concentration from 3.86 to 6.62 for logβCuL and from 2.98 to 6.01 for logβCuY. It is shown that a monotonic rise in stability upon an increase in the content of ethanol in solution is observed, while the values of logβCuL change more sharply. The succinic acid anion forms a stronger complex with copper ions than maleic acid anions do at an ethanol content of 0.4 molar parts. The possibility of the formation of a protonated CuHY+ particle is established.

  4. Acid and base recovery from brine solution using PVP intermediate-based bipolar membrane through water splitting technology

    NASA Astrophysics Data System (ADS)

    Venugopal, Krishnaveni; Murugappan, Minnoli; Dharmalingam, Sangeetha

    2015-10-01

    Potable water has become a scarce resource in many countries. In fact, the world is not running out of water, but rather, the relatively fixed quantity is becoming too contaminated for many applications. Hence, the present work was designed to evaluate the desalination efficiency of resin and glass fiber-reinforced Polysulfone polymer-based monopolar and bipolar (BPM) ion exchange membranes (with polyvinyl pyrrolidone as the intermediate layer) on a real sample brine solution for 8 h duration. The prepared ion exchange membranes (IEMs) were characterized using FTIR, SEM, TGA, water absorption, and contact angle measurements. The BPM efficiency, electrical conductivity, salinity, sodium, and chloride ion concentration were evaluated for both prepared and commercial-based IEM systems. The current efficiency and energy consumption values obtained during BPMED process were found to be 45 % and 0.41 Wh for RPSu-PVP-based IEM system and 38 % and 1.60 Wh for PSDVB-based IEM system, respectively.

  5. Sulfuric Acid and Water: Paradoxes of Dilution

    ERIC Educational Resources Information Center

    Leenson, I. A.

    2004-01-01

    On equilibrium properties of aqueous solutions of sulfuric acid, Julius Thomsen has marked that the heat evolved on diluting liquid sulfuric acid with water is a continuous function of the water used, and excluded absolutely the acceptance of definite hydrates as existing in the solution. Information about thermochemical measurement, a discussion…

  6. Comprehensive Water-Efficiency Solutions

    SciTech Connect

    McMordie Stoughton, Kate

    2015-07-15

    Energy performance contracts can be an effective way to integrate comprehensive water-efficient technologies and solutions into energy efficiency projects. Current practices often miss key opportunities to incorporate a full suite of water measures primarily because a comprehensive approach is not taken in the assessment. This article provides information on how to develop a comprehensive water project that leads to innovative solutions and potential for large water reduction.

  7. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum).

    PubMed

    Loutfy, Naglaa; El-Tayeb, Mohamed A; Hassanen, Ahmed M; Moustafa, Mahmoud F M; Sakuma, Yoh; Inouhe, Masahiro

    2012-01-01

    Salicylic acid (SA) controls growth and stress responses in plants. It also induces drought tolerance in plants. In this paper, four wheat (Triticum aestivum L.) cultivars with different drought responses were treated with SA in three levels of drain (90, 60, 30% of maximum field capacity) to examine its interactive effects on drought responses and contents of osmotic solutes that may be involved in growth and osmotic adjustment. Under drought condition, the cultivars Geza 164 and Sakha 69 had the plant biomass and leaf relative water content (LRWC) greater than the cultivars Gemaza 1 and Gemaza 3. In all cultivars, drought stress decreased the biomass, LRWC, and the contents of inorganic solutes (Ca, K, Mg) and largely increased the contents of organic solutes (soluble sugars and proline). By contrast, SA increased the biomass, LRWC and the inorganic and organic solute contents, except proline. Correlation analysis revealed that the LRWC correlated positively with the inorganic solute contents but negatively with proline in all cultivars. SA caused maximum accumulations of soluble sugars in roots under drought. These results indicated that SA-enhanced tolerance might involve solute accumulations but independently of proline biosynthesis. Drought-sensitive cultivars had a trait lowering Ca and K levels especially in shoots. Possible functions of the ions and different traits of cultivars were discussed.

  8. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  9. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  10. Process for the recovery of strontium from acid solutions

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.

    1990-12-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  11. Process for defoaming acid gas scrubbing solutions and defoaming solutions

    SciTech Connect

    Ernst, E.R.; Robbins, M.L.

    1980-06-17

    The foam in acid gas scrubbing solutions created during an acid gas scrubbing process is reduced or eliminated by the addition of certain polyoxyethylene polyoxypropylene block copolymers as defoaming agents. The defoaming agents are particularly effective when the acid gas scrubbing solution contains an amine having a large hydrophobic moiety.

  12. Efficacy of Neutral Electrolyzed Water, Quaternary Ammonium and Lactic Acid-Based Solutions in Controlling Microbial Contamination of Food Cutting Boards Using a Manual Spraying Technique.

    PubMed

    Al-Qadiri, Hamzah M; Ovissipour, Mahmoudreza; Al-Alami, Nivin; Govindan, Byju N; Shiroodi, Setareh Ghorban; Rasco, Barbara

    2016-05-01

    Bactericidal activity of neutral electrolyzed water (NEW), quaternary ammonium (QUAT), and lactic acid-based solutions was investigated using a manual spraying technique against Salmonella Typhimurium, Escherichia coli O157:H7, Campylobacter jejuni, Listeria monocytogenes and Staphylococcus aureus that were inoculated onto the surface of scarred polypropylene and wooden food cutting boards. Antimicrobial activity was also examined when using cutting boards in preparation of raw chopped beef, chicken tenders or salmon fillets. Viable counts of survivors were determined as log10 CFU/100 cm(2) within 0 (untreated control), 1, 3, and 5 min of treatment at ambient temperature. Within the first minute of treatment, NEW and QUAT solutions caused more than 3 log10 bacterial reductions on polypropylene surfaces whereas less than 3 log10 reductions were achieved on wooden surfaces. After 5 min of treatment, more than 5 log10 reductions were achieved for all bacterial strains inoculated onto polypropylene surfaces. Using NEW and QUAT solutions within 5 min reduced Gram-negative bacteria by 4.58 to 4.85 log10 compared to more than 5 log10 reductions in Gram-positive bacteria inoculated onto wooden surfaces. Lactic acid treatment was significantly less effective (P < 0.05) compared to NEW and QUAT treatments. A decline in antimicrobial effectiveness was observed (0.5 to <2 log10 reductions were achieved within the first minute) when both cutting board types were used to prepare raw chopped beef, chicken tenders or salmon fillets. PMID:27027449

  13. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  14. Nitric acid recovery from waste solutions

    DOEpatents

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  15. Method for liquid chromatographic extraction of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  16. Investigation of the impact of organic solvent type and solution pH on the extraction efficiency of naphthenic acids from oil sands process-affected water.

    PubMed

    Huang, Rongfu; McPhedran, Kerry N; Sun, Nian; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-03-01

    Naphthenic acids (NAs) from oil sand process-affected water (OSPW) were liquid-liquid extracted using six organic solvents (n-pentane, n-hexane, cyclohexane, dichloromethane, ethyl ether, and ethyl acetate) at three pHs (2.0, 8.5, and 12.0). The NAs exist in ionic (ions) and non-ionic (molecules) forms in the water phase depending on their dissociation constants and the solution pH. Results showed the extractability of NA molecules depends on the solvent polarity and the extractability of NA ions on the water solubility in solvent. The organic solvent type and solution pH were found to not only impact the extracted amounts of each NA species, but also the NAs distribution in terms of molecule carbon number and hydrogen deficiency. Overall, it is concluded that ethyl ether can be used as an alternative to dichloromethane (DCM) given their similar extraction efficiencies and extracted NA profiles. This is important since DCM is known to have metabolic toxicity and transitioning to the safer ethyl ether would eliminate laboratory DCM exposures and risk to human health. Despite the higher extraction efficiency of NAs at pH 2.0, extraction at pH 12.0 could be useful for targeted extraction of low-concentration nonpolar organic compounds in OSPW. This knowledge may assist in the determination of the specific NAs species that are known to have chronic, sub-chronic and acute toxicity to various organisms, and the potential targeting of treatment to these NAs species.

  17. The Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Houser, P.; Belvedere, D.; Imam, B.; Schiffer, R.; Schlosser, C.; Gupta, H.; Welty, C.; Vörösmarty, C.; Matthews, D.; Lawford, R.

    2006-12-01

    The goal of the Water cycle Solutions Network is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend research results to augment decision support tools and meet national needs. WaterNet will engage relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect water cycle research results (WCRs) towards the improvement of water-related Decision Support Tools (DSTs). An actionable database includes enough sufficient knowledge about its nodes and their heritage so that connections between these nodes are identifiable and robust. Recognizing the many existing highly valuable water-related science and application networks, we will focus the balance of our efforts on enabling their interoperability in a solutions network context. We will initially focus on identification, collection, and analysis of the two end points, these being the WCRs and water related DSTs. We will then develop strategies to connect these two end points via innovative communication strategies, improved user access to NASA resources, improved water cycle research community appreciation for DST requirements, improved policymaker, management and stakeholder knowledge of NASA research and application products, and improved identification of pathways for progress. Finally, we will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. The WaterNet will deliver numerous pre-evaluation reports that will identify the pathways for improving the collective ability of the water cycle community to routinely harness WCRs that address crosscutting water cycle challenges.

  18. Acid rain and drinking water degradation.

    PubMed

    Middleton, P; Rhodes, S L

    1984-03-01

    Acid deposition-induced drinking water degradation is discussed with respect to the geographical extent of and the potential for dealing with possibly adverse human health impacts. Qualitative evidence from the northeastern United States and Sweden strongly suggests the existence of a linkage between these two environmental concerns. It is argued that water treatment and reduction of acid rain as solutions to the problem of water toxicity need closer evaluation. More research into the causal link is warranted since the addition of human health impacts to acid rain's environmental insults could have a significant bearing on discussions relating to acid rain controls.

  19. Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration.

    PubMed

    Kiura, Hiromasa; Sano, Kouichi; Morimatsu, Shinichi; Nakano, Takashi; Morita, Chizuko; Yamaguchi, Masaki; Maeda, Toyoyuki; Katsuoka, Yoji

    2002-05-01

    Electrolyzed strong acid water (ESW) containing free chlorine at various concentrations is becoming to be available in clinical settings as a disinfectant. ESW is prepared by electrolysis of a NaCl solution, and has a corrosive activity against medical instruments. Although lower concentrations of NaCl and free chlorine are desired to eliminate corrosion, the germicidal effect of ESW with low NaCl and free-chlorine concentrations (ESW-L) has not been fully clarified. In this study, we demonstrated that ESW-L possesses bactericidal activity against Mycobacteria and spores of Bacillus subtilis. The effect was slightly weaker than that of ESW containing higher NaCl and free-chlorine concentrations (ESW-H), but acceptable as a disinfectant. To clarify the mechanism of the bactericidal activity, we investigated ESW-L-treated Pseudomonas aeruginosa by transmission electron microscopy, a bacterial enzyme assay and restriction fragment length polymorphism pattern (RFLP) assay. Since the bacterium, whose growth was completely inhibited by ESW-L, revealed the inactivation of cytoplasmic enzyme, blebs and breaks in its outer membrane and remained complete RFLP of DNA, damage of the outer membrane and inactivation of cytoplasmic enzyme are the important determinants of the bactericidal activity.

  20. Organic acids in naturally colored surface waters

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  1. Enthalpies and constants of dissociation of several neutral and cationic acids in aqueous and methanol/water solutions at various temperatures.

    PubMed

    Shoghi, Elham; Romero, Lilian; Reta, Mario; Ràfols, Clara; Bosch, Elisabeth

    2009-05-01

    The acidic dissociation enthalpies and constants of anilinium, protonated tris(hydroxymethyl)aminomethane (HTris(+)), benzoic and acetic acids, have been determined at several temperatures in pure water and in methanol/water mixtures by potentiometry and by isothermal titration microcalorimetry (ITC). The pK(a) values determined by both techniques are in accordance when the dissociation process involves large amounts of heat. However, for the neutral acids the ITC technique gave slightly lower pK(a) values than those from potentiometry at the highest temperatures studied due to the small amounts of heat involved in the acidic dissociation. The dissociation enthalpies have been determined directly by calorimetry and the obtained values slightly decrease with the increase of temperature. Therefore, only a rough estimation of the dissociation enthalpies can be obtained from potentiometric pK(a) by means of the Van't Hoff approach.

  2. Enthalpies and constants of dissociation of several neutral and cationic acids in aqueous and methanol/water solutions at various temperatures.

    PubMed

    Shoghi, Elham; Romero, Lilian; Reta, Mario; Ràfols, Clara; Bosch, Elisabeth

    2009-05-01

    The acidic dissociation enthalpies and constants of anilinium, protonated tris(hydroxymethyl)aminomethane (HTris(+)), benzoic and acetic acids, have been determined at several temperatures in pure water and in methanol/water mixtures by potentiometry and by isothermal titration microcalorimetry (ITC). The pK(a) values determined by both techniques are in accordance when the dissociation process involves large amounts of heat. However, for the neutral acids the ITC technique gave slightly lower pK(a) values than those from potentiometry at the highest temperatures studied due to the small amounts of heat involved in the acidic dissociation. The dissociation enthalpies have been determined directly by calorimetry and the obtained values slightly decrease with the increase of temperature. Therefore, only a rough estimation of the dissociation enthalpies can be obtained from potentiometric pK(a) by means of the Van't Hoff approach. PMID:19261425

  3. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  4. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-01

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids. PMID:23050492

  5. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-01

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  6. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA–MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA–MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA–DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  7. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA-MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA-MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA-DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  8. Dynamics of dilute solutions of poly(aspartic acid) and its sodium salt elucidated from atomistic molecular dynamics simulations with explicit water.

    PubMed

    Ramachandran, Sanoop; Katha, Anki Reddy; Kolake, Subramanya Mayya; Jung, Bokyung; Han, Sungsoo

    2013-11-01

    The use of forward osmosis (FO) process for seawater desalination has attracted tremendous interest in recent years. Besides the manufacture of suitable membranes, the major technical challenge in the efficient deployment of the FO technology lies in the development of a suitable "draw solute". Owing to its inherent advantages, poly(aspartic acid) has arisen to be an attractive candidate for this purpose. However, an investigation of its molecular level properties has not been studied in detail. In this paper, the dynamics of poly(aspartic acid) and its sodium salt in the dilute concentration regime have been reported. The quantification of the polymer conformational properties, its solvation behavior, and the counterion dynamics are studied. The neutral polymer shows a preferentially coiled structure whereas the fully ionized polymer has an extended structure. Upon comparing with poly(acrylic acid) polymer, another polymer which has been used as a draw solute, poly(aspartic acid) forms more number of hydrogen bonds as well as fewer ion pairs.

  9. Dynamics of dilute solutions of poly(aspartic acid) and its sodium salt elucidated from atomistic molecular dynamics simulations with explicit water.

    PubMed

    Ramachandran, Sanoop; Katha, Anki Reddy; Kolake, Subramanya Mayya; Jung, Bokyung; Han, Sungsoo

    2013-11-01

    The use of forward osmosis (FO) process for seawater desalination has attracted tremendous interest in recent years. Besides the manufacture of suitable membranes, the major technical challenge in the efficient deployment of the FO technology lies in the development of a suitable "draw solute". Owing to its inherent advantages, poly(aspartic acid) has arisen to be an attractive candidate for this purpose. However, an investigation of its molecular level properties has not been studied in detail. In this paper, the dynamics of poly(aspartic acid) and its sodium salt in the dilute concentration regime have been reported. The quantification of the polymer conformational properties, its solvation behavior, and the counterion dynamics are studied. The neutral polymer shows a preferentially coiled structure whereas the fully ionized polymer has an extended structure. Upon comparing with poly(acrylic acid) polymer, another polymer which has been used as a draw solute, poly(aspartic acid) forms more number of hydrogen bonds as well as fewer ion pairs. PMID:24099271

  10. CONDUCTIVITY TITRATION OF GELATIN SOLUTIONS WITH ACIDS.

    PubMed

    Hitchcock, D I

    1923-11-20

    Titrations have been made, by the conductivity method, of gelatin solutions with hydrochloric and sulphuric acids. The results indicate an end-point at about 8.6 cc. of N/10 acid per gm. of gelatin, or a combining weight of about 1,160. These results are in fair agreement with those previously obtained by the hydrogen electrode method. Better agreement between the two methods was found in the case of deaminized gelatin. The data are in accord with a purely chemical conception of the combination between protein and acid.

  11. Highly accurate boronimeter assay of concentrated boric acid solutions

    SciTech Connect

    Ball, R.M. )

    1992-01-01

    The Random-Walk Boronimeter has successfully been used as an on-line indicator of boric acid concentration in an operating commercial pressurized water reactor. The principle has been adapted for measurement of discrete samples to high accuracy and to concentrations up to 6000 ppm natural boron in light water. Boric acid concentration in an aqueous solution is a necessary measurement in many nuclear power plants, particularly those that use boric acid dissolved in the reactor coolant as a reactivity control system. Other nuclear plants use a high-concentration boric acid solution as a backup shutdown system. Such a shutdown system depends on rapid injection of the solution and frequent surveillance of the fluid to ensure the presence of the neutron absorber. The two methods typically used to measure boric acid are the chemical and the physical methods. The chemical method uses titration to determine the ionic concentration of the BO[sub 3] ions and infers the boron concentration. The physical method uses the attenuation of neutrons by the solution and infers the boron concentration from the neutron absorption properties. This paper describes the Random-Walk Boronimeter configured to measure discrete samples to high accuracy and high concentration.

  12. Does Nitric Acid Dissociate at the Aqueous Solution Surface?

    SciTech Connect

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-11-03

    Nitric acid is a prevalent component of atmospheric aerosols, and the extent of nitric acid dissociation at aqueous interfaces is relevant to its role in heterogeneous atmospheric chemistry. Several experimental and theoretical studies have suggested that the extent of dissociation of nitric acid near aqueous interfaces is less than in bulk solution. Here, dissociation of HNO3 at the surface of aqueous nitric acid is quantified using X-ray photoelectron spectroscopy of the nitrogen local electronic structure. The relative amounts of undissociated HNO3(aq) and dissociated NO3-(aq) are identified by the distinguishable N1s core-level photoelectron spectra of the two species, and we determine the degree of dissociation, αint, in the interface (the first ~3 layers of solution) as a function of HNO3 concentration. Our measurements show that dissociation is decreased by approximately 20% near the solution interface compared with bulk, and furthermore that dissociation occurs even in the top-most solution layer. The experimental results are supported by first-principles MD simulations, which show that hydrogen-bonds between HNO3 and water molecules at the solution surface stabilize the molecular form at low concentration, in analogy to the stabilization of molecular HNO3 that occurs in bulk solution at high concentration. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  13. Determination of benzoic acid, chlorobenzoic acids and chlorendic acid in water

    SciTech Connect

    Dietz, E.A.; Cortellucci, N.J.; Singley, K.F. )

    1993-01-01

    To characterize and conduct treatment studies of a landfill leachate an analysis procedure was required to determine concentrations of benzoic acid, the three isomers of chlorobenzoic acid and chlorendic acid. The title compounds were isolated from acidified (pH 1) water by extraction with methyl t-butyl ether. Analytes were concentrated by back-extracting the ether with 0.1 N sodium hydroxide which was separated and acidified. This solution was analyzed by C[sub 18] reversed-phase HPLC with water/acetonitrile/acetic acid eluent and UV detection at 222 nm. The method has detection limits of 200 [mu]g/L for chlorendic acid and 100 [mu]g/L for benzoic acid and each isomer of chlorobenzoic acid. Validation studies with water which was fortified with the analytes at concentrations ranging from one to ten times detection limits resulted in average recoveries of >95%.

  14. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2015-12-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  15. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  16. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  17. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH.

    PubMed

    Waite, D T; Snihura, A D; Liu, Y; Huang, G H

    2002-10-01

    Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. The atmosphere is one of the most important media for the environmental cycling of mercury, since it not only receives mercury emitted from natural sources such as volcanoes and soil and water surfaces but also from anthropogenic sources such as fossil fuel combustion, mining and metal smelting. Although atmospheric mercury exists in different physical and chemical forms, as much as 90% can occur as elemental vapour Hg0, depending on the geographic location and time of year. Atmospheric mercury can be deposited to aquatic ecosystems through both wet (rain or snow) and dry (vapour adsorption and particulate deposition) processes. The purpose of the present study was to measure, under laboratory conditions, the rate of deposition of gaseous, elemental mercury (Hg0) to deionized water and to solutions of inorganic salt species of varying ionic strengths with a pH range of 2-12. In deionized water the highest deposition rates occurred at both low (pH 2) and high (pH 12). The addition of different species of salt of various concentrations for the most part had only slight effects on the absorption and retention of atmospheric Hg0. The low pH solutions of various salt concentrations and the high pH solutions of high salt concentrations tested in this study generally showed a greater tendency to absorb and retain atmospheric Hg0 than those at a pH closer to neutral.

  18. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  19. Wet oxidation of salicylic acid solutions.

    PubMed

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  20. Constants and thermodynamics of the acid-base equilibria of triglycine in water-ethanol solutions containing sodium perchlorate at 298 K

    NASA Astrophysics Data System (ADS)

    Pham Tkhi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.

    2016-02-01

    The acid-base equilibrium constants for glycyl-glycyl-glycine (triglycine) in water-ethanol solvents containing 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol are determined by potentiometric titration at 298.15 K and an ionic strength of 0.1, maintained with sodium perchlorate. It is established that an increase in the ethanol content in the solvent reduces the dissociation constant of the carboxyl group of triglycine (increases p K 1) and increases the dissociation constant of the amino group of triglycine (decreases p K 2). It is noted that the weakening of the acidic properties of a triglycinium ion upon an increase of the ethanol content in the solvent is due to the attenuation of the solvation shell of the zwitterionic form of triglycine, and to the increased solvation of triglycinium ions. It is concluded that the acid strength of triglycine increases along with a rise in the EtOH content in the solvent, due to the desolvation of the tripeptide zwitterion and the enhanced solvation of protons.

  1. Pictorial Analogies XI: Concentrations and Acidity of Solutions.

    ERIC Educational Resources Information Center

    Fortman, John J.

    1994-01-01

    Presents pictorial analogies of several concepts relating to solutions for chemistry students. These include concentration of solution, strength of solution, supersaturated solution, and conjugate acid-base pairs. Among the examples are comparison of acid strength to percentage of strong soldiers or making supersaturated solution analogous to a…

  2. Water Pollution (Causes, Mechanisms, Solution).

    ERIC Educational Resources Information Center

    Strandberg, Carl

    Written for the general public, this book illustrates the causes, status, problem areas, and prediction and control of water pollution. Water pollution is one of the most pressing issues of our time and the author communicates the complexities of this problem to the reader in common language. The purpose of the introductory chapter is to show what…

  3. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  4. Reorientation and Allied Dynamics in Water and Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Laage, Damien; Stirnemann, Guillaume; Sterpone, Fabio; Rey, Rossend; Hynes, James T.

    2011-05-01

    The reorientation of a water molecule is important for a host of phenomena, ranging over—in an only partial listing—the key dynamic hydrogen-bond network restructuring of water itself, aqueous solution chemical reaction mechanisms and rates, ion transport in aqueous solution and membranes, protein folding, and enzymatic activity. This review focuses on water reorientation and related dynamics in pure water, and for aqueous solutes with hydrophobic, hydrophilic, and amphiphilic character, ranging from tetra-methylurea to halide ions and amino acids. Attention is given to the application of theory, simulation, and experiment in the probing of these dynamics, in usefully describing them, and in assessing the description. Special emphasis is placed on a novel sudden, large-amplitude jump mechanism for water reorientation, which contrasts with the commonly assumed Debye rotational diffusion mechanism, characterized by small-amplitude angular motion. Some open questions and directions for further research are also discussed.

  5. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  6. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  7. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  8. Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution.

    PubMed

    Amyes, Tina L; Diver, Steven T; Richard, John P; Rivas, Felix M; Toth, Krisztina

    2004-04-01

    We report second-order rate constants kDO (M-1 s-1) for exchange for deuterium of the C(2)-proton of a series of simple imidazolium cations to give the corresponding singlet imidazol-2-yl carbenes in D2O at 25 degrees C and I = 1.0 (KCl). Evidence is presented that the reverse protonation of imidazol-2-yl carbenes by solvent water is limited by solvent reorganization and occurs with a rate constant of kHOH = kreorg = 10(11) s-1. The data were used to calculate reliable carbon acid pK(a)s for ionization of imidazolium cations at C(2) to give the corresponding singlet imidazol-2-yl carbenes in water: pKa = 23.8 for the imidazolium cation, pKa = 23.0 for the 1,3-dimethylimidazolium cation, pKa = 21.6 for the 1,3-dimethylbenzimidazolium cation, and pKa = 21.2 for the 1,3-bis-((S)-1-phenylethyl)benzimidazolium cation. The data also provide the thermodynamic driving force for a 1,2-hydrogen shift at a singlet carbene: K12 = 5 x 10(16) for rearrangement of the parent imidazol-2-yl carbene to give neutral imidazole in water at 298 K, which corresponds to a favorable Gibbs free energy change of 23 kcal/mol. We present a simple rationale for the observed substituent effects on the thermodynamic stability of N-heterocyclic carbenes relative to a variety of neutral and cationic derivatives that emphasizes the importance of the choice of reference reaction when assessing the stability of N-heterocyclic carbenes.

  9. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  10. WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Belvedere, D. R.; Pozzi, W. H.; Imam, B.; Schiffer, R.; Lawford, R.; Schlosser, C. A.; Gupta, H.; Welty, C.; Vorosmarty, C.; Matthews, D.

    2007-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering practices. The water cycle is a critical resource for industry, agriculture, natural ecosystems, fisheries, aquaculture, hydroelectric power, recreation, and water supply, and is central to drought, flood, transportation-aviation, and disease hazards. It is therefore a national priority to use advancements in scientific observations and knowledge to develop solutions to the water challenges faced by society. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction. NASA has collected substantial water cycle information and knowledge that must be transitioned to develop solutions for all twelve National Priority Application (NPA) areas. NASA cannot achieve this goal alone -it must establish collaborations and interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. Therefore, WaterNet: The NASA Water Cycle Solutions Network goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. WaterNet is a catalyst for discovery and sharing of creative solutions to water problems. It serves as a creative, discovery process that is the entry-path for a research-to-solutions systems engineering NASA framework, with the end result to ultimately improve decision support.

  11. The standard enthalpies of formation of crystalline N-(carboxymethyl)aspartic acid and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Volkov, A. V.; Nikol'Skii, V. M.

    2007-07-01

    The energy of combustion of N-(carboxymethyl)aspartic acid (CMAA) was determined by bomb calorimetry in oxygen. The standard enthalpies of combustion and formation of crystalline N-(carboxymethyl)aspartic acid were calculated. The heat effects of solution of crystalline CMAA in water and a solution of sodium hydroxide were measured at 298.15 K by direct calorimetry. The standard enthalpies of formation of CMAA and its dissociation products in aqueous solution were determined.

  12. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  13. Acid gas extraction of pyridine from water

    SciTech Connect

    Laitinen, A.; Kaunisto, J.

    2000-01-01

    Pyridine was extracted from aqueous solutions initially containing 5 or 15 wt % pyridine by using liquid or supercritical carbon dioxide at 10 MPa as a solvent in a mechanically agitated countercurrent extraction column. The lowest pyridine concentration in the raffinate was 0.06 wt %, whereas the pyridine concentration in the extract was 86--94 wt %. From the initial amount of pyridine, 96--99% was transferred from the feed stream to the extract by using relatively small solvent-to-feed ratios of 2.8--4.6 (kg of solvent/kg of feed). The measured distribution coefficients for the water/pyridine/carbon dioxide system ranged from 0.3 to 1 (weight units), depending on the initial pyridine concentration in water. Carbon dioxide is a particularly suitable solvent for the extraction of pyridine from concentrated aqueous solutions. The efficiency may be the result of an acid-base interaction between weakly basic pyridine solute and weakly acidic carbon dioxide solvent in an aqueous environment.

  14. The ototoxic effect of boric acid solutions applied into the middle ear of guinea pigs.

    PubMed

    Oztürkcan, Sedat; Dündar, Riza; Katilmis, Hüseyin; Ilknur, Ali Ekber; Aktaş, Sinem; Haciömeroğlu, Senem

    2009-05-01

    This study analyzed the ototoxic effects of boric acid solutions. Boric acid solutions have been used as otologic preparations for many years. Boric acid is commonly found in solutions prepared with alcohol or distilled water but can also be found in a powder form. These preparations are used for both their antiseptic and acidic qualities in external and middle ear infections. We investigated the ototoxic effect of boric acid solutions on guinea pigs. We are unaware of any similar, previously published study of this subject in English. The study was conducted on 28 young albino guinea pigs. Prior to application of the boric acid solution under general anesthesia, an Auditory Brainstem Response (ABRs) test was applied to the right ear of the guinea pigs. Following the test, a perforation was created on the tympanic membrane of the right ear of each guinea pig and small gelfoam pieces were inserted into the perforated area. Test solutions were administered to the middle ear for 10 days by means of a transcanal route. Fifteen days after inserting the gelfoams in all of the guinea pigs, we anasthesized the guinea pigs and removed the gelfoams from the perforated region of the ear and then performed an ABRs on each guinea pig. The ABRs were within the normal range before the applications. After the application, no significant changes were detected in the ABRs thresholds in neither the saline group nor the group administered boric acid and distilled water solution; however, significant changes were detected in the ABRs thresholds of the Gentamicine and boric acid and alcohol solution groups. We believe that a 4% boric acid solution prepared with distilled water can be a more reliable preparation than a 4% boric acid solution prepared with alcohol.

  15. Water & Aqueous Solutions. Final Progress Report

    SciTech Connect

    2002-08-09

    The Gordon Research Conference (GRC) on Water & Aqueous Solutions was held at Holderness School, New Hampshire, 8/4/02 thru 8/9/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  16. Standard enthalpies of formation of α-aminobutyric acid and products of its dissociation in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.

    2016-08-01

    Heats of solution of crystalline α-aminobutyric acid in water and in aqueous solutions of potassium hydroxide at 298.15 K are measured by means of direct calorimetry. Standard enthalpies of formation of the amino acid and products of its dissociation in an aqueous solution are calculated.

  17. Factors controlling water movement in acid spoils

    SciTech Connect

    Evangelou, V.P.; Grove, J.H.; Phillips, R.E.

    1982-12-01

    The rate of water movement through toxic spoils plays a major role in reclamation. The toxic chemical constituents found in spoils need to be leached beyond the six inch depth (the usual depth of lime incorporation) since they can easily move upward during periods of high evapotranspiration. The rate of water infiltration plays a role in effective utilization of rain water, and conversely, the amount of surface runoff dictates the degree of surface erosion. Underground water quality may be affected by rates of water movement through a toxic spoil zone. Factors that control water movement through acid spoils were investigated through the use of a column one meter long and 8.0 cm in internal diameter. The maximum hydraulic conductivity was observed in the upper portion of the column where minimum salt buildup occurred. The hydraulic conductivity in this region was 0.5 cm/hr. In the middle portion of the column where a salty (14.0 mmhos/cm) solution was encountered, the hydraulic conductivity was 0.08 cm/hr. In the lower portion of the column where the maximum salt buildup took place (16.8 mmhos/cm), the hydraulic conductivity was found to be 0.03 cm/hr. Similar results were obtained with a small column experiment using calcite and dolomite as different lime sources. The hydraulic conductivity in the dolomitic small column remained relatively unchanged with time and salt depletion.

  18. Isolation of nonvolatile, organic solutes from natural waters by zeotrophic distillation of water from N,N-dimethylformamide

    USGS Publications Warehouse

    Leenheer, J.A.; Brown, P.A.; Stiles, E.A.

    1987-01-01

    Nonvolatile, organic solutes that comprise the dissolved organic carbon (DOC) in saline waters were isolated by removal of the water by distillation from a N,N-dimethylformamideformic acid-acetonitrile mixture. Salts isolated with the DOC were removed by crystallization of sodium chloride and sodium sulfate from the solvent mixture, removal of silicic acid by acidification and precipitation, removal of boric acid by methylation and volatilization, and removal of phosphate by zinc acetate precipitation. Chemical alteration of the organic solutes was minimized during evaporative concentration steps by careful control of acid concentrations in the solvent mixture and was minimized during drying by conversion of the samples to pyridinium and sodium salts. Recoveries of various hydrophilic organic standards from aqueous salt solutions and recoveries of natural organic solutes from various water samples varied from 60 to 100%. Losses of organic solutes during the isolation procedure were nonselective and related to the number of salt- and precipitate-washing cycles in the procedure.

  19. Interaction of trace elements in acid mine drainage solution with humic acid.

    PubMed

    Suteerapataranon, Siripat; Bouby, Muriel; Geckeis, Horst; Fanghänel, Thomas; Grudpan, Kate

    2006-06-01

    The release of metal ions from a coal mining tailing area, Lamphun, Northern Thailand, is studied by leaching tests. Considerable amounts of Mn, Fe, Al, Ni and Co are dissolved in both simulated rain water (pH 4) and 10 mg L(-1) humic acid (HA) solution (Aldrich humic acid, pH 7). Due to the presence of oxidizing pyrite and sulfide minerals, the pH in both leachates decreases down to approximately 3 combined with high sulfate concentrations typical to acid mine drainage (AMD) water composition. Interaction of the acidic leachates upon mixing with ground- and surface water containing natural organic matter is simulated by subsequent dilution (1:100; 1:200; 1:300; 1:500) with a 10 mg L(-1) HA solution (ionic strength: 10(-3) mol L(-1)). Combining asymmetric flow field-flow fractionation (AsFlFFF) with UV/Vis and ICP-MS detection allows for the investigation of metal ion interaction with HA colloid and colloid size evolution. Formation of colloid aggregates is observed by filtration and AsFlFFF depending on the degree of the dilution. While the average HA size is initially found to be 2 nm, metal-HA complexes are always found to be larger. Such observation is attributed to a metal induced HA agglomeration, which is found even at low coverage of HA functional groups with metal ions. Increasing the metal ion to HA ratio, the HA bound metal ions and the HA entities are growing in size from <3 to >450 nm. At high metal ion to HA ratios, precipitation of FeOOH phases and HA agglomeration due to colloid charge neutralization by complete saturation of HA complexing sites are responsible for the fact that most of Fe and Al precipitate and are found in a size fraction >450 nm. In the more diluted solutions, HA is more relevant as a carrier for metal ion mobilization.

  20. Lattice model for water-solute mixtures

    NASA Astrophysics Data System (ADS)

    Furlan, A. P.; Almarza, N. G.; Barbosa, M. C.

    2016-10-01

    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.

  1. Thermodynamic and Ultrasonic Properties of Ascorbic Acid in Aqueous Protic Ionic Liquid Solutions

    PubMed Central

    Singh, Vickramjeet; Sharma, Gyanendra; Gardas, Ramesh L.

    2015-01-01

    In this work, we report the thermodynamic and ultrasonic properties of ascorbic acid (vitamin C) in water and in presence of newly synthesized ammonium based protic ionic liquid (diethylethanolammonium propionate) as a function of concentration and temperature. Apparent molar volume and apparent molar isentropic compression, which characterize the solvation state of ascorbic acid (AA) in presence of protic ionic liquid (PIL) has been determined from precise density and speed of sound measurements at temperatures (293.15 to 328.15) K with 5 K interval. The strength of molecular interactions prevailing in ternary solutions has been discussed on the basis of infinite dilution partial molar volume and partial molar isentropic compression, corresponding volume of transfer and interaction coefficients. Result has been discussed in terms of solute-solute and solute-solvent interactions occurring between ascorbic acid and PIL in ternary solutions (AA + water + PIL). PMID:26009887

  2. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  3. WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Belvedere, D. R.; Houser, P. R.; Imam, B.; Schiffer, R.; Schlosser, C. A.; Gupta, H. V.; Welty, C.; Vorosmarty, C.; Matthews, D.; Lawford, R.

    2006-05-01

    The water cycle is continuously being transformed by climate change, erosion, pollution, salinization, and engineering practices, and is central to drought, flood, and disease hazards. Therefore, it is a national priority is to use advancements in scientific observations and knowledge to develop solutions to society's water challenges. NASA's unique role in this national priority is to exploit its unique view from space to improve water and energy cycle monitoring and prediction. As such, NASA's Earth science programs have collected substantial water cycle information and knowledge that must be integrated and shared to develop solutions in all twelve national priority application areas. However, NASA alone cannot achieve the ultimate goal of improved operational environmental assessments, predictions and applications and therefore must establish collaborations and interoperability with existing networks and nodes of research organizations, operational agencies, the scientific community, and private industry. Therefore, we propose to develop WaterNet: The NASA Water Cycle Solutions Network whose goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. We will develop WaterNet by engaging relevant NASA water and energy cycle resources and community-of-practice organizations to develop what we term an "actionable database" that can be used to communicate and connect NASA Water and energy cycle focus area research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing the many existing highly valuable water-related science and application networks, we will focus a balance of our efforts to enable their interoperability in a solutions network context. We will initially focus on identifying, collecting information about, and analyzing the

  4. Unsaturated fatty acids in alkane solution: adsorption to steel surfaces.

    PubMed

    Lundgren, Sarah M; Persson, Karin; Mueller, Gregor; Kronberg, Bengt; Clarke, Jim; Chtaib, Mohammed; Claesson, Per M

    2007-10-01

    The adsorption of the unsaturated fatty acids oleic, linoleic, and linolenic acid on steel surfaces has been investigated by means of a quartz crystal microbalance (QCM). Two different solvents were used, n-hexadecane and its highly branched isomer, viz., 2,2,4,4,6,8,8-heptamethylnonane. The area occupied per molecule of oleic acid at 1 wt % corresponds to what is needed for adsorption parallel to the surface. At the same concentration, the adsorbed amount of linoleic acid and linolenic acid indicates that they adsorb in multilayers. The chemisorbed amount estimated from static secondary ion mass spectroscopy (SIMS) measurements was found to be similar for the three unsaturated fatty acids. In the case of linolenic acid, it was found that the presence of water significantly alters the adsorption, most likely because of the precipitation of fatty acid/water aggregates. Furthermore, static SIMS results indicate that the amount of water used here inhibits the chemisorption of linolenic acid.

  5. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  6. Acid Base Equilibrium in a Lipid/Water Gel

    NASA Astrophysics Data System (ADS)

    Streb, Kristina K.; Ilich, Predrag-Peter

    2003-12-01

    A new and original experiment in which partition of bromophenol blue dye between water and lipid/water gel causes a shift in the acid base equilibrium of the dye is described. The dye-absorbing material is a monoglyceride food additive of plant origin that mixes freely with water to form a stable cubic phase gel; the nascent gel absorbs the dye from aqueous solution and converts it to the acidic form. There are three concurrent processes taking place in the experiment: (a) formation of the lipid/water gel, (b) absorption of the dye by the gel, and (c) protonation of the dye in the lipid/water gel environment. As the aqueous solution of the dye is a deep purple-blue color at neutral pH and yellow at acidic pH the result of these processes is visually striking: the strongly green-yellow particles of lipid/water gel are suspended in purple-blue aqueous solution. The local acidity of the lipid/water gel is estimated by UV vis spectrophotometry. This experiment is an example of host-guest (lipid/water gel dye) interaction and is suitable for project-type biophysics, physical chemistry, or biochemistry labs. The experiment requires three, 3-hour lab sessions, two of which must not be separated by more than two days.

  7. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight. PMID:15488923

  8. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight.

  9. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena. PMID:25250496

  10. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 degree C

    SciTech Connect

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P. )

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25{degree}C and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 {mu}mole/Kg compared to 50 {mu}mole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  11. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    NASA Astrophysics Data System (ADS)

    Bennett, P. C.; Melcer, M. E.; Siegel, D. I.; Hassett, J. P.

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  12. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    PubMed

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface.

  13. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  14. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOEpatents

    Huang, Yu; Ly, Jennifer; Aldajani, Tiem; Baker, Richard W.

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  15. Syntheses of the Water-Dispersible Glycolic Acid Capped ZnS:Mn Nanocrystals at Different pH Conditions, and Their Aggregation and Luminescence Quenching Effects in Aqueous Solution.

    PubMed

    Sim, Yu Jin; Hwang, Cheong-Soo

    2016-06-01

    Water-dispersible ZnS:Mn nanocrystals were prepared by capping their surface with polar glycolic acid molecules at three different pH conditions. The produced ZnS:Mn-GA nanocrystals were characterized by XRD, HR-TEM, ICP-AES, and FT-IR spectroscopy. The optical properties were also measured by UV-Visible and room temperature photoluminescence (PL) spectroscopy. In the PL spectra, theses ZnS:Mn-GA nanocrystals showed broad emission peaks around 595 nm, and the calculated relative quantum efficiencies against an organic dye standard were in the range from 2.16 to 5.52%. The measured particle size from the HR-TEM images was about 3.7 nm on average, which were also supported by the calculations with the Debye-Scherrer methods. In addition, the surface charges of the nanocrystals were determined by an electrophoretic method, which showed pH dependent charge values of the nanocrytals: +0.88 mV (pH 2), +0.82 mV (pH 7), and -0.59 mV (pH 12) respectively. In addition, the degrees of aggregation of the nanocrystals in aqueous solutions were determined by a hydrodynamic light scattering method. As a result, formations of micrometer size agglomerates for all the ZnS:Mn-GA nanocrystals in water was observed at room temperature. This was probably caused by intermolecular attraction between the capping molecules. In addition, the ZnS:Mn-GA with the negative surface charge was presumed to be suitable for further coordination to a transition metal ion on the surface of the nanocrystal. As a result, fast luminescence quenching was observed after addition of aqueous solution containing Cu2+ ions.

  16. Syntheses of the Water-Dispersible Glycolic Acid Capped ZnS:Mn Nanocrystals at Different pH Conditions, and Their Aggregation and Luminescence Quenching Effects in Aqueous Solution.

    PubMed

    Sim, Yu Jin; Hwang, Cheong-Soo

    2016-06-01

    Water-dispersible ZnS:Mn nanocrystals were prepared by capping their surface with polar glycolic acid molecules at three different pH conditions. The produced ZnS:Mn-GA nanocrystals were characterized by XRD, HR-TEM, ICP-AES, and FT-IR spectroscopy. The optical properties were also measured by UV-Visible and room temperature photoluminescence (PL) spectroscopy. In the PL spectra, theses ZnS:Mn-GA nanocrystals showed broad emission peaks around 595 nm, and the calculated relative quantum efficiencies against an organic dye standard were in the range from 2.16 to 5.52%. The measured particle size from the HR-TEM images was about 3.7 nm on average, which were also supported by the calculations with the Debye-Scherrer methods. In addition, the surface charges of the nanocrystals were determined by an electrophoretic method, which showed pH dependent charge values of the nanocrytals: +0.88 mV (pH 2), +0.82 mV (pH 7), and -0.59 mV (pH 12) respectively. In addition, the degrees of aggregation of the nanocrystals in aqueous solutions were determined by a hydrodynamic light scattering method. As a result, formations of micrometer size agglomerates for all the ZnS:Mn-GA nanocrystals in water was observed at room temperature. This was probably caused by intermolecular attraction between the capping molecules. In addition, the ZnS:Mn-GA with the negative surface charge was presumed to be suitable for further coordination to a transition metal ion on the surface of the nanocrystal. As a result, fast luminescence quenching was observed after addition of aqueous solution containing Cu2+ ions. PMID:27427703

  17. The Solubility of Xenon in Simple Organic Solvents and in Aqueous Amino Acid Solutions.

    NASA Astrophysics Data System (ADS)

    Himm, Jeffrey Frank

    We have measured the Ostwald solubility (L) of ('133)Xe in a variety of liquids, including normal alkanes, normal alkanols, and aqueous solutions of amino acids, NaCl, and sucrose. For the alkanes and alkanols, measurements were made in the temperature range from 10-50(DEGREES)C. Values of L were found to decrease with increasing temperature, and also with increasing chain length, for both series of solvents. Thermodynamic properties of solution (enthalpy and entropy of solution) are calculated using both mole fraction and number density scales. Results are interpreted using Uhlig's model of the solvation process. Measurements of L in aqueous amino acid solutions were made at 25(DEGREES)C. Concentrations of amino acids in solution varied from near saturation for each of the amino acids studied to pure water. In all solutions, except those with NaCl, L decreases linearly with increasing solution molarity. Hydration numbers (H), the mean number of water molecules associated with each solute molecule, were determined for each amino acid, for NaCl, and for sucrose. Values of H obtained ranged from near zero (arginine, H = 0.2 (+OR-) 0.5) to about 16 (NaCl, H = 16.25 (+OR-) 0.3).

  18. Photochemical processes involving the UV absorber benzophenone-4 (2-hydroxy-4-methoxybenzophenone-5-sulphonic acid) in aqueous solution: reaction pathways and implications for surface waters.

    PubMed

    De Laurentiis, Elisa; Minella, Marco; Sarakha, Mohamed; Marrese, Alessandro; Minero, Claudio; Mailhot, Gilles; Brigante, Marcello; Vione, Davide

    2013-10-01

    The sunlight filter benzophenone-4 (BP-4) is present in surface waters as two prevailing forms, the singly deprotonated (HA-) and the doubly deprotonated one (A(2-)), with pKa2 = 7.30 ± 0.14 (μ ± σ, by dissociation of the phenolic group). In freshwater environments, BP-4 would mainly undergo degradation by reaction with ·OH and direct photolysis. The form HA(-) has a second-order reaction rate constant with ·OH (k(·OH)) of (1.87 ± 0.31)·10(10) M(-1) s(-1) and direct photolysis quantum yield Φ equal to (3.2 ± 0.6)·10(-5). The form A(2-) has (8.46 ± 0.24)·10(9) M(-1) s(-1) as the reaction rate constant with ·OH and (7.0 ± 1.3)·10(-5) as the photolysis quantum yield. The direct photolysis of HA(-) likely proceeds via homolytic breaking of the O-H bond of the phenolic group to give the corresponding phenoxy radical, as suggested by laser flash photolysis experiments. Photochemical modelling shows that because of more efficient direct photolysis (due to both higher sunlight absorption and higher photolysis quantum yield), the A(2-) form can be degraded up to 3 times faster than HA(-) in surface waters. An exception is represented by low-DOC (dissolved organic carbon) conditions, where the ·OH reaction dominates degradation and the transformation kinetics of HA(-) is faster compared to A(2-). The half-life time of BP-4 in mid-latitude summertime would be in the range of days to weeks, depending on the environmental conditions. BP-4 also reacts with Br2(·-), and a rate constant k(Br2(·-),BP-4) = (8.05 ± 1.33)·10(8) M(-1) s(-1) was measured at pH 7.5. Model results show that reaction with Br2(·-) could be a potentially important transformation pathway of BP-4 in bromide-rich (e.g. seawater) and DOM-rich environments.

  19. A theoretical study on ascorbic acid dissociation in water clusters.

    PubMed

    Demianenko, Eugeniy; Ilchenko, Mykola; Grebenyuk, Anatoliy; Lobanov, Victor; Tsendra, Oksana

    2014-03-01

    Dissociation of ascorbic acid in water has been studied by using a cluster model. It was examined by density functional theory (DFT) with the В3LYP, M06, and wB97XD functionals and a 6-311++G(d,p) basis set. The thermodynamic and kinetic characteristics of proton transfer from ascorbic acid molecule to water clusters were calculated as well as the equilibrium constants (pK a ) for the related processes. The used functionals in the DFT method together with continuum solvent models provided results close to the experimental data for the dissociation constant of ascorbic acid in aqueous solution.

  20. Recirculating cooling water solute depletion models

    SciTech Connect

    Price, W.T.

    1990-03-16

    Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs.

  1. Corrosion of dental amalgams in solutions of organic acids.

    PubMed

    Palaghias, G

    1986-06-01

    A conventional and two high copper amalgams were tested in 0.5% aqueous solutions of acetic, formic, lactic and succinic acid. The corrosion behavior of the amalgams in the different solutions was evaluated by analyzing the soluble corrosion products using an atomic absorption spectrophotometer every month during a 6-month experimental period. The high copper amalgams showed a high dissolution rate in formic and lactic acid solutions from the initial stages of immersion when compared to the conventional. Later a marked decrease of the dissolution rate could be observed but it still remained at high levels. In acetic acid the amounts of elements dissolved from high copper amalgams were much less. Conventional amalgam released much smaller amounts of elements in almost all solutions tested except in the case of silver in lactic acid. Finally, in succinic acid solution, the amounts of elements dissolved were unexpectedly small considering the low pH of the solution and the dissolution rates of the amalgams in the other organic acid solutions. PMID:3461548

  2. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    NASA Astrophysics Data System (ADS)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  3. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  4. Thermal transformation of trans-5-O-caffeoylquinic acid (trans-5-CQA) in alcoholic solutions.

    PubMed

    Dawidowicz, Andrzej L; Typek, Rafal

    2015-01-15

    Chlorogenic acid (CQA), the ester of caffeic acid with quinic acid supplied to human organisms mainly with coffee, tea, fruit and vegetables, has been one of the most studied polyphenols. It is potentially useful in pharmaceuticals, food additives, and cosmetics due to its recently discovered biomedical activity, which revived interest in its properties, isomers and natural occurrence. We found that the heating of the alcoholic solution of trans-5-O-caffeoylquinic acid produced at least twenty compounds (chlorogenic acid derivatives and its reaction products with water and alcohol). The formation of three of them (methoxy, ethoxy and propoxy adducts) has not been reported yet. No reports exist either on methoxy adducts of 3- and 4-O-caffeoylquinic acid appearing in buffered methanol/water mixtures at pH exceeding 7. We observed that the amount of each formed component depended on the heating time, type of alcohol, its concentration in alcoholic/water mixture, and pH.

  5. Transmittance of distilled water and sodium-chloride-water solutions

    SciTech Connect

    Kanayama, K.; Baba, H.

    1988-05-01

    The spectral transmittance of pure water and salt water solutions of various concentrations, which are important for the thermal calculation of a solar pond, is measured experimentally for specimen thickness of 1 to 100 mm by means of an autorecording spectro-radiometer inside an air-conditioned room. On the basis of the measured spectral transmittance, the total transmittance of pure and salty waters to 3 m of water depth is calculated as a ratio of the total radiation energy over all wavelengths arriving at any depth from the water surface of the solar pond to the solar radiation incident upon the water surface with various air masses. According to Nielsens' four-partition method, the effective absorption coefficient is calculated for each wavelength band. Lastly, the transmission properties obtained for pure water, i.e., spectral and total transmittances, absorption wavelength band, and effective absorption coefficient, are compared with past results, and those for salty water with various concentrations are compiled as basic data for the use of solar energy by a solar pond.

  6. Dynamical properties of water-methanol solutions.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Cirino; Vasi, Sebastiano; Stanley, H Eugene

    2016-02-14

    We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ∼ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.

  7. Vacuum-jacketed hydrofluoric acid solution calorimeter

    USGS Publications Warehouse

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  8. Nylon Dissolution in Nitric Acid Solutions

    SciTech Connect

    KESSINGER, GLENF.

    2004-06-16

    H Area Operations is planning to process Pu-contaminated uranium scrap in support of de-inventory efforts. Nylon bags will be used to hold materials to be dissolved in H-Canyon. Based on this set of twelve nylon dissolutions, it is concluded that (when other variables are held constant): increased acid concentration results in increased dissolution rates; increased acid concentration results in a lower dissolution onset temperature; little, if any, H plus is consumed during the depolymerization process; and 2.0-3.0 M HNO3, with 0.025 M KF and 2 g/L B, is satisfactory for the dissolution of nylon bag materials to be used during H-Canyon processing.

  9. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium for a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate or hydroxide thereby stripping uranium from the organic extractant into the stripping solution. The resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  10. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium from a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant to and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate, nonsaturated in uranium. The uranium is stripped from, the organic extractant into the stripping solution, and the resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  11. Benzoic Acid and Chlorobenzoic Acids: Thermodynamic Study of the Pure Compounds and Binary Mixtures With Water.

    PubMed

    Reschke, Thomas; Zherikova, Kseniya V; Verevkin, Sergey P; Held, Christoph

    2016-03-01

    Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals. PMID:26886302

  12. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  13. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.

    PubMed

    Scharko, Nicole K; Berke, Andrew E; Raff, Jonathan D

    2014-10-21

    Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry.

  14. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  15. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  16. Precipitation of plutonium from acidic solutions using magnesium oxide

    SciTech Connect

    Jones, S.A.

    1994-12-05

    Magnesium oxide will be used as a neutralizing agent for acidic plutonium-containing solutions. It is expected that as the magnesium oxide dissolves, the pH of the solution will rise, and plutonium will precipitate. The resulting solid will be tested for suitability to storage. The liquid is expected to contain plutonium levels that meet disposal limit requirements.

  17. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  18. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  19. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2016-09-01

    Heat effects of the dissolution of crystalline γ-aminobutyric acid in water and potassium hydroxide solutions are determined by direct colorimetry at 298.15 K. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution are calculated.

  20. Solution structures of europium(III) complexes of ethylenediaminetetraacetic acid

    SciTech Connect

    Latva, M.; Kankara, J.; Haapakka, K.

    1996-04-01

    Coordination of ethylenediaminetetraacetic acid (EDTA) with europium(III) has been studied at different concentrations in solution using {sup 7}F{sub 0}{yields}{sup 5}D{sub 0} excitation spectroscopy and excited-state lifetime measurements. EDTA forms with Eu(III) ion three different species in equimolar solutions at room temperature. At low pH values EuEDTAH is formed and at higher pH values than 1.5 two EuEDTA{sup -} complexes, which differ from each other with one water molecule in the first coordination sphere of the Eu(III) ion, total coordination number and coordination geometry, are also formed. When the concentration of EDTA is higher than the concentration of Eu(III), an EuEDTA(EDTAH){sup 4-} species where the second EDTA is weakly coordinated to EuEDTA{sup -}, is formed. If the concentration of Eu(III) ion is higher than EDTA, the extra Eu(III) ions associate with EuEDTA{sup -} and link to one of the carboxylate groups of EDTA thus causing a shortening of the excited-state lifetime of the EuEDTA{sup -} complex.

  1. Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate.

    PubMed

    Kolb, V; Orgel, L E

    1996-02-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%. PMID:11536746

  2. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  3. Passive and transpassive anodic behavior of chalcopyrite in acid solutions

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Wadsworth, M. E.; El-Raghy, S. M.

    1992-01-01

    The electrochemical oxidation of CuFeS2 in various acid solutions was studied using electrodes made from massive samples. The primary techniques employed were potentiodynamic polarization and constant potential experiments supplemented by capacitance measurements. It was the purpose of this study to investigate the behavior of: (1) several sources of CuFeS2 in H2SO4 electrolytes, and (2) a single source of CuFeS2 in various dilute acids. Electrochemical characterization of CuFeS2 from various locations was performed in 1 M H2SO4 which showed significant differences in their behavior. All samples exhibited passive-like response during anodic polarization. The current density in this passive region was reproducible and showed differences of up to two orders of magnitude between samples from different sources which has been attributed mainly to the presence of impurities in some of the samples. During anodic polarization CuFeS2 was found to be sensitive to pH at higher potential, but insensitive at low potential in sulfate solution. In addition, current decay measurements at constant potential in the low potential-passive region were found to follow the Sato-Cohen (logarithmic) model for solid film formation. Based on current and mass balance measurements, two intermediate sulfide phases appeared to form in the sequence CuFeS2 → S, → S2. At higher potentials, in the transpassive region, the observed increase in current is compatible with the decomposition of water to form chemisorbed oxygen which releases copper and forms sulfate ions.

  4. Passive and transpassive anodic behavior of chalcopyrite in acid solutions

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Wadsworth, M. E.; El-Raghy, S. M.

    1982-12-01

    The electrochemical oxidation of CuFeS2 in various acid solutions was studied using electrodes made from massive samples. The primary techniques employed were potentiodynamic polarization and constant potential experiments supplemented by capacitance measurements. It was the purpose of this study to investigate the behavior of: (1) several sources of CuFeS2 in H2SO4 electrolytes, and (2) a single source of CuFeS2 in various dilute acids. Electrochemical characterization of CuFeS2 from various locations was performed in 1 M H2SO4 which showed significant differences in their behavior. All samples exhibited passive-like response during anodic polarization. The current density in this passive region was reproducible and showed differences of up to two orders of magnitude between samples from different sources which has been attributed mainly to the presence of impurities in some of the samples. During anodic polarization CuFeS2 was found to be sensitive to pH at higher potential, but insensitive at low potential in sulfate solution. In addition, current decay measurements at constant potential in the low potential-passive region were found to follow the Sato-Cohen (logarithmic) model for solid film formation. Based on current and mass balance measurements, two intermediate sulfide phases appeared to form in the sequence CuFeS2→S1→S2. At higher potentials, in the transpassive region, the observed increase in current is compatible with the decomposition of water to form chemisorbed oxygen which releases copper and forms sulfate ions.

  5. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    DOE PAGES

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  6. Backward stimulated Raman scattering in water and water solutions

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, Anna D.; Baranov, Anatolii N.; Sokolovskaya, Albina I.; Tcherniega, Nicolaii V.; Barille, Regis; Rivoire, Genevieve

    2001-02-01

    12 Energetical and spectral characteristics of backward stimulated Raman scattering (BSRS) in water and water solutions of organic liquids (acetone, benzene, ethanol, cyclohexane) at different excitation conditions have been experimentally investigated. Maximum conversion efficiency of laser light into BSRS wave was about 40%. For picosecond range experimental results and calculations are presented showing the BSRS intensity as a function of the main experimental parameters concerning the geometry of excitation and the exciting intensity. Thus it's possible to forecast the best experimental set-up in term of BSRS efficiencies and to estimate the minimum length of water necessary to detect BSRS. Competition with other scatterings is observed. In nanosecond range simultaneously with BSRS stimulated Brillouin scattering has been excited. Possible applications are discussed.

  7. REMOVAL OF CHLORIDE FROM ACIDIC SOLUTIONS USING NO2

    SciTech Connect

    Visser, A; Robert Pierce, R; James Laurinat, J

    2006-08-22

    Chloride (Cl{sup -}) salt processing in strong acids is used to recycle plutonium (Pu) from pyrochemical residues. The Savannah River National Laboratory (SRNL) is studying the potential application of nitrogen dioxide (NO{sub 2}) gas to effectively convert dissolved pyrochemical salt solutions to chloride-free solutions and improve recovery operations. An NO{sub 2} sparge has been shown to effectively remove Cl{sup -} from solutions containing 6-8 M acid (H{sup +}) and up to 5 M Cl{sup -}. Chloride removal occurs as a result of the competition of at least two reactions, one which is acid-dependent. Below 4 M H+, NO2 reacts with Cl- to produce nitrosyl chloride (ClNO). Between 6 M and 8 M H{sup +}, the reaction of hydrochloric acid (HCl) with nitric acid (HNO{sub 3}), facilitated by the presence of NO{sub 2}, strongly affects the rate of Cl{sup -} removal. The effect of heating the acidic Cl{sup -} salt solution without pre-heating the NO{sub 2} gas has minimal effect on Cl{sup -} removal rates when the contact times between NO{sub 2} and the salt solution are on the order of seconds.

  8. Formation of acrylic acid from lactic acid in supercritical water

    SciTech Connect

    Mok, W.S.L.; Antal, M.J. Jr. ); Jones, M. Jr. )

    1989-09-15

    Supercritical (SC) water is an unusual medium in which fast and specific heterolytic reactions can be conducted at temperatures as high as 400{degree}C. In supercritical water, lactic acid decomposes into gaseous and liquid products via three primary reaction pathways. Products of the acid-catalyzed heterolytic decarbonylation pathway are carbon monoxide, water, and acetaldehyde. Products of the homolytic, decarboxylation pathway are carbon dioxide, hydrogen, and acetaldehyde. Products of the heterolytic, dehydration pathway are acrylic acid and water. The intramolecular nucleophilic displacement of the {alpha}-hydroxyl by the carbonyl group of lactic acid, producing {alpha}-propiolactone as an unstable intermediate which subsequently rearranges to become the unsaturated acid, is a likely mechanism for acrylic acid formation, although an intramolecular E2 elimination initiated by attack of the carbonyl oxygen on a methyl hydrogen cannot be ruled out. Support for the former mechanism comes in part from the observed 100% relative yield of acrylic acid from {beta}-propiolactone in SC water.

  9. Simulations of acid dissociation constants of polyprotic acids in near-critical and supercritical water.

    PubMed

    Halstead, Simon J; An, Pengna

    2013-12-01

    This paper reports a molecular dynamics study on the dissociation of sulfuric acid and phosphoric acid in near-critical and supercritical water. pK(a) is known to vary as the temperature and pressure vary, and this variation has important implications for corrosion in supercritical water reaction vessels. This work uses the SPC/E water model and solutes based upon DFT calculations to examine both structural and thermodynamic properties of the dissociation processes. An increase in solute-solvent ordering is observed for larger charges, and this also corresponds to a lower rate of diffusion. All dissociation reactions become less favored with increasing temperature except pK(a1) for sulfuric acid which becomes significantly more favored until 748 K.

  10. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2012-05-15

    A system is described for forming metal hydroxide from a metal carbonate utilizing a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate, in particular water-insoluble calcium carbonate or magnesium carbonate, is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide. Among other uses, the metal hydroxide formed can be employed to absorb acid gases such as carbon dioxide from a gas mixture. The invention can also generate hydrogen and oxidative gases such as oxygen or chlorine.

  11. Influence of acid rain upon water plumbosolvency.

    PubMed Central

    Moore, M R

    1985-01-01

    The West of Scotland has had particular problems in the past associated with soft acidic water supplies and uptake of lead from domestic plumbing systems by such water. As a consequence of this, health problems related to overexposure to lead have been identified. The current debate on acidification of ground waters by acid rain is therefore particularly pertinent to this area. Studies have shown that even a modest decrease in pH will result in very substantial increase in plumbosolvency. This was found to be of particular importance in the city of Glasgow and town of Ayr, where prior to water treatment, pH values were 6.3 and 5.4, respectively, and where, consequentially, large numbers of homes did not comply with lead in water standards. Closed-loop lime-dosing systems were introduced in both Glasgow and Ayr to increase the pH with immediate decrease in the lead content of the water and, subsequently, blood lead concentrations of the subjects living in these areas. Such closed-loop systems will compensate for any acidity in water supplies, whether of natural origin or originating from acid rain precipitation. However, when such treatment has not been applied, any increase in water acidity due to acid rain which is, in many cases, already unacceptable. which is, in many cases, already unacceptable. PMID:4076078

  12. Influence of acid rain upon water plumbosolvency.

    PubMed

    Moore, M R

    1985-11-01

    The West of Scotland has had particular problems in the past associated with soft acidic water supplies and uptake of lead from domestic plumbing systems by such water. As a consequence of this, health problems related to overexposure to lead have been identified. The current debate on acidification of ground waters by acid rain is therefore particularly pertinent to this area. Studies have shown that even a modest decrease in pH will result in very substantial increase in plumbosolvency. This was found to be of particular importance in the city of Glasgow and town of Ayr, where prior to water treatment, pH values were 6.3 and 5.4, respectively, and where, consequentially, large numbers of homes did not comply with lead in water standards. Closed-loop lime-dosing systems were introduced in both Glasgow and Ayr to increase the pH with immediate decrease in the lead content of the water and, subsequently, blood lead concentrations of the subjects living in these areas. Such closed-loop systems will compensate for any acidity in water supplies, whether of natural origin or originating from acid rain precipitation. However, when such treatment has not been applied, any increase in water acidity due to acid rain which is, in many cases, already unacceptable. which is, in many cases, already unacceptable.

  13. Incorporation of stratospheric acids into water ice

    NASA Technical Reports Server (NTRS)

    Elliott, Scott; Turco, Richard P.; Toon, Owen B.; Hamill, Patrick

    1990-01-01

    Hydrochloric and hydrofluoric acids are absorbed within the water ice lattice at mole fractions maximizing below 0.00001 and 0.0001 in a variety of solid impurity studies. The absorption mechanism may be substitutional or interstitial, leading in either case to a weak permeation of stratospheric ices by the acids at equilibrium. Impurities could also inhabit grain boundaries, and the acid content of atmospheric ice crystals will then depend on details of their surface and internal microstructures. Limited evidence indicates similar properties for the absorption of HNO3. Water ice lattices saturated with acid cannot be a significant local reservoir for HCl in the polar stratosphere.

  14. Environment and solute-solvent interaction effects on photo-physical behaviors of Folic acid and Folinic acid drugs

    NASA Astrophysics Data System (ADS)

    Khadem Sadigh, M.; Zakerhamidi, M. S.; Seyed Ahmadian, S. M.; Johari-Ahar, M.; Zare Haghighi, L.

    2016-12-01

    In this paper, spectral properties of Folic acid and Folinic acid as widely used drugs in the treatment of some diseases have been studied in various environments with different polarity. Our results show that the absorption, emission and stokes shifts of solute molecules depend strongly on molecular surrounding characteristics, solute-solvent interactions and, different active groups in their chemical structures. In order to investigate the contribution of specific and nonspecific interactions on various properties of drug samples, the linear solvation energy relationships concept is used. Moreover, the calculated dipole moments by means of solvatochromic method show that the high values of dipole moments in excited state are due to local intramolecular charge transfer. Furthermore, the obtained results about molecular interactions can be extended to biological systems and can indicate completely the behaviors of Folic acid and Folinic acid in polar solvents such as water in body system.

  15. Acidity of Strong Acids in Water and Dimethyl Sulfoxide.

    PubMed

    Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A; Leito, Ivo

    2016-05-26

    Careful analysis and comparison of the available acidity data of HCl, HBr, HI, HClO4, and CF3SO3H in water, dimethyl sulfoxide (DMSO), and gas-phase has been carried out. The data include experimental and computational pKa and gas-phase acidity data from the literature, as well as high-level computations using different approaches (including the W1 theory) carried out in this work. As a result of the analysis, for every acid in every medium, a recommended acidity value is presented. In some cases, the currently accepted pKa values were revised by more than 10 orders of magnitude. PMID:27115918

  16. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  17. γ-Irradiation of malic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  18. Earthworm effects on movement of water and solutes in soil

    SciTech Connect

    Trojan, M.D.

    1993-01-01

    The objectives of this study were to determine and model the effects of earthworms on water and solute movement in soil. Microrelief and rainfall effects on water and solute movement were determined in packed buckets inoculated with earthworms (Aporrectodea tuberculata). A solution of Br[sup [minus

  19. Ultrasonic degradation of oxalic acid in aqueous solutions.

    PubMed

    Dükkanci, M; Gündüz, G

    2006-09-01

    This paper describes the ultrasonic degradation of oxalic acid. The effects of ultrasonic power, H(2)O(2), NaCl, external gases on the degradation of oxalic acid were investigated. Reactor flask containing oxalic acid was immersed in the ultrasonic bath with water as the coupling fluid. Representative samples withdrawn were analysed by volumetric titration. Degradation degree of oxalic acid increased with increasing ultrasonic power. It was observed that H(2)O(2) has negative contribution on the degradation of oxalic acid and there was an optimum concentration of NaCl for enhancing the degradation degree of oxalic acid. Although bubbling nitrogen gave higher degradation than that for bubbling air, both gases (for 20 min before sonication and during sonication together) could not help to enhance the degradation of oxalic acid when compared with the degradation without gas passage. PMID:16352455

  20. Radiolysis of aqueous solutions of 2-aminoethanethiosulfuric acid. [Gamma radiation

    SciTech Connect

    Grachev, S.A.; Koroleva, I.K.; Kropachev, E.V.; Litvyakova, G.I.

    1982-07-10

    In the radiolysis products of aerated and deaerated solutions of the 2-aminoethanethiosulfuric acid the authors have identified cystamine monoxide, cystamine, taurine, mercamine, the sulfate ion, the sulfite ion, and the dithionate ion. The yields of these products under different conditions have been determined. Results indicated that the sulfate ion is formed both from the divalent and the hexavalent sulfur atom of the 2-aminoethanethiosulfuric acid moelcule. A possible radiolysis mechanism is discussed.

  1. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    NASA Technical Reports Server (NTRS)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  2. Molecular level water and solute transport in reverse osmosis membranes

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  3. Succinic acid in aqueous solution: connecting microscopic surface composition and macroscopic surface tension.

    PubMed

    Werner, Josephina; Julin, Jan; Dalirian, Maryam; Prisle, Nønne L; Öhrwall, Gunnar; Persson, Ingmar; Björneholm, Olle; Riipinen, Ilona

    2014-10-21

    The water-vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experiments and MD simulations a strongly increased concentration of the acid form in the surface region compared to the bulk concentration was found and quantified. Detailed analysis of the surface of succinic acid solutions at different bulk concentrations led to the conclusion that succinic acid saturates the aqueous surface at high bulk concentrations. With the aid of MD simulations the thickness of the surface layer could be estimated, which enabled the quantification of surface concentration of succinic acid as a multiple of the known bulk concentration. The obtained enrichment factors were successfully used to model the surface tension of these binary aqueous solutions using two different models that account for the surface enrichment. This underlines the close correlation of increased concentration at the surface relative to the bulk and reduced surface tension of aqueous solutions of succinic acid. The results of this study shed light on the microscopic origin of surface tension, a macroscopic property. Furthermore, the impact of the results from this study on atmospheric modeling is discussed.

  4. Investigation of detection limits for solutes in water measured by laser raman spectrometry

    USGS Publications Warehouse

    Goldberg, M.C.

    1977-01-01

    The influence of experimental parameters on detection sensitivity was determined for laser Raman analysis of dissolved solutes in water. Individual solutions of nitrate, sulfate, carbonate, bicarbonate, monohydrogen phosphate, dihydrogen phosphate, acetate ion, and acetic acid were measured. An equation is derived which expresses the signal-to-noise ratio in terms of solute concentration, measurement time, spectral slit width, laser power fluctuations, and solvent background intensity. Laser beam intensity fluctuations at the sample and solvent background intensity are the most important limiting factors.

  5. Plant aquaporins: multifunctional water and solute channels with expanding roles.

    PubMed

    Tyerman, S. D.; Niemietz, C. M.; Bramley, H.

    2002-02-01

    There is strong evidence that aquaporins are central components in plant water relations. Plant species possess more aquaporin genes than species from other kingdoms. According to sequence similarities, four major groups have been identified, which can be further divided into subgroups that may correspond to localization and transport selectivity. They may be involved in compatible solute distribution, gas-transfer (CO2, NH3) as well as in micronutrient uptake (boric acid). Recent advances in determining the structure of some aquaporins gives further details on the mechanism of selectivity. Gating behaviour of aquaporins is poorly understood but evidence is mounting that phosphorylation, pH, pCa and osmotic gradients can affect water channel activity. Aquaporins are enriched in zones of fast cell division and expansion, or in areas where water flow or solute flux density would be expected to be high. This includes biotrophic interfaces between plants and parasites, between plants and symbiotic bacteria or fungi, and between germinating pollen and stigma. On a cellular level aquaporin clusters have been identified in some membranes. There is also a possibility that aquaporins in the endoplasmic reticulum may function in symplasmic transport if water can flow from cell to cell via the desmotubules in plasmodesmata. Functional characterization of aquaporins in the native membrane has raised doubt about the conclusiveness of expression patterns alone and need to be conducted in parallel. The challenge will be to elucidate gating on a molecular level and cellular level and to tie those findings into plant water relations on a macroscopic scale where various flow pathways need to be considered.

  6. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  7. Permittivity of naphthenic acid-water mixture.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay

    2007-01-01

    Naphthenic acid (NA) is predominantly a mono-carboxylic acid obtained as a by-product of petroleum refining with variable composition and ingredients. It is reported that water affected by processes in the petroleum industries generally contains 40-120 mg IL of naphthenic acid which is considered to be in the range of toxicity to human consumption [Clemente et. al, 2005; McMartin, 2003]. This contaminated water needs treatment before its use as drinking water by remote communities. Recent literature suggests that NAs could be separated from diesel fuel using microwave radiation [Lingzhao et. al, 2004]. Removal of naphthenic acid from vacuum cut #1 distillate oil of Daqing using microwaves has also been reported by Huang et. al [2006]. The microwave treatment can be applied to drinking water containing small concentrations of naphthenic acid. In this case permittivity information is useful in designing a microwave applicator and modeling studies. Permittivity measurements were done using a HP 8510 Vector Network Analyzer and coaxial probe reflection method to study the dielectric properties of naphthenic acid in water. The effects of process variables such as frequency, concentration and temperature on dielectric properties were determined. PMID:18161419

  8. Permittivity of naphthenic acid-water mixture.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay

    2007-01-01

    Naphthenic acid (NA) is predominantly a mono-carboxylic acid obtained as a by-product of petroleum refining with variable composition and ingredients. It is reported that water affected by processes in the petroleum industries generally contains 40-120 mg IL of naphthenic acid which is considered to be in the range of toxicity to human consumption [Clemente et. al, 2005; McMartin, 2003]. This contaminated water needs treatment before its use as drinking water by remote communities. Recent literature suggests that NAs could be separated from diesel fuel using microwave radiation [Lingzhao et. al, 2004]. Removal of naphthenic acid from vacuum cut #1 distillate oil of Daqing using microwaves has also been reported by Huang et. al [2006]. The microwave treatment can be applied to drinking water containing small concentrations of naphthenic acid. In this case permittivity information is useful in designing a microwave applicator and modeling studies. Permittivity measurements were done using a HP 8510 Vector Network Analyzer and coaxial probe reflection method to study the dielectric properties of naphthenic acid in water. The effects of process variables such as frequency, concentration and temperature on dielectric properties were determined.

  9. Electrochemical formation of hydroxide for enhancing carbon dioxide and acid gas uptake by a solution

    DOEpatents

    Rau, Gregory Hudson

    2014-07-01

    A system for forming metal hydroxide from a metal carbonate utilizes a water electrolysis cell having an acid-producing anode and a hydroxyl-producing cathode immersed in a water solution of sufficient ionic content to allow an electric current to pass between the hydroxyl-producing cathode and the acid-producing anode. A metal carbonate is placed in close proximity to the acid-producing anode. A direct current electrical voltage is provided across the acid-producing anode and the hydroxyl-producing cathode sufficient to generate acid at the acid-producing anode and hydroxyl ions at the hydroxyl-producing cathode. The acid dissolves at least part of the metal carbonate into metal and carbonate ions allowing the metal ions to travel toward the hydroxyl-producing cathode and to combine with the hydroxyl ions to form the metal hydroxide. The carbonate ions travel toward the acid-producing anode and form carbonic acid and/or water and carbon dioxide.

  10. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  11. Analytical solution for soil water redistribution during evaporation process.

    PubMed

    Teng, Jidong; Yasufuku, Noriyuki; Liu, Qiang; Liu, Shiyu

    2013-01-01

    Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile. PMID:24355839

  12. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    SciTech Connect

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO/sub 3/, to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH)/sub 2/, neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO/sub 3/ neutralization to pH 4 followed by neutralization with Ca(OH)/sub 2/ to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH)/sub 2/ as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO/sub 4/ are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies.

  13. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed Central

    Driscoll, C T

    1985-01-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes. PMID:3935428

  14. Aluminum in acidic surface waters: chemistry, transport, and effects.

    PubMed

    Driscoll, C T

    1985-11-01

    Ecologically significant concentrations of Al have been reported in surface waters draining "acid-sensitive" watersheds that are receiving elevated inputs of acidic deposition. It has been hypothesized that mineral acids from atmospheric deposition have remobilized Al previously precipitated within the soil during soil development. This Al is then thought to be transported to adjacent surface waters. Dissolved mononuclear Al occurs as aquo Al, as well as OH-, F-, SO4(2-), and organic complexes. Although past investigations have often ignored non-hydroxide complexes of Al, it appears that organic and F complexes are the predominant forms of Al in dilute (low ionic strength) acidic surface waters. The concentration of inorganic forms of Al increases exponentially with decreases in solution pH. This response is similar to the theoretical pH dependent solubility of Al mineral phases. The concentration of organic forms of Al, however, is strongly correlated with variations in organic carbon concentration of surface waters rather than pH. Elevated concentrations of Al in dilute acidic waters are of interest because: Al is an important pH buffer; Al may influence the cycling of important elements like P, organic carbon, and trace metals; and Al is potentially toxic to aquatic organisms. An understanding of the aqueous speciation of Al is essential for an evaluation of these processes.

  15. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  16. Isothermal heat measurements of TBP-nitric acid solutions

    SciTech Connect

    Smith, J.R.; Cavin, W.S.

    1994-12-16

    Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.

  17. NEUTRALIZATION OF ACIDIC GROUND WATER NEAR GLOBE, ARIZONA.

    USGS Publications Warehouse

    Eychaner, James H.; Stollenwerk, Kenneth G.; ,

    1985-01-01

    Highly acidic contaminated water is moving through a shallow aquifer and interacting with streams near Globe, Arizona. Dissolved concentrations reach 3,000 mg/L iron, 150 mg/L copper, and 16,400 mg/L total dissloved solids; pH is as low as 3. 6. Samples from 16 PVC-cased observation wells include uncontaminated, contaminated, transition, and neutralized waters. Chemical reaction with sediments and mixing with uncontaminated water neutralizes the acidic water. The reactions form a transition zone where gypsum replaces calcite and most metals precipitate. Ferric hydroxide also precipitates if sufficient oxygen is available. Abundant gypsum crystals and ferric hydroxide coatings have been recovered from well cuttings. Large sulfate concentrations produce sulfate complexes with many metals that inhibit removal of metals from solution.

  18. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    PubMed

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  19. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    PubMed

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  20. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  1. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  2. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    PubMed

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  3. Characterization of metal ion-nucleic acid interactions in solution.

    PubMed

    Pechlaner, Maria; Sigel, Roland K O

    2012-01-01

    Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.

  4. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s.

    PubMed

    Kunioka, Masao

    2004-03-15

    Biodegradable hydrogels prepared by gamma-irradiation from microbial poly(amino acid)s have been studied. pH-Sensitive hydrogels were prepared by the gamma-irradiation of poly(gamma-glutamic acid) (PGA) produced by Bacillus subtilis and poly(epsilon-lysine) (PL) produced by Streptomyces albulus in aqueous solutions. When the gamma-irradiation dose was 19 kGy or more, and the concentration of PGA in water was 2 wt.-% or more, transparent hydrogels could be produced. For the 19 kGy dose, the produced hydrogel was very weak, however, the specific water content (wt. of absorbed water/wt. of dry hydrogel) of this PGA hydrogel was approximately 3,500. The specific water content decreased to 200, increasing when the gamma-irradiation dose was over 100 kGy. Under acid conditions or upon the addition of electrolytes, the PGA hydrogels shrunk. The PGA hydrogel was pH-sensitive and the change in the volume of the hydrogel depended on the pH value outside the hydrogel in the swelling medium. This PGA hydrogel was hydrodegradable and biodegradable. A new novel purifier reagent (coagulant), made from the PGA hydrogels, for contaminated turbid water has been found and developed by Japanese companies. A very small amount of this coagulant (only 2 ppm in turbid water) with poly(aluminum chloride) can be used for the purification of turbid water. A PL aqueous solution also can change into a hydrogel by gamma-irradiation. The specific water content of the PL hydrogel ranged from 20 to 160 depending on the preparation conditions. Under acid conditions, the PL hydrogel swelled because of the ionic repulsion of the protonated amino groups in the PL molecules. The rate of enzymatic degradation of the respective PL hydrogels by a neutral protease was much faster than the rate of simple hydrolytic degradation. PMID:15468223

  5. Equilibrium water and solute uptake in silicone hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J

    2015-05-01

    Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments.

  6. Potential of mean force between two hydrophobic solutes in water.

    PubMed

    Southall, Noel T; Dill, Ken A

    2002-12-10

    We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory.

  7. Potential of mean force between two hydrophobic solutes in water.

    PubMed

    Southall, Noel T; Dill, Ken A

    2002-12-10

    We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory. PMID:12488009

  8. Reclamation of acid waters using sewage sludge.

    PubMed

    Davison, W; Reynolds, C S; Tipping, E; Needham, R F

    1989-01-01

    An exhausted sand quarry which had filled with acid water (pH 3) from the oxidation of pyrite was treated with calcium hydroxide to neutralize the water (pH 8), and sewage sludge to prevent further ingress of acid. The water remained neutral for 2 years, an appreciable quantity of base being generated by the reduction of sulphate to sulphide in the anoxic sediment formed by the sewage sludge. After this time the water reverted to acid conditions, chiefly because the lake was too shallow to retain the sewage sludge over a sufficiently large area of its bed. Incubation experiments showed that the sewage sludge had a large capacity for sulphate reduction, which was equally efficient in acid or neutral waters and that the areal rate of consumption was sufficiently fast to neutralize all incoming acid, if at least 50% of the lake bed was covered with sludge. Throughout the course of the field investigations there was no foul smell and the lake was quickly colonized by phytoplankton, macrophytes and insects. Although nutrients associated with the sewage sludge stimulated photosynthesis and so caused the generation of additional organic matter, they were exhausted within two years. To ensure permanent reclamation, phosphate fertilizer could be added once the initial supply has been consumed. Neutralization removed trace metals from the system, presumably due to formation of insoluble oxyhydroxide and carbonates. The solubility of aluminium was apparently controlled by a basic aluminium sulphate (jurbanite).

  9. The thermodynamic activity of proline in ternary solutions of different water potentials.

    PubMed

    Pahlich, E; Stadermann, T

    1984-06-01

    The particular colligative properties of proline caused us to investigate the thermodynamic activity of this amino acid in detail. The dependence of the activity coefficients γ of proline (γ = thermodynamic activity/molality) on the pH of the solutions, the composition of the solution and the water potential has been measured. The results show that the activity coefficient of proline varies according to the solute milieu. The most pronounced alterations of the activity coefficient could be observed in polyethylene glycol solutions in contrast to KCl- and saccharose solutions where the effect was less distinct. The results described provide a basis for discussing water stress induced metabolic alterations in terms of thermodynamic entities. Changed rates of proline metabolizing sequences and changed ratios of the vacuole/extravacuole distribution of this amino acid in stressed and un-stressed plants may partially be explained by thermodynamic causes.

  10. Solution Preserves Nucleic Acids in Body-Fluid Specimens

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.

    2004-01-01

    A solution has been formulated to preserve deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in specimens of blood, saliva, and other bodily fluids. Specimens of this type are collected for diagnostic molecular pathology, which is becoming the method of choice for diagnosis of many diseases. The solution makes it possible to store such specimens at room temperature, without risk of decomposition, for subsequent analysis in a laboratory that could be remote from the sampling location. Thus, the solution could be a means to bring the benefits of diagnostic molecular pathology to geographic regions where refrigeration equipment and diagnostic laboratories are not available. The table lists the ingredients of the solution. The functions of the ingredients are the following: EDTA chelates divalent cations that are necessary cofactors for nuclease activity. In so doing, it functionally removes these cations and thereby retards the action of nucleases. EDTA also stabilizes the DNA helix. Tris serves as a buffering agent, which is needed because minor contaminants in an unbuffered solution can exert pronounced effects on pH and thereby cause spontaneous degradation of DNA. SDS is an ionic detergent that inhibits ribonuclease activity. SDS has been used in some lysis buffers and as a storage buffer for RNA after purification. The use of the solution is straightforward. For example, a sample of saliva is collected by placing a cotton roll around in the subject's mouth until it becomes saturated, then the cotton is placed in a collection tube. Next, 1.5 mL of the solution are injected directly into the cotton and the tube is capped for storage at room temperature. The effectiveness of the solution has been demonstrated in tests on specimens of saliva containing herpes simplex virus. In the tests, the viral DNA, as amplified by polymerase chain reaction, was detected even after storage for 120 days.

  11. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  12. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  13. Understanding the Permeation of Solutes in Water Treatment Membranes

    NASA Astrophysics Data System (ADS)

    Phillip, William

    2013-03-01

    The responsible management of the world's water resources is essential to supporting human life on earth. The successful development of reverse osmosis seawater desalination makes it a crucial component in the portfolio of water supply options. However, other measures to alleviate the stresses on water supplies are necessary to responsibly and sustainably meet the worldwide demand for fresh water. Osmotically driven membrane processes (ODMP) are an emerging set of technologies that show promise in water conservation and reuse, as well as wastewater reclamation. The majority of research in the field has focused on predicting and enhancing water permeation through membranes, however, the effective operation of ODMP systems requires that the permeation of solutes across water treatment membranes be better understood. For example, the reverse flux of draw solute from the concentrated draw solution into the feed solution should be minimized. Additionally, due to the presence of solute-solute interactions that arise because of the unique geometry of ODMPs, the rejection of dilute solutes in these processes can be dramatically different than those observed in traditional pressure driven operations. In this talk, theoretical and experimental approaches are used to explore the permeation of solutes in osmotically driven membrane processes. Phenomenological models were developed that describe the forward and reverse permeation of the solutes across an asymmetric membrane in forward osmosis operation; and experiments were carried out to validate the model predictions. Using independently determined membrane transport coefficients, strong agreement between the model predictions and experimental results was observed.

  14. NASA's Water Solutions Using Remote Sensing

    NASA Technical Reports Server (NTRS)

    Toll, David

    2012-01-01

    NASA Water Resources works within Earth sciences to leverage investments of space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities into water resources management decision support tools for the sustainable use of water. Earth science satellite observations and modelling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of the water cycle. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. The NASA Water Resources Program has the objective to provide NASA products to help deal with these issues with the goal for the sustainable use of water. The Water Resources program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use (includes evapotranspiration) and irrigation; 3) drought; 4) water quality; and 5) climate and water resources. NASA primarily works with national and international groups such as other US government agencies (NOAA, EPA, USGS, USAID) and various other groups to maximize the widest use of the water products. A summary of NASA's water activities linked to helping solve issues for developing countries will be highlighted.

  15. Ions in water: The microscopic structure of concentrated hydroxide solutions

    NASA Astrophysics Data System (ADS)

    Imberti, S.; Botti, A.; Bruni, F.; Cappa, G.; Ricci, M. A.; Soper, A. K.

    2005-05-01

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45° from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  16. Ions in water: the microscopic structure of concentrated hydroxide solutions.

    PubMed

    Imberti, S; Botti, A; Bruni, F; Cappa, G; Ricci, M A; Soper, A K

    2005-05-15

    Neutron-diffraction data on aqueous solutions of hydroxides, at solute concentrations ranging from 1 solute per 12 water molecules to 1 solute per 3 water molecules, are analyzed by means of a Monte Carlo simulation (empirical potential structure refinement), in order to determine the hydration shell of the OH- in the presence of the smaller alkali metal ions. It is demonstrated that the symmetry argument between H+ and OH- cannot be used, at least in the liquid phase at such high concentrations, for determining the hydroxide hydration shell. Water molecules in the hydration shell of K+ orient their dipole moment at about 45 degrees from the K+-water oxygen director, instead of radially as in the case of the Li+ and Na+ hydration shells. The K+-water oxygen radial distribution function shows a shallower first minimum compared to the other cation-water oxygen functions. The influence of the solutes on the water-water radial distribution functions is shown to have an effect on the water structure equivalent to an increase in the pressure of the water, depending on both ion concentration and ionic radius. The changes of the water structure in the presence of charged solutes and the differences among the hydration shells of the different cations are used to present a qualitative explanation of the observed cation mobility.

  17. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  18. Thermal stability of 5-o-caffeoylquinic acid in aqueous solutions at different heating conditions.

    PubMed

    Dawidowicz, Andrzej L; Typek, Rafal

    2010-12-22

    Chlorogenic acid is a naturally occurring phenolic compound found in all higher plants. This component, being the ester of caffeic acid with quinic acid, is an important biosynthetic intermediate and plays an important role in the plant's response to stress. Potential uses of chlorogenic acid are suggested in pharmaceuticals, foodstuffs, feed additives, and cosmetics due to its recently discovered biomedical activity. This finding caused new interest in chlorogenic acid properties, its isomers, and its natural occurrence. It has been found that as many as nine compounds (chlorogenic acid derivatives and its reaction product with water) can be formed from 5-o-caffeoylquinic acid during the heating of its water solution. Three of them, two hydroxylated 5-o-caffeoylquinic acid derivatives and 4,5-dicaffeoylquinic acid, have been not reported, yet. The amount of each formed component depends on the heating time and temperature. The presented results are important for researchers investigating plant metabolism and looking for new plant components. The transformation product can be mistakenly treated as a new component, not found before in the examined plant, or can be a cause of erroneous quantitative estimations of plant composition.

  19. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  20. Acid mine water aeration and treatment system

    DOEpatents

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  1. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer.

  2. The influence of organic acids in relation to acid deposition in controlling the acidity of soil and stream waters on a seasonal basis.

    PubMed

    Chapman, Pippa J; Clark, Joanna M; Reynolds, Brian; Adamson, John K

    2008-01-01

    Much uncertainty still exists regarding the relative importance of organic acids in relation to acid deposition in controlling the acidity of soil and surface waters. This paper contributes to this debate by presenting analysis of seasonal variations in atmospheric deposition, soil solution and stream water chemistry for two UK headwater catchments with contrasting soils. Acid neutralising capacity (ANC), dissolved organic carbon (DOC) concentrations and the Na:Cl ratio of soil and stream waters displayed strong seasonal patterns with little seasonal variation observed in soil water pH. These patterns, plus the strong relationships between ANC, Cl and DOC, suggest that cation exchange and seasonal changes in the production of DOC and seasalt deposition are driving a shift in the proportion of acidity attributable to strong acid anions, from atmospheric deposition, during winter to predominantly organic acids in summer. PMID:17478019

  3. Extraction and concentration of organic solutes from water

    USGS Publications Warehouse

    Goldberg, M.C.; DeLong, L.; Sinclair, M.

    1973-01-01

    A continuous extraction apparatus is described. It extracts and simultaneously concentrates organic solutes from water. Any immiscible solvent can be used in this apparatus if the solute will partition between the solvent and water. A concentration factor of up to 105 is obtained with this technique. The dipole moment difference between the solute and solvent is demonstrated to be an index of the extraction efficiency. Optimum extraction of a given molecular species may be obtained by use of this index.

  4. Extraction and analysis of trifluoroacetic Acid in environmental waters.

    PubMed

    Wujcik, C E; Cahill, T M; Seiber, J N

    1998-10-01

    Trifluoroacetic acid (TFA), a mildly phytotoxic compound, is a stable atmospheric breakdown product of HFC-134a, HCFC-123, and HCFC-124. An extraction and analytical method has been developed for the routine analysis of low ppt levels of TFA in aqueous samples. TFA can be quantitatively recovered from most environmental waters by an extraction procedure using a commercial anion-exchange disk. In saline samples (conductivity >620 μS), where the presence of competing anions interfered with recovery, a liquid-liquid extraction cleanup was necessary. After extraction of TFA from water, the dried disk was placed in a headspace vial containing 10% sulfuric acid in methanol and the vial sealed and then vortexed for 30 s. The sulfuric acid-methanol solution extracts trifluoroacetate anion (TFA) from the anion-exchange matrix and, when heated, quantitatively converts it to the methyl ester, which is then analyzed by automated headspace gas chromatography using electron capture or mass spectrometry detection. Several environmental samples in addition to laboratory spike solutions were successfully extracted and analyzed with this technique. Recoveries averaged 108.2% for reagent water spiked at levels from 53 to 2110 ng/L with relative standard deviations ranging from 0.3 to 8.4%. The instrument's limit of detection for TFA standard was 3.3 ng. The limit of quantitation for the extraction and analytical technique was 36 ng/L. Three water samples can be prepared for automated analysis in 20 min using this technique. PMID:21651243

  5. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  6. ATR FT-IR H 2O spectra of acidic aqueous solutions. Insights about proton hydration

    NASA Astrophysics Data System (ADS)

    Śmiechowski, Maciej; Stangret, Janusz

    2008-04-01

    Proton hydration in aqueous solutions has been recently characterised in our laboratory by means of vibrational spectra of HDO isotopically diluted in H 2O [M. Śmiechowski, J. Stangret, J. Chem. Phys. 125 (2006) 204508]. Here, we attempt to study quantitatively H 2O spectra of acidic aqueous solutions. In principle, H 2O spectra provide more information about the structural state of water molecules, resulting from oscillator couplings in the system, but they are much more difficult in interpretation, when compared with HDO spectra. The spectra of aqueous solutions of monoprotic acids (HCl, HClO 4, HPF 6) have been measured by Attenuated Total Reflectance (ATR) FT-IR spectroscopy. Spectral data have been analysed in a way that led to removal of the contribution of bulk water, in order to separate the spectra of solute-affected water only. The analysis has been focused on the infinite dilution limit behaviour of the spectrum. Changes induced in the affected spectra by temperature have been studied for HPF 6 solutions at 25-45 °C. The stretching vibration fundamental has been found to be primarily affected by counter-anion. Proton-affected H 2O spectrum shows the presence of very wide absorption bands in the range, where bulk water shows negligible own absorption, rather than "absorption continua". They could be adequately resolved into analytical components. These bands have been unaffected by temperature and loosely correlated with the stretching fundamental, as indicated by 2D IR correlation spectra. All spectral effects of the studied acids on H 2O in solution have been quantitatively evidenced and discussed. They seem to be in accordance with the main conclusions about proton hydration derived from recent studies of HDO spectra mentioned above.

  7. Saline solutions: the quest for fresh water.

    PubMed

    Reuther, C G

    2000-02-01

    Despite steady advances in the technology, desalination remains one of the most expensive ways to produce potable water. But as water scarcity forces communities to find new sources of drinking water, scientists are developing innovations that may soon make desalination a reasonable option for many more communities. The newest approach to desalination is membrane systems, which include reverse osmosis and electrodialysis systems. Current research seeks to make these systems more effective and less likely to produce environmentally hazardous by-products. Many facilities use traditional distillation to desalinate water, and efforts are being made to combine membranes and distillation for more efficient systems.

  8. Saline solutions: the quest for fresh water.

    PubMed Central

    Reuther, C G

    2000-01-01

    Despite steady advances in the technology, desalination remains one of the most expensive ways to produce potable water. But as water scarcity forces communities to find new sources of drinking water, scientists are developing innovations that may soon make desalination a reasonable option for many more communities. The newest approach to desalination is membrane systems, which include reverse osmosis and electrodialysis systems. Current research seeks to make these systems more effective and less likely to produce environmentally hazardous by-products. Many facilities use traditional distillation to desalinate water, and efforts are being made to combine membranes and distillation for more efficient systems. PMID:10656867

  9. An ellipsometric study of mild steel in hydrochloric acid solutions

    NASA Astrophysics Data System (ADS)

    Brakenbury, W. R. E.; Grzeskowiak, R.

    1986-04-01

    An ellipsometric study has been made on mild steel in hydrochloric acid solutions, in a situation where film growth is not expected. The results are considered to be due to roughening and have been interpreted in terms of a Fenstermaker-McCrackin type roughening model. It appears that the ellipsometer is sensitive mainly to a small scale roughening consisting of etch pits of a few nanometers in dimensions rather than the larger roughened features easily seen by microscopic examination.

  10. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  11. Different behavior of water in confined solutions of high and low solute concentrations.

    PubMed

    Elamin, Khalid; Jansson, Helén; Kittaka, Shigeharu; Swenson, Jan

    2013-11-14

    Water-glycerol solutions confined in 21 Å pores of the silica matrix MCM-41 C10 have been studied using differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The results suggest a micro-phase separation caused by the confinement. Likely the water molecules coordinate to the hydroxyl surface groups of the pores, leaving most of the glycerol molecules in the centre of the pores. This makes the dynamics of glycerol almost concentration independent up to water concentrations of about 85 wt%. However, at higher water concentrations no substantial clustering of glycerol molecules should occur and the glass transition related dynamics exhibit an anomalous behaviour. Instead of a common plasticization effect of water, as for the corresponding bulk solutions (when no ice is formed), it is evident that water acts as an anti-plasticizer in the confinement at high water concentrations. We propose that the increased water concentration slows down the glass transition related dynamics in the deeply supercooled regime due to that a rigid hydrogen bonded network structure of water molecules is formed at low temperatures and low glycerol concentrations. This is in contrast to the situation in a homogenously mixed bulk solution of a high solute concentration where the water molecules will be less hydrogen bonded, and therefore are typically more mobile than the surrounding solute molecules. An almost complete hydrogen bonded network of water molecules may, even in confinements, be sufficiently rigid to slow down the relaxation of embedded solute molecules. It can also be expressed the other way around, i.e. small amounts of glycerol act as a plasticizer for water, due to its breaking up of the nearly tetrahedral network structure. From the here observed concentration dependent behaviour of the deeply supercooled bulk and confined solutions it seems, furthermore, evident that the Tg value of bulk water cannot be estimated from extrapolations of aqueous

  12. Interfacial structures of acidic and basic aqueous solutions

    SciTech Connect

    Tian, C.; Ji, N.; Waychunas, G.; Shen, Y.R.

    2008-10-20

    Phase-sensitive sum-frequency vibrational spectroscopy was used to study water/vapor interfaces of HCl, HI, and NaOH solutions. The measured imaginary part of the surface spectral responses provided direct characterization of OH stretch vibrations and information about net polar orientations of water species contributing to different regions of the spectrum. We found clear evidence that hydronium ions prefer to emerge at interfaces. Their OH stretches contribute to the 'ice-like' band in the spectrum. Their charges create a positive surface field that tends to reorient water molecules more loosely bonded to the topmost water layer with oxygen toward the interface, and thus enhances significantly the 'liquid-like' band in the spectrum. Iodine ions in solution also like to appear at the interface and alter the positive surface field by forming a narrow double-charge layer with hydronium ions. In NaOH solution, the observed weak change of the 'liquid-like' band and disappearance of the 'ice-like' band in the spectrum indicates that OH{sup -} ions must also have excess at the interface. How they are incorporated in the interfacial water structure is however not clear.

  13. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  14. Viruses in Water: The Problem, Some Solutions

    ERIC Educational Resources Information Center

    Gerba, Charles P.; And Others

    1975-01-01

    Increasing population and industrialization places heavy demands on water resources making recycling of wastewaters for domestic consumption inevitable. Eliminating human pathogenic viruses is a major problem of reclaiming wastewater. Present water treatment methods may not be sufficient to remove viruses. (MR)

  15. A unified molecular picture of the surfaces of aqueous acid, base, and salt solutions

    SciTech Connect

    Mucha, M.; Frigato, Tomaso; Levering, Lori; Allen, Heather C.; Tobias, Douglas J.; Dang, Liem X.; Jungwirth, Pavel

    2005-04-28

    A unified view of the structure of the air/solution interface of simple aqueous electrolytes containing monovalent inorganic ions is developed using molecular dynamics simulations and vibrational sum frequency generation spectroscopy. In salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the air/solution interface, while the anions, such as halides or hydroxide, exhibit a varying propensity for the surface, correlated primarily with the polarizability of the ion. As a result, there is a net depletion of ions from the interfacial layer as a whole, which is connected via the Gibbs adsorption equation to an increase in surface tension with respect to neat water. The behavior of acids, such as aqueous HCl or HBr, is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids reduce the surface tension of water. The key to the qualitatively different surface behavior of aqueous salt solutions and bases on one side and acids on the other thus lies in the appreciable adsorption of hydronium cations at the air/solution interface with their “hydrophobic” oxygen side oriented towards the gas phase. The results of the molecular dynamics calculations are supported by surface selective non-linear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The propensity of inorganic ions for the air/solution interface has important implications for heterogeneous chemical processes, in particular for atmospheric chemistry.

  16. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  17. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Stream water pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southwast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site. 10 references, 2 tables.

  18. Acidophilic, heterotrophic bacteria of acidic mine waters

    SciTech Connect

    Wichlacz, P.L.; Unz, R.F.

    1981-05-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and oxidase positive, strictly aerobic, and capable of growth on citric acid. The bacteria were cultivatable on solid nutrient media only if agarose was employed as the hardening agent. Bacterial densities in natural mine waters ranged from approximately 20 to 250 cells per ml, depending upon source and culture medium.

  19. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  20. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  1. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  2. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  3. Water and UV degradable lactic acid polymers

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.

    1990-06-26

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylane glycols (PVB 6/22/90), propylene and and polypropylene (PVB 6/22/90) glycols, P-dioxanone, 1, 5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  4. Mixed field radiation effects on dry and acidic solution saturated polyamide 6,6

    NASA Astrophysics Data System (ADS)

    Brown, L.; Bonin, H. W.; Bui, V. T.

    2005-05-01

    The disposal of Canada's radioactive waste materials has been the focus of ongoing research at the Royal Military College of Canada, in the use of polymer-based composite materials for the fabrication of disposal containers. An evaluation of the performance of polyamide 6,6 after exposure to radiation and acidic aqueous solutions provides the basis for the assessment of the lifetime performance of a polymeric-based storage container. This work demonstrates the importance of the combined effects of aqueous solution diffusion and radiation exposure on the mechanical performance and molecular structure of polyamide 6,6. Irradiation of dry samples initially results in a marked reduction of mechanical performance, however, post-irradiation aging allows for the return to pre-irradiation mechanical strength. Samples irradiated after exposure to either distilled water or 0.1 M sulfuric acid solutions exhibited increases in mechanical performance upon exposure to a mixed field radioactive environment.

  5. Influence of biuret and cyanuric acid on dewaxing petroleum stocks with alcoholic urea solution

    SciTech Connect

    Abdullaev, E.Sh.; Ismailov, A.G.; Gadzhiev, A.Sh.; Balayan, R.D.

    1987-11-01

    The influence of biuret and cyanuric acid contents on the formation and separation of the adduct in commercial dewaxing of petroleum stocks by a urea solution in a water and isopropyl alcohol mixture was studied. The stock was a diesel fuel distillate with a solid point of -12/sup 0/C. Experiments were performed with a 3.5:1 volume ratio of urea solution to feed, urea content 38% by weight, isopropyl alcohol concentration 70% by weight, adduct formation temperature 55-30/sup 0/C, and adduct formation duration 30 min. Test results show the adverse effects at different quantities of cyanuric and biuret acids on adduct formation. Solutions for overcoming these effects are proposed.

  6. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  7. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  8. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  9. WATER CONSERVATION: LOCAL SOLUTIONS TO A GLOBAL PROBLEM

    EPA Science Inventory

    Water conservation issues are discussed. Local solutions to a global problem include changing old habits relating to the usage and abuse of water resources. While the suggested behavioral changes may not solve the world's pending water crisis, they may ease the impact of the l...

  10. Influence of surfactants on unsaturated water flow and solute transport

    NASA Astrophysics Data System (ADS)

    Karagunduz, Ahmet; Young, Michael H.; Pennell, Kurt D.

    2015-04-01

    Surfactants can reduce soil water retention by changing the surface tension of water and the contact angle between the liquid and solid phases. As a result, water flow and solute transport in unsaturated soil may be altered in the presence of surfactants. In this study, the effects of a representative nonionic surfactant, Triton X-100, on coupled water flow and nonreactive solute transport during unsaturated flow conditions were evaluated. Batch reactor experiments were conducted to measure the surfactant sorption characteristics, while unsaturated transport experiments were performed in columns packed with 40-270 mesh Ottawa sand at five initial water contents. Following the introduction of surfactant solution, the rate of water percolation through the sand increased; however, this period of rapid water drainage was followed by decreased water percolation due to the reduction in soil water content and the corresponding decrease in unsaturated hydraulic conductivity behind the surfactant front. The observed changes in water percolation occurred sequentially, and resulted in faster nonreactive solute transport than was observed in the absence of surfactant. A one-dimensional mathematical model accurately described coupled water flow, surfactant, and solute transport under most experimental conditions. Differences between model predictions and experimental data were observed in the column study performed at the lowest water content (0.115 cm3/cm3), which was attributed to surfactant adsorption at the air-water interface. These findings demonstrate the potential influence of surfactants additives on unsaturated water flow and solute transport in soils, and demonstrate a methodology to couple these processes in a predictive modeling tool.

  11. "Switchable water": aqueous solutions of switchable ionic strength.

    PubMed

    Mercer, Sean M; Jessop, Philip G

    2010-04-26

    "Salting out" is a standard method for separating water-soluble organic compounds from water. In this method, adding a large amount of salt to the aqueous solution forces the organic compound out of the aqueous phase. However, the method can not be considered sustainable because it creates highly salty water. A greener alternative would be a method that allows reversible salting out. Herein, we describe aqueous solutions of switchable ionic strength. Aqueous solutions of a diamine in water have essentially zero ionic strength but are converted by CO(2) into solutions of high ionic strength. The change is reversible. Application to the reversible salting out of THF from water is described. PMID:20186910

  12. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters.

    PubMed

    Kumpulainen, Sirpa; von der Kammer, Frank; Hofmann, Thilo

    2008-04-01

    In acid conditions, as in acid mine drainage waters, iron oxide particles are positively charged, attracting negatively charged organic particles present in surrounding natural waters. Schwertmannite (Fe8O8(OH)6SO4) and goethite (alpha-FeOOH) are the most typical iron oxide minerals found in mine effluents. We studied schwertmannite formation in the presence of humic acid. Further, surface charge and adsorption of humic acid on synthetic schwertmannite and goethite surfaces in pH 2-9 and in humic acid concentrations of 0.1-100 mg/L C were examined. Schwertmannite did precipitate despite the presence of humic acid, although it contained more sulphate and had higher specific surface area than ordinary schwertmannite. Specific surface area weighted results showed that schwertmannite and goethite had similar humic acid adsorption capacities. Sulphate was released from schwertmannite surfaces with increasing pH, resulting in an increase in specific surface area. Presence of sulphate in solution decreased the surface charge of schwertmannite and goethite similarly, causing coagulation. In acid conditions (pH 2-3.5), according to the zeta potential, schwertmannite is expected to coagulate even in the presence of high concentrations of humic acid (< or = 100 mg/L C). However, at high humic acid concentrations (10-100 mg/L C) with moderate acid conditions (pH>3.5), both schwertmannite and goethite surfaces are strongly negatively charged (zeta potential < -30 mV) thus posing a risk for colloid stabilization and colloidal transport. PMID:18221768

  13. Water transport in water-in-oil-in-water liquid emulsion membrane system for the separation of lactic acid

    SciTech Connect

    Mok, Y.S.; Lee, W.K. )

    1994-03-01

    Liquid emulsion membranes (LEMs) were applied to the separation of lactic acid from an aqueous feed phase, and water transport (swelling) was investigated during the separation. Considering that as lactic acid was extracted into the internal stripping phase, osmotic pressure difference across the membrane was varied, the water transfer coefficient was evaluated. The water transfer coefficient was larger at higher carrier concentration and initial lactic acid concentration, which means that emulsion swelling can also be mediated by solute/carrier complexes although it is, in general, osmotically induced. The appropriate LEM formulation was given for separation and concentration of lactic acid. If both separation and concentration are desired, evidently emulsion swelling should be considered in conjunction with the transport rate of lactic acid. It was observed that the separated solute concentration in the internal phase was lowered due to swelling during the operation. Nevertheless, lactic acid could be concentrated in the internal phase more than 6 times in specific conditions, indicating that as the volume ratio of external phase to internal phase is increased, a still higher concentration in the internal phase can be obtained. 22 refs., 10 figs., 4 tabs.

  14. Anomalous water diffusion in salt solutions

    PubMed Central

    Ding, Yun; Hassanali, Ali A.; Parrinello, Michele

    2014-01-01

    The dynamics of water exhibits anomalous behavior in the presence of different electrolytes. Recent experiments [Kim JS, Wu Z, Morrow AR, Yethiraj A, Yethiraj A (2012) J Phys Chem B 116(39):12007–12013] have found that the self-diffusion of water can either be enhanced or suppressed around CsI and NaCl, respectively, relative to that of neat water. Here we show that unlike classical empirical potentials, ab initio molecular dynamics simulations successfully reproduce the qualitative trends observed experimentally. These types of phenomena have often been rationalized in terms of the “structure-making” or “structure-breaking” effects of different ions on the solvent, although the microscopic origins of these features have remained elusive. Rather than disrupting the network in a significant manner, the electrolytes studied here cause rather subtle changes in both structural and dynamical properties of water. In particular, we show that water in the ab initio molecular dynamics simulations is characterized by dynamic heterogeneity, which turns out to be critical in reproducing the experimental trends. PMID:24522111

  15. Equilibrium water and solute uptake in silicone hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J

    2015-05-01

    Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. PMID:25725471

  16. Spectral and Acid-Base Properties of Hydroxyflavones in Micellar Solutions of Cationic Surfactants

    NASA Astrophysics Data System (ADS)

    Lipkovska, N. A.; Barvinchenko, V. N.; Fedyanina, T. V.; Rugal', A. A.

    2014-09-01

    It has been shown that the spectral characteristics (intensity, position of the absorption band) and the acid-base properties in a series of structurally similar hydroxyflavones depend on the concentration of the cationic surfactants miramistin and decamethoxin in aqueous solutions, and the extent of their changes is more pronounced for hydrophobic quercetin than for hydrophilic rutin. For the first time, we have determined the apparent dissociation constants of quercetin and rutin in solutions of these cationic surfactants (pKa1) over a broad concentration range and we have established that they decrease in the series water-decamethoxin-miramistin.

  17. DOM in stream water and soil solution in two small, bordering catchments in central Sweden

    NASA Astrophysics Data System (ADS)

    Norström, Sara H.; Bylund, Dan

    2013-04-01

    Seasonal variations in dissolved organic matter (DOM) and the influence of wood ash application on DOM were studied in two first order streams draining two small, bordering forested catchments. The catchments, 40 and 50 h respectively, were situated in Bispgården (63°07N, 16°70E), central Sweden with forest consisting of mainly 50 to 80 year-old Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). Seasonal variations in the stream water were measured during 2003-2007, and wood ash was applied in one of the catchments in the fall of 2004. In addition to stream water samples, sampling of soil solution in the riparian zone was made in one of the catchments during 2003-2006. The quantity of DOM differed between the streams, but the seasonal patterns for the two streams were correlated during 2003 and 2004. After wood ash treatment, dissolved organic carbon (DOC) increased significantly in the stream draining the treated catchment. 17 different low molecular mass organic acids (LMMOAs) were measured in the stream water during the whole study period. The most abundant LMMOAs were oxalic- and lactic acid, of which peak concentrations of oxalic acid coincided with those of DOC, while no such relation between the concentrations of DOC and lactic acid could be seen in either of the streams. Some of the most common acids in the soil solution, shikimic acid, citric acid and malic acid were rarely found in the stream water and only then in very low concentrations, thus appearing not to have made the transition from soil to stream water in the same manner as oxalic acid. The wood ash application did not affect the total LMMOA concentration and there was no difference during the investigated period. Of the 17 analysed LMMOAs, only malonic acid appeared affected by wood ash application, with a significant increase during both 2005 and 2006.

  18. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution.

    PubMed

    Chen, Guo; Zhang, Bin; Zhao, Jun; Chen, Hongwen

    2013-06-01

    An improved process for production of cellulose sulfate (CS) was developed by using sulfuric acid/ethanol solution as sulfonating agent and Na2SO4 as water absorbent. The FTIR, SEM and TG analysis were used to characterize the CS prepared. The total degree of substitution and viscosity of the product solution (2%, w/v) were ranging from 0.28 to 0.77 and from 115 to 907 mPa s, respectively, by changing the process parameters such as the amount of Na2SO4, the reaction time, the temperature, the sulfuric acid/alcohol ratio and liquid/solid ratio. The results indicated that the product with DS (0.28-0.77) and η2% (115-907) mPa s could be produced by using this improved process and more cellulose sulfate could be produced when cellulose was sulfonated for 3-4 h at -2 °C in sulfuric acid/ethanol (1.4-1.6) solution with addition of 0.8 g Na2SO4. The (13)C NMR indicated that the sulfate group of CS produced using sulfuric acid/ethanol solution was at C6 position.

  19. [Effects of UV Radiation on the Physicochemical Properties and Coagulation Properties of Humic Acid Solution].

    PubMed

    Wang, Wen-dong; Zhang, Ke; Fan, Qing-hai; Zheng, Dan

    2016-03-15

    To investigate the mechanism of UV light in promoting the removal of humic acid ( HA) by coagulation, the variations of the physical and chemical properties of the HA solution before and after UV light radiation were investigated. The effects of the changes in water quality conditions on the removal performance of HA in coagulation were also observed. Experimental results showed that except zeta potential, pH, chromaticity and viscosity of the HA solution exhibited varying degrees of decline after UV radiation. Further study showed that the impact of changes in viscosity of the solution on humic acid coagulation performance was relatively small. Under acidic conditions, the coagulation performance of HA significantly increased. The increase of zeta potential led to easy gathering of colloidal particles and improved the coagulation performance. Furthermore, except for HA with relative molecular mass of between (10-30) x 10³ and less than 10³, there was little variation in the proportion of low molecular weight HA, which may be an important reason that the coagulation performance of the humic acid solution increased after UV radiation. PMID:27337892

  20. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

  1. Effect of phytic acid, ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin

    PubMed Central

    Nikhil, Vineeta; Jaiswal, Shikha; Bansal, Parul; Arora, Rohit; Raj, Shalya; Malhotra, Pulkit

    2016-01-01

    Aim: The purpose of this study was to evaluate the effect of phytic acid, ethylenediaminetetraacetic acid (EDTA), and chitosan solutions on the microhardness of human radicular dentin. Materials and Methods: Thirty dentin specimens were randomly divided into three groups of 10 specimens each according to the irrigant used: G1 — 1% phytic acid, G2 — 17% EDTA, and G3 — 0.2% chitosan. A standardized volume of each chelating solution was used for 3 min. Dentin microhardness was measured before and after application at the cervical, middle, and apical levels with a Vickers indenter under a 200-g load and a 10-s dwell time. The results were analyzed using one-way analysis of variance (ANOVA) and Student's t test. Results: Microhardness of the radicular dentin varied at the cervical, middle, and apical levels. EDTA had the greatest overall effect, causing a sharp percentage reduction in dentin microhardness with a significant difference from phytic acid and chitosan (P = 0.002). However, phytic acid and chitosan differed insignificantly from each other (P = 0.887). Conclusion: All tested chelating solutions reduced microhardness of the radicular dentin layer at all the levels. However, reduction was least at the apical level. EDTA caused more reduction in dentin microhardness than chitosan while phytic acid reduced the least. PMID:27099428

  2. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.

  3. Differential Effects of Permeating and Nonpermeating Solutes on the Fatty Acid Composition of Pseudomonas putida†

    PubMed Central

    Halverson, Larry J.; Firestone, Mary K.

    2000-01-01

    We examined the effect of reduced water availability on the fatty acid composition of Pseudomonas putida strain mt-2 grown in a defined medium in which the water potential was lowered with the permeating solutes NaCl or polyethylene glycol (PEG) with a molecular weight of 200 (PEG 200) or the nonpermeating solute PEG 8000. Transmission electron microscopy showed that −1.0-MPa PEG 8000-treated cells had convoluted outer membranes, whereas −1.0-MPa NaCl-treated or control cells did not. At the range of water potential (−0.25 to −1.5 MPa) that we examined, reduced water availability imposed by PEG 8000, but not by NaCl or PEG 200, significantly altered the amounts of trans and cis isomers of monounsaturated fatty acids that were present in whole-cell fatty acid extracts. Cells grown in basal medium or under the −0.25-MPa water potential imposed by NaCl or PEG 200 had a higher trans:cis ratio than −0.25-MPa PEG 8000-treated cells. As the water potential was lowered further with PEG 8000 amendments, there was an increase in the amount of trans isomers, resulting in a higher trans:cis ratio. Similar results were observed in cells grown physically separated from PEG 8000, indicating that these changes were not due to PEG toxicity. When cells grown in −1.5-MPa PEG 8000 amendments were exposed to a rapid water potential increase of 1.5 MPa or to a thermodynamically equivalent concentration of the permeating solute, NaCl, there was a decrease in the amount of trans fatty acids with a corresponding increase in the cis isomer. The decrease in the trans/cis ratio following hypoosomotic shock did not occur in the presence of the lipid synthesis inhibitor cerulenin or the growth inhibitors chloramphenicol and rifampicin, which indicates a constitutively operating enzyme system. These results indicate that thermodynamically equivalent concentrations of permeating and nonpermeating solutes have unique effects on membrane fatty acid composition. PMID:10831419

  4. Institutional solutions to drinking water problems: Maine case studies

    SciTech Connect

    Not Available

    1993-03-01

    The paper recounts how four Maine communities sought and found institutional solutions to drinking water problems. Each scenario describes the system, outlines the problems, reviews the chronology of events, points out the lessons learned and gives the system's current status.

  5. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R.

    2012-02-22

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. For 6 M HNO{sub 3}, 10.5 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2 g/L and 0.25 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}.

  6. Behavior of pure gallium in water and various saline solutions.

    PubMed

    Horasawa, N; Nakajima, H; Takahashi, S; Okabe, T

    1997-12-01

    This study investigated the chemical stability of pure gallium in water and saline solutions in order to obtain fundamental knowledge about the corrosion mechanism of gallium-based alloys. A pure gallium plate (99.999%) was suspended in 50 mL of deionized water, 0.01%, 0.1% or 1% NaCl solution at 24 +/- 2 degrees C for 1, 7, or 28 days. The amounts of gallium released into the solutions were determined by atomic absorption spectrophotometry. The surfaces of the specimens were examined after immersion by x-ray diffractometry (XRD) and x-ray photoelectron spectroscopy (XPS). In the solutions containing 0.1% or more NaCl, the release of gallium ions into the solution was lowered when compared to deionized water after 28-day immersion. Gallium oxide monohydroxide was found by XRD on the specimens immersed in deionized water after 28-day immersion. XPS indicated the formation of gallium oxide/hydroxide on the specimens immersed in water or 0.01% NaCl solution. The chemical stability of pure solid gallium was strongly affected by the presence of Cl- ions in the aqueous solution.

  7. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  8. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  9. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.

  10. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream-flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid-forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Streamwater pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by calcium, magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southeast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site.

  11. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution.

    PubMed

    Pašalić, Hasan; Tunega, Daniel; Aquino, Adélia J A; Haberhauer, Georg; Gerzabek, Martin H; Lischka, Hans

    2012-03-28

    The thermodynamic stability of the acetic acid dimer conformers in microhydrated environments and in aqueous solution was studied by means of molecular dynamics simulations using the density functional based tight binding (DFTB) method. To confirm the reliability of this method for the system studied, density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) calculations were performed for comparison. Classical optimized potentials for liquid simulations (OPLS) force field dynamics was used as well. One focus of this work was laid on the study of the capabilities of water molecules to break the hydrogen bonds of the acetic acid dimer. The barrier for insertion of one water molecule into the most stable cyclic dimer is found to lie between 3.25 and 4.8 kcal mol(-1) for the quantum mechanical methods, but only at 1.2 kcal mol(-1) for OPLS. Starting from different acetic acid dimer structures optimized in gas phase, DFTB dynamics simulations give a different picture of the stability in the microhydrated environment (4 to 12 water molecules) as compared to aqueous solution. In the former case all conformers are converted to the hydrated cyclic dimer, which remains stable over the entire simulation time of 1 ns. These results demonstrate that the considered microhydrated environment is not sufficient to dissociate the acetic acid dimer. In aqueous solution, however, the DFTB dynamics shows dissociation of all dimer structures (or processes leading thereto) starting after about 50 ps, demonstrating the capability of the water environment to break up the relatively strong hydrogen bridges. The OPLS dynamics in the aqueous environment shows--in contrast to the DFTB results--immediate dissociation, but a similar long-term behavior.

  12. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  13. Acidic deposition and surface water chemistry

    NASA Astrophysics Data System (ADS)

    Church, M. R.

    A pair of back-to-back (morning and afternoon) hydrology sessions, held December 10, 1987, at the AGU Fall Meeting in San Francisco, Calif., covered “Predicting the Effects of Acidic Deposition on Surface Water Chemistry.” The combined sessions included four invited papers, 12 contributed papers, and a panel discussion at its conclusion. The gathering dealt with questions on a variety of aspects of modeling the effects of acidic deposition on surface water chemistry.Contributed papers included discussions on the representation of processes in models as well as limiting assumptions in model application (V. S. Tripathi et al., Oak Ridge National Laboratory, Oak Ridge, Tenn., and E. C. Krug, Illinois State Water Survey, Champaign), along with problems in estimating depositional inputs to catchments and thus inputs to be used in the simulation of catchment response (M. M. Reddy et al., U.S. Geological Survey, Lakewood, Colo.; and E. A. McBean, University of Waterloo, Waterloo, Canada). L. A. Baker et al. (University of Minnesota, Minneapolis) dealt with the problem of modeling seepage lake systems, an exceedingly important portion of the aquatic resources in Florida and parts of the upper U.S. Midwest. J. A. Hau and Y. Eckstein (Kent State University, Kent, Ohio) considered equilibrium modeling of two northern Ohio watersheds that receive very different loads of acidic deposition but are highly similar in other respects.

  14. Sorption of acid red 57 from aqueous solution onto sepiolite.

    PubMed

    Alkan, Mahir; Demirbaş, Ozkan; Celikçapa, Sermet; Doğan, Mehmet

    2004-12-10

    Sepiolite, a highly porous mineral, is becoming widely used as an alternative material in areas where sorptive, catalytic and rheological applications are required. High ion exchange capacity and high surface area and more importantly its relatively cheap price make it an attractive adsorbent. In this study, the adsorption of acid red 57 by natural mesoporous sepiolite has been examined in order to measure the ability of this mineral to remove coloured textile dyes from wastewater. For this purpose, a series of batch adsorption tests of acid red 57 from aqueous sepiolite solutions have been systematically investigated as a function of parameters such as pH, ionic strength and temperature. Adsorption equilibrium was reached within 1h. The removal of acid red 57 decreases with pH from 3 to 9 and temperature from 25 to 55 degrees C, whereas it increases with ionic strength from 0 to 0.5 mol L(-1). Adsorption isotherms of acid red on sepiolite were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. It was found that the Langmuir model appears to fit the isotherm data better than the Freundlich model. The physical properties of this adsorbent were consistent with the parameters obtained from the isotherm equations. Approximately, 21.49% weight loss was observed. The surface area value of sepiolite was 342 m2 g(-1) at 105 degrees C, and it increased to 357 m2 g(-1) at 200 degrees C. Further increase in temperature caused channel plugging and crystal structure deformation, as a result the surface area values showed a decrease with temperature. The data obtained from adsorption isotherms at different temperatures have been used to calculate some thermodynamic quantities such as the Gibbs energy, heat and entropy of adsorption. The thermodynamic data indicate that acid red 57 adsorption onto sepiolite is characterized by physical adsorption. The dimensionless separation factor (RL) have shown that sepiolite can be used for

  15. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  16. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  17. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  18. Microwave treatment of naphthenic acids in water.

    PubMed

    Mishra, Sabyasachi; Meda, Venkatesh; Dalai, Ajay K; Headley, John V; Peru, Kerry M; McMartin, Dena W

    2010-08-01

    Naphthenic acids (NAs) are natural constituents of bitumen and crude oil. These compounds are concentrated as part of the oil sands process water (OSPW) during petroleum refining and separation from oil sands. NAs are considered among the major water contaminants in OSPW due to their toxicity and environmental recalcitrance. A laboratory scale microwave system was developed and experiments were conducted to determine the efficiency of NA degradation during microwave treatment. The effects of water source and quality (deionized lab water and river water) and of TiO(2) catalyst in the degradation process were also investigated. Degradation kinetic parameters for both total NAs and individual z-family were calculated. The microwave system degraded OSPW NAs and commercial Fluka NAs in river water in the presence of TiO(2) rapidly, producing half-life values of 3.32 and 3.61 hours, respectively. Toxicity assessments of the NA samples pre-and post-treatment indicated that the microwave system reduced overall toxicity of water containing Fluka NAs from high (5 min. IC(50) v/v = 15.85%) to moderate (5 min. IC(50) v/v = 36.45%) toxicity levels. However, a slight increase in toxicity was noted post-treatment in OSPW NAs.

  19. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    PubMed

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. PMID:26005789

  20. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    PubMed

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination.

  1. Fatty acid composition of water buffalo meat.

    PubMed

    Sharma, N; Gandemer, G; Goutefongea, R; Kowale, B N

    1986-01-01

    The fatty acid composition of intramuscular lipids of Longissimus dorsi (LD), Psoas major (PM), Biceps femoris (BF), Semitendinosus (ST) muscles and liver of water buffalo male calves was determined by capillary gas-liquid chromatography. The content of total lipids in the LD muscle was found to be maximum, followed by PM, BF and ST in decreasing order (1·03, 0·99, 0·66 and 0·55g/100g of fresh muscle). Liver contained 2·65 g of total lipids per 100 g of fresh tissue. Following the anatomical location, intramuscular lipids contained 44-55% of saturated fatty acids, of which the major components were stearic and palmitic acids. Mono-unsaturated fatty acids (31-40%) composed mainly oleic acid (90%). The PUFA contents in PM, LD, ST and BF were, respectively, 11%, 12%, 13% and 16%. The predominant PUFA were linoleic (66%) and arachidonic (25%). The significance of difference of PUFA content between muscles is discussed. Liver contained 48%, 27% and 22% saturated, monosaturated and PUFA, respectively. The PUFA in liver were linoleic (36%), C20 (47%) and C22 (9%).

  2. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution.

    PubMed

    Kwon, Youngkook; Birdja, Yuvraj Y; Raoufmoghaddam, Saeed; Koper, Marc T M

    2015-05-22

    Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) is studied on solid metal electrodes in acidic solution (0.5 M H2 SO4 ) by correlating voltammetry with on-line HPLC product analysis. Three soluble products from HMF hydrogenation are distinguished: 2,5-dihydroxymethylfuran (DHMF), 2,5-dihydroxymethyltetrahydrofuran (DHMTHF), and 2,5-dimethyl-2,3-dihydrofuran (DMDHF). Based on the dominant reaction products, the metal catalysts are divided into three groups: (1) metals mainly forming DHMF (Fe, Ni, Cu, and Pb), (2) metals forming DHMF and DMDHF depending on the applied potentials (Co, Ag, Au, Cd, Sb, and Bi), and (3) metals forming mainly DMDHF (Pd, Pt, Al, Zn, In, and Sb). Nickel and antimony are the most active catalysts for DHMF (0.95 mM cm(-2) at ca. -0.35 VRHE and -20 mA cm(-2) ) and DMDHF (0.7 mM cm(-2) at -0.6 VRHE and -5 mA cm(-2) ), respectively. The pH of the solution plays an important role in the hydrogenation of HMF: acidic condition lowers the activation energy for HMF hydro-genation and hydrogenates the furan ring further to tetrahydrofuran.

  3. Water--Problems and Solutions. A Report Concerning the Problems and Solutions of Negative Water Balance.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Outdoor leaders constantly face problems created by water shortage and, to act effectively, must thoroughly understand the body's use of water and the ways to delay dehydration when water shortage occurs. Dehydration begins when there is a negative water balance, or more water lost than ingested, and progresses from the stage of dryness, to the…

  4. Solubility of organic solutes in ethanol-water mixtures

    SciTech Connect

    Li, A.; Yalkowsky, S.H.

    1994-12-31

    The log-linear solubilization model was applied to experimental solubility data of 109 organic compounds in ethanol/water mixtures. It is found that the extent of solubilization strongly depends on the solute hydrophobicity and the ethanol concentration in the solvent mixture. Patterns of deviation from the log-linear model are related to the structure and hydrophobicity of the solutes. Predictive equations were obtained by regression of the experimental data with solute octanol-water partition coefficient (log K{sub ow}). The logarithms of the solubilization and the solute log K{sub ow} range over eleven orders of magnitude. The solubilities of chrysene, perylene, benzo(a)pyrene, pentachlorobenzene, and hexachlorobenzene in ethanol/water mixtures were experimentally determined, and the results fit well into the model.

  5. Dynamics of Hydration Water in Sugars and Peptides Solutions

    SciTech Connect

    Perticaroli, Stefania; Nakanishi, Masahiro; Pashkovski, Eugene; Sokolov, Alexei P

    2013-01-01

    We analyzed solute and solvent dynamics of sugars and peptides aqueous solutions using extended epolarized light scattering (EDLS) and broadband dielectric spectroscopies (BDS). Spectra measured with both techniques reveal the same mechanism of rotational diffusion of peptides molecules. In the case of sugars, this solute reorientational relaxation can be isolated by EDLS measurements, whereas its ontribution to the dielectric spectra is almost negligible. In the presented analysis, we characterize the hydration water in terms of hydration number and retardation ratio between relaxation times of hydration and bulk water. Both techniques provide similar estimates of . The retardation imposed on the hydration water by sugars is 3.3 1.3 and involves only water molecules hydrogen-bonded (HB) to solutes ( 3 water molecules per sugar OH-group). In contrast, polar peptides cause longer range erturbations beyond the first hydration shell, and between 2.8 and 8, increasing with the number of chemical groups engaged in HB formation. We demonstrate that chemical heterogeneity and specific HB interactions play a crucial role in hydration dynamics around polar solutes. The obtained results help to disentangle the role of excluded volume and enthalpic contributions in dynamics of hydration water at the interface with biological molecules.

  6. Uptake of formaldehyde by sulfuric acid solutions - Impact on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Tolbert, Margaret A.; Pfaff, Jeanne; Jayaweera, Indira; Prather, Michael J.

    1993-01-01

    The study investigates the uptake of CH2O by low temperature sulfuric acid solutions representative of global stratospheric particulate. It is argued that if similar uptake occurs under stratospheric pressures of CH2O, i.e., 1000 times lower than used in the present study, then the removal of CH2O from the gas phase can take away a significant source of odd hydrogen in the mid- and high-latitude lower stratosphere. It is shown that with the inclusion of this reaction, concentrations of OH and H2O are reduced by as much as 4 percent under background levels of aerosols and more than 15 percent under elevated (volcanic) conditions. The accumulation of CH2O in stratospheric aerosols over a season, reaching about 1 M solutions, will alter the composition and may even change the reactivity of these sulfuric acid-water mixtures.

  7. Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution.

    PubMed

    Gao, Yin; Toubaei, Abouzar; Kong, Xianqi; Wu, Gang

    2014-10-20

    Nitroxyl-iron(II) (HNO-Fe(II)) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of Fe(II)-bound HNO have remained unknown. Using a comprehensive multinuclear ((1)H, (15)N, (17)O) NMR approach, the acidity of the Fe(II)-bound HNO in [Fe(CN)5(HNO)](3-) was investigated and its pK(a) value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the Fe(II)-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the Fe(II)-bound HNO in the interior of globin proteins is reduced by a factor of 10(6). PMID:25205463

  8. In-line System to Produce High-Purity Acid Solutions.

    PubMed

    Masunaga, Hiroto; Higo, Yuji; Ishii, Mizuo; Maruyama, Noboru; Yamazaki, Shigeo

    2016-01-01

    Herein, we report a new device that generates a high-purity acid solution. It comprises three compartments divided by anion-exchange membranes and filled with ion-exchange resins. Fluorochemical cation-exchange membranes, which tolerate electrochemical wear and permit bulk flow, are inserted between each electrode and the anion-exchange resin. A bipolar boundary is a composite boundary comprising anion and cation exchangers. This device has four bipolar boundaries to separate the location of acid generation from the location where water is electrolyzed. It can tolerate high pressures, resist degradation due to electrolysis at the electrodes, and produce high-purity acid solutions that are free from gases and cationic impurities. The acid solution is generated on the basis of an electrokinetic phenomenon at the surfaces of ion-exchange resins and membranes in an electric field; its concentration can be controlled at rates from 0.01 to 100 μmol/min by adjusting the electrical current applied to the device. PMID:27302592

  9. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    PubMed

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-01

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. PMID:26705889

  10. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  11. Precipitation of plutonium from acidic solutions using magnesium oxide

    SciTech Connect

    Jones, S.A.

    1994-09-06

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria.

  12. Theory for the solvation of nonpolar solutes in water.

    PubMed

    Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A

    2007-11-01

    We recently developed an angle-dependent Wertheim integral equation theory (IET) of the Mercedes-Benz (MB) model of pure water [Silverstein et al., J. Am. Chem. Soc. 120, 3166 (1998)]. Our approach treats explicitly the coupled orientational constraints within water molecules. The analytical theory offers the advantage of being less computationally expensive than Monte Carlo simulations by two orders of magnitude. Here we apply the angle-dependent IET to studying the hydrophobic effect, the transfer of a nonpolar solute into MB water. We find that the theory reproduces the Monte Carlo results qualitatively for cold water and quantitatively for hot water.

  13. Theory for the solvation of nonpolar solutes in water

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.

    2007-11-01

    We recently developed an angle-dependent Wertheim integral equation theory (IET) of the Mercedes-Benz (MB) model of pure water [Silverstein et al., J. Am. Chem. Soc. 120, 3166 (1998)]. Our approach treats explicitly the coupled orientational constraints within water molecules. The analytical theory offers the advantage of being less computationally expensive than Monte Carlo simulations by two orders of magnitude. Here we apply the angle-dependent IET to studying the hydrophobic effect, the transfer of a nonpolar solute into MB water. We find that the theory reproduces the Monte Carlo results qualitatively for cold water and quantitatively for hot water.

  14. Theory for the solvation of nonpolar solutes in water.

    PubMed

    Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A

    2007-11-01

    We recently developed an angle-dependent Wertheim integral equation theory (IET) of the Mercedes-Benz (MB) model of pure water [Silverstein et al., J. Am. Chem. Soc. 120, 3166 (1998)]. Our approach treats explicitly the coupled orientational constraints within water molecules. The analytical theory offers the advantage of being less computationally expensive than Monte Carlo simulations by two orders of magnitude. Here we apply the angle-dependent IET to studying the hydrophobic effect, the transfer of a nonpolar solute into MB water. We find that the theory reproduces the Monte Carlo results qualitatively for cold water and quantitatively for hot water. PMID:17994825

  15. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media.

  16. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  17. Determination of polar organic solutes in oil-shale retort water

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.

    1982-01-01

    A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.

  18. Removal of coagulant aluminum from water treatment residuals by acid.

    PubMed

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  19. Leaching of organic acids from irradiated EVA plastic as a function of solution pH and polarity.

    PubMed

    Jenke, Dennis; Zietlow, David; Sadain, Salma

    2004-01-01

    The leaching of several target organic acids from an irradiated ethylene vinyl acetate material, such as those used as a solution product container, is examined as a function of solution pH and polarity. The targeted compounds included highly soluble weak acids such as acetic and formic acids, and larger, more lipophillic acids such as myristic, palmitic, and stearic acids. The leaching of these compounds was examined over a pH range of 3 to 11 and in various ethanol/water proportions. While pH and solution polarity had only a modest impact on the accumulation of the acetic and formic acids, the accumulation of the fatty acids was greatly affected by both factors. It is suggested that the accumulation of these leachables at high pH is influenced by two processes. The first process, partitioning, the speciation of the acidic leachables (protonated versus dissociated form) contributes to the pH trends observed. In this case, entities that already exist in the plastic partition themselves between the plastic and solution via migration. A second, more important, contributor to the leaching of these acids is a pH-dependent increase in their availability arising from an unspecified reactive process.

  20. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  1. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    PubMed

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing.

  2. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    PubMed

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  3. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    PubMed Central

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  4. Shallow water equations: viscous solutions and inviscid limit

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Perepelitsa, Mikhail

    2012-12-01

    We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

  5. Solubility and reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and in sulphuric acid

    NASA Astrophysics Data System (ADS)

    Frenzel, A.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T.

    The loss rates of PAN in several dilute aqueous salt solutions (NaBr, Na 2SO 3, KI, NaNO 2, FeCl 3, and FeSO 4) and in sulphuric acid were measured at 279 K with a simple bubbler experiment. They are little different from that in pure water. For 5 M sulphuric acid hydrolysis and solubility were determined in the temperature range of 243-293 K. The hydrolysis rate kh=3.2×10 -4 s -1 at 293 K is close to that in water. The observed temperature dependence of the Henry's Law constant H=10- 6.6±0.6exp((4780±420)/T) M atm -1 leads to enthalpy and entropy of solvation Δ Hsolv=-39.7±3.5 kJ mol -1 and Δ Ssolv=-126±11 J mol -1 K -1, respectively.

  6. The extraction of actinides from nitric acid solutions with diamides of dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Lapka, Joseph L.; Paulenova, Alena; Alyapyshev, Mikhail Yu; Babain, Vasiliy A.; Law, Jack D.; Herbst, R. Scott

    2010-03-01

    Diamides of dipicolinic acid (N,N'-diethyl-N,N'-ditolyl-dipicolinamide, EtTDPA) were synthesized and evaluated for their extraction capability for actinides. In this work the extractions of neptunium(V), protactinium(V), and thorium(IV) with EtTDPA in a polar fluorinated diluent from nitric acid were investigated. EtTDPA shows a high affinity for Th(IV) even at millimolar concentrations. Np(V) and Pa(V) are both reasonably extractable with EtTDPA; however, near saturated solutions are required to achieve appreciable distribution ratios. A comparison with previously published actinide extraction data is given.

  7. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1986-03-04

    A process is described for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula as shown in a diagram where [phi] is phenyl, R[sup 1] is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R[sup 2] is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions. 6 figs.

  8. Method for extracting lanthanides and actinides from acid solutions by modification of purex solvent

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.

    1986-01-01

    A process for the recovery of actinide and lanthanide values from aqueous solutions with an extraction solution containing an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms and phase modifiers in a water-immiscible hydrocarbon diluent. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  9. Vibrational spectroscopic studies and DFT calculations on tribromoacetate and tribromoacetic acid in aqueous solution.

    PubMed

    Rudolph, Wolfram W; Irmer, Gert

    2011-09-01

    Aqueous solutions of sodium tribromoacetate (NaCBr3CO2) and its corresponding acid (CBr3COOH) have been studied using Raman and infrared spectroscopy. The spectra of the species in solution were assigned according to symmetry Cs. Characteristic bands of CBr3CO2-(aq) and the tribromoacetic acid, CBr3COOH(aq), are discussed. For the hydrated anion, the CO2 group, the symmetric CO2 stretching mode at 1332 cm(-1) and the asymmetric stretching mode at 1651 cm(-1) are characteristic while the CO mode at 1730 cm(-1) is characteristic for the spectra of the acid. The stretching mode, νC-C at 912cm(-1) for CBr3CO2-(aq) is 10 cm(-1) lower in the anion compared with that of the acid. These characteristic modes are compared to those in acetate, CH3CO2-(aq). Coupling of the modes are fairly extensive and therefore DFT calculations have been carried out in order to compare the measured spectra with the calculated ones. The geometrical parameters such as bond length and bond angles of the tribromoacetate, and tribromoacetic acid have been obtained and may be compared with the ones published for other acetates and their conjugated acids. CBr3COOH(aq) is a moderately strong acid and the pKa value derived from quantitative Raman measurements is equal to -0.23 at 23°C. The deuterated acid CBr3COOD in heavy water has been measured as well and the assignments were given.

  10. Kinetic Aspects of Leaching Zinc from Waste Galvanizing Zinc by Using Hydrochloric Acid Solutions

    NASA Astrophysics Data System (ADS)

    Sminčáková, Emília; Trpčevská, Jarmila; Pirošková, Jana

    2016-10-01

    In this work, the results of acid leaching of flux skimmings coming from two plants are presented. Sample A contained two phases, Zn(OH)Cl and NH4Cl. In sample B, the presence of three phases, Zn5(OH)8Cl2·H2O, (NH4)2(ZnCl4) and ZnCl2(NH3)2, was proved. The aqueous solution of hydrochloric acid and distilled water was used as the leaching medium. The effects of the leaching time, temperature and concentration of the leaching medium on the zinc extraction were investigated. The apparent activation energy, E a = 4.61 kJ mol-1, and apparent reaction order n = 0.18 for sample A, and the values E a = 6.28 kJ mol-1 and n = 0.33 for sample B were experimentally determined. Zinc leaching in acid medium is a diffusion-controlled process.

  11. Radiolysis gases from nitric acid solutions containing HSA and HAN

    SciTech Connect

    Smith, J.R.

    1994-10-28

    The concentration of hydrogen (H{sub 2}) in the radiolytically produced off-gas from 2.76-4.25M HNO{sub 3}/PU solutions has been found to be greatly reduced in the presence of sulfamic acid (HSA) and hydroxylamine nitrate (HAN). The H{sub 2} concentration ([H{sub 2}]) is reduced from 35 percent to about 4 percent by dilution caused from an increase in the production rates of nitrogen (N{sub 2}), nitrous oxide (N{sub 2}O), and oxygen (O{sub 2}) gases. The generation rate of H{sub 2} was not affected by HSA or HAN giving a measured radiolytic yield, G(H{sub 2}), value of 0.201 molecules/100 eV for 2.765M NO{sub 3}{sup -} solution (a value of 0.213 is predicted from previous data). The G(H{sub 2}) values are dependent on the solution nitrate concentration ([NO{sub 3}{sup -}]). The generation rates of N{sub 2}, N{sub 2}O, and O{sub 2} are not dependent on the [NO{sub 3}{sup -}] in this narrow range, but are dependent on the presence of HSA and the concentration of HAN. The percentage [H{sub 2}] for the 2.5 to 3.0M NO{sub 3}{sup -} range expected in the off- from the FB-Line Pu{sup +3} Hold Tanks is conservatively estimated to be about 3.5 to 4.5 % for Pu + 3 solutions initially containing 0.023M HAN/0.165M HSA. The upper limit [H{sub 2}] may actually be about 4.1 % (4.3 % at 90 % confidence limits) but more {open_quotes}initial{close_quotes} off-gas rate data is needed at about 2.9M [NO{sub 3}{sup -}] in Pu{sup +3} solution for verification. Addition of ascorbic acid had no effect on the off-gas rate of Pu{sup +3} solutions containing HSA and NO{sub 3}{sup -} concentrations higher than those expected in the hold tanks. The maximum {open_quotes}hold time{close_quotes} for 50 grams/liter Pu{sup +3}/0.165M HSA/0.023M HAN/2.5-3.0M HNO{sub 3} solution is 20.3{+-}2.1 days. After this time the HSA initially present will become exhausted and the [H{sub 2}] will increase to 35 %. This hold time may be longer in [NO{sub 3}{sup -}] < 3.0M, but again more study is needed.

  12. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 °C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 °C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 °C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of Gd at 10

  13. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    NASA Astrophysics Data System (ADS)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  14. Acid mine water treatment using engineered wetlands

    NASA Astrophysics Data System (ADS)

    Kleinmann, Robert L. P.

    1990-03-01

    During the last two decades, the United States mining industry has greatly increased the amount it spends on pollution control. The application of biotechnology to mine water can reduce the industry's water treatment costs (estimated at over a million dollars a day) and improve water quality in streams and rivers adversely affected by acidic mine water draining from abandoned mines. Biological treatment of mine waste water is typically conducted in a series of small excavated ponds that resemble, in a superficial way, a small marsh area. The ponds are engineered to first facilitate bacterial oxidation of iron; ideally, the water then flows through a composted organic substrate that supports a population of sulfate-reducing bacteria. The latter process raises the pH. During the past four years, over 400 wetland water treatment systems have been built on mined lands as a result of research by the U.S. Bureau of Mines. In general, mine operators find that the wetlands reduce chemical treatment costs enough to repay the cost of wetland construction in less than a year. Actual rates of iron removal at field sites have been used to develop empirical sizing criteria based on iron loading and pH. If the pH is 6 or above, the wetland area (m2) required is equivalent to the iron load (grams/day) divided by 10. Theis requirement doubles at a pH of 4 to 5. At a pH below 4, the iron load (grams/day) should be divided by 2 to estimate the area required (m2).

  15. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  16. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  17. Impact of several water-miscible organic solvents on sorption of benzoic acid by soil

    SciTech Connect

    Lee, L.S.; Rao, P.S.C.

    1996-05-01

    Sorption of benzoic acid by a surface soil was measured from several binary mixtures of water and various organic cosolvents spanning a wide range in solvent properties. For all solvents investigated, the addition to an aqueous solution resulted in an increase in solubility and an alkaline shift in the conditional ionization constant (pK{sub a}{sup c}) of benzoic acid. Sorption data were assessed using a cosolvency model that incorporated speciation of the organic acid as determined by the pK{sub a}{sup c} and soil-solution pH. The model provided reasonable predictions of the sorption trends observed from acetone/water, acetonitrile/ water, and 1,4-dioxane/water solutions. However, enhanced sorption observed from DMSO/water solutions was not well described by the cosolvency model similar to what was previously observed for the sorption of carboxylic acids from methanol/water solutions. The relative importance of cosolvent properties and various solvent-specific mechanisms is discussed. Hydrogen bonding along with preferential solvation are hypothesized as the primary mechanisms responsible for the observed deviations from the model. 36 refs., 5 figs., 1 tab.

  18. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-09-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature-dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T < 270 K and T < 260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high-temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  19. Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Stratmann, G.; Peter, T.

    2014-05-01

    This work presents experimental data of the temperature dependence of water activity in aqueous organic solutions relevant for tropospheric conditions (200-273 K). Water activity (aw) at low temperatures (T) is a crucial parameter for predicting homogeneous ice nucleation. We investigated temperature dependent water activities, ice freezing and melting temperatures of solutions, and vapour pressures of a selection of atmospherically relevant aqueous organic systems. To measure aw over a wide composition range and with a focus on low temperatures, we use various aw measurement techniques and instruments: a dew point water activity meter, an electrodynamic balance (EDB), differential scanning calorimetry (DSC), and a setup to measure the total gas phase pressure at equilibrium over aqueous solutions. Water activity measurements were performed for aqueous multicomponent and multifunctional organic mixtures containing the functional groups typically found in atmospheric organic aerosols, such as hydroxyl, carboxyl, ketone, ether, ester, and aromatic groups. The aqueous organic systems studied at several fixed compositions over a considerable temperature range differ significantly in their temperature dependence. Aqueous organic systems of 1,4-butanediol and methoxyacetic acid show a moderate decrease in aw with decreasing temperature. The aqueous M5 system (a multicomponent system containing five different dicarboxylic acids) and aqueous 2-(2-ethoxyethoxy)ethanol solutions both show a strong increase of water activity with decreasing temperature at high solute concentrations for T<270 K and T<260 K, respectively. These measurements show that the temperature trend of aw can be reversed at low temperatures and that linear extrapolations of high temperature data may lead to erroneous predictions. To avoid this, experimentally determined aw at low temperature are needed to improve thermodynamic models towards lower temperatures and for improved predictions of the ice

  20. Bubble formation in water with addition of a hydrophobic solute.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2015-07-01

    We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium. PMID:26142694

  1. The role of hydrogen bonds in an aqueous solution of acetylsalicylic acid: a molecular dynamics simulation study.

    PubMed

    Donnamaria, Maria Cristina; de Xammar Oro, Juan Roberto

    2011-10-01

    This work focuses on the role of the dynamic hydrogen bonds (HB) formed in an aqueous solution of aspirin using molecular dynamics simulation. The statistics reveal the existence of internal HB that inhibit the rotational movements of the acetyl and the carboxylic acid groups, forcing the molecule to adopt a closed conformer structure in water, and playing an important role in stabilizing this conformation.

  2. Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies.

    PubMed

    Eslami, Marzieh; Namazian, Mansoor; Zare, Hamid R

    2013-03-01

    Electrochemical behavior of homogentisic acid (HGA) has been studied in both aqueous and mixed solvent solution of water-acetonitrile. Physicochemical parameters of the electrochemical reaction of HGA in these solutions are obtained experimentally by cyclic voltammetry method and are also calculated theoretically using accurate ab initio calculations (G3MP2//B3LYP). Solvation energies are calculated using the available solvation model of CPCM. The pH dependence of the redox activity of HGA in aqueous and the mixture solutions at different temperatures was used for the experimental determination of the standard reduction potential and changes of entropy, enthalpy, and Gibbs free energy for the studied reaction. The experimental standard redox potential of the compound in aqueous solution was obtained to be 0.636 V versus the standard hydrogen electrode. There is a good agreement between the theoretical and experimental values (0.702 and 0.636 V) for the standard electrode potential of HGA. The changes of thermodynamic functions of solvation are also calculated from the differences between the solution-phase experimental values and the gas-phase theoretical values. Finally, using the value of solvation energy of HGA in water and acetonitrile solvents which calculated by the CPCM model of energy, we proposed an equation for calculating the standard redox potential of HGA in mixture solution of water and acetonitrile. A good agreement between the result of electrode potential calculated by the proposed equation and the experimental value confirms the validity of the theoretical models used here and the accuracy of experimental methods.

  3. EXAFS study of the speciation of protactinium(V) in aqueous hydrofluoric acid solutions.

    PubMed

    De Sio, Stéphanie M; Wilson, Richard E

    2014-12-01

    The speciation of protactinium(V) in hydrofluoric acid (HF) solutions was studied using X-ray absorption spectroscopy. Extended X-ray absorption fine structure measurements were performed on an aqueous solution of 0.05 M protactinium(V) with various HF concentrations ranging from 0.5 to 27 M in order to probe the protactinium coordination sphere with respect to the identity and number of coordinating ligands. The resulting fits to the spectra suggest the presence of an eight-coordinate homoleptic fluoro complex in highly concentrated fluoride solutions (27 M), with equilibrium between seven- and eight-coordinate fluoro complexes at moderate acidities, and in more dilute solutions, results indicate that one water molecule is likely to replace a fluoride in the first coordination sphere, at a distance of 2.54-2.57 Å. Comparisons of this chemistry with group V metals, niobium and tantalum, are presented, and the potential implications for these results on the hydrolytic behavior of protactinium in aqueous systems are discussed.

  4. EXAFS study of the speciation of protactinium(V) in aqueous hydrofluoric acid solutions.

    PubMed

    De Sio, Stéphanie M; Wilson, Richard E

    2014-12-01

    The speciation of protactinium(V) in hydrofluoric acid (HF) solutions was studied using X-ray absorption spectroscopy. Extended X-ray absorption fine structure measurements were performed on an aqueous solution of 0.05 M protactinium(V) with various HF concentrations ranging from 0.5 to 27 M in order to probe the protactinium coordination sphere with respect to the identity and number of coordinating ligands. The resulting fits to the spectra suggest the presence of an eight-coordinate homoleptic fluoro complex in highly concentrated fluoride solutions (27 M), with equilibrium between seven- and eight-coordinate fluoro complexes at moderate acidities, and in more dilute solutions, results indicate that one water molecule is likely to replace a fluoride in the first coordination sphere, at a distance of 2.54-2.57 Å. Comparisons of this chemistry with group V metals, niobium and tantalum, are presented, and the potential implications for these results on the hydrolytic behavior of protactinium in aqueous systems are discussed. PMID:25389749

  5. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  6. The aqueous photolysis of α-pinene in solution with humic acid

    USGS Publications Warehouse

    Goldberg, Marvin C.; Cunningham, Kirkwood M.; Aiken, George R.; Weiner, Eugene R.; ,

    1992-01-01

    Terpenes are produced abundantly by environmental processes but are found in very low concentrations in natural waters. Aqueous photolysis of solutions containing α-pinene, a representative terpene, in the presence of humic acid resulted in degradation of the pinene. Comparison of this reaction to photolysis of α-pinene in the presence of methylene blue leads to the conclusion that the reactive pathway for the abiotic degradation of α-pinene is due to reaction with singlet oxygen produced by irradiation of the humic material. The initial product of single oxygen and α-pinene is a hydroperoxide. Since humic materials are prevalent in most natural waters, this mechanism of photodecomposition for α-pinene probably also applies to other terpenes in surface waters and may be reasonably considered to contribute to their low environmental concentration.

  7. Perfluorinated alcohols and acids induce coacervation in aqueous solutions of amphiphiles.

    PubMed

    Khaledi, Morteza G; Jenkins, Samuel I; Liang, Shuang

    2013-02-26

    We have discovered that water-miscible perfluorinated alcohols and acids (FA) can induce simple and complex coacervation in aqueous solutions of a wide range of amphiphilic molecules such as synthetic surfactants, phospholipids, and bile salts as well as polyelectrolytes. This unique phenomenon seems to be nearly ubiquitous, especially for complex coacervate systems composed of mixed catanionic amphiphiles. In addition, coacervation and aqueous phase separation were observed over a wide range of surfactants concentrations and for different mole fractions of the oppositely charged amphiphile.

  8. Decontamination of aquatic vegetable leaves by removing trace toxic metals during pickling process with acetic acid solution.

    PubMed

    Wu, Wenbiao; Yang, Yixing

    2011-01-01

    The heavy-metal content of aquatic plants is mainly dependent upon their ecological system. This study indicated that although the toxic heavy-metal contents could be above the recommended maximum levels depending upon their concentrations in growing water, they can be decontaminated by pickling with 5% acetic acid solution. Almost all Cd, Hg, Ba, or Sb and 99.5% Pb, 96.7% Ag, or 97.1% Al were removed from Water Spinach leaves by soaking in acetic acid solution. For Water-Shield leaves, almost all Cd, Hg, Pb, Ba, or Sb and 95.0% Ag or 96.1% Al were removed. For Watercress leaves, almost all Cd, Hg, Ba, or Sb and 99.0% Pb or 99.7% Ag were removed. For Water Hyacinth leaves, almost all Cd, Ba, or Sb and 99.0% Hg, 98.5% Pb, 95.0% Ag, or 98.7% Al were removed.

  9. Decontamination of aquatic vegetable leaves by removing trace toxic metals during pickling process with acetic acid solution.

    PubMed

    Wu, Wenbiao; Yang, Yixing

    2011-01-01

    The heavy-metal content of aquatic plants is mainly dependent upon their ecological system. This study indicated that although the toxic heavy-metal contents could be above the recommended maximum levels depending upon their concentrations in growing water, they can be decontaminated by pickling with 5% acetic acid solution. Almost all Cd, Hg, Ba, or Sb and 99.5% Pb, 96.7% Ag, or 97.1% Al were removed from Water Spinach leaves by soaking in acetic acid solution. For Water-Shield leaves, almost all Cd, Hg, Pb, Ba, or Sb and 95.0% Ag or 96.1% Al were removed. For Watercress leaves, almost all Cd, Hg, Ba, or Sb and 99.0% Pb or 99.7% Ag were removed. For Water Hyacinth leaves, almost all Cd, Ba, or Sb and 99.0% Hg, 98.5% Pb, 95.0% Ag, or 98.7% Al were removed. PMID:21888602

  10. Spectral reflectance of selected aqueous solutions for water quality applications

    NASA Technical Reports Server (NTRS)

    Querr, M. R.; Waring, R. C.; Holland, W. E.; Nijm, W.; Hale, G. M.

    1972-01-01

    The relative specular reflectances of individual aqueous solutions having a particular chemical salt content were measured in the 2 to 20 micrometers region of the infrared component or radiant flux. Distilled water was the reflectance standard. The angle of incidence was 70.03 deg plus or minus 0.23 deg. Absolute reflectances of the solutions for the same polarization and angle of incidence were computed by use of the measured relative reflectances, one of the Fresnel equations, and the optical constants of distilled water. Phase shift and phase difference spectra were obtained by respectively applying a Kramers-Kronig dispersion analysis to the absolute and relative reflectance spectra. The optical constants of the solutions were determined by algorithms commonly associated with the Kramers-Kronig analysis. Spectral signatures that qualitatively and quantitatively characterize the solute and that show structure of the infrared bands of water were noted in the phase difference spectra. The relative and absolute reflectances, the phase shift and phase difference spectra and the optical constants are presented in graphical form. Application of these results to remote sensing of the chemical quality of natural waters is discussed briefly.

  11. Barriers and Solutions to Smart Water Grid Development.

    PubMed

    Cheong, So-Min; Choi, Gye-Woon; Lee, Ho-Sun

    2016-03-01

    This limited review of smart water grid (SWG) development, challenges, and solutions provides an initial assessment of early attempts at operating SWGs. Though the cost and adoption issues are critical, potential benefits of SWGs such as efficient water conservation and distribution sustain the development of SWGs around the world. The review finds that the keys to success are the new regulations concerning data access and ownership to solve problems of security and privacy; consumer literacy to accept and use SWGs; active private sector involvement to coordinate SWG development; government-funded pilot projects and trial centers; and integration with sustainable water management.

  12. Barriers and Solutions to Smart Water Grid Development.

    PubMed

    Cheong, So-Min; Choi, Gye-Woon; Lee, Ho-Sun

    2016-03-01

    This limited review of smart water grid (SWG) development, challenges, and solutions provides an initial assessment of early attempts at operating SWGs. Though the cost and adoption issues are critical, potential benefits of SWGs such as efficient water conservation and distribution sustain the development of SWGs around the world. The review finds that the keys to success are the new regulations concerning data access and ownership to solve problems of security and privacy; consumer literacy to accept and use SWGs; active private sector involvement to coordinate SWG development; government-funded pilot projects and trial centers; and integration with sustainable water management. PMID:26608885

  13. Barriers and Solutions to Smart Water Grid Development

    NASA Astrophysics Data System (ADS)

    Cheong, So-Min; Choi, Gye-Woon; Lee, Ho-Sun

    2016-03-01

    This limited review of smart water grid (SWG) development, challenges, and solutions provides an initial assessment of early attempts at operating SWGs. Though the cost and adoption issues are critical, potential benefits of SWGs such as efficient water conservation and distribution sustain the development of SWGs around the world. The review finds that the keys to success are the new regulations concerning data access and ownership to solve problems of security and privacy; consumer literacy to accept and use SWGs; active private sector involvement to coordinate SWG development; government-funded pilot projects and trial centers; and integration with sustainable water management.

  14. Weiss lecture. Applications of the radiation chemistry of water: acid rain and nuclear power.

    PubMed

    Buxton, G V

    1991-01-01

    The radiation chemistry of water is sufficiently well known under ambient conditions that it is widely used to study the chemistry of free radicals in aqueous solution. One topical application described here is the hydroxyl radical-driven oxidation of sulphur dioxide to sulphuric acid in cloudwater to form acid rain. Another area of current interest is the effects of radiation on the cooling water of pressurized water reactors at ca. 300 degrees C. In studying these effects new information is also being gained on the fundamental processes in the radiation chemistry of water and on the kinetics of fast reactions.

  15. Adsorption of methyl violet in aqueous solutions by poly(acrylamide-co-acrylic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Şolpan, D.; Duran, S.; Saraydin, D.; Güven, O.

    2003-02-01

    In this study, Acrylamide(AAm)/Acrylic Acid(AAc) monomer mixtures which contain different quantities of acrylic acid have been irradiated to form hydrogels with γ-radiation. Acrylamide/Acrylic Acid (AAm/AAc) monomer mixtures which contain 15%, 20%, 30% AAm and irradiated with 8.0 kGy were used for swelling and diffusion studies in water and solutions of methyl violet. Diffusions of water and methyl violet within the hydrogels were found to be non-Fickian in character. In experiments on the adsorption of methyl violet, Type-S adsorption was found. Poly(AAm-co-AAc) hydrogel adsorbed methyl violet, while poly(AAm) hydrogel did not adsorb any dye. (Δ H) Heat of adsorption, (Δ G) Free energy of adsorption, (Δ S) Entropy of adsorption were calculated. These results show that poly(AAm-co-AAc) hydrogels can be used as a sorbent for water pollutants such as dyes and treatment of these organic contaminants from wastewater.

  16. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  17. Direct determination of peracetic acid, hydrogen peroxide, and acetic acid in disinfectant solutions by far-ultraviolet absorption spectroscopy.

    PubMed

    Higashi, Noboru; Yokota, Hiroshi; Hiraki, Satoru; Ozaki, Yukihiro

    2005-04-01

    In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization. PMID:15801764

  18. Water-Insoluble Surface Coatings of Polyion-Surfactant Ion Complex Salts Respond to Additives in a Surrounding Aqueous Solution.

    PubMed

    Gustavsson, Charlotte; Obiols-Rabasa, Marc; Piculell, Lennart

    2015-06-16

    Hydrated, but water-insoluble, "complex salts" (CS) composed of alkyltrimethylammonium surfactant ions with polyacrylate counterions are known to exhibit a rich phase behavior in bulk mixtures with water and have recently been shown to act as water-responsive surface coatings. Here it is shown, by SAXS measurements, that surface coatings of CS also respond to various added solutes in a surrounding aqueous solution, by altering their liquid crystalline structure. The obtained results provide new information on the phase behavior of CS in contact with water and aqueous solutions. Solutes such as acids, salts, excess ionic surfactant, or water-soluble polymers act on the CS by altering the polyion charge density, screening the electrostatic interaction, changing the curvature of the surfactant aggregate, or increasing the osmotic pressuring in the surrounding solution, all of which may result in a phase transition in the film. In water, all studied CS surface coatings had a micellar cubic structure, which could change to 2D hexagonal, HCP, or disordered micellar structure, depending on the identity of the CS and the identity and concentration of the added solute. For some systems, even dissolved CO2 from the ambient air was sufficient to induce a structural change in the film. Especially the films containing the long polyions remained intact even for large concentrations of solutes in the contacting solutions, and extensive washing in water resulted, in most cases, in films with the "original" structure found in water. PMID:26017683

  19. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    ), the &δ&&30Si value of dissolved silicon in the lake water must be even higher. We infer that progressive cation removal alone is inadequate to describe rock dissolution and silicification by acid fluid. Exchange of silicon between the solution and mineral phases probably accompanied the alteration process. This hypothesis is qualitatively consistent with the idea that elements in solution take part in the formation of altered silica-rich layers at mineral-solution interfaces, as invoked to interpret surface reactions during silicate mineral weathering (e.g., Adriaens et al., 1999; Hellmann et al., 2003). References Adriaens et al., 1999. Surf. Interface Anal., 27: 8-23 Basile-Doelsch et al., 2006. Nature, 433: 399-402. Hellmann et al., 2003. Phys. Chem. Minerals, 30: 192-197.

  20. Isothermal dehydration of thin films of water and sugar solutions

    SciTech Connect

    Heyd, R.; Rampino, A.; Bellich, B.; Elisei, E.; Cesàro, A.; Saboungi, M.-L.

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  1. Emerging solutions to the water challenges of an urbanizing world.

    PubMed

    Larsen, Tove A; Hoffmann, Sabine; Lüthi, Christoph; Truffer, Bernhard; Maurer, Max

    2016-05-20

    The top priorities for urban water sustainability include the provision of safe drinking water, wastewater handling for public health, and protection against flooding. However, rapidly aging infrastructure, population growth, and increasing urbanization call into question current urban water management strategies, especially in the fast-growing urban areas in Asia and Africa. We review innovative approaches in urban water management with the potential to provide locally adapted, resource-efficient alternative solutions. Promising examples include new concepts for stormwater drainage, increased water productivity, distributed or on-site treatment of wastewater, source separation of human waste, and institutional and organizational reforms. We conclude that there is an urgent need for major transdisciplinary efforts in research, policy, and practice to develop alternatives with implications for cities and aquatic ecosystems alike. PMID:27199414

  2. Emerging solutions to the water challenges of an urbanizing world.

    PubMed

    Larsen, Tove A; Hoffmann, Sabine; Lüthi, Christoph; Truffer, Bernhard; Maurer, Max

    2016-05-20

    The top priorities for urban water sustainability include the provision of safe drinking water, wastewater handling for public health, and protection against flooding. However, rapidly aging infrastructure, population growth, and increasing urbanization call into question current urban water management strategies, especially in the fast-growing urban areas in Asia and Africa. We review innovative approaches in urban water management with the potential to provide locally adapted, resource-efficient alternative solutions. Promising examples include new concepts for stormwater drainage, increased water productivity, distributed or on-site treatment of wastewater, source separation of human waste, and institutional and organizational reforms. We conclude that there is an urgent need for major transdisciplinary efforts in research, policy, and practice to develop alternatives with implications for cities and aquatic ecosystems alike.

  3. Isothermal dehydration of thin films of water and sugar solutions.

    PubMed

    Heyd, R; Rampino, A; Bellich, B; Elisei, E; Cesàro, A; Saboungi, M-L

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  4. Conformational equilibria of alkanes in aqueous solution: relationship to water structure near hydrophobic solutes.

    PubMed Central

    Ashbaugh, H S; Garde, S; Hummer, G; Kaler, E W; Paulaitis, M E

    1999-01-01

    Conformational free energies of butane, pentane, and hexane in water are calculated from molecular simulations with explicit waters and from a simple molecular theory in which the local hydration structure is estimated based on a proximity approximation. This proximity approximation uses only the two nearest carbon atoms on the alkane to predict the local water density at a given point in space. Conformational free energies of hydration are subsequently calculated using a free energy perturbation method. Quantitative agreement is found between the free energies obtained from simulations and theory. Moreover, free energy calculations using this proximity approximation are approximately four orders of magnitude faster than those based on explicit water simulations. Our results demonstrate the accuracy and utility of the proximity approximation for predicting water structure as the basis for a quantitative description of n-alkane conformational equilibria in water. In addition, the proximity approximation provides a molecular foundation for extending predictions of water structure and hydration thermodynamic properties of simple hydrophobic solutes to larger clusters or assemblies of hydrophobic solutes. PMID:10423414

  5. Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions.

    PubMed

    Ariyapitipun, T; Mustapha, A; Clarke, A D

    1999-08-01

    The effectiveness of polylactic acid, lactic acid, nisin, and combinations of the acids and nisin on extending the shelf-life of raw beef was determined. Fresh beef pieces (5 by 5 by 2.5 cm) were dipped in a solution of 2% low molecular weight polylactic acid (LMW-PLA), 2% lactic acid (LA), 200 IU of nisin per ml, or the combinations of nisin in either 2% LMW-PLA or 2% LA. The samples were then drip-dried, vacuum-packaged, and stored at 4 degrees C for up to 56 days. The beef surface pH values and numbers of psychrotrophic aerobic bacteria, psychrotrophic and mesophilic Enterobacteriaceae, Pseudomonas, and Lactobacillus were determined weekly for 56 days. The average surface pH values of the beef samples treated with 2% LMW-PLA or the combination of 200 IU of nisin per ml and 2% LMW-PLA were significantly reduced to 5.19 and 5.17, respectively, at day 0 (P < or = 0.05), while those decontaminated with 2% LA or 200 IU of nisin per ml in 2% LA solution were significantly decreased from 5.62 to 4.98 and 4.96, respectively. The 2% LMW-PLA, 2% LA, or the combinations of each acid and nisin showed immediate inhibitory effects on psychrotrophic aerobic bacteria (1.94, 2.36, 2.59, and 1.76 log reduction, respectively), psychrotrophic Enterobacteriaceae (1.37, 1.86, 1.77, and 1.35 log reduction, respectively), mesophilic Enterobacteriaceae (1.00, 1.00, 0.82, and 0.68 log reduction, respectively), and Pseudomonas (1.77, 1.57, 1.76, and 1.41 log reduction, respectively) on fresh beef (P < or = 0.05). The reduction was evident up to 56 days as seen by the numbers of Enterobacteriaceae and Pseudomonas (P < or = 0.05). Because there was no interaction between treatments and storage times, the data in each period were combined and presented as effect of treatments on overall microbial counts of fresh beef. It was found that 2% LMW-PLA, 2% LA, and the combinations of each acid and nisin significantly lowered the population of the above organisms compared with the untreated control

  6. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment. PMID:12365502

  7. Investigating the Influence of Polymers on Supersaturated Flufenamic Acid Cocrystal Solutions.

    PubMed

    Guo, Minshan; Wang, Ke; Hamill, Noel; Lorimer, Keith; Li, Mingzhong

    2016-09-01

    The development of enabling formulations is a key stage when demonstrating the effectiveness of pharmaceutical cocrystals to maximize the oral bioavailability for poorly water soluble drugs. Inhibition of drug crystallization from a supersaturated cocrystal solution through a fundamental understanding of the nucleation and crystal growth is important. In this study, the influence of the three polymers of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and a copolymer of N-vinly-2-pyrrodidone (60%) and vinyl acetate (40%) (PVP-VA) on the flufenamic acid (FFA) crystallization from three different supersaturated solutions of the pure FFA and two cocrystals of FFA-NIC CO and FFA-TP CO has been investigated by measuring nucleation induction times and desupersaturation rates in the presence and absence of seed crystals. It was found that the competition of intermolecular hydrogen bonding among drug/coformer, drug/polymer, and coformer/polymer was a key factor responsible for maintaining supersaturation through nucleation inhibition and crystal growth modification in a cocrystal solution. The supersaturated cocrystal solutions with predissolved PEG demonstrated more effective stabilization in comparison to the pure FFA in the presence of the same polymer. In contrast, neither of the two cocrystal solutions, in the presence of PVP or PVP-VA, exhibited a better performance than the pure FFA with the same predissolved polymer. The study suggests that the selection of a polymeric excipient in a cocrystal formulation should not be solely dependent on the interplay of the parent drug and polymer without considering the coformer effects. PMID:27494289

  8. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOEpatents

    Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  9. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, eaq- and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of eaq- with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1) while O rad - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3rad and SO 4rad - could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4- radicals indicating that while one-electron reduction potential for semi-oxidized SA may be<1.33 V vs. NHE (the E o1 for N 3rad radical), it is more than 1.33 V vs. NHE for semi-oxidized SSA species.

  10. Chemisorption of Perfluorooctanoic Acid on Powdered Activated Carbon Initiated by Persulfate in Aqueous Solution.

    PubMed

    Sun, Bo; Ma, Jun; Sedlak, David L

    2016-07-19

    Perfluorooctanoic acid (PFOA) is a perfluorocarboxylic acid that is difficult to treat by most conventional methods. As a result, it is often removed from solution by adsorption on powdered activated carbon (PAC), followed by incineration of the spent carbon. To provide a new approach for treatment, PFOA was exposed to sulfate radicals (SO4(-•)) produced by thermolysis of persulfate (S2O8(2-)) in the presence of PAC. Under acidic conditions, thermal activation of persulfate resulted in transformation of PFOA to shorter-chain-length perfluorinated compounds, as previously reported. However, when thermolysis of persulfate occurred under circumneutral pH conditions in the presence of PAC, a new removal pathway for PFOA was observed. Under these conditions, the removal of PFOA was attributable to chemisorption, a process in which PAC catalyzed persulfate decomposition and reacted with the transformation products to produce covalently bound PFOA. At PAC concentrations between 200 and 1000 mg/L and an initial PFOA concentration of 0.5 μM, covalent bonding resulted in removal of 10-40% of the PFOA. Under these conditions, the process resulted in removal of more than half of a more hydrophilic perfluoroalkyl acid (i.e., perfluorobutanoic acid, PFBA), which was greater than the amount of PFBA removed by physical adsorption on PAC. Although the high reaction temperatures (i.e., 80 °C) and relatively high doses of PAC used in this study may be impractical for drinking water treatment, this process may be applied to the treatment of these recalcitrant compounds in industrial wastewater, reverse osmosis concentrate, and other waters that contain high concentrations of PFOA and other perfluorocarboxylic acids. PMID:27336204

  11. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Şolpan, Dilek; Duran, Sibel; Torun, Murat

    2008-04-01

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834×10 -6 and 1323×10 -6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes.

  12. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  13. Water dynamics in divalent and monovalent concentrated salt solutions.

    PubMed

    Giammanco, Chiara H; Wong, Daryl B; Fayer, Michael D

    2012-11-26

    Water hydrogen bond dynamics in concentrated salt solutions are studied using polarization-selective IR pump-probe spectroscopy and 2D IR vibrational echo spectroscopy performed on the OD hydroxyl stretching mode of dilute HOD in H(2)O/salt solutions. The OD stretch is studied to eliminate vibrational excitation transfer, which interferes with the dynamical measurements. Though previous research suggested that only the anion affected dynamics in solution, here it is shown that the cation plays a role as well. From FT-IR spectra of the OD stretch, it is seen that replacing either ion of the salt pair causes a shift in absorption frequency relative to that of the OD stretch absorption in bulk pure water. This shift becomes pronounced with larger, more polarizable anions or smaller, high charge-density cations. The vibrational lifetime of the OD hydroxyl stretch in these solutions is a local property and is primarily dependent on the nature of the anion and whether the OD is hydrogen bonded to the anion or to the oxygen of another water molecule. However, the cation still has a small effect. Time dependent anisotropy measurements show that reorientation dynamics in these concentrated solutions is a highly concerted process. While the lifetime, a local probe, displays an ion-associated and a bulk-like component in concentrated solutions, the orientational relaxation does not have two subensemble dynamics, as demonstrated by the lack of a wavelength dependence. The orientational relaxation of the single ensemble is dependent on the identity of both the cation and anion. The 2D IR vibrational echo experiments measure spectral diffusion that is caused by structural evolution of the system. The vibrational echo measurements yield the frequency-frequency correlation function (FFCF). The results also show that the structural dynamics are dependent on the cation as well as the anion. PMID:23113682

  14. Photodegradation of triazine herbicides in aqueous solutions and natural waters.

    PubMed

    Evgenidou, E; Fytianos, K

    2002-10-23

    The photodegradation of three triazines, atrazine, simazine, and prometryn, in aqueous solutions and natural waters using UV radiation (lambda > 290 nm) has been studied. Experimental results showed that the dark reactions were negligible. The rate of photodecomposition in aqueous solutions depends on the nature of the triazines and follows first-order kinetics. In the case of the use of hydrogen peroxide and UV radiation, a synergistic effect was observed. The number of photodegradation products detected, using FIA/MS and FIA/MS/MS techniques, suggests the existence of various degradation routes resulting in complex and interconnected pathways. PMID:12381128

  15. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    PubMed

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  16. Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts.

    PubMed

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-10-23

    The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface.

  17. Structural and transport properties of Nafion in hydrobromic-acid solutions

    SciTech Connect

    Kusoglu, A; Cho, KT; Prato, RA; Weber, AZ

    2013-12-01

    Proton-exchange membranes are key solid-state ion carriers in many relevant energy technologies including flow batteries, fuel cells, and solar-fuel generators. In many of these systems, the membranes are in contact with electrolyte solutions. In this paper, we focus on the impact of different HBr, a flow-battery and exemplary acid electrolyte, external concentrations on the conductivity of Nafion, a perfluorosulfonic acid membrane that is commonly used in many energy-related applications. The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane. In addition, small-angle x-ray scattering is used to probe the nanostructure to correlate how the interactions of the bromide ion with the fixed sulfonic-acid sites impact conductivity and hydrophilic domain distance. It is also shown that membrane pretreatment has a large impact on the underlying structure/function relationship. The obtained data and results are useful for delineation of optimal operating regimes for flow batteries and similar technologies as well as in understanding underlying structure/function relationships of ionomers in electrolyte solutions. (C) 2013 Elsevier B.V. All rights reserved.

  18. Quantitative evaluation of XAD-8 and XAD-4 resins used in tandem for removing organic solutes from water

    USGS Publications Warehouse

    Malcolm, R.L.; MacCarthy, P.

    1992-01-01

    The combined XAD-8 and XAD-4 resin procedure for the isolation of dissolved organic solutes from water was found to isolate 85% or more of the organic solutes from Lake Skjervatjern in Norway. Approximately 65% of the dissolved organic carbon (DOC) was first removed on XAD-8 resin, and then an additional 20% of the DOC was removed on XAD-4 resin. Approximately 15% of the DOC solutes (primarily hydrophilic neutrals) were not sorbed or concentrated by the procedure. Of the 65% of the solutes removed on XAD-8 resin, 40% were fulvic acids, 16% were humic acids, and 9% were hydrophobic neutrals. Approximately 20% of the hydrophilic solutes that pass through the XAD-8 resin were sorbed solutes on the second resin, XAD-4 (i.e., they were hydrophobic relative to the XAD-4 resin). The fraction sorbed on XAD-4 resin was called XAD-4 acids because it represented approximately 85-90% of the hydrophilic XAD-8 acid fraction according to the original XAD-8 fractionation procedure. The recovery of hydrophobic acids (fulvic acids and humic acids) and the hydrophobic neutral fraction from XAD-8 resin was essentially quantitative at 96%, 98%, and 86%, respectively. The recovery of XAD-4 acids from the XAD-4 resin was only about 50%. The exact reason for this moderately low recovery is unknown, but could result from ??-?? bonding between these organic solutes and the aromatic matrix of XAD-4. The hydrophobic/hydrophilic solute separation on XAD-8 resin for water from background Side A and Side B of the lake was almost identical at 65 and 67%, respectively. This result suggested that both sides of the lake are similar in organic chemical composition even though the DOC variation from side to side is 20%.

  19. Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution.

    PubMed

    Tautermann, Christofer S; Voegele, Andreas F; Loerting, Thomas; Kohl, Ingrid; Hallbrucker, Andreas; Mayer, Erwin; Liedl, Klaus R

    2002-01-01

    Dry carbonic acid has recently been shown to be kinetically stable even at room temperature. Addition of water molecules reduces this stability significantly, and the decomposition (H2CO3 + nH2O --> (n+1)H2O + CO2) is extremely accelerated for n = 1, 2, 3. By including two water molecules, a reaction rate that is a factor of 3000 below the experimental one (10 s(-1)) at room temperature was found. In order to further remove the gap between experiment and theory, we increased the number of water molecules involved to 3 and took into consideration different mechanisms for thorough elucidation of the reaction. A mechanism whereby the reaction proceedes via a six-membered transition state turns out to be the most efficient one over the whole examined temperature range. The determined reaction rates approach experimental values in aqueous solution reasonably well; most especially, a significant increase in the rates in comparison to the decomposition reaction with fewer water molecules is found. Further agreement with experiment is found in the kinetic isotope effects (KIE) for the deuterated species. For water-free carbonic acid, the KIE (i.e., kH2CO3/kD2CO3) for the decomposition reaction is predicted to be 220 at 300 K, whereas it amounts to 2.2-3.0 for the investigated mechanisms including three water molecules. This result is therefore reasonably close to the experimental value of 2 (at 300 K). These KIEs are in much better accordance with the experiment than the KIE for decomposition with fewer water entities. PMID:11822465

  20. Determinants of cyanuric acid and melamine assembly in water.

    PubMed

    Ma, Mingming; Bong, Dennis

    2011-07-19

    While the recognition of cyanuric acid (CA) by melamine (M) and their derivatives has been known to occur in both water and organic solvents for some time, analysis of CA/M assembly in water has not been reported (Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. J. Am. Chem. Soc.1999, 121, 1752-1753; Mathias, J. P.; Simanek, E. E.; Seto, C. T.; Whitesides, G. M. Macromol. Symp.1994, 77, 157-166; Zerkowski, J. A.; MacDonald, J. C.; Seto, C. T.; Wierda, D. A.; Whitesides, G. M. J. Am. Chem. Soc.1994, 116, 2382-2391; Mathias, J. P.; Seto, C. T.; Whitesides, G. M. Polym. Prepr.1993, 34, 92-93; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1993, 115, 905-916; Zerkowski, J. A.; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1992, 114, 5473-5475; Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc.1990, 112, 6409-6411; Wang, Y.; Wei, B.; Wang, Q. J. Chem. Cryst.1990, 20, 79-84; ten Cate, M. G. J.; Huskens, J.; Crego-Calama, M.; Reinhoudt, D. N. Chem.-Eur. J.2004, 10, 3632-3639). We have examined assembly of CA/M, as well as assembly of soluble trivalent CA and M derivatives (TCA/TM), in aqueous solvent, using a combination of solution phase NMR, isothermal titration and differential scanning calorimetry (ITC/DSC), cryo-transmission electron microscopy (cryo-TEM), and synthetic chemistry. While the parent heterocycles coprecipitate in water, the trivalent system displays more controlled and cooperative assembly that occurs at lower concentrations than the parent and yields a stable nanoparticle suspension. The assembly of both parent and trivalent systems is rigorously 1:1 and proceeds as an exothermic, proton-transfer coupled process in neutral pH water. Though CA and M are considered canonical hydrogen-bonding motifs in organic solvents, we find that their assembly in water is driven in large part by enthalpically favorable surface-area burial, similar to what is observed with nucleic acid recognition. There are currently few synthetic systems capable of robust molecular

  1. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution.

    PubMed

    Chang, Myung Chul

    2008-11-01

    Hydroxyapatite (HAp)/gelatin (GEL) nanocomposite was prepared by the solution-precipitation process using Ca(OH)(2) in water and aqueous solution of H(3)PO(4) in GEL. Before the co precipitation process the GEL powders were dissolved in the aqueous phosphoric acid solution for the phosphorylation of GEL molecules. The chemical variation of the phosphorylated GEL macromolecules was investigated by using attenuated total reflection (ATR) measurement. The crystal growth of HAp became bigger with the long-time aging of the GEL molecules in the phosphoric acid solution, and it resulted from the reduction of length scale of the GEL molecules. The degree of the organic-inorganic interaction was decreased because of the degradation of the GEL macromolecules.

  2. Critical loads of acidity for surface waters in China.

    PubMed

    Duan, L; Hao, J; Xie, S; Du, K

    2000-01-31

    For further control of acid rain and sulphur dioxide pollution, the Chinese government has designated the Acid Rain Control Zone and the Sulphur Dioxide Pollution Control Zone for those areas that are, or could become, affected by acid deposition or ambient sulphur dioxide concentrations. One of the most important principles for designating the Acid Rain Control Zone is that the critical load is exceeded by the sulphur deposition. Through the steady-state water chemistry method (SSWC), critical loads of acidity for surface waters were mapped based on available data. Results show that surface waters sensitive to acid deposition, i.e. surface waters with low critical loads, are mainly found in north-east China, on the Tibetan Plateau, and in north-west China. Compared with the critical loads of soils, critical loads of surface waters are usually higher in almost all areas in China. The reason for very low critical loads of surface waters in some regions dominated by soils geologically not sensitive to acid deposition may be attributed to the low temperature, high altitude and low runoff. In contrast, surface waters in south China are not susceptible to acid deposition, and so far acidification of surface water has not been found in spite of the heavy acid rain. As can be seen from the critical load exceedance map, nearly 10% of the surface waters are subject to risk of acidification in 1995.

  3. Efficiency of hexane extraction of napropamide from Aldrich humic acid and soil solutions

    SciTech Connect

    Williams, C.F.; Letey, J.; Farmer, W.J.; Nelson, S.D.; Anderson, M.; Ben-Hur, M.

    1999-12-01

    Dissolved organic matter (DOM) has been shown to form a stable complex with napropamide [2({alpha}-naphthoxy)-N,N-diethyl propionamide] and to facilitate its transport through soil columns. Liquid-liquid extraction of organics is a common method to transfer napropamide from water into an organic phase for gas chromatography analysis. A study was conducted to determine the effect of Aldrich humic acid, soil-derived dissolved organic matter, electrical conductivity, and hydrogen ion activity on the ability of hexane to extract napropamide from solutions and from soil extracts. The electrical conductivity from solutions and from soil extracts. The electrical conductivity of Aldrich humic acid solutions were adjusted to 0.01, 0.97, and 1.69 dS m{sup {minus}1} by adding NaCl and CaCl{sub 2}, and pH was adjusted using HCl and NaOH. Electrical conductivity had no effect on extraction efficiency. In the absence of DOM pH had no effect on extraction efficiency. In the absence of DOM pH had no effect on extraction efficiency. Extraction efficiency decreased with increasing DOM concentration. Maximum reduction in extraction efficiency occurred in the presence of DOM when solution pH was near neutrality. A maximum extraction efficiency of 100% was observed in the absence of DOM and a minimum of 68% when napropamide was added to DOM solutions at pH 8.2 and then lowered to pH 5.6. Management practices such as liming and allowing napropamide to dry on the soil may increase environmental transport. Also quantification of napropamide in environmental samples can be affected by DOM.

  4. Effect of citric acid on the acidification of artificial pepsin solution for metacercariae isolation from fish.

    PubMed

    Kim, Min-Ki; Pyo, Kyoung-Ho; Hwang, Young-Sang; Chun, Hyang Sook; Park, Ki Hwan; Ko, Seong-Hee; Chai, Jong-Yil; Shin, Eun-Hee

    2013-11-15

    Artificial digestive solution based on pepsin is essential for collecting metacercariae from fish. To promote the enzymatic reactivity of pepsin, the pH of the solution has to be adjusted to pH 1.0-2.0. Hydrochloride (HCl) is usually used for this purpose, but the use of HCl raises safety concerns. The aim of this work was to address the usefulness of citric acid as an alternative for HCl for the acidification of pepsin solution, and to examine its potential to damage metacercariae during in vitro digestion as compared with HCl. Changes in pH after adding 1-9% of citric acid (m/v) to pepsin solution were compared to a 1% HCl (v/v) addition. Digestion of fish muscle was evaluated by measuring released protein concentrations by spectrophotometry. In addition, survival rates of metacercariae in pepsin solution were determined at different citric acid concentrations and were compared that of with 1% HCl. The present study shows that addition of citric acid reduced the pH of pepsin solutions to the required level. Addition of more than 5% of citric acid resulted in the effective digestion of fish muscle over 3h in vitro, and 5% citric acid was less lethal to metacercariae than 1% HCl in pepsin solution. Pepsin solution containing 5% citric acid had digestive capacity superior to pepsin solution containing 1% HCl after 3h incubation with released protein concentrations of 12.0 ng/ml for 5% citric acid and 9.6 ng/ml for 1% HCl. Accordingly, the present study suggests that the addition of 5% citric acid to pepsin solution is a good alternative to 1% HCl in infection studies because citric acid is a stable at room temperature and has a good safety profile. In addition, we suggest that the use of citric acid enables the preparation of commercial digestive solutions for the detection of microorganisms in fish and other vertebrate muscle tissue.

  5. Fulvic acid mediated photolysis of ibuprofen in water.

    PubMed

    Jacobs, Laura E; Fimmen, Ryan L; Chin, Yu-Ping; Mash, Heath E; Weavers, Linda K

    2011-10-01

    Photolysis of the non-steroidal anti-inflammatory drug ibuprofen was studied by exposure to a solar simulator in solutions of fulvic acid (FA) isolated from Pony Lake, Antarctica; Suwannee River, GA, USA; and Old Woman Creek, OH, USA. At an initial concentration of 10 μM, ibuprofen degrades by direct photolysis, but the presence of FA significantly increases reaction rates. These reactions proceeded up to 6× faster in FA solutions at lower ibuprofen concentrations (0.1 μM), but the rates are highly dependent upon DOM composition. Incomplete quenching of the reaction in the presence of isopropanol suggests that the hydroxyl radical is only partially responsible for ibuprofen's photodegradation in FA solutions, and other reactive transients likely play an important role. Liquid chromatography-quadrupole time-of-flight mass spectrometry and NMR spectroscopy reveal the formation of multiple photoproducts, with three byproducts identified as 1-(4-isobutylphenyl)ethanol, isobutylacetophenone, and a phenol derivative. Pony Lake FA significantly increases the production of the major byproduct relative to yields produced by direct photolysis and the other two FA. Thus, the photolytic fate of ibuprofen in sunlit waters is affected by its initial concentration and the source of dissolved organic matter present.

  6. Acidic Ionic Liquid/Water Solution as Both Medium and Proton Source for Electrocatalytic H2 Evolution by [Ni(P2N2)2]2+ Complexes

    SciTech Connect

    Pool, Douglas H.; Stewart, Michael P.; O'Hagan, Molly J.; Shaw, Wendy J.; Roberts, John A.; Bullock, R. Morris; DuBois, Daniel L.

    2012-06-08

    The electrocatalytic reduction of protons to H2 by [Ni(PPh2NC6H4-hex2)2](BF4)2 (where PPh2NC6H4-hex2 = 1,5-di(4-n-hexylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) in the highly acidic ionic liquid dibutylformamidium bis(trifluoromethanesulfonyl)amide shows a strong dependence on added water. A turnover frequency of 43,000-53,000 s-1 has been measured for hydrogen production at 25 °C when the mole fraction of waterH2O) is 0.72. The same catalyst in acetonitrile with added dimethylformamidium trifluoromethanesulfonate and water has a turnover frequency of 720 s-1. Thus the use of an ionic liquid/aqueous solution enhances the observed catalytic rates by more than a factor of 50 compared to acids in traditional organic solvents such as acetonitrile. Complexes [Ni(PPh2NC6H4X2)2](BF4)2 (X = H, OMe, CH2P(O)(OEt)2, Br) are also catalysts in the ionic liquid/water mixture, and the observed catalytic rates correlate with the hydrophobicity of X. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  7. Photochemical transformation of an iron(III)-arsenite complex in acidic aqueous solution.

    PubMed

    Pozdnyakov, Ivan P; Ding, Wei; Xu, Jing; Chen, Long; Wu, Feng; Grivin, Vjacheslav P; Plyusnin, Victor F

    2016-03-01

    Surface complexation between arsenious acid anions (As(III)) and ferric (hydr)oxides in water is important for the transformation and transfer of inorganic arsenic species. The mechanisms of formation and the photochemistry of dissolved Fe(III)-As(III) complexes in acidic aqueous solution are still unclear. Here, the photooxidation of As(III) in the presence of Fe(III) ions in acidic media has been investigated by laser flash and steady-state photolysis. At low arsenite concentrations (<1 mM), As(III) is oxidized by the ˙OH radical generated by photolysis of the FeOH(2+) complex. At higher arsenite concentrations (>10 mM), photoactive Fe(III)-As(III) complexes are formed (ϕ≈ 0.012). At all arsenite concentrations, a white FeAsO4 colloid is formed during As(III) photolysis in the presence of Fe(III) ions. Solid Fe(III)-As(III) complexes have been prepared and characterized, and the photochemical transformation of As(III) into As(V) in solid Fe(III)-As(III) complexes has been confirmed. These findings are important for a better understanding of the evolution of As(III) species under environmental conditions and should provide guidance for detoxification of As(III)-polluted water systems.

  8. Solvation enthalpies of hydrocarbons in water-alcohol solutions

    SciTech Connect

    Antonova, O.A.; Batov, D.V.; Korolev, V.P.

    1994-03-20

    It was found that the enthalpies of solvation of alkanes and xenon in water-alcohol mixtures vary, following a parabolic law relative to the density of the cohesion energy of a mixed solvent ({rho}). The general relationships were obtained for calculation of the solvation enthalpy of alkanes as a function of {rho} of the mixture and of the size of the solute particles. 14 refs., 6 figs.

  9. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    PubMed

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed. PMID:18363389

  10. Model of solute and water movement in the kidney.

    PubMed

    Stephenson, J L; Mejia, R; Tewarson, R P

    1976-01-01

    Finite difference equations describing salt and water movement in a model of the mammalian kidney have been solved numerically by an extension of the Newton-Raphson method used for the medullary counterflow system. The method permits both steady-state and transient solutions. It has been possible to simulate behavior of the whole kidney as a function of hydrostatic pressures in renal artery, vein, and pelvis; protein and other solute concentrations in arterial blood; and phenomenological equations describing transport of solute and water across nephron and capillary walls. With the model it has been possible to compute concentrations, flows, and hydrostatic pressures in the various nephron segments and in cortical and medullary capillaries and interstitium. In a general way, calculations on the model have met intuitive expectations. In addition, they have reemphasized the critical dependence of renal function on the hydraulic and solute permeabilities of glomerular, postglomerular, and medullary capillaries. These studies provide additional support for our thesis that the functional unit of the kidney is not the single nephron, but a nephrovascular unit consisting of a group of nephrons and their tightly coupled vasculature.

  11. Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California

    USGS Publications Warehouse

    Filipek, L.H.; Kirk, Nordstrom D.; Ficklin, W.H.

    1987-01-01

    Acid mine drainage has acidified large volumes of water and added high concentrations of dissolved heavy metals to West Squaw Creek, a California stream draining igneous rocks of low acid-neutralizing capacity. During mixing of the acid sulfate stream waters in the South Fork of West Squaw Creek with an almost equal volume of dilute uncontaminated water, Cu, Zn, Mn, and Al remained in solution rather than precipitating or adsorbing on solid phases. Changes in the concentration of these generally conservative metals could be used to determine relative flow volumes of acid tributaries and the main stream. An amorphous orange precipitate (probably ferric hydroxides or a mixture of ferric hydroxides and jarosite) was ubiquitous in the acid stream beds and was intimately associated with algae at the most acid sites. Relative sorption of cations decreased with decreasing water pH. However, arsenic was almost completely scavenged from solution within a short distance from the sulfide sources.

  12. Control of Listeria monocytogenes on frankfurters by dipping in hops beta acids solutions.

    PubMed

    Shen, Cangliang; Geornaras, Ifigenia; Kendall, Patricia A; Sofos, John N

    2009-04-01

    Hops beta acids (HBA) are parts of hops flowers used in beer brewing and have shown antilisterial activity in bacteriological broth. The U.S. Department of Agriculture, Food Safety and Inspection Service has approved HBA for use to control Listeria monocytogenes on ready-to-eat meat products. This study evaluated the effects of HBA as dipping solutions to control L. monocytogenes during storage of frankfurters. Frankfurters (two replicates and three samples each) were inoculated (1.9 +/- 0.1 log CFU/cm2) with L. monocytogenes (10-strain mixture), dipped (2 min, 25 +/- 2 degrees C) in HBA solutions (0.03, 0.06, and 0.10%) or distilled water, and then vacuum packaged and stored at 4 or 10 degrees C for up to 90 and 48 days, respectively. Samples were periodically analyzed for microbial survival and growth on tryptic soy agar plus 0.6% yeast extract and PALCAM agar. Dipping in HBA solutions caused immediate L. monocytogenes reductions (P < 0.05) of 1.3 to 1.6 log CFU/cm2, whereas distilled water reduced counts by 1.0 log CFU/cm2. Pathogen growth was completely suppressed (P < 0.05) for 30 to 50 (4 degrees C) or 20 to 28 (10 degrees C) days on frankfurters dipped in HBA solutions, with antilisterial effects increasing with higher concentrations (0.03 to 0.10%). Fitting the data with the Baranyi model confirmed that the lag-phase duration of the pathogen was extended, and the growth rate was decreased on samples dipped in HBA solutions. Therefore, HBA may be considered for use to improve the microbial safety of ready-to-eat meat products, provided that future studies show no adverse effects on sensory qualities and that their use is economically feasible.

  13. Control of Listeria monocytogenes on frankfurters by dipping in hops beta acids solutions.

    PubMed

    Shen, Cangliang; Geornaras, Ifigenia; Kendall, Patricia A; Sofos, John N

    2009-04-01

    Hops beta acids (HBA) are parts of hops flowers used in beer brewing and have shown antilisterial activity in bacteriological broth. The U.S. Department of Agriculture, Food Safety and Inspection Service has approved HBA for use to control Listeria monocytogenes on ready-to-eat meat products. This study evaluated the effects of HBA as dipping solutions to control L. monocytogenes during storage of frankfurters. Frankfurters (two replicates and three samples each) were inoculated (1.9 +/- 0.1 log CFU/cm2) with L. monocytogenes (10-strain mixture), dipped (2 min, 25 +/- 2 degrees C) in HBA solutions (0.03, 0.06, and 0.10%) or distilled water, and then vacuum packaged and stored at 4 or 10 degrees C for up to 90 and 48 days, respectively. Samples were periodically analyzed for microbial survival and growth on tryptic soy agar plus 0.6% yeast extract and PALCAM agar. Dipping in HBA solutions caused immediate L. monocytogenes reductions (P < 0.05) of 1.3 to 1.6 log CFU/cm2, whereas distilled water reduced counts by 1.0 log CFU/cm2. Pathogen growth was completely suppressed (P < 0.05) for 30 to 50 (4 degrees C) or 20 to 28 (10 degrees C) days on frankfurters dipped in HBA solutions, with antilisterial effects increasing with higher concentrations (0.03 to 0.10%). Fitting the data with the Baranyi model confirmed that the lag-phase duration of the pathogen was extended, and the growth rate was decreased on samples dipped in HBA solutions. Therefore, HBA may be considered for use to improve the microbial safety of ready-to-eat meat products, provided that future studies show no adverse effects on sensory qualities and that their use is economically feasible. PMID:19435215

  14. Magnesium hydroxide as the neutralizing agent for radioactive hydrochloric acid solutions

    SciTech Connect

    Palmer, M.J.; Fife, K.W.

    1995-10-01

    The current technology at Los Alamos for removing actinides from acidic chloride waste streams is precipitation with approximately 10 M potassium hydroxide. Although successful, there are many inherent drawbacks to this precipitation technique which will be detailed in this paper. Magnesium hydroxide (K{sub sp} = 1.3 x 10{sup -11}) has limited solubility in water and as a result of the common ion effect, cannot generate a filtrate with a pH greater than 9. At a pH of 9, calcium (K{sub sp} = 5.5 x 10{sup -6}) will not coprecipitate as the hydroxide. This is an important factor since many acidic chloride feeds to hydroxide precipitation contain significant amounts of calcium. In addition, neutralization with Mg(OH){sub 2} produces a more filterable precipitate because neutralization occurs as the Mg(OH){sub 2} is dissolved by the acid rather than as a result of the much faster liquid/liquid reaction of KOH with the waste acid. This slower solid/liquid reaction allows time for crystal growth to occur and produces more easily filterable precipitates. On the other hand, neutralization of spent acid with strong KOH that yields numerous hydroxide ions in solution almost instantaneously forming a much larger volume of small crystallites that result in gelatinous, slow-filtering precipitates. Magnesium hydroxide also offers a safety advantage. Although mildly irritating, it is a weak base and safe and easy to handle. From a waste minimization perspective, Mg(OH){sub 2} offers many advantages. First, the magnesium hydroxide is added as a solid. This step eliminates the diluent water used in KOH neutralizations. Secondly, because the particle size of the precipitate is larger, more actinides are caught on the filter paper resulting in a smaller amount of actinide being transferred to the TA-50 Liquid Waste Treatment Facility. Third, the amount of solids that must be reprocessed is significantly smaller resulting in less waste generation from the downstream processes.

  15. Nucleic Acids Bind to Nanoparticulate iron (II) Monosulphide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Hatton, Bryan; Rickard, David

    2008-06-01

    In the hydrothermal FeS-world origin of life scenarios nucleic acids are suggested to bind to iron (II) monosulphide precipitated from the reaction between hydrothermal sulphidic vent solutions and iron-bearing oceanic water. In lower temperature systems, the first precipitate from this process is nanoparticulate, metastable FeSm with a mackinawite structure. Although the interactions between bulk crystalline iron sulphide minerals and nucleic acids have been reported, their reaction with nanoparticulate FeSm has not previously been investigated. We investigated the binding of different nucleic acids, and their constituents, to freshly precipitated, nanoparticulate FeSm. The degree to which the organic molecules interacted with FeSm is chromosomal DNA > RNA > oligomeric DNA > deoxadenosine monophosphate ≈ deoxyadenosine ≈ adenine. Although we found that FeSm does not fluoresce within the visible spectrum and there is no quantum confinement effect seen in the absorption, the mechanism of linkage of the FeSm to these biomolecules appears to be primarily electrostatic and similar to that found for the attachment of ZnS quantum dots. The results of a preliminary study of similar reactions with nanoparticulate CuS further supported the suggestion that the interaction mechanism was generic for nanoparticulate transition metal sulphides. In terms of the FeS-world hypothesis, the results of this study further support the idea that sulphide minerals precipitated at hydrothermal vents interact with biomolecules and could have assisted in the formation and polymerisation of nucleic acids.

  16. Terahertz Absorption of Chemicals in Water: Ideal and Real Solutions and Mixtures

    NASA Astrophysics Data System (ADS)

    Funkner, Stefan; Niehues, Gudrun; Schmidt, Diedrich A.; Bründermann, Erik

    2013-08-01

    Complex biomolecules, such as proteins in liquids, show specific terahertz dynamics in reactions or in protein folding as measured by static or kinetic absorption. The complex nature of biomolecules requires investigating their frequency, space, and time characteristics via a multimodal approach that changes external parameters such as temperature, pressure, concentration, and solvents. Terahertz spectroscopy can add a new and deeper understanding to existing techniques in other spectral regions of the biological dynamics in the solvent of life, i.e. water. To understand more deeply complex liquids or macromolecules in water, it is essential to understand the building blocks of solutions, which may contain salts, or are components of larger molecules such as amino acids. Although this research mainly affects basic science, a few applications are in progress, some create interest in industry, and several pathways for new applications relevant to medical science are in view. In this article, we review THz spectroscopy of solutions and concentrate our description to liquids with small solutes such as salts and amino acids, and review the prerequisites for obtaining THz data from aqueous solutions.

  17. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  18. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  19. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  20. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  1. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  2. Metabolic changes and nutrient repletion in lambs provided with electrolyte solutions before and after feed and water deprivation.

    PubMed

    Cole, N A

    1996-02-01

    Providing feeder calves and lambs with electrolyte solutions before and(or) after a transport period could potentially reduce tissue shrink and speed repletion of nutrients and weight that are lost during transport. This trial was conducted to determine metabolic changes and nutrient repletion in lambs provided with electrolyte solutions before and after feed and water deprivation. Solutions were 1) deionized water, 2) ES1 (g/10 L: NaCl, 2.0; K carbonate, 2.8; Mg sulfate.7H2O, 2.0; equal mixture of amino acids [Lys, Thr, Phe, His, Trp, Met, Leu, Ile, and Val], .45; and phosphoric acid to pH 7.0), 3) ES2 (twice the concentrations as in ES1), and ES3 (g/10 L: NaCl 2.0; K carbonate, 8.0; Mg sulfate.7H2O, 4.0; amino acid mixture from ES1, .45; and phosphoric acid to pH 7.0). Eight Suffolk x Hampshire crossbred lambs (average BW 35 +/- 2 kg) were used in an 8 x 8 Latin square design with treatments arranged in a 2 x 4 factorial. Main treatments consisted of two deprivation electrolyte solutions (deionized water or ES1) and four realimentation electrolyte solutions (deionized water, ES1, ES2, and ES3). Lambs were limit-fed (600 g/d, as-fed basis) before and after a 3-d feed and water deprivation phase. Lambs provided the ES1 solution during the pre-deprivation phase had greater (P < .05) Na, Mg, Zn retention during the pre-deprivation phase, had greater (P < .05) Na and Mg losses during the 3-d deprivation phase, and greater (P < .05) cumulative Na, Cu, and Fe retentions than lambs given deionized water during the pre-deprivation phase. Compared to lambs provided water, lambs provided the ES1 solution during the realimentation phase had greater Na retention but similar K, Mg, and water retentions. However, when the concentration of electrolytes in the solution was doubled (i.e., ES2 solution), Na, K, and Mg retentions were increased (P < .05) compared with those of lambs provided deionized water or the ES1 solution. These results suggest that as the length or severity of

  3. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Chomsaksakul, Wararuk; Sonsuk, Manit

    2000-10-01

    Graft copolymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h -1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the superabsorbent properties are found to be pH sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted superabsorbent polymers.

  4. Chemical evaluation of soil-solution in acid forest soils

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and

  5. Impact of water table fluctuations on water flow and solute transport in 1D column systems

    NASA Astrophysics Data System (ADS)

    Rühle, F.; Stumpp, C.

    2012-04-01

    Although hydrological processes and mass fluxes in the unsaturated and saturated zone have been well studied separately, little is known about transition processes between these zones. Since the transition zone is dynamic and varies spatially and temporally with fluctuations of the water table, water flow and solute transport are believed to vary dynamically, too. This may influence the transport and fate of dissolved contaminants and consequently the quality of groundwater. In order to protect and maintain drinking water resources, improved understanding about hydrological processes at the dynamic interface between the unsaturated and saturated zone is needed. The objective of this study was to investigate the impact of water table fluctuations on one-dimensional vertical flow and solute transport in laboratory column systems. Therefore, two flow-through columns were constantly irrigated with groundwater at an infiltration rate of 4.7 cm/d. In one column the water table was kept statically fixed in the middle, in the other column the water table was continually fluctuated by regularly raising and lowering the outflow tube. Several multi-tracer experiments were conducted and compared injecting the tracers bromide, deuterium and 18-oxygen at different water levels. Data modelling was performed with a lumped parameter model to simulate the hydrological fluxes. Our results showed that at static water table and similar water fluxes in both columns, structural heterogeneities due to packing lead to differences in solute transport, e.g. different dispersivity. Tracer breakthrough curves were well simulated with the lumped parameter model indicating that the systems were at steady state. When the water table was fluctuated small differences in solute transport were observed. Even with a fluctuating water table the lumped parameter model yielded high modelling accuracy and indicated that under certain hydrological conditions water table fluctuations lead to slightly

  6. Solution properties and emulsification properties of amino acid-based gemini surfactants derived from cysteine.

    PubMed

    Yoshimura, Tomokazu; Sakato, Ayako; Esumi, Kunio

    2013-01-01

    Amino acid-based anionic gemini surfactants (2C(n)diCys, where n represents an alkyl chain with a length of 10, 12, or 14 carbons and "di" and "Cys" indicate adipoyl and cysteine, respectively) were synthesized using the amino acid cysteine. Biodegradability, equilibrium surface tension, and dynamic light scattering were used to characterize the properties of gemini surfactants. Additionally, the effects of alkyl chain length, number of chains, and structure on these properties were evaluated by comparing previously reported gemini surfactants derived from cystine (2C(n)Cys) and monomeric surfactants (C(n)Cys). 2C(n)diCys shows relatively higher biodegradability than does C(n)Cys and previously reported sugar-based gemini surfactants. Both critical micelle concentration (CMC) and surface tension decrease when alkyl chain length is increased from 10 to 12, while a further increase in chain length to 14 results in increased CMC and surface tension. This indicates that long-chain gemini surfactants have a decreased aggregation tendency due to the steric hindrance of the bulky spacer as well as premicelle formation at concentrations below the CMC and are poorly packed at the air/water interface. Formation of micelles (measuring 2 to 5 nm in solution) from 2C(n)diCys shows no dependence on alkyl chain length. Further, shaking the mixtures of aqueous 2C(n)diCys surfactant solutions and squalane results in the formation of oil-in-water type emulsions. The highly stable emulsions are formed using 2C₁₂diCys or 2C₁₄diCys solution and squalane in a 1:1 or 2:1 volume ratio.

  7. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  8. Systemic solutions for multi-benefit water and environmental management.

    PubMed

    Everard, Mark; McInnes, Robert

    2013-09-01

    The environmental and financial costs of inputs to, and unintended consequences arising from narrow consideration of outputs from, water and environmental management technologies highlight the need for low-input solutions that optimise outcomes across multiple ecosystem services. Case studies examining the inputs and outputs associated with several ecosystem-based water and environmental management technologies reveal a range from those that differ little from conventional electro-mechanical engineering techniques through methods, such as integrated constructed wetlands (ICWs), designed explicitly as low-input systems optimising ecosystem service outcomes. All techniques present opportunities for further optimisation of outputs, and hence for greater cumulative public value. We define 'systemic solutions' as "…low-input technologies using natural processes to optimise benefits across the spectrum of ecosystem services and their beneficiaries". They contribute to sustainable development by averting unintended negative impacts and optimising benefits to all ecosystem service beneficiaries, increasing net economic value. Legacy legislation addressing issues in a fragmented way, associated 'ring-fenced' budgets and established management assumptions represent obstacles to implementing 'systemic solutions'. However, flexible implementation of legacy regulations recognising their primary purpose, rather than slavish adherence to detailed sub-clauses, may achieve greater overall public benefit through optimisation of outcomes across ecosystem services. Systemic solutions are not a panacea if applied merely as 'downstream' fixes, but are part of, and a means to accelerate, broader culture change towards more sustainable practice. This necessarily entails connecting a wider network of interests in the formulation and design of mutually-beneficial systemic solutions, including for example spatial planners, engineers, regulators, managers, farming and other businesses, and

  9. Engineering solutions for polymer composites solar water heaters production

    NASA Astrophysics Data System (ADS)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  10. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units. PMID:26331783

  11. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units.

  12. Peracetic acid: A new biocide for industrial water applications

    SciTech Connect

    Kramer, J.F.

    1997-12-01

    Peracetic acid is rapidly cidal at low concentrations against a broad spectrum of microorganisms, including gram-positive and gram-negative bacteria, yeasts, molds, and algae under a wide variety of conditions. It is also effective against anaerobic and spore forming bacteria. Peracetic acid is effective at killing biofilm microorganisms at low concentrations and short contact times. Unlike a number of other biocides, the biocidal activity of peracetic acid is not affected by pH or water hardness and biocidal activity is retained even in the presence of organic matter. For these reasons, peracetic acid is well suited as a biocide in industrial cooling water and papermaking systems. Peracetic acid is compatible with additives commonly used in these systems. Although peracetic acid is a potent biocide, it is unique in that it does not produce toxic byproducts and its decomposition products, acetic acid, water and oxygen, are innocuous and environmentally acceptable.

  13. Utilising integrated urban water management to assess the viability of decentralised water solutions.

    PubMed

    Burn, Stewart; Maheepala, Shiroma; Sharma, Ashok

    2012-01-01

    Cities worldwide are challenged by a number of urban water issues associated with climate change, population growth and the associated water scarcity, wastewater flows and stormwater run-off. To address these problems decentralised solutions are increasingly being considered by water authorities, and integrated urban water management (IUWM) has emerged as a potential solution to most of these urban water challenges, and as the key to providing solutions incorporating decentralised concepts at a city wide scale. To incorporate decentralised options, there is a need to understand their performance and their impact on a city's total water cycle under alternative water and land management options. This includes changes to flow, nutrient and sediment regimes, energy use, greenhouse gas emissions, and the impacts on rivers, aquifers and estuaries. Application of the IUWM approach to large cities demands revisiting the fundamental role of water system design in sustainable city development. This paper uses the extended urban metabolism model (EUMM) to expand a logical definition for the aims of IUWM, and discusses the role of decentralised systems in IUWM and how IUWM principles can be incorporated into urban water planning.

  14. Acoustic properties of organic acid mixtures in water

    NASA Technical Reports Server (NTRS)

    Macavei, I.; Petrisor, V.; Auslaender, D.

    1974-01-01

    The variation of the rate of propagation of ultrasounds in organic acid mixtures in water points to structural changes caused by interactions that take place under conditions of thermal agitation, at different acid concentrations. At the same time, a difference is found in the changes in velocity as a function of the length of the carbon chain of the acids in the mixture as a result of their effect on the groups of water molecules associated by hydrogen bonds.

  15. Amino acid/water interactions study: a new amino acid scale.

    PubMed

    Madeira, Pedro P; Bessa, Ana; Álvares-Ribeiro, Luís; Raquel Aires-Barros, M; Rodrigues, Alírio E; Uversky, Vladimir N; Zaslavsky, Boris Y

    2014-01-01

    Partition ratios of 8 free l-amino acids (Gln, Glu, His, Lys, Met, Ser, Thr, and Tyr) were measured in 10 different polymer/polymer aqueous two-phase systems containing 0.15 M NaCl in 0.01 M phosphate buffer, pH 7.4. The solute-specific coefficients representing the solute dipole/dipole, hydrogen-bonding and electrostatic interactions with the aqueous environment of the amino acids were determined by multiple linear regression analysis using a modified linear solvation energy relationship. The solute-specific coefficients determined in this study together with the solute-specific coefficients reported previously for amino acids with non-polar side-chains where used in a Quantitative Structure/Property Relationship analysis. It is shown that linear combinations of these solute-specific coefficients are correlated well with various physicochemical, structural, and biological properties of amino acids.

  16. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    PubMed

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. PMID:27283672

  17. Effects of acidic functional groups on dielectric properties of sodium alginates and carrageenans in water.

    PubMed

    Tsubaki, Shuntaro; Hiraoka, Masanori; Hadano, Shingo; Okamura, Kei; Ueda, Tadaharu; Nishimura, Hiroshi; Kashimura, Keiichiro; Mitani, Tomohiko

    2015-01-22

    This study investigated the dielectric properties of sodium alginates and carrageenans in water at frequencies between 100 MHz and 20 GHz in regard to water-hydrocolloid interactions via acidic functional groups. Both sodium alginates and carrageenans showed conduction loss at lower frequencies and dielectric loss at higher frequencies. Reduction and desulfation of sodium alginates and carrageenans, which decreased the numbers of acidic functional groups, decreased their conduction loss. In addition, H(+)-form carrageenans showed the highest ionic conduction. Correlational analysis of dielectric properties and related physical parameters showed that the loss tangent (tanδ) of the hydrocolloid solution was determined by the conductivity of the aqueous solution. Especially at pH below 2, strong H(+) conduction was associated with high tanδ probably due to the Grotthuss mechanism. The molecular dynamics of free water and H(+), viscosity conditions were also suggested to be associated with dielectric property of water-hydrocolloid system. PMID:25439871

  18. Impact of water table fluctuations on water flow and solute transport in different porous media

    NASA Astrophysics Data System (ADS)

    Rühle, Franziska; Zentner, Nadine; Stumpp, Christine

    2013-04-01

    The interface between saturated and unsaturated zone is dynamic and varies spatially and temporally resulting in fluctuations of the water table. Still, little is known about transport processes under transient flow conditions at this interface and how the processes are affected by altering the water table. In order to understand transport and fate of dissolved contaminants into the groundwater and consequently the quality of groundwater, improved understanding about hydrological processes at the dynamic interface between unsaturated and saturated zone is needed. The objective of this study was to investigate the impact of water table fluctuations on one-dimensional vertical flow and solute transport in different sediments. Therefore, flow-through columns (length=50cm, diameter=9cm), filled with glass beads of different grain sizes (smaller=0.4-0.6mm, coarser=1.0-1.5mm), were constantly irrigated at 12 cm/d. Several multi-tracer experiments were conducted with a statically fixed water table and compared to experiments where the water table was fluctuated in upward and downward direction. Data modeling was performed with a lumped parameter model to simulate hydrological fluxes and to determine transport parameters. Our results showed that most tracer breakthrough curves were well simulated indicating that the systems were at steady state. The results showed that under certain hydrological conditions water table fluctuations lead to increased dispersivity. It is suggested that a falling water table can cause increased spreading when the decline is faster than the water flux resulting in a more extensive solute distribution over depth. Further, it was observed that a rising water table can cause higher tracer spreading due to diffusive solute exchange in coarse sediments with immobile water regions. In conclusion, spatial and temporal variability of the interface between vadose zone and groundwater contribute to spreading of solutes and therefore have to be considered

  19. Interaction of Some Amino Acids with Sodium Dodecyl Sulphate in Aqueous Solution at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Itoo, Firdoos Ahmad; Ansari, Nizamul Haque

    2011-05-01

    The density ρ, and viscosity η of 0.00, 0.05, 0.10, 0.15, and 0.20 mol kg-1 glycine (Gly), dlalanine (Ala), dl-serine (Ser), and dl-valine (Val) have been measured in 0.002 mol kg-1 aqueous sodium dodecyl sulphate (SDS) at 298.15, 303.15, 308.15, and 313.15 K. These data have been used to calculate the apparent molar volume φv, infinite dilution apparent molar volume φv°, and the standard partial molar volumes of transfer φv° (tr), of the amino acids from water to the aqueous SDS solutions. Falkenhagen coefficient A, Jones-Dole coefficient B, free energies of activation per mole of solvent (aqueous SDS) Δμ1°*, and per mole solute (amino acids) Δμ2°*, also enthalpy ΔH* and entropy ΔS* of activation of viscous flow were evaluated using viscosity data. The molar refraction RD was calculated by using experimental values of the refractive index nD of the systems. The results have been interpreted in terms of ion-ion, ion-polar and hydrophobic-hydrophobic group interactions. The volume of the transfer data suggest that ion-ion intertactions are predominant.

  20. Kinetics of CO2 Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution.

    PubMed

    Shen, Shufeng; Yang, Ya-nan; Bian, Yangyang; Zhao, Yue

    2016-02-16

    Aqueous amino acid salts are considered as an attractive alternative to alkanolamine solvents (e.g., MEA) for carbon dioxide (CO2) absorption. The kinetics of CO2 into unloaded aqueous solutions of potassium lysinate (LysK) was studied using a wetted wall column at concentrations ranging from 0.25 to 2.0 M and temperatures from 298 to 333 K. Physicochemical properties of aqueous LysK solutions such as density, viscosity, and physical solubility of CO2 were measured to evaluate the reaction rate constants. The reaction pathway is described using zwitterion mechanism taking into account the effect of ionic strength on the reaction rate. Under the fast pseudo-first-order regime, the reaction rate parameters were obtained and correlated in a power-law reaction rate expression. LysK shows higher chemical reactivity toward CO2 than the industrial standard MEA and most of amino acid salts. Its reaction rate constants increase considerably with concentration and temperature. The reaction order is found to be an average value of 1.58 with respect to LysK. The forward second-order kinetic rate constant, k2 0 , are obtained as 31615 and 84822 m3 kmol−1 s−1 at 298 and 313 K, respectively with activation energy of 51.0 kJ mol−1. The contribution of water to the zwitterion deprotonation seems to be more significant than that of LysK for the above-mentioned kinetic conditions PMID:26751093

  1. Water flow and solute transport in floating fen root mats

    NASA Astrophysics Data System (ADS)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  2. Near-Infrared Studies of Glucose and Sucrose in Aqueous Solutions: Water Displacement Effect and Red Shift in Water Absorption from Water-Solute Interaction

    NASA Astrophysics Data System (ADS)

    Jung, Youngeui; Hwang, Jungseek

    2013-02-01

    We use near infrared spectroscopy to obtain concentration dependent glucose absorption spectra in their aqueous solutions in the near-infrared range (3800 - 7500 cm^{-1}). We introduce a new method to obtain reliable glucose absorption bands from aqueous glucose solutions without measuring the water displacement coefficients of glucose separately. Additionally, we are able to extract the water displacement coefficients of glucose, and this may give a new general method using spectroscopy techniques applicable to other water soluble materials. We also observe red shifts in the absorption bands of water in the hydration shell around solute molecules, which comes from contribution of the interacting water molecules around the glucose molecules in solutions. The intensity of the red shift get larger as the concentration increases, which indicates that as the concentration increases more water molecules are involved in the interaction. However, the red shift in frequency does not seem to depend significantly on the concentration up to our highest concentration. We also performed the same measurements and analysis with sucrose instead of glucose as solute and compare.

  3. Near-infrared studies of glucose and sucrose in aqueous solutions: water displacement effect and red shift in water absorption from water-solute interaction.

    PubMed

    Jung, Youngeui; Hwang, Jungseek

    2013-02-01

    We used near infrared spectroscopy to obtain concentration dependent glucose absorption spectra in aqueous solutions in the near-infrared range (3800-7500 cm(-1)). Here we introduce a new method to obtain reliable glucose absorption bands from aqueous glucose solutions without measuring the water displacement coefficients of glucose separately. Additionally, we were able to extract the water displacement coefficients of glucose, and this may offer a new general method using spectroscopy techniques applicable to other water-soluble materials. We also observed red shifts in the absorption bands of water in the hydration shell around solute molecules, which comes from the contribution of the interacting water molecules around the glucose molecules in solutions. The intensity of the red shift gets larger as the concentration increases, which indicates that as the concentration increases more water molecules are involved in the interaction. However, the red shift in frequency does not seem to depend significantly on the concentration. We also performed the same measurements and analysis with sucrose instead of glucose as solute and compared.

  4. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage.

    PubMed

    Çabuk, Ahmet; Aytar, Pınar; Gedikli, Serap; Özel, Yasemin Kevser; Kocabıyık, Erçin

    2013-07-01

    Removal of textile dyestuffs from aqueous solution by biosorption onto a dead fungal biomass isolated from acidic mine drainage in the Çanakkale Region of Turkey was investigated. The fungus was found to be a promising biosorbent and identified as Paecilomyces sp. The optimal conditions for bioremediation were as follows: pH, 2.0; initial dyestuff concentration, 50 mg l(-1) for Reactive Yellow 85 and Reactive Orange 12, and 75 mg l(-1) for Reactive Black 8; biomass dosage, 2 g l(-1) for Reactive Yellow 85, 3 g l(-1) for Reactive Orange 12, 4 g l(-1) for Reactive Black 8; temperature, 25 °C; and agitation rate, 100 rpm. Zeta potential measurements indicated an electrostatic interaction between the binding sites and dye anions. Fourier transform infrared spectroscopy showed that amine, hydroxyl, carbonyl, and amide bonds were involved in the dyestuff biosorption. A toxicity investigation was also carried out before and after the biosorption process. These results showed that the toxicities for the reactive dyestuffs in aqueous solutions after biosorption studies decreased. The Freundlich and Langmuir adsorption models were used for the mathematical description of the biosorption equilibrium, and isotherm constants were evaluated for each dyestuff. Equilibrium data of biosorption of RY85 and RO12 dyestuffs fitted well to both models at the studied concentration and temperature.

  5. Water transfer as a solution to water shortage: A fix that can Backfire

    NASA Astrophysics Data System (ADS)

    Gohari, Alireza; Eslamian, Saeid; Mirchi, Ali; Abedi-Koupaei, Jahangir; Massah Bavani, Alireza; Madani, Kaveh

    2013-05-01

    Zayandeh-Rud River Basin is one of the most important basins in central Iran, which has been continually challenged by water stress during the past 60 years. Traditionally, a supply-oriented management scheme has been prescribed as a reliable solution to water shortage problems in the basin, resulting in a number of water transfer projects that have more than doubled the natural flow of the river. The main objective of this study is to evaluate the reliability of inter-basin water transfer to meet the growing water demand in Zayandeh-Rud River Basin. A system dynamics model is developed to capture the interrelationships between different sub-systems of the river basin, namely the hydrologic, socioeconomic, and agricultural sub-systems. Results from simulating a range of possible policy options for resolving water shortage problems indicate that water is essentially the development engine of the system. Therefore, supplying more water to the basin without considering the dynamics of the interrelated problems will eventually lead to increased water demand. It is demonstrated that the Zayandeh-Rud River Basin management system has characteristics of the "Fixes that Backfire" system archetype, in which inter-basin water transfer is an inadequate water management policy, causing significant unintended side-effects. A comprehensive solution to the problem includes several policy options that simultaneously control the dynamics of the system, minimizing the risk of unintended consequences. In particular, policy makers should consider minimizing agricultural water demand through changing crop patterns as an effective policy solution for the basin's water problems.

  6. Thermodynamics of solution of aromatic hydrocarbons in water and in water-ethanol solutions: Comparison of some methodologies

    SciTech Connect

    Smith, R.R.; Charon, N.W.; Canady, W.J. )

    1989-07-27

    The method of Franks et al. has been applied to studies of the solubilities of both liquid and solid hydrocarbons. The temperature dependence of the solubility of toluene in water has been determined and shown to agree well with previous studies. In addition, the solubilities of n-alkyl-substituted benzenes (toluene through butylbenzene) in water have been determined at 25{degree}C; when the free energies of solution are plotted vs number of methylene groups added, a linear result was observed with a slope of about 0.71 kcal/mol per methylene group, with very little scatter being observed. The effects of added ethanol upon the free energy of solution of naphthalene at 25{degree}C have been examined by using the above-mentioned methodology of Franks et al. The results are shown to agree well with those obtained by a different methodology. The method of Franks et al is thus shown to be practical for the study of solid hydrocarbons. The long times required for equilibration of the hydrocarbon-water solutions have been shown to present no problems from contamination by microorganisms: the aromatic hydrocarbon actually exerts an inhibitory effect in this regard. The possibility of error due to adsorption of hydrocarbons from the aqueous phase to the windows of the cuvettes has been considered. Means of taking this into account (if it occurs) are outlined. This effect has been shown to be negligible or nonexistent in the case of aqueous naphthalene solutions. The methodology could find application in the study of adsorption of various substances to plastic and glass surfaces.

  7. Boric acid solution concentration influencing p-type emitter formation in n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-09-01

    Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.

  8. Degradation of benzoic acid and its derivatives in subcritical water.

    PubMed

    Lindquist, Edward; Yang, Yu

    2011-04-15

    In this research, the stability of benzoic acid and three of its derivatives (anthranilic acid, salicylic acid, and syringic acid) under subcritical water conditions was investigated. The stability studies were carried out at temperatures ranging from 50 to 350°C with heating times of 10-630 min. The degradation of the benzoic acid derivatives increased with rising temperature and the acids became less stable with longer heating time. The three benzoic acid derivatives showed very mild degradation at 150°C. Severe degradation of benzoic acid derivatives was observed at 200°C while their complete degradation occurred at 250°C. However, benzoic acid remained stable at temperatures up to 300°C. The degradation products of benzoic acid and the three derivatives were identified and quantified by HPLC and confirmed by GC/MS. Anthranilic acid, salicylic acid, syringic acid, and benzoic acid in high-temperature water underwent decarboxylation to form aniline, phenol, syringol, and benzene, respectively.

  9. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  10. Removal of radium from acidic solutions containing same by adsorption on coal fly ash

    DOEpatents

    Scheitlin, Frank M.

    1984-01-01

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of .sup.226 Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  11. Process for the removal of radium from acidic solutions containing same

    DOEpatents

    Scheitlin, F.M.

    The invention is a process for the removal of radium from acidic aqueous solutions. In one aspect, the invention is a process for removing radium from an inorganic-acid solution. The process comprises contacting the solution with coal fly ash to effect adsorption of the radium on the ash. The radium-containing ash then is separated from the solution. The process is simple, comparatively inexpensive, and efficient. High radium-distribution coefficients are obtained even at room temperature. Coal fly ash is an inexpensive, acid-resistant, high-surface-area material which is available in large quantities throughout the United States. The invention is applicable, for example, to the recovery of /sup 226/Ra from nitric acid solutions which have been used to leach radium from uranium-mill tailings.

  12. Measurement of water diffusivity in aqueous lithium bromide solution

    SciTech Connect

    Potnis, S.V.; Lenz, T.G.; Dunlop, E.H.

    1993-06-01

    The bulb apparatus developed was found to produce reliable data for measuring diffusivity for short duration. Diffusivity of water in aq. LiBr solution was found to increase from 13.2{times}10{sup {minus}10} to 16.7{times}10{sup {minus}10}m{sup 2}/s for concentration change from 0.5 to 4M and then decrease to a steady value of {approximately}6.5{times}10{sup {minus}10}m{sup 2}/s from 8 to 11 M.

  13. The ionic product of water in concentrated tetramethylammonium chloride solutions.

    PubMed

    Sipos, P; Bódi, I; May, P M; Hefter, G T

    1997-04-01

    The ionic product of water, pK(w) = - log[H(+)][OH(-)] has been determined in aqueous solutions of tetramethylammonium chloride over the concentration range of 0.1-5.5 M at 25 degrees C using high-precision glass electrode potentiometric titrations. pK(w) data relating to aqueous potassium and sodium chlorides at ionic strengths up to 5 M are markedly lower than the tetramethylammonium chloride results. These differences are almost certainly due to weak associations between potassium and (especially) sodium and hydroxide ions.

  14. Elution of zinc in dust discharged from electric arc furnace in carbonic acid solution

    NASA Astrophysics Data System (ADS)

    Yokoyama, S.; Sasaki, T.; Sasano, J.; Izaki, M.

    2012-03-01

    The dust discharged from an electric arc furnace (EAF) is a valuable resource of zinc. As a fundamental study of extraction of zinc, iron and chlorine in the EAF dust, the elution behavior of them in carbonic acid solution was studied. The influence of the weight of the EAF dust on the elution behavior was examined in this study. Experiment was carried out putting the EAF dust from 1 g to 200 g in weight into 1 L of water that was introduced by CO2. Generally, the pH in the aqueous solution increased with an increase in weight of the additive EAF dust. Maximums of the eluted concentrations of zinc and chloride ion increased with an increase in the weight of the additive EAF dust whereas the extraction ratios of both of them decreased with an increase in the weight of the additive EAF dust. Iron in the EAF dust remained in the dust without elution. The limit of extraction of zinc from the EAF dust to water was given by the solubilities of ZnFe2O4 and ZnO expressed by eq. (6) and eq. (9) respectively.

  15. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion. PMID:23370866

  16. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid.

    PubMed

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas Sy

    2014-01-06

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water.

  17. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution.

    PubMed

    Wang, Bingyu; Lee, Linda S; Wei, Chenhui; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-09-01

    Perfluoroalkyl acids (PFAAs) are highly stable, persistent, and ubiquitous in the environment with significant concerns growing with regards to both human and ecosystem health. Due to the high stability to both biological and chemical attack, the only currently feasible approach for their removal from water is adsorbent technology. The main objective of this study was to assess a covalent triazine-based framework (CTF) adsorbent for removal from aqueous solutions of perfluoro C4, C6, and C8 carboxylates and sulfonates including the two C8s most commonly monitored, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Adsorption affinity and capacity were quantified and compared to three commonly used sorbents: pulverized microporous activated carbon, single-walled carbon nanotubes, and Amberlite IRA-400 anion-exchange resin. CTF adsorbent exhibited pronouncedly higher adsorption affinity and capacity of PFAAs than other test sorbents. The remarkably strong adsorption to CTF can be attributed to the favored electrostatic interaction between the protonated triazine groups on the inner wall of the hydrophobic CTF pore and the negatively charged head groups of the PFAAs intercalated between the CTF layers. The homogeneous, nanosized pores (1.2 nm) of CTF hindered adsorption of a large-sized dissolved humic acid, thus minimizing the suppression of PFAA adsorption. Additionally, regeneration of CTF was easily accomplished by simply raising pH > 11, which inhibited the electrostatic adsorptive interaction of PFAAs. PMID:27389552

  18. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  19. Peracetic acid: A new biocide for industrial water applications

    SciTech Connect

    Kramer, J.F.

    1997-08-01

    Peracetic acid is rapidly cidal at low concentrations against a broad spectrum of microorganisms, including gram-positive and gram-negative bacteria, yeasts, molds, and algae under a wide variety of conditions. It is also effective against anaerobic and spore-forming bacteria. Peracetic acid is effective at killing biofilm microorganisms at low concentrations and short contact times. Unlike a number of other biocides, the biocidal activity of peracetic acid is not affected by pH or water hardness and is retained even in the presence of organic matter. For these reasons, peracetic acid is well-suited as a biocide in industrial cooling water and paper-making systems. It is also compatible with additives commonly used in these systems. Although peracetic acid is a potent biocide, it is unique in that it does not produce toxic byproducts and its decomposition products (acetic acid, water, and oxygen) are innocuous and environmentally acceptable.

  20. Separation of ions in acidic solution by capillary electrophoresis

    SciTech Connect

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  1. Molecular dynamics simulations of lysozyme in water/sugar solutions

    NASA Astrophysics Data System (ADS)

    Lerbret, A.; Affouard, F.; Bordat, P.; Hédoux, A.; Guinet, Y.; Descamps, M.

    2008-04-01

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.

  2. Physical knowledge of sugar water solutions: cross-cultural data.

    PubMed

    Slone, M; Dixon, J A; Bokhorst, F D

    1994-03-01

    Children's understanding of sugar water solutions may progress through universal stages: from nonpreservation to preservation to liquefaction to atomism. This claim was investigated in the current study; the claim was originally prefigured in the work of Piaget and Inhelder (1974) and more recently consolidated by Slone (1987). Our sample consisted of 270 South African children drawn from three cultural groups and ranging in age from 4 to 14 years. Children watched a demonstration in which a sugar lump was dissolved in water. Then, using structured interviews, we explored their understanding of this phenomenon. The results generally confirmed the hypothesized developmental sequence. Moreover, because the sequence was consistent across cultural groups, the claim that physical knowledge evolves through universal stages also was supported. Perhaps significantly, however, the progression of knowledge development did not unequivocally lead to the concept of atomism. Developmental implications of these findings are discussed. PMID:8021625

  3. Dynamic dielectric properties of some carboxylic acid esters in benzene solution

    NASA Astrophysics Data System (ADS)

    Ghoneim, Ahmed M.; Stockhause, Martina; Becker, U.; Biedenkap, R.; Elsebrock, R.

    1997-06-01

    The dielectric absorption spectrum between some MHz and 36 GHz has been measured at 20 degrees C for S(-)-lactic acid methylester, succinic acid dimethylester, L(-)- malic acid dimethylester and L(+)-tartaric acid diethylester, over the whole concentration range of benzene solutions of these substances. The loss function can be described by up to four Debye type spectral components. The relaxation parameters are reported and discussed in particular with respect to association effects.

  4. Near infrared photochemistry of pyruvic acid in aqueous solution.

    PubMed

    Larsen, Molly C; Vaida, Veronica

    2012-06-21

    Recent experimental and theoretical results have suggested that organic acids such as pyruvic acid, can be photolyzed in the ground electronic state by the excitation of the OH stretch vibrational overtone. These overtones absorb in the near-infrared and visible regions of the spectrum where the solar photons are plentiful and could provide a reaction pathway for the organic acids and alcohols that are abundant in the earth's atmosphere. In this paper the overtone initiated photochemistry of aqueous pyruvic acid is investigated by monitoring the evolution of carbon dioxide. In these experiments CO(2) is being produced by excitation in the near-infrared, between 850 nm and ∼1150 nm (11,765-8696 cm(-1)), where the second OH vibrational overtone (Δν = 3) of pyruvic acid is expected to absorb. These findings show not only that the overtone initiated photochemical decarboxylation reaction occurs but also that in the aqueous phase it occurs at a lower energy than was predicted for the overtone initiated reaction of pyruvic acid in the gas phase (13,380 cm(-1)). A quantum yield of (3.5 ± 1.0) × 10(-4) is estimated, suggesting that although this process does occur, it does so with a very low efficiency.

  5. New insights into structural alteration of enamel apatite induced by citric acid and sodium fluoride solutions.

    PubMed

    Wang, Xiaojie; Klocke, Arndt; Mihailova, Boriana; Tosheva, Lubomira; Bismayer, Ulrich

    2008-07-24

    Attenuated total reflectance infrared spectroscopy and complementary scanning electron microscopy were applied to analyze the surface structure of enamel apatite exposed to citric acid and to investigate the protective potential of fluorine-containing reagents against citric acid-induced erosion. Enamel and, for comparison, geological hydroxylapatite samples were treated with aqueous solutions of citric acid and sodium fluoride of different concentrations, ranging from 0.01 to 0.5 mol/L for citric acid solutions and from 0.5 to 2.0% for fluoride solutions. The two solutions were applied either simultaneously or consecutively. The citric acid-induced structural modification of apatite increases with the increase in the citric acid concentration and the number of treatments. The application of sodium fluoride alone does not suppress the atomic level changes in apatite exposed to acidic agents. The addition of sodium fluoride to citric acid solutions leads to formation of surface CaF2 and considerably reduces the changes in the apatite P-O-Ca framework. However, the CaF2 globules deposited on the enamel surface seem to be insufficient to prevent the alteration of the apatite structure upon further exposure to acidic agents. No evidence for fluorine-induced recovery of the apatite structure was found.

  6. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  7. A free energy analysis of nucleic acid base stacking in aqueous solution.

    PubMed Central

    Friedman, R A; Honig, B

    1995-01-01

    This paper reports a theoretical study of the free energy contributions to nucleic acid base stacking in aqueous solution. Electrostatic interactions are treated by using the finite difference Poisson-Boltzmann method and nonpolar effects are treated with explicit calculation of van der Waals interactions and/or free energy-surface area relationships. Although for some pairs of bases there is a favorable Coulombic interaction in the stacked conformation, generally the net effect of electrostatic interactions is to oppose stacking. This result is caused by the loss of favorable base-solvent electrostatic interactions, that accompany the partial removal of polar atoms from water in the stacked conformation. Nonpolar interactions, involving the hydrophobic effect and enhancement of van der Waals interactions caused by close-packing, drive stacking. The calculations qualitatively reproduce the experimental dependence of stacking free energy on purine-pyrimidine composition. Images FIGURE 1 PMID:8534823

  8. Modification of chitosan with monomethyl fumaric acid in an ionic liquid solution.

    PubMed

    Wang, Zhaodong; Zheng, Liuchun; Li, Chuncheng; Zhang, Dong; Xiao, Yaonan; Guan, Guohu; Zhu, Wenxiang

    2015-03-01

    Antibacterial and antioxidant monomethyl fumaric acid (MFA) was selected to modify chitosan, using aqueous solution of an ionic liquid as a homogeneous and green reaction media. The chemical structures of resulting polymers were systematically characterized by (1)H NMR, diffusion ordered spectroscopy, solid (13)C NMR and wide-angle X-ray diffraction. The results show that two kinds of MFA modified chitosan materials with totally different chemical structures have been synthesized. One product was a MF-chitosan salt composed of chitosan cation and MFA anion, which was obtained with the mediation of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide. The other one synthesized with the mediation of EDC was a MF-chitosan amide in which MFA and chitosan are covalently attached. Solubility of chitosan has been improved, and MF-chitosan salt can be readily dissolved in water. The antioxidant activity has been enhanced with the introduction of MFA, irrespective of the chemical structure.

  9. How do water striders, Aquarius paludum, react to brackish water simulated by NaCl solutions?

    PubMed

    Kishi, Manabu; Fujisaki, Kenji; Harada, Tetsuo

    2006-01-01

    Several stages, from eggs to adults, of the water strider, Aquarius paludum (Fabricius), inhabiting fresh water are sometimes conveyed by heavy flow in the rainy or typhoon seasons in Japan to lotic brackish water in the mouth of rivers. The water striders might then respond to salinity either by remaining to wait for extensive rainfall to reduce osmotic pressure locally before reproducing ("breed here and later tactic") or by flying away to reproduce in fresh waters elsewhere ("breed elsewhere and later tactic"). All first instars died before the first molt when they were exposed to 1.75 and 3.5% NaCl solutions in a laboratory experiment. Living on 0.5 and 0.9% solutions through larval and adult stages slowed down larval growth and suppressed female reproduction. When exposed to the 0.5 and 0.9% solutions, 90 and 92% of males, respectively, showed histolysis of their flight muscles. Therefore, in brackish natural habitats, larvae and adults seem to follow the strategy "breed here and later." When water striders were exposed to 0.9% solution either just after emergence or 20 days later, females showed a higher flight propensity than those kept on fresh waters throughout, and they delayed the deposition of eggs. Therefore, when conveyed to brackish water after emergence by stream flow after heavy rain, adults seem to leave the area by flight, demonstrating the strategy "breed elsewhere and later" tactic. We conclude that water striders use alternative tactics for responding to salinity, depending on the stage of exposure.

  10. How do water striders, Aquarius paludum, react to brackish water simulated by NaCl solutions?

    NASA Astrophysics Data System (ADS)

    Kishi, Manabu; Fujisaki, Kenji; Harada, Tetsuo

    2006-01-01

    Several stages, from eggs to adults, of the water strider, Aquarius paludum (Fabricius), inhabiting fresh water are sometimes conveyed by heavy flow in the rainy or typhoon seasons in Japan to lotic brackish water in the mouth of rivers. The water striders might then respond to salinity either by remaining to wait for extensive rainfall to reduce osmotic pressure locally before reproducing (“breed here and later tactic”) or by flying away to reproduce in fresh waters elsewhere (“breed elsewhere and later tactic”). All first instars died before the first molt when they were exposed to 1.75 and 3.5% NaCl solutions in a laboratory experiment. Living on 0.5 and 0.9% solutions through larval and adult stages slowed down larval growth and suppressed female reproduction. When exposed to the 0.5 and 0.9% solutions, 90 and 92% of males, respectively, showed histolysis of their flight muscles. Therefore, in brackish natural habitats, larvae and adults seem to follow the strategy “breed here and later.” When water striders were exposed to 0.9% solution either just after emergence or 20 days later, females showed a higher flight propensity than those kept on fresh waters throughout, and they delayed the deposition of eggs. Therefore, when conveyed to brackish water after emergence by stream flow after heavy rain, adults seem to leave the area by flight, demonstrating the strategy “breed elsewhere and later” tactic. We conclude that water striders use alternative tactics for responding to salinity, depending on the stage of exposure.

  11. PROCESS OF SECURING PLUTONIUM IN NITRIC ACID SOLUTIONS IN ITS TRIVALENT OXIDATION STATE

    DOEpatents

    Thomas, J.R.

    1958-08-26

    >Various processes for the recovery of plutonium require that the plutonium be obtalned and maintained in the reduced or trivalent state in solution. Ferrous ions are commonly used as the reducing agent for this purpose, but it is difficult to maintain the plutonium in a reduced state in nitric acid solutions due to the oxidizing effects of the acid. It has been found that the addition of a stabilizing or holding reductant to such solution prevents reoxidation of the plutonium. Sulfamate ions have been found to be ideally suitable as such a stabilizer even in the presence of nitric acid.

  12. Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution

    SciTech Connect

    Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi

    2013-07-01

    We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.

  13. Enhanced stability of the model mini-protein in amino acid ionic liquids and their aqueous solutions.

    PubMed

    Chevrot, Guillaume; Fileti, Eudes Eterno; Chaban, Vitaly V

    2015-10-15

    Using molecular dynamics simulations, the structure of model mini-protein was thoroughly characterized in the imidazolium-based amino acid ionic liquids and their aqueous solutions. Complete substitution of water by organic cations and anions further results in hindered conformational flexibility of the mini-protein. This observation suggests that amino acid-based ionic liquids are able to defend proteins from thermally induced denaturation. We show by means of radial distributions that the mini-protein is efficiently solvated by both solvents due to a good mutual miscibility. Amino acid-based anions prevail in the first coordination sphere of positively charged sites of the mini-protein whereas water molecules prevail in the first coordination sphere of negatively charged sites of the mini-protein. PMID:26250927

  14. Factors affecting acid neutralizing capacity in the Adirondack region of New York: a solute mass balance approach.

    PubMed

    Ito, Mari; Mitchell, Myron J; Driscoll, Charles T; Roy, Karen M

    2005-06-01

    High rates of acidic deposition in the Adirondack region of New York have accelerated acidification of soils and surface waters. Annual input-output budgets for major solutes and acid-neutralizing capacity (ANC) were estimated for 43 drainage lake-watersheds in the Adirondacks from 1998 to 2000. Sulfate was the predominant anion on an equivalent basis in both precipitation and drainage export. Calcium ion had the largest cation drainage export, followed by Mg2+. While these watersheds showed net nitrogen (N) retention, the drainage losses of SO4(2-), Cl-, base cations, and ANC exceeded their respective inputs from precipitation. Land cover (forest type and wetlands) affected the export of SO4(2-), N solutes, and dissolved organic carbon (DOC). The relationships of solute export with elevation (negative for base cations and Cl-, positive for NO3- and H+) suggest the importance of the concomitant changes of biotic and abiotic watershed characteristics associated with elevational gradients. The surface water ANC increased with the sum of base cations and was greatest in the lakes with watersheds characterized by thick deposits of glacial till. The surface water ANC was also higher in the lake-watersheds with lower DOC export. Some variation in lake ANC was associated with variability in acidic deposition. Using a classification system previously developed for Adirondack lakes on the basis primarily of surficial geology, lake-watersheds were grouped into five classes. The calculated ANC fluxes based on the major sinks and sources of ANC were comparable with measured ANC for the thick-till (I) and the medium-till lake-watersheds with low DOC (II). The calculated ANC was overestimated for the medium-till with high DOC (III) and the thin-till with high DOC (V) lake-watersheds, suggesting the importance of naturally occurring organic acids as an ANC sink, which was not included in the calculations. The lower calculated estimates than the measured ANC for the thin-till lake

  15. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature.

    PubMed

    Shimokawa, Ken-ichi; Saegusa, Katsuhiko; Ishii, Fumiyoshi

    2009-11-01

    The influences of various salts and water-soluble polymers on the phase transition temperature of thermo-setting gels prepared by combining methylcellulose (MC)-sodium citrate (SC)-polyethylene glycol (PEG) at appropriate ratios (the MC-SC-PEG system) were investigated. Concerning cations, comparison of the phase transition temperature between SC and tripotassium citrate (PC) showed a rapid increase in the viscosity of SC between 20 degrees C and 25 degrees C and an increase in the viscosity of PC between 30 degrees C and 35 degrees C. Concerning the valency of anions, comparisons among SC, disodium tartrate dihydrate (ST), disodium maleate hemihydrates (SM), and sodium sulfate (SS) showed a rapid increase in the viscosity of trivalent SC between 20 degrees C and 25 degrees C and changes in the viscosity of the three bivalent sodium salts (ST, SM, and SS) at > or =30 degrees C. Thus the phase transition temperature decreased with an increase in the valency of anions. Subsequently, the influences of various water-soluble polymers on the gelling temperature were compared. Using polyvinylpyrrolidone (PVP) instead of PEG, the gelling temperature decreased with an increase in the PVP concentration even without the addition of SC. Unlike PVP, the addition of xanthan gum as a viscosity-increasing polysaccharide did not reduce the gelling temperature irrespective of its concentration. Temperature-associated changes in viscosity were observed at a fixed SC concentration with changes in the concentration of PVP or PEG. The gel phase transition temperature increased from 46 degrees C to 50 degrees C in gels not containing PVP or PEG. The viscosity did not differ between the addition of PVP or PEG at a low concentration and its absence. However, the viscosity clearly changed after the addition of each agent at a high concentration.

  16. A nuclear magnetic resonance study of water in aggrecan solutions

    PubMed Central

    Foster, Richard J.; Damion, Robin A.; Baboolal, Thomas G.; Smye, Stephen W.; Ries, Michael E.

    2016-01-01

    Aggrecan, a highly charged macromolecule found in articular cartilage, was investigated in aqueous salt solutions with proton nuclear magnetic resonance. The longitudinal and transverse relaxation rates were determined at two different field strengths, 9.4 T and 0.5 T, for a range of temperatures and aggrecan concentrations. The diffusion coefficients of the water molecules were also measured as a function of temperature and aggrecan concentration, using a pulsed field gradient technique at 9.4 T. Assuming an Arrhenius relationship, the activation energies for the various relaxation processes and the translational motion of the water molecules were determined from temperature dependencies as a function of aggrecan concentration in the range 0–5.3% w/w. The longitudinal relaxation rate and inverse diffusion coefficient were approximately equally dependent on concentration and only increased by upto 20% from that of the salt solution. The transverse relaxation rate at high field demonstrated greatest concentration dependence, changing by an order of magnitude across the concentration range examined. We attribute this primarily to chemical exchange. Activation energies appeared to be approximately independent of aggrecan concentration, except for that of the low-field transverse relaxation rate, which decreased with concentration. PMID:27069663

  17. Pervaporation separation of ethanol-water mixtures using polyacrylic acid composite membranes

    DOEpatents

    Neidlinger, H.H.

    1985-05-07

    Synthetic, organic, polymeric membranes were prepared from polyacrylic acid salts for use with pervaporation apparatus in the separation of ehthanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanata solution, after which the prepared membrane was heat-cured. The resulting membrane structure showed selectivity in permeating water over a wide range of feed concentrations. 4 tabs.

  18. Removal of metals from aqueous solution and sea water by functionalized graphite nanoplatelets based electrodes.

    PubMed

    Mishra, Ashish Kumar; Ramaprabhu, S

    2011-01-15

    In the present wok, we have demonstrated the simultaneous removal of sodium and arsenic (pentavalent and trivalent) from aqueous solution using functionalized graphite nanoplatelets (f-GNP) based electrodes. In addition, these electrodes based water filter was used for multiple metals removal from sea water. Graphite nanoplatelets (GNP) were prepared by acid intercalation and thermal exfoliation. Functionalization of GNP was done by further acid treatment. Material was characterized by different characterization techniques. Performance of supercapacitor based water filter was analyzed for the removal of high concentration of arsenic (trivalent and pentavalent) and sodium as well as for desalination of sea water, using cyclic voltametry (CV) and inductive coupled plasma-optical emission spectroscopy (ICP-OES) techniques. Adsorption isotherms and kinetic characteristics were studied for the simultaneous removal of sodium and arsenic (both trivalent and pentavalent). Maximum adsorption capacities of 27, 29 and 32 mg/g for arsenate, arsenite and sodium were achieved in addition to good removal efficiency for sodium, magnesium, calcium and potassium from sea water.

  19. Tracking the morphology of fulvic acids during water uptake

    NASA Astrophysics Data System (ADS)

    Zelenay, Veronika; Krepelova, Adela; Rudich, Yinon; Huthwelker, Thomas; Ammann, Markus

    2010-05-01

    a microdispenser or as aerosol particles on the sample holder of the microreactor. The resulting dry droplet residues reached a size of about 20 -30 μm or around 0.5 μm, respectively. Using this setup we could obtain unique images showing the microstructure of the fulvic acid before and during exposure to water vapor in situ. Significant changes in morphology occurred upon water uptake, and the system consisted of a solution with embedded micron-sized colloidal particles. This further allows linking the chemical functional groups with their degree of hydration. Additional measurements were performed with two fractionated fulvic acids of low (0.5-1 kDa) and high (10-30 kDa) molecular weight. Both fractions were first analyzed for their functional and their hygroscopic properties. Although the functional group analysis shows differences, the morphology of these two fractions was found to be similar. Under dry conditions, the residues were more homogeneous over the droplet dimensions than for the unfractionated samples. Under wet conditions, the two fractions differed in the amount of water taken up but were similar in the degree to which more phenolic subunits were apparent.

  20. Mechanistic studies of nitrations and oxidations in solutions of dinitrogen pentaoxide in nitric acid

    SciTech Connect

    Willmer, R.F.

    1992-01-01

    Mechanisms of nitrations in solutions of dinitrogen pentaoxide in nitric acid of 1,2,4-trichloro-5-nitrobenzene and 1,2-dichloro-4-nitrobenzene have been proposed. The kinetics and products of the nitration, in the title medium, of substantially deactivated benzoic acids and benzaldehydes have been investigated. Kinetics of nitration of some substituted benzoic acids in nitric acid solutions containing dinitrogen pentaoxide or nitronium trifluoro-methanesulphonate (nitronium triflate) have been compared. Rate coefficients for reactions in dinitrogen pentaoxide solutions were generally similar to those from nitronium triflate solutions of the same estimated nitronium ion concentration. Yields of aromatic products of nitration of some benzoic acid derivatives in the nitric acid solutions have been determined. Nitrodecarboxylation of 4-fluorobenzoic acid occurs as a result of nitronium ion attach at C(1). The competition between oxidation to the corresponding benzoic acid and nitration in the aromatic ring of some substituted benzaldehydes has been probed by kinetic and product studies. 4-Carboxybenzaldehyde is nitrated but more deactivated substrates are predominantly oxidized. Rapid reversible gem-dinitrate formation occurs in concentrated dinitrogen pentaoxide solutions. The equilibrium extent of formation of [alpha]-deuterio-(4-nitropheny)-dinitratomethane from [alpha]-deuterio-4-nitrobenzaldehyde is reported. 4-nitrobenzaldehyde and the gem-dinitrate are oxidized in processes in which [alpha]-hydrogen loss is at least partially rate determining. The relative rates of oxidation in nitronium triflate solutions suggest that the [alpha]-hydrogen is removed as a hydride ion in that medium. There is evidence for the intrusion of a radical mechanism of nitration in concentrated solutions of dinitrogen pentaoxide. (4-Nitrophenyl)dinitratomethane was produced on the addition of 4-nitrobenzaldehyde to a solution of dinitrogen pentaoxide in dichloromethane.

  1. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    NASA Astrophysics Data System (ADS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-11-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  2. Advanced oxidation (H₂O₂ and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution.

    PubMed

    Czech, Bożena; Oleszczuk, Patryk; Wiącek, Agnieszka

    2015-05-01

    The properties of carbon nanotubes (CNTs) functionalized with -OH and -COOH groups during simulated water treatment with H2O2 and/or UV were tested. There following properties of CNTs were investigated: specific surface area, elemental composition (CHN), dynamic light scattering, Raman spectroscopy, X-ray photoelectron spectroscopy and changes in the CNTs structure were observed using transmission electron microscopy. Treatment of CNTs with H2O2 and/or UV affected their properties. This effect, however, was different depending on the functionalization of CNTs and also on the factor used (UV and/or H2O2). H2O2 plays a key role as a factor modifying the surface of CNT-OHs, whereas the properties of CNT-COOHs were most affected by UV rays. A shortening of the nanotubes, exfoliation, the opening of their ends, and changes in the surface charge were observed as a result of the action of UV and/or H2O2. The changes in observed parameters may influence the stability of the aqueous suspensions of CNTs.

  3. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-01

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  4. Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air-Water Interface.

    PubMed

    Hua, Wei; Verreault, Dominique; Allen, Heather C

    2015-11-01

    Sulfuric acid (H2SO4), bisulfate (HSO4(-)), and sulfate (SO4(2-)) are among the most abundant species in tropospheric and stratospheric aerosols due to high levels of atmospheric SO2 emitted from biomass burning and volcanic eruptions. The air/aqueous interfaces of sulfuric acid and bisulfate solutions play key roles in heterogeneous reactions, acid rain, radiative balance, and polar stratospheric cloud nucleation. Molecular-level knowledge about the interfacial distribution of these inorganic species and their perturbation of water organization facilitates a better understanding of the reactivity and growth of atmospheric aerosols and of the aerosol surface charge, thus shedding light on topics of air pollution, climate change, and thundercloud electrification. Here, the air/aqueous interface of NaHSO4, NH4HSO4, and Mg(HSO4)2 salt solutions as well as H2SO4 and HCl acid solutions are investigated by means of vibrational sum frequency generation (VSFG) and heterodyne-detected (HD) VSFG spectroscopy. VSFG spectra of all acid solutions show higher SFG response in the OH-bonded region relative to neat water, with 1.1 M H2SO4 being more enhanced than 1.1 M HCl. In addition, VSFG spectra of bisulfate salt solutions highly resemble that of the dilute H2SO4 solution (0.26 M) at a comparable pH. HD-VSFG (Im χ((2))) spectra of acid and bisulfate salt solutions further reveal that hydrogen-bonded water molecules are oriented preferentially toward the bulk liquid phase. General agreement between Im χ((2)) spectra of 1.1 M H2SO4 and 1.1 M HCl acid solutions indicate that HSO4(-) ions have a similar surface preference as that of chloride (Cl(-)) ions. By comparing the direction and magnitude of the electric fields arising from the interfacial ion distributions and the concentration of each species, the most reasonable relative surface preference that can be deduced from a simplified model follows the order H3O(+) > HSO4(-) > Na(+), NH4(+), Mg(2+) > SO4(2-). Interestingly

  5. Influence of decenylsuccinic Acid on water permeability of plant cells.

    PubMed

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified. PMID:16658227

  6. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    2016-01-01

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water. PMID:27438241

  7. Multiple-acid equilibria in adsorption of carboxylic acids from dilute aqueous solution

    SciTech Connect

    Husson, S.M.; King, C.J.

    1999-02-01

    Equilibria were measured for adsorption of carboxylic acids from aqueous, binary-acid mixtures of lactic and succinic acids and acetic and formic acids onto basic polymeric sorbents. The experimentally determined adsorption isotherms compared well with model predictions, confirming that simple extensions from adsorption of individual acids apply. Fixed-bed studies were carried out that establish the efficacy of chromatographic fractionation of lactic and succinic acids using basic polymeric sorbents. Finally, sequential thermal and solvent regeneration of lactic and acetic acid-laden sorbents was investigated as a method to fractionate among coadsorbed volatile and nonvolatile acids. Essentially complete removal of the acetic acid from the acid-laden sorbent was achieved by vaporization under the conditions used; a small amount of loss of lactic acid (about 11%) was observed.

  8. Soil solution response to experimentally reduced acid deposition in a forest ecosystem

    SciTech Connect

    Alewell, C.; Matzner, E.; Bredemeier, M.; Blanch, K.

    1997-05-01

    In order to measure and predict reversibility of soil solution acidification under experimentally reduced acid input, a manipulation study with artificial {open_quote}preindustrial{close_quote} throughfall was established. A roof was installed underneath the canopy in a Norway Spruce stand of the German Soiling area. Water failing onto the roof was adjusted to clean rain concentrations before redistribution. Soil solutions were collected with suction cup lysimeters at various depths and were analyzed for major ions. The response of soil solution chemistry in the upper soil (10 cm depth) to a reduction of N, SO{sub 4}, and H input was rapid. While NO{sub 3} concentration in deeper soil layers reached input levels after 2 yr of treatment, SO{sub 4} concentration in the seepage water at 1 m depth remained high relative to the reduced input due to a release of formerly stored S from the soil. Aluminum concentration followed a similar pattern as the SO{sub 4} concentrations. The ion concentrations in soil leachate were predicted reasonably well using the MAGIC model with the measured SO{sub 4} sorption isotherms and the throughfall fluxes as model input Although the parameters of the Langmuir isotherm had no significant influence to the prediction of SO{sub 4} concentration in the upper soil layer, they were crucial for the prediction of SO{sub 4} dynamics in deeper soil layers. The model predicted that the reversibility of soil acidification at the Soiling area is delayed for decades due to the release of soil SO{sub 4}. 38 refs., 5 figs., 4 tabs.

  9. In vitro evaluation of the cytotoxic effects of acid solutions used as canal irrigants.

    PubMed

    Malheiros, C F; Marques, M M; Gavini, G

    2005-10-01

    Solutions of EDTA and citric acid have been used as canal irrigants. These substances must be compatible with apical periodontal tissue. The aim of this study was to evaluate comparatively the cytotoxicity of a 17% EDTA solution and that of three solutions with different concentrations of citric acid (10, 15, and 25%) on cultured fibroblasts. The solutions were diluted to 0.1% and 0.5% in culture medium and then applied to NIH 3T3 cells. After 0, 6, 12, and 24 h (short-term assay; viability) and 1, 3, 5, and 7 days (long-term assay; survival), the cells were counted. The data were compared by ANOVA. In the short-term experiments, all solutions presented a percentage of cell viability similar to that of control cells, except for the 17% EDTA solution diluted to 0.5%. After the long-term assay, all groups presented a continuous and progressive cell growth except for the 17% EDTA solution and for the 25% citric acid solution at a 0.5% dilution. The citric acid solution did not impair cell growth and viability, proving to be noncytotoxic in vitro.

  10. Standard addition method for free acid determination in solutions with hydrolyzable ions

    SciTech Connect

    Baumann, E.W.

    1981-01-01

    The free acid content of solutions containing hydrolyzable ions has been determined potentiometrically by a standard addition method. Two increments of acid are added to the sample in a 1M potassium thiocyanate solution. The sample concentration is calculated by solution of three simultaneous Nernst equations. The method has been demonstrated for solutions containing Al/sup 3 +/, Cr/sup 3 +/, Fe/sup 3 +/, Ni/sup 2 +/, Th/sup 4 +/, or UO/sub 2//sup 2 +/ with a metal-to-acid ratio of < 2.5. The method is suitable for determination of 10 ..mu..moles acid in 10 mL total volume. The accuracy is verifiable by reasonable agreement of the Nerst slopes found in the presence and absence of hydrolyzable ions. The relative standard deviation is < 2.5 percent.

  11. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  12. Investigation of the swelling behaviour of hydrogels in aqueous acid or alkaline solutions

    NASA Astrophysics Data System (ADS)

    Althans, Daniel; Enders, Sabine

    2014-09-01

    For development of tailor made drug delivery systems using poly(N-isopropylacrylamide) hydrogels, the influence of acids and bases added to the aqueous solution on the swelling behaviour as function of concentration, temperature and kind of acid or base were investigated experimentally. The selected acids are formic, acetic, propionic, lactic, succinic, α-ketoglutaric and citric acid. The applied bases are sodium and potassium hydroxide. The swelling behaviour was characterised by the degree of swelling and by the uptake of acids by the hydrogel in the swollen state. In the case of weak acids the properties of the swollen hydrogel as well as the phase transition temperature and phase transition acid concentration depends on the type of acids, whereas the properties of the shrunken state do not depend on the acid used. In the case of strong bases, the properties of the shrunken and swollen state depend on the ionic strength, but not on the base applied.

  13. Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses.

    PubMed

    Gill, C O; Badoni, M

    2004-02-15

    The effects of solutions of 0.02% peroxyacetic acid, acidified 0.16% sodium chlorite, 2% lactic acid and 4% lactic acid on the natural flora of the distal surfaces of pieces of brisket, from chilled beef carcass quarters delivered from two slaughtering plants to a processing plant, were investigated. Peroxyacetic acid and acidified sodium chlorite solutions had little effect on the numbers of aerobes, coliforms or Escherichia coli on meat from one plant, and were less effective than 4% lactic acid for reducing the numbers of bacteria on meat from the other plant. With meat from both plants, treatment of meat with 4% lactic acid and holding for 5 or 60 min at 7+/-1 degrees C before sampling resulted in reductions of all three groups of bacteria by >/=1.5 log unit. Treatment with 2% lactic acid resulted in similar reductions when meat was sampled 5 min after the treatment, but reductions were about 1 log unit when meat was sampled 60 min after the treatment. Treatment of carcass quarters with 4% lactic acid resulted in reductions of bacterial numbers of >/=2 log units at distal surfaces, but solutions may be inconsistent when they are applied to chilled meat from different sources and to different types of meat surface, and that bacteria injured by application of an antimicrobial solution may recover during processing of meat at temperatures about 7 degrees C. However, 4% lactic acid may be generally useful as a decontaminant for chilled, raw meat. PMID:14967559

  14. Adsorption of humic acids and trace metals in natural waters

    NASA Technical Reports Server (NTRS)

    Leung, W. H.

    1982-01-01

    Studies concerning the interactions between suspended hydrous iron oxide and dissolved humic acids and trace metals are reported. As a major component of dissolved organic matters and its readiness for adsorption at the solid/water interface, humic acids may play a very important role in the organometallic geochemistry of suspended sediments and in determining the fate and distribution of trace metals, pesticides and anions in natural water systems. Most of the solid phases in natural waters contain oxides and hydroxides. The most simple promising theory to describe the interactions of hydrous iron oxide interface is the surface complex formation model. In this model, the adsorptions of humic acids on hydrous iron oxide may be interpreted as complex formation of the organic bases (humic acid oxyanions) with surface Fe ions. Measurements on adsorptions were made in both fresh water and seawater. Attempts have been made to fit our data to Langmuir adsorption isotherm. Adsorption equilibrium constants were determined.

  15. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate

    SciTech Connect

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, Raymond S.; Wiacek, Robert J.; Koonsiripaiboon, View; Pattamakomsan, Kanda; Sukwarotwat, Vichaya; Xu, Jide; Raymond, Kenneth N.

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, increasing public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd, Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS®) that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (ProPhos), and 1-hydroxy-2-pyridinone (1,2-HOPO) from natural waters (river, ground, and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate and compares their performance to a high surface area activated carbon. The properties include sorption affinity, capacity, and sorption kinetics. Stability and regenerability of SAMMS materials were also investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. While the activated carbon is as effective as 1,2-HOPO-SAMMS for capturing lanthanides in natural (alkaline) waters, it has no affinity in acid solutions (pH 2.4) and low affinity in carbonate-rich dialysate. Over 99% of 100 ug/L of Gd in dialysate was removed by the ProPhos-SAMMS after ten minutes. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties, for a number of regeneration cycles. In acid solutions, PhoPhos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their potential for chromatographic lanthanide separations. Thus, SAMMS materials have a great potential to be used as sorbents in large scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and sorbent dialyzers for lanthanide clearances.

  16. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that "the specific anodic oxidation peak" appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  17. Acceleration of suspending single-walled carbon nanotubes in BSA aqueous solution induced by amino acid molecules.

    PubMed

    Kato, Haruhisa; Nakamura, Ayako; Horie, Masanori

    2015-01-01

    Single-walled carbon nanotube (SWCNT) suspensions in aqueous media were prepared using bovine serum albumin (BSA) and amino acid molecules. It was found that the amino acid molecules clearly decreased the time required for suspending the SWCNTs in BSA aqueous solutions. Dynamic light scattering measurements revealed that the particle sizes of the SWCNTs suspended in aqueous media with and without amino acid molecules were approximately the same and stable for more than one week. The zeta potential values of the BSA molecules in pure water and amino acid aqueous solutions were different, and these values were also reflected in the surface potential of colloidal SWCNT particles in the corresponding aqueous media, thus inducing different dispersibility of SWCNTs in aqueous media. Pulsed field gradient nuclear magnetic resonance measurements showed that the interactions between the SWCNTs and the amino acid molecules are weak and comprise chemical exchange interactions and not bonding interactions. Amino acid molecules play a fascinating role in the preparation of SWCNT suspensions in BSA aqueous media by increasing electrostatic repulsive interactions between SWCNT colloidal particles and consequently enhancing the dispersion ability of the BSA molecules.

  18. Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany

    NASA Astrophysics Data System (ADS)

    Huang, J.-H.; Matzner, E.

    2006-04-01

    Wetland soils play a key role for the transformation of heavy metals in forested watersheds, influencing their mobility, and ecotoxicity. Our goal was to investigate the mechanisms of release from solid to solution phase, the mobility, and the transformation of arsenic species in a fen soil. In methanol-water extracts, monomethylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, arsenobetaine, and two unknown organic arsenic species were found with concentrations up to 14 ng As g -1 at the surface horizon. Arsenate is the dominant species at the 0-30 cm depth, whereas arsenite predominated at the 30-70 cm depth. Only up to 2.2% of total arsenic in fen was extractable with methanol-water. In porewaters, depth gradient spatial variation of arsenic species, pH, redox potentials, and the other chemical parameters along the profile was observed in June together with high proportion of organic arsenic species (up to 1.2 μg As L -1, 70% of total arsenic). Tetramethylarsonium ion and an unknown organic arsenic species were additionally detected in porewaters at deeper horizons. In comparison, the arsenic speciation in porewaters in April was homogeneous with depth and no organic arsenic species were found. Thus, the occurrence of microbial methylation of arsenic in fen was demonstrated for the first time. The 10 times elevated total arsenic concentrations in porewaters in June compared to April were accompanied by elevated concentrations of total iron, lower concentrations of sulfate and the presence of ammonium and phosphate. The low proportion of methanol-water extractable total arsenic suggests a generally low mobility of arsenic in fen soils. The release of arsenic from solid to solution phases in fen is dominantly controlled by dissolution of iron oxides, redox transformation, and methylation of arsenic, driven by microbial activity in the growing season. As a result, increased concentrations of total arsenic and potentially toxic arsenic species in fen

  19. Soil-solution partitioning of DOC in acid organic soils: Results from a UK field acidification and alkalization experiment

    NASA Astrophysics Data System (ADS)

    Oulehle, Filip; Jones, Timothy; Burden, Annette; Evans, Chris

    2013-04-01

    Dissolved organic carbon (DOC) is an important component of the global carbon (C) cycle and has profound impacts on water chemistry and metabolism in lakes and rivers. Reported increases of DOC concentration in surface waters across Europe and Northern America have been attributed to several drivers; from changing climate and land-use to eutrophication and declining acid deposition. The last of these suggests that acidic deposition suppressed the solubility of DOC, and that this historic suppression is now being reversed by reducing emissions of acidifying pollutants. We studied a set of four parallel acidification and alkalization experiments in organic rich soils which, after three years of manipulation, have shown clear soil solution DOC responses to acidity change. We tested whether these DOC concentration changes were related to changes in the acid/base properties of DOC. Based on laboratory determination of DOC site density (S.D. = amount of carboxylic groups per milligram DOC) and charge density (C.D. = organic acid anion concentration per milligram DOC) we found that the change in DOC soil-solution partitioning was tightly related to the change in degree of dissociation (α = C.D./S.D. ratio) of organic acids (R2=0.74, p<0.01). Carbon turnover in soil organic matter (SOM), determined by soil respiration and β-D-glucosidase enzyme activity measurements, also appears to have some impact on DOC leaching, via constraints on the actual supply of available DOC from SOM; when the turnover rate of C in SOM is low, the effect of α on DOC leaching is reduced. Thus, differences in the magnitude of DOC changes seen across different environments might be explained by interactions between physicochemical restrictions of DOC soil-solution partitioning, and SOM carbon turnover effects on DOC supply.

  20. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow

    USGS Publications Warehouse

    Wexler, Eliezer J.

    1992-01-01

    Analytical solutions to the advective-dispersive solute-transport equation are useful in predicting the fate of solutes in ground water. Analytical solutions compiled from available literature or derived by the author are presented for a variety of boundary condition types and solute-source configurations in one-, two-, and three-dimensional systems having uniform ground-water flow. A set of user-oriented computer programs was created to evaluate these solutions and to display the results in tabular and computer-graphics format. These programs incorporate many features that enhance their accuracy, ease of use, and versatility. Documentation for the programs describes their operation and required input data, and presents the results of sample problems. Derivations of selected solutions, source codes for the computer programs, and samples of program input and output also are included.

  1. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect

    Bern, Carleton R; Breit, George N; Healy, Richard W; Zupancic, John W; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  2. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  3. An investigation into the stability and sterility of citric acid solutions used for cough reflex testing.

    PubMed

    Falconer, James R; Wu, Zimei; Lau, Hugo; Suen, Joanna; Wang, Lucy; Pottinger, Sarah; Lee, Elaine; Alazawi, Nawar; Kallesen, Molly; Gargiulo, Derryn A; Swift, Simon; Svirskis, Darren

    2014-10-01

    Citric acid is used in cough reflex testing in clinical and research settings to assess reflexive cough in patients at risk of swallowing disorders. To address a lack of knowledge in this area, this study investigated the stability and sterility of citric acid solutions. Triplicate solutions of citric acid (0.8 M) in isotonic saline were stored at 4 ± 2 °C for up to 28 days and analysed by high-performance liquid chromatography. Microbiological sterility of freshly prepared samples and bulk samples previously used for 2 weeks within the hospital was determined using a pour plate technique. Microbial survival in citric acid was determined by inoculating Staphylococcus aureus, Escherichia coli, or Candida albicans into citric acid solution and monitoring the number of colony-forming units/mL over 40 min. Citric acid solutions remained stable at 4 °C for 28 days (98.4 ± 1.8 % remained). The freshly prepared and clinical samples tested were sterile. However, viability studies revealed that citric acid solution allows for the survival of C. albicans but not for S. aureus or E. coli. The microbial survival study showed that citric acid kills S. aureus and E. coli but has no marked effect on C. albicans after 40 min. Citric acid samples at 0.8 M remained stable over the 4-week testing period, with viable microbial cells absent from samples tested. However, C. albicans has the ability to survive in citric acid solution if inadvertently introduced in practice. For this reason, in clinical and research practice it is suggested to use single-use aliquots prepared aseptically which can be stored for up to 28 days at 4 °C.

  4. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  5. Maleic acid solvation in mixed water-ethanol solvents

    NASA Astrophysics Data System (ADS)

    Usacheva, T. R.; Kuz'mina, I. A.; Sharnin, V. A.; Tukumova, I. R.

    2012-04-01

    Heat effects of maleic acid dissolution in mixed water-ethanol solvents at 298.15 K are determined by means of calorimetry. A rise in exothermicity of maleic acid solvation is observed upon changes in the solvent copmosition in the direction of H2O → EtOH, the minimum being at ˜0.2 mol fraction of EtOH.

  6. Atmospheric photochemistry at a fatty acid-coated air-water interface

    NASA Astrophysics Data System (ADS)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  7. Atmospheric photochemistry at a fatty acid-coated air-water interface.

    PubMed

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D James; George, Christian

    2016-08-12

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation. PMID:27516601

  8. Electrochemical control of brightener in acid copper sulfate plating solutions

    SciTech Connect

    Bronson, M.J. . Kansas City Div.); Hawley, M.D. )

    1990-11-01

    Electrochemical methods have been evaluated that attempt the indirect measurement of the effective concentration of a brighter additive in acid copper sulfate plating baths. The procedures all employed electrodeposition of copper on a platinum working electrode under carefully controlled conditions of mass transport, time, temperature, and potential, followed by the measurement of the charge that was required to strip the copper deposit from the working electrode. The amount of charge that was required to strip the copper deposit at a given concentration of additive varied significantly from fresh to production baths and from lot to lot of the additive. The feasibility of using electrochemical methods to control brightener additive in acid copper sulfate plating baths is discussed. 3 figs., 11 refs.

  9. Antimicrobial and cytotoxic effects of phosphoric acid solution compared to other root canal irrigants

    PubMed Central

    PRADO, Maíra; da SILVA, Emmanuel João Nogueira Leal; DUQUE, Thais Mageste; ZAIA, Alexandre Augusto; FERRAZ, Caio Cezar Randi; de ALMEIDA, José Flávio Affonso; GOMES, Brenda Paula Figueiredo de Almeida

    2015-01-01

    Phosphoric acid has been suggested as an irrigant due to its effectiveness in removing the smear layer. Objectives : The purpose of this study was to compare the antimicrobial and cytotoxic effects of a 37% phosphoric acid solution to other irrigants commonly used in endodontics. Material and Methods : The substances 37% phosphoric acid, 17% EDTA, 10% citric acid, 2% chlorhexidine (solution and gel), and 5.25% NaOCl were evaluated. The antimicrobial activity was tested against Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Actinomyces meyeri, Parvimonas micra, Porphyromonas gingivalis, and Prevotella nigrescens according to the agar diffusion method. The cytotoxicity of the irrigants was determined by using the MTT assay. Results : Phosphoric acid presented higher antimicrobial activity compared to the other tested irrigants. With regard to the cell viability, this solution showed results similar to those with 5.25% NaOCl and 2% chlorhexidine (gel and solution), whereas 17% EDTA and 10% citric acid showed higher cell viability compared to other irrigants. Conclusion : Phosphoric acid demonstrated higher antimicrobial activity and cytotoxicity similar to that of 5.25% NaOCl and 2% chlorhexidine (gel and solution). PMID:26018307

  10. Kinetic, isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves.

    PubMed

    Guerrero-Coronilla, Imelda; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo

    2015-04-01

    The present study explored the kinetics, equilibrium and thermodynamics of amaranth (acid red 27) anionic dye (AD) biosorption to water hyacinth leaves (LEC). The effect of LEC particle size, contact time, solution pH, initial AD concentration and temperature on AD biosorption was studied in batch experiments. AD biosorption increased with rising contact time and initial AD concentration, and with decreasing LEC particle size and solution pH. Pseudo-second-order chemical reaction kinetics provided the best correlation for the experimental data. Isotherm studies showed that the biosorption of AD onto LEC closely follows the Langmuir isotherm, with a maximum biosorption capacity of about 70 mg g(-1). The thermodynamic parameters confirm that AD biosorption by LEC is non-spontaneous and endothermic in nature. Results indicate that LEC is a strong biosorbent capable of effective detoxification of AD-laden wastewaters.

  11. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation.

    PubMed

    He, Yanqing; Zhang, Jian; Bao, Jie

    2014-04-01

    Impregnation of lignocellulose materials with dilute acid solution is a routine operation in conventional dilute acid pretreatment. The dry dilute acid pretreatment (DDAP) at high solids content up to 70% is naturally considered to require longer impregnation time. In this study, a co-currently feeding operation of corn stover and dilute sulfuric acid solution without any impregnation was tested for DDAP. The DDAP pretreated corn stover without impregnation is found to be essentially no difference in pretreatment efficiency compared to those with impregnation in the helically agitated reactor. The yield from cellulose to ethanol in SSF again shows no obvious difference between the DDAP pretreated corn stover with and without impregnation. This study suggests that impregnation in DDAP was not necessary under the helical agitation mixing. The results provided a useful way of cost reduction and process simplification in pretreatment. PMID:24630497

  12. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation.

    PubMed

    He, Yanqing; Zhang, Jian; Bao, Jie

    2014-04-01

    Impregnation of lignocellulose materials with dilute acid solution is a routine operation in conventional dilute acid pretreatment. The dry dilute acid pretreatment (DDAP) at high solids content up to 70% is naturally considered to require longer impregnation time. In this study, a co-currently feeding operation of corn stover and dilute sulfuric acid solution without any impregnation was tested for DDAP. The DDAP pretreated corn stover without impregnation is found to be essentially no difference in pretreatment efficiency compared to those with impregnation in the helically agitated reactor. The yield from cellulose to ethanol in SSF again shows no obvious difference between the DDAP pretreated corn stover with and without impregnation. This study suggests that impregnation in DDAP was not necessary under the helical agitation mixing. The results provided a useful way of cost reduction and process simplification in pretreatment.

  13. Effects of slightly acidic electrolysed drinking water on mice.

    PubMed

    Inagaki, Hideaki; Shibata, Yoshiko; Obata, Takahiro; Kawagoe, Masami; Ikeda, Katsuhisa; Sato, Masayoshi; Toida, Kazumi; Kushima, Hidemi; Matsuda, Yukihisa

    2011-10-01

    Slightly acidic electrolysed (SAE) water is a sanitizer with strong bactericidal activity due to hypochlorous acid. We assessed the safety of SAE water as drinking water for mice at a 5 ppm total residual chlorine (TRC) concentration to examine the possibility of SAE water as a labour- and energy-saving alternative to sterile water. We provided SAE water or sterile water to mice for 12 weeks, during which time we recorded changes in body weight and weekly water and food intakes. At the end of the experiment, all of the subject animals were sacrificed to assess serum aspartate aminotransferase, alanine aminotransferase and creatinine levels and to examine the main organs histopathologically under a light microscope. In addition, we investigated the bacteria levels of both types of water. We found no difference in functional and morphological health condition indices between the groups. Compared with sterile water, SAE water had a relatively higher ability to suppress bacterial growth. We suggest that SAE water at 5 ppm TRC is a safe and useful alternative to sterile water for use as drinking water in laboratory animal facilities.

  14. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds

    PubMed Central

    Nakano, Shu-ichi; Kitagawa, Yuichi; Miyoshi, Daisuke; Sugimoto, Naoki

    2014-01-01

    Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds. PMID:25161873

  15. Measurements of the volatilities of solutes from aqueous solutions and their application to water/steam cycles

    SciTech Connect

    Jensen, J.P.; Palmer, D.A.; Simonson, J.M.

    1995-02-01

    Partitioning of NaSO{sub 4} and NaHSO{sub 4} between the liquid and vapor phases was measured at 300, 325 and 350{degrees}C by sampling both phases from a static platinum-lined autoclave. Sample compositions were determined by ion chromatography and acidimetric titrations. The solutions were buffered with either acid or base so that the volatility of individual species was determined. The molal thermodynamic partitioning constants were calculated by taking into account the mean stoichiometric activity coefficient in the liquid phase and the hydrolysis equilibrium constants. The vapor phase species were assumed to be neutral molecules with unit activity coefficients. The strong temperature dependence of the partitioning constant was treated by the isocoulombic method to obtain a linear dependence of the logarithm of the partitioning constant versus reciprocal temperature in Kelvin. A model is described for predicting the composition of the condensate in the water/steam cycle of power plants using drum boilers. Equilibrium between liquid and steam is assumed in the drum during boiling, and in the low pressure turbine on steam condensation. The model is based on the measured partitioning constants of HCl, NH{sub 4}Cl, NaCl, NaOH, H{sub 2}SO{sub 4}, NaHSO{sub 4}, NaSO{sub 4} and NH{sub 3}, the hydrolysis of HSO{sub 4}{sup -} and NH{sub 4}{sup +} and the ionic product of water. Two test cases are given to demonstrate the sensitivity of the pH of the first condensate to the concentrations of various anions relative to the corresponding sodium concentration in the drum. These calculations also indicate that very high concentrations of solutes can be achieved under certain conditions.

  16. Raman spectroscopic study of sodium chloride water solutions

    NASA Astrophysics Data System (ADS)

    Furić, K.; Ciglenečki, I.; Ćosović, B.

    2000-09-01

    The Raman spectra of NaCl water solutions have been studied in the concentration range between 0 and 3.3 M using a difference technique. The temperature dependence of the spectral profiles observed for the O-H stretching in the high frequency region (between 2500 and 4000 cm -1) was also investigated in the narrow interval around a room temperature. Although the considered bandshape is not of a simple kind, the measured Id/ I0 ratio plotted versus NaCl concentration and temperature fits a straight line in both diagrams very satisfactorily. The linear dependence of Id/ I0 versus NaCl molarity was checked in the study of natural seawater samples for which discrepancies were found. These deviations were attributed to other organic and inorganic dissolved components in the seawater.

  17. Water-lactose behavior as a function of concentration and presence of lactic acid in lactose model systems.

    PubMed

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2015-12-01

    The presence of high amounts of lactic acid in acid whey restricts its ability to be further processed because lactose appears to remain in its amorphous form. A systematic study is lacking in this regard especially during the concentration step. Hence, the main aim of the study was to establish the structure and behavior of water molecules surrounding lactose in the presence of 1% (wt/wt) lactic acid at a concentration up to 50% (wt/wt). Furthermore, the crystallization nature of freeze-dried lactose with or without lactic acid was established using differential scanning calorimetry and Fourier transform infrared spectroscopy. Two mechanisms were proposed to describe the behavior of water molecules around lactose molecules during the concentration of pure lactose and lactose solutions with lactic acid. Pure lactose solution exhibited a water evaporation enthalpy of ~679 J·g(-1), whereas lactose+ lactic acid solution resulted in ~965 J·g(-1) at a 50% (wt/wt) concentration. This indicates a greater energy requirement for water removal around lactose in the presence of lactic acid. Higher crystallization temperatures were observed with the presence of lactic acid, indicating a delay in crystallization. Furthermore, less crystalline lactose (~12%) was obtained in the presence of lactic acid, indicating high amorphous nature compared with pure lactose where ~50% crystallinity was obtained. The Fourier transform infrared spectra revealed that the strong hydration layer consisting lactic acid and H3O(+) ions surrounded lactose molecules via strong H bonds, which restricted water mobility, induced a change in structure of lactose, or both, creating unfavorable conditions for lactose crystallization. Thus, partial or complete removal of lactic acid from acid whey may be the first step toward improving the ability of acid whey to be processed. PMID:26476948

  18. Water-lactose behavior as a function of concentration and presence of lactic acid in lactose model systems.

    PubMed

    Wijayasinghe, Rangani; Vasiljevic, Todor; Chandrapala, Jayani

    2015-12-01

    The presence of high amounts of lactic acid in acid whey restricts its ability to be further processed because lactose appears to remain in its amorphous form. A systematic study is lacking in this regard especially during the concentration step. Hence, the main aim of the study was to establish the structure and behavior of water molecules surrounding lactose in the presence of 1% (wt/wt) lactic acid at a concentration up to 50% (wt/wt). Furthermore, the crystallization nature of freeze-dried lactose with or without lactic acid was established using differential scanning calorimetry and Fourier transform infrared spectroscopy. Two mechanisms were proposed to describe the behavior of water molecules around lactose molecules during the concentration of pure lactose and lactose solutions with lactic acid. Pure lactose solution exhibited a water evaporation enthalpy of ~679 J·g(-1), whereas lactose+ lactic acid solution resulted in ~965 J·g(-1) at a 50% (wt/wt) concentration. This indicates a greater energy requirement for water removal around lactose in the presence of lactic acid. Higher crystallization temperatures were observed with the presence of lactic acid, indicating a delay in crystallization. Furthermore, less crystalline lactose (~12%) was obtained in the presence of lactic acid, indicating high amorphous nature compared with pure lactose where ~50% crystallinity was obtained. The Fourier transform infrared spectra revealed that the strong hydration layer consisting lactic acid and H3O(+) ions surrounded lactose molecules via strong H bonds, which restricted water mobility, induced a change in structure of lactose, or both, creating unfavorable conditions for lactose crystallization. Thus, partial or complete removal of lactic acid from acid whey may be the first step toward improving the ability of acid whey to be processed.

  19. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    SciTech Connect

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  20. Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization.

    PubMed

    Cerutti, David S; Rice, Julia E; Swope, William C; Case, David A

    2013-02-28

    We have developed the IPolQ method for fitting nonpolarizable point charges to implicitly represent the energy of polarization for systems in pure water. The method involves iterative cycles of molecular dynamics simulations to estimate the water charge density around the solute of interest, followed by quantum mechanical calculations at the MP2/cc-pV(T+d)Z level to determine updated solute charges. Lennard-Jones parameters are updated starting from the Amber FF99SB nonbonded parameter set to accommodate the new charge model, guided by the comparisons to experimental hydration free energies (HFEs) of neutral amino acid side chain analogs and assumptions about the computed HFEs for charged side chains. These Lennard-Jones parameter adjustments for side-chain analogs are assumed to be transferable to amino acids generally, and new charges for all standard amino acids are then derived in the presence of water modeled by TIP4P-Ew. Overall, the new charges depict substantially more polarized amino acids, particularly in the backbone moieties, than previous Amber charge sets. Efforts to complete a new force field with appropriate torsion parameters for this charge model are underway. The IPolQ method is general and applicable to arbitrary solutes.

  1. DYNAMIC CONDUCTIVITY MEASUREMENTS IN HUMIC AND FULVIC ACID SOLUTIONS. (R828158)

    EPA Science Inventory

    Conductivity changes of dilute aqueous humic and fulvic acids solutions were monitored after the addition of small quantities of Cu, Cd, Pb, and Zn. The solutions were stirred at a constant and reproducible rate, and measurements proceeded until stable conductivities were atta...

  2. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  3. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons.

    PubMed

    Tang, Zhiwen; Wang, Kemin; Tan, Weihong; Li, Jun; Liu, Lingfeng; Guo, Qiuping; Meng, Xiangxian; Ma, Changbei; Huang, Shasheng

    2003-12-01

    Nucleic acids ligation is a vital process in the repair, replication and recombination of nucleic acids. Traditionally, it is assayed by denatured gel electrophoresis and autoradiography, which are not sensitive, and are complex and discontinuous. Here we report a new approach for ligation monitoring using molecular beacon DNA probes. The molecular beacon, designed in such a way that its sequence is complementary with the product of the ligation process, is used to monitor the nucleic acid ligation in a homogeneous solution and in real-time. Our method is fast and simple. We are able to study nucleic acids ligation kinetics conveniently and to determine the activity of DNA ligase accurately. We have studied different factors that influence DNA ligation catalyzed by T4 DNA ligase. The major advantages of our method are its ultrasensitivity, excellent specificity, convenience and real-time monitoring in homogeneous solution. This method will be widely useful for studying nucleic acids ligation process and other nucleic acid interactions.

  4. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    PubMed

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  5. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    PubMed Central

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-01-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions. PMID:27225427

  6. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-01

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  7. Acid effect on excited Auramine-O molecular rotor relaxations in solution and adsorbed on insulin fibrils

    NASA Astrophysics Data System (ADS)

    Simkovitch, R.; Akulov, K.; Erez, Y.; Amdursky, N.; Gepshtein, R.; Schwartz, T.; Huppert, D.

    2015-09-01

    Steady-state and time-resolved UV-Vis spectroscopy techniques were employed to study the non-radiative process of Auramine-O (AuO). We focused our attention on the ultrafast nonradiative decay of Auramine-O in water and on the acid effect on Auramine-O spectroscopy. We found that weak acids like formic acid shorten the excited-state decay times of both the emission and the transient pump-probe spectra of Auramine-O. We found three time domains in the relaxation of the excited states back to the ground state. In mixtures of acetic and formic acids, the three decay times associated with the relaxation process are shorter in the presence of formic acid in Auramine-O solutions. We qualitatively explain the very large non-radiative rate in water and in formic-acetic acid mixtures by a protic nonradiative model proposed by Sobolewski and Domcke. The steady-state emission spectrum of AuO adsorbed on insulin fibrils consists of two bands assigned to protonated and deprotonated forms and the emission intensity increases by three orders of magnitude. We conclude that the nonradiative process prevails in the liquid state, whereas when AuO is adsorbed on fibrils the nonradiative rate is reduced by three orders of magnitude and thus enables a slow ESPT process to occur.

  8. Effect of hydrochloric acid on sound absorption and relaxation frequency in magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Fisher, F. H.

    2002-05-01

    The epic work of Kurtze and Tamm on sound absorption spectroscopy in divalent sulfate electrolyte solutions (1953) from the low-kHz region up to over 200 MHz revealed astonishing variability at frequencies below 10 MHz and a common relaxation frequency at about 200 MHz. For magnesium sulfate [Epsom salts] solutions, the salt producing 30× the absorption of fresh water below the 100-kHz region in the oceans at low concentrations [~0.02 moles/liter], Kurtze and Tamm investigated the effects of adding HC1 or H2SO4. They found that as formal pH increased, the results were different for these acids in reducing the sound absorption. Fisher (1983) found that if the absorption was plotted against free hydrogen, ion concentration was the same. We used the 100-liter titanium sphere, a spare ballast tank from the WHOI submarine ALVIN. With precise temperature control, we found an increase in the relaxation frequency as HC1 was added in conjunction with the reduction in sound absorption. The results will be presented and an explanation will be proposed in the context of the Eigen and Tamm multistate dissociation model for MgSO4 (1962) which explains the effects of pressure on both absorption and conductance. [Work supported by ONR.] The author acknowledges C. C. Hsu for his work on this project.

  9. Antimicrobial Poly(lactic acid)-Based Nanofibres Developed by Solution Blow Spinning.

    PubMed

    Martínez-Sanz, Marta; Bilbao-Sainz, Cristina; Du, Wen-Xian; Chiou, Bor-Sen; Williams, Tina G; Wood, Delilah F; Imam, Syed H; Orts, William J; Lopez-Rubio, Amparo; Lagaron, Jose M

    2015-01-01

    The present study reports on the development of hybrid poly(lactic acid) (PLA) fibres loaded with highly crystalline bacterial cellulose nanowhiskers (BCNW) by the novel solution blow spinning method. Furthermore, fibres with antimicrobial properties were generated by incorporating carvacrol and THC as antimicrobial agents and the biocide effect against Listeria monocytogenes was studied. Initially, PLA blow spun fibres containing BCNW were optimized in terms of morphology and thermal properties. The addition of BCNW was seen to significantly increase the viscosity and surface tension of solutions, restricting the capacity to form fibres for concentrations greater than 30 wt.-% BCNW. 15 wt.-% BCNW was selected as the optimum nanofiller loading as it led to the most uniform fibres morphology, with BCNW homogeneously distributed along the fibres' axis. Subsequently, carvacrol and THC were incorporated into the fibres to confer them with antimicrobial properties, although the hydrophobic PLA matrix did not provide an efficient release of the antimicrobials. Thus, hydrophilic substances were added in order to trigger the antimicrobials release through water sorption mechanisms. The addition of the BCNW filler was not seen to significantly increase the antimicrobial capacity of the fibres by itself and, hence, gelatin was added to help promoting further the hydrophylicity and biocide performance of the fibres. Nevertheless, for the more hydrophilic THC, the biocide capacity of the fibres with gelatin was accentuated further by the presence of the BCNW.

  10. Antimicrobial Poly(lactic acid)-Based Nanofibres Developed by Solution Blow Spinning.

    PubMed

    Martínez-Sanz, Marta; Bilbao-Sainz, Cristina; Du, Wen-Xian; Chiou, Bor-Sen; Williams, Tina G; Wood, Delilah F; Imam, Syed H; Orts, William J; Lopez-Rubio, Amparo; Lagaron, Jose M

    2015-01-01

    The present study reports on the development of hybrid poly(lactic acid) (PLA) fibres loaded with highly crystalline bacterial cellulose nanowhiskers (BCNW) by the novel solution blow spinning method. Furthermore, fibres with antimicrobial properties were generated by incorporating carvacrol and THC as antimicrobial agents and the biocide effect against Listeria monocytogenes was studied. Initially, PLA blow spun fibres containing BCNW were optimized in terms of morphology and thermal properties. The addition of BCNW was seen to significantly increase the viscosity and surface tension of solutions, restricting the capacity to form fibres for concentrations greater than 30 wt.-% BCNW. 15 wt.-% BCNW was selected as the optimum nanofiller loading as it led to the most uniform fibres morphology, with BCNW homogeneously distributed along the fibres' axis. Subsequently, carvacrol and THC were incorporated into the fibres to confer them with antimicrobial properties, although the hydrophobic PLA matrix did not provide an efficient release of the antimicrobials. Thus, hydrophilic substances were added in order to trigger the antimicrobials release through water sorption mechanisms. The addition of the BCNW filler was not seen to significantly increase the antimicrobial capacity of the fibres by itself and, hence, gelatin was added to help promoting further the hydrophylicity and biocide performance of the fibres. Nevertheless, for the more hydrophilic THC, the biocide capacity of the fibres with gelatin was accentuated further by the presence of the BCNW. PMID:26328414

  11. AST/R BASED WATER REUSE AS A PART OF THE TOTAL WATER SOLUTION FOR WATER-STRESSED REGIONS: AN OVERVIEW OF ENGINEERING PRACTICE AND REGULATORY PROSPECTIVE

    EPA Science Inventory

    Water supply and demand are increasingly unbalanced in many parts of the world. To address the imbalance, the total water solution methodology simultaneously considers regulatory, engineering, environmental and economic factors to optimize risk management solutions for an entire ...

  12. AST/R–BASED WATER REUSE AS A PART OF THE TOTAL WATER SOLUTION FOR WATER-STRESSED REGIONS: AN OVERVIEW OF ENGINEERING PRACTICE AND REGULATORY PROSPECTIVE

    EPA Science Inventory

    Water supply and demand are increasingly unbalanced in many parts of the world. To address the imbalance, the total water solution methodology simultaneously considers regulatory, engineering, environmental and economic factors to optimize risk management solutions for an entire...

  13. Comparative genotoxicity of halogenated acetic acids found in drinking water.

    PubMed

    Giller, S; Le Curieux, F; Erb, F; Marzin, D

    1997-09-01

    Three short-term assays (SOS chromotest, Ames fluctuation test and newt micronucleus test) were performed to detect the genotoxic activity of organohalides, compounds likely to be found in chlorinated and/or ozonated drinking water: monochloro-, dichloro- and trichloroacetic acids and monobromo-, dibromo- and tribromoacetic acids. With the SOS chromotest, only three of the chemicals studied (dichloroacetic acid, dibromo- and tribromoacetic acids) were found to induce primary DNA damage in Escherichia coli PQ 37. In the Ames fluctuation test, all the compounds except monochloroacetic acid showed mutagenic activity in Salmonella typhimurium strain TA100. In these two in vitro tests, a good correlation between increasing number of substituents and decreasing mutagenicity was observed. Namely, the toxicity of brominated and chlorinated acetic acids decreased when the number of substituents increased. The newt micronucleus test detected a weak clastogenic effect on the peripheral blood erythrocytes of Pleurodeles waltl larvae for trichloroacetic acid only.

  14. Improved corrosion resistance of Hastelloy G-30 in nitric/hydrofluoric acid solutions by welding with Inconel 72 weld wire

    SciTech Connect

    Norby, B.C.

    1992-03-03

    When welding Hastelloy G-30, secondary phases form in the weld metal. These phases cause the weld metal to be preferentially attacked in nitric acid (HN0{sub 3}) solutions contaminated with minor amounts of hydrofluoric acid (HF). A post weld solution anneal and water quench is necessary to assure that these phases redissolve into the solid. When a post weld solution anneal and water quench is not feasible, improved corrosion resistance can be obtained by welding with INCO 72 weld wire. When welding Hastelloy G-30 with INCO 72, there can be a region at the weldmetal/base-metal interface that does not benefit from the INCO 72 weld wire. This region consists of melted and resolidified Hastelloy G-30. This unmixed zone can be preferentially attacked in HN03 solutions contaminated with minor amounts of HF. Long term corrosion immersion tests have shown that the rate of attack at the weld-metal/base-metal interface can be as high as 50 mpy. Welding techniques that increase the mixing of the melted Hastelloy G-30 with the INCO 72 weld wire can reduce the interface corrosion rate.

  15. Approximate solutions for Forchheimer flow during water injection and water production in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Moutsopoulos, Konstantinos N.

    2016-07-01

    Understanding the hydraulics around injection and production wells in unconfined aquifers associated with rainwater and reclaimed water aquifer storage schemes is an issue of increasing importance. Much work has been done previously to understand the mathematics associated with Darcy's law in this context. However, groundwater flow velocities around injection and production wells are likely to be sufficiently large such as to induce significant non-Darcy effects. This article presents a mathematical analysis to look at Forchheimer's equation in the context of water injection and water production in unconfined aquifers. Three different approximate solutions are derived using quasi-steady-state assumptions and the method of matched asymptotic expansion. The resulting approximate solutions are shown to be accurate for a wide range of practical scenarios by comparison with a finite difference solution to the full problem of concern. The approximate solutions have led to an improved understanding of the flow dynamics. They can also be used as verification tools for future numerical models in this context.

  16. Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis

    SciTech Connect

    Casella, Amanda J.; Levitskaia, Tatiana G.; Peterson, James M.; Bryan, Samuel A.

    2013-04-16

    Spectroscopic techniques have been applied extensively for quantification and analysis of solution compositions. In addition to static measurements, these techniques have been implemented in flow systems providing real-time solution information. A distinct need exists for information regarding acid concentration as it affects extraction efficiency and selectivity of many separation processes. Despite of the seeming simplicity of the problem, no practical solution has been offered yet particularly for the large-scale schemes involving toxic streams such as highly radioactive nuclear wastes. Classic potentiometric technique is not amiable for on-line measurements in nuclear fuel reprocessing due to requirements of frequent calibration/maintenance and poor long-term stability in the aggressive chemical and radiation environments. In this work, the potential of using Raman spectroscopic measurements for on-line monitoring of strong acid concentration in the solutions relevant to the dissolved used fuel was investigated. The Raman water signature was monitored and recorded for nitric and hydrochloric acid solution systems of systematically varied chemical composition, ionic strength, and temperature. The generated Raman spectroscopic database was used to develop predictive chemometric models for the quantification of the acid concentration (H+), neodymium concentration (Nd3+), nitrate concentration (NO3-), density, and ionic strength. This approach was validated using a flow solvent extraction system.

  17. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1996-01-01

    The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.

  18. NEUROXOTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection byproducts (DBPs). Dibromoacetic acid (DBA) is one of many DBPs produced by the chlorination of drinking water. Its chlorinated analog, ...

  19. Occurrence of perfluoroalkyl acids in environmental waters in Vietnam.

    PubMed

    Duong, Hanh Thi; Kadokami, Kiwao; Shirasaka, Hanako; Hidaka, Rento; Chau, Hong Thi Cam; Kong, Lingxiao; Nguyen, Trung Quang; Nguyen, Thao Thanh

    2015-03-01

    This is the first nationwide study of perfluoroalkyl acids (PFAAs) in environmental waters in Vietnam. Twenty-eight river water and 22 groundwater samples collected in four major cities and 14 river water samples from the Red River were screened to investigate the occurrence and sources of 16 PFAAs. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were the most prevalent of 11 detected PFAAs with maximum concentrations in urban river water of 5.3, 18 and 0.93ngL(-1), respectively, and in groundwater of 8.2, 4.5 and 0.45ngL(-1), respectively. PFAAs in the Red River water were detected at low levels. PFAA concentrations in river water were higher in the rainy season than in the dry season, possibly due to storm water runoff, a common phenomenon in Southeast Asian countries. The highest concentrations of PFAAs in river water were observed in samples from highly populated and industrialized areas, perhaps sourced from sewage. The PFAA concentrations observed were similar to those in other Southeast Asian countries, but lower than in developed nations. From the composition profiles of PFAAs, industrial products containing PFAAs imported from China and Japan might be one of the major sources of PFAAs in the Vietnamese aquatic environment. According to the health-based values and advisory issued by the United States Environmental Protection Agency (USEPA), the concentrations of detected PFAAs in this study do not pose an immediate health risk to humans and aquatic organisms.

  20. The amino acid's backup bone - storage solutions for proteomics facilities.

    PubMed

    Meckel, Hagen; Stephan, Christian; Bunse, Christian; Krafzik, Michael; Reher, Christopher; Kohl, Michael; Meyer, Helmut Erich; Eisenacher, Martin

    2014-01-01

    Proteomics methods, especially high-throughput mass spectrometry analysis have been continually developed and improved over the years. The analysis of complex biological samples produces large volumes of raw data. Data storage and recovery management pose substantial challenges to biomedical or proteomic facilities regarding backup and archiving concepts as well as hardware requirements. In this article we describe differences between the terms backup and archive with regard to manual and automatic approaches. We also introduce different storage concepts and technologies from transportable media to professional solutions such as redundant array of independent disks (RAID) systems, network attached storages (NAS) and storage area network (SAN). Moreover, we present a software solution, which we developed for the purpose of long-term preservation of large mass spectrometry raw data files on an object storage device (OSD) archiving system. Finally, advantages, disadvantages, and experiences from routine operations of the presented concepts and technologies are evaluated and discussed. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23722089

  1. The amino acid's backup bone - storage solutions for proteomics facilities.

    PubMed

    Meckel, Hagen; Stephan, Christian; Bunse, Christian; Krafzik, Michael; Reher, Christopher; Kohl, Michael; Meyer, Helmut Erich; Eisenacher, Martin

    2014-01-01

    Proteomics methods, especially high-throughput mass spectrometry analysis have been continually developed and improved over the years. The analysis of complex biological samples produces large volumes of raw data. Data storage and recovery management pose substantial challenges to biomedical or proteomic facilities regarding backup and archiving concepts as well as hardware requirements. In this article we describe differences between the terms backup and archive with regard to manual and automatic approaches. We also introduce different storage concepts and technologies from transportable media to professional solutions such as redundant array of independent disks (RAID) systems, network attached storages (NAS) and storage area network (SAN). Moreover, we present a software solution, which we developed for the purpose of long-term preservation of large mass spectrometry raw data files on an object storage device (OSD) archiving system. Finally, advantages, disadvantages, and experiences from routine operations of the presented concepts and technologies are evaluated and discussed. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.

  2. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  3. Degradation of berenil (diminazene aceturate) in acidic aqueous solution.

    PubMed

    Campbell, Michael; Prankerd, Richard J; Davie, Ashley S; Charman, William N

    2004-10-01

    The trypanocide berenil was assessed for chemical stability over the pH range 1-8 at 37 degrees C and 0.2 M ionic strength. It was found to be sufficiently unstable under acid conditions that its therapeutic efficacy is most likely severely compromised when administered orally. At pH 3, the half-life was 35 min, decreasing to 1.5 min at pH 1.75. Reaction rate constants were corrected for the effects of buffer catalysis and were found to range from 2.00 min(-1) at pH 1 to 6.1 x 10(-6) min(-1) at pH 8. The pH-rate profile displayed a region (pH 1-4) where specific acid catalysis was dominant, followed by a transitional region (pH 5-7), and finally a region (pH >7) where uncatalysed degradation was most important. It is recommended that berenil be enteric coated for formulations to be used in treating Third World parasitic diseases. PMID:15482649

  4. Corrosion Behavior of Alloy 22 in Oxalic Acid and Sodium Chloride Solutions

    SciTech Connect

    Day, S D; Whalen, M T; King, K J; Hust, G A; Wong, L L; Estill, J C; Rebak, R B

    2003-06-24

    Nickel based Alloy 22 (NO6022) is extensively used in aggressive industrial applications, especially due to its resistance to localized corrosion and stress corrosion cracking in high chloride environments. The purpose of this work was to characterize the anodic behavior of Alloy 22 in oxalic acid solution and to compare its behavior to sodium chloride (NaCl) solutions. Standard electrochemical tests such as polarization resistance and cyclic polarization were used. Results show that the corrosion rate of Alloy 22 in oxalic acid solutions increased rapidly as the temperature and the acid concentration increased. Extrapolation studies show that even at a concentration of 10{sup -4}M oxalic acid, the corrosion rate of Alloy 22 would be higher in oxalic acid than in 1 M NaCl solution. Alloy 22 was not susceptible to localized corrosion in oxalic acid solutions. Cyclic polarization tests in 1 M NaCl showed that Alloy 22 was susceptible to crevice corrosion at 90 C but was not susceptible at 60 C.

  5. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    DOEpatents

    Dumesic, James A; Wettstein, Stephanie G; Alonso, David Martin; Gurbuz, Elif Ispir

    2015-02-24

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  6. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  7. The solvent extraction of Americium(III) by 2,6-bis[(diphenylphosphino)-methyl]pyridine N,P,P` trioxide from nitric acid and hydrochloric acid solutions

    SciTech Connect

    Bond, E.M.; Engelhardt, U.; Deere, T.P.; Rapko, B.M.; Paine, R.T.

    1997-12-31

    The liquid/liquid extractions of Am(III) from nitric acid and hydrochloric acid solutions with chloroform solutions of 2,6-bis[(diphenylphosphino)methyl]pyridine N,P,P{prime} trioxide will be described. Americium(III) extracts well from high concentration nitric acid solutions (D>3000 at 6M nitric acid) and can be back extracted from the organic phase at 0.01M Nitric Acid. Americium(III) exhibits modest extraction from hydrochloric acid solutions (D=2.2 at 5M hydrochloric acid) and can be back extracted from the organic phase at 0.1M hydrochloric acid. The ligand dependency data suggest that two ligand molecules are coordinated to americium in the nitric acid system and three ligand molecules are coordinated to the americium in the hydrochloric acid system.

  8. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    SciTech Connect

    Robinson, K.; Pilot, T.F.; Meany, J.E. )

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing in solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.

  9. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  10. Acid gas absorption in aqueous solutions of mixed amines

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-12-31

    A mass transfer model has been developed to describe the rate of absorption (or desorption) of H{sub 2}S and CO{sub 2} in aqueous blends of a tertiary and a secondary or a primary amine. The model is based on penetration theory, and all significant chemical reactions are incorporated in the model. The reactions are taken to be reversible, with reactions involving only a proton transfer considered to be at equilibrium. The particular amines studied in this research were methyldiethanolamine (MDEA), a tertiary amine, and diethanolamine (DEA), a secondary amine. Key physicochemical data needed in the model, such as diffusion coefficients, kinetic rate constants, and gas solubilities, were measured. Experimental absorption rates of CO{sub 2} and H{sub 2}S were measured in a model gas-liquid contacting device and were compared with model predictions. Experiments were carried out for single amine solutions (both MDEA and DEA) and for amine blends.

  11. Prebiotic chemistry in eutectic solutions at the water-ice matrix.

    PubMed

    Menor-Salván, César; Marín-Yaseli, Margarita R

    2012-08-21

    A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry. PMID:22660387

  12. Formation of aromatic compounds from carbohydrates. X reaction of xylose, glucose, and glucuronic acid in acidic solution at 300C

    SciTech Connect

    Theander, O.; Nelson, D.A.; Hallen, R.T.

    1987-04-01

    For several years our respective groups have investigated the formation of aromatic compounds from carbohydrates in aqueous solution at various pH-values under reflux or hydrothermolytic conditions. For instance, previous papers in this series concerned the degradation of hexoses, pentoses, erythrose, dihydroxyacetone, and hexuronic acids to phenolic and enolic components. Of particular interest were the isolation and identification of catechols, an acetophenone, and chromones from pentoses and hexuronic acids at pH 4.5. The formation of these compounds, as well as reductic acid, was found to be more pronounced than that of 2-furaldehyde under acidic conditions. The aromatic precursors of 3 and 4 were also isolated from these reaction mixtures. This is in contrast to the high yields of 2 obtained from pentoses and hexuronic acids at very low pH.

  13. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    SciTech Connect

    STALLINGS, MARY

    2004-07-08

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  14. Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60-6.50

    NASA Astrophysics Data System (ADS)

    Čučulović, Ana; Veselinović, Dragan

    2015-12-01

    The desorption of 137Cs from the moss Brachythecium mildeanum (Schimp.) was performed using the following solutions: H2SO4 ( I), HNO3 ( II), H2SO4 + HNO3 ( III) with pH values of 4.60, 5.15, and 5.75, respectively, as well as distilled water (D) with pH 6.50. After five successive desorptions, each lasting 24 h, 20.5-37.6% 137Cs was desorbed from the moss using these solutions, while 30.7% of the starting content was desorbed using distilled water. The first desorption removed the highest percent of the original content of 137Cs in the moss (11.3-18.4%). This was determined by measuring 137Cs activity. If the current results are compared with those obtained earlier it may be concluded that 137Cs desorption from mosses is not species-dependent. The obtained results indicate the necessity of investigating the influence of acid rain, or rather, of H+ ions, on desorption of other ions from biological systems, i.e., the role of H+ ions in spreading other polluting compounds and thus producing secondary environmental pollution. From the results of this study it follows that acid rain will lead, through H+ ion action, to a similar increasing pollution of fallout waters with other ionic compounds which may not be present in the water before the contact with the plants and thus enable the pollution spreading. In the investigated system, the replacement of H+ ions from acid rains by more dangerous radioactive ions occured, increasing the concentration of the radioactive ions in the water, which demonstrates that the same process takes place in fallout water.

  15. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  16. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end. PMID:26077317

  17. Adsorption of oleic acid at sillimanite/water interface.

    PubMed

    Kumar, T V Vijaya; Prabhakar, S; Raju, G Bhaskar

    2002-03-15

    The interaction of oleic acid at sillimanite-water interface was studied by adsorption, FT-IR, and zeta potential measurements. The isoelectric point (IEP) of sillimanite obtained at pH 8.0 was found to shift in the presence of oleic acid. This shift in IEP was attributed to chemisorption of oleic acid on sillimanite. Adsorption experiments were conducted at pH 8.0, where the sillimanite surface is neutral. The adsorption isotherm exhibited a plateau around 5 micromol/m2 that correspond to a monolayer formation. Adsorption of oleic acid on sillimanite, alumina, and aluminum hydroxide was studied by FT-IR. Chemisorption of oleic acid on the above substrates was confirmed by FT-IR studies. Hydroxylation of mineral surface was found to be essential for the adsorption of oleic acid molecules. These surface hydroxyl sites were observed to facilitate deprotonation of oleic acid and its subsequent adsorption. Thus protons from oleic acid react with surface hydroxyl groups and form water molecules. Based on the experimental results, the mechanism of oleic acid adsorption on mineral substrate was proposed. Free energy of adsorption was estimated using the Stern-Graham equation for a sillimanite-oleate system. PMID:16290466

  18. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  19. Theoretical study of water cluster catalyzed decomposition of formic acid.

    PubMed

    Inaba, Satoshi

    2014-04-24

    We have performed a number of quantum chemical simulations to examine water cluster catalyzed decomposition of formic acid. The decomposition of formic acid consists of two competing pathways, dehydration, and decarboxylation. We use the Gaussian 4 method of the Gaussian09 software to locate and optimize a transition state of the decomposition reaction and obtain the activation energy. The decomposition starts by transferring a proton of a formic acid to a water molecule. The de Broglie wavelength of a proton is similar to the width of the potential barrier of the decomposition reaction at low temperature. The tunneling, in which a proton penetrates the potential barrier, enhances the decomposition rate. Water molecules serve as the catalyst in the decomposition and reduce the activation energy. The relay of a proton from a water molecule to a neighboring water molecule is accomplished with little change of the geometry of a molecule, resulting in the reduction of the activation energy. Two water molecules are actively involved in the decomposition reaction to reduce the activation energy. We have also examined the effect of water clusters with three, four, and five water molecules on the decomposition reaction. The noncovalent distance between a hydrogen atom of a water molecule and an oxygen atom of a neighboring water molecule decreases in a water cluster due to the cooperative many-body interactions. A water molecule in a water cluster becomes a better proton donor as well as a better proton acceptor. The activation energy of the decomposition is further decreased by the catalytic effect of a water cluster. We calculate the reaction rate using the transition state theory corrected by the tunneling effect of a proton. The calculated reaction rate of the decarboxylation is smaller than that of the dehydration when less than three water molecules are included in the simulation. However, the major product of the decomposition of a formic acid becomes carbon dioxide

  20. Effects of humic and fulvic acids on poliovirus concentration from water by microporous filtration.

    PubMed Central

    Sobsey, M D; Hickey, A R

    1985-01-01

    Because naturally occurring organic matter is thought to interfere with virus adsorption to microporous filters, humic and fulvic acids isolated from a highly colored, soft surface water were used as model organics in studies on poliovirus adsorption to and recovery from electropositive Virosorb 1MDS and electronegative Filterite filters. Solutions of activated carbon-treated tap water containing 3, 10, and 30-mg/liter concentrations of humic or fulvic acid were seeded with known amounts of poliovirus and processed with Virosorb 1MDS filters at pH 7.5 or Filterite filters at pH 3.5 (with and without 5 mM MgCl2). Organic acids caused appreciable reductions in virus adsorption and recovery efficiencies with both types of filter. Fulvic acid caused greater reductions in poliovirus recovery with Virosorb 1MDS filters than with Filterite filters. Fulvic acid interference with poliovirus recovery by Filterite filters was overcome by the presence of 5 mM MgCl2. Although humic acid reduced poliovirus recoveries by both types of filter, its greatest effect was on virus elution and recovery from Filterite filters. Single-particle analyses demonstrated MgCl2 enhancement of poliovirus association with both organic acids at pH 3.5. The mechanisms by which each organic acid reduced virus adsorption and recovery appeared to be different for each type of filter. PMID:2984989